
DEEP LEARNING IN THE PRESENCE OF LABEL NOISE: A
META-LEARNING APPROACH

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖRKEM ALGAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MARCH 2021

Approval of the thesis:

DEEP LEARNING IN THE PRESENCE OF LABEL NOISE: A
META-LEARNING APPROACH

submitted by GÖRKEM ALGAN in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Electrical and Electronics Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ilkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Ilkay Ulusoy
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Prof. Dr. Ilkay Ulusoy
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Selim Aksoy
Computer Engineering, Bilkent University

Assist. Prof. Dr. Erdem Akagündüz
Electrical and Electronics Engineering, Cankaya University

Assist. Prof. Dr. Elif Vural
Electrical and Electronics Engineering, METU

Date: 12.03.2021

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Görkem Algan

Signature :

iv

ABSTRACT

DEEP LEARNING IN THE PRESENCE OF LABEL NOISE: A
META-LEARNING APPROACH

Algan, Görkem

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ilkay Ulusoy

March 2021, 99 pages

Image classification systems recently made a giant leap with the advancement of deep

neural networks. However, these systems require an excessive amount of labeled data

to be adequately trained. Gathering a correctly annotated dataset is not always feasi-

ble due to practical challenges. Because of these practical challenges, label noise is

a common problem in real-world datasets. This thesis presents two novel label noise

robust learning algorithms: MSLG (Meta Soft Label Generation) and MetaLabelNet.

Both algorithms are powered by meta-learning techniques and share the same learn-

ing framework. Proposed algorithms generate soft labels for each instance according

to a meta-objective, which is to minimize the loss on the small meta-data. Afterward,

the main classifier is trained on these generated soft-labels instead of given noisy

labels. In each iteration, before conventional learning, the proposed meta objective

reshapes the loss function so that resulting gradient updates would lead to model pa-

rameters with the minimum loss on meta-data. Different from MSLG, MetaLabelNet

can work with dataset consists of both noisily labeled and unlabeled data, which is a

problem setup that is not considered in the literature up to now. To prove the validity

of the proposed algorithms, they are backed with mathematical justification. Exten-

v

sive experiments on datasets with both synthetic and real-world label noises show

the superiority of the proposed algorithms. For comparison with the state-of-the-art

methods, proposed algorithms are tested on widely used noisily labeled benchmark-

ing dataset Clothing1M. Both algorithms beat the baseline methods with a large mar-

gin, where MSLG achieves 2.3% and MetaLabelNet achieves 4.2% higher than the

closest method. Results show that presented approaches are fully implementable for

real-world use cases. Additionally, a novel label noise generation algorithm is pre-

sented for the purpose of generating realistic synthetic label noise.

Keywords: deep learning, label noise, noise robust, noise cleaning, meta-learning

vi

ÖZ

KİRLİ ETİKETLERİN VARLIĞINDA DERİN ÖĞRENME:
META-ÖĞRENİM YAKLAŞIMI

Algan, Görkem

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ilkay Ulusoy

Mart 2021 , 99 sayfa

Derin öğrenme algoritmalarının gelişmesi ile günümüzde bilgisayarlı görü teknolo-

jilerinde büyük bir sıçrama yaşanmaktadır. Ancak yapay sinir ağlarını eğitmek için

yüksek miktarda etiketlenmiş veri gerekmektedir. Veri setlerinin tamamıyla doğru

etiketlenmesi çoğu zaman mümkün olmamaktadır. Bu tezde iki adet etiket kirliliğine

karşı dayanıklı öğrenme algoritması önerilmiştir: MSLG (Meta Yumuşak Etiket Öğ-

renimi) ve MetaLabelNet. İki algoritma da meta-öğrenme tekniklerinden faydalan-

makta ve aynı öğrenme sisteminden istifade etmektedir. Önerilen algoritmalar meta

hedefe göre meta veri üzerinde kaybı en aza indirecek şekilde yumuşak etiketler üre-

tir. Sonrasında ana sınıflandırıcı model kirli etieketler yerine üretilen yumuşak eti-

ketler üzerinde eğitilir. Her eğitim adımında geleneksel makine öğreniminden önce,

meta hedef model parametrelerinin en az kirlilikten etkilenecek şekilde güncellenme-

sine sebep olacak etiketleri üretir. Ayrıca MetaLabelNet hem kirli hem de etiketsiz

verinin oluşturduğu veri setleri üzerinde de çalışabilmektedir. Bu problem türü lite-

ratürde daha önce çalışılmamıştır. Önerilen algoritmaların geçerliliği matematiksel

olarak da kanıtlanmıştır. Metotların performansı hem sentetik hem de dünya kaynaklı

vii

gerçek kirliliğe sahip veri setleri üzerinde test edilmiştir. Sonuçlar önerilen algoritma-

ların yüksek başarısını doğrulamaktadır. Literatürdeki güncel algoritmalar ile perfor-

mans kıyaslaması yapabilmek adına, önerilen algoritmalar bu alanda yaygın olarak

kullanılan Clothing1M veri seti üzerinde test edilmiştir. İki algoritma da literatürdeki

diğer metotların başarısının üstüne çıkmıştır. MSLG en başarılı metottan 2.3% fazla

performans sağlarken MetaLabelNet 4.2% yüksek performans elde etmiştir. Sonuçlar

algoritmaların gerçek dünya uygulamalarında kullanıma hazır olduğunu göstermek-

tedir. Ayrıca tez kapsamında gerçekçi etiket kirliliği oluşturmak maksatlı da özgün

bir algoritma önerilmiştir.

Anahtar Kelimeler: derin öğrenme, etiket kirliliği, gürültüye dayanıklı, kirlilik temiz-

leme, meta-öğrenme

viii

Dedicated to my beloved family...

ix

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my supervisor Prof. Dr.

Ilkay Ulusoy, for her continues support and patience during my PhD. thesis. Through-

out this work, she always guided me to the right way whenever I faced with an obsta-

cle. Without any doubt, her advices and wisdom are what made this thesis possible.

I would also like to thank Scientific and Technological Research Council of Turkey

(TUBITAK) for their support with 2211-A National Scholarship Programme for PhD.

students. Moreover, I would like to thank ASELSAN for its supportive attitude

against PhD. students.

Lastly but undoubtedly most importantly, I thank to my family for raising me to who I

am today. Feeling their continuous support during my whole life is the most precious

fortune to me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvi

LIST OF FIGURES . xvii

LIST OF ALGORITHMS . xx

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

2 PRELIMINARIES . 5

2.1 Problem Statement and Notations 5

2.2 Label Noise Models . 6

2.3 Sources of Label Noise . 7

2.4 Meta Learning . 8

3 RELATED WORK . 11

3.1 Noise Model Based Methods . 12

xi

3.1.1 Noisy Channel . 12

3.1.1.1 Explicit calculation . 15

3.1.1.2 Iterative calculation 16

3.1.1.3 Complex noisy channel 16

3.1.2 Label Noise Cleaning . 17

3.1.2.1 Using data with clean labels 18

3.1.2.2 Using data with both clean and noisy labels 18

3.1.2.3 Using data with just noisy labels 18

3.1.3 Dataset Pruning . 20

3.1.3.1 Removing Data . 20

3.1.3.2 Removing Labels . 21

3.1.4 Sample Choosing . 21

3.1.4.1 Curriculum Learning 22

3.1.4.2 Multiple Classifiers 23

3.1.5 Sample Importance Weighting 24

3.1.6 Labeler Quality Assessment 26

3.1.7 Discussion . 26

3.2 Noise Model Free Methods . 27

3.2.1 Robust Losses . 27

3.2.2 Meta Learning . 29

3.2.3 Regularizers . 30

3.2.4 Ensemble Methods . 30

3.2.5 Others . 31

xii

3.2.6 Discussion . 32

4 SYNTHETIC LABEL NOISE GENERATION 33

4.1 Methods from the Literature . 33

4.1.1 Uniform Noise . 34

4.1.2 Class-Dependent Noise . 34

4.1.3 Feature-Dependent Noise . 34

4.2 Proposed Noise Generation Algorithm 35

5 META SOFT LABEL GENERATION . 39

5.1 Training . 40

5.1.1 Training Phase-1 . 40

5.1.2 Training Phase-2 . 40

5.1.2.1 Meta Training Step . 40

5.1.2.2 Conventional Training Step 41

5.2 Formulation of ŷ . 42

5.3 Reasoning of Classification Loss . 44

5.4 Meta Objective . 45

6 META-LABEL-NET . 49

6.1 Training . 49

6.1.1 Training Phase-1 . 50

6.1.2 Training Phase-2 . 50

6.1.2.1 Meta Training Step . 50

6.1.2.2 Conventional Training Step 51

6.2 Learning with Unlabeled Data . 52

xiii

6.3 Reasoning of Meta-Objective . 52

7 EXPERIMENTS . 57

7.1 CIFAR10 . 57

7.1.1 Dataset Description . 58

7.1.2 Implementation Details . 58

7.1.3 Results . 58

7.2 Clothing1M . 62

7.2.1 Dataset Description . 62

7.2.2 Implementation Details . 63

7.2.3 Results . 64

7.3 Food101N . 66

7.3.0.1 Dataset Description 66

7.3.1 Implementation Details . 66

7.3.2 Results . 66

7.4 WebVision . 67

7.4.1 Dataset Description . 67

7.4.2 Implementation Details . 67

7.4.3 Results . 68

7.5 Retinopaty of Prematurity . 69

7.5.1 Dataset Description . 69

7.5.2 Implementation Details . 69

7.5.3 Results . 70

8 CONCLUSION . 73

xiv

REFERENCES . 79

xv

LIST OF TABLES

TABLES

Table 3.1 Existing noise model based methods to deal with label noise in the

literature . 13

Table 3.2 Existing noise model free methods to deal with label noise in the

literature . 14

Table 7.1 Hyper-parameters for CIFAR10 experiments for MSLG algorithm. . 59

Table 7.2 Test accuracies for CIFAR10 dataset with varying level of uniform

noise. Results are averaged over 4 runs. 60

Table 7.3 Test accuracies for CIFAR10 dataset with varying level of feature-

dependent noise. Results are averaged over 4 runs. 61

Table 7.4 Test accuracy percentages on Clothing1M dataset. All results are

taken from the corresponding paper. 65

Table 7.5 Test accuracies for varying number of unlabeled data. Subset of

Clothing1M dataset is used, which is balanced for each class. 65

Table 7.6 Test accuracy percentages for Food101N dataset. All values in the

table are obtained from our own implementations. 67

Table 7.7 Test accuracies on WebVision dataset. Baseline results are taken

from the [1] . 68

Table 7.8 Train and test accuracies on ROP dataset. 71

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 T-SNE plot of data distribution of MNIST dataset in feature

space for 25% noise ratio. a) clean data b) random noise c) class-

dependent noise which is still randomly distributed in feature domain d)

feature-dependent noise in locally concentrated form e) feature-dependent

noise that is concentrated on decision boundaries. 7

Figure 3.1 Noise can be modeled as a noisy channel on top of base clas-

sifier. Noisy channel adapts the characteristic of the noise so that base

classifier is fed with noise-free gradients during traning. 15

Figure 3.2 Illustration of different types of algorithms. Starting from left;

1) representation of samples from a single class in the 2D space. Green

samples represent the clean samples and red ones represent noisy sam-

ples. 2) label noise cleaning algorithms aim to correct the labels of

noisy data 3) dataset pruning methods aim to eliminate noisy data (or

just their labels) 4) sample importance weighting algorithms aim to up-

weight clean samples and down-weight noisy samples (which is illus-

trated by size) . 25

Figure 4.1 Data samples chosen by presented synthetic label noise gener-

ation algorithm. Left column shows the instances that are confidently

classified, so their labels are not changed. On the other hand, right

column shows ambiguous samples, for which labels are changed. 38

xvii

Figure 5.1 The overall framework of the proposed algorithm. xn, yn rep-

resents the training data and label pair. xjn, y
j
n represents batches of

training data and label pair. xjm, y
j
m represents batches of meta-data and

label pair. ŷ represents generated soft-labels. The training consists of

two phases. In the first phase (warm-up training), the base classifier is

trained on noisy data with the conventional cross-entropy loss. This is

useful to provide a stable starting point for the second phase. Train-

ing phase-2 consists of 3 consecutive steps, which are repeated for each

batch of data. In the first iteration step, classification loss for model pre-

dictions is calculated with generated soft labels. Then, updated classi-

fier parameters θ̂ are calculated by SGD. In the second iteration step, the

cross-entropy loss for meta-data is calculated using the updated classi-

fier parameters θ̂. Then, soft-labels are updated by taking an SGD step

on this cross-entropy loss. In the third iteration step, the classifier pa-

rameters θ are updated by the classification loss (with newly generated

soft labels) and entropy loss. 47

xviii

Figure 6.1 The overall framework of the proposed algorithm. xn, yn rep-

resents the training data and label pair. xjn, y
j
n represents batches of

training data and label pair. xjm, y
j
m represents batches of meta-data

and label pair. The training consists of two phases. In the first phase

(warm-up training), the base classifier is trained on noisy data with the

conventional cross-entropy loss. This is useful to provide a stable start-

ing point for the second phase. Training phase-2 consists of 3 consecu-

tive steps, which are repeated for each batch of data. In the first iteration

step, classification loss for model predictions is calculated with soft la-

bels produced by MetaLabelNet. Then, updated classifier parameters θ̂

are calculated by SGD. In the second iteration step, the cross-entropy

loss for meta-data is calculated using the updated classifier parameters

θ̂. Then, updated MetaLabelNet parameters φ̂ is calculated by taking

an SGD step on this cross-entropy loss. In the third iteration step, new

soft-labels are produced by updated MetaLabelNet parameters φ̂. Then,

classifier parameters θ are updated by the classification loss (with newly

generated soft labels) and entropy loss. Feature extractor is the pre-

softmax output of the base classifier’s duplicate trained at the warm-up

phase of the training. 56

Figure 7.1 Test accuracies for different numbers of meta-data. 60

Figure 7.2 Colored lines represent the mean absolute difference among gen-

erated soft labels for consecutive epochs. Shaded regions are the vari-

ance of the differences. As can be seen MSLG generates highly unsta-

bilized label predictions compared to MetaLabelNet. 63

Figure 7.3 Test accuracies of MetaLabelNet for different level of feature-

dependent noises for varying sizes of unlabeled data. 64

xix

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Generic Pipeline of Meta-Learning 9

Algorithm 2 Meta Soft Label Generation 43

Algorithm 3 Learning with MetaLabelNet 53

xx

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

CCE Categorical Cross Entropy

CNN Convolutional Neural Networks

DNN Deep Neural Networks

DR Diabetic Retinopathy

FC Fully Connected

MIL Multiple Instance Learning

MLP Multi Layer Perceptron

MSLG Meta Soft Label Generation

NN Neural Network

ROP Retinopaty of Prematurity

SGD Stochastic Gradient Descent

SLP Single Layer Perceptron

xxi

xxii

CHAPTER 1

INTRODUCTION

Recent advancement in deep learning has led to great improvements on many differ-

ent domains, such as image classification [2, 3], object detection [4, 5, 6], semantic

segmentation [7, 8] and others. Despite their impressive ability to generalize, it is

shown that these powerful models can memorize even complete random noise [9].

Various works are devoted to explaining this phenomenon [10], yet regularizing deep

neural networks, while avoiding memorization, stays to be an important challenge. It

gets even more crucial when there exists noise in data. Therefore, various methods

are proposed in the literature to train deep neural networks effectively in the presence

of noise.

There are two kinds of noise in literature, namely: feature noise and label noise [11].

Feature noise corresponds to corruption in the observed data features, while label

noise means the change of label from its actual class. Even though both noise types

may cause a significant decrease in the performance [12], label noise is considered

to be more harmful [11] and shown to deteriorate the performance of classification

systems in a broad range of problems [11, 13, 14]. This is due to several factors; the

label is unique for each data while features are multiple, and the importance of each

feature varies while the label always has a significant impact [12]. This work focuses

on label noise; therefore, noise and label noise is used synonymously throughout the

document.

The necessity of an excessive amount of labeled data for supervised learning is a

significant drawback since it requires an expensive dataset collection and labeling

process. To overcome this issue, cheaper alternatives have emerged. For example, an

almost unlimited amount of data can be collected from the web via search engines or

1

social media. Similarly, the labeling process can be crowdsourced with the help of

systems like Amazon Mechanical Turk1, Crowdflower2, which decrease the cost of

labeling notably. Another widely used approach is to label data with automated sys-

tems. However, all these approaches led to a common problem; label noise. Besides

these methods, label noise can occur even in the case of expert annotators. Labelers

may lack the necessary experience, or data can be too complex to be correctly clas-

sified even for the experts. Moreover, label noise can also be introduced to data for

adversarial poisoning purposes [15, 16]. Being a natural outcome of dataset collec-

tion and labeling process makes label noise robust algorithms an essential topic for

the development of efficient computer vision systems.

This thesis aims to develop a noise robust learning algorithm that is based on meta-

learning techniques. Rest of the thesis is organized as follows. The thesis starts with

providing essential information that is required for the rest of the document, in Chap-

ter 2. This chapter starts with the formal definition of the learning from noisy labels

problem. Afterward, label noise types are introduced. Even though the main purpose

of this thesis is to develop a label noise robust learning algorithm, it is beneficial to

understand the cause of the problem. Therefore, causes of the noisy labels are also

investigated in this chapter.

Supervised learning with label noise is an old phenomenon with three decades of his-

tory [17]. Even though deep networks are considered to be relatively robust to label

noise, they have an immense capacity to overfit data [9]. Therefore, preventing DNNs

to overfit noisy data is very important, especially for fail-safe applications, such as

automated medical diagnosis systems. Considering the significant success of deep

learning over its alternatives, it is a topic of interest, and many works are presented in

the literature. Chapter 3 presents a detailed analyses of the proposed methods from

the literature. For a clear overview of the literature, proposed algorithm are grouped

in two major groups as noise model based and noise model free. Algorithms in the

first group aim to estimate the structure of the noise and use this information to avoid

the negative effects of noisy labels during training. On the other hand, methods in the

second group try to come up with algorithms that are inherently noise robust. More-

1 http://www.mturk.com
2 http://crowdflower.com

2

over, proposed algorithms are further sub-grouped according to their logic behind the

proposed algorithms.

