
 
 
 

NUMERICAL SOLUTION TO KINEMATIC WAVE EQUATION FOR 
SURFACE RUNOFF ANALYSIS USING SATELLITE BASED DEM DATA 

 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 
 
 

BY 
 

HASAN HÜSEYİN YILDIRIM 
 
 
 
 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

CIVIL ENGINEERING 

 
 
 
 
 
 
 

SEPTEMBER 2020





 
 
 

Approval of the thesis: 
 

NUMERICAL SOLUTION TO KINEMATIC WAVE EQUATION FOR 
SURFACE RUNOFF ANALYSIS USING SATELLITE BASED DEM DATA 

 
submitted by HASAN HÜSEYİN YILDIRIM in partial fulfillment of the 
requirements for the degree of Master of Science in Civil Engineering, Middle 
East Technical University by, 
 
Prof. Dr. Halil Kalıpçılar  
Dean, Graduate School of Natural and Applied Sciences 

 

 
Prof. Dr. Ahmet Türer 
Head of the Department, Civil Engineering 

 

 
Prof. Dr. İsmail Aydın  
Supervisor, Civil Engineering, METU 

 

 
 
 
Examining Committee Members: 
 
Prof. Dr. Zuhal Akyürek  
Civil Engineering, METU 

 

 
Prof. Dr. İsmail Aydın  
Civil Engineering, METU 

 

 
Prof. Dr. Mete Köken  
Civil Engineering, METU 

 

 
Assoc.Prof. Dr. Ender Demirel  
Civil Engineering, Eskişehir Osmangazi University 

 

 
Assoc.Prof. Dr. Elif Oğuz  
Civil Engineering, METU 

 

 
 

Date: 23.09.2020 
 



 
 

iv 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced 
all material and results that are not original to this work. 

 

  

Name, Last name : Hasan Hüseyin Yıldırım 

Signature : 

 

 



 
 

v 
 

ABSTRACT 

 

NUMERICAL SOLUTION TO KINEMATIC WAVE EQUATION FOR 
SURFACE RUNOFF ANALYSIS USING SATELLITE BASED DEM DATA 

 
 
 
 

Yıldırım, Hasan Hüseyin 
Master of Science, Civil Engineering 
Supervisor : Prof. Dr. Ismail Aydın 

 
 

September 2020, 133 pages 

 

Modeling of rainfall runoff over large catchment areas is a critical step in flood 

analysis to estimate the time-wise variation of discharge at the outlet of hydrological 

basin. Outlet hydrograph of a basin is generally estimated using empirical 

formulations based on measurements from previous rainfall events. However, these 

empirical methods may not correctly model the surface flow dynamics over large 

and complex geometries. In this study, a fully distributed numerical model is 

developed that can deal with various flow conditions in natural domains. A 

structured computational grid is constructed on a Digital Elevation Model (DEM) 

that is derived from satellite data using appropriate transformations. The numerical 

algorithm switches between central and up-wind differencing to accurately simulate 

surface flow, accumulation around barriers and ponding inside cavities. Some 

numerical anomalies in regions of large bed slope were detected and cure is obtained 

in the code development stage. The code is optimized for parallel processing in 

multi-core computers which gives much faster solutions for large domains. Tests on 

hypothetical and natural domains are performed to validate the developed code.   

Keywords: CFD, Kinematic Wave, Rainfall-Runoff, Satellite Based Data 
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ÖZ 

 

UYDU KAYNAKLI VERİ KULLANILARAK YÜZEY AKIŞI ANALİZİNDE 
KİNEMATİK DALGA DENKLEMİNİN SAYISAL ÇÖZÜMÜ 

 
 
 

Yıldırım, Hasan Hüseyin 
Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Prof. Dr. İsmail Aydın 
 

Eylül 2020, 133 sayfa 

Taşkın analizinde, büyük toplanma alanlarındaki yüzey akışının modellenmesi ve 

hidrolojik havza çıkışlarındaki hidrografın zamana bağlı hesabı önemli bir rol 

oynamaktadır. Havza çıkış hidrografı genellikle geçmiş yağmur durumlarında 

yapılan ölçümleri temel alan ampirik formüller üzerinden yapılmaktadır. Fakat, 

ampirik hesaplamalar karmaşık ve geniş alanlardaki akış dinamiklerinin doğru 

modelleyemez. Bu çalışmada, doğal yüzeyler üzerinde çeşitli akış koşulları ile baş 

edebilen tam dağıtılmış sayısal model geliştirilmiştir. Uygun dönüşüm teknikleri 

kullanılarak sabit yapılandırılmış çözüm ağı uydu kaynaklı verilerden elde edilmiş 

olan sayısal yükseklik haritalarına yerleştirilir. Sayısal algoritmada, merkezi ve 

rüzgar yönlü çözümlemeleri dönüşümlü kullanılarak; yüzey akışı, engellerin 

etrafında birikim ve çukurluklarda göllenme durumlarının yüksek doğrulukta 

modellenmesi sağlanır. Yüksek eğimli bölgelerde sayısal çözümden kaynaklı 

sorunlar belirlenerek giderilmiştir. Büyük alanlarda yapılan çözümlerde sonuçların 

daha hızlı elde edilmesi için yazılım çok çekirdekli sistemlerde koşturulmak üzere 

optimize edilmiştir. Yazılım yapay ve doğal çözüm sahaları üzerinde test edilerek 

çözümler doğrulanmıştır.  

Anahtar Kelimeler: HAD, Kinematik Dalga, Yağmur-Yüzey Aakımı, Uydu 

Kaynaklı Veri 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Description of the Subject 

Stream discharge is the basic parameter for most of the water resources 

developments and reclamation work. Discharge in natural streams may depend on 

many geographic, geologic and hydrologic parameters. Timewise variation of 

discharge at a given section of the river can be strongly related to rainfall histogram 

and physical characteristics of the catchment area. In general practice, engineers use 

empirical formulations such as hydrologic routing and unit hydrographs for 

estimating the outlet hydrograph of a basin. However, as flow dynamics over large 

and complex geometries is overcomplicated to solve with such empirical methods, 

accuracy of these methods is questionable. Thanks to the developed computing 

hardware and satellite-based data, it is possible to make a more comprehensive, 

multi-dimensional analysis on large areas using computational tools. Complete 

catchment area can be discretized using fine mesh to construct a fully distributed 

model for rainfall and surface runoff including source and sink terms to model 

phenomena such as evaporation, infiltration, groundwater recharge etc. 

It is possible to consider different levels of approximation in the development of a 

mathematical model for the problem introduced above. There are modeling 

approaches in the literature (Bao et al., 2017; Fernández-Pato et al., 2016; Jia et al., 

2019; Kazezyılmaz-Alhan & Medina, 2007; Singh et al., 2011, 2015) using full two-

dimensional (2D) depth-averaged equations for shallow flows. The aim of such an 

approach is to be able to simulate all phases of flow; development of surface runoff, 

streamflow and flood inundations over wide flood plains. A more economical 
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approach may be to study the three phases of flow separately using appropriate 

solvers to make the problem more tractable.  

1.2 Literature  Review 

As the problem studied in this thesis requires multidisciplinary combination of 

geography, hydrology, hydraulic and computer sciences, sources from these research 

areas are used together in the development of the computational approach proposed. 

Fundamental information about hydrological simulation and analysis methods can 

be found from (Mu, 2013). This resource is used for understanding the basic 

principles in hydrological modeling. 

The basic concept of wave equations are taken from (Miller, 1984). Full derivation 

of dynamic, gravity, diffusion and kinematic wave equations can be found at (Miller, 

1984) and in this thesis the kinematic wave equation is derived, in the same manner, 

from momentum equation for shallow flows known as Saint-Venant equations.  

(Miller, 1984) indicated that the kinematic wave solution is adequate in calculation 

of surface flow over large areas and assumptions made in the solution are 

insignificant. However, in channel routing calculations, assumptions may become 

dominant and as water depths increase the results may diverge from the real solution. 

(Chanson, 2004a; Eagleson, 1970; Henderson & M, 1966) are some fundamental 

books about hydrology and open channel hydraulics. (Henderson & M, 1966) is used 

for improvements of the mathematical model. Analytical solutions of kinematic 

wave equations are obtained from (Eagleson, 1970). Chezy’s, Manning’s, and 

Darcy’s solutions for friction slope is obtained from  (Chanson, 2004a). 

(Bao et al., 2017) presented a study for two-dimensional kinematic wave solution of 

flood routing problem on distributed hydrological model. In this study, Kongjiapo 

basin in China is modeled and solved for flood simulation and forecasting. The study 

added five parameters for the estimation of flood peak time and peak discharge 
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volume. These parameters are calibrated with observations and measurements which 

are taken during a flood event. 

(Wang et al., 2011) is a discussion paper which obtained coupled solution of Green-

Ampt infiltration and two dimensional kinematic wave solution using implicit finite 

difference method for flood forecasting in semi-arid catchments. Kongjiapo basin in 

China is solved and in the solutions infiltration and surface roughness values were 

obtained from land cover material and topography is obtained from DEM. 

(Fernández-Pato et al., 2016) obtained one and two-dimensional shallow water 

solutions for surface flow. Using one-dimensional models, studied three different 

cases for the calibration of infiltration parameters and compared the Horton and the 

Green-Ampt infiltration methods. Lastly, Arnás catchment in Spain is solved with 

calibrated infiltration parameters.  

(Singh et al., 2011) obtained a two-dimensional numerical solution of shallow water 

equations for dam-break flow over natural terrain. In the solution a central explicit 

scheme is used, and Malpasset dam-break event in France is modeled. 

(Singh et al., 2015) obtained numerical solution for two-dimensional surface flow 

using dynamic wave equations. The results are compared with diffusion and 

kinematic wave models and it was found that the outlet discharges from dynamic 

and diffusion wave solutions are similar. The method is tested with an experimental 

model in Niger, West Africa. Numerical solutions and observations from four 

different storm events are compared. Lastly, Goodwin Creek in Mississippi is 

modeled including Green-Ampt infiltration based on soil type and non-uniform 

Manning’s roughness based on the land cover material. Results show that the method 

is appropriate for surface runoff modeling. 

(Kazezyılmaz-Alhan & Medina, 2007) obtained numerical and analytical solutions 

of kinematic and diffusion wave equations using constant celerity for one-

dimensional overland and open channel problems, and compared these numerical 

solutions with analytical solutions. In numerical solutions, MacCormack explicit 
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finite difference method is used and it is seen that the MacCormack method is 

excellent for a discrete solution in terms of efficiency and accuracy. 

(Jia et al., 2019) obtained one and two-dimensional surface flow solutions of 

kinematic wave equations and compared the results to analytic solutions and 

experimental data. In the validation of the solver of this study, the same one-

dimensional model is used and similar results are observed. 

Especially in mountainous areas in temperate zone, surface runoff is majorly driven 

by snowmelt during the summer season and floods usually occurs during that period. 

Thus, depending on the physical properties of the study area, monitoring and 

modeling the accumulation of snowfall, and including the snowmelt in the solution 

may be required. (Akyürek & Şorman, 2002; Çiftçi et al., 2017; Tekeli et al., 2005) 

presented methods for estimating the snow coverage maps from satellite-based data. 

These studies show that the satellite-based snow coverage estimations are in close 

agreement with measurements and the satellite-based data is adequate in use for that 

purpose. 

(Li et al., 2011) indicated that the hydrological simulations and especially surface 

runoff solutions in its nature can be parallelized with dynamic parallelization and 

domain decomposition techniques. A solution domain that contains a river network 

is decomposed to sub-basins to minimize the dependency of communication between 

decomposed areas. Using this method, in the code development stage the solver can 

be better parallelized to improve its ability to scale and handle larger problems 

efficiently. In this thesis, methods improved by (Li et al., 2011) are studied and 

already implemented.  

The materials in (Grafarend & Krumm, 2006; Snyder, 1987; Veness, 2002) are used 

for geographical calculation methods and projection techniques. These calculation 

methods and projection techniques are discussed in chapter 5 and used in chapter 6. 

(Buldur & Sarı, 2012) performed a study searching the reasons of a flood event 

occurred in 2010 in Çarşamba River in Konya province.  In this thesis, small part of 
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the same study area is solved as a real case example. In future studies, the entire 

basin might be solved and results may be compared with the observation of (Buldur 

& Sarı, 2012). 

1.3 Novelty 

There are three phases of a flood event. The first phase is the surface flow which gets 

the water from the rainfall or the snowmelt and discharges to the streams. The second 

phase is stream flow which is the flow in natural or handmade channels. At some 

point, these channels may reach its maximum water level and excess water may exit 

from the sides of the channel which leads to the flood as the final phase. The final 

phase is the inundation of the flood. 

This study is concentrated on the solution of the first phase. Using calculation 

methods, improved in this thesis, inputs for the streamflow calculations in large 

basins or outlet hydrographs of small basins can be prepared. 

1.4 Scope of the Study 

The main purpose of this thesis is to develop a computer program to estimate the 

time-wise variation of discharge in surface flow by numerically solving the depth-

integrated kinematic wave equations for the rainfall-runoff problem. Computer 

codes will be developed to adopt topographic data extracted from satellite sources as 

Digital Elevation Model (DEM) to be used in numerical solution of the governing 

equations. 

A two-dimensional kinematic wave solver is developed and written in Fortran 

language. Modeling of flow around obstructions and ponding in cavities are 

investigated. Numerical solutions are validated with available analytical solutions. 
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1.5 Arrangement of the Thesis 

The mathematical model is discussed in Chapter 2. Numerical and analytical 

solutions for one-dimensional cases are compared and results are discussed in 

Chapter 3. Several two-dimensional test cases are described for testing the stability 

of the solver to estimate the grid size and time step size requirements.  

Optimization of the solver for parallel processing is discussed in Chapter 4. A bunch 

of performance tests are performed to estimate the possible speedup of the 

parallelized solutions.  

Geographical calculation and transformation methods used in the formation of the 

computational domain from the satellite data are presented in Chapter 5. 

For the preparation of required inputs, a software is written in C# language. This 

software uses geographical calculation methods, image processing, and interpolation 

techniques, and all required inputs are prepared using this software without any 

outsourced software. Detailed information of this software is given in Chapter 6, 

A part of the Çarşamba River basin in Konya province is solved as a real case 

simulation example. This real case solution is obtained to test the theoretical 

performance of the solver and the stability of the solver over the natural terrain. 

Detailed results of the solution are given in Chapter 7. 

Conclusion and recommendations for future studies are given in Chapter 8. 
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CHAPTER 2  

2 MATHEMATICAL MODELLING 

There are two main descriptions of fluid flow, Lagrangian and Eulerian. In Eulerian 

description, Navier Stokes equations form a base mathematical model for most of 

the modern CFD applications. This model includes four equations; continuity and 

the three momentum equations for each spatial direction. For three dimensional 

solutions, these four equations must be simultaneously satisfied.  

For an incompressible fluid the continuity equation is: 

 𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 (2.1) 

and the momentum equations in shear stress form are: 

 
𝜌

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

= 𝜌𝐵𝑥 −
𝜕𝑃

𝜕𝑥
+

𝜕𝜏

𝜕𝑥
+

𝜕𝜏

𝜕𝑦
+

𝜕𝜏

𝜕𝑧
 

(2.2) 

 
𝜌

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

= 𝜌𝐵𝑦 −
𝜕𝑃

𝜕𝑦
+

𝜕𝜏

𝜕𝑥
+

𝜕𝜏

𝜕𝑦
+

𝜕𝜏

𝜕𝑧
 

(2.3) 

 
𝜌

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

= 𝜌𝐵𝑧 −
𝜕𝑃

𝜕𝑧
+

𝜕𝜏

𝜕𝑥
+

𝜕𝜏

𝜕𝑦
+

𝜕𝜏

𝜕𝑧
 

(2.4) 

Here 𝑃 is the pressure,  𝑢, 𝑣, 𝑤 are the velocity components, 𝐵 , 𝐵 , 𝐵  are the body 

forces and 𝜏 terms are the viscous stresses in 𝑥, 𝑦, and 𝑧 directions, respectively. The 

above equations are integrated in vertical direction for shallow flows assuming the 

acceleration in vertical direction is negligible. As a consequence of this assumption 
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hydrostatic pressure distribution is also accepted. Complete derivation of shallow 

water equations can be found in (Mu, 2013) and (Miller, 1984). From this point on, 

in this thesis, integral equations will be considered. The velocity components 

𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡) will represent depth integrated values and water depth will be 

shown by ℎ(𝑥, 𝑦, 𝑡). 

In flood inundation analysis, lateral extent of the flow is much larger than the vertical 

extent and thus, velocity in the vertical, z-direction can be ignored. By neglecting z-

directional velocity, the momentum equation in z-direction could be dropped from 

the analysis. Then the other two components in horizontal directions are integrated 

over the vertical to obtain the depth-averaged flow equations. Moreover, shear 

stresses other than the bed shear stress are ignored in the solution. 

u

1

2Δx
x

z

h

q1

q2

CV

I

 

Figure 2.1 Control volume for one-dimensional flow 

For the control volume shown in Figure 2.1, the rate of change of the fluid in the 

control volume is the difference between the inflow and the outflow rates. The depth-

integrated continuity equation for such a one-dimensional flow can be written as: 

 𝜕ℎ

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 𝐼 (2.5) 

where  
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 𝑞 = ℎ𝑢 (2.6) 

is the volume flux per unit width called as unit discharge in x-direction and 𝐼 is the 

combination of all sources such as rainfall, lateral inflows and sinks such as ground 

infiltration, evapotranspiration etc.. 

The depth-integrated continuity equation can be written in two-dimensional form as:  

 𝜕ℎ

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
+

𝜕𝑞

𝜕𝑦
= 𝐼 (2.7) 

For one-dimensional system, the velocity is only in x-direction and v and w are zero. 

