[o55u

STRUCTURAL ANALYSIS or MICROCLUSTERS
BY
CLASSICAL anp QUANTUM MECHANICAL MINIMIZATION METHODS

A MASTER’S THESIS
IN
CHEMISTRY

MIDDLE EAST TECHNICAL UNIVERSITY

BY
NURAN ELMACI

sePTEMBER 1990

2. €.
Yiksekogretim Kuruln
Dokiimantasyon Merkeel



to my mother



Approval of Graduate School of Natural and Applied Sciences.

/\9\? N
Prof.D¥.ANpay ANKARA

Director

I certify that this thesis satisfies all the requirements as

a thesis for the degree of Master of Science 1in Chemistry.

Prof.Dr.Namik K.ARAS

Chairman of the Department

We certify that we have read this thesis and that 1in our
opinion it is fully adequate, in scope and quality, as a

thesis for the degree of Master of Science 1in Chemistry.

Prof Dr Ersin YURTSEVER

Supervisor

Examining Comittee in Charge:

Prof.Dr.H.Onder PAMUK (Chai rman)%ﬁ%@

Prof.Dr.Ural AKBULUT

Prof.Dr.8efik SUZER

Prof.Dr.Ersin YURTSEVER (Supe visor) ot \'g)&‘\,
Prof.Dr.itker OZKAN Aﬂ\ ()

i



ABSTRACT
STRUCTURAL ANALYSIS of MICROCLUSTERS by

CLASSICAL and QUANTUM MECHANICAL MINIMIZATION METHODS

ELMACI, Nuran
M.S. in Chemistry
Supervisor: Prof.Dr.Ersin YURTSEVER

September 1990 Pages: 60

In this work, structural ana1y§es of microclusters
arecarried out by using classical and gquantum mechanical
minimization methods. For the <classical calculations,
optimization of the total energy is achieved with two-body
potential functions as usual. Then effects of the three-body
forces to these structures are analyzed. The same set of
high-symmetry clusters made of Carbon atoms are studied by a
semi-empirical quantum mechanical method (AM1).

At large three-body intensity parameter Z*, both AM1 and
static results show that linear conformations are preferred
to two-dimensional structures. Three-dimensional structures
seem to be the least stable ones. But at small Z*, these
results are reversed. Overall there is a good agreement
between both set of results for 7z%=0.8, suggesting that a
qualitative analysis of Carbon clusters can be done with
simple potential functions provided that properly weighted

three—-body interactions are also employed.

Key-Words: Clusters, Optimization, Lennard-Jones,

Axilrod-Teller, AM1

Science Code: 405.04.01



OZET

KLASIK VE KUANTUM MEKANIK MINIMIZASYON METODLAR

YOLUYLA MIKROKLUSTERLARIN YAPISAL ANALIZi

ELMACI, Nuran
Yiksek Lisans Tezi, Kimya
Tez Y6neticisi: Prof.br. Ersin Yurtsever

Eylal 1990

Bu c¢alismada Klasik ve Kuantum mekanik enerjii
minimizasyon yéntemleri - kullanilarak mikroklusterlaran
yapisal analizleri arastirildi. Klasik hesaplarda, toplam
enerji, ikili etkilesimler kullanilarak optimize edildi. Daha
sonra U¢ll etkilesim etkileri incelendi. Ayni ylUksek simetri
vyapilari, karbon klusterlar: 1i¢in, yari—-deneysel kuantum

method AM1, kullanilarak caligsildi.
*

Oglu etkilesim parametresinin (Z ) blylk oldugu
boigelerde, AM1 ve Statik sonuglara, Tineer yapilarin
iki-boyutlu yapilara  tercih edildiklerini gbsterdi.
Ug-boyutlu yapilarin en kararsiz yapilar oldugu gdrildi.

b 4
Fakat kUgllk Z de bu sonucun tersi gozlendi. Genel olarak

Z*=0.8 igin, her iki ydntemin sonug¢larainda iyi bir uyum oldudu
saptanmigstair. Buna dayanarak, basit potensiyel fonksiyon-
larinin yanisira uUg¢llu etkilesmeler de katilarak karbon
kKlusterlari ig¢in nitel analiz yapilabilecedi dnerilmistir.

e

Anahtar kelimeler: Klusterlar, Optimizasyon, Lennard-Jones,
Axilrod-Teller, AM1
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INTRODUCTION

1.1 Scope and Objective
The Tlast fifteen years have seen an explosion of
clusters research brought about two re]a%ive1y new
experimental - advances , supersonic jet expansions creating
-cold high density atomic and molecular beams, and laser {(mass
and optical) spectroscopy. -The dictionary meaning of a
cluster is a number of simj1ar things growing together or
persons collected or grouped closely together. Hoare [1]
defined clusters as aggregates of whether atoms, molecules,
ions etc. so small that an appreciable proportion of these
units must be present on its surface at any given time.
Halicioglu and his collaboraters [2] defined them as
aggregates held under different conditions. Also Brickmann
and Polymeropoulos [3] used the definition as aggregates in
which each atom is not farther away than a distance 2.0 ¢
from at Tleast one other atom, where ¢ 1is the hard-sphere
diameter.
Classification of clusters can be made according to many
things, such as their compositions, sizes, surroundings etc.
In general very small clusters are defined as those

containing 2-10 atoms; and small size clusters are those with

1 T. C,
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10-10%atoms; medium size, large size and very large clusters

containing 102—103, 103—104, more than 10° respectively [2].

In the last decade, there 1is a remarkable increase in
the study of microclusters physics and chemistry. These
fields are nucleation process, crystal growth, epitaxy;'
catalysis and photographic chemistry effected by previously
separated fields. The properties of microclusters are
different than their bulk properties. For example the average
number of nearest neighbors of an atom. inh the bulk phase
means its chemical va1ence. but in a cluster, it is not so
well-defined [4]. Also many quantities (temperature, surface
tension etc.) that are used to describe macroscopic systems
can not be used for a description of microscopic systems.
Because of these factors , the standard methods cannot be
used in.the study of microscopic systems.