In order to develop label noise robust algorithm, a test set with verified clean labels

is required to be able to evaluate performance of the proposed system. Most of the

real-world noisy datasets [18, 19] have a small number of verified data to be used

as test set. Even though these real-world noisy datasets are useful for benchmarking

purposes, they are not suitable for development purposes. There are two reasons

for that. Firstly, these datasets are commonly collected from the web and they are

massive. Therefore, they require large amount of computation even for a single epoch,

which slows down the algorithm development phase. Secondly, since these datasets

are collected from the web, their noise ratio is not known for sure. More importantly,

noise ratio is fixed so that one can not test the proposed algorithm for different noise

rates. As a result, for quick test and deployment, conventional methodology is to add

synthetic label noise to toy datasets and develop the algorithm on this dataset. After

the initial proof of the concept, algorithm can be run on a real-world dataset. However,

if the introduced artificial noise is not realistic, then it would cause an undesired

solution which is not applicable to problem domain. Therefore, a novel methodology

to generate realistic feature-dependent noisy labels is presented in Chapter 4.

A label noise robust learning methodology is proposed in Chapter 5. Proposed al-

gorithm uses meta-learning paradigms to iteratively generate soft-labels for each in-

stance, so that resulting gradient steps would lead in the direction of most noise robust

model parameters. This is achieved by a meta learning loop that is processed before

conventional training for each batch of data. Firstly soft-labels are generated in meta

training loop, and secondly base classifier model is trained to match these soft-labels.

Proposed algorithm is based on the following simple assumption: optimal model pa-

rameters learned with noisy training data should minimize the cross-entropy loss on

clean meta-data. This algorithm is named as MSLG (Meta Soft Label Generation).

Even though MSLG achieves state of the art results on datasets with noisy labels,

there is still room for improvement. In the proposed method, label predictions are

formulated as free differentiable parameters that does not depend on data features.

However, there is a certain correlation between data features and labels. Using this

3

information is beneficial to predict more accurate soft labels. Therefore, proposed

methods is further utilized in Chapter 6. In this improved version, soft labels are

predicted by an SLP network that is called as MetaLabelNet. MetaLabelNet gets data

features as input and weights are updated via meta-loss. As a result, different from

MSLG, there is no soft-label prediction corresponding to each instance, but rather a

generic soft-label generation algorithm that depends on data features. Since labels

are not free differentiable variables, which changes rapidly throughout the training,

MetaLabelNet framework provides much stable soft-labels which is advantageous for

effective learning. Moreover, MetaLabelNet framework is independent of training

data labels, so it can be applied to unlabeled data in the same way as labeled data.

Therefore, on top of noisily labeled data, the proposed framework can work with

unlabeled data too. To the best of the knowledge of the author, there is no work in the

literature that is able to work with both unlabeled and noisily labeled data.

Chapter 7 presents the experimental results for the proposed algorithms with various

datasets. First, proposed algorithms are tested on CIFAR10 dataset [20] with syn-

thetic noise. Afterward, to show the effectiveness of the presented methods, they are

tested on two real-world noisy datasets WebVision [19] and Clothing1M [18]. These

datasets are widely accepted as benchmarking datasets by the literature. Results show

that both MSLG and MetaLabelNet achieves state of the art performance on the given

datasets. Finally, proposed methods are tested on a case study of autonomous diagno-

sis of ROP (Retinopathy of Prematurity Plus) disease. This dataset is labeled by three

different experts and contains extreme level of label noise due to conflicting opinions

of annotators. Learning objective is to correctly classify retina images into stages of

ROP disease. Results show the practical usability of the proposed solutions, where

they achieve higher accuracy than classical learning with cross entropy loss.

Finally, Chapter 8 concludes the thesis with briefly summarizing the works done in

the thesis and providing further discussion on the topic.

4

CHAPTER 2

PRELIMINARIES

In this section, firstly the problem statement for supervised learning in the presence of

noisy labels is given. Secondly, types of label noises are presented. Thirdly, sources

of label noise are discussed. Finally, preliminary knowledge on meta-learning is pro-

vided for better understanding of the proposed algorithms in Chapter 5 and Chapter

6.

2.1 Problem Statement and Notations

In supervised learning we have a clean dataset S = {(x1, y1), ..., (xN , yN)} ∈ (X, Y h)

drawn according to an unknown distribution D, over (X, Y h) where X represents the

feature space and Y h represents the hard-label space for which each label is encoded

into one-hot vector. The aim is to find the best mapping function f : X → Y h that is

parametrized by θ.

θ? = argmin
θ

Rl,D(fθ) (2.1)

where Rl,D is the empirical risk defined for loss function l and distribution D. In the

presence of the noise, dataset turns into Sn = {(x1, yn,1), ..., (xN , yn,N)} ∈ (X, Y h)

drawn according to a noisy distribution Dn, over (X, Y h). Then, risk minimization

results in a different parameter set θ?n.

θ?n = argmin
θ

Rl,Dn(fθ) (2.2)

where Rl,Dn is the empirical risk defined for the same loss function l and noisy distri-

bution Dn.

Classical supervised learning (Equation 2.3) aims to find the best estimator parame-

5

ters θ? for given distribution D while iterating over D. However, in noisy label setup,

the task is still finding θ? while working on distribution Dn. Therefore, classical risk

minimization is insufficient in the presence of label noise, since it would result in

θ?n. As a result, variations of classical risk minimization methods are proposed in the

literature, and they will be further evaluated in the upcoming sections.

θ(t+1) = θ(t) − λ∇θl(fθ(x), yn) (2.3)

Throughout this thesis, Dn represents the noisy training data distribution, Dm rep-

resents the meta-data distribution, and D̂ represents the distribution of training data

with generated soft-labels. Both D and Dn is defined over hard label space Y h, while

D̂ is defined over soft label space Y s. Soft labels encode more information since

non-zero probability values are assigned for each class. N is the number of training

data samples, and M is the number of meta-data samples, where M << N . Nb rep-

resents the number of data in each batch, and it is the same for both training data and

meta-data. We represent the number of classes as C, and superscript represents the

label probability for that class, such that yji represents the label value of ith sample

for class j.

2.2 Label Noise Models

A detailed taxonomy of label noise is provided in [12]. This work follows the same

taxonomy with a little abuse of notation. Label noise can be affected by three factors:

data features, the true label of data, and the labeler characteristics. According to the

dependence of these factors, label noise can be categorized into three subclasses.

Uniform noise is totally random and depends on neither instance features nor its

true class. With a given probability pe label is changed from its true class. Class-

dependent noise is independent of image features but depends on its class; pe =

p(e|y). That means data from a particular class are more likely to be mislabeled. For

example, in a handwritten digit recognition task, "3" and "8" are much more likely

to be confused with each other rather than "3" and "5". Feature-dependent noise de-

pends on both image features and its class; pe = p(e|x, y). As in the class-dependent

6

case, objects from a particular class may be more likely to be mislabeled. Moreover,

the chance of mislabeling may change according to data features. If an instance has

similar features to another instance from another class, it is more likely to be mis-

labeled. Generating xy-dependent synthetic noise is harder than the previous two

models; therefore, some works tried to provide a generic framework by either check-

ing the complexity of data [21] or their position in feature space [22]. All these types

of noises are illustrated in Figure 2.1

The case of multi-labeled data, in which each instance has multiple labels given by

different annotators, is not considered here. In that scenario, works show that mod-

eling each labeler’s characteristics and using this information during training signif-

icantly boosts the performance [23]. However, various characteristics of different

labelers can be explained with given noise models. For example, in a crowd-sourced

dataset, some labelers can be total spammers who label with a random selection [24];

therefore, they can be modeled as random noise. On the other hand, labelers with bet-

ter accuracies than random selection can be modeled by class-dependent or feature-

dependent noise. As a result, the labeler’s characteristic is not introduced as an extra

ingredient in these definitions.

Figure 2.1: T-SNE plot of data distribution of MNIST dataset in feature space for

25% noise ratio. a) clean data b) random noise c) class-dependent noise which is still

randomly distributed in feature domain d) feature-dependent noise in locally concen-

trated form e) feature-dependent noise that is concentrated on decision boundaries.

2.3 Sources of Label Noise

As mentioned, label noise is a natural outcome of dataset collection process and can

occur in various domains, such as medical imaging [25, 26, 23], semantic segmen-

tation [27, 28, 29], crowd-sourcing [30], social network tagging [31, 32], financial

7

analysis [33] and many more. This work focuses on various solutions to such prob-

lems, but it may be helpful to investigate the causes of label noise to better understand

the phenomenon.

Firstly, with the availability of the immense amount of data on the web and social

media, it is a great interest of computer vision community to make use of that [34, 35,

36, 37, 38, 39]. Nevertheless, labels of these data are coming from messy user tags or

automated systems used by search engines. These processes of obtaining datasets are

well known to result in noisy labels.

Secondly, the dataset can be labeled by multiple experts resulting in a multi-labeled

dataset. Each labeler has a varying level of expertise, and their opinions may com-

monly conflict with each other, which results in noisy label problem [24]. There are

several reasons to get data labeled by more than one expert. Opinions of multiple la-

belers can be used to double-check each other’s predictions for challenging datasets,

or crowd-sourcing platforms can be used to decrease the cost of labeling for big data.

Despite its cheapness, labels obtained from non-experts are commonly noisy with a

differentiating rate of error. Some labelers even can be a total spammer who labels

with random selection [24].

Thirdly, data can be too complicated for even the experts in the field, e.g., medical

imaging. For example, to collect gold standard validation data for retinal images,

annotations are gathered from 6-8 different experts [40, 41]. This can be due to the

subjectiveness of the task for human experts or the lack of annotator experience. Con-

sidering the fields where the accurate diagnosis is of crucial importance, overcoming

this noise is of great interest.

Lastly, label noise can intentionally be injected in purpose of regularizing [42] or data

poisoning [15, 16].

2.4 Meta Learning

With the recent advancements of deep neural networks, the necessity of hand-designed

features for computer vision systems are mostly eliminated. Instead, these features

8

are learned autonomously via machine learning techniques. Even though these algo-

rithms can learn complex functions on their own, there remain many hand-designed

parameters such as network architecture, loss function, optimizer algorithm, and so

on. Meta-learning aims to eliminate these necessities by learning not just the required

complex function for the task, but also learning the learning itself [43, 44].

Meta-learning aims to utilize the learning for a meta task, which is a higher-level

learning objective than classical supervised learning. Meta task can be from a wide

variety of a learning objectives such as; knowledge transfer [45], neural architecture

search [46], optimizer optimization [43], optimal weight initialization [44] and etc.

In general, meta-learning framework consists of two training loops that are repeated

consecutively. First training loop is the conventional training where base model is

trained with traditional deep learning methods. Second loop is the meta-training loop,

for which the task is to optimize the conventional training loop via meta-parameters.

Meta-parameters can be any hyperparameter that has an impact on the conventional

training loop. For meta training loop to optimize conventional training loop, it should

receive feedback from the base classifier. For this purpose, meta-training loop repeats

the conventional training and finds updated parameters for the network. Then back-

propagating through the updated model parameters, it seeks for the optimal meta-

parameter set. This is more like asking the question "what should have been the

meta-parameters so that model trained with them would minimize the meta learning

objective". After updating meta parameters, model is trained in conventional training

manner with the meta-parameters. Generic pipeline for the meta-learning approaches

are given in Algorithm 1.

Algorithm 1: Generic Pipeline of Meta-Learning
Input: Model parameters θ, Meta-parameters φ

Output: Updated model parameters θ, Updated meta-parameters φ

while not finished do

Find updated model parameters θ̂ = F (φ, θ);

Update meta-parameters φ =M(θ̂, φ);

Update model parameters θ = F (φ, θ);

end

9

Meta-learning is a recently evolving field that can be applied to various fields. One

of the most successfully implementation of the meta-learning paradigm is MAML

[44], which achieved the state of the art results in many various fields. Aiming to

find optimal network parameters for a few-shot learning task, MAML seeks optimal

weight initialization by taking gradient steps on the meta objective. Meta objective is

defined as to minimize the loss on an ensemble of tasks. Therefore, network is forced

to figure out most generic weights that can easily fine tuned for a specific task in a

few epochs of training.

A major drawback for the applicability of meta-learning is its computational cost. It

requires two nested loops of training. Moreover, it requires gradients of the gradients

for the meta objective, which needs second order derivative computation. As a result,

meta-learning based methods are computationally demanding. However, this extra

computational cost is getting less preventive due to the advancements in the hardware

technologies. Therefore, meta-learning based algorithms have a big potential for the

overcoming challenges in the future.

10

CHAPTER 3

RELATED WORK

There are many possible ways to group proposed methods in the literature. For ex-

ample, one possible way to distinguish algorithms is according to their need for a

noise-free subset of data or not. Alternatively, they can be divided according to the

noise type they are dealing with, or label type such as singly-labeled or multi-labeled.

However, these are not handy to understand the main approaches behind the proposed

algorithms; therefore, different sectioning is proposed as noise model based and noise

model free methods.

Noise model based methods aim to model the noise structure so that this information

can be used during training to come through noisy labels. In general, approaches in

this category aim to extract noise-free information contained within the dataset by

either neglecting or de-emphasizing information coming from noisy samples. Fur-

thermore, some methods attempt to reform the dataset by correcting noisy labels to

increase the quality of the dataset for the classifier. The performance of these methods

is heavily dependent on the accurate estimate of the underlying noise. The advantage

of noise model based methods is the decoupling of classification and label noise esti-

mation, which helps them to work with the classification algorithm at hand. Another

good side is in the case of prior knowledge about the noise structure, noise model

based methods can easily be head-started with this extra information inserted to the

system.

Differently, noise model free methods aim to develop inherently noise robust strate-

gies without explicit modeling of the noise structure. These approaches assume that

classifier is not too sensitive to the noise, and performance degradation results from

overfitting. Therefore, the main focus is given to overfit avoidance by regularizing

11

the network training procedure.

Both of the mentioned approaches are discussed and further categorized in section 3.1

and section 3.2. Table 3.1 and Table 3.2 presents all the mentioned methods to provide

a clear picture as a whole. It should be noted that most of the time there are no sharp

boundaries among the algorithms, and they may belong to more than one category.

However, for the sake of integrity, they are placed in the subclass of most resem-

blance. The content of this chapter is previously published in [47] and the content is

highly correlated with the original paper.

3.1 Noise Model Based Methods

In the presence of noisy labels, the task is to find the best estimator for hidden distri-

bution D, while iterating over distribution Dn. If the mapping function M : D → Dn
is known, it can be used to reverse the effect of noisy samples. Algorithms under

this section simultaneously try to find underlying noise structure and train the base

classifier with estimated noise parameters. They need a better estimate of M to train

better classifiers and better classifiers to estimate M accurately. Therefore, they usu-

ally suffer from a chicken-egg problem. Approaches belonging to this category are

explained in the following subsections.

3.1.1 Noisy Channel

The general setup for the noisy channel is illustrated in Figure 3.1. Methods belonging

to this category minimize the following risk

R̂l,D(f) =
1

N

N∑
i=1

l(Q(fθ(xi)), ỹi) (3.1)

where Q(fθ(xi)) = p(ỹi|fθ(xi)) is the mapping from network predictions to given

noisy labels. If Q adapts the noise structure p(ỹ|y), then network will be forced to

learn true mapping p(y|x).

Q can be formulated with a noise transition matrix T so that Q(fθ(xi)) = Tfθ(xi)

12

Table 3.1: Existing noise model based methods to deal with label noise in the litera-

ture
N

oi
se

M
od

el
B

as
ed

M
et

ho
ds

1. Noisy Channel

a.Explicit calculation: noisy data [48], clean data [49], easy data [50]

b.Iterative calculation: EM [51, 52, 25], FC-layer [53, 54]

anchor point [55], Drichlet-distribution [56]

c.Complex noisy channel: noise type [18], relevance [57]

2. Label Noise Cleaning

a.Using data with clean labels: clean set [58], ensemble [59]

graph-based [60]

b.Using data with both clean and noisy labels: iteratively [61], [62]

c.Using data with just noisy labels: posterior [63], compatibility [64]

consistency [65, 66, 67], ensemble [68], prototypes [69]

quality embedding [70], partial labels [71]

3. Dataset Pruning

a.Removing Data prediction [72], ensemble [73, 74]

noise rate [75], transfer learning [76], cyclic state [77], K-means [78]

b.Removing Labels SSL [79, 80, 81, 1], relabeling [82, 83]

4. Sample Choosing

a.Curriculum Learning: Loss [84], teacher-student [85]

uncertain samples [86], curriculum loss [87], complexity [88]

consistency [89]

b.Multiple Classifiers: Consistency [90], co-teaching [91, 92, 93, 94]

5. Sample Importance Weighting

Meta task [95, 96, 97], siamese network [98], pLOF [26]

abstention [99], noise rate [100, 101], similarity loss [102]

transfer learning [103], θ-distribution [104]

6. Labeler Quality Assessment

EM [105, 106, 24], trace regularizer [107], crowd-layer [108]

difficulty estimate [109], consistency [110], omitting variable [111]

softmax layer per labeler [23]

13

Table 3.2: Existing noise model free methods to deal with label noise in the literature

N
oi

se
M

od
el

Fr
ee

M
et

ho
ds

1. Robust Losses

Non-convex [112, 113, 114], 0-1 surrogate [115], MAE [116]

IMEA [117], Generalized cross-entropy [118], symmetric loss [119]

unbiased estimator [120], modified cce [121], information loss [122]

linear-odd [123], classification calibrated [124], SGD [125]

2. Meta Learning

Choosing best methods [126], pumpout [127], parameter initialization [128],

knowledge distillation [129], gradient magnitude adjustment [130, 131]

meta soft labels [132]

3. Regularizers

Dropout [133], adversarial training [134], mixup [135]

label smoothing [136, 137], pre-training [138], dropout on final layer [139]

checking dimensionality [140], auxiliary image regularizer [141]

4. Ensemble Methods

LogitBoost&BrownBoost [142], noise detection based AdaBoost [143]

rBoost [144], RBoost1&RBoost2 [145], robust multi-class AdaBoost [146]

5. Others

Complementary labels [147, 148], auto-encoder [149], less noisy data [150],

data quality [151], prototype learning [152, 153], MIL [154, 155]

14

where each element of the matrix represents the transition probability of given true

label to noisy label, Tij = p(ỹ = j|y = i). Since T is composed of probabilities,

weights coming from a single node should sum to one
∑

j Tij = 1. This procedure of

correcting predictions to match given label distribution is also called loss-correction

[48].