For the system given in Figure 2.2, bed shear stress can be written as: 

 𝜏

ℎ
=

𝜕𝜏

𝜕𝑧
 (2.8) 

Depth integrated momentum equation for one-dimensional flow for the system 

shown in Figure 2.2,  can be derived from x-momentum equation (2.2): 

 
𝜌

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜌𝑔(−𝑠 ) −

𝜕𝑃

𝜕𝑥
+

𝜏

ℎ
 (2.9) 

u

1

2

F=-gS0

τ0 

Δx
x

z

S0  =(Z2-Z1)/Δx

h

Z1

E1

Z2

E2

Hydrostatic 
Pressure

Sf  =(E2-E1)/Δx

Hydrostatic 
Pressure

 

Figure 2.2 Forces on the control volume 

where 𝑆  is the bed slope. Dividing both sides of the equation by 𝜌𝑔, Equation (2.9) 

can be put  in the following form: 
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 1

𝑔

𝜕𝑢

𝜕𝑡
+

𝑢

𝑔

𝜕𝑢

𝜕𝑥
= (−𝑆 ) −

1

𝜌𝑔

𝜕𝑃

𝜕𝑥
+

𝜏

𝜌𝑔ℎ
 (2.10) 

The pressure is hydrostatic and can be found from 

 𝑃 = ℎ𝛾 = ℎ𝜌𝑔 (2.11) 

and the friction slope is directly related to the bottom shear stress, and for a wide 

channel it can be expressed as (Henderson & M, 1966): 

 𝑆 =
𝜏

𝛾ℎ
=

𝜏

𝜌𝑔ℎ
 (2.12) 

Equation (2.10) can be simplified by back substitution of Equations (2.11) and 

(2.12). 

 1

𝑔

𝜕𝑢

𝜕𝑡
+

𝑢

𝑔

𝜕𝑢

𝜕𝑥
+

𝜕ℎ

𝜕𝑥
= −𝑆 + 𝑆  (2.13) 

This final form is named as the Saint-Venant equation. (Miller, 1984) has derived 

the same equation from energy principle. All the terms are collected on the left side 

of the equation and re-grouped as:  

 1

𝑔

𝜕𝑢

𝜕𝑡
+

𝑢

𝑔

𝜕𝑢

𝜕𝑥
+

𝜕ℎ

𝜕𝑥
+ (𝑆 − 𝑆 ) = 0 (2.14) 

In Equation (2.14), “Ι” is the local inertia, “ΙΙ” is the convective inertia, “ΙΙΙ” is the 

pressure differential and  “𝐼𝑉” is the friction and bed slopes (Miller, 1984). The final 

form of the wave equation can further be simplified for different approximation 

levels and different wave  models are obtained (Miller, 1984): 

 Kinematic wave                                 𝐼𝑉 = 0 

 Diffusion Wave                            ΙΙΙ +  𝐼𝑉 = 0        

 Steady dynamic wave                 ΙΙ + ΙΙΙ + 𝐼𝑉 = 0 

 Dynamic wave                         Ι + ΙΙ + ΙΙΙ + 𝐼𝑉 = 0 

 Gravity wave                                  Ι + ΙΙ + ΙΙΙ = 0 
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Dynamic wave model is the full form of the wave equation and it is generally used 

in the simulation of flood inundations as all the terms may be significant in different 

regions of the simulation area. However, in contrary to flood inundation, in rainfall-

runoff system studied in this thesis, velocities are changing slowly and smoothly. So 

that the convective and local acceleration terms are relatively small values. 

Moreover, compared to the horizontal scale of the system the vertical scale is 

insignificant. Since pressure is hydrostatic and directly related to water depth, the 

pressure differential term can also be assumed negligible. In conclusion, the 

dominant terms in the momentum equation are only gravity and the bed shear stress.  

While the solution of the continuity equation is the same for all wave models, there 

are critical differences in the equation of motion. Solution for the velocity field 

between nodal points requires the solution of the momentum equation, in our case, 

it is the simplified version named as the kinematic wave equation. The main 

assumption of the kinematic wave equation is the balance of the driving force of 

gravity and the resisting friction force resulting from the bed shear stresses. Thus, 

the fourth term in Equation (2.14) can be written as a balance between the bed slope, 

𝑆 , and the friction slope 𝑆 : 

 𝑆 = 𝑆  (2.15) 

2.1 Computation of Bed Friction 

Friction force for one-dimensional free surface flow can be calculated from  Chezy’s, 

Manning’s, or Darcy’s equation in terms of the depth-averaged velocity. 

The solution of depth-averaged velocity from Chezy’s equation can be written as: 

 𝑢 = 𝐶 𝑅𝑆  (2.16) 

Where R is the hydraulic radius. Manning has proposed a better fit to available 

channel data  using 𝑅 /  instead of 𝑅 / . 
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𝑢 =

1

𝑛
𝑅 / 𝑆  (2.17) 

and the relation between Manning’s roughness 𝑛 and Chezy’s friction coefficient 𝐶  

are related by: 

 
𝐶 =

1

𝑛
𝑅 /  (2.18) 

Utilizing Equation (2.15) Manning’s equation can be written in terms of friction 

slope: 

 
𝑢 =

1

𝑛
𝑅 / 𝑆  (2.19) 

In our case, the solution domain can be considered as a wide channel for rainfall-

runoff solution and Manning’s equation can be simplified further: 

 

Both solutions, from the Manning’s and the Chezy’s equations, are based on similar 

assumptions, estimate empirical friction coefficients for surface materials from 

experiments, and the same amount of friction loss for a given velocity independent 

of the shape effects of the channel. (Chanson, 2004b) expressed that “In open 

channels, the Darcy equation is the only sound method to estimate the friction loss. 

For various reasons, empirical resistance coefficients (e.g. Chézy coefficient, 

Gauckler–Manning coefficient) were and are still used. Their use is highly 

inaccurate and most improper in man-made channels. Most friction coefficients are 

completely empirical and they are limited to fully rough turbulent water flows.”. 

In nature, modeling turbulent effects is the main step in the formulation of the flow 

velocity. Resultant shear forces are in direct proportion to the velocity square and 

hydraulic depth. As velocities and water depths are small in rainfall-runoff systems, 

laminar flow conditions may occur especially at the early development of the 

overland flow. Manning’s solution is based on only a fully turbulent flow and this 

 
𝑢 =

1

𝑛
ℎ / 𝑆  (2.20) 
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assumption for surface flow changes the outflow hydrograph. As Darcy’s solution 

includes both laminar and turbulent flow regimes, the results might be more realistic. 

However, in practical cases where a large flow depth occurs Manning’s formula can 

be used due to its simplicity. 

For better accuracy and especially for flow over man-made materials friction should 

be calculated from Darcy’s formulation for better prediction. Average boundary 

shear stress from Darcy’s friction factor can be calculated by (Chanson, 2004a): 

 
𝜏 =

𝑓

8
𝜌𝑢  (2.21) 

In Darcy’s solution friction slope for pipe flow defined as (Chanson, 2004a): 

 
𝑆 =

𝑓

8𝑔
𝐷
4

𝑢 |𝑢| (2.22) 

and the solution for averaged velocity is: 

 

𝑢 =
8𝑔

𝑓

𝐷

4
𝑆  (2.23) 

Darcy’s solution can be applied to the open channel flow similar to the pipe flow. 

𝐷  is the hydraulic diameter or equivalent pipe diameter, and it can be calculated for 

channel flow as (Chanson, 2004b): 

 
𝐷 = 4𝑅 = 4

𝐴

𝑃
 (2.24) 

For channel flow Darcy’s equation can be written as: 

 
𝑢 = 𝑅

8𝑔

𝑓
𝑆  (2.25) 

For wide channel solution Darcy’s equation can be simplified further: 
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𝑢 = ℎ

8𝑔

𝑓
𝑆  (2.26) 

Darcy’s friction factor 𝑓 is a function of Reynolds number and relative roughness 

and can be calculated for laminar flows by (Chanson, 2004a): 

 
𝑓 =

64

𝑅𝑒
      𝑤ℎ𝑒𝑟𝑒  𝑅𝑒 < 2𝑥10  (2.27) 

Darcy’s friction factor can be calculated for turbulent flow from Colebrook-White 

formula by (Chanson, 2004a): 

 1

𝑓
= −2 log

𝑘

3.71 𝐷
+

2.51

𝑅𝑒 𝑓
    𝑤ℎ𝑒𝑟𝑒 𝑅𝑒 > 1𝑥10  (2.28) 

where 𝑘  is the equivalent sand roughness height and 𝑅𝑒 is the Reynolds number and 

can be calculated by: 

 
𝑅𝑒 =

𝜌𝑢𝐷

𝜇
 (2.29) 

Note that calculation of Darcy’s friction factor in Equation (2.28) requires iterations 

as 𝑓 appears on both sides of the equation. More explicit but less accurate calculation 

of Darcy’s friction factor can be done by Altsul’s formula (Chanson, 2004a): 

 
𝑓 = 0.1 1.46

𝑘

𝐷
+

100

𝑅𝑒

/

 𝑤ℎ𝑒𝑟𝑒   𝑅𝑒 > 1𝑥10  (2.30) 

2.2 Analytical Solution of Kinematic Wave Model 

In some special cases, the analytical solution of kinematic wave equations is 

available. (Eagleson, 1970) obtained analytical solutions for simple cases. Analytical 

solution of kinematic wave equations is only based on Manning’s formula because 

of the simplicity. Darcy’s solution is over complicated to solve analytically. 
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For wide channels, Manning’s equation can be regrouped as: 

 𝑞 = 𝑎ℎ  (2.31) 

where 

 
𝑎 =

1

𝑛
𝑆        𝑚 =

5

3
 (2.32) 

By combining Equation (2.5) and Equation (2.31), the continuity equation can be 

written as: 

 𝜕ℎ

𝜕𝑡
+ 𝑎

𝜕(ℎ )

𝜕𝑥
= 𝐼 (2.33) 

Using the total differential, these two equations can be added. 

 
𝑑𝑞 =

𝜕𝑞

𝜕𝑥
𝑑𝑥 +

𝜕𝑞

𝜕𝑡
𝑑𝑡 (2.34) 

 
𝑑ℎ =

𝜕ℎ

𝜕𝑥
𝑑𝑥 +

𝜕ℎ

𝜕𝑡
𝑑𝑡 

(2.35) 

From the determinant of Equations, wave speed 𝑐 (celerity) can be written as: 

 𝜕𝑥

𝜕𝑡
= 𝑎𝑚ℎ = 𝑐 (2.36) 

and  

 𝜕𝑞

𝜕𝑡
= 𝑐

𝜕ℎ

𝜕𝑡
 (2.37) 

Consider an infinite duration of lateral inflow to a uniform and one-dimensional 

system. In this condition, water depths in the system raise in the same amount of 

lateral inflow. Except at the inlet of the system the discharge comes from upstream 

is equal to discharges at the downstream everywhere at the beginning. Water depths 

can be calculated by: 

 𝜕ℎ

𝜕𝑡
= 𝐼 (2.38) 

and in integral form: 
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𝑑ℎ = 𝐼 𝑑𝑡 (2.39) 

And a kinematic wave starts to propagate from inlet to downstream with wave speed 

𝑐 which can be calculated from Equation (2.36). Location of this kinematic wave can 

be found combining Equations (2.36) and (2.39) as: 

 
𝑑𝑥 = 𝑎𝑚 ℎ  𝑑𝑡 = 𝑎𝑚 𝐼 𝑑𝑡 𝑑𝑡 (2.40) 

While water depths are rising at the downstream of this wave, water depths remain 

constant at the upstream and the discharges at the upstream can be calculated as: 

 𝜕𝑞

𝜕𝑥
= 𝐼 (2.41) 

and in integral form: 

 
𝑑𝑞 = 𝐼 𝑑𝑥 = 𝐼𝑥 (2.42) 

by combining with Equation (2.31) Water depths can be calculated as: 

 
ℎ =

1

𝑎
𝐼 𝑑𝑥

/

=
𝐼𝑥

𝑎

/

 (2.43) 

This integral forms must be specialized for the solution of different specific 

problems. 

The time required for the wave to reach the outlet named as time of concentration 𝑡  

and can be calculated from the solution of Equation (2.40) using the length of the 

channel.  

Water surface profile for 𝑡 ≤ 𝑡  can be calculated from Equation (2.43) for the 

upstream, and from Equation (2.39) for the downstream of the wave of which 

location 𝑥  can be found from Equation (2.40). The system reaches the steady-state 

condition at  𝑡 = 𝑡  , water surface profile and discharges in the system remains 

constant until the end of the rain. 
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For finite duration 𝑡  of rain, after the end of the rain, water surface profile 

propagates to the downstream with wave speed. Thus, if 𝑡 ≥ 𝑡 , after the end of the 

rainfall entire surface calculated from Equation (2.43) will propagate with wave 

speed. The water surface profile can be calculated by inserting Equation (2.40) into 

Equation (2.43). 

In 𝑡 ≤ 𝑡  condition, as the lateral inflow stops before the system reaches the steady-

state condition, water surface profile at 𝑡 = 𝑡  will propagate to the downstream. In 

hydrograph analysis at the outlet, although the system is not in steady-state condition, 

the water discharge at the outlet remains constant until the wave reaches the outlet. 

The time that wave reaches the outlet named as time of propagation 𝑡 . It can be 

calculated from Equation (2.40). 

2.2.1 Analytical Solution of Surface Runoff 

The simplest model to adapt the integral form of equations is the finite duration of 

steady and uniform rainfall over a one-dimensional plane.  

 
𝐼 =

𝐼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡        0 ≤ 𝑡 ≤ 𝑡 , 𝑥 ≥ 0
𝐼 = 0                      𝑡 < 0, 𝑡 > 𝑡 , 𝑥 < 0

  (2.44) 

Initial water depths are zero and there is no flow from the inlet. 

 
ℎ = 0    𝑎𝑡      

0 ≤ 𝑥 < 𝐿, 𝑡 = 0
𝑥 = 0, 𝑡 > 0        

 (2.45) 

Water surface profile at any time 𝑡 ≤ 𝑡  can be found from Equation (2.43) for the 

upstream of the wave and from Equation (2.39) for the downstream of the wave as: 

 

ℎ =  
𝑥𝐼

𝑎
       0 ≤ 𝑥 ≤ 𝑥

𝐼∗𝑡               𝑥 > 𝑥        

    (2.46) 

where 𝑥  is the location of the wave and can be found from Equation (2.40) as: 
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𝑥 = 𝑎𝑚 ℎ  𝑑𝑡 =

𝑡 𝑎

𝐼∗
 (2.47) 

And water surface profile at 𝑡 > 𝑡  can be found from the implicit relation between 

final water surface profile and wave speed as: 

 
𝑥 =

𝑎ℎ

𝐼∗
+ 𝑎𝑚ℎ (𝑡 − 𝑡 ) = 𝑎ℎ ℎ𝐼∗ + 𝑚(𝑡 − 𝑡 )  (2.48) 

At the outlet of the system, Water depth can be found from the solution of  Equations 

(2.46) and (2.48) for 𝑥 = 𝐿. Then, the outflow hydrograph can be calculated by 

solving Equation (2.31) to find the discharges. 

 

 

⎩
⎨

⎧
ℎ = 𝐼∗𝑡                                             , 0 ≤ 𝑡 ≤ 𝑡   

ℎ = ∗                                        , 𝑡 ≤ 𝑡 ≤ 𝑡

𝐿 = 𝑎ℎ [ℎ 𝐼∗ + 𝑚(𝑡 − 𝑡 )]  , 𝑡 > 𝑡           ⎭
⎬

⎫
  (2.49) 

where  

 
𝑡 =

𝐿𝐼∗

𝑎

/

 (2.50) 

tc tr

Rainfall Intensity

Outlet Hydrograph

 

Figure 2.3 Outlet hydrograph for 𝑡𝑐 < 𝑡𝑟 condition 
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Water Surface Profiles for tc<tr Condition

Rising profile t<tc

Steady profile tc<t<tr

Decreasing profile t>tr

 

Figure 2.4 Water surface profiles for 𝑡𝑐 < 𝑡𝑟 condition 
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If the rainfall duration is shorter than the time of concentration, the rainfall ends 

before the wave reaches to the outlet and decreasing profile occurs without reaching 

the steady-state. As the rainfall is zero at 𝑡 > 𝑡 , entire water surface profile at 𝑡 =

𝑡  starts to propagate to the downstream after the end of the rainfall. 

In this condition, water depths at the outlet can be found as: 

 

 

ℎ = 𝐼∗𝑡                                             , 0 ≤ 𝑡 ≤ 𝑡   
ℎ = 𝐼∗𝑡                                            , 𝑡 ≤ 𝑡 ≤ 𝑡

𝐿 = 𝑎ℎ [ℎ 𝐼∗ + 𝑚(𝑡 − 𝑡 )]  , 𝑡 > 𝑡           

  (2.51) 

where 

 
𝑡 = 𝑡 +

𝐿 − 𝑎ℎ /𝐼∗

𝑎𝑚ℎ
 (2.52) 

tr tp

Rainfall Intensity

Outlet Hydrograph

 

Figure 2.5 Outlet hydrograph for 𝑡𝑟 < 𝑡𝑐 condition 
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Water Surface Profiles for tr<tc Condition

Rising profile t<tr

Until wave reaches outlet 
after shutoff tr<t<tp

Decreasing profile t>tp

 

Figure 2.6 Water surface profiles for 𝑡𝑟 < 𝑡𝑐 condition 
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2.2.2 Analytical Solution of Channel Flow 

Using the same principle, analytical solution of a channel flow also can be prepared. 

In the scope of this thesis, channel flow solution is not studied. However, an 

analytical solution for channel flow can be described with similar simplification. 

Continuity equation for channels can be rewritten by multiplying Equation (2.5) to 

the width in other horizontal direction (in 𝑦-direction) as: 

 𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 𝑞  (2.53) 

Continuity equation can be rewritten for channel flow, to apply similar simplification 

of Equation (2.33) as: 

 𝜕𝐴

𝜕𝑡
+ 𝑎

𝜕(𝐴 )

𝜕𝑥
= 𝑞  (2.54) 

Discharge calculation from manning’s equation for channel flow can be written as: 

 
𝑄 =

𝐴 /

𝑛 𝑃 /
 𝑆  (2.55) 

As wet perimeter must be written in terms of cross-section area, simplification can 

only be adapted to the triangular or elliptical channels. Solution for a triangular 

channel is shown in Figure 2.7. 