Another important area of the study of microclusters is
the astrophysical theories where small interstellar grains
are used in the regulation of hydrogen equilibria in the
galaxy. Superconductivity, ferromagnetism and structural
stability of <clusters (or magic numbers), electronic
properties of clusters <can be considered among the
theoretical problems in the field of cluster research.

Many attempts have been made to predict the

energetically most favorable structures of small clusters



[6-14]. Calculations of this sort may be classified into

three groups:

i) Quantum mechanical calculations which are based on
either ab-initio or semi-empirical methods.
ii) Simulation studies which may be classified in to

Molecular Dynamics and Monte Carlo or static methods.

Ab-initio methods are based on self-consistent field
approach 1in which all necessary 1integrals are computed
analytically. Although these methods give very accurate
results for small molecules, the calculations become

extremely difficult with the increasing system size.

In the quantum-mechanical semi-empirical methods, the
same integrals are calculated by incorporating some
parameters either adjusted to fit experimental data, or
results from ab-initio calculations. There are two kinds of
semi~empirical methods; one using one electron Hamiltonian
only and the other relying on parametrical functions to
approximate the full two-electron Hamiltonian. An example for
the first one 1is Hilckel molecular orbital theory which is

mostly used in the study of conjugated hydrocarbons. This



method uses a one-electron hamiltonian and takes the bond
integrals as adjustable parameters rather than guantities to
be calculated theoretically. The most common examples for the
second type of semi-empirical methods are MINDO/3,MNDO and
AM1 [15-17]. These methods are useful for obtaining molecular
geometries, heat of formation, etc. especially for organic
compounds.

In the study of small clusters ,computer simulation
techniques based on the atomistic considerations provide a
useful approach. Molecular D&namics and Monte Carlo methods
are the two common atomic 1éve1 computer simulation methods

In Molecular Dynamics technfque the classical equations
of motion are solved numerically for grouped N-atom
clusters. Generally this method uses microcanonical ensemble
(N,V,E). The atomic coordinates and their time derivatives
representing the system’s motion (motion of every atom) are
generated as time-order series. The temperature effects are
included 1intrinsically 1in the result by incorporation of
kinetic energies with the calculation scheme. With a
sufficient number of iterations Molecular Dynamics
calculations can simulate any time-dependent
(non-equilibrium) as well as equilibrium quantity [2].

Monte Carlo techniques 1in general are based on the

canonical ensemble (N,V,T). For initial coordinates the atoms



in the cluster are randomly placed in a unit cell. Then each
particle is moved for a large number of times and the outcome
of these moves are based on some probabilistic formulas.
After sufficient number of iterations the desired quantities
are calculated as ensemble averages from position dependent
guantities estimated in every step. Any equilibrium quantity
can be calculated as a function of temperature [2].

The static method 1is based on a simple minimization
technique to find the configuration of a cluster
corresponding to a hopefully global energy minimum. It is a
temperature independent apbroach and can be regarded as the
T=0 K case. Because of the simplicity of the static method
and its small demand on the computation time, it 1is used
quite frequently to obtain optimum points. However one must
be careful in identification of these points, since there
usually are a large number of local minima [2].

A11 three of these methods rely on some type of a
potential energy function which describes the total
interaction energy among atoms as functions of their
positions in the cluster. For computational reasons, it is
necessary to define the total potential energy of the system
in terms of parametrical functions.

If it 1is assumed that a function, §(?1,?2,.....,?N)

exists to describe the total potential energy of an isolated



system of N atoms as a function of their positions, then
without any loss of generality the function ¢ can be expanded

as;

~+i ......... iu(?,? N 0 I (1.1)

where u(?i{?j), u(?i,?j;?k) and u(?i,...,?n) denote the two
body ,three body and n—body expansion of ¢. It 1is usually
believed that the series'has a rapid convergence, therefore
the higher moments may be neglected. Otherwise the equation
is too cumbersome to be employed for systems containing more
then only a few atoms. .

In the simplest approach the three-body and higher
terms are neglected and the potential energy is represented
only by a pair potential. This approximation is called
first-order approximation and may be useful in the
thermodynamical study and the rare gase clusters where the
role of many-body forces are minimal [18]. However one of the
recent studies 1indicates that even though for rare gases
there is influence of three-body forces. It is shown that for

xenon cluster there 1is a magic number "13", but for argon



there is none, due to the three-body dispersion
(triple-dipole) forces which are related to the
polarizability [19]. Polarizability of xenon 1is 2.5 times
larger than that of argon. Three-body contribution increases
with increasing covalent character.

More recent : studies indicate the 1mpbrtance of
three-body forces in cluster research [20-28]. Halicioglu and
White [20] calculated micro-cluster shapes with addition of
three-body forces to the energy. They concluded that 1inear
and two dimensional structures are preferred to three
dimensional structures, Also Oksuz [26] showed that, for 13
atom clusters, pentagonal pyramid and tetrahedral shapes can
be energetically preferred depending on the strength of
three-body forces instead of icosahedron which 1is the most
stable structure if only two-body potential was considered
[11. |

The origin of all the forces between atoms and molecules
is the interactions of permanently or temporarily charged
particles. These interactions are usually expressed as
(Qler““) - Q, Q, are charges <yF‘1nteracting particles and
the magnitude of n determines whether it is a short- or
Tong-range interaction.

Short-range interactions are called valence or chemical

forces. They become 1important when the particles come



together close enbugh for their electron clouds to 5ver1ap.

The 1long-range interactions can be considered in three

parts; electrostatic, induction and dispersion. These

contributions arise from various types of interactions. A

direct application of Coulombic 1law of electrostatic

interaction is thé most general one (U « r '). In the
induction effect a charged particle (or an ion) interacts
with a neutral molecule (U « r *). Dispersion forces are
important for the %nteractions between nonpolar molecules.
These type of interactions are also called London
Forces(induced dipole-induced dipole) (U « r °) [29].

