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ABSTRACT

SOLUTION OF THE ALMGREN-CHRISS MODEL WITH QUADRATIC
MARKET VOLUME VIA SPECIAL FUNCTIONS

Ertürk, Eren
M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

September 2020, 36 pages

One of the current topics of research in mathematical finance is the scheduling of buy
or sell orders to liquidate a position. A well-known framework for this problem is
the one proposed by Almgren and Chriss that poses the problem as the maximization
of the expected utility of the final terminal wealth. In the simplest formulation of
the problem the market trading volume is taken as a constant. Under this and other
assumptions an optimal trading curve can be computed in terms of the sinh function.
This study aims to consider the same model under the assumptions that the market
trading volume is an affine function of time, i.e, Vt = at+ b and a quadratic function
of time i.e, Vt = at2 + bt + c. A solution of the differential equations arising from
the Almgren Chriss model under these assumptions is given in terms of the Modified
Bessel function (for the affine volume curve) and the confluent hypergeometric func-
tion (for the quadratic volume curve). We also provide numerical examples on how
the optimal trading curve varies with the model parameters a, b and c.

Keywords: Optimal Liquidation, Execution Strategy, Optimal Trading Volume
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ÖZ

İKİNCİ MERTEBEDEN MARKET HACİMLİ ALMGREN-CHRİSS MODELİNİN
ÖZEL FONKSİYONLAR YARDIMIYLA ÇÖZÜMÜ

Ertürk, Eren
Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Eylül 2020, 36 sayfa

Günümüz finansal matematiğindeki güncel araştırma konulardan biri de pozisyonu
tasfiye etmek amacıyla alım ya da satım emirleri hakkında planlamayı yapmaktır.
Bu alandaki bilinen çalışmalardan biri Almgren ve Chriss tarafından önerilen son
durumda beklenen faydanın maksimizasyonu çerçevesidir. Problemin en basit for-
mülasyonunda market işlem hacmi sabit bir sayı olarak alınmıştır. Bu ve diğer var-
sayımlar altında optimal işlem eğrisi sinh fonksiyonu cinsinden hesaplanmıştır. Bu
çalışmada aynı modelin market işlem hacmi zamana bağlı lineer fonsiyon, yani Vt =

at + b, ve market işlem hacmi ikinci dereceden zamana bağlı bir fonksiyon, yani
Vt = at2 + bt + c, olması durumu irdelenmiştir. Bu varsayımlar altında Almgren ve
Chriss modelinden doğan diferansiyel denklemler modifiye Bessel fonksiyonu (lineer
hacim eğrisi için) ve bileşik hipergeometrik fonksiyon (ikinci dereceden market eğrisi
için) cinsinden ifade edilmiştir. Market işlem eğrisinin a, b ve c parametrelerine göre
nasıl değiştiğine dair nümerik örnekler sunulmuştur.

Anahtar Kelimeler: Optimal Likidite, Çıkış Stratejisi, Optimal İşlem Hacmi
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CHAPTER 1

INTRODUCTION

A basic assumption in classical mathematical finance is that the market price of a

traded asset arises from the collective actions of many market participants and that

the actions of any single participant cannot influence the price by itself. Therefore, all

classical mathematical finance models from derivatives pricing to optimal investment

assume that the market participant can sell and buy any number of assets instantly

at the market price. This assumption becomes nonrealistic for trades that are large

compared to the market trading volume of the underlying asset. In the presence of a

large sell or buy order, market participants can quickly react to this sudden increase in

market volume and change their bid and ask prices. An investor with a large position

to liquidate needs to take into consideration the impact the liquidation will make to

the price. Starting with the seminal work of Bertsimas and Lo [16] a considerable

amount of research has been conducted in optimal liquidation, see, e.g., [11, 2, 3, 4,

5, 6, 7, 9, 10, 12, 13, 14, 17, 18].

One of the main models in market liquidation is the one initiated by Almgren and

Chriss in [3], which extends the model of [16]. Our main focus in this thesis will be

on this framework. We adopt our exposition of this framework form [11, Chapter 3].

This model assumes that an initial position q0 is to be closed in a fixed time interval

[0, T ] using a strategy qt, t ∈ [0, T ]. The mathematical problem is to choose q so

that the expected utility of the final terminal wealth is maximized. The mid-price

process is assumed to be a simple Brownian motion plus terms associated with short

and long term impacts of q on the price. Under the assumption of quadratic execution

costs and deterministic market trading volume, the problem reduces to the solution
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of a linear second order ordinary differential equation. In the case when the market

trading volume is constant, the equation has in fact constant coefficients and admits a

solution in terms of the sinh function. For the precise statement of the model and the

ODE we refer the reader to Chapter 2 of this thesis.

In real life, the trading volume of any given asset obviously changes with time. The

goal of this thesis is to derive solutions to the above mentioned ODE that describes

the optimal trading curve within the Almgren-Chris framework under the assumption

that the volume process is either of the form

Vt = at+ b t ∈ [0, T ]

(the affine case), or of the form

Vt = at2 + bt+ c t ∈ [0, T ]

(the quadratic case). Note that these simple curves already allow for a range of dif-

ferent types of volume behaviour, for example: a trading curve that is increasing

or decreasing in time, or concave/convex trading curves. We further discuss these

possibilities in Chapter 5. Given that the resulting ODE are second order linear equa-

tions with polynomial coefficients, one expects that one can derive explicit solutions

to these equations in terms of classical functions of analysis. In Chapter 3 such a

derivation is given for the affine volume case. For the solutions we follow [19]. As

explained in [19], an affine change of variables reduce the ODE (3.1) to equation to

Airy’s Equation whose solution is known in terms of the modified Bessel functions.

Airy’s equation and its solution in terms of Bessel functions is discussed in Section

3.3. In Chapter 4, the same ODE but this time with quadratic market volume is solved

in terms of special functions. Two transformations given in [19] convert the ODE to

the degenerate hypergeometric equation, whose general solution can be expressed in

terms of the confluent hypergeometric function. The work [15] provide a solution to

the (3.1) for affine Vt using Taylor expansions. In Chapter 3 we discuss this work as

well.