θ 

T

h γ 

h=cos(θ /2)γ 

T=2sin(θ /2)γ 

P=2γ 
A=hT/2 

 

Figure 2.7 Triangular channel cross-section 

𝑃 can be written in terms of 𝐴 as: 
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𝑃 = 2
2

sin 𝜃
𝐴  (2.56) 

Thus the equation of motion can be written as: 

 𝑄 = 𝑎  𝐴  (2.57) 

Where 

 
𝑎 =

(sin(𝜃)) /

2 𝑛
𝑆         𝑚 =

4

3
 (2.58) 

The solution procedure is the same as the surface flow, for uniform lateral inflow 

condition. The system can be solved by replacing ℎ and 𝑞 in the surface flow system 

with 𝐴 and 𝑄. 
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CHAPTER 3  

3 NUMERICAL SOLUTION 

3.1 Numerical Solution of Kinematic Wave Model 

3.1.1 Numerical Solution of One-Dimensional Surface Flow 

In this thesis one-dimensional solvers will be used for only validation of test cases. 

The computational grid for solution of one-dimensional model is given in Figure 3.1. 

1

h1

q1q0

2

h2

qi-2

i-1

hi-1

qi-1

i

hi

qi

i+1

hi+1

qi+1 qN

N+1

hN+

1

qN+1... ...

Continuity

Momentum

 

Figure 3.1 Grid structure for the one-dimensional model. 

Note that, in numerical solutions, 𝑛 used as superscript of the parameters indicates 

the time level of discretization. 

For solution of one-dimensional model, the continuity equation is discretized as: 

 ℎ = ℎ + 𝑑𝑡(𝐼 + (𝑞 − 𝑞 )/𝑑𝑥)  (3.1) 

For solution of kinematic wave equation, two different formulations from Darcy’s 

and Manning’s equations can be used. While the continuity equation is the same for 

these two methods, the solution of the equation of motion differs. 



 
 

26 

The Manning’s equation is discretized for upwind method as: 

 

⎣
⎢
⎢
⎡𝑢 =

1

𝑛
ℎ

/
𝑆     𝑎𝑛𝑑  𝑞 = 𝑢  ℎ ,             𝑆 ≤ 0

𝑢 =
1

𝑛
ℎ

/
𝑆   𝑎𝑛𝑑  𝑞 = 𝑢  ℎ , 𝑆 > 0

⎦
⎥
⎥
⎤

 (3.2) 

for central space method: 

 
𝑢 =

1

𝑛

ℎ + ℎ

2

/

𝑆     𝑎𝑛𝑑  𝑞 = 𝑢  
ℎ + ℎ

2
 (3.3) 

Numerical solution of one-dimensional model also can be obtained from Darcy’s 

equation. However, as friction factor calculation requires iterations and as there is 

not an analytical solution, in practical reasons, the Darcy’s discretization is prepared 

but solution is not obtained in the scope of this thesis. 

The Darcy’s equation is discretized for upwind method as: 

 

⎣
⎢
⎢
⎡𝑢 = ℎ 8𝑔/𝑓 𝑆     𝑎𝑛𝑑  𝑞 = 𝑢  ℎ ,             𝑆 ≤ 0

𝑢 = ℎ 8𝑔/𝑓 𝑆  𝑎𝑛𝑑  𝑞 = 𝑢  ℎ , 𝑆 > 0
⎦
⎥
⎥
⎤

 (3.4) 

for central space solution: 

 
𝑢 =

ℎ + ℎ

2
8𝑔/𝑓  𝑆    𝑎𝑛𝑑  𝑞 = 𝑢  

ℎ + ℎ

2
 (3.5) 

where 𝑓  values are calculated from Equation (2.27) and (2.28) by iterating the 

Reynolds number values calculated from 𝑢  and hydraulic depth 𝐷  which is 

approximated by 4ℎ . 

Solution is obtained using the central difference and upwind methods. These two 

methods are compared with the analytical solutions and the differences are explained 

under the validation title. 
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As negative slope leads flow in positive direction, square root of slope must be 

written in solver as: 

 𝑆 = −𝑠𝑖𝑔𝑛(𝑆 ) 𝑎𝑏𝑠(𝑆 ) (3.6) 

and as Manning’s and Darcy’s solutions only valid for positive water depth and non-

zero slope condition. Velocity calculated for these conditions can be taken as zero. 

Solution can be obtained by using bed slopes as it is used in analytical solution. 

However, using the bed slope, reverse flow condition, or flow in accumulation zones 

cannot be solved. To allow reverse flow and accumulation in local depressions, water 

surface slope 𝑆  or friction slope 𝑆  must be used.  

3.1.2 Numerical Solution of One-Dimensional Channel Flow 

For channel flow solution the continuity equation is discretized as: 

 𝐴 = 𝐴 + 𝑑𝑡(𝑞 + (𝑄 − 𝑄 )/𝑑𝑥)  (3.7) 

In channel solution, Manning’s equation is discretized as: 

 

⎣
⎢
⎢
⎡𝑢 =

1

𝑛
𝑅

/
𝑆     𝑎𝑛𝑑  𝑄 = 𝑢  𝐴 ,             𝑆 ≤ 0

𝑢 =
1

𝑛
𝑅

/
𝑆   𝑎𝑛𝑑  𝑄 = 𝑢  𝐴 , 𝑆 > 0

⎦
⎥
⎥
⎤

 (3.8) 

for central space solution: 

 
𝑢 =

1

𝑛

𝑅 + 𝑅

2

/

𝑆     𝑎𝑛𝑑  𝑄 = 𝑢  
𝐴 + 𝐴

2
 (3.9) 

In channel solution, Darcy’s equation is discretized as: 

 
𝑢 = [8𝑔/𝑓 ] ∗ 𝑆 𝐷 /4     𝑎𝑛𝑑  𝑄 = 𝑢  𝐴 ,             𝑆 ≤ 0

𝑢 = [8𝑔/𝑓 ] ∗ 𝑆 𝐷 /4  𝑎𝑛𝑑  𝑄 = 𝑢  𝐴 , 𝑆 > 0

 (3.10) 

for central space solution: 
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𝑢 = [8𝑔/𝑓 ] ∗ 𝑆 𝐷 /4     𝑎𝑛𝑑  𝑄 = 𝑢  

𝐴 + 𝐴

2
 (3.11) 

In general, there is no reverse flow condition in channel flow. Thus the solution can 

be obtained using only bed slopes. In addition to that, as the lateral inflow is much 

higher than the surface flow, the Water depths are higher so that the central space 

solution is more applicable. 

3.1.3 Numerical Solution of Two-Dimensional Surface Flow 

For the solution of continuity and momentum equation different types of solution 

schemes are improved. As there are no dependencies between neighbor nodes, these 

different solution schemes can be used for different portions of the domain, or 

solutions schemes can be used selectively decided by the solver. 

qxi-2,j

i-1

hi-1,j

qxi-1,j

i

hi,j

qxi,j

i+1

hi+1,j

qxi+1,j

j+1

j

j-1

qyi-1,j qyi,j qyi+1,j

qxi-2,j-1

hi-1,j-1

qxi-1,j-1

hi,j-1

qxi,j-1

hi+1,j-1

qxi+1,j-1

qyi-1,j-1 qyi,j-1 qyi+1,j-1

qxi-2,j+1

hi-1,j+1

qxi-1,j+1

hi,j+1

qxi,j+1

hi+1,j+1

qxi+1,j+1

qyi-1,j+1 qyi,j+1 qyi+1,j+1

qyi-1,j-2 qyi,j-2 qyi+1,j-2

 

Figure 3.2 Grid structure used for the solution of two-dimensional model. 
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Grid structure for the solution of two-dimensional model is shown in Figure 3.2. As 

seen in the grid structure, water depths located at the center of the computational 

cells and the discharges are located at the side surfaces of the cells. Same grid 

structure is used in all solution schemes.  

3.1.3.1 Solution of Continuity in Two-Dimensional Model 

Continuity equation is discretized in various schemes. Basic solution for continuity 

is forward time solution which has first-order time accuracy and discretized as: 

 
ℎ = ℎ + 𝑑𝑡 𝐼 +

𝑞
,

− 𝑞
,

𝑑𝑥
+

𝑞
,

− 𝑞
,

𝑑𝑦
   (3.12) 

While the forward time solution for continuity can be preferred because of its 

computational simplicity. If unsteady effects are important in solution, higher-order 

time accuracies might be achieved by using time-stepping technique. This solution 

performs second-order accuracy in time by taking the fluxes at half time step forward 

for the calculation of full step, and it is discretized as: 

 
ℎ

,
= ℎ , +

𝑑𝑡

2
𝐼 , +

𝑞
,

− 𝑞
,

𝑑𝑥
+

𝑞
,

− 𝑞
,

𝑑𝑦
 (3.13) 

 

ℎ , = ℎ , + 𝑑𝑡

⎣
⎢
⎢
⎡

𝐼 ,
/

+
𝑞

,
− 𝑞

,

𝑑𝑥
+

𝑞
,

− 𝑞
,

𝑑𝑦
⎦
⎥
⎥
⎤

 (3.14) 

For further accuracy in time, trapezoidal scheme can be used. As half of the flux term 

is calculated at 𝑛 + 1 level, this solution requires iteration. So that the computational 

cost of trapezoidal scheme is higher compared to the two-step and forward time 

schemes. Trapezoidal scheme solution of continuity equation discretized as: 

 
𝐹 𝑥 , =

𝑞
,

− 𝑞
,

𝑑𝑥
   𝑎𝑛𝑑 𝐹 𝑦 , =

𝑞
,

− 𝑞
,

𝑑𝑦
 (3.15) 
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ℎ , = ℎ , + 𝑑𝑡 𝐼 ,

/
+

𝑑𝑡

2
𝐹𝑥 , + 𝐹𝑦 ,

+
𝑑𝑡

2
𝐹𝑥 , + 𝐹𝑦 ,  

(3.16) 

3.1.3.2 Solution of Momentum Equation in Two-Dimensional Model 

In two-dimensional systems, the equation of motion is solved for each special 

direction separately. For the solution of equation of motion, Manning’s equation is 

solved in 𝑥 and 𝑦 directions. Manning’s equation is discretized in central space and 

forward upwind methods.  

In central space solution velocity components and discharges are solved using water 

depths at sides of the nodes, which leads second-order accuracy in space. Central 

space solution is discretized as: 

 

𝑢 , =
1

𝑛

ℎ , + ℎ ,

2
𝑆

,
 𝑎𝑛𝑑 𝑞

,
= 𝑢 ,  

ℎ , + ℎ ,

2
    (3.17) 

 

𝑣 , =
1

𝑛

ℎ , + ℎ ,

2
𝑆

,
  𝑎𝑛𝑑  𝑞

,
= 𝑣 ,  

ℎ , + ℎ ,

2
  

 

(3.18) 

In upwind solution velocity components and discharges are solved using water 

depths at upstream of the nodes, which leads first-order accuracy in space. Upwind 

solution is discretized as: 

 

⎣
⎢
⎢
⎡ 𝑢 , =

1

𝑛
ℎ ,

/
𝑆

,
 𝑎𝑛𝑑  𝑞

,
= 𝑢 ,  ℎ , , 𝑆

,
≤ 0

 𝑢 , =
1

𝑛
ℎ ,

/
𝑆

,
  𝑎𝑛𝑑  𝑞

,
= 𝑢 ,  ℎ , , 𝑆

,
> 0

⎦
⎥
⎥
⎤

 (3.19) 
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⎣
⎢
⎢
⎢
⎡ 𝑣 , =

1

𝑛
ℎ ,

/
𝑆

,
 𝑎𝑛𝑑  𝑞

,
= 𝑣 ,  ℎ , , 𝑆

,
≤ 0

 𝑣 , =
1

𝑛
ℎ ,

/
𝑆

,
  𝑎𝑛𝑑  𝑞

,
= 𝑣 ,  ℎ , , 𝑆

,
> 0

⎦
⎥
⎥
⎥
⎤

 (3.20) 

 

Calculation of slope requires the calculation of energy or water surface elevations. 

Water surface elevation can be calculated as: 

 𝑤 , = 𝑧 , + ℎ ,  (3.21) 

Total energy level can be calculated as: 

 
𝐸 , = 𝑧 , + ℎ , +

1

2𝑔

𝑢 , + 𝑢 ,

2
+

𝑣 , + 𝑣 ,

2
 (3.22) 

Slopes in 𝑥 and 𝑦 direction can be calculated from bed, water surface or total energy 

as: 

 

𝑆
,

=

(𝑧 , − 𝑧 , )/𝑑𝑥 𝐵𝑒𝑑 𝑆𝑙𝑜𝑝𝑒

(𝑤 , − 𝑤 , )/𝑑𝑥 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑆𝑙𝑜𝑝𝑒

(𝐸 , − 𝐸 , )/𝑑𝑥 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑙𝑜𝑝𝑒

 (3.23) 

 

𝑆
,

=

(𝑧 , − 𝑧 , )/𝑑𝑦 𝐵𝑒𝑑 𝑆𝑙𝑜𝑝𝑒

(𝑤 , − 𝑤 , )/𝑑𝑦 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑆𝑙𝑜𝑝𝑒

(𝐸 , − 𝐸 , )/𝑑𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑙𝑜𝑝𝑒

 (3.24) 

3.1.3.3 Boundary Conditions 

Boundary conditions are defined as cell-based conditions. So that, cells are grouped 

in different roles with different behaviors in calculation. Those roles can be interior 

(𝐼 ), wall (𝑊 ), outlet (𝑂 ) or out of calculation (𝑋 ). Wall cells are used for 

no inflow condition or for solid boundaries in the domain. Outlet cells are used for 

outlet and acts like sink. Out of calculation cells behave same as outlet cells. 

Different from the outlet cells, out of calculation cells are not used for the calculation 
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of discharges or cumulative discharge volume. Only in real case solution, it is used 

for boundaries other than outlet to test the performance of the catchment area 

algorithm. 

Solution of continuity is only operated in interior cells. Water depths at wall or outlet 

cells are set as zero without calculation. 

 ℎ ,

 
⇒ 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝐸𝑞𝑛             , 𝐶𝑒𝑙𝑙 , =  𝐼

ℎ , = 0                                        , 𝐶𝑒𝑙𝑙 , = 𝑂

ℎ , = 0                                        , 𝐶𝑒𝑙𝑙 , = 𝑊

 (3.25) 

Discharges are defined depending on cell interfaces. Discharge at the interface 

between interior cells or between interior and outlet cell must be calculated. There is 

no discharge at 𝑊  faces. 

In x-direction; 

 

⎣
⎢
⎢
⎢
⎡
𝑞

,

 
⇒ 𝑀𝑎𝑛𝑛𝑖𝑛𝑔 𝑠 𝐸𝑞𝑛        , 𝐶𝑒𝑙𝑙 , =  𝐼  𝑎𝑛𝑑 𝐶𝑒𝑙𝑙 , =  𝐼  

𝑞
,

 
⇒ 𝑀𝑎𝑛𝑛𝑖𝑛𝑔 𝑠 𝐸𝑞𝑛        , 𝐶𝑒𝑙𝑙 , =  𝑂  𝑎𝑛𝑑 𝐶𝑒𝑙𝑙 , =  𝐼

𝑞
,

 
⇒ 𝑀𝑎𝑛𝑛𝑖𝑛𝑔 𝑠 𝐸𝑞𝑛        , 𝐶𝑒𝑙𝑙 , =  𝐼  𝑎𝑛𝑑 𝐶𝑒𝑙𝑙 , =  𝑂

𝑞
,

= 0                                    , 𝐶𝑒𝑙𝑙 , =  𝑊  𝑜𝑟 𝐶𝑒𝑙𝑙 , =  𝑊 ⎦
⎥
⎥
⎥
⎤

 (3.26) 

and in y-direction; 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝑞

,

 
⇒ 𝑀𝑎𝑛𝑛𝑖𝑛𝑔 𝑠 𝐸𝑞𝑛        , 𝐶𝑒𝑙𝑙 , =  𝐼  𝑎𝑛𝑑 𝐶𝑒𝑙𝑙 , =  𝐼  

𝑞
,

 
⇒ 𝑀𝑎𝑛𝑛𝑖𝑛𝑔 𝑠 𝐸𝑞𝑛        , 𝐶𝑒𝑙𝑙 , =  𝑂  𝑎𝑛𝑑 𝐶𝑒𝑙𝑙 , =  𝐼

𝑞
,

 
⇒ 𝑀𝑎𝑛𝑛𝑖𝑛𝑔 𝑠 𝐸𝑞𝑛        , 𝐶𝑒𝑙𝑙 , =  𝐼  𝑎𝑛𝑑 𝐶𝑒𝑙𝑙 , =  𝑂

𝑞
,

= 0                                    , 𝐶𝑒𝑙𝑙 , =  𝑊  𝑜𝑟 𝐶𝑒𝑙𝑙 , =  𝑊 ⎦
⎥
⎥
⎥
⎥
⎤

 (3.27) 

3.1.3.4 Calculation of Other Parameters 

As the equations solved in this thesis describes a rainfall-runoff system, and inflow 

only comes from the rainfall, the inflow discharge can be calculated from the 

summation of effective inflow to interior cells as follows: 
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 𝑄 = 𝑑𝑥 ∗ 𝑑𝑦 ∗  𝐼 ,    (3.28) 

Outflow from system only occurs at interfaces between interior and outlet cells. 

Outflow discharges can be calculated from the summation of discharges at interfaces 

between 𝐼  and 𝑂  as: 

 𝑄 = 𝑑𝑦 ∗ 𝑞𝑥 ,
 

 
⇒

  + 𝑑𝑥 ∗ 𝑞𝑦 ,

 
⇒

  (3.29) 

Water volume in the system can be calculated from water depths at interior cells as: 

 ∀ = 𝑑𝑥 ∗ 𝑑𝑦 ∗ ℎ ,    (3.30) 

Cumulative inflow and cumulative outflow volumes are calculated as: 

 ∀ = ∀ + 𝑑𝑡 ∗ 𝑄  (3.31) 

 ∀ = ∀ + 𝑑𝑡 ∗ 𝑄  (3.32) 

Instead of calculating residuals of ℎ, 𝑢 or 𝑣 at each time step, the steady-state 

condition can be defined from the difference of inflow and outflow discharges or 

difference in change of water volume in the system. 

 𝑄 ≅ 𝑄   𝑜𝑟  ∀ ≅ ∀  (3.33) 

Continuity can be checked as: 

 ∀  ≅ ∀ + ∀  (3.34) 

Courant number is the main stability condition for solutions. It is calculated as: 

 
𝐶 = Max

𝑀𝑎𝑥(|𝑢|)  𝑑𝑡

𝑑𝑥
,
𝑀𝑎𝑥(|𝑣|) 𝑑𝑡

𝑑𝑦
≤ 1 (3.35) 

𝐶𝑟 is the courant number, and it must be equal or less than one for a stable solution. 
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3.1.3.5 Solvers 

Different types of solution schemes are prepared for the solution of the 2D models. 