In general, a potential function which describes the
interaction of a diatomic system must obey the following
conditions;

1) U(r‘ij)—-———éO as r — o

2) u(rij)——» o for r<r and r..zo

3) u’(rij)-e = 0 for a unique Lo with Fon<le @

4) u”(ro) > 0 and u(ro) <0

The most common pair potentials are,

1) u(rij)= (m-n) [nr’™ -mr "] (Mie)

2) u(rij)= p-6_pp-12 (Lennard Jones)
3) u(rij)= [ 1-e%(1"7)12 _4 (Morse)

2 2
4) u(rij)= Ae 2" - Be ®" (Gaussian)

5) uaB(rij)= 2“23/r + Ae TP (Born-Mayer)



They all satisfy the first condition. The condition
(2)is satisfied by 1,2,5 but not by 3. and 4. But then some

artificial cutoff can be 1introduced such that u(rij):o if rij

Sr . [11.

The purpose of this work 1is to analyze a nhumber of
energetically favorable structures of c¢lusters up to
six—-atoms by direct minimization of the total energy .The
effect of three-body forces on the structure of these
microclusters are investigated. For <carbon clusters,

comparison of the results with a semi-empirical quantum

mechanical method'(AM1) is also carried out.



COMPUTATIONS

2.1. Potential Functions

A Lennard-Jones type pair potential was chosen as
the two-body part of the total energy.
12 B8
_ o [ o
u(r, ) = 45[[7{1.] [——-r“] ] (2.1)
where o Ais the hard-sphere diameter, rij is the distance
between i’th and j’th atoms,'e is the energy at equilibrium

separation distance( depth of the potential well).

Figure 1. Lennard-Jones (LJ) pair potential.
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12 ’
[—%— } term 1is the short range repulsive term. At

ij
small r values repulsive part is predominant.

r

6
- [—3— } term is the long range attraction part of the
ij

potential. At Targe separations the attractive part s
predominant. This term represents dispersion forces, induced
dipole -induced dipole type interactions.

- If two parts of the potential are drawn separately,

v(r) ]
vEE (r) 1

VALJ(r)

Figure 2. Attractive and repulsive components of LJ.
This function gives a very simple realistic

representation for the interaction of spherical non-polar

molecules [30].
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By applying perturbation theory up to second order, the

dispersion potential (V « _lE) between two nonpolar particles
r

can be obtained. Similarly the three-body dispersion
potential between triplets can be derived by applying
Rayleigh—-Schrodinger perturbation theofy up to third order.
The three body dispersion potential was first obtained
by Axilrod-Teller [31-83]. The so called Axilrod-Teller

triple-dipole potential is,

u(?i,?j,?k) =z [ (2.2)

(1+SCoseiCosejCosek)
(r. r_r )?

ij ik jk

Where 0 ,0 ,6 and r_ ,r.
. i i k ij

Jk,fi represent the anglies and the

K
sides of the triangle formed by the three particles 1i,j,k
respectively. The three-body intensity parameter is denoted
by Z.

This potential represents the Tlong-range dispertfa]

interactions. The intensity parameter is proportional to the

ionization potential and third power of the polarizability.
- 9 3 .
Z-— —13:[« (2-3)

The sign of the term (1+3CoseiCosejCOSek) depends on
configuration of atoms;
1) If all three angles < 90° it is positive (repulsive

potential).

12



2) If one angle > 90° it is negative (attraction)
3) If three atom are placed 1in a straight 1ine
(linear),it takes a minimum value (-2) which +indicates a

strong attraction.
2.2. Scaling of the Parameters

The parameters of potential can be reduced by

appropriate scaling. The total energy is,

50l BT

-1 (1+3Cosg Cos8 Cosg )
yA i 3 k (2.4)

3
(rijrikrjk)

r
* _ i3 . _U .
rei® o ' U 4e g

7%, Z
4¢0°
then the final dimensionless potential becomes,

L L IE-E T

122 51 *
= j= g 15

el jel (1+3Cosg Cos8 Coso )
5 s Zz*.[ L0009, } (2.5)

. x _x % 3
i¥3 j%2 k&1 (rij . jk)

13



2.3. Optimization

The solution of _g%—=o for i=1,...3N-6 provide the
i

optimum points of the potential hypersurface .These optimum
points can be characterized by their second derivatives. For
functions of only one variable, the first derivative is zero
at a minimum, maximum or an inflection point. At a minimum
point, second derivative 1is positive, at a maximum its value
is negative, and at an 1inflection, its value is zero. For
functions with more than one variable, gradient is defined as
the first derivative vectof with respect to all variables.
The second derivative matrix is called Hessian. For optimum
points the first derivatives with respect to all variables
must be smaller than a given threshold A, that 1is the
gradient vector must have zero 1ength;

The first derivative of potential energy for a system
gives forces acting on the system and the second derivatives
give force constants. So 1if the gradient vector 1is zero the
molecule is in a stationary position. Hessian matrix is then
used to characterize these points. If all eigenvalues of
hessian are positive, it corresponds to a local minimum, if
they are all negative it is a local maximum. The saddle point
may be defined as first order,second order etc. If there is

one negative eigenvalue it is called a first order saddle

14



point. It 1is a maximum in one variable and minimﬁm in all
others. If there are n negative eigenvalues , it 1is a
n‘Pforder saddle point. A zero eigenvalue indicates inflection
point.

In the optimization process, the important points are
the choice of coordinates and the starting geometry. The
gradient and hessian may be computed analytically or
numerically based on some approximate schemes.

The cobrdinates can be chosen as internal or cartesian
coordinates. Internal coordinates contain bond 1length,
valence and dihedral angles. Internal coordinates are usually
preferred,since the  total energy is dinvariant for overall
translation and rotation. There is one transformation from
internal to cartesian coordinates but there may be more than
one for the reverse case. Even though the internal
coordinates are not unique , one must be careful to
obtain a chemically reasonable set. The coordinates must
describe the system uniquely.