A common problem in noisy channel estimation is scalability. As the number of

classes increases, the size of the noise transition matrix increases exponentially, mak-

ing it intractable to calculate. This can be partially avoided by allowing connections

only among the most probable nodes [52] or predefined nodes [156]. These restric-

tions are determined by human experts, which allows additional noise information to

be inserted into the training procedure.

The noisy channel is used only in the training phase. In the evaluation phase, the

noisy channel is simply removed to get noise-free predictions of the base classifier.

In these kinds of approaches, performance heavily depends on the accurate estimation

of noisy channel parameters; therefore, works mainly focus on the estimation of Q.

Various ways of formulating the noisy channel are explained below.

Figure 3.1: Noise can be modeled as a noisy channel on top of base classifier. Noisy

channel adapts the characteristic of the noise so that base classifier is fed with noise-

free gradients during traning.

3.1.1.1 Explicit calculation

Noise transition matrix is calculated explicitly, and then the base classifier is trained

using this matrix. Assuming dataset is balanced in terms of clean representative sam-

ples and noisy samples, so that there exists samples for each class with p(y = ỹi|xi) =
1, [48] constructs T just based on noisy class probability estimates of a pre-trained

15

model, so-called confusion matrix. A similar approach is followed in [49]; however,

the noise transition matrix is calculated from the network’s confusion matrix on the

clean subset of data. Two datasets are gathered in [50], namely: easy data and hard

data. The classifier is first trained on the easy data to extract similarity relationships

among classes. Afterward, the calculated similarity matrix is used as the noise tran-

sition matrix. Another method proposed in [53] calculates the confusion matrix on

both noisy data and clean data. Then, the difference between these two confusion

matrices gives T .

3.1.1.2 Iterative calculation

Noise transition matrix is estimated incrementally during the training of the base clas-

sifier. In [51, 52] expectation-maximization (EM) [157] is used to iteratively train

network to match given distribution and estimate noise transition matrix given the

model prediction. The same approach is used on medical data with noisy labels in

[25]. [54] and [53] add a linear fully connected layer as a last layer of the base classi-

fier, which is trained to adapt noise behavior. In order to avoid this additional layer to

converge the identity matrix and base classifier overfitting the noise, the weight decay

regularizer is applied to this layer. [55] suggests using class probability estimates on

anchor points (data points that belong to a specific class almost surely) to construct

the noise transition matrix. In the absence of a noise-free subset of data, anchor points

are extracted from data points with high noisy class posterior probabilities. Then, the

matrix is updated iteratively to minimize loss during training. Instead of using soft-

max probabilities, [56] models noise transition matrix in Bayesian form by projecting

it into a Dirichlet-distributed space.

3.1.1.3 Complex noisy channel

Different then simple confusion matrix, some works formalize the noisy channel as

a more complex function. This enables noisy channel parameters to be calculated

not just by using network outputs, but additional information about the content of

data. For example, three types of label noises are defined in [18], namely: no noise,

16

random noise, structured noise. An additional convolutional neural network (CNN) is

used to interpret the noise type of each sample. Finally, the noisy layer aims to match

predicted labels to noisy labels with the help of predicted noise type. Another work

in [57] proposes training an extra network as a relevance estimator, which attains the

label’s relevance to the given instance. Predicted labels are mapped to noisy labels

with the consideration of relevance. If relevance is low, in case of noise, the classifier

can still make predictions of true class and doesn’t get penalized much for it.

3.1.2 Label Noise Cleaning

An obvious solution to noisy labels is to identify and correct suspicious labels to

their corresponding true classes. Cleaning the whole dataset manually can be costly;

therefore, some works propose to pick only suspicious samples to be sent to a human

annotator for the purpose of reducing the cost [39]. However, this is still not a scalable

approach. As a result, various algorithms are proposed in the literature. Including the

label correction algorithm, the empirical risk takes the following form

R̂l,D(f) =
1

N

N∑
i=1

l(fθ(xi), G(ỹi, xi)) (3.2)

whereG(ỹi, xi) = p(yi|ỹi, xi) represents the label cleaning algorithm. Label cleaning

algorithms rely on a feature extractor to map data to feature domain for the investiga-

tion of noisiness. While some works use a pretrained network as the feature extractor,

others use the base classifier as it gets more and more accurate during training. This

results in an iterative framework: as the classifier gets better the label cleaning is more

accurate, and as the label quality gets better the classifier gets better. From this point

of view, label cleaning can be viewed as a dynamically evolving component of the

system, instead of the preprocessing data. Such methods usually tackle the difficulty

of distinguishing informative hard samples from those with noisy labels [12]. As a

result, they can end up removing too many samples or changing labels in a delusional

way. Approaches for label cleaning can be separated according to their need for clean

data or not.

17

3.1.2.1 Using data with clean labels

In the existence of a clean subset of data, the aim is to fuse noise-free label structure to

noisy labels for correction. If the clean subset is large enough to train a network, one

obvious way is to relabel noisy labels by predictions of the network trained on clean

data. For relabeling, [58] uses alpha blending of given noisy labels and predicted

labels. An ensemble of networks that are trained with different subsets of the dataset

is used in [59]. If they all agree on the label, it is changed to the predicted label;

otherwise, the label is set to a random label. Instead of keeping the noisy label, setting

it randomly helps to break the structure in noise and makes noise more uniformly

distributed in label space. In [60] a graph-based approach is used, where relation

among noisy labels and clean labels are extracted by a conditional random field.

3.1.2.2 Using data with both clean and noisy labels

Some works rely on a subset of data, for which both clean and noisy labels are pro-

vided. Then label noise structure is extracted from these conflicting labels and used

to correct noisy data. In [61], the label cleaning network gets two inputs: extracted

features of instances by the base classifier and corresponding noisy labels. Label

cleaning network and base classifier are trained jointly, so that label cleaning network

learns to correct labels on the clean subset of data and provides corrected labels for

base classifier on noisy data. Same approach is decoupled in [62] in teacher-student

manner. First, the student is trained on noisy data. Then features are extracted from

the clean data via the student model, and the teacher learns the structure of noise de-

pending on these extracted features. Afterward, the teacher predicts soft labels for

noisy data, and the student is again trained on these soft labels for fine-tuning.

3.1.2.3 Using data with just noisy labels

Noise-free data is not always available, so the main approach in this situation is to in-

crementally estimate cleaner posterior label distribution. However, there is a possible

undesired solution to this approach so that all labels are attained to a single class and

base network predicting constant class, which would result in delusional top training

18

accuracy. Therefore additional regularizers are commonly used to make label poste-

rior distribution even. A joint optimization framework for both training base classifier

and propagating noisy labels to cleaner labels is presented in [63]. Using expectation-

maximization, both classifier parameters and label posterior distribution is estimated

in order to minimize the loss. A similar approach is used in [64] with additional

compatibility loss conditioned on label posterior. Considering noisy labels are in the

minority, this term assures posterior label distribution is not diverged too much from

the given noisy label distribution, so that majority of the clean label contribution is

not lost. [65, 66] deploy a confidence policy where labels are determined by either

network output or given noisy labels, depending on the confidence of the model’s

prediction. Arguing that in case of noisy labels model first learns correctly labeled

data and then overfits to noisy data, [67] aims to extract the probability of a sample

being noisy or not from its loss value. To achieve this, the loss of each sample is fitted

by a beta mixture model, which models the label noise in an unsupervised manner.

[68] proposes a two-level approach. In the first stage, with any chosen inference al-

gorithm, the ground truth labels are determined, and data is divided into two subsets

as noisy and clean. In the second stage, an ensemble of weak classifiers is trained

on clean data to predict true labels of noisy data. Afterward, these two subsets of

data are merged to create the final enhanced dataset. [69] constructs prototypes that

are able to represent deep feature distribution of the corresponding class, for each

class. Then corrected labels are found by checking similarity among data samples

and prototypes. [70] introduces a new parameter, namely quality embedding, which

represents the trustworthiness of data. Depending on two latent variables, true class

probability and quality embedding, an additional network tries to extract the true class

of each instance. In a multi-labeled dataset, where each instance has multiple labels

representing its content, some labels may be partially missing resulting in partial la-

bels. In the case of partial labels, [71] uses one network to find and estimate easy

missing labels and other network to be trained on this corrected data. [158] formu-

lates video anomaly detection as a classification with label noise problem and trains a

graph convolutional label noise cleaning network depending on features and temporal

consistency of video snippets.

19

3.1.3 Dataset Pruning

Instead of correcting noisy labels to their true classes, an alternative approach is to

remove them. While this would result in loss of information, preventing the harmful

impact of noise may result in better performance. In these methods, there is a risk

of removing too many samples. Therefore, it is crucial to remove as few samples as

possible to prevent unnecessary data loss.

There are two alternative ways for data pruning. First option is to remove noisy

samples completely and train the classifier on the pruned dataset. Second option is to

just remove the labels of noisy data and transform dataset into two subsets as; labeled

and unlabeled data. Then semi-supervised learning algorithms can be employed on

the resultant dataset.

3.1.3.1 Removing Data

The most straightforward approach is to remove instances that are misclassified by

the base network [72]. [73] uses an ensemble of filtering methods, where each of

them assigns a noisiness level for each instance. Then, these predictions are com-

bined, and data with the highest noisiness level predictions are removed. [74] extends

this work with label correction. If the majority of noise filters predict the same label

for the noisy instance, it’s label is corrected to the predicted label. Otherwise, it is

removed from the dataset. In [75], with the help of a probabilistic classifier, training

data divided into two subsets: confidently clean and noisy. Noise rates are estimated

according to the sizes of these subsets. Finally, relying on output confidence of base

network on data instances, the number of most unconfident samples is removed ac-

cording to the estimated noise rate. In [76], transfer learning is used, so that network

trained on a clean dataset from a similar domain is fine-tuned on the noisy dataset

for relabeling. Afterward, the network is again trained on relabeled data to re-sample

the dataset to construct a final clean dataset. In [77], the learning rate is adjusted

cyclicly to change network status between underfitting and overfitting. Since, while

underfitted, noisy samples cause high loss, samples with large noise during this cyclic

process are removed. [78] first train network on noisy data and extract feature vectors

20

by using this model. Afterward, data is clustered with K-means algorithm running on

extracted features, and outliers are removed. [159] provides a comparison of perfor-

mances of various noise-filtering methods for crowd-sourced datasets.

3.1.3.2 Removing Labels

The simplest option is to employ straightforward semi-supervised training on labeled

and unlabeled data [79]. Alternatively, label removing can be done iteratively in each

epoch to dynamically update dataset for better utilization of semi-supervised learning.

[80] uses consistency among given label and moving average of model predictions to

evaluate if the given label is noisy or not. Then model is trained on clean samples on

the next iteration. This procedure continues until convergence to the best estimator.

Same approach is used in [81] with a little tweak. Instead of comparing with given la-

bels, moving average of predictions are compared with predicted labels in the current

epoch. In order to avoid the data selection biased caused by one model, [1] uses two

models to select unlabeled set for each other. Afterward, each network is trained in

semi-supervised learning manner on the dataset selected by its peer network. Another

approach in this class is to train a network on labeled and unlabeled data, and then

use it to relabel noisy data [82]. Assuming that correctly labeled data account for

majority, [83] proposes to randomly split dataset to labeled and unlabeled subgroups.

Then, labels are propagated to unlabeled data using similarity index among instances.

This procedure repeated to produce multiple labels per instance and then final label

is set with majority voting.

3.1.4 Sample Choosing

A widely used approach to overcome label noise is to manipulate the input stream to

the classifier. Guiding the network with choosing the right instances to feed can help

classifier finding its way easier in the presence of noisy labels. It can be formulated

as follows

21

R̂l,D(f) =
1

N

N∑
i=1

V (xi, yi)l(fθ(xi), ỹi)) (3.3)

where V (xi, yi) ∈ {0, 1} is a binary operator that decides to whether use the given

data (xi, yi) or not. If V (xi, yi) = 1 for all data, then it turns out to be classical

risk minimization (Equation 3.3). If V happens to be a static function, which means

choosing the same samples during whole training according to a predefined rule, then

it turns out to be dataset pruning, as explained in subsection 3.1.3. Differently, sam-

ple choosing methods continuously monitor the base classifier and select samples to

be trained on for the next training iteration. The task can be seen as drawing a path

through data that would mimic the noise-free distribution of D. Since these methods

operate outside of the existing system, they are easier to attach to the existing algo-

rithm at hand by just manipulating the input stream. However, it is vital to keep the

balance so that system does not ignore unnecessarily large quantities of data. Addi-

tionally, these methods prioritize low loss samples, which results in a slow learning

rate since hard informative samples are considered only in the later stages of training.

Two major approaches under this group are discussed in the following subsections.

3.1.4.1 Curriculum Learning

Curriculum learning (CL) [160], inspired from human cognition, proposes to start

from easy samples and go through harder samples to guide training. This is also called

self-paced learning [161, 162], when prior to sample hardness is not known and in-

ferred from the loss of the current model on that sample. In noisy label framework,

clean labeled data can be accepted as easy task while noisily labeled data is harder

task. Therefore, the idea of CL can be transferred to label noise setup as starting from

confidently clean instances and go through noisier samples as the classifier gets better.

Various screening loss functions are proposed in [84] to sort instances according to

their noisiness level. Teacher-student approach is implemented in [85], where the task

of the teacher is to choose confidently clean samples for the student. Instead of using

a predefined curriculum, the teacher constantly updates its curriculum depending on

the outputs from the student. Arguing that CL slows down the learning speed, since

it focuses on easy samples, [86] suggests choosing uncertain samples that are pre-

22

dicted incorrectly sometimes and correctly on others during training. These samples

assumed to be probably not noisy since noisy samples should be predicted incorrectly

all the time. Arguing that it is hard to optimize 0-1 loss, curriculum loss that chooses

samples with low loss values for loss calculation, is proposed as an upper bound for

0-1 loss in [87]. In [88], data is split into subgroups according to their complexities.

Since less complex data groups expected to have more clean labels, training will start

from less complex data and go through more complex instances as the network gets

better. Next samples to be trained on can be chosen by checking the consistency of

the label with the network prediction. In [89], if both label and model prediction of

the given sample is consistent, it is used in the training set. Otherwise, the model

has a right to disagree. Iteratively this provides better training data and better model.

However, there is a risk of the model being too skeptical and choosing labels in a

delusional way; therefore, consistency balance should be established.

3.1.4.2 Multiple Classifiers

Some works use multiple classifiers to help each other to choose the next batch of

data to train on. This is different than the teacher-student approach since none of the

networks is supervising the other but they rather help each other out. This can provide

robustness since networks can correct each other’s mistakes due to their differences

in learned representations. For this setup to work, the initialization of the classifiers

is important. They are most likely to be initialized with a different subset of the

data. If they have the same weight initializations, then there happens no update since

they will both agree to disagree with labels. In [90] label is assumed to be noisy if

both networks disagree with the given label, and update on model weights happens

only when the prediction of two networks conflicts. The paradigm of co-teaching is

introduced in [91], where two networks select the next batch of data for each other.

The next batch is chosen as the data batch, which has small loss values according to

pair network. It is claimed that using one network accumulates the noise-related error,

whereas two networks filter noise error more successfully. The idea of co-teaching is

further improved by iterating over data where two networks disagree, to prevent two

networks converging each other with increasing number of epochs [92, 93]. Another

work using co-teaching first trains two networks on a selected subset for a given

23

number of epochs and then moves to the full dataset [94].

3.1.5 Sample Importance Weighting

Similar to sample choosing, training can be made more effective by assigning weights

to instances according to their estimated noisiness level. This has an effect of empha-

sizing cleaner instances for better update on model weights. Following empirical risk

is minimized by these algorithms

R̂l,D(f) =
1

N

N∑
i=1

β(xi, yi)l(fθ(xi), ỹi)) (3.4)

where β(xi, yi) determines the instance dependent weight. If β would be binary,

then formulation is the same with sample choosing, as explained in subsection 3.1.4.

Differently, here β is not binary and has a different value for each instance. Just like

in sample choosing algorithms, β is a dynamic function, which means weights for

instances keep changing during the training. Therefore, it is commonly a challenge

to prevent β changing too rapidly and sharply, such that it disrupts the stabilized

training loop. Moreover, these methods commonly suffer from accumulated errors

so that they can easily get biased towards a certain subset of data. There are various

methods proposed to obtain optimal β to fade away the negative effects of noise.

The simplest approach would be, in case of availability of both clean and noisy data,

weighting clean data more [53]. However, this utilizes information poorly; more-

over, clean data is not always available. Works of [95] and [96], uses meta-learning

paradigm to determine the weighting factor. In each iteration, gradient descent step

on given mini-batch for weighting factor is performed, so that it minimizes the loss on

clean validation data. A similar method is adopted in [97], but instead of implicit cal-

culation of the weighting factor, multi layer perceptron (MLP) is used to estimate the

weighting function. Open-set noisy labels, where data samples associated with noisy

labels might belong to a true class that is not present in the training data, are consid-

ered in [98]. Siamese network is trained to detect noisy labels by learning discrimina-

tive features to apart clean and noisy data. Noisy samples are iteratively detected and

pulled from clean samples. Then, each iteration weighting factor is recalculated for

24

noisy samples, and the base classifier is trained on whole dataset. [26] also iteratively

separates noisy samples and clean samples. On top of that, not to miss valuable infor-

mation from clean hard samples, noisy data are weighted according to their noisiness

level, which is estimated by pLOF [163]. [99] introduces abstention, which gives

option to abstain samples, depending on their loss value, with an abstention penalty.

Therefore, the network learns to abstain from confusing samples, and with the ab-

stention penalty, the tendency to abstain can be adjusted. In [100], weighting factor

is conditioned on distribution of training data, β(X, Y) = PD(X, Y)/PDn(X, Ỹ).

The same methodology is extended to the multi-class case in [101]. In [102], the

weighting factor is determined by checking instance similarity to its representative

class prototype in the feature domain. [103] formulates the problem as transfer learn-

ing where the source domain is noisy data and target domain is a clean subset of data.

Then weighting in source domain is arranged in a way to minimize target domain

loss. [104] uses θ values of samples in θ-distribution to calculate their probability of

being clean and use this information to weight clean samples more in training.

