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ABSTRACT

AN ENERGY EFFICIENT HIERARCHICAL APPROACH USING
MULTIMEDIA AND SCALAR SENSORS FOR EMERGENCY SERVICES

KIZILKAYA, Burak
M.S., Department of Sustainable Environment and Energy Systems

Supervisor: Assoc. Prof. Dr. Enver Ever

July 2019, 87 pages
Recently, environment monitoring and detection systems became more accessible

with the help of IoT applications. Furthermore, connecting smart devices makes mon-

itoring applications more accurate and reliable. On the other hand, optimizing the en-

ergy requirement of smart sensors especially while transmitting data has always been

very important, and there are different applications to create energy efficient IoT sys-

tems. Detailed analysis of lifetimes of various types of sensors (survival analysis) has

therefore become essential. For the environment monitoring scenarios, with the help

of smart multimedia sensors, more precise and accurate real-time information can be

extracted. Video and audio sensors can be used as complementary mechanisms to

have more accurate information. However, transmission of visual data is known to

be one of the most costly operations for wireless multimedia sensor networks. To

minimize energy consumption, visual data transmission should be minimized. In this

thesis, a novel hierarchical approach is presented for emergency applications. Pro-

posed framework makes use of multimedia and scalar sensors hierarchically to mini-

mize the visual data transmission and in turn energy consumption. In addition, edge

computing is introduced where lightweight machine learning algorithms are used for

edge processing to prevent unnecessary data transmission. The heterogeneous sensor

network architecture is applied within the domain of forest fire detection systems.

Proposed framework is evaluated in terms of accuracy of detection as well as energy

efficiency. The results are quite promising with validation accuracy of 98.20% and

29.94% energy saving compared to multimedia sensor based surveillance systems.

Keywords: WSNs, WMSNs, IoT, energy efficiency, heterogeneous network architec-

ture, edge computing, machine learning
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ÖZ

ACİL SERVİSLER İÇİN MULTİMEDYA VE SKALER SENSÖRLERİ
KULLANARAK ENERJİ VERİMLİ HİYERARŞİK YAKLAŞIM

KIZILKAYA, Burak
Yüksek Lisans, Sürdürülebilir Çevre ve Enerji Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Enver Ever

Temmuz 2019 , 87 sayfa
Son zamanlarda, IoT uygulamalarının yardımıyla çevre izleme ve algılama sistemleri

daha erişilebilir hale gelmiştir. Ayrıca, akıllı cihazların bağlanması izleme uygulama-

larını daha doğru ve güvenilir kılar. Öte yandan, akıllı sensörlerin enerji ihtiyacını

özellikle veri aktarırken optimize etmek araştırmacılar arasında önemli bir konudur

ve enerji verimli IoT sistemleri oluşturmak için farklı uygulamalar vardır. Bu ne-

denle, çeşitli sensör tiplerinin ömrünün ayrıntılı analizi (hayatta kalma analizi) önemli

hale gelmiştir. Ortam izleme senaryoları için, akıllı multimedya sensörleri yardımıyla,

daha kesin ve doğru gerçek zamanlı bilgiler elde edilebilir. Video ve ses sensörleri

daha doğru bilgiye sahip olmak için tamamlayıcı mekanizmalar olarak kullanılabi-

lir. Bununla birlikte, görsel verilerin iletimi, kablosuz multimedya sensör ağları için

en pahalı işlemlerden biri olarak bilinir. Enerji tüketimini en aza indirmek için gör-

sel veri aktarımı en aza indirilmelidir. Bu tez çalışmasında acil durum uygulamaları

için yeni bir hiyerarşik yaklaşım sunulmaktadır. Öngörülen çerçeve, görsel veri ile-

timini ve buna bağlı olarak enerji tüketimini azaltmak için hiyerarşik bir yaklaşımla

multimedya ve sayıl sensörlerden faydalanır. Ek olarak, gereksiz veri aktarımını önle-

mek amacıyla hafif (kompleks olmayan) makine öğrenme algoritmaları kullanılarak

kenar hesaplama sistemi önerilmiştir. Heterojen sensör ağ mimarisi, orman yangını

algılama sistemleri alanında uygulanmıştır. Önerilen çerçeve, saptama doğruluğu ve

enerji verimliliği açısından değerlendirilmiştir. Sonuçlar, %98.20 orman yangını tes-

pit doğruluğu ve multimedya sensör tabanlı gözetim sistemlerine göre %29.94 enerji

tasarrufu ile oldukça umut vericidir.

Anahtar Kelimeler: WSNs, WMSNs, IoT, enerji verimliliği, heterojen ağ mimarisi,

kenar hesaplama, makine öğrenmesi

vii



To my mother, the most devoted, and kindest woman I have ever seen,

with endless love

viii



ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Assoc. Prof.

Dr. Enver Ever for his continuous support and guidance throughout my MSc studies

and research. His warm and friendly attitude, and expert advises always inspired me

to make right decisions in the most important moments of my life. I could not have

imagined better supervisor and mentor for my MSc studies.

Many thanks to jury members, Prof. Dr. Doğu Arifler, Assoc. Prof. Dr. Murat Fahri-
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CHAPTER 1

INTRODUCTION

1.1 Wireless Sensor Networks

Wireless sensor networks (WSN) technology is one of the most promising in our era

particularly for fully autonomous systems and internet of things applications. Sen-

sor is a device which consists of sensing units, processing units, and communication

units. A sensor network is composed of large number of sensor nodes. There are

many application areas including military, environment, health, etc. [4]. Generally,

wireless sensors have the ability to make basic preprocessing with their processing

units. They are not capable of doing too complex processing, yet it is sufficient to use

their limited processing power to enable edge computing and decreasing consumed

energy by transmission of data. There are various types of sensors to enable wide

range of applications. Transmission of data is generally the most energy consuming

process compared to sensing, or processing raw data. To decrease transmission rate,

it is important to preprocess the raw data and and minimize the amount of transmis-

sion while the application requirements are still fulfilled. Energy efficiency in WSNs

is one of the main constraints of the system since wireless sensors run on battery. As

discussed in [5], there are many strategies proposed to minimize energy consumption

and maximize lifetime of a sensor node. For example, by applying energy harvest-

ing techniques to WSNs, it is possible to have infinite lifetime WSNs. Moreover,

energy efficiency can be achieved by applying energy efficient routing algorithms

like selecting the route whose nodes have maximum amount of energy, clustering

algorithms which selects cluster heads in an energy efficient way to maximize life-

time of network. In addition, there are various energy efficient mechanisms which

are discussed in [1] and classified in Table 1.1. One of the most important approach
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to decrease energy consumption is radio optimization since the radio module of the

sensor is the most energy consuming module. In WSNs, scalar data are transmitted

such as temperature, humidity, light, etc. Since the scalar data transmission is not

too costly compared to multimedia data, the sensors in WSNs are deployed densely

to the environment to enable multihop sensor networks which increases energy effi-

ciency since sensor nodes are close to each other and transmission power is low. It is

easier to achieve more energy efficient systems by making use of scalar sensors. On

the other hand, the accuracy of the system may not be sufficient in some critical ap-

plications where it is very crucial to have real-time connection over wireless networks

for real-time monitoring and control such as medical applications (e.g. wireless pa-

tient monitoring), and environment monitoring applications for disaster management

(e.g. forest fire detection, flood detection, etc.) [6].

Radio

Optimization

Data

Reduction

Sleep/Wakeup

Schemes

Energy

Efficient

Routing

Battery

Repletion

Transmission

Power

Control

Aggregation Duty-cycling Cluster

Architectures

Energy

Harvesting

Modulation

Optimization

Adaptive

Sampling

Passive

wakeup

Radios

Energy as a

Routing

Metric

Wireless

Charging

Cooperative

Communica-

tion

Compression Scheduled

Based MAC

Protocols

Multipath

Routing

-

Directional

Antennas

Network

Coding

Topology

Control

Relay Node

Placement

-

Energy

Efficient

Cognitive

Radio

- - Sink Mobility -

Table 1.1: Energy efficient mechanisms [1]
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1.2 Wireless Multimedia Sensor Networks

With the development in hardware industry and technology, low-cost multimedia

hardware became more and more accessible and commonly used. Availability of

multimedia devices in sensor networks enlarged the area of applications in sensor

networks and Internet of Things (IoT) application areas by increasing the accuracy

of the systems using multimedia sensors. A multimedia sensor is a sensor device

which measures and transmits multimedia data such as still images, videos, and au-

dios. Wireless Multimedia Sensor Networks (WMSNs) consist of multimedia or both

scalar and multimedia wireless sensors. WMSNs enable more realistic data retrieval

and in turn contribute to development of new image processing and machine learning

techniques since huge amount of data can be retrieved in various type of applications

[7], [8]. There are different types of applications including surveillance systems,

traffic and transportation, advanced health care delivery, environmental monitoring,

localization systems, etc. [9], [10], [11], [12]. One of the main constraints in WM-

SNs is energy consumption since the delivery of multimedia data is costly compared

to scalar data transmission in WSNs. Sensor devices are constrained not only in terms

of battery but also in terms of memory and processing power. Since this is the case,

it becomes crucial to use resources of sensors efficiently. To overcome resource con-

straints of WMSNs, there are many approaches which aim to use resources efficiently

to maximize network lifetime as well as to keep the level Quality of Service(QoS) in

an acceptable range for end user.

1.3 Sustainability Perspective

Environmental sustainability is a popular research area among researchers and the

impact of Information and Communication Technologies (ICT) is discussed to un-

derstand whether ICT applications contribute to environmental sustainability or not.

According to the study in [2], 2% of global carbon emission is because of ICT de-

vices and detailed shares of different categories are given in Figure 1.1. According

to [2], ICT can be a low-carbon enabler when we consider applications such as use

of e-mail, e-commerce, e-banking, etc. It is proposed that ICT can help to decrease

3



greenhouse gas (GHG) emission by 16.5% by 2020 which means that $1.9 trillion in

gross energy and fuel saving. On the other hand, ICT can be a power drainer since

the number of mobile devices, personal devices are increasing dramatically which is

expected to increase carbon emission by 72% by 2020 [13]. In conclusion, It is pos-

sible to make ICT applications as low-carbon enabler by proposing energy efficient

and environment friendly mechanisms and applications.

Figure 1.1: ICT carbon emission shares [2]

The effects of wildfire caused disasters can also be very significant in terms of sustain-

ability and the potential damage on natural life itself. Recent studies on environmental

disasters, especially wildfires, show the importance of early detection. For example,

the wildfire in Athens where at least 90 people died, at least 164 adults and 23 chil-

dren have been injured [14], was a recent event which showed the potential of similar

catastrophes. Similarly, California had another wildfire in summer 2018 which was

the largest in California history in which 185,800 hectares of forest, which is very

important for the environment, was burned and a firefighter died [15]. Following the

California wildfires, the US government and local authorities (California Forest Man-

agement) had a long lasting debate on the reasons of late detection and causes of the
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large scale uncontrollable wildfire. Unfortunately, the situation is similar in Asia as

well. The number of fires in Kazakhstan is not negligible and it has increased by 41%

according to the Ministry of Emergency Situations [16]. Considering the damage

caused by the wildfires on environment and living species, it is quite obvious that a

sensory information based early detection system can lend itself as a useful tool. Of

course efficiency and accuracy of these surveillance systems should be studied.

1.4 Objectives of the Thesis

The main aim of this study is to present energy efficient and accurate framework for

emergency applications by using energy efficient scalar sensors and accurate multi-

media sensors. Since forest conditions are not suitable for continuous maintenance,

it is necessary to introduce systems which are self configurable, cheap, easily deploy-

able, energy efficient, and accurate. In addition, accuracy is another important metric

since emergency applications are considered. In this thesis, an energy aware frame-

work is presented for wildfire detection in forests while the lifetime of multimedia

sensor nodes are prolonged. The detection accuracy of the system is considered care-

fully and evaluated using a data set explicitly established for this particular project.

To achieve objectives of this thesis, following tasks are considered :

• Studying existing emergency applications in the area of wireless sensor net-

works and wireless multimedia sensor networks.

• Studying existing energy efficient approaches applied to wireless sensor net-

works and wireless multimedia sensor networks.

• Studying hardware platforms used in similar applications.

• Studying specifications, energy consumption characteristics of IoT hardware

platforms.

• Studying machine learning approaches applied to similar applications.

• Studying statistical studies in the literature related with low-power sensor nodes.

• Proposing energy efficient and accurate framework for emergency applications.
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• Developing simulations as well as real time test beds for evaluation of the pro-

posed system.

• Proposing lightweight Convolutional Neural Networks (CNN) model to enable

edge computing and have more accurate system.

• Conducting statistical analysis to investigate factors that affect the lifetime of

low-power sensor nodes.

1.5 Thesis Contribution

In this study, an energy efficient hierarchical approach is proposed using multimedia

and scalar sensors for emergency applications. Considering existing studies in the

literature, most of the studies focus on homogeneous sensor networks [17]. In this

work, a novel framework is proposed which consist of heterogeneous sensor nodes.