There are many methods of optimization. They may use
only the function or function plus gradient or function,
gradient, hessian. The problem 1is the calculation of hessian
and gradient matrices.

The steps in optimization are;

1) Starting with a geometry Xk, initially k=0, hessian

15



and its inverse are estimated.
2) The energy (Ek) for Xk and gradient (gk) is
calculated.
3) Hessian 1is updated, so that the model surface fits
the current energy and the gradient as well as from previous
steps (omit for the first point).

4) The minimum was found by using the gradient and

the updated hessian (B).

H =281 : (2.6)
- T (o 1 v 3T -
E(x)—Ek+ g, (x xk)+ —E—(x xk) Bk(x xk) (2.7)
dE _ r _
g% = 9(x) =g + B (x-x) =0 (2.9)
& AT
P, = XX, = Bk 9, = Hkgk (2.10)

If the gradient is smaller than a threshold, or change in the

geometry 1is very small, than it is stopped.

5) Minimization is continued with E(xk+- apk) mostly o 1is
equal to 1. That is xk+1= xk+ pk k=k+1 by returning to the
second step.

The rate of convergence depends on the initial geometry
and estimation of hessian. The initial hessian can be chosen
in several different ways;

1) Unit matrix; all the structural information about

geometry 1is discarded.

16



2) Empirical guess; the diagonal elements of matrix 1is
calculated related with bond length, bond angle, torsion etc.
3) The full second derivative matrix can be calculated

analytically or numerically [34].

We have used the method of Davidon, Fletcher and Powell
[35-37] which is an iterative steepest descent method for
finding a local minimum of a function with several variables.
It has a guaranteed convergence. This method requires the
gradient vector. In this method, there are simplifications by
which certain orthogonality conditions which are important to

the rate of solution are preserved.
2.4. Semi Empirical Methods

The exact solution of Schrodinger equation 1is not
possible for many electron systems. However there are
approximate methods for small molecules whose accuracy may be
comparable to experimental results for such as Hz, LiH etc.
But as the system size increases, the problem becomes more
difficult. Semi-empirical methods [38] rely on approximate
functions and parameters to take place of the necessary
integrals such that the results either mimic ab-initio

calculations or experimental findings.

17



The complete electronic hamiltonian for a molecule in

atomic units is,

Z Z Z
H=- 3§ v Z - Zz - +ZZ A2 (2.11)
¥ ! Al 5 1] AB

The first term is the kinetic energy of electrons, and

the others are potential energy terms between nuclei and

electrons .This Hamiltonian c¢an be partitioned into two

parts,
H=H +H +V (2.12)
1 2
1 2 ZA . .
H = - — z ve - Z z —— - (one-electron Hamiltonian)(2.13)
i ! i Ai
H2 = z Z r1 (two- electron Hamiltonian)(2.14)
i ij
and

( nuclear repulsion) (2.15)

ZAZB
Ve

AB

If the proper combination of Slater determinants are used as

the 2n-electron wavefunction :

|7, (at1) 2 (181 ...¥ _(Da(1) ¥ (1)(1)
1|7, (2)a(2) ¥ (2)p(2) ...¥ _(2)a(2) ¥ (2)p(2)

Y2n)!

Y=

¥_(2n)a(2n) ¥ (2n)(2n)...¥ (2n)a(2n) ¥ _(2n)p(2n)

(2.16)

18



Then the expectation value of the energy is:

CE>= <Y [H|¥>+V (2.17)
< E> =2 2H_,+§(2J,,-—K__)+V (2.18)
ii L, ij ij
L 1] ’
where H is the core matrix element and Jij, Kijcou1omb and
11
exchange integrals respectively.
= e, (0 H () v (e, (2.19)

1

r
12

J, = f?.(1) ¥ (1) ¥ (2) ¥ (2)dr dr. (2.20)
1] 1 i J j 1 2

i

r
12

K = fw.(1) ¥ (1) ¥y (2) ¥ (2)dr dv. (2.21)
1] 1 J i J 1 2
Introducing Lagrange multipliers for orthogonality conditions,

<@>=<E> —2225,‘8,, (2.22)
JAs, 13 1]

and applying variational calculus we have the condition:
8G = 8¢<E> = 0 (2.23)
When molecular orbitals are expanded as 1linear combinations

of atomic orbitals (LCAO),

¥ = z c ¢  (2.24)
L Tip Tp

19



Equation 2.23 becomes:
z (F -ES )c =0 (2.25)
a Pqg 1 pqg iq

with the Fock matrix element

1
= + t) - t 2.26
Fo™ Moo Zt P, [(DCIIS ) = —— (ps|aq )} ( )
and the overlap integral
s =j¢ ¢ dt (2.27)
Pa p q
In the above equations
H = j‘ & H ¢ (2.28)
Pg P q :

1

r
12

(palst) = [[o (1) & (1) ¢,(2) ¢, (2)  (2.29)

where Pst = 2 c cjt density matrix element.
i=1

The majority of semi-empirical methods are based on
the zero-differential overlap (zZDO) approximation. Although
there are many different parametrizations using 2ZDO, the
commonly used ones are MINDO/3 [15], MNDO [16] and AMI1
[17]. In all of these methods almost all terms in energy
expression (Coulombic repulsion, electron-core attraction,
core-core repulsions, onhe-center exchange terms) are
evaluated by semi—empiricaT functions and these functions

contain numerical parameters that can be adjusted to fit

20



experimental data instead of analytical so1utions.¢yf these
integrals.

The 1last development of these methods 1is the AM1
(Austin Model 1) [17]. It 1is slightly different then MNDO,
in that it modifies CRF (Core Repulsion Function) by adding
gaussian terms. This 1is supposed to reduce excessive
interatomic repulsion at large separations.