Figure 3.2: Illustration of different types of algorithms. Starting from left; 1) repre-

sentation of samples from a single class in the 2D space. Green samples represent

the clean samples and red ones represent noisy samples. 2) label noise cleaning al-

gorithms aim to correct the labels of noisy data 3) dataset pruning methods aim to

eliminate noisy data (or just their labels) 4) sample importance weighting algorithms

aim to up-weight clean samples and down-weight noisy samples (which is illustrated

by size)

25

3.1.6 Labeler Quality Assessment

As explained in section 2.3, there can be several reasons for dataset to be labeled

by multiple annotators. Each labeler may have different level of expertise and their

labels may occasionally contradict with each other. This is a common case in crowd-

sourced data [164, 165, 166] or datasets which requires high level of expertise such

as medical imaging [14]. Therefore, modeling and using labeler characteristic can

significantly increase the performance [23].

In this setup there are two unknowns namely; noisy labeler characteristic and ground

truth labels. One can estimate both with expectation-maximization [105, 106, 24].

If noise is assumed to be y-dependent, labeler characteristic can be modeled with

noise transition matrix, just like in subsection 3.1.1. [107] adds a regularizer to the

loss function, which is the sum of traces of annotator confusion matrices, in order

to force sparsity on each labeler’s estimated confusion matrix. Similar approach is

implemented in [108], where crowd-layer is added to the end of network. In [109],

xy-dependent noise is also considered by taking image complexities into account as

well. Human annotators and computer vision system are used mutually in [110],

where consistency among predictions of these two components are used to evaluate

the reliability of labelers. [111] deals with the noise when labeler omits a tag in the

image. Therefore, instead of noise transition matrix for labelers, omitting probabil-

ity variable is used, which is estimated together with true class using expectation-

maximization algorithm. Separate softmax layers are trained for each annotator in

[23] and an additional network to predict the true class of data depending on the out-

puts of labeler specific networks and features of data. This setup enables to model

each labeler and their overall noise structure in separate networks.

3.1.7 Discussion

Visual illustration of some of the methods are presented in Figure 3.2. Noise model

based methods are heavily dependent on the accurate estimate of the noise structure.

This brings a dilemma. For better noise model one needs better estimators, and for

better estimators it is necessary to have a better estimate of underlying noise. There-

26

fore, many approaches can be seen as an expectation-maximization of both noise

estimation and classification. However, it is essential to prevent the system diverging

from reality, therefore regularizing noise estimates and not letting it getting delusional

is important. In order to achieve this, works in literature commonly make assumptions

about the underlying noise structure, which damages their applicability to different se-

tups. On the other hand, this lets any prior information about the noise to be inserted

to the system for an head-start. It is also useful to handle domain-specific noise. One

another advantage of these algorithms is they decouple noise estimation and classi-

fication tasks. Therefore, they are easier to implement on an existing classification

algorithm at hand.

3.2 Noise Model Free Methods

These methods aim to achieve label noise robustness without explicitly modeling it,

but rather designing robustness in the proposed algorithm. Noisy data is treated as

anomaly and therefore these methods are in similar line with overfit avoidance. They

commonly rely on internal noise tolerance of the classifier and aim to boost perfor-

mance by regularizing undesired memorization of noisy data. Various methodologies

are presented in the following subsections.

3.2.1 Robust Losses

A loss function is said to be noise robust if the classifier learned with both noisy and

noise-free data, achieves the same classification accuracy [112]. Algorithms under

this section aims to design loss function in such a way that the existence of the noise

would not decrease the performance. However, it is shown that noise can badly affect

the performance even for the robust loss functions [12]. Moreover, these methods

treat both noisy and clean data in the same way, which prevents the utilization of any

prior information over data distribution.

In [112], it is shown that certain non-convex loss functions, such as 0-1 loss, has noise

tolerance much more than commonly used convex losses. Extending this work [113,

114] derives sufficient conditions for a loss function to be noise tolerant for uniform

27

noise. Their work shows that, if the given loss function satisfies
∑

k l(fθ(x), k) =

C, ∀x ∈ X whereC is a constant value, then loss function is tolerant to uniform noise.

In this content, they empirically show that none of the standard convex loss functions

has noise robustness while 0-1 loss has, up to a certain noise ratio. However, 0-1 loss

is non-convex and non-differentiable; therefore, surrogate loss of 0-1 loss is proposed

in [115], which is still noise sensitive. Widely used categorical cross entropy (CCE)

loss is compared with mean absolute value of error (MAE) in the work of [116], where

it is shown empirically that mean absolute value of error is more noise tolerant. [117]

shows that the robustness of MEA is due to its weighting scheme. While CCE is sen-

sitive to abnormal samples and produces bigger gradients in magnitude, MAE treats

all data points equally, which would result in an underfitting of data. Therefore, Im-

proved mean absolute value of error (IMAE), which is an improved version of MAE,

is proposed in [117], where gradients are scaled with a hyper-parameter to adjusts

weighting variance of MAE. [118] also argues that MAE provides a much smaller

learning rate than CCE; therefore, a new loss function is suggested, which combines

the robustness of MAE and implicit weighting of CCE. With a tuning parameter,

characteristic of the loss function can be adjusted in a line from MAE to CCE. Loss

functions are commonly not symmetric, meaning that l(fθ(xi), yi) 6= l(yi, fθ(xi)).

Inspired from the idea of symmetric KL-divergence, [119] proposes symmetric cross

entropy loss lSCE(fθ(xi), yi) = l(fθ(xi), yi) + l(yi, fθ(xi)) to battle noisy labels.

Given that noise prior is known, [120] provides two surrogate loss functions using

the prior information about label noise, namely, unbiased and weighted estimator of

the loss function. [121] considers asymmetric omission noise for the binary classifi-

cation case, where the task is to find road pixels from a satellite map image. Omis-

sion noise makes the network less confident about its predictions, so they modified

cross-entropy loss to penalize network less for making wrong but confident predic-

tions since these labels are more likely to be noisy. Instead of using distance-based

loss, [122] proposes to use information-theoretic loss, in which determinant based

mutual information [167] between given labels and predictions are evaluated for loss

calculation. Weakly supervised learning with noisy labels are considered in [123],

and necessary conditions for loss to be noise tolerant are drawn. [124] shows that

classification-calibrated loss functions are asymptotically robust to symmetric label

28

noise. Stochastic gradient descent with robust losses are analyzed in general [125]

and shown to be more robust to label noise than its counterparts.

3.2.2 Meta Learning

As mentioned in section 2.4, recent works show that meta-learning achieves promis-

ing results in various fields. Designing a task beyond classical supervised learning in

meta learning fashion has been used to deal with label noise as well. A meta task is

defined as predicting the most suitable method, among family of methods, for a given

noisy dataset in [126]. Pumpout [127] presents a meta objective as recovering the

damage done by noisy samples by erasing their effect on model via scaled gradient

ascent. As a meta learning paradigm, model-agnostic-meta-learning (MAML) [44]

seeks for optimal weight initialization that can easily be fine-tuned for a desired ob-

jective. A similar mentality is used in [128] for noisy labels, which aims to find noise-

tolerant model parameters that are less prone to noise under teacher-student training

framework [168, 169]. Multiple student networks are fed with data corrupted by

synthetic noise, and meta objective is defined to maximize consistency with teacher

outputs, which are obtained from raw data without synthetic noise. Therefore, student

networks are forced to find most noise robust weight initialization such that weight

update will still be consistent after training an epoch on synthetically corrupted data.

Then, final classifier weights are set as an exponential moving average of student

networks.

Alternatively, in the case of available clean data, a meta objective can be defined to

utilize this information. The approach used in [129] is to train a teacher network in a

clean dataset and transfer its knowledge to student network for the purpose of guiding

training process in the presence of mislabeled data. They used distillation technique

proposed in [45] for controlled transfer of knowledge from teacher to student. In

[130, 131] the target network is trained on excessive noisy data, and the confidence

network is trained on clean subset. Inspiring from [43], the confidence network’s

task is to control the magnitude of gradient updates to the target network so that

noisy labels are not resulting in updating gradients. [132] uses clean data to produce

soft labels for noisy data, for which the classifier trained on it would give the best

29

performance on the clean data. As a result, it seeks for optimal label distribution to

provide most noise robust learning for the base classifier.

3.2.3 Regularizers

Regularizers are well known to prevent DNNs from overfitting noisy labels. From

this perspective, these methods treat performance degradation due to noisy data as

overfitting to noise. Even though this assumption is mostly valid in random noise,

it may not be the case for more complex noises. Some widely used techniques are

weight decay, dropout [133], adversarial training [134], mixup [135], label smoothing

[136, 137]. [138] shows that pre-training has a regularization effect in the presence of

noisy labels. In [139] an additional softmax layer is added, and dropout regularization

is applied to this layer, arguing that it provides more robust training and prevents

memorizing noise due to randomness of dropout [133]. [140] proposes a complexity

measure to understand if the network starts to overfit. It is shown that learning consists

of two steps: 1) dimensionality compression, that models low-dimensional subspaces

which closely match the underlying data distribution, 2) dimensionality expansion,

that steadily increases subspace dimensionality in order to overfit the data. The key is

to stop before the second step. Local intrinsic dimensionality [170] is used to measure

complexity of trained model and stop before it starts to overfit. [141] takes a pre-

trained network on a different domain and fine-tunes it for the noisy labeled dataset.

Groups of image features are formed, and group sparsity regularization is imposed so

that model is forced to choose relative features and up-weights the reliable images.

3.2.4 Ensemble Methods

It is well known that bagging is more robust to label noise than boosting [171]. Boost-

ing algorithms like AdaBoost puts too much weight on noisy samples, resulting in

overfitting the noise. However, the degree of label noise robustness changes for the

chosen boosting algorithm. For example, it is shown that BrownBoost and Logit-

Boost are more robust than AdaBoost [142]. Therefore, noise-robust alternatives of

AdaBoost is proposed in literature, such as noise detection based AdaBoost [143],

30

rBoost [144], RBoost1&RBoost2 [145] and robust multi-class AdaBoost [146].

3.2.5 Others

Complementary labels define classes that observations do not belong to. For example,

in the case of ten classes, there is one true class for an instance and nine complemen-

tary classes. Since annotators are less likely to mislabel, some works propose to work

in complementary label space [147, 148]. [149] uses reconstruction error of autoen-

coder to discriminate noisy data from clean data, arguing that noisy data tend to have

bigger reconstruction error. In [150], a special setup is considered where dataset con-

sists of noisy and less-noisy data for binary classification task. [151] aims to extract

the quality of data instances. Assuming that the training dataset is generated from a

mixture of target distribution and other unknown distributions, it estimates the quality

of data samples by checking the consistency between generated and target distribu-

tions.

Prototype learning aims to construct prototypes, that can represent features of a class,

in order to learn clean representations. Some works in the literature [152, 153] pro-

pose to create clean representative prototypes for noisy data, so that base classifier

can be trained on them instead of noisy labels.

In multiple-instance learning, data are grouped in clusters, called bags, and each bag

is labeled as positive if there is at least one positive instance in it and negative oth-

erwise. The network is fed with a group of data and produces a single prediction for

each bag by learning the inner discriminative representation of data. Since the group

of images is used and one prediction is produced, existence of noisy labels along with

true labels in a bag has less impact on learning. In [154], authors propose to effec-

tively choose training samples from each bag by minimizing the total bag level loss.

Extra model is trained in [155] as attention model, which chooses parts of the images

to be focused on. Aim is to focus on few regions on correctly labeled image and not

focus on any region for mislabeled images.

31

3.2.6 Discussion

Methods belonging to this category, in overall, treat noisy data as an anomaly. There-

fore, they are in a similar line with overfit avoidance and anomaly detection. Even

though this assumption may be quite valid for random noise, it loses its validity in

case of more complicated and structured noises. Since noise modeling is not decou-

pled from classification task explicitly, proposed methods are, in the general sense,

embedded into the existing algorithm. This prevents their quick deployment to the

existing system at hand. Moreover, algorithms belonging to meta-learning and en-

semble methods can be computationally costly since they require multiple iterations

of training loops.

32

CHAPTER 4

SYNTHETIC LABEL NOISE GENERATION

As presented in Section 2.2, there are various label noise types. Generating random

noise and class-dependent noise is pretty straightforward. On the other hand, there

are multiple ways of producing feature-dependent noisy labels. It consists of two

steps: 1) mapping instances to feature domain and picking ambiguous samples, 2)

flipping label to most probable class. Different implementations of these steps result

in different types of feature-dependent noises.

This chapter consists of two parts. The first part analyses the various implementa-

tions of label noise generation algorithms from the literature. Then, a novel feature-

dependent label noise generation algorithm is proposed in the second part.

4.1 Methods from the Literature

This section presents the methodologies to produce different types of synthetic label

noise. Uniform noise and class-dependent noise can be represented with noise tran-

sition matrix N where Nij represents the probability of flipping label from class i to

j. Since noise transition matrix consists of probabilities,
∑

j Nij = 1. On the other

hand, in feature-dependent noise, each instance has its own transition probability de-

pending on its features. Therefore, it can not be generated using a noise transition

matrix. The following sections will describe the process of generating these types of

noises. Different noise types are visualized with T-SNE plots in Figure 2.1.

33

4.1.1 Uniform Noise

Flipping the probability of a label from its true class to any other class is equally

distributed. Many works in literature use synthetic uniform label noise by just flipping

labels randomly for a given percentage of data instances [140, 96, 139, 59].

For this type of noise, each entry in the noise transition matrix, besides diagonal ones,

are equally distributed. The noise transition matrix can be defined as follows.

Nij =


p if i = j

1− p
C − 1

if i! = j
(4.1)

4.1.2 Class-Dependent Noise

The flipping probability of the label depends on the true class of the data instance.

This is mostly represented by a confusion matrix and can be designed in different

ways. The easiest way is to attain inter-class transition probabilities just random [103]

so that there is still class dependence since transition probabilities are given according

to classes but without any correlation to class similarities. In a more structured way,

noise transition matrix can be designed in a way that similar classes have a bigger

probability to be flipped to each other [48, 128, 64, 54, 49]. Some works use pairwise

noise, in which transition from one class can only be defined to one another class

[91, 95, 127, 92]. Work of [122] checks the popularity of classes and constructs

transition matrix so that mislabeling happens from popular class to unpopular class

or vice versa.

4.1.3 Feature-Dependent Noise

The probability of mislabeling depends on features of instances. In order to gener-

ate feature-dependent noise, features of each instance should be extracted, and their

similarities to other instances from different classes should be evaluated. Unlike uni-

form and class-dependent noise, there are much fewer implementations of synthetic

feature-dependent label noise. One particular work in this field is [172], where data

34

is clustered with the kNN algorithm, and labels are flipped randomly for clusters of

data. This method provides concentrated noise in the feature space. This type of syn-

thetic noise does not evaluate the instance similarities and, therefore, differs from our

proposed approach. Alternatively, in case there is a surrounding text for each image

in the dataset, some works create noisy labels from the interpretations of these texts

[24, 129, 57], assuming surrounding texts are related to features of data. However,

this approach is restricted to datasets with surrounding user-defined texts, which is

not the case for most of the time.

4.2 Proposed Noise Generation Algorithm

It should be noted that toy datasets with synthetic label noise are only used for the

development of the noise-robust algorithm. The main goal of this thesis is to develop

a noise robust algorithm for real-world applications. Therefore, generated artificial

noise should be as close to real-world scenarios as possible. Obviously, the most

realistic label noise is the feature-dependent noise. Annotators are highly affected

by the attributes of the data and tend to mislabel ambiguous samples. Therefore, the

proposed algorithm should manage to achieve two critical stages; finding ambiguous

samples and figuring out the most probable noisy label.

Compared to uniform noise and class-dependent noise, feature dependent noise is

harder to implement since all samples should be vectorized in the feature domain,

and similarities among samples should be calculated. The most similar work on

this topic is [172], where labels are flipped for clusters of instances that result in

locally-concentrated label noise. However, this approach doesn’t utilize the similari-

ties among instances; therefore, it does not fit this work’s requirements.

Once mapped to the feature domain, picking ambiguous samples is a straightforward

process. One can identify the samples that are close to decision boundaries and flip

their labels to counterpart class. However, finding the mapping function is challeng-

ing. One option is to train a deep network on the dataset first and then use it as the

feature extractor. However, since the network extracts the features of data that it is

trained on, it is prone to overfitting. Since we are especially interested in similarities

35

among instances in feature space, it is desired that samples are sparsely distributed.

On the contrary, in the case of overfitting, samples are gathered in a small region in

feature space.

Therefore, in this work the idea of knowledge distillation [45] is used. In the original

work, the authors use distillation to transfer knowledge from the big teacher network

to a much smaller student network without decreasing the performance. The idea is

mainly motivated by learning from soft labels where the similarity of each instance

to each class is emphasized by temperature hyperparameter.

Class probabilities on softmax output, beyond the true class probability, are usually

very low. But, compared with each other, some classes may have a much higher prob-

ability than others, and this carries important information about that data instance,

which is also called as dark knowledge. By making probability distribution smoother,

this relation is emphasized, as shown in Equation 4.2.

qi =
exp(zi/T)∑
j exp(zj/T)

(4.2)

Where zi is logit value for class i and qi is converted probability value for class i.

When temperature T = 1, formulation turns out to be normal softmax function. In-

stead of being trained on hard labels, the student network is trained on the weighted

sum of hard labels and soft labels produced by the teacher network. So, the loss

function is defined as follows,

L(yi, f(xi)) = αl(yi, f(xi)) + (1− α)l(qi, f(xi)) (4.3)

where qi represents the soft labels produced by the teacher network using temperature

T and yi represents the given label.

Within the context of this thesis, there is no interest in compressing the network to a

smaller network. However, the idea of learning by emphasizing instance similarities

can be used to find instances that have similar features with other classes. For that

purpose, the student network is at the same size as the teacher network. Firstly, the

teacher network is trained on the dataset. Secondly, soft labels are produced from the

36

softmax output of the teacher for a given temperature T . Thirdly, the student network

is trained on soft labels and hard labels with a weighting factor α in the loss function.

Finally, by checking softmax probabilities of instances, samples that have similar

features to other classes are detected, and their labels are flipped to corresponding

classes.

