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A B S T R A C T   

In this communication, we report highly conjugated thiophenes having [1,2,5]-thiadiazolo and [1,2,5]- 
selenadiazolo [3,4-f]-benzo [1,2,3] triazole in conjunction with diphenyliodonium hexafluorophosphate salt 
(DPI) as new visible and near-infrared light (NIR) photoinitiator systems for free radical (FRP) and cationic 
polymerizations (CP). The postulated mechanism is based on the electron transfer reactions between the excited 
conjugated molecule and DPI ions. The radicals and Bronsted acid formed this way initiate FRP and CP of 
appropriate monomers such as methylacrylate (MA), methyl methacrylate (MMA), triethylene glycol dimetha-
crylate (TEGDMA) and cyclohexene oxide (CHO), isobutyl vinylether (IBVE) respectively. The possibility of in 
situ hybrid polymerization is also demonstrated using bifunctional monomer glycidyl methacrylate (GMA).   

1. Introduction 

Light-induced radical and cationic polymerization reactions have 
received considerable interest due to their advantages over traditional 
polymerization methods in terms of less energy consumption [1,2] 
(lower reaction temperature), reduced solvent use (greener) [3,4] and 
higher efficiency (faster reaction rates) [5–7]. These numerous advan-
tages have led advances in the development of many photo-
polymerization products such as coatings [8], adhesives [9], 
nanomaterials [10], electronics [11], 3-D printings [12], artificial or-
gans [13] and dental filling materials [14,15]. Most of the publications 
concerning photopolymerization reactions have focused on radical 
polymerization (FRP) methods. However, especially in the last two de-
cades, scientists have put a great effort to obtain new interpenetrating 
polymer networks which can be formed by irradiating monomers pos-
sessing radically and cationically polymerizable functional units in the 
presence of appropriate photoinitiators (PIs) [16–18]. Onium salt type 

PIs can directly form hybrid cross-linked systems when the formulations 
are exposed to UV light. The most prominent onium salts are iodonium 
salts with large, non-nucleophilic counter anions, e.g. diphenyl iodo-
nium salts (DPI). These salts when irradiated at the appropriate wave-
length can readily undergo photochemical decomposition leading to the 
production of active species which can initiate both radical and cationic 
polymerizations [19]. The major drawback of DPI salts is related to their 
spectral sensitivity in UVB region (below 300 nm) which is a major 
health concern since UVB is harmful to living organisms and can damage 
eyes [20], industrially an important disadvantage [21]. The spectral 
sensitivity of DPI can be extended to visible range by the use of free 
radical photoinitiators [22] and photosensitizers (PS) [23,24]. Crivello 
and coworkers showed that polycyclic aromatic hydrocarbons (PAHs) 
such as pyrene can effectively be used for the photosensitization of 
aryliodonium salts in the visible light region according to the mecha-
nism presented in Scheme 1 [25]. 

In our group, we showed that highly conjugated thiophene 
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derivatives can also undergo similar photoinduced electron transfer 
reactions to generate radicalic and cationic species under visible light 
irradiation [26]. 

While many photoinitiators active in the visible range have been 
developed, photopolymerizations under NIR excitation are very limited 
[27]. The main advantages of NIR light over visible light include lower 
energy requirement [28], deeper penetration ability into materials 
which is crucial in photocuring applications [29] and heat release 
further favoring the polymerization process [30]. 

Photopolymerization reactions at NIR region are mostly achieved 
either by using NIR light absorbing dyes with electron donor properties 
that can undergo efficient photoelectron transfer reactions (PET) with 
OS (e.g. cyanine/OS couples) [28,31,32] or upconverting nanoparticles 
(UCNP) that absorb NIR light and upconvert it to higher energy near UV 
light which can activate different PIs [33,34]. 

On the other hand, thermal loss of light energy [35,42] and 
requirement of expensive laser systems emitting intense light [43] limit 
UCNPs wider usage in NIR induced polymerization applications. 

Most of the NIR-sensitized polymerizations are based on photoin-
duced electron transfer (PET) reactions. In such systems, the related PET 
reactions seem to be different compare to that of the visible light system. 
Although the electron transfer entropy (ΔGet) using Rehm-Weller 
equation (Eq. (1)) between PI and various PS based on the oxidation 
potential (Eox), active excitation energy E*(PS) of the photosensitizer 
and the reduction potential (Ered) of the PI are in the favorable negative 
range (0.5 V energy gap is sufficient) [36], no polymerization occurred 
under ambient infrared light [37].  