By using these approximate methods, quanfum mechanical
calculations for some very large molecules are possible with
appropriate computer times.They are mostly used in

the structural calculations of organic compounds.
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RESULTS AND DISCUSSION

We tried to investigate a large number of high symmetry
structures for 2 to 6 atom clusters. A complete list is given
in figure 3. Even though this 1ist is by no means complete,
the energetically most favorable structures are included.

As the first sfep, bond lengths and certain angles are
optimized with 2-body potential such that initial symmetries
of clusters are preserved. The results are given 1in tables
1-3.

We observe that higher dimensional cases are more
stable. For example three dimensional clusters are more
stable than two and one-dimensional ones. It is well known
that the linear structure is highly unstable when only 2-body
potential is used. Since one of the aims is to study the
effects of 3-body forces, we then added +the scaled
Axilrod-Teller potential. In figure 4-7 (a), the energies are
plotted as functions of three body intensity parameter (Z*)
keeping previously optimized geometries. In figure 4-7 (b),
the same functions are plotted by allowing each structure to
be reoptimized under 3-body potential. In all optimized
structures, the second derivative matrix Hessian is
diagonalized and eigenvalues are analyzed. We did not find
any negative eigenvalue showing that studied structures

correspond to local or global minima.
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Figure 3.a. Clusters (2,3,4)
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Figure 3.b. Clusters (5)
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Figure 3.c. Clusters (8)
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Figure 3.¢- (Continued)
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Table 1. Static Results for 2,3 and 4—-Atom Clusters with Two Body
Potential Only.
NO STRUCTURES R(a) R(b) REMARKS
c2 LINEAR -0.250 1.122 -
C3 TRIANGLE -=0.750 1 .122 -
c3 LINEAR ~-0.508 1.121 - all r opt —aa
6 PYRAMID -1.500 1.122 -
7 D.PYRAMID -1.279 t.193 .033 6d= 80.0
r,edop t—— rhom.
4 | RHOMBUS -1.268 | 1.120 -
3 SQUARE -1.120 1.113 -~ rectangle—square
5 TSHAPE (aba) -0.880 1.111 .104 r’s,edopt—a rhom.
2 PLANAR(aaa) -0.805 1.116 - r’s,edopt—e rhom.
1 LINEAR(aba) -0.766 1.121 .120 [all r opt——aba
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Table 2. Static Results for 5-Atom Clusters with Two Body

Potential Only.

NO STRUCTURES R(a) R(b) REMARKS
8 TR.BIPYR -2.276 1.124 1.120
9 SQPYR2 -2.120 1.113 1.122 {R(a) sq.,R(b) pyr.
10 SQPYR1 ~2.119 1.117 - all R’s equal
11 DISTOR.SQPYR -2.077 1.118 -
6 W.3TRIANGLE(*) -1.794 1.12 -
7 BFLY2(x) -1.588 1.117 - 86=150

R’s,8 opt—wtrianx
3 RECTANGLE -1.553 1.929 1.125 R(c)=1.117

R’s ,8 opt—8=60.0
4 BFLY1(x) -1.552 1.118 = =120

R’s,8 opt—wtrianx
2 | PENTAGON -1.389 1.113 =
5 TETRAHEDRAL -1.160 1.i09 —_—
1 LINEAR(aaaa) -1.025 1.120 - abab opt—aaaa
1 LINEAR(abba) -1.025 1.121 1.119 R’s opt-—abba




Table 3. Static Results for 6—-Atom Clusters with Two Body

Potential Only.

NO STRUCTURES E R(a) R(b) REMARKS
19 | OCTAHEDRAL -3.178 | 0.790 -
17 | WITH.3PYRAMID| -3.075 | 1.120 -
18 |DIST.OCTAHEDRA| -2.813 | 1.117 -
16 | WITH.2PYR -2.905 | 1.118 -
9 PENT.PYR -2.639 | 0.947 | 0.603
12 BOAT CONF. 1 -2.615 1.112 1.104 rectangular boat
13 | BOAT CONF.2 -2.613 | 1.110 - square boat
10 | SQPYR2 -2.420 | 1.113 | 1.119 | R(a)sq,R(b) pyr
R{(c)=1.11
15 | CHAIR.CONF. -2.377 | 1.112 | 1.096
6 WITH.4TRIAN -2.339 | 1.1189 -
5 WITH.TRIANGLE| -2.328 | 1.119 -
7 ZIGZAG -2.322 | 1.120
4 DISTOR.HEXGON| -2.160 | 1.110 | 1.118
8 PENTAGON -2.142 | 1.276 -
3 WITH.2TRIAN -1.793 | 1.115 | 1.121
14 | SQPYR1 -1.775 | 1.084 | 1.088
11 | TR.BIPYR -1.694 | 1.098 | 1.095
2 HEXAGON -1.635 | 1.115 -
1 LINEAR(abcba)|{ -1.284 | 1.1209| 1.1194|R(c)=1.1193
all r opt—abcba
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In figure 4-7 (a), at 1large Z* values the energy
separation for different structures 1is larger in comparison
to figure 4~7 (b). In the latter case the energies are
closer. Also, in figure 4-7 (a) after z* = 0.6, there is not
much change in the ordering, but in figure 4-7 (b), this
threshold 1is around 0.9. For sufficiently 1large 2* ,the
ordering is almost same for frozen and optimum structures.

In all cases linear type of structure is the most stable
ohe at Z* larger than an average value of 0.6. At large Z*
one and two dimensional structures are more stable than three
dimensional structures being just the opposite of two-body
case. For 2Z* larger than about 0.4, the most stable three
dimensional conformation starts to lose its stability.

At Z* in between 0.4-0.6 the energies of most of the
structures are much more closer, compared to very small and
very large Z*. After 0.8 there are no more qualitative
changes. The results at Z®= 0.8 are given in tables 4-6 from
the most stable structure to the least stable structure.