To see if the proposed method results in a more sparse distribution of data in feature

space, we can check the variance of instances belonging to classes and average over

each class as follows

σ =

∑N
i var(Qi)

C
(4.4)

whereQi is the feature matrix of instances belonging to class i. Features are extracted

from the layer output before the softmax layer. For straightforward training on the

MNIST dataset, the network manages to get 99% test accuracy while having σ =

78.3. On the other hand, the network trained with distillation achieves 95% accuracy

while having σ = 563.5. Its accuracy is comparable to the original network, but

learned representations are much more sparse, which is useful to extract similarities.

Figure 4.1 shows the data samples picked by the proposed label noise generation

algorithm. Additionally, most reliable data samples are visualized as well. It can be

seen that the proposed algorithm successfully manages to pick ambiguous samples.

37

(a) Confident data samples (b) Ambiguous data samples

Figure 4.1: Data samples chosen by presented synthetic label noise generation algo-

rithm. Left column shows the instances that are confidently classified, so their labels

are not changed. On the other hand, right column shows ambiguous samples, for

which labels are changed.

38

CHAPTER 5

META SOFT LABEL GENERATION

Conventional training with stochastic gradient descent fails when trained on noisy

data.Various approaches deal with this problem of learning from noisy data by de-

signing different learning frameworks instead of straightforward stochastic gradient

descent algorithm. Alternatively, this problem of learning from noisy data can it-

self be seen as another optimization problem. The sub-optimality of straightforward

learning originates from the sub-optimality of labels due to noise. Therefore, by

optimizing noisy data labels, the base learning algorithm can be optimized. In this

chapter, meta-learning based label noise robust learning algorithm is proposed, which

is called Meta Soft Label Generation (MSLG). The proposed algorithm generates

soft-labels for each instance so that the base model is trained with these soft-labels

instead of given noisy labels. Soft-labels are determined by meta-objective, which is

to minimize the loss of meta-data. Two iterations of training is used in each loop:

1) Update soft-label generation algorithm according to the meta-objective, 2) Update

base classifier parameters by newly generated soft-labels. As a result, the proposed

meta objective seeks for soft labels such that update on classification loss would lead

network parameters in the direction of minimizing meta loss. The proposed algorithm

differs from conventional label noise cleansing methods in a way that it is not search-

ing for clean hard-labels but rather searching for optimal labels in soft-label space to

minimize meta objective. Therefore, propagated soft labels are not necessarily clean

labels, but corresponding labels in a different label space. The algorithm proposed in

this chapter is previously published in [132], and the content is highly correlated with

the original paper.

39

5.1 Training

The full pipeline of the proposed framework is illustrated in Figure 5.1. Overall, train-

ing consists of two phases. Phase-1 is the warm-up training, which aims to provide a

stable initial point for phase-2 to start on. After the first phase, the main algorithm is

employed in the second phase that concludes the training. Each of the training phases

and their iteration steps are explained in the following subsection.

5.1.1 Training Phase-1

It is commonly accepted that, in the presence of noise, deep neural network firstly

learn useful representations and then overfit the noise [10]. Therefore, before em-

ploying the proposed algorithm, a warm-up training for the base classifier on noisy

training data with conventional cross-entropy loss is employed. At this stage, the use-

ful information from the data is leveraged. This is also beneficial for the meta-training

stage. Since gradients are taken on the feedback coming from the base classifier, with-

out any pre-training, random feedbacks coming from the base network would cause

meta-training to lead in the wrong direction.

5.1.2 Training Phase-2

This phase is the main training stage of the proposed framework. There are three

iteration steps, which are executed on each batch of data consecutively. The first two

iteration steps are the meta-training step, in which soft-labels are updated. Afterward,

in the third iteration step, base classifier parameters are updated by using the updated

soft-labels. These three steps are executed for each batch of data consecutively. The

following subsections explain training steps in detail.

5.1.2.1 Meta Training Step

The meta training step aims to optimize the conventional training step by updating

soft-labels. Therefore, it needs feedback from the conventional training step. For that

40

reason, firstly, a dummy conventional training step is conducted on the base classi-

fier with generated soft-labels. Secondly, meta-loss is calculated using the updated

classifier and meta-data. Then, meta-loss is backpropagated for soft-labels ŷ.

Firstly, posterior model parameters are calculated by taking a stochastic gradient de-

scent step on the classification loss.

θ̂ = θ(t) − α∇θLc(fθ(x), ŷ(t))

∣∣∣∣∣
θ(t)

, and (5.1)

Lc(fθ(x), ŷ(t)) =
1

Nb

Nb∑
i=1

lc(fθ(xi), ŷ
(t)
i) (5.2)

where xi ∈ Dn and ŷ(t)i is the corresponding predicted label at time step t. Inspired

from [64], classification loss lc is set as KL-divergence loss as follows

lc = KL(fθ(xi)||ŷi) (5.3)

Justification for the choice of loss function is provided in section 5.3. Afterward,

meta-loss is calculated with the feedback coming from updated parameters.

Lmeta(fθ̂(xm), ym) =
1

Nb

Nb∑
j=1

lcce(fθ̂(xm,j), ym,j) (5.4)

where xm,j, ym,j ∈ Dm and lcce represents the conventional categorical cross-entropy

loss. Finally, label predictions are updated by minimizing the meta loss Lmeta.

ŷ(t+1) = ŷ(t) − β∇ŷLmeta(fθ̂(xm), ym)

∣∣∣∣∣
ŷ(t)

(5.5)

Mathematical reasoning for the meta-update is further presented in Section 5.4.

5.1.2.2 Conventional Training Step

In this phase, the base network is trained on two losses. The first loss is classification

loss, which ensures network predictions are consistent with estimated soft labels.

41

Lc(fθ(x), ŷ(t+1)) =
1

Nb

Nb∑
i=1

lc(fθ(xi), ŷ
(t+1)
i) (5.6)

Notice that this is the same loss formulation with Equation 5.1, but with updated soft

labels ŷ(t+1)
i .

Moreover, Inspired from [63], entropy loss is defined as follows

Le(fθ(x)) = −
1

Nb

Nb∑
i=1

C∑
j=1

f jθ (xi) log(f
j
θ (xi)) (5.7)

Entropy loss forces network predictions to peak at only one class. Since the base

classifier is trained on predicted soft labels, which can peak at multiple locations, this

is useful to prevent training loop to saturate. Finally, base classifier parameters are

updated with stochastic gradient descent on these two losses.

θ(t+1) = θ(t) − λ∇θ

(
Lc(fθ(x), ŷ(t+1)) + Le(fθ(x))

)∣∣∣∣∣
θ(t)

(5.8)

Notice that there are three different learning rates α, β and λ for each step. The overall

algorithm is summarized in algorithm 2.

5.2 Formulation of ŷ

In MSLG, label distribution yd is maintained for all training samples xi. Following

[64], yd is initialized using noisy labels ỹ with the following formula

yd = Kỹ (5.9)

where K is a large constant. Then softmax is applied to get normalized soft labels

ŷ = softmax(yd) (5.10)

42

Algorithm 2: Meta Soft Label Generation
Input: Training data Dn, meta-data Dm, batch size Nb, phase-1 epoch

number ephase1, phase-2 epoch number ephase2,

Output: Base classifier parameters θ, Generated soft labels ŷ

epoch = 0;

// ----------------- Phase-1 training -----------------

for epoch < ephase1 do
θ(t+1) = ConventionalTrain(θ(t),Dn) // Warm-up training with noisy data

epoch = epoch+ 1

end

// ----------------- Phase-2 training -----------------

ŷ = softmax(Kỹ) // Initialize soft-labels Equation 5.9&5.10

for epoch < ephase2 do

foreach batch do
{x} ← GetBatch(Dn,Nb)

{xm, ym} ← GetBatch(Dm,Nb)

// ----------------- Iteration step-1 -----------------

Lc(fθ(x), ŷ(t)) =
1

Nb

∑Nb
i=1 lc(fθ(xi), ŷ

(t)
i) // Loss with soft-labels by Equation 5.2

θ̂ = θ(t) −∇θLc(fθ(x), ŷ(t)) // Update θ by Equation 5.1

// ----------------- Iteration step-2 -----------------

Lmeta(fθ̂(xm), ym) =
1

Nb

∑Nb
j=1 lcce(fθ̂(xm,j), ym,j) // Loss with θ̂ on meta-data by Equation 5.4

ŷ(t+1) = ŷ(t) − β∇ŷLmeta(fθ̂(xm), ym) // Update ŷ by Equation 5.5

// ----------------- Iteration step-3 -----------------

Lc(fθ(x), ŷ(t+1)) =
1

Nb

∑Nb
i=1 lc(fθ(xi), ŷ

(t+1)
i) // Loss with new soft-labels by Equation 5.6

Le(fθ(x)) =

−
1

Nb

∑Nb
i=1

∑C
j=1 f

j
θ (xi) log(f

j
θ (xi)) // Entropy-loss by Equation 5.7

θ(t+1) = θ(t)−

λ∇θ
(
Lc(fθ(x), ŷ(t+1)) + Le(fθ(x))

)
// Update θ by Equation 5.8

end

epoch = epoch+ 1;

end

43

This setup provides unconstrained learning for yd while producing valid soft labels ŷ

all the time.

5.3 Reasoning of Classification Loss

Inspired from [64], the meta loss is defined as KL-divergence loss with a slight trick.

KL-divergence is formulated as follows:

KL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(5.11)

KL-divergence loss is asymmetric, which means

KL(Q||P) 6= KL(P ||Q) (5.12)

Therefore there are two different configurations. First options is:

Lc,1 =
1

Nb

Nb∑
i=1

KL(ŷi||fθ(xi)), where

KL(ŷi||fθ(xi)) =
C∑
j=1

ŷji log

(
ŷji

f jθ (xi)

) (5.13)

which produces the following gradients

∂Lc,1
∂f jθ (xi)

= − ŷji
f jθ (xi)

(5.14)

Second possible configuration of loss function is

Lc,2 =
1

Nb

Nb∑
i=1

KL(fθ(xi)||ŷi), where

KL(fθ(xi)||ŷi) =
C∑
j=1

f jθ (xi) log

(
f jθ (xi)

ŷji

) (5.15)

44

which produces the following gradients

∂Lc,2
∂f jθ (xi)

= 1 + log

(
f jθ (xi)

ŷji

)
(5.16)

Lets assume a classification task where true label is 2 (y2i = 1) but noisy label is given

as 5 (ỹ5i = 1). Now lets consider two updates on ŷ2i and ŷ5i

• Case ŷj=2
i : ŷ2i is initially very small, therefore f 2

θ (xi) � ŷ2i . In that case Lc,1
will produce a very small gradients (5.14) while Lc,2 will produce a medium

positive gradient (5.16) as desired.

• Case ŷj=5
i : ŷ5i initially has peak value; however, due to internal robustness

of network we expect f 5
θ (xi) � ŷ5i . In that case Lc,1 produce large negative

gradient (5.14) while Lc,2 produce medium negative gradients (5.16).

As a result the following statement can be concluded: Lc,1 focuses on learning from

y5i (noisy label) while Lc,2 focuses on positive learning from y2i (correct label) and

negative learning from y5i (noisy label). Therefore, Lc,2 is better choice for theta

learning objective.

Even though given loss formulation may be seen same as [64], its usage it totally

different. While [64] uses ∇ŷLc to update ŷ, the proposed algorithm uses second

order derivative of ∇fθLc as a meta-objective which is further explained in Section

5.4.

5.4 Meta Objective

From Equation 5.5, update term for ŷ is as follows

β∇ŷLmeta(fθ̂(xm), ym)

∣∣∣∣∣
ŷ(t)

(5.17)

= β
∂Lmeta(fθ̂(xm), ym)

∂θ̂

∂θ̂

∂ŷ

∣∣∣∣∣
ŷ(t)

(5.18)

45

= β
∂Lmeta(fθ̂(xm), ym)

∂θ̂

∂

∂ŷ

(
−α∂Lc(fθ(x), ŷ

(t))

∂θ

)∣∣∣∣∣
ŷ(t)

(5.19)

= β
1

Nb

Nb∑
j=1

∂lcce(fθ̂(xm,j), ym,j)

∂θ̂

∂

∂ŷ

(
− α

Nb

Nb∑
i=1

∂lc(fθ(xi), ŷ
(t)
i)

∂θ

)∣∣∣∣∣
ŷ(t)

(5.20)

= − αβ

NbNb

∂

∂ŷ

(
Nb∑
j=1

∂lcce(fθ̂(xm,j), ym,j)

∂θ̂

Nb∑
i=1

∂lc(fθ(xi), ŷ
(t)
i)

∂θ

)∣∣∣∣∣
ŷ(t)

(5.21)

= − αβ

NbNb

∂

∂ŷ

(
Nb∑
i=1

Nb∑
j=1

∂lc(fθ(xi), ŷ
(t)
i)

∂θ

∂lcce(fθ̂(xm,j), ym,j)

∂θ̂

)∣∣∣∣∣
ŷ(t)

(5.22)

Let

Gij(θ, θ̂, ŷ
(t)) =

∂lc(fθ(xi), ŷ
(t)
i)

∂θ

∂lcce(fθ̂(xm,j), ym,j)

∂θ̂
(5.23)

Then Equation 5.5 can be rewritten as

ŷ(t+1) = ŷ(t) +
αβ

Nb

∂

∂ŷ

(
Nb∑
i=1

1

Nb

Nb∑
j=1

Gij(θ, θ̂, ŷ
(t))

)∣∣∣∣∣
ŷ(t)

(5.24)

In this formulation
1

Nb

∑Nb
i=1Gij(θ, θ̂, ŷ

(t)) represents the similarity between the gra-

dient of the jth training sample subjected to θ and the mean gradient computed over

the batch of meta-data. Therefore, this will peak when gradients on a training sample

and mean gradients over a mini-batch of meta samples are most similar. As a result,

taking a gradient step subjected to ŷ means finding the optimal label distribution so

that produced gradients from training data are similar with gradients from meta-data.

This has an effect of emphasizing gradients due to noise free representations and de-

emphasizing gradients due to noisy representations. Notice that stochastic gradient

descent step is taken on multiplication of previously computed gradients. Hence, this

approach of meta-learning is commonly called as gradients over gradients.

46

Figure 5.1: The overall framework of the proposed algorithm. xn, yn represents the

training data and label pair. xjn, y
j
n represents batches of training data and label pair.

xjm, y
j
m represents batches of meta-data and label pair. ŷ represents generated soft-

labels. The training consists of two phases. In the first phase (warm-up training), the

base classifier is trained on noisy data with the conventional cross-entropy loss. This

is useful to provide a stable starting point for the second phase. Training phase-2

consists of 3 consecutive steps, which are repeated for each batch of data. In the first

iteration step, classification loss for model predictions is calculated with generated

soft labels. Then, updated classifier parameters θ̂ are calculated by SGD. In the sec-

ond iteration step, the cross-entropy loss for meta-data is calculated using the updated

classifier parameters θ̂. Then, soft-labels are updated by taking an SGD step on this

cross-entropy loss. In the third iteration step, the classifier parameters θ are updated

by the classification loss (with newly generated soft labels) and entropy loss.

47

48

CHAPTER 6

META-LABEL-NET

The methodology proposed in Chapter 5 successfully handles the noisy labels, but

it does not make use of the images’ content while producing soft-labels. However,

there is an absolute correlation between the data content and its label. Therefore, us-

ing the content of the data while creating soft-labels would undoubtedly enhance the

performance of the overall system. In Chapter 5, soft-labels are formalized as free

differentiable variables that do not depend on anything. Unlike from the previous

chapter, the MetaLabelNet algorithm proposed in this chapter interprets soft-labels

from the extracted features of the data with the help of a single-layer perceptron net-

work. Therefore, it can produce more reliable labels since additional information

coming from the data content is used. Additionally, since a SLP network is used to

generate soft-labels instead of free differentiable variables, it provides much stable

labels throughout the training. Furthermore, MetaLabelNet does not depend on train-

ing data labels. As a result, it can be used for unlabeled data in the same way as the

labeled data. This ability extends the use case of the proposed method to much wider

applications that consists of both noisily labeled and unlabeled data.

6.1 Training

The full pipeline of the proposed framework is illustrated in Figure 6.1. Similar

to the MSLG, the overall training consists of two phases. Phase-1 is the warm-up

training, which aims to provide a stable initial point for phase-2 to start on. After

the first phase, the main algorithm is employed in the second phase that concludes

the training. Each of the training phases and their iteration steps are explained in the

49

following subsections.

6.1.1 Training Phase-1

Justifications given in subsection 5.1.1 are applicable for this algorithm as well. Ad-

ditionally, different from MSLG, MetaLabelNet needs a feature extractor to map data

samples to feature domain in training in phase-2. For that purpose, the trained net-

work at the end of warm-up training is cloned, and its last layer is removed. Then,

this clone network, without any further training, is used as the feature extractor in

phase-2.

6.1.2 Training Phase-2

This phase is the main training stage of the proposed framework. There are three

iteration steps, which are executed on each batch of data consecutively. The first two

iterations steps are the meta-training step, in which the parameters of MetaLabel-

Net are updated. Afterward, in the third iteration step, base classifier parameters are

updated by using the soft-labels generated with the updated parameters of the Meta-

LabelNet. These three steps are executed for each batch of data consecutively. The

following subsections explain training steps in detail.

6.1.2.1 Meta Training Step

The meta training step aims to optimize the conventional training step by updating

soft-labels. Therefore, it needs feedback from the conventional training step. For that

reason, firstly, a dummy conventional training step is conducted on the base classi-

fier with generated soft-labels. Secondly, meta-loss is calculated using the updated

classifier and meta-data. Then, meta-loss is backpropagated for MetaLabelNet.

Firstly, data instances are encoded into feature vectors with the help of a feature ex-

tractor network g(.).

v = g(x) (6.1)

50

Then, depending on these encodings, MetaLabelNet mφ(.) generates soft-labels.

ŷ = mφ(v) (6.2)

Using these generated labels, posterior model parameters are calculated by taking a

stochastic gradient descent step on the classification loss.