Our proposed framework achieved approximately 29% efficiency in terms of energy.

To achieve energy efficiency objective, hierarchy, heterogeneity, and edge computing

paradigms are introduced and applied. By applying hierarchy, scalar sensors are used

in the first level of detection. Multimedia sensors are used if and only if triggered

by scalar sensor measurements. In addition, heterogeneity (i.e. using both scalar and

multimedia sensors) helps to improve both efficiency and accuracy of the system.

Edge computing, on the other hand, prevents unnecessary data transmission, in turn,

increases efficiency of the system since the most energy consuming activity is data

transmission. By decreasing transmission rate, traffic load of wireless channel is

also reduced which leads to increase in packet reception rate since the probability of

collision is low.

To achieve accuracy objective, a lightweight CNN model is proposed and tested. To

train and test the model, a new image dataset is established. According to the numer-

ical test results, approximately 98% accuracy is achieved and validated by validation

data set which is used to tune the parameters of a classifier. Proposed lightweight

CNN model contributes to energy efficiency as well by enabling edge computing

since it prevents unnecessary data transmission. In addition, Quality of Service (QoS)

related features are improved by reducing the traffic load through selective transmis-
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sion. Since the data transmission rate is event triggered and not periodic, packet

reception rate is increased and packet loss rate caused by interference is decreased.

1.6 Thesis Outline

In this thesis, energy efficient hierarchical approach is proposed for emergency appli-

cations. As a case study, early forest fire detection is implemented.

Background information about WSNs, WMSNs, application areas, hardware plat-

forms, operating systems, and some well known simulation tools are discussed in

Chapter 2.

In Chapter 3, existing studies are discussed in detail in the area of forest fire detection,

energy efficient monitoring, machine learning approaches for forest fire detection, and

statistical analysis of sensor lifetime. In addition, research gaps are investigated and

comprehensive categorization is presented.

In Chapter 4, statistical analysis is conducted for low-power sensor motes. Results of

analysis are discussed and future research directions are given.

Proposed energy efficient framework is discussed and explained in Chapter 5. System

design, overall scenario, and used sensor types are also explained.

Evaluation of the system using simulation and test bed implementation is performed

in Chapter 6. All simulation and test bed implementation results are discussed and

presented comparatively.

In Chapter 7, a lightweight Convolutional Neural Network (CNN) model is proposed

for forest fire detection with the newly created dataset. Test results of the proposed

model are also discussed in the chapter.

Chapter 8 concludes the study by giving conclusion remarks and possible future re-

search directions.
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CHAPTER 2

BACKGROUND

2.1 Applications of WSNs

2.1.1 Military Applications

One of the most important application areas of WSNs is military applications. Com-

munication in military is very crucial and WSNs play important role because of their

capability of real time transmission and control over wireless links. It is also advanta-

geous to use WSNs since they offer low-cost deployment, robustness, fault tolerance,

reliability since there is always risk of enemy attacks in military applications [18].

Sensors can detect various type of data such as gas, waves, light, pressure, sound etc.

where it is crucial to detect explosive chemicals or materials. Also, sensors can be

used to detect moving objects and presence of people in the areas where high security

is vital [19], [20].

2.1.2 Healthcare Applications

WSNs are commonly used in the area of healthcare since the number of elderly people

increased in last few decades [21]. In addition, wireless sensor solutions are important

to decrease the cost of care for chronically ill or disabled people. It enables remote

monitoring of ill people, remote control of home appliances and even create applica-

tions for little children or baby care for working parents. Early detection for medical

emergencies, activity recognition for elderly people, control over wireless links, etc.

are other application areas of healthcare in WSNs [22]. Healthcare applications are

very popular among researchers and there are various novel approaches and mech-
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anisms to enable secure and reliable healthcare by using WSNs and IoT paradigm

[23], [24], [25], [26]. On the other hand, it is crucial to consider some challenges in

healthcare applications like security, reliability of the system, privacy of patient data,

confidentiality, and data integrity [27].

2.1.3 Environmental Applications

With the help of wirelessly connected, low-cost, low-power, and small size sensor

nodes, automation and monitoring in environmental applications became more and

more popular. WSNs assist our daily life by monitoring environment related phenom-

ena such as temperature, humidity, light etc. They are also used for automation and

remote control purposes [28]. Agricultural monitoring is very common and is mostly

used on farming areas. It includes monitoring of air conditions, soil conditions, and

monitoring of poultry [29], [30], [31]. Habitat monitoring is another popular area of

environmental applications. Water quality monitoring, plant and animal monitoring,

pollution monitoring in ecological areas, forest monitoring, and behaviour monitor-

ing of some species like seabirds are some application areas of habitat monitoring

[32], [33], [34], [35].

2.1.4 Home Applications

Home automation and monitoring is another important area of WSNs. Smart homes,

smart cities, smart environments, and many related applications became available

with the help of developing technologies in the area of sensors, actuators, and wire-

less communication. Home applications include light control, valve control, door and

window control, remote control over wireless links, smart energy applications like

smart grids, automation of electrical devices, remote care, safety, and security [36].

There are many new research directions in home applications. It is possible to create

smart homes which share information and data with outside world. However, it cre-

ates the concern of security and confidentiality. In addition, smart grid applications

are also very popular where an intelligent electricity system create communication

between supplier and consumer [37].
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2.2 Applications of WMSNs

2.2.1 Surveillance Applications

Surveillance applications need high accuracy, reliability, and more detailed informa-

tion from the environment to stream and report the phenomenon. In such crucial

applications like thefts, car accidents, traffic violations, etc. traditional WSNs and

monitoring environment using scalar data become insufficient. Multimedia sensors

which are capable of gathering multimedia data such as video, audio, and instant im-

ages are used as complimentary of existing surveillance applications to increase the

accuracy of the system. Surveillance applications are one of the most popular applica-

tion areas in WMSNs. Since it is possible to transmit video or audio data in WMSNs,

it also makes possible to use more complex techniques like image processing, signal

processing to gather more valuable information from transmitted data. These appli-

cations can be used for several purposes such as identifying the person, detecting

anomalies, detecting fires, etc. [7], [38].

2.2.2 Traffic Monitoring Applications

The increase in number of vehicles and complicated traffic conditions cause huge

amount of money and time consumption. Traffic monitoring applications are widely

used with WMSNs technology. Now, it is possible to establish intelligent traffic moni-

toring systems which are capable of collecting information, data fusion, making deci-

sion, etc. They improve safety and efficiency of transportation systems, decrease fuel

consumption, time consumption, carbon emission, and number of accidents. Current

technology of WMSNs is very useful in emergency situations such as fire and ac-

cident. Intelligent systems can provide priority to emergency cars in the traffic like

ambulance, police car, and firefighters [39]. Unnamed aerial vehicles (UAVs) can also

be used to monitor traffic similar to the applications presented in [40]. Also, low-cost

sensor motes with attached cameras are popular since energy consumption is one of

the main constraints of WMSNs [41], [42].
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2.2.3 Personal and Healthcare Applications

It is possible to implement more realistic and accurate personal and health care appli-

cations by using multimedia sensors, therefore WMSN applications in this area are

also becoming quite popular [43]. Embedded sensor technology and use of smart

phones enlarged the area of assisted living and e-health. There are many applica-

tions and monitoring techniques by using embedded sensors on smart phones, smart

watches and other wearable devices [44]. Multimedia contents such as audio using

smart phones microphone, video streams using cameras of smart phones, etc. are used

to monitor, diagnose, and recognition purposes. Sleep apnea monitoring using micro-

phone [45], analyzing skin images to identify cancer using camera of smart phone

[46], detection and recognition of melanoma(type of skin cancer) [47], [48] are some

examples of e-health applications with WMSNs.

2.2.4 Environmental and Industrial Monitoring Applications

Environmental monitoring has vital role in the areas of climate monitoring, habitat

monitoring, agricultural and natural systems monitoring, and natural disaster moni-

toring and diagnosis. Different from the scalar monitoring like monitoring tempera-

ture, humidity, light, gas, etc., with use of cameras, microphones, especially UAVs,

novel approaches are proposed. Unnamed Aerial Systems (UAS) make it possible to

monitor considerably large scales with high quality and accuracy. They provide more

detailed monitoring on wild areas and habitats as well [49].

2.3 Hardware Platforms

WSN based systems are the main source of sensor node activities and an integral

part of IoT. They can be considered as the key technology for IoT, since they support

the applications through the main infrastructure which consists of numerous sensors

working collaboratively to monitor event occurrences in a given habitat [50].

Since there are various applications of WSNs, WMSNs, and IoT, different type of

hardware platforms are needed for both industrial and academic purposes. The devel-
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opment in the area of micro-controllers, transceivers, and sensors helps the process of

creating low-power, small size and low-cost hardware which can be used in various

type of applications. IoT technology mainly makes heterogeneous devices connected

via Internet to create interconnected systems with different properties and purposes.

Generally, the IoT devices consist of sensing units, processing units, memory, and a

battery. However, considering different application areas, different type of hardware

devices are developed and used [27]. For example, while it is sufficient to use de-

vices which have limited processing capacity in certain types applications, in some

other types, it is better to use high computing power devices or so called sensor motes

since implementation of edge computing has potential to significantly contribute to

resource optimization. Existing sensor motes can be classified according to their mi-

crocontroller unit (MCU), memory, and transceiver types. Some well known and

commonly used hardware are listed in Table 2.1. The model of MCU, memory spec-

ifications and transceiver versions are provided.

Sensor Mote MCU Memory Transceiver
BTnode[51] Atmega 128L 4KB RAM, 128KB Flash, 4KB EEPROM CC1000
Mica2[52] Atmega 128 4KB RAM, 128KB Flash, 512KB EEPROM CC1000

MICAZ[53] Atmega 128 4KB RAM, 128KB Flash, 512KB EEPROM CC2420
TelosB[53] MSP 430F

1611
10KB RAM, 48KB Flash, 1MB EEPROM CC2420

Kmote[54] MSP 430 10KB RAM, 48KB Flash, 1MB EEPROM CC2420
XM1000[55] MSP 430F

2618
8KB RAM, 116KB Flash, 1MB EEPROM CC2420

TSmoTe[56] ARM Cortex
M3

96KB RAM, 1MB Flash ZigBee,
Wi-Fi,
IEEE802.15.4

IRIS[57] MSP 430F
1611

10KB RAM, 48KB Flash, 1MB EEPROM CC2420

WisMote[58] TI MSP430 16KB SRAM, 256KB Flash, 8MB EEPROM CC2520
WiSense[59] MSP- 430G-

2955
10KB RAM, 48KB Flash, 128KB EEPROM CC2520

LOTUS[60] ARM Cortex
M3

64KB SRAM, 512KB Flash 802.15.4 Ra-
dio

Node+[61] 9-axis motion
engine

16MB of onboard storage Bluetooth 4.0

Infini-Time[62] MSP 430
FR5969

2KB RAM, 64KB Flash M24LR-
16ER

Mago-Node+[63] ATmega
256RFR2

32KB RAM, 256KB Flash 8KB EEPROM CC2530

Table 2.1: Some well known IoT hardware platforms
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In this study, AS-XM1000 802.15.4 new generation mote modules which are based

on “TelosB” technical specifications are used as scalar sensors [64]. XM1000 sensor

motes are easily configurable and they come with a widely used transceiver which has

built in libraries for various operating systems as well as simulation tools. For exam-

ple in Castalia simulation tool there is a built in parameter file for CC2420 transceiver

and Contiki OS supports XM1000 hardware platform with built in libraries which

can easily run on XM1000. In addition, it is widely used and researched well in the

area of WSNs as presented in studies [65], [66], [67], [68], [69]. Considering these

advantages of XM1000 in terms of easy configuration, easy deployment, simulation

support, and operating system support, it is selected to be used in test bed implemen-

tation of the proposed framework.

2.4 Operating Systems(OS)

IoT devices are very limited in terms of memory, processing power and energy as

discussed earlier. In addition, there are various number of hardware and heteroge-

neous system to support. In this sense, traditional operating systems like Windows

and Linux are not suitable because of hardware constraints of IoT devices. IoT OS

should consider some requirements. One of them is small memory footprint since

IoT devices typically provides kilobytes of memory. In addition, OS should sup-

port heterogeneous hardware since there are different types of hardware and related

platforms as summarized in Table 2.1. Another important requirement of IoT OS is

energy efficiency considering that most of the IoT devices run on battery and have

limited lifetime. OS should be energy aware to maximize the lifetime of devices.

Moreover, security, real-time capabilities, and network connectivity are also impor-

tant requirements of IoT OS [70].

2.4.1 Contiki OS

Contiki is an OS which is developed for very low memory devices like 8-bit MCUs.