Chapter 5 begins with several numerical examples verifying that the formulas given

in earlier chapters are correct by comparing them with the sinh function when a = 0

for the affine case and a = b = 0 for the quadratic case. The impact of the a variable
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is already discussed in [15]. Therefore, in our study of the impact of the shape of the

volume curve to the optimal trading curve we only consider the quadratic case. The

new variable here is the coefficient a of the quadratic term; in four numerical studies

we vary this parameter to see how it changes the optimal trading curve. We see that

within the range of parameters we look at the trading curve remains mostly convex.

The influence of the a parameter is larger for small c and negligable for large c where

c is the constant in the volume curve. Further comments on this study is given in

Chapter 5. Finally, the conclusion (Chapter 6) provides a summary of our findings

and comments on future research.
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CHAPTER 2

ALMGREN AND CHRISS MODEL

The material in this chapter is based on The Financial Mathematics of Market Liq-

uidty: From Optimal Execution to Market Making by O. Guéant [11] it provides

a summary of the Almgren-Chriss framework. After understanding their model, in

Chapter 3 the trading volume Vt = at + b and in Chapter 4 the trading volume

Vt = at2 + bt+ c will be studied within this framework.

Consider a single-stock portfolio with q0 shares initially. The trader’s position at time

t ∈ [0, T ] is modelled by

dqt = vtdt. (2.1)

where vt is progressively measurable control process (we can call as trading velocity)

satisfying the unwinding constraint
∫∞
0
vtdt = −q0 and additional technical condition∫ T

0
|vt| is in the set of almost surely (a.s) bounded random variables. The trading ve-

locity of the trader vt has a lasting effect on the price of the security; this is formalized

as

dSt = σdWt + kvtdt, (2.2)

where St is the mid-price of the stock, σ is the arithmetic volatility of the stock and

k > 0 is a parameter of the permanent market impact. In fact, the actual trading price

includes a transaction cost that is dependent on the not only traded volume, but also

the market volume, which is denoted by Vt; Vt is a deterministic, continuous, positive

and bounded process. We observe the cash position of the trader at particular time t

as

dXt = −vtStdt − VtL
(
vt
Vt

)
dt (2.3)

5



where L is the instantaneous execution cost function. The assumptions on the instan-

taneous cost function L : R→ R are as follows:

• H1: No fixed cost, i.e., L(0) = 0,

• H2: L is strictly convex, increasing on R+ and decreasing on R−,

• H3: L is asymptotically super linear, i.e., lim|ρ|→+∞
L(ρ)

|ρ|
= +∞

Here, H1 means that no execution costs to be charged when there is no transaction,

H2 implies there is always a cost to trade, and H3 is a technical assumption. In the

Almgren-Chiss model L(ρ) correspond to a quadratic function, i.e., L(ρ) = ηρ2.

2.1 Optimal Strategy

In order to find optimal strategy to liquidate the portfolio, the main goal is to find

optimal (qt) ( or equivalently its derivative vt defined in (2.1)). For this purpose,

Bertsimas and Lo in [16] worked on maximizing E[XT ].In [3], [4] Almgren and

Chriss add varience to this frame and they try to maximize

E[XT ]− γ

2
V [XT ],

where γ is a positive constant. Almgren and Chriss framework as presented in [Chap-

ter 3, [11]] focuses on a utility function of the form

E[−e−γXT ]

where γ is called the absolute risk aversion coefficient of the trader which is posi-

tive. In order to solve this problem, we start with the assumption that the class of

admissible controls vt to be deterministic.

Recall that (2.1), (2.2), (2.3) are defined as below

dqt = vtdt

dSt = σdWt + kvtdt

dXt = −vtSt − VtL
(
vt
Vt

)
dt

6



By using (2.1), (2.2), (2.3) and integration by parts ( comprehensively explained in

[Chapter 3, [11]] ), the final value of the cash XT as a function of q as follows:

XT = X0 + q0S0 −
k

2
q0

2 + σ

∫ T

0

qtdWt −
∫ T

0

VtL

(
vt
Vt

)
dt. (2.4)

For deterministic q, the final value of the cash process XT is Normally distributed

with the following variance and mean:

V [XT ] = σ2

∫ T

0

qt
2dt. (2.5)

E[XT ] = X0 + q0S0︸ ︷︷ ︸
MtM value

− k

2
q0

2︸︷︷︸
perm. m. i.

−
∫ T

0

VtL

(
vt
Vt

)
dt︸ ︷︷ ︸

execution cost

(2.6)

We can mention the first term as the mean of XT is Mark-to Market value of the

portfolio i.e. the cash value of the portfolio if it were possible to liquidate the shares

instantly at the real time market price. The second one is about costs from permanent

ingredient of the market impact. The third is term is vt , which is also called the

execution costs.

The last term of equation (2.4) is minimal when vt is proportional to Vt since L is

assumed to be convex. This is the strategy proposed by Bertsimas and Lo in [16].

However, this strategy is not optimal in Almgren-Chriss framework since they take

the varience into account. The variance of XT is an increasing function of the volatil-

ity parameter σ, and it depends on the strategy throught the term
∫ T
0
qt

2dt. To mini-

mize this variance, the trader must quickly liquidate. The trade-off between execution

costs and price risk is here a trade-off between minimizing the last term of (2.4), and

minimizing the variance of XT

After using equation (2.5), equation (2.6) and the Laplace transform of a Gaussian

variable, objective function can be obtained as

E[− exp(−γXT )] = − exp

(
−γE[XT ] +

1

2
γ2V [XT ]

)
= − exp

(
−γ
(
X0 + q0S0 −

k

2
q20

))
× exp

(
γ

(∫ T

0

V0L

(
vt
Vt

)
dt+

γ

2
σ2

∫ T

0

q2t dt

))
.

7



Eventually, the problem reduces to finding a control process (qt) (called a Bolza prob-

lem) which minimizes the following

J(q) =

∫ T

0

(
VtL

(
q′(t)

Vt

)
+

1

2
γσ2q(t)2

)
dt, (2.7)

where, q is differentiable in t and satisfies q(0) = q0 and q(T ) = 0. Theorem 3.1 in

[11] guranteed that such an minimizer exists and unique. Before we proceed let us

recall the statement of theorem without giving any proof. (for further details of proof

we refer the reader to [Chapter 3] in [11]).