ΔGet = Eox (PS) - Ered (PI) - E*(PS)                                                   (1) 

Strehmel and coworkers pointed out an internal activation barrier 
resulting in a system having a certain energy threshold and reaction 
temperature emphasizing the need of high intensity light source to 
overcome the internal energy barrier for most of the PET reactions 
(Equation 2) [38].  

ket = ν.κ x exp (-ΔGet/RT)                                                                (2) 

where ν is theoretical maximal available rate and κ is probability 
coefficient 

In the light of this background, we herein report a new highly con-
jugated visible and NIR light photoiniating systems based on thiophene 
substituted [1,2,5]-thiadiazolo and [1,2,5]-selenadiazolo [3,4-f]-benzo 
[1,2,3] triazole, respectively in combination with diphenyliodonium 
hexafluorophosphate (DPI) for radical and cationic polymerizations of 
various monomers using a cheap incandescent light source. As will be 
shown below, the described system is also applicable to the hybrid 

polymerizations where both radical and cationic polymerizations pro-
ceed concomitantly. 

2. Experimental 

2.1. Materials 

Diphenyliodonium hexafluorophosphate (DPI) >98 % was pur-
chased from Sigma-Aldrich and was used without further purification. 
All the solvents and monomers were purified according to conventional 
purification methods prior to use. Photosensitizers 1a-b were synthe-
sized with the yields of 41 % and 84 % respectively using the procedures 
as previously reported. 

2.2. Photopolymerization procedure 

A Philips 150 W PAR38E E27 halogen pressed glass type bulb with 
strong IR-A (NIR) emission (Fig. S1) was used for the photo-
polymerization reactions. The light intensity inside the reaction tube 
was calculated to be ~200 mW.cm− 2. The light bulb was attached to the 
top of a photoreactor setup equipped with a large air cooling fan and the 
reaction temperature was kept constant at room temperature. (24− 25 
◦C). 25 mg of DPI (~0.06 mmol), 6.5 mg of PS (~0.01 mmol) and 1 mL 
of monofuncitonal and 2 mL of difunctional monomers (0.1− 0.2 mmol) 
were dissolved in 1 mL of dichloromethane (DCM) and were transferred 
inside a 20 mL Schlenk tube which was previously heated, degassed and 
flushed with nitrogen for three times. After 2 h of irradiation (except for 
GMA which was irradiated for 24 h) inside the photoreactor, the poly-
mers formed were precipitated into methanol. Obtained polymers were 
all colorful (Fig. S2) and were washed with hot methanol to remove of 
the unreacted PS. After washing procedure, the polymers were kept at 
least 24 h inside a vacuum-oven at 50 ◦C in order to avoid any solvent 
impurities. The conversions were determined by 1H-NMR analysis 
(Fig. S3). 

2.3. Instruments 

Obtained polymers were characterized using Gel Permeation Chro-
matography (GPC), infrared (IR), Nuclear Magnetic Resonance (NMR), 
ultraviolet-visible light (UV–vis) and fluorescence spectroscopies. 
Monomer conversions were determined gravimetrically. The PS trapped 
inside the polymers were identified by 1H-NMR Spectroscopy and sub-
tracted from the gravimetric calculations using integral areas for accu-
rate conversion calculations. Number average molecular weight (Mn) 
and dispersity indices (Đ) were determined using GPC with polystyrene 

Scheme 1. PAH photosensitized radical and cationic polymerization mechanism of aryliodonium salts.  
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standards having very narrow molecular weight distribution. UV–vis 
spectra were recorded with a Shimadzu UV1601 double-beam spec-
trometer equipped with a 50 W halogen lamp and a deuterium lamp 
which can operate between 200–1100 nm. Fluorescence measurements 
were recorded on Perkin-Elmer LS55 instrument having a pulsed Xenon 
source. The slit widths were fixed to 10 nm. Measurement speeds were 
kept at 250 nm/min. Fourier-transform infrared (FTIR) spectra were 
recorded on Perkin–Elmer Spectrum One spectrometer with an ATR 
Accessory (ZnSe, Pike Miracle Accessory) and mercury cadmium tellu-
ride (MCT) detector. Sixteen scans were averaged. 1H-NMR (500 MHz) 
spectra were recorded in deuterated chloroform with tetramethylsilane 
as an internal standard on Agilent VNMRS500 spectrometer at 25 ◦C. 
Molecular weight measurements were conducted on a TOSOH EcoGPC 
system equipped with an auto sampler system, a temperature controlled 
pump, a column oven, a refractive index (RI) detector, a purge and 
degasser unit, and TSK gel superhZ2000 column with 4. 6 mm ID ×2 cm 
column dimensions. Tetrahydrofuran (THF) was used as the eluent at 
flow rate of 1.0 mL.min− 1 at 40 ◦C. RI detector was calibrated with 
polystyrene standards having very narrow molecular-weight distribu-
tions. GPC data were analyzed using Eco-GPC Analysis software. The 
electrochemical properties of the photosensitizers 1a and 1b were 
investigated via cyclic voltammetry (CV) in a solution of 0.1 M 
Bu4N+PF6