Later on, it was further improved to run on 16-bit and 32-bit IoT devices. It is based on

event-driven programming which also supports multithreading. Contiki OS is written
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using C, yet it uses macro-based abstractions like protothreads [71]. It is an open

source platform where various number of versions exist since it is widely used for

research and industrial purposes. It is lightweight and portable [72]. Contiki supports

many different communication protocols such as IPv4, IPv6, uIP (TCP/IP protocol

stack for 8-bit MCUs), Rime (another lightweight layered protocol stack) which pro-

vides single hop unicast, single hop broadcast, and multihop communication. It also

provides implementation of IPv6 routing protocol RPL for lossy networks [73]. Con-

tiki has a file system which is called Coffee file system. It provides lightweight and

efficient storage abstractions since traditional storage systems are too complex and

not widely used in WSNs. Coffee is very useful for network layer components such

as routing tables and packet queues [74].

2.4.2 Tiny OS

Tiny OS is the most used operating system in IoT hardware(limited memory) with

Contiki OS [73]. It is written with one of the C dialects which is nesC. It runs on

8-bit and 16-bit MCU. It supports very complex programs with very low memory

requirements. It is also important that it supports low power applications. It has BLIP

(Berkeley Low-power IP stack) network stack which implements 6LoWPAN (IPv6

Low-power Wireless Personal Area Networks) network stack. There are three main

abstractions in Tiny OS which are commands, events, and tasks. Command is the

request to any component such as sensor to receive any type of service. Events on the

other hand can be defined as the completion signal of the service which is initialized

by command. Lastly, tasks are the functions which are executed by Tiny OS.[75].

2.4.3 MANTIS OS

MultimodAl system for NeTworks of In-situ wireless Sensors (MANTIS) is a cross-

platform embedded operating system for WSNs. It is an energy efficient OS which

fits within less than 500 bytes of RAM memory which includes kernel, scheduler, and

network stack. It also uses power-efficient scheduler to achieve energy efficiency by

decreasing consumption of current to the µA levels. MANTIS OS is very flexible
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which supports cross-platform and testing on PDAs, PCs, and different MCUs. It

supports a simple C API which actually enables cross-platform support [76].

2.4.4 Nano-RK OS

Nano-RK is a real-time operating system (RTOS) which works reservation-based.

Each task is created with priority and priority based preemption is applied. For com-

munication purposes, it supports ad-hoc multihop wireless networking by providing

port based socket abstraction. It provides energy efficiency by enforcing limits on

memory and energy usage of individual applications. It is also possible to use CPU

and network bandwidth reservation in Nano-RK OS which are guaranteed by oper-

ating system itself. It provides some tools to estimate energy consumption of each

individual application and in turn the lifetime of the system [77].

In this study, Contiki OS is used to implement real life experiment of the proposed

framework. It is a lightweight operating system which fully fits to hardware that is

used in this study. Contiki OS specifically supports the XM1000 mote with built in

applications and libraries. In addition, it is an open source operating system with a

huge community support. There are various sources for Contiki where developers

and researchers can easily refer to and benefit from. The main advantage of Contiki

is that it is specifically created for low-power wireless sensor networks with support

of lightweight communication protocols such as uIP, Rime, and RPL. Memory man-

agement is also considered for IoT hardware where the main constraint is limited

resources. It has its own file system Coffee which provides lightweight and efficient

storage abstraction compared to traditional file systems. Considering various advan-

tages of Contiki OS, it is used to implement real life experiment of the proposed

framework with real hardware.

2.5 Simulation Tools

IoT and sensor networks areas are very dynamic. New algorithms, protocols, and new

techniques are proposed to provide more energy efficient systems and frameworks.

Proposed novel approaches require testing to be able to understand the dynamics in-
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cluded and evaluate the efficiency and QoS. However, implementing real life large

scale systems for these purposes is costly and time consuming. Also, it is not flex-

ible to run again and again same scenarios with different scales. Researchers use

simulations and emulations instead of costly and time consuming real life implemen-

tations to test their new algorithms, approaches, or mechanisms [78]. In this section,

some well known and commonly used simulation tools for IoT and sensor network

applications are discussed.

2.5.1 Network Simulation Version 2 (NS-2)

Network Simulation Version 2 or NS-2 is created in 1989 and it grew with the help

of research community and their contributions throughout years. It is one of the

most popular network(both wired and wireless) simulation tool. NS-2 is an event-

driven simulation which provides wide range of network protocols including routing

algorithms, TCP, UDP, etc. It is very useful to study and research the dynamic nature

of WSNs [79]. It is also known as object oriented discrete event simulator since it

is totally based on object oriented programming. It mainly consist of C++ and OTcl

(Object oriented Tool Command Language) as programming languages [80].

2.5.2 Network Simulation Version 3 (NS-3)

Similar to NS-2, NS-3 is a discrete event simulator. The main development objective

of NS-3 is contribution to communication research. It is an open source simulation

tool. On the other hand, NS-3 is not a new version of NS-2 where it does not support

any API of NS-2. In contrary to NS-2, it is written in pure C++. Optional python bind-

ings are also supported. There are various WSNs modules in NS-3 such as 802.15.4,

RPL, 6LoWPAN, etc. It is suitable with almost all operating systems like Linux and

Windows [81].
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2.5.3 OMNeT++

Objective Modular Network Tested in C++ (OMNeT++) is an extensible, component-

based, flexible C++ based simulation tool and framework. Primary objective is build-

ing network simulations. It provides support for sensor networks, wireless ad-hoc

networks, internet protocols, performance modelling, etc. OMNeT++ mainly con-

sists of simulation kernel library of C++, the NED topology description language,

simulation IDE based on Eclipse, simulation run-time GUI (Qtenv), command line

interface, documentations, and sample simulations. Simulation kernel runs on all

platforms which have a modern C++ compiler. However, simulation IDE requires

Windows, Linux, or macOS. It is distributed under academic public licence [82].

In this study, OMNeT++ based Castalia simulator is used to simulate the proposed

framework. Castalia is generally used for low power sensor devices and body area

networks. It is quite popular in the area of WSNs and it is widely used in various

recent WSNs studies [83], [84], [85], [86], [87], [88]. Radio models are fully imple-

mented in Castalia which are based on real low-power radios with different levels of

TX power and different power consumption levels according to simulated hardware.

Various MAC and routing protocols are available as well. It also supports the mobility

of sensor node. It is quite flexible with parameter file (.ini file) where many features

can be set such as simulation time, deployment area, power consumption of nodes,

TX output power, MAC protocol, routing protocol, radio module, packet transmission

rate, and data payload. It gives flexibility to simulate various sensor motes by setting

these parameters. Considering discussed advantages of Castalia, it is used to simulate

the proposed framework by setting parameters which are based on real hardware used

in test bed implementation.
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CHAPTER 3

RELATED WORKS

3.1 Forest Fire Detection

Forest fires are most hazardous disasters in dry areas considering damage caused by

wildfires. The forest fire in Athens in summer 2018 [14] is one of the most recent

examples. Unfortunately in this disaster, 90 people died, 187 people were injured and

more than 1,000 buildings were destroyed. California had another wildfire in sum-

mer 2018 which was the largest in California history where 185,800 hectares were

burned and a firefighter died [15]. These recent examples show that forest fires are

very dangerous both for the living species and environment. Since 30% of carbon

dioxide comes from forest fires, the local weather patterns are also affected in long

term. This in turn cause extinction of rare species as well [89]. Because of its con-

sequences, various monitoring and detection techniques are proposed, tried, and used

over years. Finding solutions and countermeasures to forest fires are also very popu-

lar among researchers where serious projects are conducted on this area. In the past,

forest fires are detected with human observations. People built lookout towers at high

attitude areas or points to detect forest fires. These towers had lookout personnel who

were responsible for observing the area. However, lookout tower technique had very

bad working conditions for lookout personnel and its accuracy is open for discussion

since it relies on human observation [90]. Insufficiency of human observation led to

development of video surveillance systems. CCD (Charge-Coupled Device) cameras

and IR (Infrared) detectors are used in most of the video surveillance systems. These

detection devices are installed on towers to enable monitoring. In case of emergency,

automatic surveillance system alerts the fire department. However, the main concern

of these systems is accuracy since they are affected by weather conditions such as
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fog, clouds, smoke from other activities. In addition it is almost impossible to deploy

automatic video surveillance systems to large scale forests because of wild nature of

forests and cost of deployment [91].

Satellite based forest fire detection is another advanced detection method. Satel-

lite based detection starts with two main satellites launched for forest fire detec-

tion. AVHRR (Advanced Very High Resolution Radiometer) was launched in 1998

by NOAA (National Oceanic and Atmospheric Administration). The main purpose

of AVHRR is monitoring clouds and thermal emission of the Earth [92]. In 1999,

MODIS (Moderate Resolution Imaging Spectroradiometer) was launched by NASA

for the purpose of capturing cloud dynamics and surface radiation [93]. Current forest

fire detection systems which are based on satellite images, use AVHRR and MODIS

to gather Earth images and monitor forests to detect forest fires. The main problem

with satellite based surveillance systems is accuracy. Using satellite images, surveil-

lance system can detect minimum 0.1 hectares size of fire with the accuracy of 1 km

[94]. In addition, AVHRR and MODIS provide complete Earth images every one or

two days. Considering speed of wildfires and importance of accuracy in detection,

satellite based surveillance systems are not sufficient enough for early detection of

forest fires. They cannot be used as a surveillance tool in such applications where

time is one of the most important metric. In addition, satellite images are vulnerable

to weather conditions such as clouds, rain, and fog. Since accuracy and real-time

detection are very crucial for forest fire detection and surveillance, satellite based

surveillance systems are not suitable. Because, to minimize the scale and damage of

the disaster, it is vital to have a system with an immediate response [95].

Considering constraints of traditional methods, video surveillance systems, and satel-

lite based surveillance for forest fire detection, one of the most promising technolo-

gies is wireless sensor networks with IoT enabled applications. As discussed in pre-

vious chapters, WSNs technology can be applied to various areas such as health,

military, environment monitoring, transport system, smart homes, smart cities and

so on. Combination with IoT enlarges the application areas even more. Especially,

in disaster applications like forest fire detection where real-time communication and

control are much more important, WSNs offer more accurate, energy efficient, and

low-cost solutions. It is possible to monitor forest areas by measuring various phe-
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nomena such as temperature, humidity, gas, smoke which can be very helpful in forest

fire detection application. Multimedia data such as audio, video, still images can also

be gathered using so-called multimedia sensors which are equipped with cameras and

microphones. Easy and low-cost deployment (e.g. with aeroplanes) of small sensors

is another advantage of WSNs. Especially in large scales, WSNs can be deployed

densely and there is no need for manual setup and configuration thanks to recent

self-configuring network protocols and mechanisms.

There is a wealth of literature on environment especially forest fire monitoring ap-

plications using WSNs and IoT paradigm. For example in [96], authors propose a

framework to detect forest fire. Proposed framework includes wireless sensor network

architecture, a sensor deployment scheme, clustering algorithms, and communication

protocols. Important design goals of proposed framework are energy efficiency, early

detection and accurate localization, forecast capability, and adapting to harsh envi-

ronments. Evaluation and validation of the proposed framework are done by imple-

mented simulator considering energy consumption of sensor nodes. According to the

results of the study, deterministic deployment of sensor nodes extends lifetime of the

sensor network compared to random deployment and it is suggested that clustered

hierarchy should be used since it has benefits in terms of data aggregation, energy

efficiency, sensor coordination, and management capabilities.

In the study of Bhosle et al.[97], the authors propose a WSNs based disaster man-

agement framework. The case study is forest fire detection. Study reviews available

networking standards such as IEEE 802.15.4, ZigBee, 6LoWPAN, and Wibree for

forest fire detection case. Proposed framework consists of BS (base station) which is

responsible for communication with backbone network through gateway, sink node

where measured data are collected, and wireless sensor nodes which are used to mon-

itor environment. Sink nodes are capable of making decisions according to predefined

threshold and send warning or alert signals to the end user via BS. No evaluation is

conducted to test the proposed framework in this study.

In a similar study [98], WSNs based forest fire detection architecture is proposed.

LTE-M (Long Term Evolution-Machines) based architecture includes LTE-M mod-

ules which are mounted on the belt of forest animals. In addition, there are some
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stationary sensor nodes on the trees which are used to measure temperature, humid-

ity, light and CO(carbon monoxide). LTE-M module collects data from stationary

modules while animals moving in the forest using ZigBee. After collecting data, it

sends data to the cloud database. However, proposed system is not evaluated.

Pico et al. [99] propose hierarchical WSNs based forest fire early detection system.

System has two types of nodes which are central nodes and sensor nodes. Sensor

nodes are responsible for monitoring environment by measuring temperature and rel-

ative humidity levels. Central sensor, on the other hand, are responsible for collecting

data from sensor nodes and delivering data to control center. Proposed framework is

validated by simulation and real test bed results.