Finally we wanted to find out whether there 1is an
optimum range for three-body-force-strength parameter such
that these static calculations may be used to study a real
cluster system. Using the AM1 method same structures are
optimized for Carbon clusters and the results are given 1in

table 7-9. We also made calculations with MINDO/3 and MNDO

36



Table 4. Static Results for 2,3,4-Atom Clusters at 2*=0.8

NO STRUCTURES E R(a) R(b) REMARKS

€2 | LINEAR - - -

C3 | LINEAR -0.585 | 1.101 all r opt—aa

€3 | TRIANGLE -0.455 | 1.197

1 LINEAR(aba) -0.935 | 1.099 | 1.083

2 PLANAR (aaa) -0.824 | 1.113 - R’s opt—all r eq
3 SQUARE -0.769 | 1.168 -

4 RHOMBUS -0.769 | 1.168 - rhom — sq

5 TSHAPE (aba) -0.751 | 1.116 | 1.165

6 PYRAMID -0.577 0.736 1.040 Z=1.0 pyr—planar
7 DPYRAMID -0.560 | 1.330 | 1.152
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Table 5. Static Results for 5-Atom Clusters at 7*=0.8

NO STRUCTURES E R(a) R(b) REMARKS
1 LINEAR(abba) -1.287 | 1.098 .081

1 LINEAR(aaaa) -1.283 1.090 -

2 PENTAGON -1.165 | 1.138 -

3 RECTANGLE -1.026 | 2.004 . 206

4 BFLY1 -1.023 | 1.181 - =120
5 | TETRAHEDRAL -1.007 | 1.129 -

6 W.3TRIANGLE -0.997 | 1.2089 -

7 BFLY2 -0.995 | 1.187 - 6=150
8 TR.BIPYR -0.852 |.1.697 .224

9 SQPYR2 -0.820 | 1.199 .407

10 | SQPYRf -0.800 | 1.272 -

11 | DISTOR.SQPYR -0.783 | 1.274 -
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Table 6. Static Results for 6-Atom Clusters at 2*=0.8

NO STRUCTURES E R(a) R(b) REMARKS

1 LINEAR(abcba) | -1.640 | 1.098 | 1.080 R(c) 1.078
2 HEXAGON -1.587 | 1.118 -

3 WITH.2TRIAN -1.390 | 1.078 | 1.178

4 DISTOR.HEXAGON| -1.384 1.i33 1.203

5 WITH.TRIANGLE | -1.321 1.205 -

6 WITH.4TRIAN -1.293 | 1.208 -

7 ZIGZAG -1.292 | 1.208 -

8 PENTAGON -1.201 | 1.375 -

g PENT.PYR -1.181 |-0.980 | 1.195

10 | SQPYR2 -1.163 | 1.218 | 1.319 R(c)=1.101
11 | TR.BIPYR -1.125 | 1.152 | 1.161

12 | BOAT CONF.1 ~1.091 1.279 | 1.197

13 | BOAT CONF.2 -1.077 | 1.247 -

14 | SQPYRf -1.063 | 1.155 | 1.226

15 | CHAIR.CONF. -1.042 | 1.246 | 1.207

16 | WITH.2PYR -0.923 | 1.303 -

17 | WITH.3PYRAMID | -0.921 | 1.318 -

18 | DIST.OCTAHEDRA| -0.913 | 1.306 -

19 | OCTAHEDRAL -0.907 | 0.936 -
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Table 7. AM1 Results

for 2,3,4-Atom Clusters

NO STRUCTURES E (eV) R(a) R(b) REMARKS

Cc2 LINEAR -247.08 1.164 -

C3 LINEAR -375.47 1.288 - All r opt— aa

Cc3 EQ.TRIANGL ~-370.05 1.415 - r's,8 opt—linear
r’'s opt-snonsymmet.
trian. 8’ 50,60,70

1 LINEAR.aba -500.77 1.308 1.279 abc opt—aba

DPYRAMID % -487.07 1.459 1.487 Gdopt —180

4 RHOMBUS x* -487.08 1.464 - opt 61=118 62=62

5 T-SHAPE(ab)| -496.65 .1.350 1.483 abc opt—aba

3 SQUARE -495,60 1.448 -

2 PLANAR.aaa | -494.83 1.393 -

6 PYRAMID -488.44 1.560 - all r equal

-4390.88 1.82 1.48 R(a)-base triangle

R(b)-pyr.

7 DPYRAMID —-480.21 1.629 - 6 = 60.0
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Table 8. AM1 Results for 5-Atom Clusters

NO STRUCTURES E (eVv) R(a) R(b) REMARKS

1 LINEAR(abba) -629.42 1.280 1.278 abcd opt—abba

1 LINEAR(aaaa) -629.42 1.279 - abab opt-—aaaa

3 RECTANGLE -620.57 2.568 1.487 R(c)=1.484
R’s,8 opt—8=60.0

6 W.3TRIANGLE -620.54 1.478 -

2 PENTAGON -619.33 1.356 -

8 TR.BIPYR -619. 31 2.282 1.540

7 B.FLY2 ~619.24 1.452 - 6 = 150

4 B.FLY1 -619.16 1.444 - 6 = 120

9 SQPYR2 -615.95 |-1.486 1.755 R(a) sq,R(b) pyr

5 TETRAHEDRAL -615.26 1.450 =

11 | DISTOR.SQPYR | -615.21 1.557 -

10 SQPYR1 -615.16 1.569 = all R equal

8 TR.BIPYR -612.69 1.5664 = all R equal
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Table 9. AM1 Results for 6-—-Atom Clusters