Theorem: There exists a unique minimizer q∗ of the function J over the set C =

{q ∈ W 1,1(0, T ), q(0) = q0, (T ) = 0}. Furthermore, q∗ is a monotone function:

i if q0 ≥ 0, q∗ is a nonincreasing function of time and,

ii if q0 ≤ 0, q∗ is a nondecreasing function of time.

In order to find minimizer q∗ of equation (2.7), one can use either a Euler-Lagrange

characterization or a Hamiltonian characterization. Since there is no assumption on

regularity on the function L, the Euler-Lagrange equation is of the following form

p′(t) = γσ2q∗(t),

p(t) ∈ ∂−L
(
q∗
′
(t)
Vt

)
,

q∗(0) = q0,

q∗(T ) = 0,

where ∂−L represents the sub-differential of L. If L is differentiable, the subdif-

firental of L is simply its derivative, therefore, the Euler-Lagrange equation for dif-

ferentiable L becomes 

p′(t) = γσ2q∗(t),

p(t) = L′
(
q∗′(t)
Vt

)
,

q∗(0) = q0,

q∗(T ) = 0.

The convexity of L and convex duality imply that the optimal solution can also be

8



represented as the solution of the following Hamiltonian ODE:
p′(t) = γσ2q∗(t),

q∗′(t) = VtH
′(p(t)),

q∗(0) = q0,

q∗(T ) = 0,

(2.8)

where H is the Legendre-Fenchel transform of the function L defined by

H(p) = sup
ρ
{ρp− L(ρ)} . (2.9)

Since Vt is assumed to be continuous, from this characterization one can conclude

that q∗ is a function of class C1. Consequently, p is of class C2 with respect to

the same hypothesis. However, q∗ may not be of class C2. For instance, consider

L(ρ) = η|ρ|1+φ + ψ|ρ| the H function is computed to be

H(p) =

0, if |p| ≤ ψ,

φη( |p|−ψ
η(1+φ)

)1+
1
φ , otherwise.

(2.10)

clearly H is C1 but not C2 in general, and q∗′ need not to be differentiable. We will

refer this result in Chapter 3.

This characterization lead to another important characterization that is the dual vari-

able p is solution of

p′′(t) = γσ2VtH
′(p(t)) (2.11)

with the boundary conditions p′(0) = γσ2q0 and p′(T ) = 0. Main approach of this

thesis is to find analytic solutions of (2.11) with linear (Chapter 3) and quadratic

(Chapter 4) market volume Vt.

2.2 The case of quadratic execution cost

Almgren and Chriss initially studied a model where the additional cost per share due

to limited liquidity was a linear function of the number of shares. This corresponds to

g linear, or equivalently L quadratic function [11]. For this framework, L(φ) = ρφ2

which is quadratic function, by equation (2.9) the associated function H is given by

H(p) =
p2

4ρ
.

9



Therefore, the ODE for optimal execution strategy reduces to
p′(t) = γσ2q∗(t),

q∗′(t) = Vt
2ρ
p(t),

q∗(0) = q0,

q∗(T ) = 0.

(2.12)

Thus, q∗ is the unique solution of the following ODE:

q∗
′′
(t) =

γσ2Vt
2ρ

q∗(t), (2.13)

with the boundary conditions are q∗(0) = q0 and q∗(T ) = 0.

In order to get Eq. (2.13), trading volume Vt assumed to be constant by taking Vt = V ,

we can get the classical hyperbolic sine formula of Almgren and Chriss

q∗(t) = q0
sinh

(√
γσ2V
2ρ

(T − t)
)

sinh
(√

γσ2V
2ρ

T
) . (2.14)

With Eq. (2.14) Almgren and Chriss found their optimal solution for the liquidation

trade-off. For comments on this solution and numerical examples we refer the reader

to [11].
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CHAPTER 3

ANALYTIC SOLUTION OF ALMGREN CHRIS MODEL

WITH AFFINE MARKET VOLUME

In this chapter, we will study the analytic solution of Almgren Chriss model with

linear Vt. From Chapter 2, Almgren Chriss model for quadratic execution cost end up

with the following equation:


p′(t) = γσ2q∗(t),

q∗′(t) = Vt
2ρ
p(t),

q∗(0) = q0,

q∗(T ) = 0.

(3.1)

Before we proceed to the solution of Almgren Chriss model with affine market vol-

ume, we summarize the results of [15] on this model.

3.1 Almgren Chriss Model with Linear Vt

In this section, we give a summary of the results in [15] on Almgren Chris Model

with affine Vt, i.e., Vt of the form

Vt = at+ b.

11



Without loss of generality, all constants in the equation (3.1) assumed to be 1; setting

T = 1 and q0 = 1 this reduces the equation to:
p′(t) = q∗(t),

q∗′(t) = Vtp(t),

q∗(0) = 1,

q∗(1) = 0.

In this study, this system of equations is solved by using following Taylor series:

p =
∞∑
j=0

αjt
j

and

q =
∞∑
j=0

βjt
j.

Substituting these infinite series into equation, following recurrence relation can be

found:

βj+1 =
bαj + αj−1a

j + 1
.

where a, b are constants in market volume Vt. In order to solve the above relation

numerically a binary search is used. Main result in this study is the parameter a

carries a strong impact on the trading curve when it is both negative and positive when

b is small compared to initial position, namely q0. Trading curve deflects from the

sinh trading curve and even becomes concave; this implies a slow liquidation process

and delay for a future time in which the market trading volume is high. However,

we see a change in this behaviour when b increases. When the market is volume is

decreasing,i.e., a is negative, resulting strategy continues to deviate from the original

curve of Almgreen Chriss framework. But, since initial volume is already high, the

trading strategy does not change very much with the speed (the a > 0 parameter) at

which the market trading volume is increasing.

3.2 Analytical solution of the ODE with affine volume

Proceeding to our study, firstly note that the equation (3.1) cannot be reduced to a

second order ODE with respect to q∗ since q∗ need not to be of class C2 as mentioned

12



in Chapter 2. However, it can be reduced to a second order ODE with respect to p.