- /DCM/ACN electrolyte/solvent couple at a scan rate of 100 
mV/s. CV studies were performed in a three-electrode cell system by 
using ITO-coated glass as working electrode and platinum and silver 
wires as the counter and reference electrodes, respectively. (Fig. S4; 
Oxidation potentials for 1 a and 1 b are +1.06 V and +0.94 V). Dynamic 

mechanical analyses were performed using 15 mm of polymer films on a 
Perkin–Elmer Pyris Diamond DMA device working with a maximum 
force of 5 N between 10 ◦C–200 ◦C with 4 ◦C min− 1 temperature 
increase. 

3. Results and discussion 

As visible and NIR light sensitizers, newly designed conjugated 
molecules, 1a and 1b exhibit strong, broad absorbance with maxima at 
620 nm and 710 nm (Fig. 1a), respectively and fluorescence emission in 
NIR region (Fig. 1b). The emission spectra of dichloromethane solutions 
of 1a and 1b gave perfect mirror-images of the absorbances with maxima 
at 725 nm and 800 mm when excited at 600 nm and 655 nm, respec-
tively with appreciable Stokes shifts around 90 nm corresponding to IR- 
A region of the electromagnetic spectrum. 

Considering the electron donating thiophene units present in the 
structures of 1a and 1b and their relevant oxidation potentials (Fig. S4), 
it is expected that the reactive species may be generated by PET. These 
reactions are well-known to cause variations in the fluorescence emis-
sions leading to quenching [39,40]. Fluorescence quenching experi-
ments were performed by exciting 1a and 1b using increasing amount of 
DPI (Fig. 2a–b). The results showed a sharp decrease upon addition of 
DPI to the solution of 1a. However, the change in the emission spectrum 
of 1b was much smaller suggesting a less efficient PET compared to that 
of 1a. This may be due to the larger atomic radius of selenium atom in 1b 
causing steric hindrance and limitation for an efficient PET reaction. The 
calculated plots (Fig. S5a–b) suggest dynamic quenching for both 

Fig. 1. (a) Optical absorption spectra of 3 × 10− 5 M dichloromethane solution of 1a (black) and 1b (red) (b) fluorescence spectra of 3 × 10− 8 M dichloromethane 
solution of 1a (blue) and 1b (green) excited at 600 nm and 655 nm, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 

Fig. 2. Fluorescence spectra of 3 mL of (a) 1a excited at 600 nm and (b) 1b excited at 655 nm upon addition of 50 mM × 5μL DPI (Ph2I+ PF6
− ) in dichloromethane.  
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compounds by DPI [41]. 
To examine the photosensitization activity of 1a and 1b for the 

iodonium salt under NIR irradiation, photopolymerizations of radical 
and cationically polymerizable monomers were conducted. Images of 
the resulting polymers given in the supporting information. (Fig. S6). 
Table 1 gives data for a series of polymerizations of various monomers 
utilizing 1a and 1b as NIR sensitizers and Ph2I+PF6

− as oxidant. 
In analogous to the general photosensitization action of the conju-

gated thiophene derivatives, the electron transfer mechanism presented 
in Scheme 2 can be proposed. 

Accordingly, upon NIR irradiation, electron transfer reactions result 
in the formation radical cation of photosensitizer (PS+.) and diphenyl 
iodo radical (Ph2I⋅). Bronsted acid released from the PS.+ is responsible 
for the initiation of the cationic polymerization. Direct initiation by PS:+

can be discarded since the transients of structurally similar thiophene 
derivatives were not efficiently quenched by epoxy monomers [42]. The 
concomitantly formed Ph2I⋅ radical rapidly decomposes to the iodo-
benzene and phenyl radical capable of initiating radical polymerization. 

As can be seen from Table 1 both PSs have lower initiation efficiency 
for radical polymerization compare to the corresponding cationic mode. 
This may be explained by the coupling reactions of propagating radicals 
with PS.+ accompanied by the proton release (Scheme 3). This behavior 
was further evidenced by the spectral characterization of the polymers 
thus formed (vide infra) (Fig. 3). Notably, 1a appears to be more effi-
cient in initiation of both polymerizations. Although 1b has thermody-
namically more favorable redox potential for the electron transfer 
reaction, the observed lower efficiency can be attributed to the lower 

Table 1 
NIR induced photopolymerization of various monomers by using 1a and 1b in 
the presence of Ph2I+PF6

− .   