Each scheme has advantages and disadvantages. These solution schemes are tested 

on complex geometries to validate stability and reliability of the solver to run on 

actual cases. 

3.1.3.5.1 Explicit FTCS Scheme Solution 

Forward time central space (FTCS) solution has second-order accuracy in space and 

first-order accuracy in time. 

In rainfall-runoff solutions, water depths are small compared to the size of the 

domain. Even if the water depth is zero at the upstream, the energy slope can be 

negative. When central space discretization is used in the calculation, the solution 

may lead forward flow, and as a result of that negative water depths are observed. 

As the time step sizes and grid sizes decrease, the solution leads to smaller negative 

Water depths in magnitude. The solution requires impractically finer mesh with 

smaller time step sizes to solve the rainfall-runoff systems with non-negative water 

depths. However, as it has second-order accuracy, solutions are more stable. 

Especially in the rising profile, central space solution leads to more accurate results. 

It can be used for solutions in milder areas, local accumulation zones, channel flow 

or areas with higher water depths to never cause negative values in the analysis. 

3.1.3.5.2 Explicit Central Space Trapezoidal Scheme Iterative Solution 

Similar to the FCTS solution, velocity components are calculated from the central 

space solution. In this solution, the continuity equation is solved by a trapezoidal 

scheme to improve the time accuracy. As trapezoidal continuity equation takes half 

of the components from past iteration and half of the components from present 
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iteration, continuity equation must be iterated. In conclusion, the solution requires 

more computational time. It can be used for the solution of small and critical areas.   

3.1.3.5.3 Explicit Forward Time Upwind Scheme Solution 

Upwind solution is a flow direction dependent solution which has first-order 

accuracy in space and the time. Solution takes the water depths at the upstream for 

the calculation of velocity and discharges at the sides of the cells. In its characteristic, 

upwind scheme restricts negative water depths independently from the grid sizes. So 

that, this scheme can be used with coarser mesh. It is suitable for calculation over 

large domains efficiently. However, as always upstream water depths are used in the 

solution, in local depression zones the solution may lead dynamic instabilities, 

especially in coarser mesh. 

3.1.3.5.4 Explicit Two-Step Up-Wind Scheme Solution 

In this scheme, calculation of velocity and discharges are similar to the upwind 

solution. In contrary to upwind solution to achieve higher time accuracy time-

stepping technique is used. Flux terms in continuity equation are taken from the half 

step solution to find the water depths at the full step. It leads to second-order accuracy 

in time. 

3.1.3.5.5 Combined Solver 

In order to merge the advantages of the central and the upwind solution, a combined 

method is improved. As there is no dependency in calculations between neighbor 

nodes at the same time step. Up-wind solution and central space solution can be used 

for different portions of the domain. In order to keep the dynamic stability of central 

space solution and non-negative water depth calculation of up-wind solution, if a 

negative Water depth condition occurs at a node, solver can correct the negative 
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depth calculation by using the upwind solution at discharging faces of that node. 

Using that method, negative depths can be filtered from central space solution. 

In central space solver, after the solution of continuity equation, if ℎ , < 0  

discharges at faces are corrected by replacing with upwind solution: 

 𝐸𝑎𝑠𝑡 𝐹𝑎𝑐𝑒  𝑞
,

= 𝑞
,

             , 𝑞
,

> 0

𝑊𝑒𝑠𝑡 𝐹𝑎𝑐𝑒   𝑞
,

= 𝑞
,

   , 𝑞
,

< 0
  

𝑁𝑜𝑟𝑡ℎ 𝐹𝑎𝑐𝑒  𝑞
,

= 𝑞
,

             , 𝑞
,

> 0

𝑆𝑜𝑢𝑡ℎ 𝐹𝑎𝑐𝑒   𝑞
,

= 𝑞
,

   , 𝑞
,

< 0
  

(3.36) 

Then, the continuity equation must be resolved with corrected discharges. This 

process is repeated until the is no negative water depth in the domain. 

It is seen from the solutions that this correction only takes place in steeper slopes or 

during the decreasing water profile after the end of the rain. 

3.2 Validation of the Solver with One-Dimensional Models 

(Jia et al., 2019) obtained simulations for rainfall-runoff systems using kinematic 

wave equations. The rainfall-runoff solution obtained in this thesis for the same 

conditions and similar results are observed. Numerical solutions are based upwind 

and central space methods for the solution of Manning’s formula. For all solutions, 

Manning’s roughness 𝑛 = 0.02 (𝑚 / 𝑠), the bed slope is 0.01. All solutions are 

obtained for uniform and steady rain condition, rainfall intensity is 𝐼 =

2.7𝑥10   𝑚/𝑠 = 97.2 𝑚𝑚/ℎ𝑜𝑢𝑟. In each case, outflow hydrographs are printed 

out to see the unsteady effects for different conditions. For all cases, the time step 

size is the same and checked that the courant condition is satisfied. 
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Figure 3.3 Outlet hydrograph from analytical and numerical solution of 𝑡 ≥ 𝑡  
condition for different lengths. 𝑡 = 1000𝑠 

 

 

Figure 3.4 Outlet hydrograph from analytical and numerical solution of 𝑡 < 𝑡  
condition for different lengths. 𝑡 = 200𝑠 
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In order to test the effects of the length of the domain, outlet hydrographs for 

different lengths of domains are printed out for both 𝑡 > 𝑡  and 𝑡 < 𝑡  conditions 

as shown in Figure 3.3 and Figure 3.4. It is seen that the numerical solutions match 

with the analytical solution.  

There are small differences around 𝑡~𝑡  in 𝑡 > 𝑡  condition and around 𝑡~𝑡  in 

𝑡 < 𝑡  condition. As explained under the analytical solution title, the kinematic 

wave resulted from the inlet boundary reaches to the outlet at 𝑡 = 𝑡  in 𝑡 > 𝑡  and 

at 𝑡 = 𝑡  in 𝑡 < 𝑡  conditions. Thus, the difference may result from the propagation 

of that wave. As numerical solution methods are discrete methods, a continuous 

solution with an abrupt change in time or in space cannot be represented without 

truncation errors. For better representation, higher-order methods or finer mesh must 

be used. 

 

Figure 3.5 Outlet hydrograph from upwind solution for 𝑡 > 𝑡  condition for 
different grid sizes. 𝐿 = 200𝑚 and 𝑡 = 1000𝑠. 

In order to test the grid size requirement, 𝐿 = 200𝑚 and 𝑡 = 1000𝑠 condition is 

solved for different grid sizes and results are printed out in Figure 3.5 and Figure 3.6. 

It is seen that the grid size has an effect on the solution and finer mesh leads to more 

accurate results.  
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Figure 3.6 Outlet hydrograph from central space solution for 𝑡 > 𝑡  condition for 
different grid sizes. L=200m and 𝑡 =1000s. 

While there is no observable difference in decreasing hydrograph, especially right 

before it reaches the steady-state condition the difference between analytical and 

numerical solutions increases.  

 

Figure 3.7 Water surface profile from analytical and upwind solutions with 
different mesh sizes at 𝑡 = 200𝑠. 
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As mentioned before, the difference may have resulted from the numerical solution 

of the wave. The wave seems to be smoothened in numerical solutions. Thus, to see 

the effect of the mesh sizes on water surface profile, water surface profile at 𝑡 =

200𝑠 is printed as shown in Figure 3.7. It is seen that the first guess was true, and 

this phenomenon has resulted from the discrete solution of the wave. 

The error that comes from the discrete solution can be calculated from water depths 

for a given time as: 

 
𝑒 =

1

𝑁 + 1
ℎ − ℎ / ℎ  (3.37) 

 

Figure 3.8 Error vs grid size. 𝑡 = 200𝑠, 𝐿 = 200𝑚 

The same model has solved for different grid sizes between 0.5m and 10m at 𝑡 =

200𝑚 and 𝐿 = 200𝑚, and error values are calculated as shown in Figure 3.8. As 

can be seen in the figure finer solutions up to 0.5 m resulted in more accurate results 

and central space solution is more accurate than the upwind solution. 
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Figure 3.9 Cumulative inflow, cumulative outflow and water volume in the 
model. 𝐿 = 200𝑚 and 𝑡 = 1000𝑠. 

In order to check the continuity, cumulative inflow, cumulative outflow, and water 

volumes in the model is checked for all cases. It is seen that the difference between 

inflow and summation of outflow and volume in the system is insignificant. So, the 

numerical solution satisfies continuity. Volumetric changes of inflow, outflow, and 

water in the model are printed out for one case solution from upwind method and it 

is shown in Figure 3.9. 
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Figure 3.10 Effects of different slopes. 𝐿 = 200𝑚 and 𝑡 = 1000𝑠 

As geometries in actual cases are complex, and possibly contains small accumulation 

zones or reverse flow conditions, solutions must be carried out using friction or water 

surface slopes. As can be seen in Figure 3.10, in order to see the effects of the usage 

of 𝑆  or 𝑆  rainfall-runoff system is solved with upwind method and based on 

different slope definitions. Results are clear that there is not a significant difference 

between numerical solutions for flow over a flat surface. However, from this 

comparison it cannot be said that it is valid for complex geometries, it may due to 

the simplicity of selected computational domain.  
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3.3 Test Cases 

3.3.1 Test Case Geometries 

General shape of the domain is given in Figure 3.11. As seen in the figure, the domain 

is symmetric around 𝑦 = 𝑊/2 line, and main bed surface has two different slopes 

in 𝑥 and 𝑦 directions. The main bed surface is formed from these two slopes.  

x

y

S0x

Symmetry 
Line

S0yS0y

S0x S0yS0y

Outlet

W

L

 

Figure 3.11 Main bed surface geometry. 

The bed surface elevation without any obstacles can be calculated from: 

 𝑍 = (𝐿 − 𝑥)𝑆 + (|𝑊/2 − 𝑦|)𝑆  (3.38) 
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Figure 3.12 Geometry and important distances in test cases 
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Except the first case, obstructions having different cross-section curvatures are 

placed in the domain to generate complex geometries. Distance of that obstacle is in 

x-axis 𝑋𝑠, in y-axis 𝑌𝑠. Width of the centerline of that obstacle is 𝑊𝑠. If 𝑊𝑠 = 0 the 

shape is formed around the point (𝑋𝑠, 𝑌𝑠) as shown in Figure 3.13. 
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Figure 3.13 Test case geometry with 𝑊𝑠 = 0 𝑚. 

As shown in Figure 3.14 the vertical extent of these obstacles are defined with three 

different curvatures.  
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Figure 3.14 Shape profiles for ∆𝑧 = 𝑅. 
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R indicates the radius of the obstacle in the horizontal plane. ∆𝑧  is the maximum 

height of the obstacle at its peak point. ∆𝑧  can be taken positive to form a bump 

or negative to form a cavity on the main ground surface. Profile given in Figure 3.14 

is prepared for ∆𝑧 = 𝑅 condition. For the generation of different size 

obstructions these profiles are ∆𝑧 /𝑅 times scaled in vertical direction. 

In this definition, 𝐿𝑐 is the closest distance to the centerline of the obstruction. 𝐿𝑐 

can be calculated from (𝑥, 𝑦) location of a point as: 

 

𝐿𝑐 =

⎣
⎢
⎢
⎢
⎡ |𝑋𝑠 − 𝑥|                                             , |𝑌𝑠 − 𝑦| ≤

𝑊𝑠

2

(𝑋𝑠 − 𝑥) +
𝑊𝑠

2
− |𝑌𝑠 − 𝑦| , |𝑌𝑠 − 𝑦| >

𝑊𝑠

2 ⎦
⎥
⎥
⎥
⎤

 (3.39) 

Single curvature cross-section is designed to see the effects of an abrupt change in 

bed surface. Slope of the curve is zero at 𝐿𝑐 = 0 and infinite at 𝐿𝑐 = 𝑅.  Height 

difference that is created by obstacle can be calculated as: 

 
∆𝑧 =

∆𝑧

𝑅
𝑅 − 𝐿𝑐     , 𝐿𝑐 ≤ 𝑅 (3.40) 

Double curvature cross-section is designed to see the effects of a smooth change in 

bed surface with infinite slope at 𝐿𝑐 = 𝑅/2. Height difference that is created by 

obstacle can be calculated as: 

 

∆𝑧 =

∆𝑧

𝑅

𝑅

2
+ (𝑅/2) − 𝐿𝑐             , 𝐿𝑐 ≤

𝑅

2
∆𝑧

𝑅

𝑅

2
− (𝑅/2) − (𝑅 − 𝐿𝑐) ,

𝑅

2
< 𝐿𝑐 ≤ 𝑅

 (3.41) 

 

The cosine curve is designed to see the effects of the smooth change in bed surface. 

The maximum slope in the cosine curve is ∆𝑧 /𝑅. Height difference that is created 

by obstacle can be calculated as: 
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∆𝑧 =

∆𝑧

2
1 + cos

𝐿𝑐

𝑅
𝜋    , 𝐿𝑐 ≤ 𝑅 (3.42) 

The final shape of the ground can be calculated by adding the height difference 
from the shapes to the main ground level as: 

 𝑧 = 𝑧 + ∆𝑧 (3.43) 

 

3.3.2 Test Runs for Flow over Simple Geometries 

In order to compare the accuracy and stability of all solution schemes, a set of two-

dimensional test cases are described with different geometric characteristics. 

Manning’s formula is used in evaluation of friction slope and water surface slope is 

used in solutions. In solutions for Test Cases 1,2 and 3, Manning’s roughness 𝑛 =

0.02 (𝑚 / 𝑠), length of the domain is 500 m and the width of the domain is 250 m. 

Bed slope in 𝑥 direction is 𝑆 = 0.01 and in 𝑦 direction is 𝑆 = 0.005. Obstacles 

are located along x-axis 𝑋𝑠 = 375 𝑚, and y-axis at the half-width of the domain and 

𝑊𝑠 = 10 𝑚 as centerline width of the obstacle. All solutions are obtained in steady 

uniform rainfall condition with rainfall intensity 𝐼 = 2.7𝑥10 𝑚/𝑠 = 97.2 𝑚𝑚/

ℎ𝑜𝑢𝑟. 

Solutions are obtained using different time steps and grid sizes and results are 

compared. Solutions are printed out as outflow hydrographs at the outlet to see the 

time-wise variations. Results are obtained with time step sizes that ensure the courant 

number limitation as Cr ≤ 0.2 since the upwind solver becomes unstable for Cr > 

0.25. 
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3.3.2.1 Test Case-1: Tilted V-Catchment 

In this test case, model does not contain any obstacle and known as Tilted V-

Catchment. Three-dimensional shape of the ground geometry is shown in Figure 

3.15.  

 

Figure 3.15  Test Case-1: 3D Ground geometry for tilted v-catchment model. 

Time required for the steady-state in steady and uniform rainfall condition is 

considered to be 1000 seconds. After the steady-state condition, rainfall is stopped 

and numerical simulation is continued until 𝑡 = 2600 𝑠 to see the decreasing water 

profile. 
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This case is solved with different solvers for different grid sizes to obtain the grid 

size requirements and behavior of solvers for different grid sizes. 

 

Figure 3.16 3D Water depth plot from combined solver for tilted v-catchment 
model at 𝑡 = 1000𝑠 (Test Case-1). 

Combined solver solution for Test Case-1 is shown in Figure 3.16 and Figure 3.17. 

Water depth scale is given on the figures. Solutions at different time steps are shown 

in Figure 3.17. 
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Figure 3.17 2D Water depth contour plot at different times for Test Case-1 from 
combined solver. 
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Figure 3.18 Outlet hydrograph for Test Case-1from different solvers. 

 

Outflow hydrographs for Test Case-1 are printed out in Figure 3.18. Solutions from 

FTCS, combined and trapezoidal solvers just overlap, and two-step and single-step 

upwind solutions fit each other. 

As can be seen in Figure 3.18, there are small differences between upwind and 

central space solutions in rising curve. As the mesh is refined upwind solution 

approaches to the central space solution which proves that the central space solution 

is more accurate. 

To understand the behavior of solvers for solutions with coarser meshes outlet 

hydrographs from FTCS, upwind and combined solvers are shown out for different 

grid sizes in Figure 3.19, 3.27 and 3.28. It is observed that for solution over flat 

surfaces, the FTCS solver is more fragile when coarser mesh is used. Especially, in 

decreasing curve FTCS solution may lead to unrealistic outflow discharges. 
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Figure 3.19 Outlet hydrograph obtained from FTCS solver for different grid sizes. 

 

 

Figure 3.20 Outlet hydrograph obtained from upwind solver for different grid sizes. 
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Figure 3.21 Outlet hydrograph obtained from combined solver for different grid 
sizes. 

In Figure 3.22 coarser mesh solution for Test Case-1 from different solvers are 

compared with a finer solution.  It is seen that in coarser solutions, the central space 

solution is more accurate in rising curve, upwind solution is more accurate in 

decreasing curve and combined solver is accurate in both conditions. 

 

Figure 3.22 Comparison with finer mesh solution. Finer mesh solution obtained 
from the combined solver for 𝑑𝑥 = 𝑑𝑦 = 2.5𝑚 and 𝑑𝑡 = 5.0𝐸 − 3𝑠. 
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Cumulative inflow, cumulative outflow and water volume in the system at the end 

of solution from different solvers is given in Table 3.1 and Table 3.2. 

Table 3.1 Cumulative inflow, cumulative outflow, and water volume in the system 

at 𝑡 = 2600𝑠 for finer solution (𝑑𝑥 = 𝑑𝑦 = 2.5𝑚 𝑑𝑡 = 5.0𝐸 − 3𝑠). 

Solver ∀  (𝑚 ) ∀  (𝑚 ) ∀  (𝑚 ) 
100 ∗

∀ + ∀

∀
 

FTCS 3375.016 3273.269 101.747 100 

Upwind 3375.016 3258.844 116.172 100 

Combined 3375.016 3270.345 104.672 100 

Two-Step Upwind 3375.016 3258.843 116.174 100 

Trapezoidal 3375.016 3273.267 101.749 100 

 

Table 3.2 Cumulative inflow, cumulative outflow, and water volume in the system 

at 𝑡 = 2600𝑠 for coarser solution (𝑑𝑥 = 𝑑𝑦 = 10𝑚 𝑑𝑡 = 2.0𝐸 − 2𝑠). 