Consequently we have,

p′′(t) =
γσ2

2ρ
Vt p(t) (3.2)

with terminal conditions p′(T ) = 0 and p′(0) = γσ2q0. Let us take the market volume

as Vt = at + b and for simplicity constants appearing in the equation as 1. Further-

more, let us assume that trader’s position t = 0 is 1 and terminal time T = 1. Then

(3.2) will be of the form:

p′′(t) = (at+ b) p(t) (3.3)

with terminal conditions p′(1) = 0 and p′(0) = 1. Before we proceed to the solution

of (5.1), first let us recall one of the famous special function so called Airy Function

and its application in the solutions of second order ODE.

3.3 Airy’s Equation

In this section main reference is book of J.R. Brannan [8]. The second order linear

differential equations when coefficients are functions of independent variable ξ can

be generalized as follows,

P (ξ)
d2y

dξ2
+Q(ξ)

dy

dξ
+R(ξ)y = 0.

If we take P (ξ) = 1, Q(ξ) = 0 and R(ξ) = −ξ, we will have

y′′ − ξy = 0 (3.4)

where −∞ < ξ < ∞. (3.4) is called Airy’s Equation.1 Since P (ξ) = 1, Q(ξ) = 0

and R(ξ) = −ξ, every point is an ordinary point. We assume that

y =
∞∑
n=0

anξ
n

and the series converges in some interval |ξ| < ρ. We can write series for y′′ as

follows

y′′ =
∞∑
n=0

(n+ 2)(n+ 1)an+2ξ
n

1 Sir George Biddell Airy (1801–1892), an English astronomer and mathematician, studied the equation
named for him in an 1838 paper on optics.
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then substitude the series for y and y′′ into the (3.4) we have
∞∑
n=0

(n+ 2)(n+ 1)an+2ξ
n = ξ

∞∑
n=0

anξ
n =

∞∑
n=0

anξ
n+1.

We shift the index of summation in the series on the right side, we have

2a2 +
∞∑
n=1

(n+ 2)(n+ 1)an+2ξ
n =

∞∑
n=1

an−1ξ
n

the coefficients of like powers of ξ must be equal; hence a2 = 0 and we obtain the

recurrence relation

(n+ 2)(n+ 1)an+2 = an−1

for n = 1, 2, 3..... Thus, coefficients are determined in steps of three, that is,

• a0 determines a3, which in turn determines a6 ...

• a1 determines a4, which in turn determines a7 ...

Recall that a2 = 0, thus a2 = a5 = a8 = a11 = ... = 0. For sequence a0, a3, a6, ... we

set n = 1, 4, 7, ..

a3 =
a0

2 · 3
, a6 =

a3
5 · 6

=
a0

2 · 3 · 5 · 6
, a9 =

a6
8 · 9

=
a0

2 · 3 · 5 · 6 · 8 · 9

Hence, one can generalized this results as follows

a3n =
a0

2 · 3 · 5 · 6... · (3n− 1) · (3n)

for n ≥ 4. A similar argument is valid for a1, a4, a7, ... hence,

a3n+1 =
a1

3 · 4 · 6 · 7... · (3n) · (3n+ 1)

for n ≥ 4. Thus general solution for Airy’s Equation is of the form

y = a0 [1 +
ξ3

2 · 3
+

ξ6

2 · 3 · 5 · 6
+ ...+

ξ3n

2 · 3 · 5 · 6.....(3n− 1)(3n)
+ ...]︸ ︷︷ ︸

y1(ξ)

+ a1 [ξ +
ξ4

3 · 4
+

ξ7

3 · 4 · 6 · 7
+ ...+

ξ3n+1

3 · 4 · 6 · 7.....(3n)(3n+ 1)
+ ...]︸ ︷︷ ︸

y2(ξ)

.

One can show that by using ratio test both series converge for all ξ, thus let y1(ξ) and

y2(ξ) be functions shown above. Then, setting a0 = 1, a1 = 0 and then a0 = 0,

14



a1 = 1 gives us both y1(ξ) and y2(ξ) are individual solutions of the equation (3.4).

Note that y1 and y2 satisfies the initial conditions, namely y1(0) = 1, y′1(0) = 0 and

y2(0) = 1, y′2(0) = 1 . Since W [y1, y2] = 1, y1 and y2 are linearly independent.

Hence, general solution of equation (3.4) is of the form

y(ξ) = a0 y1(ξ) + a1 y2(ξ). (3.5)

According to [20], G.B. Airy in [1] propose a solution for a physical phenomena by

solving (3.4). In 1928, Jeffreys introduce the solution of (3.4) in the following form

Ai(ξ) =
1

π

∫ ∞
0

cos

(
t3

3
+ ξt

)
dt. (3.6)

Bi(ξ) was also defined as (provided that Ai(ξ) and Bi(ξ) are linearly independent)

Bi(ξ) =
1

π

∫ ∞
0

e−1

3
t3+ξt

+ sin

(
1

3
t3 + ξt

) dt. (3.7)

For decades mathematicians extensively studied these two special functions. Further-

more, it is known that y1(ξ) and y2(ξ) from (3.5) appear in the ascending series of

Ai(ξ) and Bi(ξ) as follows

Ai(ξ) = c1 y1(ξ)− c2 y2(ξ) (3.8)

Bi(ξ) =
√

3(c1 y1(ξ) + c2 y2(ξ)) (3.9)

where c1 = (3
2
3 Γ(2

3
))−1 and c2 = (3

1
3 Γ(1

3
))−1. Since W [Ai(ξ), Bi(ξ)] = π−1, they

are linearly independent. Also, they are linear combinations of y1(ξ) and y2(ξ).

Therefore, since equation (3.4) is linear, Ai(ξ) and Bi(ξ) are also fundamental set

of solutions to Airy’s Equation as required.