Monomer a Conversion b (%) Mn
c (kg mol− 1) Đ c 

1a CHO 82.6 6.4 1.6 
1a IBVE 92.0 84.0 1.7 
1a MMA 8.2 56.5 1.6 
1a TEGDMA 75.3 nd – 
1a MA 26.2 4.5 3.1 
1a GMAd 92.2 nd – 
1b CHO 79.5 4.9 1.7 
1b IBVE 69.6 96.8 1.5 
1b MMA 1.6 48.5 1.8 
1b TEGDMA 1.0 nd – 
1b MA 5.0 73.7 1.5 
1b GMAd 90.8 nd –       

a Reaction conditions: 1 mL of dichloromethane, [monomer] ~ 1 × 10◦ M, 
[DPI] = 3 × 10− 2 M, [PS] = 5 × 10-3 M, nominal wavelength = 700–1400 nm, t 
= 2 h, T = 25 ◦C. 

b Precipitated in methanol and dried in vacuum oven, determined 
gravimetrically. 

c Number average molecular weight (Mn) and dispersity (Đ) indices were 
determined using GPC (Gel Permeation Chromatography) according to poly-
styrene standards having very narrow molecular weight distribution. 

d Reaction time was extended to 24 h. Abbreviation: nd, not determined. 

Scheme 2. Proposed reaction mechanisms with different pathways for NIR-sensitized polymerization.  

Scheme 3. Coupling reaction of propagating radicals with photosensitizer radical cation.  
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absorbance and higher atomic radius of selenium heteroatom in the 
structure. The higher conversions were attained with a highly reactive, 
electron donor monomer, IBVE. Besides initiation by Bronsted acids, the 
electron donating radicals formed by the addition of the radicals can be 
oxidized to the corresponding carbocations. Thus, polymerization pro-
ceeds through both initiation routes. 

Fig. 3a–b show absorbance spectra of the polymers obtained. As can 
be seen, PMMA has stronger absorbance in the region where the pho-
tosensitizers absorb indicating possible coupling reactions coupling re-
actions of the sensitizer derived radicals with the propagating radicals. 

Experiments were also performed using glycidyl methacrylate 
(GMA) as hybrid monomer having both radical and cationically poly-
merizable functions. Real-time 1H-NMR measurements were performed 
to investigate the efficiency of sensitizers at the same amount of DPI and 
monomer in the NMR tube. Results showed the higher efficiency of 1a 
over 1b in agreement with the Stern-Volmer quenching experiments and 
gravimetric conversions (Fig. 4a–b). For the photopolymerization of 
GMA using 1a, 1 h of NIR irradiation showed new peaks corresponding 
to new methyl groups (acrylate methyl) around 1 ppm and changes in 
− CH2 protons attached to oxirane unit. After 2 h of irradiation a com-
plete gelation occurred which gave broad peaks due to cross-linking. 
Notably, the spectral changes and gelation were relatively slower with 
1b. 

Due to the fact that the networks formed by the hybrid monomer 
GMA are highly brittle [43], dynamic mechanical analysis (DMA) was 
performed using a hybrid system consisitng of TEGDMA / poly(propyl-
ene glycol) diglycidyl ether (Mn~380) mixtures in the presence of 1a. 

The films formed by polymerization of this mixture (Fig. S7) using 1a 
under both UV (~350 nm) and NIR light showed different glass transi-
tion temperatures (Fig. S8). The maximum of the tanD curve signalizes 
the glass transition temperature of the film obtained. It depicts one glass 
transition temperature appearing at ~60 ◦C for the UV-system and at 
~120 ◦C for the NIR-system demonstrating the superiority of the NIR 
light over UV light due to the heat release. 

4. Conclusion 

In conclusion, highly conjugated thiophene molecules with sulfur 
and selenium hetero atoms as visible and NIR light photosensitizers for 
both radical and cationic polymerizations were reported for the first 
time. The initiation is based on the PET reactions occurred between the 
photosensitizer and DPI. The radicals and cationic species thus formed 
are responsible for the initiation of the respective polymerization. The 
cationic mode appeared to be more efficient due to the possible coupling 
reactions of the radical process. Potential application of the initiating 
system for dual polymerization was demonstrated by using a bifunc-
tional monomer possessing both radical and cationic polymerizable 
groups. Further studies are in progress to adapt the described photo-
initiating system to step-growth polymerization. 
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