NO STRUCTURES E (eV) R(a) R(b) REMARKS

1 LINEAR(abcba)| -755.20 1.294 1.276 |abcde opt—abcba
R(c)=1.278

2 HEXAGON ~-751.70 1.317 -

3 WITH.2TRIAN ~748.33 1.321 1.434

4 DISTOR.HEXAGON{| -747.32 1.356 1.498

7 ZIGZAG ~745.46 1.484 —

6 WITH.4TRIAN -743.562 1.481 -

5 WITH.TRIANGLE| -~743.12 1.467 -

12 BOAT CONF.1 ~741.25 1.5562 1.503 rectangular boat

13 BOAT CONF.2 -741.15 | 1.545 - square boat

9 PENT.PYR ~740.78 1.464 2.050

15 CHAIR CONF. ~740.66 1.568 1.528

18 {DIST.OCTAHEDRA| -740.28 1.608 -

10 SQPYR2 -739.53 1.558 1.691 R(a) sqg,R(b) pyr

R(c)=1.305

17 WITH.3PYRAMID| -73S9.28 1.6089 —

16 WITH.2PYR ~737.80 1.611 1.386

14 | SQPYR1 ~736.25 2.098 2.190 |R(c)=1.483 a,c(sq)
R(d)=1.611 d(pyr)

11 TR.BIPYR ~-735.78 1.484 2.570 R(c)=2.132
R(a,b)trian;R(c)py

8 PENTAGON ~735.28 1.455 -

19 | OCTAHEDRAL ~733.23 | 1.673 - Ra(sq) Rb(pyr)opt

. — all r equal
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method. Since their orders are approximately same only those
from AM1 are displayed. In all cases the optimum geometry of
the lowest energy structures are linear. These results are in
good agreement with ab-initio [39-50,54] studies and some
experimental data [51,52,53]. Again, linear conformation is
preferred energetically to two dimensional clusters which
were in turn more stable than three dimensional clusters. The
comparison with other results are given 1in table 10. A11
studies indicate that, the ground state structure of 03 and
C, is linear. For annd C6 there are some discrepancies.
[40,42, 46, 49]. According to Ritchie [40], Rao [42], and
Raghavachari [46] the favorite structure of C4 is rhombus
having a 1little energy difference (about 0.3 eV) with the
linear one. But ESR results of Graham [51] shows that the
lTinear conformation is the lowest energy state. And also
according to Raghavachari [46], the stable structure of C6 is
distorted hexagon instead of linear.

We see that the two-body potentials do not provide a
good description of the Carbon clusters. Even for small Z*
values, this qualitatively incorrect ordering of stability
prevails. Only when Z* reaches the value of 0.8 then there is
a good similarity between classical and quantum mechanical

results.
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Table 10. For Carbon Clusters, Comparison of AM1 Results (Bond
Lengths and Ground Configuration) with Other Results.
The Bond Lengths belong to Linear configuration if not

Specified.

c@cbccCoboag
METHOD c c c c c
2 3 - 4 8 6
AM1 1.164(a){1.288(a)|1.309(a)|1+.280(a)|1.293(a)
1.279(b)|1.278(b)|1.275(b)
1.269(c)
SDHF/DZP 1.260 1.290 1.310 1.290 -
[39] 1.280 1.280
SCF-UHF 1.350 1.300 Rhombus - -
[42] 1.260
HF 6-31G™ 1.245 1.278 Rhombus - -
[46] 1.425
6=61.5
RHF/DZP 1.260 1.290 1.310 1.290 1.300
[47] | 1.280 1.280 1.280
1.280
SRCI/3-21G* 1.203 - Rhombus - -
[40] 1.448(a)
1.500(b)
Experimental 1.240 - - - -
[521]
MBPT/CC-TZP - 1.2997 - 1.2967 -
[45] 1.2862
Experimental - 1.277 - - 1.293
[53]
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Table 10.(Continued)

METHOD C2 03 C4 C5 Ce
ESR+HF/DZ - - 1.306 - 1.299
[41] 1.282 1.280
1.273
HF /6-31G™ - - 1.300 - -
[50] 1.276
SCF CEPA-1 - - 1.288 -
[43] 1.283
MP2/6-31G"* - - - 1.300 -
[44] 1.291
MCSCF,MRCI - | - ’ - - 1.298
(48] 1.280
1.265
HF/6~31G™ - - - - distort.
[49] hexagon
6=80.4
1.316
Some of the Abbreviations in Above Table
SHF/DZP Single Determinant Hartree-Fock Tlevel using Double Zeta
plus Polarization basis set.
SCF-UHF Self Consistent Field, Unrestricted Hartree-Fock.
HF/6~-31G* Hartree-~fock level calculation using 6-31G basis set.

RHF
SRCI/3-21G*

MBPT/CC-TZP

ESR
CEPA
MCSCF
MRCI

Restricted Hartree-Fock

Single Reference Configuration Interaction.

Many Body Perturbation Theory using Coupled Cluster
theory with triple zeta plus polarization basis set.
Electron Spin Resonance.

Couple Electron Pair Approximation

Multi configuration SCF

Multi referance Configuration Interaction.
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If we compare the structures and the ordéring for
classical (Z*=0.8) and gquantum mechanical results:
a) C3 The 1linear form is more stable than the
triangular form 1in both sets of calculations.
b) cC, 7 structures are studied. The 1linear one 1is the
energetically most stable structure and distorted pyramid is
the least stable structure in both methods. The ordering is
.given 1in table 11. The main difference 1in this case is the
planar(2) structure. The classical calculations overemphasize
the stability of this cluster as expected since this geometry
allows the maximum three-body attraction. In the case of
trigonal pyramidal conformation, at Z*=1.0 there is an abrupt
change in the structure during the optimization. It goes to
planar conformation suddenly. The same case observed in the
AM1 result. The distance between the fourth atom to the
center of the base-triangle becomes shortened. This forces
the three dimensional structure to the planar structure.
c) C5 The number of structures studied is 11. The ordering
is given in table 12. If we use AM1 results as the correct
stability criterion, then we see a very good match of
results. The linear ones are the most stable cases in both
methods. The remaining geometries can be classified into two
groups. There are basically two dis&repancies in this

grouping. Tetrahedral structure 1is again too stable due to
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Results

for

Comparison of Quantum Mechanical

4fAtom Clusters.