θ̂ = θ(t) −∇θLc(fθ(x), ŷ(t))

∣∣∣∣∣
θ(t)

, and (6.3)

Lc(fθ(x), ŷ(t)) =
1

Nb

Nb∑
i=1

lc(fθ(xi), ŷ
(t)
i) (6.4)

where xi ∈ Dn and ŷ(t)i = mφ(t)(vi) is the corresponding predicted label at time step

t. Adapted from [132], the classification loss lc is chosen as KL-divergence loss as

follows

lc = KL(fθ(xi)||ŷi),where (6.5)

KL(fθ(xi)||ŷi) =
C∑
j=1

f jθ (xi) log

(
f jθ (xi)

ŷji

)
(6.6)

Following, the meta-loss is calculated with the feedback coming from updated pa-

rameters.

Lmeta(fθ̂(xm), ym) =
1

Nb

Nb∑
j=1

lcce(fθ̂(xm,j), ym,j) (6.7)

where xm,j, ym,j ∈ Dm and lcce represents the conventional categorical cross-entropy

loss. Finally, MetaLabelNet parameters are updated with SGD on the meta loss.

φ(t+1) = φ(t) − β∇φLmeta(fθ̂(xm), ym)

∣∣∣∣∣
φ(t)

(6.8)

Mathematical reasoning for the meta-update is further presented in Section 6.3.

6.1.2.2 Conventional Training Step

In this phase, the base network is trained on two losses. The first loss is the clas-

sification loss, which ensures that network predictions are consistent with estimated

soft-labels.

Lc(fθ(x), ŷ(t+1)) =
1

Nb

Nb∑
i=1

lc(fθ(xi), ŷ
(t+1)
i) (6.9)

51

Notice that this is the same loss formulation with Equation 6.3, but with updated soft-

labels ŷ(t+1)
i = mφ(t+1)(vi). Moreover, inspired from [63], entropy loss is defined as

follow.

Le(fθ(x)) = −
1

Nb

Nb∑
i=1

C∑
j=1

f jθ (xi) log(f
j
θ (xi)) (6.10)

Entropy loss forces network predictions to peak only at one class. Since the base

classifier is trained on predicted soft-labels, which can peak at multiple locations, this

is useful to prevent training loop to saturate. Finally, base classifier parameters are

updated with SGD on these two losses.

θ(t+1) = θ(t) − λ∇θ

(
Lc(fθ(x), ŷ(t+1)) + Le(fθ(x))

)∣∣∣∣∣
θ(t)

(6.11)

Notice that there are two separate learning rates β and λ for MetaLabelNet and the

base classifier. Training continues until the given epoch is reached. Since meta-data

is only used for the training of MetaLabelNet, it can be used as validation-data for the

base classifier. Therefore, meta-data is used for model selection. The overall training

for phase-2 is summarized in Algorithm 3.

6.2 Learning with Unlabeled Data

The presented algorithm in Figure 6.1 uses training data labels yn only in the training

phase-1 (warm-up training). The training phase-2 is totally independent of the train-

ing data labels. Therefore, training phase-2 can be used on the unlabeled data in the

same way as the labeled data. As a result, if there exists unlabeled data, warm-up

training is conducted on the labeled data. Afterwards, the proposed Algorithm 3 is

applied to both labeled and unlabeled data in the same manner.

6.3 Reasoning of Meta-Objective

We can rewrite the update term for MetaLabelNet as follow.

− β∇φLmeta(fθ̂(xm), ym)

∣∣∣∣∣
φ(t)

(6.12)

52

Algorithm 3: Learning with MetaLabelNet
Input: Training data Dn, meta-data Dm, batch size Nb, phase-1 epoch

number ephase1, phase-2 epoch number ephase2,

Output: Base classifier parameters θ, MetaLabelNet parameters φ

epoch = 0;

// ----------------- Phase-1 training -----------------

for epoch < ephase1 do
θ(t+1) = ConventionalTrain(θ(t),Dn) // Warm-up training with noisy data

epoch = epoch+ 1

end

// ----------------- Phase-2 training -----------------

for epoch < ephase2 do

foreach batch do
{x} ← GetBatch(Dn,Nb)

{xm, ym} ← GetBatch(Dm,Nb)

// ----------------- Iteration step-1 -----------------

v = g(x) // Extract features of data by Equation 6.1

ŷ(t) = mφ(v) // Generate soft-labels by Equation 6.2

Lc(fθ(x), ŷ(t)) =
1

Nb

∑Nb
i=1 lc(fθ(xi), ŷ

(t)
i) // Loss with soft-labels by Equation 6.4

θ̂ = θ(t) −∇θLc(fθ(x), ŷ(t)) // Update θ by Equation 6.3

// ----------------- Iteration step-2 -----------------

Lmeta(fθ̂(xm), ym) =
1

Nb

∑Nb
j=1 lcce(fθ̂(xm,j), ym,j) // Loss with θ̂ on meta-data by Equation 6.7

φ(t+1) = φ(t) − β∇φLmeta(fθ̂(xm), ym) // Update φ by Equation 6.8

// ----------------- Iteration step-3 -----------------

v = g(x) // Extract features of data by Equation 6.1

ŷ(t) = mφ(v) // Generate soft-labels by Equation 6.2

Lc(fθ(x), ŷ(t+1)) =
1

Nb

∑Nb
i=1 lc(fθ(xi), ŷ

(t+1)
i) // Loss with new soft-labels by Equation 6.9

Le(fθ(x)) =

−
1

Nb

∑Nb
i=1

∑C
j=1 f

j
θ (xi) log(f

j
θ (xi)) // Entropy-loss by Equation 6.10

θ(t+1) = θ(t)−

λ∇θ
(
Lc(fθ(x), ŷ(t+1)) + Le(fθ(x))

)
// Update θ by Equation 6.11

end

epoch = epoch+ 1;

end

53

= −β
∂Lmeta(fθ̂(xm), ym)

∂θ̂

∂θ̂

∂φ

∣∣∣∣∣
φ(t)

(6.13)

= −β
∂Lmeta(fθ̂(xm), ym)

∂θ̂

∂

∂φ

(
−∂Lc(fθ(x), ŷ

(t))

∂θ

)∣∣∣∣∣
φ(t)

(6.14)

where ŷ(t) = mφ(t)(g(x)). g(.) is a fixed encoder for which no learning occurs. All

derivatives of φ are taken at time step t. Therefore, the notation

∣∣∣∣∣
φ(t)

is dropped from

now on.

= − β

Nb

Nb∑
j=1

∂lcce(fθ̂(xm,j), ym,j)

∂θ̂

∂

∂φ

(
− 1

Nb

Nb∑
i=1

∂lc(fθ(xi), ŷ
(t)
i)

∂θ

)
(6.15)

=
β

NbNb

∂

∂φ

(
Nb∑
j=1

∂lcce(fθ̂(xm,j), ym,j)

∂θ̂

Nb∑
i=1

∂lc(fθ(xi), ŷ
(t)
i)

∂θ

)
(6.16)

=
β

NbNb

∂

∂φ

(
Nb∑
i=1

Nb∑
j=1

∂lc(fθ(xi), ŷ
(t)
i)

∂θ

∂lcce(fθ̂(xm,j), ym,j)

∂θ̂

)
(6.17)

Let

Sij(θ, θ̂, φ
(t)) =

∂lc(fθ(xi), ŷ
(t)
i)

∂θ

∂lcce(fθ̂(xm,j), ym,j)

∂θ̂
(6.18)

Then rewrite meta update can be rewritten as

φ(t+1) = φ(t) +
β

Nb

∂

∂φ

(
Nb∑
i=1

1

Nb

Nb∑
j=1

Sij(θ, θ̂, φ
(t))

)
(6.19)

In this formulation
1

Nb

∑Nb
j=1 Sij(θ, θ̂, φ

(t)) represents the similarity between the gra-

dient of the ith training sample subjected to model parameters θ on predicted soft-

labels ŷ(t) at time step t, and the mean gradient computed over the batch of meta-

data. As a result, the similarity is maximized when the gradient of ith training sample

is consistent with the mean gradient over a batch of meta-data. Therefore, taking a

gradient step subjected to φ means finding the optimal parameter set that would give

the best ŷ = mφ(g(x)) such that produced gradients from training data are similar to

gradients from meta-data.

This approach has three main advantages over MSLG. Firstly, additional information

coming from the data features are used. For feature-dependent noises, content of the

54

data is highly correlated with the noisy labels. Therefore, taking data content into

consideration helps to enhance the performance. Secondly, ŷ is the output of a SLP

network instead of free differentiable variables. SLP networks provides a more stable

output than free variable. For instance, learning rate of 10−3 is enough for MetaLabel-

Net while MSLG needs extreme learning rates such as 4000. Thirdly, MetaLabelNet

learning framework is independent from training data labels, so it can be used to learn

from unlabeled data on top of noisily labeled data.

55

Figure 6.1: The overall framework of the proposed algorithm. xn, yn represents the

training data and label pair. xjn, y
j
n represents batches of training data and label pair.

xjm, y
j
m represents batches of meta-data and label pair. The training consists of two

phases. In the first phase (warm-up training), the base classifier is trained on noisy

data with the conventional cross-entropy loss. This is useful to provide a stable start-

ing point for the second phase. Training phase-2 consists of 3 consecutive steps,

which are repeated for each batch of data. In the first iteration step, classification

loss for model predictions is calculated with soft labels produced by MetaLabelNet.

Then, updated classifier parameters θ̂ are calculated by SGD. In the second iteration

step, the cross-entropy loss for meta-data is calculated using the updated classifier

parameters θ̂. Then, updated MetaLabelNet parameters φ̂ is calculated by taking an

SGD step on this cross-entropy loss. In the third iteration step, new soft-labels are

produced by updated MetaLabelNet parameters φ̂. Then, classifier parameters θ are

updated by the classification loss (with newly generated soft labels) and entropy loss.

Feature extractor is the pre-softmax output of the base classifier’s duplicate trained at

the warm-up phase of the training.

56

CHAPTER 7

EXPERIMENTS

Proposed MSLG and MetaLabelNet algorithms are tested for five different datasets.

Firstly, experiments are conducted on a toy benchmarking dataset CIFAR10 with syn-

thetic label noise. This dataset is used for the quick development and deployment of

the proposed algorithms. Experiments are done for varying level of noise ratios in a

controlled environment and behaviors of proposed algorithms for varying situations

are analyzed. Then, algorithms are tested on three real-world noisy datasets (Cloth-

ing1M, Food101N and WebVision). For fair evaluation, the experimental setup is

kept same with the baselines. Finally, to show the effectiveness of the algorithms for

case study, tests are performed on a real-world noisy medical dataset of ROP plus

disease. All results obtained from various datasets with different experimental setups

show the superior performance of the proposed algorithms.

Each section in this chapter is organized as follows. Firstly, a detailed description

of the dataset is presented. Secondly, experimental setup for the tests is described.

Thirdly and finally, the results are presented and discussed.

7.1 CIFAR10

This section describes the experiments conducted on CIFAR10 dataset with synthetic

noise.

57

7.1.1 Dataset Description

CIFAR10 has 60k images for ten different classes. 5k images are separated for the

test set and another 2k for meta-set. For fair comparison with other methods, only

50k data for training are used. Training data is corrupted with synthetic label noise.

For synthetic noise, two types of noises are used; uniform noise and feature-dependent

noise. For uniform noise, labels are flipped to any other class uniformly with the given

error probability. For feature-dependent noise, the algorithm presented in Section 4.2

is employed.

7.1.2 Implementation Details

An eight-layer convolutional neural network with six convolutional layers and two

fully connected layers is used as base classifier. The batch size is set as 128. Total

training consists of 120 epochs, in which the first 44 epochs are warm-up and the

remaining epochs are meta-training. For data augmentation, random vertical and hor-

izontal flips are used. Moreover, images are pad 4 pixels from each side and random

crop 32x32 pixels. λ is initialized as 10−2 and set to 10−3 and 10−4 at 40th and 80th

epochs. SGD optimizer with 0.9 momentum and 10−4 weight decay is used for base

classifier. Algorithm specific parameters for MSLG are as given in Table 7.1. Algo-

rithm specific parameters for MetaLabelNet are as follows; α = 0.5, β = 10−3, γ =

0.1. Adam optimizer with learning rate of 10−3 is used of meta-network. It is ob-

served that the increasing depth of the meta-network does not contribute to the over-

all performance. Therefore, a single layer network is used as meta-network with size

number of features(256) x number of classes(10).

7.1.3 Results

Algorithm are tested with CIFAR10 under varying level of noise ratios for different

types of noises. Since synthetic noise is manually added, we have complete knowl-

edge over the noise. Therefore, the exact noise transition matrix is fed to the forward

loss method [48] for baseline comparison, which is not possible in real-world datasets.

58

Table 7.1: Hyper-parameters for CIFAR10 experiments for MSLG algorithm.

noise ratio uniform feature-dependent

20% α = 0.5, β = 4000 α = 0.5, β = 4000

40% α = 0.5, β = 4000 α = 0.5, β = 4000

60% α = 0.5, β = 2000 α = 0.5, β = 4000

80% α = 0.5, β = 400 α = 0.5, β = 4000

Results are presented in Table 7.2 and Table 7.3.

As can be seen, proposed methods beat all baselines with a large margin for all

noise rates of the feature-dependent noise. Best results are obtained from MetaLa-

belNet and second best results are obtained from MSLG. MetaLabelNet manages to

get around 71% accuracy even under the extreme case of 80% noise. while MSLG

achieves 57%. For uniform noise, proposed algorithms fall shortly behind the best

model, but still manages to get comparable results. This can be explained as follow.

For uniform noise, noisy samples are totally unrelated to features and true label of the

data. Due to the internal robustness of the network, this would result in f jθ (xi) � ỹji

for noisy class j. This would result in large negative gradients Equation 5.16. In the

case of feature-dependent noise, noisy labels are related to real label distribution. As

a result, network prediction and noisy label is more similar f jθ (xi) < ỹji for noisy

class j. This would result in smaller gradients Equation 5.16. Therefore, when noise

is random, gradients due to noisy class may overcome the gradients due to true class,

which presents a more challenging framework for stabilization of robust learning.

Therefore, proposed frameworks are slightly less robust to random noise. This is an

advantage for real-world scenarios since noisy labels are commonly related to data

attributes. This is further showed on real-world noisy dataset in the next section.

Both algorithm are tested with changing number of meta-data samples. As expected,

accuracy increases with increasing number of meta-data. However, as can be seen

from Figure 7.1, only small amount of meta-data is required for the proposed frame-

works. For CIFAR10 dataset with 50k noisy training samples, 1k meta-data (2% of

training data) achieves approximately the top result. Moreover, as presented in Fig-

ure 7.1, number of required meta-data is independent of the noise ratio.

59

Table 7.2: Test accuracies for CIFAR10 dataset with varying level of uniform noise.

Results are averaged over 4 runs.

noise type uniform

noise ratio (%) 20 40 60 80

Cross Entropy 82.55±0.80 76.31±0.75 65.94±0.44 38.19±0.81

Symmetric-CE[119] 81.36±2.27 78.94±2.22 72.20±2.24 51.47±1.58

Generalized-CE[118] 84.98±0.30 81.65±0.30 74.59±0.46 42.53±0.24

Bootstrap [89] 82.76±0.36 76.66±0.72 66.33±0.30 38.35±1.83

Forward Loss[48] 83.24±0.37 79.69±0.49 71.41±0.80 31.53±2.75

Joint Opt.[63] 83.64±0.50 78.69±0.62 68.83±0.22 39.59±0.77

PENCIL[64] 83.86±0.47 79.01±0.62 71.53±0.39 46.07±0.75

Co-Teaching[91] 85.82±0.22 80.11±0.41 70.02±0.50 39.83±2.62

MLNT[128] 83.32±0.45 77.59±0.85 67.44±0.45 38.83±1.76

Meta-Weight[97] 83.59±0.54 80.22±0.16 71.22±0.81 45.81±1.78

MSLG 83.03±0.44 78.28±1.03 71.30±1.54 52.43±1.26

MetaLabelNet 83.35±0.17 79.03±0.26 70.60±0.86 50.02±0.44

(a) MSLG (b) MetaLabelNet

Figure 7.1: Test accuracies for different numbers of meta-data.

60

Table 7.3: Test accuracies for CIFAR10 dataset with varying level of feature-

dependent noise. Results are averaged over 4 runs.

noise type feature-dependent

noise ratio (%) 20 40 60 80

Cross Entropy 81.75±0.39 71.86±0.69 69.78±0.71 23.18±0.55

Symmetric-CE[119] 74.45±2.97 63.71±0.58 fail fail

Generalized-CE[118] 81.43±0.45 72.35±0.51 66.60±0.43 fail

Bootstrap [89] 81.59±0.61 72.18±0.86 69.50±0.29 23.05±0.64

Forward Loss[48] 77.17±0.86 69.46±0.68 36.98±0.73 fail

Joint Opt.[63] 81.83±0.51 74.06±0.57 71.74±0.63 44.81±0.93

PENCIL[64] 81.82±0.41 75.18±0.50 69.10±0.24 fail

Co-Teaching[91] 81.07±0.25 72.73±0.61 68.08±0.42 18.77±0.07

MLNT[128] 82.07±0.76 73.90±0.34 69.16±1.13 22.85±0.45

Meta-Weight[97] 81.36±0.54 72.52±0.51 67.59±0.43 22.10±0.69

MSLG 82.22±0.57 77.62±0.98 73.08±1.58 57.30±7.40

MetaLabelNet 83.00±0.41 80.42±0.51 78.42±0.36 76.57±0.33

61

Figure 7.2 shows the difference in the learning regime of MSLG and MetaLabel-

Net. As can be seen, MetaLabelNet provides much more stabilized labels throughout

the epochs. This is due to two factors. Firstly, MetaLabelNet interprets soft-labels

from data features while MSLG freely updates labels as a differentiable variable of

the framework. Secondly, MetaLabelNet uses a small MLP network to predict labels

while MSLG directly updates with unbounded gradients coming from meta-objective.

Therefore, MSLG needs to use extreme learning rates around 4000 while MetaLabel-

Net uses learning rate around 10−3. As a result, MetaLabelNet provides a much more

stabilized update on label predictions. Additionally, MSLG can only generate soft-

labels for labeled data since there is no label generation algorithm trained. On the

other hand, once trained, MetaLabelNet can produce soft-labels for unlabeled data.

Therefore, MetaLabelNet can work with both noisily labeled and unlabeled data at

the same time.

The efficiency of the MetaLabelNet is demonstrated in the existence of unlabeled data

in Figure 7.3. Labels of indicated number of samples are removed from the training

set. Warm-up training is conducted on labeled part of the data. As illustrated, Meta-

LabelNet can give top accuracy even up to point where half of the data is unlabeled.