Solver ∀  (𝑚 ) ∀  (𝑚 ) ∀  (𝑚 ) 
100 ∗

∀ + ∀

∀
 

FTCS 3375.016 3455.619 -80.549 100 

Upwind 3375.016 3232.623 142.446 100 

Combined 3375.016 3266.670 108.399 100 

Two-Step Upwind 3375.016 3232.617 142.452 100 

Trapezoidal 3375.016 3455.578 -80.510 100 

 

As it is understood from Cumulative inflow, cumulative outflow and water volume 

in the system at the end of solution from different solvers is given in Table 3.1 and 

Table 3.2. 

Table 3.1 and Table 3.2, coarser solution from FTCS solver leads negative volumes. 

The non-physical results from FTCS solution at decreasing curves in outlet 

hydrographs are seems to be due to negative water depth calculations of that method. 
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3.3.2.2 Test Case-2: Tilted V-Catchment with a Bump 

In this test case, the model contains a bump at 𝐿𝑠 = 375 𝑚. Radius of the bump is 

60 m and has double curvature profile. Three-dimensional shape of the ground 

geometry for Test Case-2 is shown in Figure 3.23.  

 

Figure 3.23  3D Ground geometry for Test Case-2  

Time required for the steady-state in steady and uniform rainfall condition is 

considered to be 1200 seconds. After the steady-state condition, rainfall is stopped 

and simulation is continued until 𝑡 = 3600 𝑠 to see the decreasing water profile.  

This case has been solved with different solvers for different time step sizes to obtain 

the effects of the time step size and behavior of solvers for different time-step sizes.  
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Figure 3.24 3D Water depth plot from combined solver for Test Case-2 at 𝑡 =
1200 𝑠. 

In Figure 3.24 and Figure 3.25, combined solver solution for Test Case 2 is shown. 

Water depths are scaled by color density and legend is given on the bottom of the 

figures. Solution at different time steps are shown in Figure 3.25. 
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Figure 3.25 2D Water depth contour plot at different times for Test Case-2 from 
combined solver. 
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Figure 3.26 Outlet hydrograph for fine mesh solution of Test Case-2 from FTCS, 
upwind and combined solvers. 

 

 

Figure 3.27 Outlet hydrograph for coarser mesh solution of Test Case-2 from all 
solvers.  
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Figure 3.28 Outlet hydrograph for Test Case-2 obtained from FTCS solver for 
different time-step sizes.  

 

Figure 3.29 Outlet hydrograph for Test Case-2 obtained from trapezoidal central 
space solver for different time-step sizes. 

As can be seen in Figure 3.28 and Figure 3.29, central space solution leads to 

fluctuations in outlet hydrograph colose to steady-state condition and there is no 

difference between forward time and trapezoidal solution. 
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Figure 3.30 Outlet hydrograph for Test Case-2 obtained from upwind solver for 
different time step sizes. 

  

Figure 3.31 Outlet hydrograph for Test Case-2 obtained from combined solver for 
different time step sizes. 

As can be seen in Figure 3.30 and Figure 3.31, combined solver solution leads more 

reasonable results in rising hydrograph and filters the fluctuations in central space 

solution. Outlet hydrograph obtained by combined solver has advantage of using 

both upwind and the central space solutions in appropriate regions. 
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From outlet discharge plots it can be observed that the trapezoidal or two-step 

solution has no advantage on forward time solution. As the model in this test case is 

relatively large and water levels are changing slowly, there is no need to use higher-

order accurate method for the solution of the continuity equation. As long as stability 

condition is satisfied all the solvers generate meaningful results.  

3.3.2.3 Test Case-3: Tilted V-Catchment with Cavity 

In this case, the model contains a double curvature cavity. Three-dimensional ground 

geometry for V-Catchment with a cavity is shown in Figure 3.32.  

 

Figure 3.32  3D Ground geometry for Test Case-3. 
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Time required for the steady-state condition is found to be 2200 seconds. After the 

steady-state condition at 𝑡 = 2200 𝑠, rainfall is stopped. The simulation is continued 

until 𝑡 = 4400 𝑠 to see the decreasing water depth profile.  

Test Case-3 is solved with different solvers for different grid sizes to obtain the 

effects of the grid sizes and behavior of solvers for different grid sizes.  

 

 

Figure 3.33 Water surface profile for Test Case-3 from combined solver at 𝑡 =
2200 𝑠. 

 

In Figure 3.33 and Figure 3.34, combined solver solution for Test Case-3 is shown. 

Solutions at different time steps are also show in Figure 3.34. 
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Figure 3.34 2D Water depth contour plots at different times for Test Case-3 from 
combined solver. 
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Figure 3.35 Outlet hydrograph for fine mesh solution of Test Case-3 from FTCS, 
upwind and combined solvers. 

As seen in Figure 3.35, outlet hydrograph shows a plato between 600s and 1100s. 

This plato section shows the time required for filling the cavity.  

 

 

Figure 3.36 Outlet hydrograph for coarser mesh solution of Test Case-3 from 
FTCS, upwind and combined solvers. 
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Figure 3.37 Outlet hydrograph for coarser mesh solution of Test Case-3 from 
FTCS, upwind and combined solvers.  

 

 

Figure 3.38 Courant number plot for the solution given in Figure 3.37. 

In solution given in Figure 3.37, upwin solver fall at t=713s because of dynamic 

instability and it can be seen in courant number plot shown in Figure 3.38. Combined 

and FTCS solvers are stable. 
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3.4 Test Runs for Flow over Combined Bump-Cavity Geometries 

More complex ground geometry is generated by superposition of bump and cavity 

using the previous definitions. In contrary to previous cases, there are multiple 

obstructions in the domain. In solutions for Test Cases 4 and 5, Manning’s roughness 

𝑛 = 0.02 (𝑚 / 𝑠), length of the domain is 500 m and width of the domain is 300 

m, bed slope in 𝑥 direction is 𝑆 = 0.01 and in 𝑦 direction is 𝑆 = 0.005. 

Locations and sizes of the obstructions are given in Table 3.3.  

Table 3.3 Locations and sizes of obstructions in Test Case-4 and Test Case-5 

Curvature Xs(m) Ys(m) Ws(m) R(m) ∆𝑧 (m) 

Double Curvature 375 150 10 75 -0.8 

Single Curvature 325 85 10 30 1.2 

Double Curvature 340 235 0 50 1.2 

Cosine Curvature 290 170 10 60 1.6 

Cosine Curvature 260 100 10 25 -0.9 

 

The combined solver only will be used for the numerical solutions since the 

combined solver generated better results in the previous cases. 

Solutions are obtained using constant grid size 𝑑𝑥 = 𝑑𝑦 = 2.5𝑚 for all solutions 

and time step size is increased with rainfall intensity to keep the courant number 

same for different solutions and ensured that the courant number limitations defined 

in previous solutions are exceeded. 

Solutions are printed out as outflow hydrographs at the outlet to see the time wise 

variations.  
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3.4.1.1 Test Case-4: Tilted V-Catchment with Multiple Bumps and Cavities 

Three-dimensional shape of the ground geometry is shown in Figure 3.39. 

 

Figure 3.39 3D Ground geometry for Test Case-4. 

In order to see the effects of the rainfall intensity and to check the stability and 

behavior of the solver over complex geometries numerical solution is obtained for 

different rainfall intensities. 

 Violent Rain   𝐼 = 8.1𝑥10 𝑚/𝑠 = 291.6 𝑚𝑚/ℎ𝑜𝑢𝑟 

 Heavy Rain    𝐼 = 2.7𝑥10 𝑚/𝑠 = 97.2 𝑚𝑚/ℎ𝑜𝑢𝑟 

 Moderate Rain   𝐼 = 9.0𝑥10 𝑚/𝑠 = 32.4 𝑚𝑚/ℎ𝑜𝑢𝑟 

 Low Rain    𝐼 = 3.0𝑥10 𝑚/𝑠 = 10.8 𝑚𝑚/ℎ𝑜𝑢𝑟 
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Figure 3.40 Water surface profile from combined solver for Test Case-4 at 𝑡 =
2200𝑠 

Time required for the steady-state in steady and uniform rainfall condition is 

considered to be 2200 seconds. At 𝑡 = 2200 𝑠 rainfall is stopped and numerical 

simulation is continued until 𝑡 = 4400 𝑠 to see the decreasing water profile. 

Combined solver solution for Test Case-4 in heavy rain condition is shown in Figure 

3.40 and solution at different time steps are shown in Figure 3.43. 

Solution for different rainfall conditions is shown in Figure 3.41 and outlet 

hydrograph is given in Figure 3.42. It is seen that the solver is stable in all rainfall 

conditions. In low rain and moderate rain conditions time of rain was not enough for 

system to reach the steady state. 
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Figure 3.41 3D water depth plots from combined solver for Test Case-4 for 
different rain intensities at 𝑡 = 2200𝑠. 

 

Figure 3.42 Outlet hydrograph for Test Case-4. 
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Figure 3.43 2D Water depth contour plots at different times for Test Case-4 from 
combined solver. 
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3.4.1.2 Test Case-5: Tilted V-Catchment with Multiple Bumps, Cavities 

and a Wall 

In different from the previous case, a vertical wall is placed in the middle of the 

solution domain. The location of the wall is defined as wall cells at 85th node in x-

direction and between 45th and 75th nodes in y-direction. Three-dimensional shape 

of the ground geometry is shown in Figure 3.44. 

 

Figure 3.44 3D Ground geometry for Test Case-5. 

Solution for this case is obtained only using combined solver for heavy rain 

condition. Three dimensional water depth plot from downstream and upstream 

locations is given in Figure 3.45 and Figure 3.46 and solution at different time steps 

are shown in Figure 3.48. 
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Figure 3.45 3D Water depth plot from combined solver for Test Case-5 at 𝑡 =
2200 𝑠, downstream view.  

Solver is handled wall type boundary condition in domain successfully. Solution is 

stable and continuity satisfied. Outlet hydrograph plot is compared with previous 

case solution and shown in Figure 3.47. Latency resulted from the wall can be seen 

in outlet hydrograph. 
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Figure 3.46 3D Water depth plot from combined solver for Test Case-5 at 𝑡 =
2200 𝑠, upstream view. 

 

 

Figure 3.47 Outlet hydrographs for Test Case-5 compared to Test Case-4. 
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Figure 3.48 2D Water depth contour plots at different times for Test Case-5 from 
combined solver. 
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3.5 Accuracy and Grid Requirements 

Numerical solutions for one-dimensional model is validated by comparing the results 

with analytical solution. It is seen that both upwind and central space solutions are 

in close agreement with analytical solutions. Both of this solutions give reliable 

results if stability and grid requirements are satisfied. Central space solution has 

higher order accuracy, and this higher accuracy leads more accurate results.  

In two-dimensional solutions, Test Case-1 is solved for grid size as large as 10 m 

without any problem. Courant number limit for FTCS and combined solvers is 0.25 

and for upwind solution is 0.2. Time step sizes violating that condition may cause 

instability or failure in the solution. Dynamic instability is only observed in local 

depressions in solutions with insufficient grid size and time step size. 

3.6 Discussion of Results 

While the two-dimensional solution can be obtained by forward time and central 

space solution, smaller grid sizes must be used especially in steeper slopes not to 

cause negative water depths. However, a flow direction sensitive solution like 

upwind scheme is much more convenient in order to avoid the negative water depths 

and allow bigger mesh sizes. However, upwind solution requires smaller time-step 

sizes to maintain numerical stability. 

Combined solver which selectively using the central and upwind differencing 

methods is stable and accurate in all test cases. Solver avoids negative water depth 

calculation while keeping the numerical stability of central space solution. Both 

increasing and decreasing water profiles can be solved with this solver accurately. 
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CHAPTER 4  

4 PARALLELIZATION AND SCALABILITY OF THE SOLVER 

Scalability of a solution indicates the ability of an analysis to handle larger problems 

by adding more computational power. In sequential solutions, solution time of a 

problem is limited to power of a single thread in the processor. Adding extra 

processors to the system do not have any effect on the solution time. Thus, sequential 

solution of a large problem cannot be scaled and increase in domain size cause longer 

solution times. It makes the solver unpractical in large solutions. In parallelized 

solutions, in contrary to the sequential solution, the solution time can be reduced by 

adding processing power to the system to solve larger problems efficiently by 

dividing the processes to multiple independent chunks, and solution of these 

independent chunks can be shared between multiple threads of processors. 

Parallelization of a solution can be managed using two different techniques, 

described by the memory configuration of the computer. In shared-memory systems, 

there is a single memory unit that can be accessible by each thread. In these systems, 

parallelization can be done with workshare between threads known as fork-join 

model, and there is no need for communication between threads. This technique is 

known as Multi-Processing parallelization and can be managed using OpenMP 

libraries. 

Work Sharing Between 
Cores Using OpenMP

Memory

Core Core

Core Core

Parallelized 
Portion

 

Figure 4.1 Sample configuration in Multi-Processing parallelization is given at the 
left and timeline of work-sharing process with OpenMP is given at the right. 
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In a distributed memory configuration, multiple independent computer units are used 

to work together in a single solution. Sample computer configuration is shown in 

Figure 4.2. In this system, each core can access its own memory and communication 

terminal.  

Communication Bus or Network

Memory

Core Core

Core Core

Memory

Core Core

Core Core

...

 

Figure 4.2 Sample configuration for a distributed memory system. 

In this configuration, different portions of the domain are decomposed to 

independent units. Each unit only responsible for the solution of its own domain, and 

at the end of each time step they need to communicate and send their solutions at the 

interfaces to the neighbor units. This communication can be applied with MPI 

(Massage Passing Interface) and can be managed using OpenMPI libraries. 

Work Sharing Between 
Cores Using OpenMP

Parallelized 
Portion

Work Sharing Between 
Cores Using OpenMP

Parallelized 
Portion

Communication Between Processors Using OpenMPI

Work Sharing Between 
Processors Using 

OpenMPI

 

Figure 4.3 Timeline for hybrid parallelization. Workshare and communication 
between processors are handled by MPI and workshare between processor cores 

are handled by MP. 
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In the distributed-memory configuration, each unit stores variables of its own area. 

With the rough decomposition of solution areas each unit may have to send its 

solution on all over the interfaces to neighbor node. However, in particular to 

rainfall-runoff problem, the natural crest line of sub-basins can be selected as the 

decomposition boundaries using the topography as shown in Figure 4.4. As an 

assumption discharge at these crest lines can be neglected and this process may 

reduce the interfaces needs to be shared with neighbor. Using this technique, 

communication requirements can be reduced and leads less latency in solution. This 

technique is known as dynamic basin decomposition, and (Li et al., 2011) have 

developed a solver in this manner. 

1

2

3

45

Solution of 5th 
Area

Solution of 4th 
Area

Solution of 3rd 
Area

Solution of 2nd  
Area

Solution of 1st   
Area

 

Figure 4.4 Sample solution domain which is divided to 5 unit with dynamic 
parallelization principle. 

Moreover, in the solution of  the system shown in Figure 4.4, 5th,4th,3rd area can be 

solved independently from the whole system and solution comes from these areas 

can be used for the solution of 2nd and 1st area in another time. 

Speedup is the ratio of shortening of elapsed time resulted by parallel solution. 

Efficiency is the ratio of gained speedup per thread. Speedup and efficiency of a 

solution can be calculated as: 

 
𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
    (4.1) 
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𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝑁𝑜. 𝑜𝑓 𝑇ℎ𝑟𝑒𝑎𝑑𝑠
 (4.2) 

There are two different approaches in the calculation of theoretical speedup by 

parallelization. From these calculations, theoretical solution time for an analysis can 

be predetermined.  

The first approach is known as Ahmdals Law and it measures the speedup of a fixed 

size solution by increasing the number of processors. The Ahmdals law shows that 

the speedup is limited up to the time required by solution of the sequential portion. 

Theoretically, with an infinite number of processors and without physical 

limitations, solution time of a fixed size problem can be reduced up to the time 

required by the solution of sequential portion. 

Theoretical speed up from Amdahl’s law can be calculated as: 

 
𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =

1

𝑓𝑠 + 𝑓𝑝/𝑃
 (4.3) 

where 𝑃 is the number of processors used in solution, 𝑓𝑠 is the ratio of sequential 

portion of the code and 𝑓𝑝 is the ratio of parallelized portion of code. 

 𝑓𝑠 + 𝑓𝑝 = 1 (4.4) 

The second approach is known as Gustafson’s law also known as “Fixed time 

scaling”. Gustafson’s law measures the speed up of a variable size problem by 

increasing the number of processors with the same amount of increase in problem 

size. In variable size solutions, as domain gets larger, parallel portion of the solution 

increases. In this manner, the processor count can be increased with the domain size 

to keep the solution time equal. Analysis developed in the scope of this thesis has 

variable size and behavior in this approach is more important. 

Theoretical speed up from Gustafson’s law can be calculated as: 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑓𝑠 + 𝑓𝑝 ∗ 𝑃 (4.5) 

Note that, in practice, as the number of cores increases parallel initialization, memory 

access time and communication times also increases, so that the real speedup will 
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never reach to that theoretical speedup. Also, cash memory size of the CPU, memory 

access time of system, and read-write speed of hard disk in the system are some 

physical limitations of computers, and these physical limitations directly affect the 

solution time. Moreover, modern CPU’s reduces its frequency when its heat exceeds 

a certain limit as a safety feature. 

4.1 Parallel Speedup Tests 

In order to test the parallelization of the solver, a bunch of two-dimensional test cases 

are performed. In all parallel speedup tests, without any obstruction, the model has 

only slope in x-direction and for variable domain size tests, the domain is enlarged 

only in y-direction to eliminate the shape effects. In all solutions, 50000 iterations 

performed. All solutions are performed without writing any data to the hard disk in 

main iteration loop to eliminate the hard disk speed limitation and input, output 

routines that are not parallelized. Also, all solutions are obtained one by one with 

enough resting and cooling time between solutions. 

For the solution of parallel speedup tests, an HP workstation with 24 core 48 thread 

Intel Xeon E5-2680 V3 2.50GHz processor is used. 