General WSNs framework for forest fire detection and surveillance is proposed by

Xu et al. in [100]. Study considers sensor deployment aspects, clustered hierarchy,

and energy aware intra and inter cluster protocols. Most important metrics in the

study are energy consumption and fire detection delay of the system. NS-2 simulation

is used to evaluate system performance. For sensor deployment, authors propose a

new metric which represents the probability of fire at particular place, Fire Occur

Degree(FOD). In addition to FOD, there are other parameters such as initial energy,

network lifetime, and time required to detect fire. According to parameters, distance

between sensor nodes are calculated and sensor deployment is performed accordingly.

Clustered hierarchy is used as a network topology. In addition, E-LEACH which is

the enhanced version of LEACH is proposed where each node maintains its own

feature table. According to simulation results, proposed framework can be used for

effective and energy efficient forest fire detection. In addition, they conclude that

environmental and seasonal factors are very important for WSNs based forest fire

monitoring systems.

Arduino MCU based forest fire detection is proposed by Basu et al. in [101]. In

their study, authors propose a system architecture which includes arduino board, tem-

perature sensor, gas sensor, ethernet module, buzzer, and LCD. The main objective

of the proposed system is measuring temperature and gas levels of the environment

and create fire alert if temperature and gas levels are higher than the threshold value.

Proposed architecture is discussed by using system block diagram and operational
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flow chart. However, no evaluation is conducted either networking aspects or energy

efficiency.

Another Arduino based application for forest fire detection is proposed by Singh[102].

Humidity, gas, and smoke sensors are used to monitor forest. Additionally, Bluetooth

and GSM modules are used to achieve real time communication. Two different sce-

narios are proposed in the study which are during normal conditions and during fire

conditions. In the first scenario, proposed system is used as monitoring system which

measures humidity, gas and smoke levels of the environment and sends the informa-

tion to BS using Bluetooth. In case of fire, where sensor readings are higher than

threshold, GSM module is used to alert end-user via SMS and call. The system is

implemented by programming the Arduino board. System design and necessary dis-

cussions are given, yet evaluation of the system is not available.

Another forest fire detection study in [103] proposes a prototype of automatic forest

fire detection system using Raspberry Pi board and CM5000 sensor motes. Raspberry

Pi board is used as sink node and CM5000 sensor motes are used to measure ambi-

ent temperature and carbon dioxide. Hierarchical approach is used to deploy sensor

motes. Hierarchy is achieved by creating clusters of CM5000 motes and cluster heads

are responsible for transmitting measurements to the sink node which is Raspberry

Pi. According to measurements, Raspberry Pi is capable of collecting alerts and sends

them to the base station. A real test bed is deployed, yet performance or energy effi-

ciency evaluation of the system is not conducted in the study.

In study [104], another forest fire detection and verification system is proposed.

Linksys WRT54GL router (Cisco Systems) which is an embedded system with IEEE

802.11 b/g interface, a FastEthernet interface, General Purpose Input/Output (GPIO),

UART (JP2), and ETAJ (JP1) ports. This board is used to monitor environment using

connected infrared radiation and smoke sensors. In addition to the board, IP cameras

are used for live monitoring. According to sensor readings, IP cameras change direc-

tions and monitor the area where they receive forest fire alarm. The proposed system

is tested in terms of bandwidth and power consumption using real test bed.

UAV based forest fire detection system using IR(infrared) images is proposed in

[105]. Proposed system uses image processing techniques for UAV applications to
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detect forest fires. New image processing algorithm is presented to process IR images

and extract the information whether there is a fire or not. Experiments are conducted

using IR fire video sequences and system is validated in terms of accuracy.

When the existing work on forest fire detection is considered, we can see that some

studies such as [97], [98], [101], [102], [103] fail to address the energy efficiency

since they are not offering any evaluation method. On the other hand, while studies

such as [96], [100], [99] use simulation tools to show the energy efficiency of their

proposed architecture, they fail to consider the accuracy of detection. Nevertheless,

the existing forest fire detection systems are heavily dependent on either scalar infor-

mation processing or multimedia information processing. While scalar sensor based

ones are more energy efficient, there are reported problematic conditions in terms of

accuracy. Multimedia information based decisions on the other hand are reported to

be more accurate, however, the main problem of these frameworks are the high en-

ergy requirement of the multimedia sensors as well as the transmission of multimedia

information. In this work, the two approaches are combined and a heterogeneous

architecture is proposed and evaluated for accuracy, efficacy as well as QoS. The con-

tributions of the heterogeneous approach are emphasized and explained in detail in

the following chapters of this thesis.

3.2 Energy Efficiency Perspective

Studies in the literature on environmental monitoring applications including forest

fire detection can be categorized as shown in Table 3.1. The system design of en-

vironmental monitoring applications using Raspberry Pi and Arduino is proposed in

the study by Ferdoush, Sheikh and Xinrong Li [106]. Scalar sensor readings such as

temperature and humidity are used to monitor the environment. A systematic review

is presented for wireless sensor network applications for monitoring coal mines in

[107]. WSN based Forest Fire Monitoring is used to test the anomaly detection algo-

rithm in [108]. The proposed method estimates the maximum number of malicious

actions tolerated by the application. Sensor deployment design is automated using

the proposed method. A similar study is presented in [109], where body temperature,

respiration rate, heart rate and body movements are monitored using Raspberry Pi

24



boards. A detailed system design is proposed, but no analysis in terms of accuracy or

energy efficiency is performed.

In [110], a video sensor platform is described and high-quality video transmission

over 802.11 networks is discussed. The proposed system is evaluated in terms of en-

ergy consumption. It is shown that the video transmission is performed with power

requirement of approximately 5 Watts. A traffic monitoring system is proposed in

[41]. Raspberry Pi board and HD camera are used for object detection and the sys-

tem is analyzed in terms of energy consumption. A smart surveillance system using

Raspberry Pi, USB camera and PIR sensor is proposed in [111] as well. PIR sensors

are mainly employed to trigger the Raspberry Pi. In the study of Kulkarni et al.[112],

SensEye system is proposed. In their proposed system, the efficiency of multi-tier

heterogeneous networks is discussed in terms of energy and accuracy. The authors

used multimedia sensors in tiers. SensEye project is discussed in terms of possible

challenges of multi-tier networks in [113] as well. Multiple sensing modalities, proto-

cols for multi-tier interaction and resource management, design trade-offs in multiple

tier networks, and programming abstractions are discussed.

In [114], an object classification approach using multimedia sensors is proposed. The

classification approach is in turn analyzed in terms of accuracy and energy efficiency.

Study investigates possible research directions to utilize WSN techniques and appli-

cations for efficient monitoring. Another study related with security proposes tech-

niques for Sybil attack detection for a forest wildfire monitoring application [115].

The proposed approach using two-tier detection system which has high-energy nodes

at the lower tier and normal sensing nodes in upper tier. Sybil attack is detected using

residual energy of high-energy nodes. If two or more incoming control packets have

same residual energy, it is a sign of a Sybil attack. Multimedia sensors are used to

classify moving objects in [116] as well. Proposed framework makes use of accuracy

of multimedia sensors in monitoring applications. Experimental setup is implemented

and related tests are conducted to show accuracy and energy efficiency of the frame-

work. Multimedia and scalar sensors are used together in [117] for detection and

classification of objects using visual and auditory data fusion. A practical implemen-

tation of the proposed system is presented and performance and energy consumption

results are discussed.
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Table 3.1: Literature categorization

Study Sensors Used Evaluation
[110],[41],[111] Multimedia Energy

[105] Multimedia Accuracy
[112],[113],[114],[116] Multimedia Energy & Accuracy

[106],[109],[97],[98],[101],[102],[103] Scalar Only System Design
[118],[96],[100],[99] Scalar Energy

[107] Scalar Review
[108], [115] Scalar Security
[117],[104] Multimedia & Scalar Energy & Accuracy

The literature presents numerous examples of surveillance and/or monitoring applica-

tions for scalar and multimedia sensors. Some of them focus on energy efficiency and

use scalar sensors. On the other hand, some other studies focus on the accuracy of

monitoring information and use multimedia sensors for more accuracy. In addition,

the studies differ in terms of analysis of the proposed approaches.

Combining the energy efficiency of scalar sensors and accuracy of multimedia sensors

has been considered in studies such as [104], [117] which are relatively quite recent.

However their main domain is the surveillance applications rather than focusing on

forest fire applications. To the best of our knowledge this work is the first one to

attempt combining the two approaches and evaluate in terms of efficacy and accuracy

using simulation as well as real test bed deployments.

3.3 Machine Learning Applications for (Forest) Fire Detection

Accuracy of forest fire detection systems should be as important as the energy ef-

ficiency. Considering wireless sensor networks, most of the applications use scalar

sensor and scalar data to detect forest fire. Scalar sensors are perfectly suitable for

such applications especially in terms of energy efficiency. Since the system is energy

aware, maintenance cost of the system (e.g. battery replacement) can be decreased.

On the other hand, accuracy of detection in disaster and surveillance applications is

important as well. In this sense, scalar sensors become insufficient in terms of accu-

racy. In order to introduce a higher degree of accuracy reliability, it is possible to use

more detailed data such as images, videos, and audios. Multimedia sensors are capa-
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ble of gathering such data, yet the main constraint is energy consumption as discussed

in previous chapters. It is possible to make use of edge computing in order to miti-

gate the energy related issues of WMSNs. Edge allows the computation of data to be

performed on the edge devices instead of sending every information to the BS, which

in turn leads to less data transmission. By decreasing the amount of transmission, it

is possible to extend lifetime of sensor nodes since the most energy consuming activ-

ity is data transmission. Literature for forest fire detection generally includes studies

of image processing, video processing, and rarely machine learning techniques for

WSNs applications. Machine learning, especially deep learning neural networks are

rarely applied to WSNs applications since they need considerably high computation

power which is not possible with limited resources of IoT hardware. For example,

the study of Vipin et al. [119] proposes image processing based forest fire detection

algorithm. Authors detect forest fire from images using rule based color model and

pixel classification. According to results of the study, they achieved the accuracy of

99% whereas 14% is the false alarm rate. Another image processing based detection

system is proposed in [120]. Candidate smoke regions are extracted from the smoke

motion using video frames. Proposed model is evaluated using experiments and rate

of area change is used as a feature to distinguish smoke and non-smoke regions. In

[121], early detection system for forest fire based on video processing is proposed.

Flame and smoke detection is used to validate that there is fire. Image sequences are

gathered from video and, flame and smoke pixels are extracted. According to pro-

cessing results, system has the ability to raise alarm if there is fire. Another image

processing based forest fire detection system is discussed in [122]. UAV images are

used to detect forest fire. Two step detection is applied. In the first step, color based

detection is used to detect flame and smoke pixels. As a second step or validation

step, two-dimensional discrete wavelet transform is applied to distinguish flame and

smoke areas from others. Unmanned substation environment fire detection study is

proposed based on image processing in [123]. Fire area identification and flame ex-

traction from images is applied to detect fire. Forest fire detection framework based

on image processing is studied in [124] as well. Scale-Invariant Feature Transform

(SIFT) is used for feature selection, then SVM and KNN classifiers are applied for

classification of fire and non-fire images. Surit et al. [125] propose video based digital

image processing for forest fire smoke detection. Framework consists of four stages
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which are area of change detection, segment the area of change, calculate static and

dynamic characteristics, and check whether the changed object is smoke or not. Sim-

ilarly in [126], authors use color based image processing to detect forest fire. Flame

detection is used to identify if there is a fire or not.

In [127] fire image recognition is presented to detect fire. Image processing based

approach uses infrared based images to detect flames from images. The double band

method is used where distance is not a constraint compared to single band method.

In [128], Premal and Vinsley propose forest fire detection framework based on image

processing. Rule based color model is applied because of reduced amounts of com-

plexity. Created model is capable of separating flame pixels and high temperature

fire centre pixels. They achieved 99.4% detection accuracy and 12% false alarm rate.

Zhang et al.[129] propose ANN (Artificial Neural Networks) based forest fire detec-

tion system. Video based images are used to detect forest fire. According to results,

98.94% accuracy is achieved. Combination of CNN(Convolution Neural Networks)

and RNN(Recurrent Neural Networks) are used to create deep learning model for de-

tecting fire from video sequences [130]. In average 92% accuracy achieved in the

study. CNN based early fire detection method is proposed in [131]. Study makes

use of processing capability of CCTV cameras which are already used in surveillance

applications. Proposed method is applicable both indoor and outdoor environment.

However, the model size is heavy (238 MB) to be used in WSNs applications. An-

other CNN based wildfire detection system is proposed by Lee et al.[132]. UAV

images are used to train the network. Proposed system achieved the best accuracy

with 99% with GoogLeNet.