Written from the Most Stable to the Least Stable One.

AM1 z2*=0.8 | 2-body
1 1 6
4 2 7
5 3 4
3 4 3
2 5 5
] 6 2
7 7 1

Results

for

Comparison of Quantum Mechanical

b-Atom Clusters.

Written from the Most Stable to the Least Stable One.

AM1 2*=0.8| 2-body
1 1 8
2 3 9
3 6 10
4 2 11
5 -8 6
6 7 7
7 4 3
8 9 4
g 5 2
10 11 5
11 10 1
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its unique shape offering large three-body attraction. The
trigonal bipyramidal one 1is found to be 1less stable in
contrast to the AM1 findings.

d) 06 In this case there are 198 structures have been
studied. The ordering is given in table 13. The order of the
first seven structures are almost same, again linear being
the most stable one and hexagonal the second stable
structure. Also the octahedral is the least stable structure
for both methods. Following the trends of the smaller
clusters, pentagonal and trigonal bipyramidal clusters are
too stable in classical calculations. Both boat and chair
conformations as well as the distorted octahedral structures
are found to be less stable than AM1 results. However the
last one may be due to the difficult optimization of one of
the dihedra1 angles as the structure tends to collapse into a
planar shape upon optimization.

Overall in all 39 structures, we observe a fairly good
qualitative fit of AM1 and classical results when three-body
potentials with a relatively large intensity parameter are
used. These results are displayed in figure 8.

We calculated an R value by taking the ratio of AM1
optimized distances to those from static calculations
Standard deviations (o) are calculated for each Z* value. In

figure 9, o is plotted as a function of Z*. Almost for all
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Table

13,

Comparison of Quantum Mechanical

Results for ©6-Atom Clusters.

Written from the Most Stable to the Least Stable One.

AM1 2*=0.8 2~-body
1 1 19
2 2 17
3 3 18
4 4 16
5 7 9
6 6 12
7 5 4
8 12 10
9 13 15
10 9 6
11 15 5
12 18 7
13 10 4
14 17 8
15 16 3
16 14 14
17 11 11
18 8 2
19 19 1
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size clusters, there is a minimum, around Z*=0.8.

Finally the total three-body contributions are computed
by comparison of +three different energy calculations.
Contribution to energy are obtained by subtracting the
energy of two-body case from the 2¥=0.8 at nonoptimized
~geometries. The contribution due to the relaxation of the
geometry is the difference between the optimum and
nonoptimized structures. The ratio of 3-body potential vérsus

2-body potential in the case of optimum structures is given
in tables 14-16.
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Table 14. Three-Body Contribution in 4-Atom Clusters

energy geometry total EAT
No contribution relaxation{contribution ELJ
1 -0.141 -0.028 -0.169 0.252
2 -0.019 0.000 -0.018 ~-0.119
3 0.433 -0.082 0.351 -0.269
4 0.771 -0.272 0.499 -0.267
5 0.1563 -0.024 0.129 ~0.138
6 1.444 -0.521 0.923 -0.4860
7 1.131 -0.412 0.719 -0.433
Table 15. Three-Body Contribution in 5-Atom Clusters
energy geometry total EAT
No contribution relaxation|contribution ELJ
1 -0.228 ~-0.034 —0.262 0.301
2 0.247 -0.023 0.224 -0.148
3 0.666 -0.139 0.527 -0.284
4 0.6867 -0.138 0.529 -0.288
5 0.165 -0.013 0.152 -0.124
6 1.102 -0.305 0.797 -0.359
7 0.768 -0.175 0.593 -0.312
8 2.208 -0.983 1.225 -0.416
9 2.245 -0.927 1.318 -0.468
10 2.241 -0.946 1.295 -0.418
11 2.208 -0.914 1.294 -0.469
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Table 16. Three-Body Contribution in 6-Atom Clusters

energy geometry total AT

No contribution relaxation{contribution L
1 -0.307 -0.049 -0.3586 -0.503
2 0.049 -0.001 0.049 -0.028
3 0.552 ~-0.148 0.403 -0.170
4 1.036 -0.259 0.776 -0.288
5 1.379 -0.371 1.008 -0.352
6 1.451 ~-0.405 1.046 -0.361
7 1.425 ~0.394 1.030 -0.359
8 1.296 ~-0.355 0.941 -0.356
9 2.394 ~-0.946 1.448 -0.280
10 2.151 -0.893 1.258 -0.358
11 0.715 ~-0.146 0.569 -0.281
12 2.497 ~-0.961 1.536 -0.448
13 2.482 ~0.968 1.524 -0.434
14 0.967 ~0.2565 0.711 -0.318
15 2.104 ~-0.768 1.336 -0.430
16 3.702 -1.720 1.983 -0.503
17 4.150 -1.996 2.154 -0.5183
18 3.762 -1.762 2.000 -0.505
19 4,489 -2.218 2.271 -0.517
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CONCLUSIONS

In this study the high—-symmetry structures of
Lennard-Jones clusters between 3 and 6 particles are
analyzed. Geometrical parameters are optimized to minimize
the energy using both two- -and three—-body forces of various
strength. Similarly same structures are also optimized by the
quantum mechanical AM1 method for Carbon clusters. Upon
comparison of the stability orders with respect to classical
and quantum mechanical methods, it is seen that two-body
forces represent the total interactions of the system rather
poorly. For an optimum th}ee—body strength paramete} Z¥ we
have observed a strong similarity for the stability orders of
both methods. We conclude that using pairwise potentials with
nonadditive three—-body terms, one can obtain at 1least
gqualitatively correct information about microcluster
formation and stability. Since these calculations are much
more economical compared to accurate ab-initio quantum
calculations, it is conjectured that structural calculations
of large size clusters would be feasible. The possible
applications are Monte Carlo and Molecular Dynamics
simulation studies of these and larger clusters with the
parameters obtained from this study to find out about the
total potential energy hypersurface and dynamical properties

of clusters.
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