4.1.1 Speedup and Efficiency with Increasing No. of Threads 

In order to test the parallelization of the solver in Ahmdal’s approach, model is 

solved for two different domain size with increasing number of threads. Small 

solution is obtained using 200x480 domain and large solution is obtained using 

200x1920 domain. 

Results in Table 4.1 are plotted in Figure 4.5 with ideal curves calculated from 

Amdahl’s law. It is seen that the solver is 95% to 97.5% parallel in the solution of 

large domain and 92.5% to 95% parallel in the solution of small domain. It is seen 

that the increase in domain size increases the parallel portion of the solution. 
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Table 4.1 Speedup and efficiency with increasing number of threads. 

 200x480 Domain 200x1920 Domain 

No of 

Threads 

Elapsed 

Time(s) Speedup Efficiency 

Elapsed 

Time(s) Speedup Efficiency 

Sequential 302.42 1 1 1253.48 1.000 1.000 

1 320.50 0.944 0.944 1296.83 0.967 0.967 

2 159.12 1.901 0.950 648.29 1.934 0.967 

4 90.34 3.348 0.837 353.84 3.543 0.886 

8 52.23 5.790 0.724 190.48 6.581 0.823 

16 37.47 8.071 0.504 130.21 9.627 0.602 

24 35.30 8.567 0.357 106.47 11.773 0.491 

32 33.76 8.958 0.280 91.1 13.759 0.430 

48 36.29 8.333 0.174 84.96 14.754 0.307 

 

 

Figure 4.5 Speedup and efficiency with increasing number of threads. 
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4.1.2 Speedup and Efficiency with Increasing Domain Size in the Same 

Proportion of No of Threads 

In order to test the parallelization of the solver in Gustafson’s approach, The same 

problem is solved with increasing domain size in the same proportion of  number of 

threads. 

Table 4.2 Speedup and efficiency with increasing domain size and number of 

threads. 

Grid Size 

Number 

of 

Nodes 

Elapsed Time 

in Sequential 

Solution (s) 

No. of Threads 

in Parallel 

Solution 

Elapsed Time 

in Parallel 

Solution (s) 

Speed

up 

Effici

ency 

200x120 24000 74.96 Sequential - 1 1 

200x240 48000 149.00 2 83.17 1.791 0.896 

200x480 96000 300.22 4 89.64 3.349 0.837 

200x960 192000 644.55 8 97.93 6.582 0.823 

200x1440 288000 928.89 12 98.41 9.439 0.787 

200x1920 384000 1250.97 16 115.30 10.850 0.678 

200x2400 480000 1617.90 20 135.13 11.973 0.599 

200x2880 576000 1937.81 24 143.85 13.471 0.561 

 

Results in Table 4.2 are plotted in Figure 4.6 with ideal curves calculated from 

Gustafson’s law. It is seen that the solver is about 80% parallel in Gustafson's 

approach. It is seen that the solution of larger than the 288000 nodes leads 

performance issues. It may probably result from the CPU cash memory size 

limitation. In larger solutions, allocated variable arrays may not fit into the cash 

memory and memory access time latency. To overcome this limitation the solver can 

be further optimized for system by dividing the arrays to multiple chunks. 
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Figure 4.6 Parallelized solution with increasing domain size in the same proportion 
of the no. of threads. 
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CHAPTER 5  

5 GEOGRAPHICAL CALCULATIONS 

This chapter is about the geographical calculations that are required in the preprocess 

session before the numerical solution of the governing equations of shallow flows. 

Flow domain is described by topography and topographic data is obtained from 

geographical maps.  Location of all computational nodes in the Cartesian mesh 

system used by the solver must be calculated or converted from the geographical 

coordinates.  

5.1 Geodesy 

Geodesy is the science field that goals to accurately describe the shape, motion, and 

size of the Earth. As the Earth is home for all humanity, it is crucial to know the 

shape and define a certain location on that shape. 

5.1.1 The shape of the Earth and Geographic Models 

Shape of the Earth is defined as a geoid at sea level all over the world. This sea level 

estimation is based on gravity force measurements on the Earth's surface. However, 

the gravity force on the Earth's surface is not homogeneous. So that the sea level on 

the Earth's surface has some imperfections. Because of that, calculations based on 

geoidal shape is over complicated. Thus, for more than hundreds of years, geodesists 

improved some approximated models to describe the shape of the Earth. 
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Geoid
Ellipsoid
Sphere

 

Figure 5.1 Comparison of Geoid, Ellipsoid, and Sphere 

As can be seen in Figure 5.1, rough estimation for the shape of the Earth is a sphere. 

For short distances, the spherical model offers simple calculation methods with 

reasonable accuracy. For more detailed and accurate calculations, the ellipsoidal 

model is improved.  

5.1.1.1 Spherical Surface Model 

The spherical model is the simplest approximation for the shape of the Earth. 

Calculations on that model are more straightforward compared to calculations on the 

ellipsoidal model, and the measurements are acceptable for short distances. As the 

distance increases, the difference between measurements and calculations increases. 

Thus, it is not convenient to use that model on large areas on the Earth. Spherical 

trigonometry techniques are used for the calculations. For example, Haversine’s 

formula is a formulation to calculate the length of an arc on a sphere, and it is used 

for the calculation of the distance between two points on the surface of the Earth. 
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5.1.1.2 Ellipsoidal Surface Model 

The ellipsoidal model is an accurate model that describes the shape of the Earth for 

lots of applications. With the help of current computer technology, most of our 

models are based on the ellipsoidal model. Calculations for the ellipsoidal model 

based on ellipsoidal trigonometry and these calculations are much more complicated 

compared to the calculations for the spherical model. 

Equator

Pole

 

Figure 5.2 Vertical Cross-section of Ellipsoidal Earth 

The approximation of an ellipsoid requires two different radiuses. As can be seen in 

Figure 5.2 𝑎 is the equatorial radius (semi-major axis) and 𝑏 is the polar radius (semi-

minor axis).  

Flattening and eccentricity of an ellipsoid are the ratios of the equatorial and the polar 

radiuses and can be calculated from Equations (5.1), (5.2) and (5.3). 

 
𝑓 = 1 −

𝑏

𝑎
 (5.1) 

 
𝑒 = 1 −

𝑏

𝑎
= 𝑓(2 − 𝑓) (5.2) 
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𝑒′ =

𝑎

𝑏
− 1 =

𝑓(2 − 𝑓)

(1 − 𝑓)
 (5.3) 

 

where 𝑎 is the equatorial radius, 𝑏 is the polar radius, 𝑓 is the flattening ratio, 𝑒  is 

the first eccentricity squared and  𝑒  is the second eccentricity squared values. 

5.1.1.2.1 Geodetic Datums 

Calculations, measurements, and defining a point on the surface of an ellipsoid 

requires a datum point and at least a radius and flattening ratio or an eccentricity 

value. In order to define the shape of the Earth, geodesists improve approximated 

ellipsoids and the most common ellipsoidal model is WGS84 (World Geodetic 

System). This ellipsoid is generally recognized by most of the world. In this geodetic 

system, the equatorial radius is about 6378137.0 m and the polar radius is about 

6356752.3 m and inverse flattening (1/𝑓) is 298.257223563. Also, a mean radius is 

defined for calculations based on the spherical earth model. That is 6371008.8 m and 

can be calculated from: 

 
𝑅 =

2𝑎 + 𝑏

3
 (5.4) 

where 𝑎 is the equatorial radius, 𝑏 is the polar radius. 

There are different ellipsoids to use in different portions of the Earth. For example, 

while WGS 84 is a worldwide applicable ellipsoid, ED50 ellipsoid is improved 

especially for use in Europe for better accuracy. Some other datums are listed in 

Table 5.1. 
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Table 5.1 Datum used in geographic coordinate systems. (Grafarend & Krumm, 

2006) 

Name 

a (Equatorial 

Radius) m 

𝑒  (First Eccentricity 

Squared) N 

WGS 84 

EUREF89 

ETRS89 

6378137 0.00669438 10 

ED50 6378388 0.00672267  

WGS 72 6378135 0.006694318  

WGS 66 6378145 0.006694542  

WGS 60 6378165 0.006693422  

GRS 1980 6378137 0.00669438  

GRS 1967 6378160 0.006694605  

5.1.2 Geographic Coordinate Systems 
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Parallels Meridians

Equator

Prime Meridian

 

Figure 5.3 Parallels and Meridians 
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The geographic coordinate system is an angular coordinate system that describes a 

certain location using two different angles named as latitude and longitude. The 

latitudinal lines are the horizontal lines parallel to the equator and the longitudinal 

lines are perpendicular to the latitudinal lines and all of the longitudinal lines are 

passing through the poles shown in Figure 5.3. In this model latitudinal lines range 

from -90 to 90 and longitudinal lines range from -180 to 180, in some books 

longitudinal lines may range from 0 to 360, or instead of negative sign North (N), 

South (S), East (E), West (W) prefixes might be used with angles.  

5.1.3 Elevation 

A geographical location indicates only the horizontal location of a point on the 

surface of the model. There is a third dimension which is the elevation, the 

perpendicular distance from the reference surface of the model. 

There are different elevation descriptions as shown in Figure 5.4. The first one is the 

elevation from sea level (geoid) named as orthometric height or from reference 

ellipsoid named as ellipsoid height. The height difference between ellipsoid and 

geoid is named as geoid height.  

Ellipsoid Height

Geoid Height

Earth Surface
Ellipsoid

Geoid

 

Figure 5.4 Elevation 
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Satellite-based elevation models indicate the ellipsoid height. As the calculation 

zones in this thesis are relatively small areas, relative height errors that come from 

the ellipsoidal approximation between nodes are assumed negligible. 

5.1.4 Bearing Angle 

Bearing angle is the angular definition of a direction on the surface of the Earth. This 

angle always has a positive value, and the positive direction is defined in the 

clockwise direction between the direct path to the north pole and the direction vector 

on the surface. Bearing angle can be calculated from two different locations, a start 

and an end location.  

North Pole

Initial 
Bearing

Final 
Bearing

P1

P2

 

Figure 5.5 Initial and final bearing angle 

As can be seen in Figure 5.5, bearing angle at the starting point (P1) on the path is 

named as the initial bearing. Note that the bearing angle at the endpoint (P2) or any 

other point on the path is different from the initial bearing because of the shape of 

the Earth unless the two points are on the same longitudinal line. 
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5.2 Geographic Calculations 

5.2.1 Calculation of Distance 

There are different algorithms for the calculation of the distance between two points 

on the Earth. 

σ 
P1P2

C
R

d

 

Figure 5.6 Distance between two points on the surface of the sphere 

In Figure 5.6, C is the center and R is the radius of the model. The length of the arc 

between points P1 and P2 is d and the central angle of that arc is  𝜎. The length of an 

arc in the spherical model can be calculated as: 

 𝑑 = 𝜎 𝑅 (5.5) 

5.2.1.1 Haversine Formula 

Haversine formulation is an analytical calculation of the distance between two points 

on a spherical surface that comes from spherical trigonometry. As error for small 

distances assumed negligible, this formulation is used to calculate the distance 

between two close points. 
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Distance between two points can be calculated from the Haversine formula described 

by the  equations below (Veness, 2002). 

 ℎ𝑎𝑣(σ) = ℎ = ℎ𝑎𝑣(𝜑 − 𝜑 ) + cos(𝜑 ) cos(𝜑 ) ℎ𝑎𝑣(𝜆 − 𝜆 ) (5.6) 

 
ℎ𝑎𝑣(𝜃) = sin

𝜃

2
=

1 − cos(𝜃)

2
 (5.7) 

 𝜎 =  𝑎𝑟𝑐ℎ𝑎𝑣(ℎ) = 2 𝑎𝑟𝑐𝑠𝑖𝑛 √ℎ   (5.8) 

More explicitly; 

 𝜎 = 2 𝑎𝑟𝑐𝑠𝑖𝑛 ℎ𝑎𝑣(𝜑 − 𝜑 ) + cos(𝜑 ) cos(𝜑 ) ℎ𝑎𝑣(𝜆 − 𝜆 )  (5.9) 

 

=  2 𝑎𝑟𝑐𝑠𝑖𝑛 sin
𝜑 − 𝜑

2
+ cos(𝜑 ) cos(𝜑 ) sin

𝜆 − 𝜆

2
 (5.10) 

where 𝜆! and 𝜑  are the longitude and the latitude of the first point, 𝜆  and 𝜑  are the 

longitude and the latitude of the second point, and the distance between points can 

be calculated by using central angle 𝜎 from Equation (5.5). 

5.2.1.2 Spherical Law of Cosines 

Spherical law of cosines is also a method for the calculation of the distance between 

two points on the spherical surface. 

Distance between two points can be found from (Veness, 2002): 

 𝜎 = arccos (sin 𝜑 sin 𝜑 + cos 𝜑 cos 𝜑 𝑐𝑜𝑠 𝛥𝜆 )  (5.11) 

where 𝜆! and 𝜑  are the longitude and the latitude of the first point, 𝜆  and 𝜑  are the 

longitude and the latitude of the second point, and the distance between points can 

be calculated by using central angle 𝜎 from Equation (5.5). 

Note that, for short distances 𝑐𝑜𝑠Δ𝜆 term in Equation (5.11) becomes about 

0.999999… . In order to avoid large roundoff errors in calculation, instead of a 32bit 

floating point variable, a 64bit double precision variable should be used. The 
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Haversine formula offers more precise calculation for short distances because of the 

use of sine function instead of cosine. 

5.2.1.3 Lambert’s Formula for Calculating Long Distances 

An ellipsoidal model represents the shape of the Earth much accurately. For short 

distances, the difference between calculations on spherical and ellipsoidal models is 

assumed negligible. However, as the distance increases the error comes from the 

approximation increases. Because of that, Lambert’s formula which is based on 

ellipsoidal approximation is more suitable for calculations between widely separated 

points.  

Distance between two widely separated points can be calculated accurately from the 

Equation (5.16) (Lambert, 1942). 

 tan(𝛽) = (1 − 𝑓)tan (𝜙) (5.12) 

For the solution of the lamberts formula, the first operation is the reduction of the 

latitudes 𝜙  and 𝜙  to 𝛽  and 𝛽  by using Equation (5.12). 

 
𝑃 =

𝛽 + 𝛽

2
       𝑄 =

𝛽 − 𝛽

2
 (5.13) 

 
𝑋 = (𝜎 − 𝑠𝑖𝑛𝜎)

sin 𝑃 cos 𝑄

cos
𝜎
2

 (5.14) 

 
𝑌 = (𝜎 + 𝑠𝑖𝑛𝜎)

cos 𝑃 sin 𝑄

sin
𝜎
2

   (5.15) 

 
𝑑 = 𝑎 𝜎 −

𝑓

2
(𝑋 + 𝑌)  (5.16) 

where 𝜎 is the central angle, and it can be calculated from Equation (5.10) or (5.11), 

𝑓 is the flattening ratio of the ellipsoid, 𝑎 is the equatorial radius of the globe, and 𝑑 

is the distance. 
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5.2.2 Calculation of Bearing Angle 

The bearing angle of a path between two locations can be found from (Veness, 2002): 

 𝜃 = 𝑎𝑡𝑎𝑛2(sin(Δ𝜆) cos(𝜑 ), cos(𝜑 ) sin(𝜑 )
− sin (𝜑 )cos (𝜑 )cos (Δ𝜆)) 

(5.17) 

where  𝜑  is the latitude of the first point, 𝜑  is the latitude of the second point, Δ𝜆 

is the difference in longitude, and 𝜃 is the initial bearing value. 

Note that, instead of 𝑎𝑟𝑐𝑡𝑎𝑛 function, 𝑎𝑡𝑎𝑛2 function which can return values from 

all four quadrants is used. 

Since atan2 returns values from -180 to +180 in order to normalize the value the 

equation below is used.  

 𝜃 = (𝜃 + 360) 𝑚𝑜𝑑 360 (5.18) 

In order to find the final bearing angle if it is required, bearing angle from final to 

start point must be calculated in the reverse direction, and then the conversion 

equation given below is applied. 

 𝜃 = (𝜃 + 180) 𝑚𝑜𝑑 360 (5.19) 

Note that 𝑚𝑜𝑑 in Equation (5.18) and (5.19) is the modulo operation that returns 

reminder of the division. Value at the left side of the operation is dividend and the 

right side of the operator is the divisor term. 

5.2.3 Calculation of Intermediate Points 

Intermediate points are the points located on the shortest path between two points. 

The location of an intermediate point can be found from Equations (5.25) and (5.26) 

(Veness, 2002). 

 
𝑎 =

sin (1 − 𝑤)𝜎

sin(𝜎)
 (5.20) 
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𝑏 =

sin(𝑤𝜎)

sin(𝜎)
 (5.21) 

 𝑥 = a ∗ cos(𝜑 ) cos(𝜆 ) + 𝑏 ∗ cos(𝜑 ) cos(𝜆 ) (5.22) 

 𝑦 = a ∗ cos(𝜑 ) sin(𝜆 ) + 𝑏 ∗ cos(𝜑 ) sin(𝜆 )   (5.23) 

 𝑧 = 𝑎 ∗ sin(𝜑 ) + 𝑏 ∗ sin(𝜑 ) (5.24) 

 𝜑 = 𝑎𝑡𝑎𝑛2(𝑧, 𝑥 + 𝑦 )   (5.25) 

 𝜆 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) (5.26) 

where 𝜆! and 𝜑  are the longitude and the latitude of the first point, 𝜆  and 𝜑  are 

the longitude and the latitude of the second point, 𝜎 is the angular difference, w is 

the distance ratio (must be in between 0 and 1, 0 for point 1, 1 for point 2), 𝜆  and 𝜑  

are the longitude and the latitude of the intermediate point. 

5.2.4 Calculation of Midpoint 

Midpoint is also an intermediate point at the center of the path between two points. 

Calculation for intermediate points can be simplified by taking w value as 0.5 to find 

the midpoint. The equation for midpoint is simplified from the intermediate point 

equations, and it can be calculated from Equations (5.29) and (5.30) (Veness, 2002) 

 𝐵 = cos(𝜑 ) cos(Δ𝜆) (5.27) 

 𝐵 = cos(𝜑 ) sin(Δ𝜆) (5.28) 

 
𝜑 = 𝑎𝑡𝑎𝑛2 sin(𝜑 ) + sin(𝜑 ) , (cos(𝜑 ) + 𝐵 ) + 𝐵  (5.29) 

 𝜆 =   𝜆 + 𝑎𝑡𝑎𝑛2(𝐵 , cos(𝜑 ) + 𝐵 )  (5.30) 
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5.2.5 Destination Point 

Destination point location from a location, a bearing angle, and a distance can be 

found from Equations (5.31) and (5.32) (Veness, 2002). 