3.4 Analytic Solution of Almgren Chriss Model with Linear Vt.

The main target of this chapter is to solve

p′′(t) = (at+ b) p(t)

with terminal conditions p′(1) = 0 and p′(0) = 1. Following [19, page 213], we use

substitution ξ = a−
2
3 (at+ b) then by using chain rule we have

p′(t) =
dp

dt
=
dp

dξ

dξ

dt

=
dp

dξ
a

1
3

15



p′′(t) =
dp

dt

[
dp

dξ
a

1
3

]
=
d2p

dξ2
a

1
3
dξ

dt

=
d2p

dξ2
a

2
3

For simplicity let us denote p′ as a derivative of pwith respect to t and ṗ as a derivative

of p with respect to ξ. Hence,

p′′(t) = a
2
3 p̈(ξ).

Substitute into equation (5.1), we have

a
2
3 p̈(ξ)− ξ a

2
3p(ξ) = 0

p̈(ξ)− ξ p(ξ) = 0 (3.10)

with terminal conditions ṗ(a−
2
3 b) = 1 and ṗ(a−

2
3 (a + b)) = 0. Equation (3.10)

become well known Airy’s Equation. By using results in the previous section, we can

write solution of (3.10) as

p(ξ) = C1 Ai(ξ) + C2 Bi(ξ) (3.11)

where Ai(ξ) and Bi(ξ) are the Airy’s function of first and second kind respectively

with terminal conditions ṗ(a−
2
3 b) = 1 and ṗ(a−

2
3 (a+ b)) = 0.

According to [20] first derivative of Airys function of first and second kind can be

represented by using Modified Bessel Functions:

Ȧi(ξ) = −ξ
3

[
I−2/3(z)− I2/3(z)

]
Ḃi(ξ) =

ξ√
3

[
I−2/3(z) + I2/3(z)

]
where z =

2

3
ξ

3
2 and Iν(x) is Modified Bessel Functions defined as

Iν(x) =
∞∑
k=0

(x/2)2k+ν

k!Γ(ν + k + 1)

where Γ(x) is the gamma function. Hence, let us take first derivative of both sides

with respect to ξ in equation (3.11)

ṗ(ξ) = C1
ξ

3

[
I−2/3(z)− I2/3(z)

]
+ C2

ξ√
3

[
I−2/3(z) + I2/3(z)

]
16



where z =
2

3
ξ

3
2 . Recall that terminal conditions are ṗ(a−

2
3 b) = 1 and ṗ(a−

2
3 (a+b)) =

0. Let us denote k1 =
2

3
(a−

2
3 (a+ b))

3

2 and k2 =
2

3
(a−

2
3 b)

3

2 . Thus,

0 = C1
a−

2
3 (a+ b)

3

[
I−2/3(k1)− I2/3(k1)

]
+ C2

a−
2
3 (a+ b)√

3

[
I−2/3(k1) + I2/3(k1)

]
C1 = −C2 · A (3.12)

where A =
√

3
I−2/3(k1) + I2/3(k1)

I−2/3(k1)− I2/3(k1)
. Note that A is a constant parameter depends

on choice of a and b. Hence, using this result to other terminal condition we have

following

1 = −C2 · A
a−

2
3 b

3

[
I−2/3(k2)− I2/3(k2)

]
+ C2

a−
2
3 b√
3

[
I−2/3(k2) + I2/3(k2)

]
C2 =

1

a−
2
3 b√
3

[
I−2/3(k2) + I2/3(k2)

]
− Aa

− 2
3 b

3

[
I−2/3(k2)− I2/3(k2)

] (3.13)

Remember that from (3.1) and assuming that constants in that equation as 1, we have

p′(t) = q∗(t).

Therefore, to find optimal trading curve q∗(t) is

q∗(t) = C1
a−

2
3 (at+ b)

3

[
I−2/3(z)− I2/3(z)

]
+ C2

a−
2
3 (at+ b)√

3

[
I−2/3(z) + I2/3(z)

]
(3.14)

where z =
2

3
(a−

2
3 (at+ b))

3

2 .
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CHAPTER 4

ANALYTIC SOLUTION OF ALMGREN CHRIS MODEL

WITH QUADRATIC MARKET VOLUME

In this chapter, we study the analytic solution of Almgren Chriss model with quadratic

Vt. Recall from Chapter 2 that, Almgren Chriss model for quadratic execution cost

end up with the following equations:
p′(t) = γσ2q∗(t),

q∗′(t) = Vt
2ρ
p(t),

q∗(0) = q0,

q∗(T ) = 0.

Furthermore, we will solve this system with respect to p and again without loss of

generality we will assume constants in this system as 1. Moreover, let us assume that

trader’s position t = 0 is 1 and terminal time T = 1. We are focusing on the case

Vt = at2 + bt+ c. Then the system will be of the form:

p′′(t) = (at2 + bt+ c) p(t) (4.1)

with terminal conditions p′(1) = 0 and p′(0) = 1 provided that a 6= 0. Below we

present a solution to this equation given in [19]. See Section 4.3 at the end of this

chapter for comments on the presented solution.

Following [19, page 214], we begin by an affine change variables ξ = t +
b

2a
to get

rid of the linear term in Vt:

p′(t) =
dp

dt
=
dp

dξ

dξ

dt

=
dp

dξ
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p′′(t) =
dp

dt

[
dp

dξ

]
=
d2p

dξ2
dξ

dt

=
d2p

dξ2

Let us denote by p′ the derivative of p with respect to t and by ṗ the derivative of p

with respect to ξ. Hence, we have

p′′(t) = p̈(ξ), p′(t) = ṗ(ξ)

Let us substitute this into equation (4.1) to obtain

p̈(ξ) =

(
a

(
ξ2 − ξb

a
+

b2

4a2

)
+ b

(
ξ − b

2a

)
+ c

)
p(ξ)

After rearranging the terms, we have

p̈(ξ)− (aξ2 + c− b2

4a
)p(ξ) = 0 (4.2)

with boundary conditions ṗ
(
b

2a

)
= 1 and ṗ

(
1 +

b

2a

)
= 0. Equation (4.2) is

referred to as a Weber Equation. It is noted in [19] that there is a general solution of

this equation for a > 0 and in the special case that a = k2 > 0 and
(
c− b2

4a

)
=

(2n + 1)k where n = 1, 2, 3... there is even a simpler solution of equation (4.2). We

first review this special case:

4.1 Special case

If a = k2 > 0 and
(
c− b2

4a

)
= (2n + 1)k where n = 1, 2, 3... there is a solution of

the form

p(ξ) = e(−
1
2
kξ2)Hn(

√
k ξ) (4.3)

for k > 0 where Hn(z) = (−1)nexp(z2)
dn

dzn
(exp(−z2)) is Hermite Polynomial of

order n.