Table 3.2: Forest fire detection with machine learning

Study Method Study Method
[119] Image Processing [132] CNN
[120] Image Processing [127] Image Processing
[121] Image Processing [131] CNN
[122] Image Processing [128] Image/Video Processing
[123] Image/Video Processing [129] Image Processing + ANN
[124] Image Processing [105] ANN
[125] Image Processing [130] CNN + RNN
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Considering WMSNs applications of forest fire detection in the literature which make

use of image detection, majority of the studies solely rely on image and video pro-

cessing to detect forest fires. Only in few of the studies such as [129], [105], [130],

use machine learning models including ANN, SVM, and RNN. The proposed ma-

chine learning models are not appropriate to be used in IoT edge devices since they

come with relatively high requirements in terms of memory space and require high

computing power. In this study, a lightweight CNN machine learning model is pro-

posed to enable edge computing and to increase the accuracy as well as the efficacy

of the system. Proposed model is trained using a newly created forest fire data set

which is the first one created specifically for forest fires. The new data set is in turn

used to train the lightweight CNN model.

3.4 Statistical Analysis of Sensor Lifetime

There are several tools and techniques to analyze the lifetime and reliability of sensor

nodes. Most of the studies in the literature use simulation or analytical modelling for

this purpose [133], [134], [135], [136], [137]. However, using statistical analysis to

analyze the lifetime of sensors using real data is rare. There are some studies which

discuss energy efficiency and the factors that affect the efficiency of sensor networks

[138], [136]. However, most of them use comparison techniques or comparative anal-

ysis to show how efficient their system or approach. Rather than comparative or de-

scriptive analysis of the system, applying more valuable statistics such as time series

analysis, and survival analysis to such systems can draw more valuable conclusions

in terms of lifetime analysis of low-power wireless sensors. In the literature, analysis

are performed using several methods. It can be categorized as analytical modelling,

experiment, and simulation as summarized in Table 3.3.

In the study of Chen et al.[133], a general formula for lifetime analysis is derived

using analytical modelling. The proposed formula identifies two key variables which

affect the lifetime of the network. These variables are channel state and residual

energy of the sensor. Using similar approach, Duarte-Melo et al.[134] proposed a

mathematical formulation to estimate energy consumption and lifetime of a sensor

node based on a clustering mechanisms with parameters related to sensing field like
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Table 3.3: Evaluation methods of sensor lifetime

Study Year Method Used
Chen, Yunxia, and Qing Zhao, "On the life-
time of wireless sensor networks."

2005 Analytical Modelling

Duarte-Melo, Enrique J., and Mingyan Liu,
"Analysis of energy consumption and life-
time of heterogeneous wireless sensor net-
works."

2002 Analytical Modelling

Shah, Rahul C., Sumit Roy, et al., "Data
mules: Modeling and analysis of a three-tier
architecture for sparse sensor networks."

2003 Analytical Modelling

Kumar, Santosh, Anish Arora, and Ten-
Hwang Lai, "On the lifetime analysis of
always-on wireless sensor network applica-
tions."

2005 Experiment

da Cunha, Adriano B., and Diógenes C.
da Silva. "An approach for the reduction
of power consumption in sensor nodes of
wireless sensor networks: Case analysis of
mica2."

2006 Experiment

Polastre, Joseph, Robert Szewczyk, Alan
Mainwaring, David Culler, and John Ander-
son. "Analysis of wireless sensor networks
for habitat monitoring."

2004 Experiment

Nguyen, Hoang Anh, Anna Förster, Daniele
Puccinelli, and Silvia Giordano. "Sensor
node lifetime: An experimental study."

2011 Experiment

Jung, Deokwoo, Thiago Teixeira, and An-
dreas Savvides. "Sensor node lifetime anal-
ysis: Models and tools."

2009 Simulation

Di Pietro, Roberto, Luigi V. Mancini, Clau-
dio Soriente, Angelo Spognardi, and Gene
Tsudik. "Catch me (if you can): Data sur-
vival in unattended sensor networks."

2008 Simulation

Dron, Wilfried, Simon Duquennoy, Thiemo
Voigt, Khalil Hachicha, and Patrick Garda.
"An emulation-based method for lifetime es-
timation of wireless sensor networks."

2014 Simulation

Ma, Zhanshan, and Axel W. Krings. "In-
sect population inspired wireless sensor net-
works: A unified architecture with survival
analysis, evolutionary game theory, and hy-
brid fault models."

2008 Game Theory & Survival Analysis

size, distance, etc. Given formulation helps to quantify the optimal number of clusters

and shows how to allocate energy between different layers.

In the study of Shah et al.[135], simple analytical model is used to analyze the per-

formance of the system. Proposed approach investigates the benefits of three-tier

architecture for collecting sensor data. According to given results in the study, three-

tier architecture approach can lead to substantial power savings at the sensors. An-

other study which analyzes network lifetime by experiment is the study of Kumar et

al.[138]. The proposed approach is proved by deploying ExScal (a large-scale WSN

for intrusion detection) to identify major components in the network lifetime anal-

ysis. Results of experiments show how to analyze the effects of using various non-
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sleep-wakeup power management schemes such as hierarchical sensing, low-power

listening, and in network data aggregation on the network lifetime. The case study of

Cunha et al.[139], analyzes wireless sensor node of Mica2 and proposes an approach

to reduce power consumption which in turn increases lifetime. Proposed approach is

verified with experiment. Another experimental study by Polastre et al.[140] analyzes

system performance using environmental and node health data from experiment. The

study of Nguyen et al. [141] also experimentally analyzes lifetime of TelosB sensors

using different commercial batteries. Simulation is another method to analyze wire-

less sensor networks. Jung et al.[136] analyze two modes of operation of sensor nodes

using models and study presents a MATLAB Wireless Sensor Node Platform Life-

time Prediction and Simulation Package (MATSNL). Dron et al. [142], use Contiki

Cooja simulator to analyze and model complex battery characteristics and node life-

times in WSNs. In the study of Zhanshan et al. [143], authors envision a WSN as an

entity analogous to a biological population with individual nodes mapping to individ-

ual organisms and the network architecture mapping to the biological population. The

interactions between individual WSN sensors, are captured with evolutionary game

theory models. On the node level, survival analysis is introduced to model lifetime,

reliability and survival probability of WSN nodes.

As already discussed, most of the WSNs studies in the literature evaluate proposed

systems using analytical models, simulations, and experiments. These methods are

widely used and well researched. Simulation and experiment methods are used by

this study as well to evaluate the proposed framework. However, statistical analysis

is also conducted as a first step to investigate the factors which have the potential to

affect the lifetime of sensor nodes since one of the main objectives of this study is

energy efficiency. Employed regression models and discussions for the results of the

analysis are presented and explained in detail in the following chapters of this thesis.
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CHAPTER 4

STATISTICAL ANALYSIS FOR LOW-POWER SENSOR MOTES

The main objective of this chapter, is to understand the effects of external factors such

as humidity, light, and temperature on the discharge of battery of sensor nodes. For

this purpose, statistical analysis is employed as the first step prior to our simulation

studies and test bed experiments. Linear regression and ordered logit regression mod-

els are employed and results of the analysis are discussed and explained in detail in

the following sections.

4.1 Dataset

The data set which is used in this chapter is Mica2Dot sensor data from Intel Berkeley

Research Lab[144]. The raw data include 2.3 million records of Mica2Dot sensor.

Variable names are date, time, epoch(sequence number), mote id, temperature, hu-

midity, light and voltage values. The deployment of sensor nodes is given in Figure

4.1.

To understand and analyze the data, some models are used and results are discussed

in detail. As a first model, linear regression is used without relying any difference

between censored and uncensored spell lengths, i.e., treating all durations as uncen-

sored ones. Dependent variable is “dur” which is duration. Independent variables are

“temp”, “humidity”, “light”, and “voltage”. In total, we have 58 different sensors, yet

for regression, we use “mote1”. After giving linear regression results, ordered logit

regression model is employed. Results are also discussed with relevant tables and

figures.

33



Figure 4.1: Deployment of sensors

4.1.1 Descriptive Analysis

The data set is a wireless sensor data set with dimension of 2313682 observations and

8 variables. Summary of data is given in Table 4.1. It gives summary of numerical

Table 4.1: Summary table

Variable Min 1st Qu. Median Mean 3rd Qu. Max NA’s
temp -38.40 20.41 22.44 39.20 27.02 385.57 526

humidity -8983.13 31.88 39.28 33.91 43.59 137.51 899
light 0.0 18.4 143.5 390.9 507.8 1847.4 903

voltage 0.01 2.39 2.53 2.49 2.63 3.16 93879

data in data set. When we analyze the summary table, there are extreme values for

each variable in the data set which are the sign of malfunctioning of the sensor since

Mica2Dot sensors work between 2.7 V - 3.3 V [145] and we observe that unexpected

measurements are because of low voltage supply(i.e. less than 2.7 V). To specify the

spell ends, the time that sensor node starts to malfunction can be accepted as failure

event. In addition, there are missing (NA) values exist. NA value for this data set

shows that sensor node stops sending data to the sink. Since NA value means the

sensor node does not send measurements to the sink node, it can be assumed that the

first NA value we have is the instance that the sensor node failed or failure event of

sensor node. Since the data set is very large with 2313682 observations, it can be a
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good approach to create subsets of it with respect to "moteid". There are 58 unique

motes in the original data set which means that we have 58 different data sets with

same variables from original data set.

(a) Temperature (b) Humidity

(c) Light (d) Voltage

Figure 4.2: Histograms for mote 1

In the Figure 4.2, histograms for mote 1 are given for different variables. Histograms

obviously show that except voltage and light variables, there are some extreme values

for other variables. For temperature variable in Figure 4.2(a), approximate range

for the expected values are between 20 and 45 centigrade degrees. The values out

of this range can be expressed as extreme values since the measurements are from

lab environment. Humidity variable again has some extreme measurement values

according to Figure 4.2(b). Humidity should range between 0 and 100 as percentages.

The negative values seen in histogram of humidity are the extreme values or wrong

measurements which are the sign of sensor malfunctioning. Light variable in Figure

4.2(c) is measured in unit of lux. According to data set explanations from [144], 1 lux

corresponds to moon light, 400 lux to bright office and 100,000 lux to full sunlight.

Except from NA values there is no extreme values. As a last variable to analyze, the

voltage variable in Figure 4.2(d) shows the voltage readings of sensor node. Voltage

variable depicts supply voltage value in unit of volts.
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Table 4.2: Correlation matrix

Correlation temp humidity light voltage
temp 1.0000000 -0.8019789 0.01672185 -0.8010284

humidity -0.80197886 1.0000000 -0.10915454 0.5370372
light 0.01672185 -0.1091545 1.00000000 0.0817813

voltage -0.80102843 0.5370372 0.08178130 1.0000000

Figure 4.3: Correlation matrix representation

In Table 4.2 and Figure 4.3 correlations between variables are given. According to

given statistics, humidity and temperature have strong negative correlation. In addi-

tion, humidity variable have weak positive correlation with voltage variable. Tem-

perature variable has strong negative correlation with voltage variable. From given

representations of correlations, it can be said that temperature and humidity variables

can have effects on sensors’ lifetime since they affect the voltage variable in negative

or positive way.

4.2 Methodology and Results

4.2.1 Linear Regression Model

First of all, linear regression is employed for each independent variable temperature,

humidity, light, and decreasing voltage one by one. Some abbreviations are used in

tables below. “dur” is the dependent variable in the regression model which shows
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the lifetime (i.e. duration that sensor is alive) of sensor node. “dvoltage” is the de-

creasing voltage, and “temp” is temperature which are used as independent variables.

Additionally, “R2” is the statistical measure which shows how close the data are to the

regression model. “F Statistic” is another statistical measure which tests the overall

significance of the model. “Constant” value is the expected mean value of dependent

variable when all independent variables are zero. The numbers next to the variables

(which are not in parentheses) are regression coefficients. They show expected change

in dependent variable for one unit change in independent variable. The numbers next

to the variable (which are into the parentheses) are standard errors. “df” notation

means the degrees of freedom. Total degrees of freedom is n-1 which means one

less than the number of observations, and degrees of freedom of regression is number

of dependent variables which is 1 in our case. “p” values, on the other hand, show

the confidence intervals and each confidence interval is showed using stars(*). One

star(*) shows confidence interval of 90%, two stars(**) 95%, three stars(***) 99%,

and no stars means that the independent variable is not significant. According to the

results, temperature variable does not have significant effect on lifetime. Similarly,

humidity does not show any significant effect. On the other hand light has very sig-

nificant positive effect on lifetime of a sensor. Similarly voltage has very significant

effect on lifetime as shown in Table 4.3, Table 4.4, Table 4.5, and Table 4.6.

Table 4.3: Temperature

Dependent variable:

dur

temp −0.272
(1.339)

Constant 63.305∗∗

(29.598)

Observations 36,223
R2 0.00000
Adjusted R2 −0.00003
Residual Std. Error 590.431 (df = 36221)
F Statistic 0.041 (df = 1; 36221)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4.4: Humidity

Dependent variable:

dur

humidity 0.610
(0.624)

Constant 33.913
(24.135)

Observations 36,223
R2 0.00003
Adjusted R2 −0.00000
Residual Std. Error 590.424 (df = 36221)
F Statistic 0.957 (df = 1; 36221)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.5: Light

Dependent variable:

dur

light 0.048∗∗∗

(0.017)

Constant 49.657∗∗∗

(4.153)

Observations 36,223
R2 0.0002
Adjusted R2 0.0002
Residual Std. Error 590.369 (df = 36221)
F Statistic 7.712∗∗∗ (df = 1; 36221)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.6: Decreasing voltage

Dependent variable:

dur

dvoltage 127.716∗∗∗

(29.911)

Constant 386.750∗∗∗

(77.214)

Observations 36,223
R2 0.001
Adjusted R2 0.0005
Residual Std. Error 590.283 (df = 36221)
F Statistic 18.231∗∗∗ (df = 1; 36221)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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After regression results of each independent variable temperature, humidity, and light,

another regression model is created. Only the external factors are used in this model.