 𝜑 = arcsin(𝑠𝑖𝑛(𝜑 ) 𝑐𝑜𝑠(𝜎) + 𝑐𝑜𝑠(𝜑 ) 𝑠𝑖𝑛(𝜎) 𝑐𝑜𝑠(𝜃)) (5.31) 

 𝜆 = 𝜆 + 𝑎𝑡𝑎𝑛2(sin(𝜃) sin(𝜎) cos(𝜑 ) , cos(𝜎)
− sin(𝜑 ) sin(𝜑 ))  

(5.32) 

where 𝜆! and 𝜑  are the longitude and the latitude of the first point, 𝜎 is the central 

angle, 𝜃 is the bearing angle, 𝜆  and 𝜑  are the longitude and the latitude of the 

destination point. 

5.3 Projection Techniques 

Projection techniques are used to transform the three dimensional surface of the 

model to a two dimensional flat surface for visualization and mapping purposes. 

Locations on those projections named as rectangular coordinates as it is a two-

dimensional x-y plane version of the model. However, there is no way to project 

without and error. So that different projection techniques can be used to project 

different portions of the Earth. There are lots of different projection techniques 

developed specifically for different portions of the Earth's surface. Each projection 

aims to create accurate representation as possible and each of them has different 

approaches and advantages. In this thesis, three of them are used. And the dimensions 

of the projected map is metric. These projection techniques are also used for 

calculation besides the visualization.  

5.3.1 Cylindrical Projection 

Cylindrical projection is the projection of the Earth's surface to a cylinder as shown 

in Figure 5.7. In this study, equirectangular cylindrical projection is used. Projection 

cylinder in equirectangular projection intersects at two parallels on the spherical 
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surface of the Earth known as standard parallels, and the scale of that projection is 

true on that standard parallels. All meridians and parallels become straight lines 

perpendicular to each other. 

Standard Parallels

 

Figure 5.7 Cylindrical Projection 

Area between the standard parallels projected in the negative direction which creates 

squishing effect in the east-west direction, whereas areas between poles and the 

standard parallels projected in the positive direction which creates stretching effect 

in the east-west direction. Deformation on the projection rises as the distance from 

the standard parallels increases and the pole points become to two lines cover the top 

and the bottom side of the map. 

Conversion from a point location on the spherical surface to rectangular coordinate 

on cylindrical projection plane can be done by using Equations (5.33) and (5.34) 

(Snyder, 1987). 

 𝑥 = 𝑅(𝜆 − 𝜆 )𝑐𝑜𝑠𝜑  (5.33) 

 𝑦 = 𝑅(𝜑 − 𝜑 ) (5.34) 

Conversion from the rectangular coordinate of a point on cylindrical projection plane 

to location on the spherical surface can be done by using Equations (5.35) and (5.36) 

(Snyder, 1987). 
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 𝜆 =
𝑥

𝑅𝑐𝑜𝑠𝜑
+ 𝜆  (5.35) 

 𝜑 =
𝑦

𝑅
+ 𝜑   (5.36) 

where 𝜆  is the longitude and 𝜑 is the latitude of the location to projection, 𝜑  is the 

standard parallel where the scale of the projection is true, 𝜆  is the central meridian 

of the map, R is the radius of the globe, and x and y are the horizontal and vertical 

rectangular metric coordinates of the projected location on the map. 

5.3.2 Conic Projection 

As a conic projection, Lambert's conformal conic projection (LCC) is used. For this 

type of projection, the surface of the model is projected to a cone that touches to two 

standard parallels as shown in Figure 5.8. This projection can be done using both 

spherical and ellipsoidal models. In this study, only the spherical formulation is used 

for only visualization. 

Standard Parallels

 

Figure 5.8 Conic Projection 

Conversion from a point location on the spherical surface on rectangular coordinate 

of  conic projection plane can be done using Equations (5.37) and (5.38) (Snyder, 

1987). 
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 𝑥 = 𝜌 sin 𝑛(𝜆 − 𝜆 )  (5.37) 

 𝑦 = 𝜌 − 𝜌 cos 𝑛(𝜆 − 𝜆 )  (5.38) 

where: 

 𝐹 = cos(𝜑  ) tan
𝜋

4
+

𝜑

2
/𝑛 (5.39) 

 𝑛 = ln (cos (𝜑  ) / cos (𝜑 ))/ln (tan
𝜋

4
+

𝜑

2
 /  tan (

𝜋

4

+
𝜑

2
 )  )  

(5.40) 

 𝜌 = 𝑅𝐹/ tan
𝜋

4
+

𝜑

2
 (5.41) 

 𝜌 = 𝑅𝐹/ tan
𝜋

4
+

𝜑

2
 (5.42) 

where 𝜑  and 𝜆  are the latitude and longitude of the origin point on rectangular 

coordinates of the projection. 𝜑  and 𝜑  are the standard parallels. 

Conversion from rectangular coordinate of a point on conic projection plane to 

location on the spherical surface can be done using Equations (5.37) and (5.38) 

(Snyder, 1987). 

 
𝜑 = 2 𝑎𝑟𝑐𝑡𝑎𝑛

𝑅𝐹

𝜌

/

−
𝜋

2
 (5.43) 

 
𝜆 = 𝜆 +

𝜃

𝑛
 (5.44) 

where 

 𝜌 = 𝑠𝑖𝑔𝑛(𝑛) 𝑥 + (𝜌 − 𝑦)  (5.45) 

 
𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛

𝑥

𝜌 − 𝑦
 (5.46) 
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5.3.3 Universal Transverse Mercator Projection (UTM) 

 

Figure 5.9 Universal Transverse Mercator Projection 

UTM projection as shown in Figure 5.9 is a different projection technique that has a 

true scale on meridians instead of on parallels. It aims to generate accurate maps with 

reliable distances between different points. For this projection technique, the shape 

of the Earth is vertically divided into 60 different zones, as shown in Figure 5.10. As 

there are 360 meridians and all system is divided into 60 different zones, each zone 

includes 6 meridians. The 3rd meridian from the right (at center) at each zone named 

as the center meridian of that zone. Each zone projected to a flat surface individually 

by projecting it on a cylindrical shape that touches to the central meridian. In this 

projection meridians are not straight lines, they are complex curves, except the 

central meridians (Snyder, 1987). 
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Figure 5.10 Different zones for UTM projection 

Definition of a location on that projection requires easting, northing, zone number, 
and zone letter values as shown in Figure 5.11. 

42N 8549321m E 5409493m N

Zone Number Zone Letter Easting value Northing value  

Figure 5.11 Definition of a UTM location 

In order to describe all locations in positive quantity, center (0,0) locations in zones 

are defined at 500 km west from center meridian at the equator, known as false 

easting. Also, in order to make all northing values positive in the south hemisphere 

center location is defined at 10000 km south from the equator. It means the zero point 

for the south portion of that zone is 10000 km south to the north zero point, known 

as false northing, as shown in Figure 5.12. 

 𝑥 = 𝑥 + 500,000 𝑚 (5.47) 

 
𝑦 =

𝑦                                   ,   𝑖𝑛 𝑛𝑜𝑟𝑡ℎ𝑒𝑟𝑛 ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒

𝑦 + 10,000,000 𝑚 ,   𝑖𝑛 𝑠𝑜𝑢𝑡ℎ𝑒𝑟𝑛 ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒
 (5.48) 



 
 

101 

where 𝑥 and 𝑦 are the easting and northing values respectively. 𝑥’ and 𝑦’ values are 

the coordinates from the false center at the junction of the equator and center 

meridian. 
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(x’,y’)
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(x,y)
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Figure 5.12 False easting and false nothing for northern hemisphere at the left and 
southern hemisphere at the right 

As the maximum angular distance from the standard line for all of the map is 3 

degrees maximum, distortion of the projection is much less compared to the other 

projections. Thus, calculations on that projection are more reliable if both points are 

in the same zone. 

Central meridian (origin longitude) 𝜆  can be found from Equation (5.49). 

 𝜆 = (𝑍𝑜𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟 − 1)6 − 180 + 3 (5.49) 

Zone number of a location can be found from Equation (5.50). 
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𝑍𝑜𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟 =

𝜆 + 180

6
+ 1 (5.50) 

However, there are some exceptions 

 The area between latitude 58 and 54.5 and longitude 8 and 13 is in zone 32. 

 The area between latitude 56 and 64 and longitude 3 and 12 is in zone 32,  

 The area between latitude 72 and 84 and longitude 0 and 9 is in zone 31,  

 The area between latitude 72 and 84 and longitude 9 and 21 is in zone 33,  

 The area between latitude 72 and 84 and longitude 21 and 33 is in zone 35,  

 The area between latitude 72 and 84 and longitude 33 and 42 is in zone 37,  

Conversion can be done with both ellipsoidal and spherical models. In this thesis, all 

the conversion is made by using the ellipsoidal model equations. 

5.3.3.1 UTM Projection Based on Spherical Model 

Conversion from a point location on the spherical surface to the rectangular 

coordinate of UTM projection can be done using Equations (5.51) and (5.52). After 

the conversion, easting and northing values must be normalized by using Equations 

(5.47) and (5.48) (Snyder, 1987). 

 𝑥′ = 𝑅𝑘 arctanh(𝐵) (5.51) 

 𝑦′ = 𝑅𝑘  (arctan (𝑡𝑎𝑛𝜙/cos (𝜆 − 𝜆  ) ) − 𝜙  ) (5.52) 

 𝑘 = 𝑘 /(1 − 𝐵 ) /  (5.53) 

where 

 𝐵 = cos (𝜙)sin (𝜆 − 𝜆 ) (5.54) 

Conversion from the rectangular coordinate of a point on UTM projection to the 

location on the spherical surface can be done using Equations (5.55) and (5.56). 

Before the conversion, false center coordinates must be calculated using Equations 

(5.47) and (5.48) in reverse (Snyder, 1987). 
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 𝜙 = arcsin (sin (𝐷)/cosh (𝑥′/(𝑅𝑘  )) ) (5.55) 

 𝜆 = 𝜆 + arctan (𝑠𝑖𝑛ℎ (𝑥′/(𝑅𝑘  ))/𝑐𝑜𝑠 (𝐷) ) (5.56) 

where  

 
𝐷 =

𝑦′

𝑅𝑘
+ 𝜙   (𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) (5.57) 

and 𝑘  is the scale factor along the central meridian 𝜆  which could be taken as 

0.9996 for UTM projection. The origin for the zone is (𝜙 , 𝜆 ).  

5.3.3.2 UTM Projection Based on Ellipsoidal Model 

Conversion from a point location on the ellipsoidal surface to the rectangular 

coordinate of UTM projection can be done using Equations (5.58) and (5.59). After 

the conversion, easting and nothing values must be normalized using Equations  

(5.47) and (5.48) (Snyder, 1987). 

 𝑥′ = 𝑘 𝑁[𝐴 + (1 − 𝑇 + 𝐶)𝐴 /6
+ (5 − 18𝑇 + 𝑇 + 72𝐶 − 58𝑒 )𝐴 /120] 

(5.58) 

 𝑦′ = 𝑘 [𝑀 − 𝑀 + 𝑁tan(𝜙)[𝐴 /2

+ (5 − 𝑇 + 9𝐶 + 4𝐶 )𝐴 /24 

+ (61 − 58𝑇 + 𝑇 + 600𝐶 − 330𝑒  )𝐴 /720]  

(5.59) 

 𝑘 = 𝑘 [1 + (1 + 𝐶)𝐴 /2 + (5 − 4𝑇 + 42𝐶 + 13𝐶
− 28𝑒 )𝐴 /24 + (61 − 148𝑇 + 16𝑇 )𝐴 /720] 

(5.60) 

where  𝑒  is the first eccentricity squared which can be calculated from Equation 

(5.2), 𝑒  is the second eccentricity squared which can be calculated from 

Equation(5.3). 

 𝑒 = 𝑒 /(1 − 𝑒 ) (5.61) 

 𝑁 = 𝑎/(1 − 𝑒 sin (𝜙)) /   (5.62) 

 𝑇 = tan (𝜙) (5.63) 
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  𝐶 =  𝑒 cos (𝜙) (5.64) 

 𝐴 = (𝜆 − 𝜆 ) cos(𝜙) , 𝑤𝑖𝑡ℎ 𝜆 𝑎𝑛𝑑 𝜆  𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠  (5.65) 

 
𝑀 = 𝑎 1 −

𝑒

4
−

3𝑒

64
−

5𝑒

256
− . . . 𝜙

−
3𝑒

8
+

3𝑒

32
+

45𝑒

1024
+ . . . 𝑠𝑖𝑛 (2𝜙)

+
15𝑒

256
+

45𝑒

1024
+ . . . sin(4𝜙)

−
35𝑒

3072
+ . . . sin(6𝜙) + . . .   

(5.66) 

𝑘 may also be calculated as: 

 𝑘 =  𝑘 [1 +  (1 + 𝑒 cos (𝜙))𝑥 /(2𝑘 𝑁 )]  (5.67) 

Conversion from the rectangular coordinate of a point on UTM projection to the 

location on the ellipsoidal surface can be done using Equations (5.68) and (5.69). 

Before the conversion, false center coordinates must be calculated using Equations 

(5.47) and (5.48) in reverse (Snyder, 1987). 

 𝜙 = 𝜙 − (𝑁 tan (𝜙 )/𝑅 )[𝐷 /2

− (5 + 3𝑇 + 10𝐶 − 4𝐶 − 9𝑒 )𝐷 /24

+ (61 + 90𝑇 + 298𝐶 + 45𝑇 − 252𝑒

− 3𝐶 )𝐷 /720] 

(5.68) 

 𝜆 = 𝜆 + [𝐷 − (1 + 2𝑇 + 𝐶 )𝐷 /6
+ (5 − 2𝐶 + 28𝑇 − 3𝐶 + 8𝑒 + 24𝑇 )𝐷
/120]/cos (𝜙 ) 

(5.69) 

where 𝜙  is the "footpoint latitude" or the latitude at the central meridian which has 

the same y coordinate as that of the point (𝜙, 𝜆), 𝑒  is the first eccentricity squared 

which can be calculated from Equation (5.2), 𝑒  is the second eccentricity squared 

which can be calculated from Equation (5.3). 

where 
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𝜙 = 𝜇 +

3𝑒

2
−

27𝑒

32
+ . . . sin(2𝜇)

+
21𝑒

16
−

55𝑒

32
+ . . . sin(4𝜇)

+
151𝑒

96
+ . . . sin(6𝜇)

+
1097𝑒

512
− . . . sin(8𝜇) + ⋯ 

(5.70) 

and 

 
𝑒 = [1 − (1 − 𝑒  )  ]/[1 + (1 − 𝑒  )  ]  (5.71) 

 𝜇 = 𝑀/[𝑎(1 − 𝑒 /4 − (3𝑒 )/64 − (5𝑒 )/256 − … )]  (5.72) 

 𝑀 = 𝑀 + 𝑦′/𝑘  (5.73) 

 𝑒 =  𝑒 /(1 − 𝑒 ) (5.74) 

 𝐶 = 𝑒 cos (𝜙 ) (5.75) 

 𝑇 = tan (𝜙 ) (5.76) 

 𝑁 =
𝑎

(1 − 𝑒 sin (𝜙 ))
 (5.77) 

 
𝑅 =

𝑎(1 − 𝑒 )

(1 − 𝑒 sin (𝜙 ))
 (5.78) 

 𝐷 =  𝑥′/(𝑁 𝑘 ) (5.79) 
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CHAPTER 6  

6 PREPARATION OF INPUT DATA 

For the preparation of required input data to the solver, a user-friendly software 

which is named as MetuMap is developed based on object-oriented programing and 

written in C# language. The software uses geographical calculation methods 

explained in Chapter 5. Using this software, topography and satellite imagery for the 

solution area can be prepared easily. Image processing, interpolation, mesh placing 

and catchment area detection techniques used by the software are explained in this 

chapter. The program consists of two main modules. 

6.1 Modules and User Interfaces 

User interface of the first module named as Mesh Generator is shown in Figure 6.1.  

 

Figure 6.1 User interface of Mesh Generator module. 
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The Mesh Generator module is used for creating a two-dimensional mesh and 

placing that mesh on the map. After importing the required DEM (Digital Elevation 

Map) to the program, user can place mesh on the topographic map and check, modify 

its location and size visually. 

As shown in Figure 6.1, file, view, solver and help buttons are provided at the top of 

the user interface. These buttons open a list of options to choose from. File button 

serves options for opening a new project, opening an existing project or saving the 

current project. As the data used in this program requires large storage, the projects 

are only stored as linked data packages. When a saved project is opened again the 

program looks for original data source files and processes these files at the beginning. 

View button serves options for changing visualization settings. Using view button 

user can change color grading method, projection method and other options that are 

used by the software for image processing. Solver and help buttons give required 

information to the user about the software. Also, at the top of the user interface there 

are a bunch of buttons. Using these buttons, user can change projection style, on-off 

satellite image, on-off grid, take simple measurements and place important locations 

on the map. 

There is an organization section at the left side of the window. In this organization 

section, there are 4 different folders by default. These folders are GeoTiff Map 

Collections, Satellite Images, Mesh Objects and Variables. Using these sections, user 

can create new map collections and import relevant data files under these collections, 

import satellite images, create meshes and create variables linked to map collections. 

After placing the computational mesh on the map, user can press mesh detail button 

which is placed at the top. Then, program opens the second module which is named 

as Mesh Detail shown in Figure 6.2. In this module, user can define the catchment 

area and outlet cells of the mesh. Cell type information is required in the solver to 

imply the boundary conditions on the boundary cells and describe the solution area. 
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Figure 6.2 User interface of Mesh Detail module.  

6.2 Data 

Point data in geographical information systems can be specified in three main types 

in terms of storage and process technique of the data. The first data type is the point 

cloud data includes all point data samples together in a package without any order 

and without any standard. Raw versions of most of the satellite-based data are in 

point cloud data. This type of data must be checked for anomalies and reorganized 

to create useful data packages. The second data type is vector data. It is used to store 

point locations in order as a path. It is generally used to store a path or bounds of a 

closed area. The third one is raster or grid data. This data type stores evenly spaced 

and regular data. The GeoTiff DEM’s used in this thesis is a grid data, stores evenly 

spaced elevation information. 