7.2 Clothing1M

This section describes the experiments conducted on real-world noisy dataset Cloth-

ing1M.

7.2.1 Dataset Description

Clothing1M is a large-scale dataset with one million images collected from the web

[18]. It has images of clothings from 14 classes. Labels are constructed from sur-

rounding texts of images and are estimated to have a noise rate of around 40%. There

exists 50k, 14k and 10k additional verified images for training, validation and test

set. 14k is used for validation set as meta-data and 10k test samples to evaluate the

classifier’s final performance. 50k clean training samples are not used in any part of

training.

62

Figure 7.2: Colored lines represent the mean absolute difference among generated

soft labels for consecutive epochs. Shaded regions are the variance of the differences.

As can be seen MSLG generates highly unstabilized label predictions compared to

MetaLabelNet.

7.2.2 Implementation Details

In order to have a fair comparison with the works from the literature, the widely used

setup of ResNet-50 [3] architecture pre-trained on ImageNet is implemented. Batch

size is set to 32. λ is set to 10−3 for the first 5 epochs and to 10−4 for the second

5 epochs. Total training consists of 10 epochs, in which the first epoch is warm-up

and the rest is meta-training. All images are resized to 256x256, and then central

224x224 pixels are taken. SGD optimizer with 0.9 momentum and 10−4 weight de-

cay is used for base classifier. For MSLG algorithm hyper-parameters are set as

α = 0.1, β = 100 and for MetaLabelNet algorithm hyper-parameters are set as

α = 0.5, β = 10−3, γ = 0.1. Adam optimizer with learning rate of 10−3 is used

of meta-network. It is observed that the increasing depth of the meta-network does

63

Figure 7.3: Test accuracies of MetaLabelNet for different level of feature-dependent

noises for varying sizes of unlabeled data.

not contribute to the overall performance. Therefore, a single layer network is used

as meta-network with size number of features(2048) x number of classes(10).

7.2.3 Results

Clothing1M is a widely used benchmarking dataset to evaluate the performance of

proposed algorithms in the presence of noisy labels. State of the art results from the

literature are presented in Table 7.4, where proposed algorithms managed to outper-

formed all baselines. MSLG achieves 76.02% test accuracy, which is 2.3% higher

than the closest state of the art.On top of that, MetaLabelNet achieves 77.9% test

accuracy, which is 1.9% higher than MSLG.

Table 7.5 presents the effectiveness of the MetaLabelNet in the existence of unla-

beled data. Clothing1M is a highly unbalanced dataset, so removing labels of data

randomly would cause undesirable performance degradation due to data imbalance.

Therefore, a new balanced dataset consists of 260k images is constructed by picking

samples from 1M training data. Afterward, indicated number of labels are removed

from the dataset and training is constructed on this new dataset with labeled and un-

labeled instances. For comparison an additional model is trained with classical cross

entropy method only on labeled data samples. As presented, MetaLabelNet achieves

superior performance even there are unlabeled data instances in the dataset. Even in

the extreme case of 225k unlabeled data (which is 87% of the training data) MetaL-

64

Table 7.4: Test accuracy percentages on Clothing1M dataset. All results are taken

from the corresponding paper.

method accuracy

Joint Optimization [63] 72.23

MetaCleaner [152] 72.50

SafeGuarded [56] 73.07

MLNT [128] 73.47

PENCIL [64] 73.49

Meta-Weight Net [97] 73.72

NoiseRank [78] 73.77

Anchor points[55] 74.18

CleanNet [102] 74.69

DivideMix [1] 74.76

MSLG 76.02

MetaLabelNet 77.90

abelNet manages to achieve 74.1% accuracy. In the case of 175k unlabeled and 85k

labeled data, MetaLabelNet outperforms all state-of-the-art baselines.

Table 7.5: Test accuracies for varying number of unlabeled data. Subset of Cloth-

ing1M dataset is used, which is balanced for each class.

unlabeled data 50k 75k 100k 125k 150k 175k 200k 225k

Cross Entropy 71.40 70.52 70.35 70.66 69.42 69.79 68.47 68.73

MetaLabelNet 76.4 76.8 76.4 76.0 75.7 75.5 74.4 74.1

65

7.3 Food101N

7.3.0.1 Dataset Description

Food101N is an image dataset containing about 310k images of food recipes classified

in 101 classes [102]. It shares the same classes with Food101 dataset but has much

more noisy labels, which is estimated to be around 20%. It has 53k verified training

and 5k verified test images. 15k samples from verified training samples are used as

meta-dataset.

7.3.1 Implementation Details

We used the same setup and parameter set from Clothing1M. Only difference are at

the following parameters of MSLG; λ = 0.5, β = 1500

7.3.2 Results

In order to further test algorithms under real-world noisy label data, tests are con-

ducted on Food101N dataset too. Since none of the baselines provided results on

Food101N dataset, all results are taken from our own implementations. There are

excessively large number of classes (101) in the dataset, hence some methods fail

to succeed. For example, methods depending on noise transition matrix fail since

the matrix becomes intractably large. Only the results of methods with fair perfor-

mances are presented. This dataset has a much smaller noise ratio (20%), as a result

all algorithms results around similar accuracies with straight forward training with

cross-entropy loss. Therefore, there are no big gaps among top accuracies, but still

as presented in Table 7.6, presented algorithms manage to get best accuracy in this

dataset too.

66

Table 7.6: Test accuracy percentages for Food101N dataset. All values in the table

are obtained from our own implementations.

method accuracy

Generalized CE [118] 71.60

Joint Optimization [63] 76.12

Meta-Weight Net [97] 76.14

Bootstrap [89] 78.03

PENCIL [64] 78.26

Co-Teaching [91] 78.95

MSLG 79.06

MetaLabelNet 80.21

7.4 WebVision

This section describes the experiments conducted on real-world noisy dataset Web-

Vision.

7.4.1 Dataset Description

WebVision 1.0 dataset [19] consists of 2.4 million images crawled from Flickr website

and Google Images search. As a result, it has many real-world noisy labels. It has

images from 1000 classes that are same with ImageNet ILSVRC 2012 dataset [173].

In order to have fair comparison with previous works, the same setup with [94] is used

as follows. Only Google subset of data is used and among these data samples only

from the first 50 classes are picked. This subset contains 2.5k verified test samples,

from which 1k is used as meta-data and 1.5k as test set.

7.4.2 Implementation Details

Following the previous works [94, 1], inception-resnet v2 [174] network architecture

with random initialization is used. Batch size is set to 16. λ is set to 10−3 for the first

67

Table 7.7: Test accuracies on WebVision dataset. Baseline results are taken from the

[1]

method Top1 Top5

Forward Loss [48] 61.12 82.68

Decoupling [90] 62.54 84.74

D2L [140] 62.68 84.00

MentorNet [85] 63.00 81.40

Co-Teaching [91] 64.58 85.20

Iterative-CV [94] 65.24 85.34

MSLG 65.45 85.72

MetaLabelNet 67.10 87.48

50 epochs and to 10−4 for the second 50 epochs. Total training consists of 100 epochs,

in which the first 44 epochs are warm-up and the rest is meta-training. All images are

resized to 320x320, and then central 299x299 pixels are taken. Furthermore, random

horizontal flip is applied. SGD optimizer with 0.9 momentum and 10−4 weight decay

is used for base classifier. For MSLG algorithm hyper-parameters are set as α =

0.5, β = 10−3, γ = 0.1 and for MetaLabelNet algorithm hyper-parameters are set as

α = 0.5, β = 10−3, γ = 0.1. Adam optimizer with learning rate of 10−3 is used of

meta-network. It is observed that the increasing depth of the meta-network does not

contribute to the overall performance. Therefore, a single layer network is used as

meta-network with size number of features(1536) x number of classes(50).

7.4.3 Results

Due to its noisiness, WebVision is another popular dataset for testing robustness to

label noise. State of the art results from the literature are presented in Table 7.7, where

proposed algorithms managed to outperformed all baselines.

68

7.5 Retinopaty of Prematurity

In order to show the efficiency of the proposed algorithms for a real-world case, ROP

dataset with extreme label noise ratio is gathered. This chapter describes the experi-

ments conducted on this real-world medical imaging dataset. This work is previously

published in [175], and the content is highly correlated with the original paper.

7.5.1 Dataset Description

Dataset consists of 1947 retina images with 640x480 resolution collected from control

subjects. Each patient belongs to either one of two ROP stages (plus and pre-plus) or

normal category which indicates no disease. Each image is labeled by the same three

experts to one of the following categories: normal, pre-plus and plus. From these

1947 images, only on 622 images all three experts gave the same label, which is 32%

of the dataset. 200 images are selected as meta-data and 300 images as test-data from

these 622 images. Remaining 1447 images are used for training. Majority voting is

used on training data labels to determine the label. For preprocessing, all images are

resized to 256x256 and the center crop 224x224. Random horizontal flip is used for

data augmentation purposes.

7.5.2 Implementation Details

ResNet50 architecture with model parameters pre-trained on the ImageNet dataset

is used as base classifier. Gathered ROP dataset is considerably small; therefore, it

is beneficial to apply transfer learning by further pre-training network on a different

but similar dataset. For that purpose diabetic retinopathy dataset that has 35k high-

resolution retina images [176] is used. A clinician has rated the existence of diabetic

retinopathy on a scale of 0 to 4 as follows: no diabetic retinopathy (0), mild (1),

moderate (2), severe (3), proliferative DR (4). Since main purpose of this work is not

to classify DR, but rather pre-train network to learn useful representation mapping,

dataset is converted to a binary classification task as: diabetic retinopathy (0) and no

diabetic retinopathy (1). This dataset consists of high-resolution images with varying

69

sizes. Therefore, all images are first resized to 1024x1024 and then cropped 224x224

around the center of the retina image. On the resulting dataset, model is trained

for one epoch. Afterward, the final layer of the classifier is replaced with randomly

initialized 2048x4 fully connected layer and softmax layer to match collected ROP

dataset labels.

After pre-training on DR dataset, the proposed algorithm is employed. Stochastic

gradient descent optimizer with momentum 0.9 and weight decay 10−4 is used for

base classifier. Learning rate is initialized as 10−3 and set it to 10−4 and 10−5 at 10th

and 20th epochs. Total training consists of 30 epochs, in which first 10 epochs are

warm-up training and rest is meta-training. During the whole training batch size of

16 is used. For MSLG the following hyper-parameters set is used; K = 10, α =

0.5, β = 4000. For MetaLabelNet, it is observed that the increasing depth of the

meta-network does not contribute to the overall performance. Therefore, a single

layer network is used as meta-network with size number of features(2048) x number

of classes(10). Adam optimizer with 10−4 learning rate and 10−5 weight decay is

used for meta network. Hyper-parameters are set as α = 0.5, β = 10−3, γ = 0.1.

7.5.3 Results

In order to show the effectiveness of MetaLabelNet, its performance is compared to

classical learning with cross-entropy loss. Results are provided in Table 7.8. First,

the model is directly trained on the ROP dataset without any pre-training on the DR

dataset. This run achieved 86.3% test accuracy, which is moderate but the worst per-

formance in the leaderboard. Secondly, the network is pre-trained on the DR dataset

and then continued to conventional training with cross-entropy on the ROP dataset.

This run resulted in 90.3%, which is 4% more than the previous run. Increase in

the performance shows the effectiveness of pre-training on the DR dataset. Thirdly,

MSLG algorithm is employed, where it manages 91.4% accuracy. Finally, MetaLa-

belNet is employed that gives the best performance with 93.2%. Another important

observation is, in conventional cross-entropy loss both networks manage to get 100%

training accuracy. Considering that labels are extremely noisy, this is an undesired

behavior that means the network is overfitting the data. On the other hand, for Met-

70

Table 7.8: Train and test accuracies on ROP dataset.

Method Train Accuracy Test Accuracy

Cross Entropy (no pre-train) 100.0% 86.3%

Cross Entropy (pre-train on DR) 100.0% 90.3%

MSLG 86.23% 91.4%

MetaLabelNet 70.1% 94.3%

aLabelNet, training accuracy is stuck at 70.1%. Therefore, it can be concluded that

MetaLabelNet prevents model to overfit the noise. Moreover, when the training ac-

curacy with generated labels by meta-network is 81.2%. This also indicates that gen-

erated labels have a cleaner representation of the data since it is higher than training

accuracy.

71

72

CHAPTER 8

CONCLUSION

In this thesis, the phenomenon of learning from noisily labeled data is investigated

thoroughly. It is shown that label noise is an important obstacle to deal with in order

to achieve desirable performance from real-world datasets. In spite of its importance

for supervised learning in practical applications, it is also an important step to collect

datasets from the web [177, 178], design networks that can learn from unlimited web

data with no human supervision [35, 36, 37, 38]. Furthermore, beside image classi-

fication, there are more fields where dealing with mislabeled instances is important,

such as generative networks [179, 180], semantic segmentation [27, 28, 29], sound

classification [181] and more. All these factors make dealing with label noise an

important step through self-sustained learning systems.

Firstly, types of noisy labels and the cause of their existence in the datasets is ex-

plained in Chapter 2. Furthermore, preliminary knowledge on the meta-learning

techniques is presented, which is essential to comprehend algorithms presented in

the following sections.

Secondly, an elaborative investigation of the works from the literature is presented in

Chapter 3. In the presence of label noise, main challenge is to learn optimal estima-

tor for p(y|x) while there is only access is to noisy set (x, ỹ). There are two major

lines of approaches to achieve this. The first line of work aims to model underlying

noise structure and learns probability distribution conditioned on this knowledge. On

the other hand, the second line of work aims to directly learn p(y|x) with inherently

noise-tolerant algorithms. Noise model based approaches decouple classification and

noise estimation algorithms. There are two questions in this case: how to find out

noise structure and how to use it. The first question is the common challenge for all

73

approaches in this category, while the second question determines its type of approach

within this class of algorithms. Some works take true labels y as a hidden variable,

where given noisy labels ỹ is a corrupted version of y by a noisy channel. In order

to force the network to estimate y, network predictions are mapped to noisy labels

by a noisy channel model, and corrected loss is backpropagated [48]. A widely used

approach is to assume class-dependent noise and construct a noise transition matrix

either explicitly [48] or iteratively [53]. Alternatively, more complex noisy channel

characteristics can be modeled by neural networks [18]. Instead of estimating p(ỹ|y)
(or p(ỹ|y, x) for feature-dependent noise) as in noisy channel case, alternative ap-

proach is to estimate (y|ỹ, x). That is to find noise-free labels from the given set of

noisy data. This is called as label noise cleansing and main trends separated as using

a subset of the dataset with clean labels [61] or using with just noisy labels [63, 64].

Alternatively, some works suggest removing suspicious samples [77] or their noisy

labels [79], instead of correcting them. Even though it results in a loss of informa-

tion, pruning from noise can still increase the performance. As an extended version

of dataset pruning, one can dynamically change the dataset for each iteration. This

type of algorithms are called as sample choosing. Some works under this category

rank instances according to a determined metric so that data is feed in order of rank

[84, 85]. Others use multiple networks to choose samples for their pair [91]. Instead

of just choosing samples, one can aim to find a weighting scheme for data instances

to minimize the expected risk in the target domain, which is the clean distribution

D. The weighting scheme can either be calculated statistically [98] or meta-learning

paradigm can be used to learn the best weighting scheme [95, 97]. In some cases,

multiple annotators label the data, which results in a multi-labeled dataset. This can

be seen as a multiple noisy channel problem in which each noisy channel represents

separate labelers. Then noise characteristics for each labeler can be modeled with

noise transition matrix [24, 108] or separate networks [23]. The second major line

of approaches aims to achieve noise tolerance without explicitly modeling the noise.

Most of the works in this category focus on robust losses, such that loss function

would result in similar loss values for both clean and noisy data. From this per-

spective, widely used categorical cross entropy is known to be vulnerable to noise.

Therefore, various modified versions of categorical cross entropy are proposed in the

literature [118, 119]. Even though these losses help increasing robustness, they are

74

still affected by noise. Another promising direction is the use of the meta-learning

paradigm. In addition to classical risk minimization, these algorithms define a meta-

objective that would result in a more tolerant model in the end. These tasks can be

in a broad range such as finding noise robust weight initialization [128], knowledge

distillation from clean data [129], and finding optimal sample weighting scheme [95].

Since noise is seen as an anomaly, some works also focus on regularizers to prevent

overfit [140]. Finally, some ensemble learning techniques are proposed to compen-

sate for the extreme vulnerability of boosting to noise, but they are mostly shadowed

by other approaches.

Thirdly, a novel synthetic feature-dependent label noise generation algorithm is pro-

posed in Chapter 4. This is an essential step for developing noise robust algorithms.

Because noisy real-world datasets are generally huge, development process is consid-

erably slow. Furthermore, in real-world noisy datasets, noisy labels are ambiguous.

So it is hard to investigate the noise affected characteristic of the deep network since

ground truth labels are missing for a big part of the dataset. As a result, adding

artificial noise to the toy dataset is handy for quick deployment and testing of the

algorithms. In order to make artificial noise as realistic as possible, an algorithm that

uses the knowledge distillation technique [45] to generate feature-dependent noisy

labels is presented.

Fourthly, label noise robust learning algorithm, which is powered by meta-learning

techniques, is presented in Chapter 5. The proposed algorithm MSLG is based on the

following simple assumption: optimal model parameters learned with noisy train-

ing data should minimize the cross-entropy loss on clean meta-data. The proposed

method iteratively generates soft-labels for each data and uses these labels to train the

base classifier. Soft-labels are produced according to a meta-objective that is to mini-

mize the loss on a small amount of clean meta-data. MSLG can also be seen as a label

cleaning approach since it iteratively applies label correction. Nevertheless, it differs

from conventional label noise cleansing approaches in a way that it is not search-

ing for clean hard-labels but rather searching for optimal labels in soft-label space to

minimize meta-objective. Therefore, propagated soft labels are not necessarily clean

labels, but optimal labels for meta-objectives in a different label space.