Our dependent variable is duration again. Independent variables are temperature,

humidity and light. The results are depicted as shown in Table 4.7. According to

results, only light shows significant effect in positive way for lifetime.

Table 4.7: Temperature + Humidity + Light

Dependent variable:

dur

temp −1.910
(1.730)

humidity 0.931
(0.734)

light 0.069∗∗∗

(0.020)

Constant 52.622
(55.847)

Observations 36,223
R2 0.0004
Adjusted R2 0.0003
Residual Std. Error 590.344 (df = 36219)
F Statistic 4.259∗∗∗ (df = 3; 36219)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.8 shows the effects of all combined independent variables. According to

linear regression results, light and voltage show significant effect. They affect the

lifetime in positive way. On the other hand, temperature has significant effect which

is negatively related with lifetime.

Table 4.8: Temperature + Humidity + Light + Decreasing voltage

Dependent variable:

dur

temp −3.476∗∗

(1.764)

humidity −1.091
(0.860)

light 0.072∗∗∗

(0.020)

dvoltage 159.286∗∗∗

(35.374)

Constant 575.055∗∗∗

(128.755)

Observations 36,223
R2 0.001
Adjusted R2 0.001
Residual Std. Error 590.187 (df = 36218)
F Statistic 8.265∗∗∗ (df = 4; 36218)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In Table 4.9, summary of six regression models are showed. “+” (positive) sign shows
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that coefficient of variable is significant and affects the dependent variable in positive

way. “-” (negative) sign means that coefficient of variable is significant and affects the

dependent variable in negative way. “0” (zero) means that coefficient of the variable

is not significant. If the cell is empty, it means that independent variable is not used in

the model. Considering results of the regression models, temperature variable is not

significant when it is the only independent variable in the model. However, as shown

in model five and model six, temperature variable is negatively significant. Since

the sign of the temperature changes from model to model, it is showed that linear

regression models do not explain wireless sensor data.

Table 4.9: Linear regression results summary

M1 M2 M3 M4 M5 M6

temp 0 - -

humidity 0 0 0

light + + +

dvoltage + +

4.2.2 Ordered Logit Regression

After linear regression model, ordered logit regression model is employed. In ordered

logit regression model, the data are grouped by their duration values. There are 8

groups which are 0-24, 25-49, 50-74, 75-100, 100-124, 125-149, 150-174, 175-inf.

The summary of data is given in Table 4.10 with the values of number of observations

(N), mean, standard deviation (St.Dev.), minimum (min), 25 percentile (Pctl(25)), 75

percentile (Pctl(75)), and maximum (max).

Table 4.10: Summary of ordered logit data

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

moteid 36,223 1.000 0.000 1 1 1 1
spell 36,223 18,112.000 10,456.820 1 9,056.5 27,167.5 36,223
temp 36,223 21.987 2.317 17.195 20.459 23.066 30.935
humidity 36,223 38.382 4.975 22.465 34.883 42.317 50.739
light 36,223 158.197 177.702 0.020 41.400 279.680 713.920
voltage 36,223 2.579 0.104 2.293 2.506 2.663 2.762
dur 36,223 57.326 590.423 0 29 61 88,084
status 36,223 0.000 0.000 0 0 0 0
dvoltage 36,223 −2.579 0.104 −2.762 −2.663 −2.506 −2.293
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In Table 4.11, ordered logit regression results are presented. Temperature, humidity,

light, and decreasing voltage variables are used as independent variables in the model

and dependent variable is duration, yet grouped duration (durG) are used this time.

According to results of regression, humidity and voltage have significant effect on

lifetime, yet temperature and light lose their significance.

Table 4.11: Temperature + Humidity + Light + Decreasing Voltage

Dependent variable:

durG

temp −0.003
(0.005)

humidity 0.009∗∗∗

(0.002)

light 0.0001
(0.0001)

dvoltage 2.251∗∗∗

(0.047)

Observations 36,223

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Since the main aim of the study is explaining variables which have effects on lifetime

of low-power sensors, descriptive analysis of raw data is done to understand data

well. After descriptive statistics, data are analyzed using linear regression model.

According to results of linear regression model, it is shown that linear regression

does not explain low-power sensor data well. After linear regression model, ordered

logit regression is employed and results are discussed. In addition, probabilities of

being in each group also shown. According to the results of ordered logit, humidity

and voltage have effect on lifetime of sensors.

The concept of IoT and smart environment applications is becoming more and more

popular. With smartness of environment and wide use of electronic devices and sen-

sors, lifetime and energy consumption analysis of wireless sensor networks became a

must. Wide application area of wireless sensor networks such as disaster surveillance,

healthcare, etc. raises the importance of lifetime analysis. In this chapter, linear re-

gression and ordered logit regression models are employed for lifetime of wireless

sensors using the data from “Intel Berkeley Research Lab". As a first step, literature

review is conducted to show which methods are used to analyze sensor lifetime. The
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corresponding categorization is done and presented in Chapter 3. Generally, there

are three main methods in the literature which are analytical modelling, experiment

and simulation. Statistical analysis is rare in the area of wireless sensor networks in

terms of lifetime analysis. After literature review, data set is described and explained

in details by descriptive analysis. Results of descriptive analysis are proposed and

discussed. Moreover, linear regression and ordered logit regression analysis are con-

ducted. The results of analysis are also discussed. In conclusion, the importance of

statistical analysis to understand variables that affect lifetime is presented. However,

considering results of the analysis conducted, it is shown that linear regression and

ordered logit regression models may not be able to explain the behavior observed

through the data obtained for wireless sensor networks, and they are not sufficient by

themselves to draw valuable conclusions. With this conclusion, it became inevitable

to conduct more advanced statistical methods to explain effects of external variables

on sensor lifetime. More advanced methods such as survival analysis and time series

analysis will be considered as a future work.
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CHAPTER 5

FOREST FIRE DETECTION AND EARLY DIAGNOSIS FRAMEWORK

In this chapter, the proposed early forest fire detection framework which makes use

of scalar and multimedia sensors hierarchically is explained in detail. The main ob-

jective of the framework is to create an early forest fire detection system by consid-

ering energy efficiency as well as accuracy of the system. Energy efficient system

is achieved by using scalar sensors in the first level of hierarchy. Scalar sensors are

capable of sensing scalar data such as temperature, humidity, and light. In our ap-

proach, scalar sensors are responsible for monitoring forest environment using scalar

measures. According to scalar measures, first phase detection is completed. In the

second level of the hierarchy, multimedia sensors are used. Multimedia sensors are

capable of sensing multimedia data such as audio, video, and instant images. Since

multimedia data are more informative compared to scalar data, accuracy of the system

is achieved by making use of multimedia sensors in the second level of hierarchy.

5.1 Scalar Sensors

XM1000 sensor motes are used in this study as scalar sensor motes. They consist of

three sensors, communication module, memory, and micro-controller. The processor

model of XM1000 is TI MSP430F2618 (Texas Instruments MSP430 family 16-Bit

RISC Architecture). It has 116 KB of flash memory, 8 KB of data RAM, and 1 MB

of external flash. In addition, it has UART, SPI, and I2C as serial interfaces and USB

interface. Temperature, humidity, and light sensors are integrated on the XM1000

mote. It has two different light sensors. One of them is Hamamatsu S1087, which

is visible range light sensor. It has 560 nm peak sensitivity wavelength. The other is
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Hamamatsu s1087-01, which is visible and infrared range light sensor. It has 960 nm

peak sensitivity wavelength. Temperature and humidity sensor is Sensirion SHT11.

It has temperature range from -40 to 123.8oC with ±0.4oC accuracy. In addition, it

has humidity range between 0 and 100% with ± 3% accuracy. As a communication

unit, XM1000 has TI CC2420 RF chip. The frequency band is 2.4 GHz. The RF

power is software configurable with range between -25 dBm and 0 dBm. It has range

of 120 meters outdoor and 20-30 meters indoor. XM1000 uses 2 AA batteries as a

power supply [64], [66].

Figure 5.1: XM1000 sensor mote

5.2 Multimedia Sensors

Raspberry Pi 3s are employed as multimedia motes. These boards have Broad-

com BCM2837 system-on-chip (SoC) which includes four high-performance ARM

Cortex-A53 processing cores running at 1.2GHz with 32kB Level 1 and 512kB Level

2 cache memory, and a VideoCore IV graphics processor. The board is also linked

to a 1GB LPDDR2 memory module and has Broadcom BCM43438 wireless radio

communication chip. It also provides 2.4GHz 802.11n wireless LAN, Bluetooth Low

Energy, and Bluetooth 4.1 Classic radio support. In addition, it has 40-pin general-

purpose input-output (GPIO) header, HDMI, 3.5mm analogue audio-video jack, 4×

USB 2.0, Ethernet, Camera Serial Interface(CSI), and Display Serial Interface (DSI)
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ports. It uses 5.1 V 2.5 A power supply units [146].

Figure 5.2: Raspberry Pi

5.3 System Design

The system design of the proposed framework is presented in this section and depicted

in Figure 5.3. As shown in the figure, XM1000 sensor motes are used to monitor

forest area by gathering scalar data. Gathered data are processed by each individual

node. Processing data on the edge prevents unnecessary data transmission between

nodes. In the first phase of the detection, scalar sensors are used to monitor forest

environment by sensing temperature. Measured values are compared with threshold

temperature. If there is any extreme temperature reading, all measured values are

transmitted to the sink node via intermediate nodes. Transmitted packet includes

date and time, id of sensor node, number of hops until reaching sink node, sequence

number(i.e. the sequence number of packet send by same sensor node), size of packet,

temperature, humidity, light, and the voltage level as shown in Figure 5.4.
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Figure 5.3: Forest fire detection system

Figure 5.4: Transmitted packets by scalar sensors

Following this, the received packet is checked one more time by the sink node (Rasp-

berry Pi) according to the temperature and humidity thresholds. If sink node confirms

that there can be a fire because of high temperature and low humidity readings, sec-

ond phase of detection is initiated. In the second phase, Raspberry Pi opens pi camera

to capture an image of the environment. After capturing the image, a lightweight ma-

chine learning model is used to understand if there is a fire or not. In case the result

is to have a forest fire, the fire department is informed. A flow chart is presented in

Figure 5.5 for the proposed framework.
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Figure 5.5: Overall system flowchart

In order to achieve energy efficiency, three novel features are employed within the

presented framework for forest fire detection. The first feature is the hierarchy intro-

duced in the system. As already discussed, scalar sensor nodes are used in the first

level of hierarchy. They are much more energy efficient compared to multimedia sen-

sor nodes since they measure and transmit scalar data. Scalar sensors are responsible

for first phase of detection and multimedia sensors are not used to monitor environ-

ment unless it is necessary.

The second feature employed is heterogeneity. Heterogeneous wireless networks are

more suitable solutions for surveillance and disaster management applications. In our

case, forest environment conditions can be harsh to allow maintenance, deployment,

and manual configuration of sensor nodes. In addition, there can be wild animals and

bad weather conditions where deployed sensor nodes can be damaged or in case of
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fire it is possible to lose huge number of sensors. In this sense, it is better to use

cheap, easily deployable, self configurable, and energy efficient sensor nodes. On the

other hand, accuracy of fire detection is very crucial as well. By applying hetero-

geneity, energy efficiency is achieved by scalar sensors and accuracy is achieved by

multimedia sensors in the proposed framework.

The last feature used to achieve energy efficiency is edge computing. As already

known, the most energy consuming activity is transmission over wireless link. By

processing data on edge devices (edge computing), transmission rate of the system is

dramatically decreased.

In the first phase of detection, scalar sensors monitor environment by making mea-

surements in every 10 seconds. Instead of sending packets in every 10 seconds, mea-

surements are examined in each individual sensor node. No transmission is performed

by scalar sensors unless there is a high temperature reading. By applying simple pro-

cessing on the edge, we prevent our system to make millions of transmission. In the

second phase of detection, CNN (Convolution Neural Network) based lightweight

machine learning model is created. The main aim of the lightweight model is to

perform prediction on the Raspberry Pi using captured image. Applying machine

learning based process on the Raspberry Pi prevents our system to make transmission

of the image data. Since its very expensive to transmit multimedia data, applying edge

computing paradigm supports energy efficiency perspective of the proposed system.