In the programming side of the software, there are two types of map definitions. The 

first one is the data map and the second one is the satellite image map. These two 

map styles contain locational information. All locational information and data are 

gathered from GeoTiff files using the Bitmricle LibTIFF library which is freely 



 
 

110 

available and open-source library generally used to process TIFF images. The library 

allows the program to read the data from GeoTiff file format. 

As an image map, satellite imagery stores an image beside the locational information. 

On contrary to satellite imagery, data map stores only the data besides locational 

information. This data is used to generate an image. In this example shown in Figure 

6.1, the data sets loaded in the program include topographic information and 

elevation values at each pixel. The program uses a two-dimensional single-precision 

floating-point variable to save the data at each pixel. Then uses this variable to 

generate greyscale or colorful image based on the magnitude of the values stored in 

variable.  

6.2.1 Digital Elevation Maps 

For preliminary readiness, topographic data must be prepared. For topographic data, 

DEM is required. DEM data commonly formatted to a GeoTiff. This file format 

contains locational information and elevation values. GeoTiff file consists of 

metadata and data sections.  

 In the metadata section, origin location, datum information, the physical size 

of the map and the image, and bit depth of the data is stored. The program 

uses this information to locate the map on the screen using projection 

techniques explained in Chapter 5. 

 In the data section, all the data is stored in IJ ordered binary form. This data 

is read by using the bit depth gathered from the metadata section and 

converted to a floating-point variable array. 

Note that, topography data in GeoTiff format actually is not a true 3D shape. It only 

stores evenly distributed scalar quantities at each pixel of the image, and this 

information is used to create a single layer of surface as elevation at locations. Shapes 

that require more than one layer of information like caves, tunnels under the surface 

or bridges on the surface cannot be stored in this format.  
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Greyscale colored example of a GeoTiff file is shown in Figure 6.3. In the figure, 

brighter sections indicate higher elevations. Each pixel color is scaled from white to 

black from maximum elevation to minimum elevation. 

 

Figure 6.3 Example GeoTiff topographic data from Aster global DEM (N37E38). 
The area in between 37o and 38o parallels and between 38o and 39o meridians is 

included. Data is converted to greyscale image.  

6.2.1.1 Color Grading for DEM 

Color grading methods are used for the visualization of the digital elevation maps. 

Using color grading methods, each nodal data is mapped into a color palette using 

linear interpolation and image processing techniques. Color palettes used in this 

software and output images for a sample data package are shown in Figure 6.4 . 
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Figure 6.4 Greyscale and green to red color grading. 

6.2.1.2 Data Sources for DEM 

ASTER Global Dem: Data packages can be downloaded at Earth Data web page. 

Specification and validation reports can also be found at the product web page. Data 

packages have portioned into 1ox1o (degree), 1984 World Geodetic System 

(WGS84) coordinates (latitude, longitude), and stored in 3601x3601 pixel GeoTiff 

file. Horizontal accuracy is 1 arc-second (~30 m at the equator). 

STRM 1 arc-second Global: Supplied by United States Geological Survey (USGS). 

Data packages can be downloaded at Earth Explorer web page. This data has 

portioned to 1ox1o sub-maps in resolution of 1 arc-second by 1 arc-second between 

500 north and 500 south parallels, above 50° north and below 50° south latitude 2 

arc-second by 1 arc-second and stored in 3601x3601 pixel GeoTiff file. 

Some other high-resolution datasets are available up to 12.5m supplied by space 

agencies. However, these datasets are not used in the scope of this thesis. 

6.2.2 Satellite Image 

Satellite images for the solution area can be imported to the software. These satellite 

images are used to allow the user to visually check the location of the mesh. Also, 

the satellite maps can be used to create land cover map, which includes the land cover 

information (asphalt, concrete, sand, grass, stone etc.) for solution area using image 
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processing techniques. Than the surface roughness values for the solution area can 

be estimated from the land cover maps by decomposing area into different land cover 

materials and setting roughness values for materials. In this thesis, the solutions are 

prepared using constant surface roughness. In future work, this option will be 

improved and used in the solutions. User can directly import surface roughness map 

to the software and gather surface roughness information. However, this option is 

not used in real solution cases because of practical reasons. 

 

 

Figure 6.5 Example satellite image from the European Space Agency (ESA) 
Sentinel-2 Dataset. 
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6.3 Locating the Mesh 

In order to prepare the required inputs for the solver, data points in the Cartesian 

coordinates of the mesh must be gathered from geographically located data. For this 

purpose, geographical coordinates must be converted to the Cartesian coordinates or 

vice versa. 

6.3.1 Cartesian Coordinate System 

y

z

x

Point 

(x,y,z)

 

Figure 6.6 Cartesian Coordinate System 

The Cartesian coordinate system is a three-dimensional system. All dimensions are 

perpendicular to each other. In order to specify a point in Cartesian coordinates, the 

distances from origin must be known for all dimensions. 

6.3.2 Conversion Techniques Between Coordinate Systems 

As gravity directs to the center of the globe in the geographical model, and in 

Cartesian coordinates, the gravity force acts only in negative z-direction. The z-
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direction in Cartesian coordinates and the perpendicular distance from the surface of 

the geographical model can be used as the common dimension. Moreover, 

measurements on that common dimension is already in length so that there is no need 

for conversion on that dimension. The other two dimensions are the latitude and the 

longitude of the horizontal location and must be converted from the surface of the 

geographic model to a flat plane. 

In this thesis, two different methods are used for the conversion between 

geographical location and the Cartesian coordinate system. Fist method is the usage 

of the rectangular coordinates that came from the projection, and the second method 

is the usage of a local tangent plane. A perfect conversion between geographic 

locations and Cartesian coordinates is impossible because of the shape of the Earth, 

both of these methods have some imperfections. 

6.3.2.1 Usage of Rectangular coordinates as x-y plane 

All of the projection techniques are applied to convert the surface of the globe as 

accurately as possible on a 2D flat surface. This flat surface (rectangular coordinates) 

can be used as the x-y plane of the mesh in Cartesian coordinates. In this type of 

conversion, the projection equations are used for conversion between geographic and 

rectangular coordinates, and simple trigonometry is used to find rectangular 

coordinates of all nodes in the computational mesh system. In this thesis, Universal 

Transverse Mercator projection is used for this purpose 

 
𝑑 = 𝑥 + 𝑦  (6.1) 

 
𝜃 = arctan

𝑦

𝑥
− 𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝐴𝑛𝑔𝑙𝑒 (6.2) 

 𝑥 = 𝑥 + 𝑑 cos(𝜃) (6.3) 

 𝑦 = 𝑦 + 𝑑 sin(𝜃)  (6.4) 
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where (𝑥 , 𝑦 ) are the rectangular coordinates of the local center for mesh, (𝑥 , 𝑦 ) 

are the local coordinates of an internal point and (𝑥 , 𝑦 ) are the rectangular 

coordinates of that internal point. The rectangular coordinate of an internal point on 

the mesh can be found from Equations (6.3) and (6.4) by using the rectangular 

coordinate of the center location, bearing angle, and dimensions of the mesh. After 

the calculation of the rectangular coordinate, the inverse formulation for the 

projection can be applied to convert that rectangular coordinate to the geographical 

location.  

Bearing 
Angle

Center of local 
coordinates for 

mesh

Center of 
rectangular 
coordinates

y

x

c

A

 

Figure 6.7 Mesh in rectangular coordinates 

6.3.2.2 Usage of Local Tangent Plane 

Local tangent plane is a flat surface plane tangent at a point on the surface of the 

model. It can be used to convert the system from the geographic coordinates to 

Cartesian coordinates, in the similar manner as in the method of azimuthal projection 

which is used to project the surface of the model to a flat surface. Instead of 
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projecting all surface, this method aims to choose the locations internal points of the 

mesh at the correct distance to the tangent point. 

Plane Local 
Tangent 
Point

Ellipsoid 
Surface  

Figure 6.8 Local Tangent Plane 

As can be seen in Figure 6.8, This tangent point is the common point between 

geographic and the Cartesian system. By using that local tangent point, location of 

any other point can be found from the relative distance and bearing angle from that 

tangent point, as shown in Figure 6.9. In order to minimize the error in conversion, 

this point can be selected at the area center of the mesh. From that center point, 

locations of all internal points can be calculated by using destination point algorithms 

explained in second chapter.  

Distance from the local tangent point and bearing angle can be found from Equations 

(6.5) and (6.6) using the local coordinates of the local tangent point, bearing angle, 

and dimensions of the mesh.  

 𝑑 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 )  (6.5) 

 
𝜃 = arctan

(𝑦 − 𝑦 )

(𝑥 − 𝑥 )
− 𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝐴𝑛𝑔𝑙𝑒 (6.6) 
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where (𝑥′ , 𝑦′ ) is the local coordinate of the local tangent point, (𝑥 , 𝑦 ) is the local 

coordinate of an internal point. After this calculation geographic location of that 

internal point can be calculated from destination point formulation using Equations 

(5.5) and (5.6). 
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Figure 6.9 Mesh on the local tangent plane 

In this method, if the length/width ratio is too far from 1, the area is too large or has 

uneven shape, multiple tangent points can be used for the calculations. Rectangular 

coordinates of that area can be obtained accurately using multiple local tangent 

planes. However, as each local tangent point is only center for its own calculation 

area. It must be known that, intersections of that planes must be corrected from each 

neighbor's tangent point. Each tangent point must give the same location for all 

points at intersections. As this is impossible because of the shape of the earth, 

location of these points must be chosen by taking the location that leads smallest 

error. Also, calculations used in this conversion is valid only for the spherical earth 

model which also introduces some errors. 
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6.3.3 Interpolation from DEM at Internal Point 

After placing the mesh to a suitable location with right angle and finding the 

locations of all internal points of the computational mesh, interpolation must be done 

to get the data for all required nodal points. As seen in Figure 6.10, locations of data 

points and locations of computational mesh grid points do not have to be perfectly 

matched. Also, solution area may require bearing angle for better placement or for 

excluding the unnecessary places from the mesh. So that, in order to get the data 

values at mesh points two-dimensional interpolation must be performed. 

 

Figure 6.10 Sample data grid and computational mesh grid. Black dots represent 
the data points and blue dots represents mesh grid points. 

There are three simple ways to interpolate a value on 2D plane. The first one is the 

nearest neighbor value that is simply taking the closest value. The second one is the 

bilinear and the third one is the bicubic interpolation. As shown in Figure 6.11, in 

bilinear interpolation, value for an internal point can be calculated by interpolating 
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the value from 4 data points linearly in x and then in y directions respectively. In 

bicubic interpolation, this process is done by using 3rd order approximation from 16 

points (4 by 4 points includes neighbor’s neighbors). The software in this thesis uses 

only bilinear interpolation technique. 

 

Figure 6.11 Bilinear interpolation 

 

6.3.4 Determination of Catchment Area, Crest Line and Thalweg 

In order to define the river basin, topographic model is used. Three characteristics of 

the basin can be described. The first one is the catchment area which defines the area 

that discharges its water to same outlet. The second one is the crest line as the 

boundary of catchment area. Both sides of the crest line discharge rain water into 

neighboring basins. Third one is the thalweg line of the main river and sub-channels 

required to perform channel flow computations. However, channel flow 

computations will not be performed in this study. 
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In a grid system when fluxes across the cell faces are integrated, all cells must satisfy 

the continuity equation by discharging the water to a neighbor. As the flow over the 

land surface has a strong dependence with the slope of the surface, flow direction 

and distribution of among the faces of a cell can be determined from the slopes of 

the ground surface.  

For the detection of the catchment area, crest line and thalweg line, an algorithm that 

estimates flow direction at cells is developed and named as Catchment Area 

Detection algorithm (CAD). This algorithm finds the boundaries of the catchment 

area automatically. 

As the ground shape of the domain may include lots of local minimums, the 

algorithm firstly must fill the cavities and find the possible discharge point of these 

cavities by defining a theoretical water surface level. As nodes other than boundaries 

need to discharge its water to another node, when a node is a local minimum (all of 

the neighbors have greater value), algorithm increases its theoretical water surface 

level to 0.01m higher than the neighbor’s minimum water surface level until all of 

the local cavities filled and discharges its water. Then CAD algorithm uses this 

theoretical water surface level to define the outer boundaries of the catchment and 

the thalweg line by deciding the flow direction at cells.  

Interior points are saved as interior nodes, exterior points (outside of the crest line) 

are saved as wall boundary and interior points at the borders of the area are saved as 

outlet boundary for the solver.  

At the beginning, user should mark the outlet of the domain as shown in Figure 6.12. 

In Figure 6.12, yellow strip is defined by user as outlet of the domain and half-

transparent reddish area is by default exterior. Then the algorithm looks for new 

interior points by comparing the theoretical water surface elevations of the neighbors 

and finds the crest line as the boundary of the catchment. This algorithm runs 

repeatedly for all of the points in the domain until there is no change in point 

definitions. Catchment area found by software is shown in Figure 6.13. 
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Figure 6.12 User initialization of outlet for catchment area definition. 

 

Figure 6.13 Catchment area found after search iterations of the CAD algorithm 
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CHAPTER 7  

7 REAL CASE SOLUTION 

A part of the Çarşamba River basin at Konya Bozkır is studied as a real test case 

model. The river overflowed on the date of 15th December 2010. The flood event led 

to damage on Bozkır shire and the villages around the Bozkır. (Buldur & Sarı (2012) 

indicated that the flood has resulted from the intensive rainfall event right after the 

snowfall and design of the hydraulic structures were not sufficient to prevent from 

the damage. 

7.1 Location of Study Area 

 

Figure 7.1 Hydrological and topographic map of the Çarşamba River basin (Buldur 
& Sarı, 2012). 

Hydrological and topographic map of the basin of the river is shown in Figure 7.1. 

The solution area in this analysis is roughly placed on the figure as a red rectangular 

domain. Study area is a mountainside and the elevations are changing between 2110 

to 1080. 
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The solution area is 15000 m by 11000 m rectangle, and the total physical area of 

the domain is 165 km2. Area center of the mesh is located at 37.193 latitude and 

32.056 longitude, and the mesh is placed with 300 bearing angle. Digital elevation 

model for the study area is given in Figure 7.2. This elevation model is gathered from 

the SRTM 1-arc second global DEM data source. 

 

Figure 7.2 Digital elevation model of the study area. 

7.2 Catchment Area 

Catchment area for the domain is obtained using the methods described in the 

previous chapter. The catchment area for this basin is shown in Figure 7.3, and it 

covers about 60 km2.  
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Figure 7.3 Catchment area. 

7.3 Results 

Two different solutions are obtained. The first solution uses the catchment area only, 

and the second solution is obtained using all nodes of rectangular domain.  

These two solutions are started at the same time and solved with 24 threads each in 

parallel. The first solution took about 4.7 hours and the second solution took about 7 

hours.  

The spatial mesh size used is 𝑑𝑥 = 𝑑𝑦 = 10 𝑚 and the time step size is 𝑑𝑡 = 1.0𝐸 −

2𝑠. The mannings roughness parameter assumed to be uniform over the domain and 

fixed as 𝑛 = 0.02. The catchment area is exposed to 1 hour duration uniform heavy 

rain (𝐼 = 2.7𝐸 − 5 𝑚/𝑠) and simulation is continued for three hours. 

Outflow hydrograph for this solution shows that the catchment area algorithm is 

suitable in these kind of solutions to eliminate unnecessary places from the solution. 

Combined solver is suitable for the solution over natural terrain. 
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CHAPTER 8  

8 CONCLUSIONS AND RECOMMENDATIONS 

A two-dimensional kinematic wave equation solver is developed to compute surface 

runoff from a fully distributed model. The model solves the continuity equation 

assuming equilibrium of resistance and gravity forces as a fully developed uniform 

flow all over the domain regardless of bed geometry and water depth. Thus, it is 

suitable for small water depths over large two-dimensional catchment areas. 

A software module named as Mesh Generator is developed to extract Digital 

Elevation Models (DEM) from available open-source satellite data. The data from 

geographical coordinates is transformed to cartesian coordinates to form a 

computational grid. This module is used for the preparation of the input files from 

multiple or single satellite-based data. 

Another computer module named as Mesh Detail is developed to describe 

boundaries of the catchment area. A modified version of this module can also be 

used to determine the Thalveg lines for possible streams in the domain of interest. 

Solver is tested with analytical solutions and several 1D and 2D hypothetical cases. 

Flow around obstructions and flow into cavities with accumulation can easily be 

simulated. In all cases with different critical circumstances solver was able to 

generate stable and accurate solutions. Solution over 165 𝑘𝑚  natural terrain is also 

obtained without any stability issue or any numerical anomaly. 

The developed code is improved to run parallel on multicore workstations to reduce 

CPU requirements. From parallelization tests, it is observed that the parallelized 

version of the solver is also stable and highly scalable. The solver can be used for 

analysis over large domains efficiently using powerful computers. 
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All solutions are obtained using effective rainfall intensity as a source term in the 

continuity equation. Empirical formulations for the calculation of infiltration, 

evaporation etc. are available in the literature. These empirical calculations can 

easily be adapted to the source term in the continuity equation to make more realistic 

hydrological modeling. In this thesis, these empirical calculations are not adapted as 

the main concentration of the study is the development of the methods rather than 

getting a solution. 

Another important input for the solver is the manning roughness value. In this study, 

solutions are obtained using constant manning roughness value all over the domain. 

In real cases, this value depends on the land cover. While land cover material can be 

detected by the human eye, in order to make that process automatic, a software 

module can be developed to identify surface material from the satellite-based images 

using image processing techniques. 

The kinematic wave modeling used in this study is appropriate for estimation of 

surface runoff in large domains for small water depths. When water accumulates, the 

assumption of equal resistance and gravity forces may not be valid, and complete 

momentum equations should be solved for streams formed in the catchment area. 

The code developed in this study can prepare input for such a complete dynamic 

model for the one-dimensional stream flows. Coupling this code with a 1D (or 2D)-

streamflow solver may produce more realistic estimates of the time-dependent 

discharge hydrograph at the outlet of the basin. 
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