4.2 General case

We now treat the solution of (4.2) in general. Following [19] once again we transform

(4.2), by the transformations z = ξ2
√
a and u = ez/2p(ξ) to the so called degenerate

20



hypergeometric ODE. We begin by providing the details of this transformation and

the resulting ODE.

4.2.1 Reduction to hypergeometric ODE

Using chain rule we will have:

ṗ(ξ) =
dp

dz

dz

dξ
=
dp

dz
2ξ
√
a

Note that uz will represent the first derivative of u with respect to z, then

uz =
1

2
e
z
2 p(ξ) + e

z
2
ṗ(ξ)

2ξ
√
a

uz =
1

2
u+ e

z
2
ṗ(ξ)

2ξ
√
a

uz −
1

2
u = e

z
2
ṗ(ξ)

2ξ
√
a

(4.4)

Then, let us calculate second derivative of u with respect to z

uzz =
1

2
uz +

1

2
e
z
2
ṗ(ξ)

2ξ
√
a

+ e
z
2
d

dz

[
ṗ(ξ)

2ξ
√
a

]
(4.5)

Let g(ξ) =
ṗ(ξ)

2ξ
√
a

, then again by the chain rule

d(g(ξ))

dξ
=
d(g(ξ))

dz

dz

dξ

p̈(ξ)2ξ
√
a− ṗ(ξ)2

√
a

4ξ2a
=
d(g(ξ))

dz
2ξ
√
a

d(g(ξ))

dz
=
p̈(ξ)ξ − ṗ(ξ)

4ξ3a
(4.6)

Substitute result in (4.6) into (4.5), we have

uzz =
1

2
uz +

1

2
e
z
2
ṗ(ξ)

2ξ
√
a

+
e
z
2 p̈(ξ)

4ξ2a
− e

z
2 ṗ(ξ)

4ξ3a

Using (4.4) and rearranging terms we have

uzz = uz

(
1− 1

2ξ2
√
a

)
+ u

(
1

4ξ2
√
a
− 1

4

)
+
e
z
2 p̈(ξ)

4ξ2a
(4.7)

Multiply equation (4.7) with z and substitute p̈(ξ) from equation (4.2), we finally have

zuzz = uz

(
z − 1

2

)
+ u

1

4
+
c− b2

4a
4
√
a

 (4.8)
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with new terminal conditions

uz(
√
a(1 +

b

2a
)2) =

1

2
u(
√
a(1 +

b

2a
)2) (4.9)

uz(
√
a(

b

2a
)2) =

1

2
u(
√
a(

b

2a
)2) +

e

√
a

2
(
b

2a
)2

2
√
a(

b

2a
)

The final result equation (4.8) is called the degenerate hypergeometric equation

which has the general form xy′′xx + (β − x)y′x − αy = 0. For (4.8)

zuzz + uz

 1

2︸︷︷︸
β

−z

− u
1

4
+
c− b2

4a
4
√
a︸ ︷︷ ︸

α

 = 0. (4.10)

This is a linear second order ODE, therefore the general solution to it will be spanned

by two linearly independent solutions. We next present the general solution to this

equation (a linear combination of two linearly independent solutions) given in [19]:

4.2.2 General solution of (4.10)

According to [19] if β is not an integer, as in (4.10), a general solution of the degen-

erate hypergeometric equation can be written in the form

u = C1Φ(α, β; z) + C2

√
zΦ(α− β + 1, 2− β; z) (4.11)

where Φ is the confluent hypergeometric function (also known as a Kummer series)

defined as follows:

Φ(α, β; z) = 1 +
∞∑
k=1

(α)kz
k

(β)kk!

where (α)k = α(α + 1)....(α + k − 1) and (α)0 = 1. In our calculations below we

will need derivatives of Φ, this is given by:

dn

dzn
Φ(α, β; z) =

(α)n
(β)n

Φ(α + n, β + n; z)

Applying this rule to the equation (4.11), we have

uz = C1
α

β
Φ(α + 1, β + 1; z) + C2

1

2
√
z

Φ(α− β + 1, 2− β; z)

+ C2

√
z
α− β + 1

2− β
Φ(α− β + 2, 3− β; z) (4.12)
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4.2.3 Computation of C1 and C2

We are seeking a solution of the form (4.11) to the equation (4.8) and the boundary

conditions (4.9). The only unknowns here are the constants C1 and C2, which we next

determine using the boundary conditions. Substituting (4.11) into (4.9) gives us a pair

of linear equations that C1 and C2 satisfy. Solving these equations for C1 and C2; we

obtain explicit formulas for these constants in terms of model parameters. The details

are as follows.

For simplicity let us denote z1 =
√
a(1 +

b

2a
)2 and z2 =

√
a(

b

2a
)2. Hence,

uz(z1) =
1

2
(C1Φ(α, β; z1) + C2

√
z1Φ(α− β + 1, 2− β; z1)) (4.13)

uz(z2) =
1

2
(C1Φ(α, β; z2) + C2

√
z2Φ(α− β + 1, 2− β; z2)) +

e

√
a

2
(
b

2a
)2

2
√
a(

b

2a
)

(4.14)

After rearranging terms in (4.14) by using (4.13) we have,

C1 = −X · C2 (4.15)

where

X =

1− z1
2
√
z1

Φ(α− β + 1, 2− β; z1) +
√
z1
α− β + 1

2− α
Φ(α− β + 2, 3− β; z1)

α

β
Φ(α + 1, β + 1; z1)−

1

2
Φ(α, β; z1)

Note that, X is a constant variable depends on the choice of a, b and c. Substituting

(4.16) into (4.17).