In addition to energy efficiency, accuracy of the system is increased by applying two

phase of detection where detection is achieved both on scalar and multimedia level.
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CHAPTER 6

EVALUATION OF THE SYSTEM

In this chapter, the proposed hierarchical forest fire detection system is evaluated us-

ing simulation and test bed implementation. Three scenarios are considered compar-

atively. In the first scenario, scalar sensors are used to detect forest fire by measuring

temperature. XM1000 sensor motes are used as scalar sensors. Temperature level

of forest area is monitored and in case there is an extreme temperature reading, the

sink node takes the responsibility to alert the fire department. Architecture of scalar

sensor scenario is depicted in Figure 6.1. The scenario considered is simulated for

evaluation and a test bed is also established to consider the real system.

Figure 6.1: Forest fire detection using scalar sensors
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Second scenario considered is multimedia sensor based forest fire detection. Rasp-

berry Pi hardware and pi camera are used as multimedia sensors. Captured images

by Raspberry Pi are transmitted to the sink node via intermediate multimedia sensors.

Received images are transmitted to sink node and if there is a fire, the fire department

is alerted. Scenario two is depicted using Figure 6.2.

Figure 6.2: Forest fire detection using multimedia sensors

The final scenario shows the proposed hierarchical and heterogeneous system in

which energy efficiency of scalar sensors and high accuracy of multimedia sensors are

utilized together. As discussed earlier and depicted in Figure 5.3, scalar sensors are

deployed in forest to monitor environment. Scalar sensors do not transmit anything

unless there is an extreme temperature reading. Pis are used as multimedia sensors

and cluster heads. In case of high temperature reading, the packets in which the con-

tents are illustrated in Figure 5.4 are sent to the Raspberry Pi. As explained through

the flow chart illustrated in Figure 5.5, Raspberry Pi checks the measurement values,

and in case of high temperature and low humidity readings it opens the pi camera and

captures an image. Instead of transmitting image to the sink node, the probability of

fire is predicted using the proposed lightweight CNN which is discussed in Chapter
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7 in detail. In case of fire, fire department is alerted. Simulations as well as test beds

are employed for evaluation of all three scenarios.

6.1 Simulation

The parameters employed in simulations are given in Table 6.1. Simulation time

is different for each different scenarios since it runs till the first node is dead. The

sensors are deployed on a square field uniform randomly. In scalar and multimedia

scenarios, there are six nodes in total where one of them is sink. In proposed model

scenario, six nodes are used again, however sink node is Raspberry Pi and source

nodes are XM1000 for each cluster. In scalar and multimedia scenarios, the packet

rate is assumed to be 1 packet in every 10 seconds to ensure early observation of

potential calamities similar to the existing studies in the literature [147], [148]. On

the other hand, event triggered packet transmission is applied in the proposed model.

The considered test bed scenario is also implemented using the same packet rate. The

packet size of XM1000 is 200 bytes since a temperature value is sent. In case of

Raspberry Pi 3, the packet size is 2 MB since the captured images are communicated.

Initial energy of each node is 8.5 Wh for XM1000 sensor mote which is the initial

energy of 2 AA batteries, and 65 Wh for Raspberry Pi which is the initial energy of

13000 mAh power bank. Initial energy is computed using the approach presented in

[149].

Table 6.1: Simulation parameters

XM1000 Raspberry Pi 3 Proposed Approach

Sensor Deployment uniform random uniform random uniform random

Deployment Field 50x50 m 50x50 m 50x50 m

Number of nodes 6 6 6

Packet rate 0.1 pkt/s 0.1 pkt/s Event Triggered

Packet size 200 bytes 2000000 bytes 200 bytes

Tx Output Power 0 dBm 0 dBm 0 dBm

Initial Energy 8.55 Wh 65 Wh 65 Wh

Power Consumption 8.18 mW 5000 mW 3527.8 mW
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To calculate the power consumption of the XM1000, the duty cycle of the radio is

calculated using the approach introduced in [118]. The following equations are used

to calculate power consumption:

Pcons = V ∗ Im (61)

Im = δidle ∗ Iidle + δtx ∗ Itx + δrx ∗ Irx (62)

δidle + δtx + δrx = 1 (63)

To find the power consumption Pcons in equation (61), the supply voltage and the

mean current drawn by the sensor are calculated. To calculate the mean current drawn

Im, the time fractions δidle, δtx, δrx for each inactive state, tx, and rx are respectively

calculated. As indicated in equation (63), time fractions are between 0 and 1 and rep-

resent the fraction of time during which the node remains in the corresponding state.

The approach presented in [150] is commonly used to calculate the time fractions. As

discussed in [150], “powertrace" library in Contiki OS can be used to observe time

fractions that node stays in each state. XM1000 mote is tested using “powertrace" li-

brary in Contiki OS and time fractions for each state is extracted. As shown in Figure

6.3 , the time fractions are calculated to find mean current consumed by the sensor

node. The current consumption used for each state is taken from manufacturer’s web-

site [64].

Table 6.2 shows the parameters and the corresponding values to calculate the power

consumption. Iidle, Itx, and Irx values are also retrieved from the manufacturer web-

site [64]. Iidle includes current consumed by sensing and CPU operations. Itx, and

Irx are currents used for transmitting and receiving data respectively. The mean cur-

rent consumed Im, is calculated using equation (62) and power consumption Pcons, is

calculated using equation (61).
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Figure 6.3: Time fractions for XM1000 (%)

Table 6.2: Calculated values for XM1000

Parameter Value

Iidle 2 mA

Itx 17.4 mA

Irx 18.8 mA

δidle 0.9619

δtx 0.0075

δrx 0.0306

Im 2.726 mA

Pcons 8.18 mW

To calculate the power consumption of the Raspberry Pi 3, the specifications provided

by the manufacturer are employed. According to [146] and [151], Raspberry Pi 3

uses 700 mA without any peripherals. In addition, the pi camera consumes 250-300

mA. In total, the Raspberry Pi 3 with Pi camera consumes approximately 1000 mA
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of current. According to equation (64), its energy consumption is 3.50 W in idle

state and 5.0 W while pi camera is open. In the multimedia scenario, 5.0 W power

consumption is used for Raspberry Pi since pi camera will always be on.

Power(W ) = V oltage(V ) ∗ Current(A) (64)

In our proposed model, Raspberry Pi always listens the serial port. If it is triggered

with high temperature and low humidity reading, it opens pi camera to capture an

image. In order to find time fraction that the pi camera is on, the forest fire data for

Cyprus is used from the technical report “Forest fire statistics for the period 2000-

2017” [3]. Data include number of forest fires for the period 2000-2017 as shown

in Figure 6.4. According to the data available, the average number of forest fires in

Cyprus is 167.06 per year.

Figure 6.4: Number of forest fires between 2000-2017 [3]

By considering this statistics, we compute the time fraction of fire occurrence in the

lifetime of Raspberry Pi. According to our calculations, pi camera is open in 1.85%

of lifetime of proposed system as shown in Figure 6.5 and simulation parameters for

all three scenarios are given in Table 6.1.
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Figure 6.5: Raspberry Pi time fractions in proposed model
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6.1.1 Simulation Results

Castalia simulation tool [152] is used to simulate discussed scenarios with the simu-

lation parameters shown in Table 6.1. Castalia is based on OMNET++ platform and

it is generally used for networks of low power sensor devices.

In Figure 6.6, results of scenario one (scalar) are depicted. In the figure, x-axis shows

the lifetime of scalar scenario in the unit of days. On the other hand y-axis shows the

scenario considered. The lifetime depicted is the amount of time from beginning to

first node to die. According to simulation results, the lifetime of XM1000 sensor mote

is 43.55 days with two AA batteries. Since scalar data is transmitted in this scenario,

system performs well in terms of energy efficiency. However, the main constraint in

this scenario is accuracy of the system. This is mainly because, the scenario with only

scalar sensors is dependent on only one metric which may not be sufficient to detect

forest fire accurately.

Figure 6.6: Simulation results of scalar scenario

The second and third scenarios, in which only the multimedia sensors (Raspberry Pi

with pi camera) and multimedia sensors together with scalar sensors are considered

respectively are also simulated in Castalia. The results of the simulations are shown

in Figure 6.7 comparatively. According to simulation results, proposed framework is

29.94% more efficient than the scenario in which only the multimedia sensors are em-
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ployed. Instead of monitoring environment by keeping camera always on, proposed

framework uses scalar sensor readings to trigger the camera. In addition, introduc-

ing lightweight CNN model to enable edge computing on Raspberry Pi decreases

unnecessary image data transmission and increases the efficiency of the system. By

applying hierarchy, heterogeneity, and edge computing paradigm, we achieved more

accurate system compared to scalar and more energy efficient system compared to

multimedia scenario.

Figure 6.7: Simulation results for multimedia and proposed framework

In addition to lifetime analysis, some Quality of Service (QoS) related measures are

also considered since edge computing facility has the potential to decrease the over-

all traffic load which would be observed in case all the messages are sent to the BS

for decision making. Compared to scalar and multimedia scenarios, proposed frame-

work performed better in terms of packet reception rate. In proposed framework,

packet transmission rate is not periodic. Packet transmission takes place according

to measurements of scalar sensors. Since we prevent unnecessary packet transmis-

sion, the channel traffic also decreases. In brief, by preventing unnecessary packet

transmission, packet loss rate caused by interference is decreased. The results are

comparatively shown in Figure 6.8. For the results presented in Figure 6.8, the packet

reception rates are shown as a function of the number of nodes in the system. Accord-
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ing to the results, the proposed framework performs significantly better considering

packet reception rates especially in case of large numbers of nodes which means

higher loads of traffic.

Figure 6.8: Packet reception rates

Additionally, RX packet breakdown is presented in Figure 6.9. Percentages of failed

packets with interference, failed packets with non RX state, received packets despite

interference, and received packets without interference are shown for multimedia sce-

nario and the proposed model as a function of number of nodes in the system. Ac-

cording to results, the proposed model performs better since event triggered packet

transmission is applied. Considering our case study which is forest fire detection,

transmitted packet and information are very critical. Results clearly show that the

proposed approach is more suitable for emergency applications since the reception

process is more reliable.
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Figure 6.9: RX packet breakdown
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6.2 Test Bed Implementation

The three scenarios considered in previous sections are used to conduct benchmarking

experiments as well as to validate the simulation results presented for the lifetimes of

sensor nodes. Figure 6.10 shows the scalar and multimedia sensors used to implement

test bed.

Figure 6.10: Experimental setup

As shown in the Figure 6.10, XM1000 sensor nodes are used to monitor the environ-

ment and communicate with each other using radio communication (CC2420 2.4 GHz

IEEE 802.15.4 RF Transceiver). They are distributed to the lab environment uniform

randomly. In order to make sure that the sensors are distributed uniformly, the area is

divided to sub areas considering the number of sensors. In turn, it is guaranteed that

each sub area has exactly one sensor node. One of the scalar sensors is sink and it

is connected to the Raspberry Pi 3 board and communicates with Raspberry Pi using

serial port. The main responsibility of sink node is to deliver received packets to the

Raspberry Pi. Raspberry Pi listens the serial port for coming packets and triggers pi
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camera according to readings. To power Raspberry Pi, 13000 mAh power bank is

used. XM1000 sensor nodes are powered by two AA batteries.

All three scenarios are implemented and lifetime analysis is conducted to validate

simulation results. The voltage readings of scalar sensors scenario are depicted in

Figure 6.11. To monitor the voltage levels, "battery-sensor" library is used in Contiki

OS. According to test bed results, XM1000 sensor motes discharge two AA batteries

in 42.50 days which is very close to our simulation results obtained as 43.55 days.

The discrepancy between the simulation results and the test bed is less than 3.5%.

Figure 6.11: Test bed results of scalar scenario

For the second scenario, a setup is created where only the multimedia sensors are

employed. As a power source, 13000 mAh power bank is used and voltage values

are monitored. To monitor voltage levels Arduino Uno board is used. Basic circuitry

as shown in Figure 6.12 is created to read voltage levels of battery while feeding

Raspberry Pi. Arduino Uno is used to read analog signal from battery and convert it

to digital signal. Converted voltage values are read by a Python script.
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Figure 6.12: Voltage monitoring circuitry

The result of the experiment is shown in Figure 6.13. As shown in the figure, the

lifetime of the multimedia sensors is 11.88 hours which is very close to simulation

results which was 11.16 hours. The discrepancy between the simulation results and

the test bed results is this time less than 6.1%.

Figure 6.13: Test bed results of multimedia scenario
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The proposed scenario is considered using a test bed implementation as well. The

power sources used are same as previous experiments for scalar and multimedia sen-

sors. The voltage levels are monitored in order to specify the lifetime of the motes as

discussed in multimedia sensors scenario.

The results are shown in Figure 6.14. The result clearly show that compared to mul-

timedia scenario, the proposed framework performs significantly better in terms of

energy efficiency. Furthermore, the test bed also validates the simulation results.

While the lifetime of the proposed model is 15.93 hours in the simulation, it is 15.66

for the test bed. The discrepancy between the results is less than 1.8%.