C2 · Y =
e

√
a

2
(
b

2a
)2

2
√
a(

b

2a
)

(4.16)

where

Y =
1− z2
2
√
z2

Φ(α− β + 1, 2− β; z2) +
√
z2
α− β + 1

2− α
Φ(α− β + 2, 3− β; z2)

−Xα

β
Φ(α + 1, β + 1; z2) +

1

2
XΦ(α, β; z2)

These give explicit formulas for C1 and C2 in terms of model parameters.
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4.2.4 Formula for the optimal trading curve

Recall that in order to find (4.11), according to Polyanin and Zaitsev’s book we have

used u = ez/2p(ξ) and z = ξ2
√
a. Hence by back substitution,

p(ξ) =
1

eξ2
√
a

(
C1Φ(α, β; ξ2

√
a) + C2ξ

4
√
aΦ(α− β + 1, 2− β; ξ2

√
a)
)

Remember that from (3.1) and assuming that constants in that equation as 1, we have

p′(t) = q∗(t).

Therefore, to find optimal trading curve q∗(t), it suffices to calculate the derivative of

p(ξ):

q∗(t) = ṗ(ξ) =
−2ξ
√
a

eξ2
√
a

(
C1Φ(α, β; ξ2

√
a) + C2ξ

4
√
aΦ(α− β + 1, 2− β; ξ2

√
a)
)

+
1

eξ2
√
a
(C1

α

β
2ξ
√
aΦ(α + 1, β + 1; ξ2

√
a)

+ C2
4
√
aΦ(α− β + 1, 2− β; ξ2

√
a)

+ C2
α− β + 1

2− β
2ξ2a

3
4 Φ(α− β + 2, 3− β; ξ2

√
a)) (4.17)

where C1 and C2 are given by formulas in the previous subsection and ξ = t+
b

2a
.

4.3 Comments on the solution

Some care must be taken in using the formula (4.18) as a solution to the ODE (4.1)

and the boundary conditions p′(1) = 0 and p′(0) = 1. Recall that one of the steps in

the derivation of (4.18) is the change of variables z =
√
aξ2. Note that this change of

variables is bijective only when ξ doesn’t change sign (i.e., when ξ is always positive

or negative). Therefore, the formula (4.18) can be used directly only when this con-

dition is satisfied. Recall that ξ = t + b/2a and t ∈ (0, 1). It follows that ξ 7→ ξ2 is

bijective if and only if b/2a > 0 or b/2a + 1 < 0. It follows from these that for the

formula (4.18) to be applicable directly we have to exlude the case −1 ≤ b/2a ≤ 0.

In the numerical analysis of Chapter 5 the parameter values are always chosen so that

−1 ≤ b/2a ≤ 0 doesn’t hold.

Another issue that may raise problems in numerical calculations is the following.

Note that the solution (4.18) and the formulas for the constants C1 and C2 involve the
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term eξ
2√a. This term can be very large even for moderate values of ξ = b/2a + 1.

For example, for b = 20 and a = 1 we have eξ2
√
a = e121. At least in a direct imple-

mentation of (4.18) such large terms destabilize the calculation of (4.18). Therefore,

in our numerical study in Chapter 5 parameters a and b are kept in the ranges where

this term doesn’t cause numerical instabilities.
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CHAPTER 5

NUMERICAL STUDY

In this chapter, we provide numerical examples showing that the solutions given in

the last two chapters reduce to the sinh curve when the volume curve is taken to be a

constant. In the affine trading volume model the new parameter (as compared to the

constant volatility model) is the a parameter; a > 0 corresponds to an increasing trad-

ing volume and a < 0 corresponds to a decreasing trading volume. The dependence

of the optimal trading curve on a was studied in [15]; so for comments on the affine

case we refer the reader to that work. The second goal of this section is a similar

sensitivity analysis for the quadratic case.

As noted in [15], there is no loss of generality in assuming T = 1, q0 = 1 and γσ2

2ρ
= 1;

every other cases can be reduced to this case by scaling the p and q processes and

time.

5.1 Almgren Chriss Model with Affine Vt

Recall that in Chapter 3, we presented a solution of the differential equation

p′′(t) = (at+ b) p(t).

using methods in [19] and (3.1) and obtained the following optimal trading curve for

affine market volume:

q∗(t) = C1
a−

2
3 (at+ b)

3

[
I−2/3(z)− I2/3(z)

]
+ C2

a−
2
3 (at+ b)√

3

[
I−2/3(z) + I2/3(z)

]
(5.1)

where C1 and C2 have an explicit formula in terms of a and b as given in Chapter 3.
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Figure 5.1: Graph of q with respect to t where a is near 0

For the affine volume case we provide a numerical example that shows that the above

formula reduces to sinh for a = 0 (i.e., when the market volume process is constant.

Because the change of variable z = at + b is degenerate for a = 0, to compute

(5.1) for a = 0 one in fact has to compute this case as a limit as a → 0. Instead

of computing the limit we take a to be very close to 0, e.g., a = 10−5 volume Vt is

reduces to a constant trading curve is famous sinh formula (see (2.14)). Figure 5.1

gives the graph of q∗ and sinh for this case by using MATLAB. We see that the graphs

overlap, as expected.

We do not provide a sensitivity analysis of q∗ as a function of a as this has already

been done in [15]. For verification purposes we did repeat several of the calculations

in that work and observed that calculations made with (5.1) agree with those presented

in that work. Since the results are identical we don’t reproduce them here.

5.2 Almgren Chriss Model with Quadratic Vt.

In this section, we will give some numerical examples for the case market trading

volume is a quadratic function of time, i.e. Vt = at2 + bt + c. In Chapter 4, we

obtained the solution of the ODE

p′′(t) = (at2 + bt+ c) p(t)
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with terminal conditions

p′(0) = 1, p′(1) = 0,

where p is the integral of the optimal trading curve q in the Almgren Chris model

(under the assumption that the trading volume is quadratic Vt = (at2 + bt + c) in

terms of the confluent hypergeometric function Φ:

q∗(t) =
−2ξ
√
a

eξ2
√
a

(
C1Φ(α, β; ξ2

√
a) + C2ξ

4
√
aΦ(α− β + 1, 2− β; ξ2

√
a)
)

+
1

eξ2
√
a

(
C1
α

β
2ξ
√
aΦ(α + 1, β + 1; ξ2

√
a)

+ C2
4
√
aΦ(α− β + 1, 2− β; ξ2

√
a) (5.2)

+ C2
α− β + 1

2− β
2ξ2a

3
4 Φ(α− β + 2, 3− β; ξ2

√
a)

)
,

where ξ = t + b
2a

and C1 and C2 are constants depending on a, b, c whose explicit

formulas are given in the previous chapter. In all of the numerical examples in this

section we will stay within the part of the parameter space described in Section 4.3.