Figure 6.14: Test bed results of proposed framework

Comparative graph for multimedia and proposed framework is given in Figure 6.15 in

order to further emphasize the energy efficiency of the proposed framework compared

to the frameworks which are solely dependent on multimedia sensors.

In Table 6.3, results of simulation and test bed implementations for all three scenarios

are summarized. As seen in the table, scalar sensors are much more energy efficient

than multimedia sensors and proposed framework. However, as discussed in the pre-

vious sections, scalar sensors may not be sufficient or accurate enough for real time

emergency applications.
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Figure 6.15: Test bed comparative results

On the other hand, with the help of larger amounts of information provided by mul-

timedia sensors such as the image of scene, it is possible to reach the desired levels

of accuracy. Since multimedia sensors are capable of sensing multimedia data, it is

possible to gather more useful information from multimedia sensors by using more

advanced techniques such as image processing, signal processing, and machine learn-

ing. Proposed framework makes use of efficiency of scalar sensors and accuracy of

multimedia sensors. As shown in the summary table, efficiency of the system is im-

proved by approximately 29% with the proposed framework. In Chapter 7, proposed

framework is evaluated in terms of accuracy and it is shown that proposed approach

is able to provide a more energy efficient solution while the accuracy is in acceptable

ranges to detect forest fires.

Scalar Multimedia Proposed Framework

Test Bed 42.50 days 11.88 hrs 15.66 hrs

Simulation 43.55 days 11.16 hrs 15.93 hrs

Discrepancy < 3.5% < 6.1% < 1.8%

Table 6.3: Summary of results
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CHAPTER 7

FOREST FIRE DETECTION USING MACHINE LEARNING

In this chapter proposed lightweight CNN model is discussed. The main aim is to

provide a robust model to classify forest fires. Since it is a crucial problem, finding

autonomous solution to detect forest fires becomes inevitable. The most challenging

part is the creation of the data set which is in turn employed with the machine learning

model since the literature is quite limited in terms of available data. Generally, there

are data sets which are used to detect fires using smoke images. Our aim is detecting

fire from still images and especially to detect forest fires. To achieve the tasks spec-

ified, firstly, well-known image classification neural networks are examined and the

best combination of hyper parameters along with the most suitable architecture are

researched for the model. Secondly, for the data set generation, close-up forest fire

videos are examined and the necessary frames are extracted with a label. Labeling

operation is verified via double checking the images by hand. Once the labeling of

the images with fire is completed, a similar approach is also employed for non-fire

forest images. In addition to lack of data set, another constraint of our approach is the

size of the model. In order to use the created CNN model at the edge of the network

within the Raspberry Pi or similar hardware where resources are limited, it should be

lightweight.

7.1 Dataset

In order to form an accurate model, variety of images from forest fires are required.

To be able to gather those, multiple image sources (videos) are used since there is no

public image data set to use for forest fire detection. Forest fire videos are collected
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from YouTube and sampled based on the camera’s movement. Manual elimination is

performed to avoid incorrect labeling. Generated data set has 3400 images in total.

1111 fire images are extracted from 16 videos and 2289 non-fire images are extracted

from 9 videos. Extracted images have varying pose and illumination on different

locations such as autumn forests, summer forests, winter forests, different forest fires

from Canada, California, Turkey, etc. Some example images from data set are shown

in Figures 7.1 and 7.2.

Figure 7.1: Fire Image Examples

Figure 7.2: Non-Fire Image Examples

7.2 Methodology

Two lightweight Convolutional Neural Network (CNN) models are proposed to clas-

sify whether a forest image contains fire or not. Even though deep learning and

machine learning became popular in various image classifications tasks, forest fire

detection as a specific domain has limited amount of work that proposes any neural

network architecture for forest fire detection from images. In addition, as the scope

of this study is forests, the widely used and studied hardware should have taken into

consideration while developing any model for such systems due to computational

drawbacks in those hardware platforms. Hence, this study presents two lightweight

models that can work on small computers such as Raspberry Pi, Orange Pi, and Hikey

960. By using lightweight models, no transmission is required to a server to make

classification task which enables any system to work on the edge with higher energy

efficiency and fast response time.
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In convolutional neural networks, there are four basic building blocks[153]. The first

block is convolution. Every CNN model has convolutional layers. The main aim

of convolutional layer is extracting features from input images. An input image is

stacked three 2 dimensional matrices where each matrix has pixel values for each

color (red, blue, and green). In gray scale, there is only one 2 dimensional matrix.

In each convolutional layer, 2 dimensional matrices of the input image are filtered

using filter or kernel matrix by sliding kernel over the matrix. This convolution oper-

ation is performed to create feature map. Feature map is the product of convolution

operation. Number of filters decides how many feature map is produced at the end

of each convolution layer since each filter produces different feature map. After ev-

ery convolution operation, ReLU operation is used. ReLU (Rectified Linear Unit) is

a non-linear operation[154]. ReLU outputs zero for negative numbers and number

itself for positive numbers. The main aim of the ReLU operation is replacing all neg-

ative values with zero in image pixels. After ReLU operation, pooling operation is

applied. There are different types of pooling such as max, average, and sum [155].

The main objective of the pooling step is making the input representation smaller and

easily manageable. In max pooling a window size is defined (e.g. 2x2 window) and

the largest element in this window is taken from the feature map. Same operation is

applied in sum or average pooling, however this time it takes sum of features or aver-

age of features respectively. Each convolutional layer consists of set of convolution,

ReLU, and pooling operations. After convolutional layers, CNN has fully connected

layers. Fully connected layers are the multi layer perceptrons and fully connected

means that every neuron in previous layer is connected to the next layer. The outputs

of convolutional layers are used as input of fully connected layers. The outputs of

convolution layers are high-level features of input images. These high level features

are used to train the network and do classification. Briefly, convolution and pooling

layers are used as feature extractors and fully connected layers are used as classifier.

The proposed models are developed and tested in Keras Framework [156]. Each

model has 4 convolutional layers, and each convolutional layer is followed by a max

pooling operation with a 2x2 kernel. Details of each model are described in the

following subsections.
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7.2.1 CNN Model 1

In the first CNN model, 64x64 image is used. It has four convolutional layers where

each convolutional layer is followed by a max pooling layer. In max pooling operation

2x2 kernel is used. Proposed lightweight CNN model has three fully connected layers

after convolutional layers. As shown in Figure 7.3, proposed CNN model is kept

as shallow as possible considering the number of convolutional and fully connected

layers since the deeper networks are more complex in terms of time and memory

complexity [157]. Presented lightweight CNN model is trained using newly created

forest fire data set. 80-20% train test split ratio is applied. Stochastic gradient descent

is used as an optimizer since it is widely used in CNN applications and studies such

as [158], [159], and [160]. As an activation function RELU (Rectified Linear Unit)

function is used.

Figure 7.3: CNN architecture of model 1

Details of the Architecture;

• Image Size: 64x64

• Batch Size: 32

• Number of Convolutional Layers: 4

• Number of Fully Connected Layers: 3

• Dropout Rate: 0.25

• Train-Test Split Ratio: 80-20%
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• Pooling: Max Pooling(2x2)

• Optimizer: Stochastic Gradient Descent

• Activation Function: RELU

• Loss Function: Cross-Entropy Loss

• Learning Rate: 0.01

• Epochs: 100

• Early Stop Condition: No decrease in validation loss for ten consecutive

epochs.

7.2.2 CNN Model 2

Second proposed CNN model has one additional fully connected layer compared to

the first model. Max pooling is applied with 2x2 kernel. It uses 64x64 image size as

well. Same forest fire data set is used to train the second model. Train test split ratio

is 80-20% with stochastic gradient descent optimizer, RELU activation function, and

cross entropy loss function. Since second model has an additional fully connected

layer, accuracy of detection is increased. However, second model is more complex

than the first one.

Figure 7.4: CNN architecture of model 2
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Details of the Architecture;

• Image Size: 64x64

• Batch Size: 32

• Number of Convolutional Layers: 4

• Number of Fully Connected Layers: 4

• Dropout Rate: 0.25

• Train-Test Split Ratio: 80-20%

• Pooling: Max Pooling(2x2)

• Optimizer: Stochastic Gradient Descent

• Activation Function: RELU

• Loss Function: Cross-Entropy Loss

• Learning Rate: 0.01

• Epochs: 100

• Early Stop Condition: No decrease in validation loss for ten consecutive

epochs.

7.3 Results

As discussed in previous sections, new data set is presented which contains forest

images with fire and without fire along with two lightweight CNN models to classify

those images. To achieve so, a single experiment to test proposed models and various

well-known models such as Resnet50, DenseNet, and VGG16 [161] using transfer

learning is conducted. In addition, to make sure that the models presented are not

overfitting, 10-Fold Cross validation is implemented. All the results are presented in

Table 7.1 and Table 7.2.
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Model Accuracy Score (%)

Model 1 99.12

Model 2 99.56

ResNet50 83.70

DenseNet 99.00

VGG16 98.00

Table 7.1: Accuracy scores of the experiment with different models

To increase the forest fire detection accuracy of the models, created data set is en-

riched by adding external manually found different images. These images are com-

pletely different from videos that are collected. By increasing diversity of the images,

accuracy of detection is also increased. For Model 1, 98.70% detection accuracy is

achieved where it is 99.50% for Model 2. Considering similar studies in the literature

such as [162] with 97%, [163] with 96.62%, and [164] with 91.96% fire detection

accuracy results, proposed models are quite promising.

Model 1 Model 2

Mean Accuracy (%) 98.70 99.50

Mean Validation Accuracy (%) 93.20 99.00

Mean Loss 0.03556 0.01520

Mean Validation Loss 0.22593 0.02951

Table 7.2: 10-Fold cross validation results of both models

This chapter focuses on two main tasks where the first one is generating a data set

and the latter is building a proper model for classification. Although the obtained ac-

curacy results are very high, they might be biased because of the data set as the data

set contains limited number of images for each class. On the other hand, the model is

also tested with random image sets for both classes and obtained good predictions for

those random image sets. In addition, a validation set is used to to minimize overfit-

ting probability. In other words, model is saved considering the decrease in validation

loss, not the training loss. Obviously, the most challenging part is collecting data since
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there is no available image data set specifically for forest fire detection. Especially,

close-up videos for forest fires are very rare. Available forest fire images and videos

are generally from UAVs, helicopters, and airplanes. Compared to forest fire images,

it is easier to find no fire forest images with different pose, illumination, location, and

season. In conclusion, considering other studies in this area, this study contributes

to literature by proposing lightweight CNN models which enable edge computing in

turn, accuracy and efficacy in energy aware forest fire detection systems. As a fu-

ture work, it is possible to achieve more accurate and generic lightweight machine

learning models by enriching our image data set with more comprehensive data.
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CHAPTER 8

CONCLUSIONS

In this thesis, an energy efficient hierarchical approach is introduced for forest fire

detection. Unlike the existing studies, multimedia sensors with machine learning al-

gorithms are employed together with scalar sensors and the detection is performed

using fusion of information in various levels. Furthermore, the efficiency of the com-

munication is improved by introducing edge computing for decision making. Pro-

posed framework makes use of efficiency of scalar sensors and accuracy of multi-

media sensors. Scalar sensors continue operation for longer duration compared to

multimedia sensors, however since it is solely based on the conditions such as tem-

perature, humidity, and light, the detection accuracy may not reach to desirable levels.

By applying hierarchy, the new framework balances the energy efficacy and accuracy

of detection and offers a sustainable emergency monitoring system. As a case study,

forest fire detection system is presented. To achieve proposed tasks, comprehensive

literature review is conducted. Existing approaches are studied critically. Forest fire

detection and environment monitoring systems are analyzed comparatively. Proposed

energy aware approaches, type of sensors used, applied machine learning techniques,

and applied statistical techniques are investigated. Proposed framework is evaluated

using simulation and real life experiments. Simulation and real life experiment re-

sults are presented and discussed comparatively. According to the results of the study,

29.94% energy saving is achieved compared to multimedia sensor based surveillance

systems. Moreover, a new machine learning model using CNN is proposed to enable

processing on edge devices. The main constraint with CNN model is that it should be

lightweight model so that it can run on devices which have limited resources. In ad-

dition, collecting image data to train and test proposed model is another challenging

part of the study. According to test results of the model, 98.20% validation accuracy
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is achieved.

To investigate factors which affect the lifetime of sensor nodes, statistical analysis

is conducted. Linear regression and ordered logit regression models are employed.

Results of the analysis are presented and discussed.

In conclusion, proposed approach is evaluated in terms of energy efficiency and accu-

racy. Achieved improvements are discussed in detail in corresponding chapters. As

future works, proposed approach can be tested using more comprehensive setup since

six XM1000 and one Raspberry Pi 3 are used in this study. In addition, proposed

machine learning model can be further improved by expanding the employed data set

further. For the statistical analysis, more complex models can be created for better

results. Our aim is conducting survival analysis as the next step.
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