We begin by checking whether (5.2) reduces to the sinh function (see (2.14)) when

a = b = 0, i.e., when Vt reduces to a constant once again, because ξ is undefined for

a = 0 one cannot directly set a = b = 0 in (5.2) and instead a limiting process needs

to be used. Instead of taking limits, we set a = b to be a small number, e.g., 10−12

and compute (5.2) with these. By using MATLAB, the resulting graph of (5.2) with

sinh of (2.14) is given in Figure 5.2, as expected the solutions overlap.

Figure 5.2: Graph of q with respect to t where a and b are near 0
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In the rest of this section we will present several numerical experiments showing the

impact of the a parameter on the optimal trading curve. Recall that q∗(0) = 1. We

present four different scenarios: c large, Vt increasing, c large, Vt decreasing, c small,

Vt increasing and c small, Vt decreasing. Recall that c is the constant component of

the trading volume; therefore it determines the overall basic market volume. A large c

corresponds to a market that has overall a bigger trading volume in comparison to the

initial position of the trader. A small c corresponds to a market whose overall volume

is comparable to the position of the trader. An increasing Vt is represented by b > 0

and a decreasing Vt is represented by b < 0. We will use the a parameter to concavely

or convexly perturb these scenarios. The base scenario is given by the affine trading

volume V A
t = bt+ c. To perturb this with a we add a(t2 − t) to V A

t :

Vt = V
(A)
t + a(t2 − t) = at2 + (b− a)t+ c. (5.3)

Note that t2 − t = 0 for t = 0 and t = 1, therefore, adding it to V A
t does not

change it at t = 1 and t = 0 and this is how (5.3) corresponds to a perturbation

of V A
t : a < 0 corresponds to a concave perturbation whereas a > 0 corresponds

to a convex perturbation (see the volume curves in the figures below). In all of the

numerical examples below the market volume is computed by using the formula (5.3)

and Python.

Let us start by taking c = 10, i.e., the constant market volume is 10 times the position

to be liquidated and b = 4; i.e., we are assuming that the market trading volume

increases in time. With these parameters we allow a to vary in the interval [−2.2, 2.2].

The resulting family of trading volumes is given on the left side of Figure 5.3. The

corresponding optimal trading curves, computed using (5.2) is shown on the right

side of the same figure. We note that for c large, the convex/concave perturbations to

the market volume have little impact on the optimal trading curve.

Next we repeat the same computation, this time taking b = −4. This corresponds

to the same setup as in the previous example except that the market volume is now

decreasing in time. Allowing the a parameter to vary in the interval [−2.2, 2.2] we

get the graphs shown in Figure 5.4. Qualitatively the results are similar to those for

b > 0 discussed above.

We next consider the case c = 1. This corresponds to a market where the constant
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(a) Graph of Vt with respect to t (b) Graph of q∗ with respect to t

Figure 5.3: Graph of market volume and trading strategy with respect to t where
a ∈ [−2.2, 2.2]− {0}, b = 4− a and c = 10

(a) Graph of Vt with respect to t (b) Graph of q∗ with respect to t

Figure 5.4: Graph of market volume and trading strategy with respect to t where
a ∈ [−2.2, 2.2]− {0}, b = −a− 4 and c = 10

component market volume equals the initial position to be liquidated, i.e., the position

to be liquidated is very large. We again consider two cases b = 1 and b = −1 which

represent increasing and decreasing market volumes. Allowing a now to vary in

the interval [−0.5, 0.5] get the market volumes and optimal trading curves shown in

Figures 5.5 and 5.6. As opposed to the case c = 10, we see that now the a parameter

has a significant impact on the optimal trading curve for both b negative and positive.

In both cases the optimal trading curve remain mostly convex, although for b < 0 we

observe that q∗ is very slightly concave for |a| large.
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(a) Graph of Vt over time (b) Graph of q∗ over time

Figure 5.5: Graph of trading strategy with respect to t where a ∈ [−0.5, 0.5] − {0},
c = 1 and b = −a− 1

(a) Graph of Vt over time (b) Graph of q∗ over time

Figure 5.6: Graph of trading strategy with respect to t where a ∈ [−0.5, 0.5] − {0},
c = 1 and b = 1− a
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CHAPTER 6

CONCLUSION

Scheduling of buy or sell orders to liquidate a position has been one of the most

popular topics in mathematical finance for decades. Almgren and Chriss modelled

the solution to the problem by the maximization of the expected utility of the final

terminal wealth. In their framework the market trading volume is taken as a constant

and by using other assumptions, an optimal trading curve can be computed in terms

of the sinh function.

In this thesis, we give explicit formulas for the optimal liquidation strategy q∗ of the

Almgren and Chriss model for market volumes that are affine or quadratic functions

of time in terms of the special functions of mathematical analysis using the transfor-

mations and formulas given in [19]. A parameter sensitivy analysis for the affine case

was already available in [15]. For this reason, in the rest of the thesis we focuse on

the sensitivity of the optimal trading curve to the a parameter (the novel feature of the

quadratic volume model). We find out that when the overall market volume is large

compared to the initial position to be liquidated the a parameter has little impact on

the optimal trading strategy whereas when the overall market volume is close to the

initial position to be liquidated, the trading curve changes in a nontrivial way with a.

In this case, the formulas given in the present work can be used to quickly and easily

compute the liquidation strategy.

Recall that we work under several constraints on the parameters a, b and c which

are discussed in Section 4.3. Immediate future work can try to develop formulas

that continue to work outside of these constraints. Future work can also consider the

development of formulas for portfolios consisting of positions on multiple assets.
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