75

Fifthly, the algorithm proposed in Chapter 5 is further improved by considering data

features while generating soft-labels. In MSLG, label predictions are formularized as

free differentiable variables and they are updated by the gradients coming from the

meta-objective. However, there is a strong correlation between the data content and

its corresponding optimal soft-label. Therefore, using data features while generating

soft-labels would enhance the performance of the system. Such an algorithm is pre-

sented in Chapter 6. Each instance is mapped to a feature vector by a feature extractor

network, and then a small single-layer perceptron network is trained to generate soft

labels depending on these features. This improvement enables a much stable learning

loop for the base classifier. Furthermore, proposed algorithm MetaLabelNet can be

applied to unlabeled data in combination with noisily labeled data. To the best of the

knowledge of the author, there is no algorithm proposed to deal with such a problem

setup in the literature.

Sixthly and finally, proposed algorithms are tested for various datasets. Algorithms

are first verified on CIFAR10 dataset with synthetic label noise. Afterward, extensive

experiments are conducted on real-world noisy datasets, which are widely used as

benchmarks in the literature. Results show that the proposed algorithm beats the state

of the art baselines with a large margin in all datasets. Moreover, the developed algo-

rithm is applied to a case study of real-world noisy medical dataset of ROP disease.

It is observed that the presented algorithm successfully manages to classify stages of

ROP disease from a small and noisy dataset. All these results show the superiority of

the proposed approaches.

There are several possible future research directions on top of algorithms presented

in this thesis. Both MSLG and MetaLabelNet requires a clean subset of data to be

used as meta data. This requirement can be eliminated by designing an additional

algorithm to pick samples, within the noisy training data, to be used as meta data.

There are two constraints while picking samples; they should be noise free and they

should be informative enough to produce useful meta-gradients. However, these two

constraints generally conflicts with each other. Hard informative samples are tend to

be seen as outlier and behaved as noisy data. Therefore, a fruitful future research

direction is to design a sample picking algorithm that watches aforementioned con-

straints. Then, meta dataset can be constructed with this algorithm and requirement

76

for predefined meta dataset can be eliminated. Another possible future research di-

rection is to extend presented algorithms beyond the noisy label problem domain and

be merged with self-supervised learning techniques. In such a setup, one can put ef-

fort into picking up the most informative samples. Later on, by using these samples

as meta-data, the proposed meta-learning framework can be used as a performance

booster for the self-supervised learning algorithm at hand.

77

78

REFERENCES

[1] J. Li, R. Socher, and S. C. Hoi, “Dividemix: Learning with noisy labels as

semi-supervised learning,” in International Conference on Learning Represen-

tations, 2020.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, pp. 1097–1105, 2012.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770–778, 2016.

[4] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 580–587,

2014.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in neural information

processing systems, pp. 91–99, 2015.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

“Ssd: Single shot multibox detector,” in European conference on computer

vision, pp. 21–37, Springer, 2016.

[7] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “Efficient piecewise training

of deep structured models for semantic segmentation,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 3194–3203,

2016.

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-

79

mantic segmentation,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 3431–3440, 2015.

[9] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding

deep learning requires rethinking generalization,” in International Conference

on Learning Representations, 2017.

[10] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal,

T. Maharaj, A. Fischer, A. Courville, Y. Bengio, et al., “A closer look at mem-

orization in deep networks,” in Proceedings of the 34th International Confer-

ence on Machine Learning-Volume 70, pp. 233–242, JMLR. org, 2017.

[11] X. Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative study of

their impacts,” Artif. Intell. Rev., vol. 22, p. 177–210, Nov. 2004.

[12] B. Frénay and M. Verleysen, “Classification in the presence of label noise: a

survey,” IEEE transactions on neural networks and learning systems, vol. 25,

no. 5, pp. 845–869, 2014.

[13] D. F. Nettleton, A. Orriols-Puig, and A. Fornells, “A study of the effect of

different types of noise on the precision of supervised learning techniques,”

Artificial intelligence review, vol. 33, no. 4, pp. 275–306, 2010.

[14] M. Pechenizkiy, A. Tsymbal, S. Puuronen, and O. Pechenizkiy, “Class noise

and supervised learning in medical domains: The effect of feature extraction,”

in 19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06),

pp. 708–713, IEEE, 2006.

[15] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, “Data poisoning attacks on

factorization-based collaborative filtering,” in Advances in Neural Information

Processing Systems, pp. 1893–1901, 2016.

[16] J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses for data poisoning

attacks,” in Advances in Neural Information Processing Systems, vol. 2017-

Decem, pp. 3518–3530, 2017.

[17] D. Angluin and P. Laird, “Learning from noisy examples,” Machine Learning,

vol. 2, no. 4, pp. 343–370, 1988.

80

[18] T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from massive

noisy labeled data for image classification,” in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pp. 2691–2699, 2015.

[19] W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool, “Webvision

database: Visual learning and understanding from web data,” arXiv preprint

arXiv:1708.02862, 2017.

[20] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A large

data set for nonparametric object and scene recognition,” IEEE transactions

on pattern analysis and machine intelligence, vol. 30, no. 11, pp. 1958–1970,

2008.

[21] L. P. Garcia, J. Lehmann, A. C. de Carvalho, and A. C. Lorena, “New label

noise injection methods for the evaluation of noise filters,” Knowledge-Based

Systems, vol. 163, pp. 693–704, 2019.

[22] G. Algan and İ. Ulusoy, “Label noise types and their effects on deep learning,”

arXiv preprint arXiv:2003.10471, 2020.

[23] M. Y. Guan, V. Gulshan, A. M. Dai, and G. E. Hinton, “Who said what: Mod-

eling individual labelers improves classification,” in Thirty-Second AAAI Con-

ference on Artificial Intelligence, 2018.

[24] A. Khetan, Z. C. Lipton, and A. Anandkumar, “Learning from noisy singly-

labeled data,” arXiv preprint arXiv:1712.04577, 2017.

[25] Y. Dgani, H. Greenspan, and J. Goldberger, “Training a neural network based

on unreliable human annotation of medical images,” in 2018 IEEE 15th In-

ternational Symposium on Biomedical Imaging (ISBI 2018), pp. 39–42, IEEE,

2018.

[26] C. Xue, Q. Dou, X. Shi, H. Chen, and P.-A. Heng, “Robust learning at noisy

labeled medical images: Applied to skin lesion classification,” in 2019 IEEE

16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1280–

1283, IEEE, 2019.

81

[27] Z. Lu, Z. Fu, T. Xiang, P. Han, L. Wang, and X. Gao, “Learning from weak and

noisy labels for semantic segmentation,” IEEE transactions on pattern analysis

and machine intelligence, vol. 39, no. 3, pp. 486–500, 2016.

[28] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. Newsam, A. Tao, and B. Catan-

zaro, “Improving semantic segmentation via video propagation and label relax-

ation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 8856–8865, 2019.

[29] D. Acuna, A. Kar, and S. Fidler, “Devil is in the edges: Learning semantic

boundaries from noisy annotations,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 11075–11083, 2019.

[30] P. Welinder, S. Branson, P. Perona, and S. J. Belongie, “The multidimensional

wisdom of crowds,” in Advances in neural information processing systems,

pp. 2424–2432, 2010.

[31] Y. Cha and J. Cho, “Social-network analysis using topic models,” in Proceed-

ings of the 35th international ACM SIGIR conference on Research and devel-

opment in information retrieval, pp. 565–574, ACM, 2012.

[32] Y. Wang, Y. Rao, X. Zhan, H. Chen, M. Luo, and J. Yin, “Sentiment and

emotion classification over noisy labels,” Knowledge-Based Systems, vol. 111,

pp. 207–216, 2016.

[33] Y. Aït-Sahalia, J. Fan, and D. Xiu, “High-frequency covariance estimates with

noisy and asynchronous financial data,” Journal of the American Statistical

Association, vol. 105, no. 492, pp. 1504–1517, 2010.

[34] F. Schroff, A. Criminisi, and A. Zisserman, “Harvesting image databases from

the web,” IEEE transactions on pattern analysis and machine intelligence,

vol. 33, no. 4, pp. 754–766, 2010.

[35] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman, “Learning object cate-

gories from internet image searches,” Proceedings of the IEEE, vol. 98, no. 8,

pp. 1453–1466, 2010.

82

[36] X. Chen, A. Shrivastava, and A. Gupta, “NEIL: Extracting visual knowledge

from web data,” in Proceedings of the IEEE International Conference on Com-

puter Vision, pp. 1409–1416, 2013.

[37] S. K. Divvala, A. Farhadi, and C. Guestrin, “Learning everything about any-

thing: Webly-supervised visual concept learning,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

pp. 3270–3277, 2014.

[38] A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache, “Learning visual

features from large weakly supervised data,” in European Conference on Com-

puter Vision, pp. 67–84, Springer, 2016.

[39] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J. Philbin,

and L. Fei-Fei, “The unreasonable effectiveness of noisy data for fine-grained

recognition,” in European Conference on Computer Vision, pp. 301–320,

Springer, 2016.

[40] J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev,

S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, et al.,

“Clinically applicable deep learning for diagnosis and referral in retinal dis-

ease,” Nature medicine, vol. 24, no. 9, p. 1342, 2018.

[41] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy,

S. Venugopalan, K. Widner, T. Madams, J. Cuadros, et al., “Development and

validation of a deep learning algorithm for detection of diabetic retinopathy in

retinal fundus photographs,” Jama, vol. 316, no. 22, pp. 2402–2410, 2016.

[42] L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian, “Disturblabel: Regularizing

cnn on the loss layer,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 4753–4762, 2016.

[43] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,

B. Shillingford, and N. De Freitas, “Learning to learn by gradient descent

by gradient descent,” in Advances in Neural Information Processing Systems,

pp. 3981–3989, 2016.

83

[44] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast

adaptation of deep networks,” in Proceedings of the 34th International Con-

ference on Machine Learning-Volume 70, pp. 1126–1135, JMLR. org, 2017.

[45] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural net-

work,” arXiv preprint arXiv:1503.02531, 2015.

[46] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,

J. Huang, and K. Murphy, “Progressive neural architecture search,” in Pro-

ceedings of the European Conference on Computer Vision (ECCV), pp. 19–34,

2018.

[47] G. Algan and I. Ulusoy, “Image classification with deep learning in the

presence of noisy labels: A survey,” Knowledge-Based Systems, vol. 215,

p. 106771, 2021.

[48] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu, “Making deep

neural networks robust to label noise: A loss correction approach,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 1944–1952, 2017.

[49] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted data to

train deep networks on labels corrupted by severe noise,” in Advances in neural

information processing systems, pp. 10456–10465, 2018.

[50] X. Chen and A. Gupta, “Webly supervised learning of convolutional networks,”

in Proceedings of the IEEE International Conference on Computer Vision,

pp. 1431–1439, 2015.

[51] A. J. Bekker and J. Goldberger, “Training deep neural-networks based on un-

reliable labels,” in 2016 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 2682–2686, IEEE, 2016.

[52] J. Goldberger and E. Ben-Reuven, “Training deep neural-networks using a

noise adaptation layer,” in Proceedings of International Conferance on Learn-

ing Representations (ICLR), 2017.

[53] S. Sukhbaatar and R. Fergus, “Learning from noisy labels with deep neural

networks,” arXiv preprint arXiv:1406.2080, 2014.

84

[54] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus, “Training con-

volutional networks with noisy labels,” in International Conference on Learn-

ing Representations, 2015.

[55] X. Xia, T. Liu, N. Wang, B. Han, C. Gong, G. Niu, and M. Sugiyama, “Are

anchor points really indispensable in label-noise learning?,” in Advances in

Neural Information Processing Systems, pp. 6835–6846, 2019.

[56] J. Yao, H. Wu, Y. Zhang, I. W. Tsang, and J. Sun, “Safeguarded Dynamic Label

Regression for Noisy Supervision,” Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, pp. 9103–9110, jul 2019.

[57] I. Misra, C. Lawrence Zitnick, M. Mitchell, and R. Girshick, “Seeing through

the human reporting bias: Visual classifiers from noisy human-centric la-

bels,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2930–2939, 2016.

[58] L. Jaehwan, Y. Donggeun, and K. Hyo-Eun, “Photometric transformer net-

works and label adjustment for breast density prediction,” in Proceedings of

the IEEE International Conference on Computer Vision Workshops, pp. 0–0,

2019.

[59] B. Yuan, J. Chen, W. Zhang, H. S. Tai, and S. McMains, “Iterative cross learn-

ing on noisy labels,” in Proceedings - 2018 IEEE Winter Conference on Appli-

cations of Computer Vision, WACV 2018, vol. 2018-Janua, pp. 757–765, 2018.

[60] A. Vahdat, “Toward robustness against label noise in training deep discrimina-

tive neural networks,” in Advances in Neural Information Processing Systems,

pp. 5596–5605, 2017.

[61] A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and S. Belongie, “Learn-

ing from noisy large-scale datasets with minimal supervision,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 839–

847, 2017.

[62] M. Dehghani, A. Mehrjou, S. Gouws, J. Kamps, and B. Schölkopf, “Fidelity-

weighted learning,” in International Conference on Learning Representations,

2018.

85

[63] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa, “Joint optimization frame-

work for learning with noisy labels,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 5552–5560, 2018.

[64] K. Yi and J. Wu, “Probabilistic end-to-end noise correction for learning with

noisy labels,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 7017–7025, 2019.

[65] X. Liu, S. Li, M. Kan, S. Shan, and X. Chen, “Self-error-correcting convolu-

tional neural network for learning with noisy labels,” in 2017 12th IEEE In-

ternational Conference on Automatic Face & Gesture Recognition (FG 2017),

pp. 111–117, IEEE, 2017.

[66] S. Zheng, P. Wu, A. Goswami, M. Goswami, D. Metaxas, and C. Chen, “Error-

bounded correction of noisy labels,” in International Conference on Machine

Learning, 2020.

[67] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness, “Unsu-

pervised label noise modeling and loss correction,” in International Conference

on Machine Learning, 2019.

[68] J. Zhang, V. S. Sheng, T. Li, and X. Wu, “Improving crowdsourced label qual-

ity using noise correction,” IEEE transactions on neural networks and learning

systems, vol. 29, no. 5, pp. 1675–1688, 2017.

[69] J. Han, P. Luo, and X. Wang, “Deep self-learning from noisy labels,” in Pro-

ceedings of the IEEE International Conference on Computer Vision, pp. 5138–

5147, 2019.

[70] J. Yao, J. Wang, I. W. Tsang, Y. Zhang, J. Sun, C. Zhang, and R. Zhang, “Deep

learning from noisy image labels with quality embedding,” IEEE Transactions

on Image Processing, vol. 28, no. 4, pp. 1909–1922, 2018.

[71] T. Durand, N. Mehrasa, and G. Mori, “Learning a deep convnet for multi-label

classification with partial labels,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 647–657, 2019.

[72] S. J. Delany, N. Segata, and B. Mac Namee, “Profiling instances in noise re-

duction,” Knowledge-Based Systems, vol. 31, pp. 28–40, 2012.

86

[73] L. P. Garcia, J. A. Sáez, J. Luengo, A. C. Lorena, A. C. de Carvalho, and

F. Herrera, “Using the one-vs-one decomposition to improve the performance

of class noise filters via an aggregation strategy in multi-class classification

problems,” Knowledge-Based Systems, vol. 90, pp. 153–164, 2015.

[74] J. Luengo, S.-O. Shim, S. Alshomrani, A. Altalhi, and F. Herrera, “Cnc-nos:

Class noise cleaning by ensemble filtering and noise scoring,” Knowledge-

Based Systems, vol. 140, pp. 27–49, 2018.

[75] C. G. Northcutt, T. Wu, and I. L. Chuang, “Learning with confident examples:

Rank pruning for robust classification with noisy labels,” in Uncertainty in

Artificial Intelligence - Proceedings of the 33rd Conference, UAI 2017, may

2017.

[76] X. Wu, R. He, Z. Sun, and T. Tan, “A light CNN for deep face representation

with noisy labels,” IEEE Transactions on Information Forensics and Security,

vol. 13, no. 11, pp. 2884–2896, 2018.

[77] J. Huang, L. Qu, R. Jia, and B. Zhao, “O2u-net: A simple noisy label detection

approach for deep neural networks,” in Proceedings of the IEEE International

Conference on Computer Vision, pp. 3326–3334, 2019.

[78] K. Sharma, P. Donmez, E. Luo, Y. Liu, and I. Z. Yalniz, “Noiserank: Un-

supervised label noise reduction with dependence models,” arXiv preprint

arXiv:2003.06729, vol. 7, 2020.

[79] Y. Ding, L. Wang, D. Fan, and B. Gong, “A semi-supervised two-stage ap-

proach to learning from noisy labels,” in 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV), pp. 1215–1224, IEEE, 2018.

[80] D. T. Nguyen, T.-P.-N. Ngo, Z. Lou, M. Klar, L. Beggel, and T. Brox, “Ro-

bust learning under label noise with iterative noise-filtering,” arXiv preprint

arXiv:1906.00216, 2019.

[81] D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen, L. Beggel,

and T. Brox, “Self: Learning to filter noisy labels with self-ensembling,” in

International Conference on Learning Representations, 2020.

87

[82] Y. Yan, Z. Xu, I. W. Tsang, G. Long, and Y. Yang, “Robust semi-supervised

learning through label aggregation,” in 30th AAAI Conference on Artificial In-

telligence, AAAI 2016, pp. 2244–2250, 2016.

[83] J. Jiang, J. Ma, Z. Wang, C. Chen, and X. Liu, “Hyperspectral image classifi-

cation in the presence of noisy labels,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 57, no. 2, pp. 851–865, 2019.

[84] B. Han, I. W. Tsang, L. Chen, P. Y. Celina, and S.-F. Fung, “Progressive

stochastic learning for noisy labels,” IEEE transactions on neural networks

and learning systems, no. 99, pp. 1–13, 2018.

[85] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “Mentornet: Learning

data-driven curriculum for very deep neural networks on corrupted labels,” in

International Conference on Machine Learning, pp. 2304–2313, 2018.

[86] H.-S. Chang, E. Learned-Miller, and A. McCallum, “Active bias: Training

more accurate neural networks by emphasizing high variance samples,” in Ad-

vances in Neural Information Processing Systems, pp. 1002–1012, 2017.

[87] Y. Lyu and I. W. Tsang, “Curriculum loss: Robust learning and generalization

against label corruption,” in International Conference on Learning Represen-

tations, 2020.

[88] S. Guo, W. Huang, H. Zhang, C. Zhuang, D. Dong, M. R. Scott, and D. Huang,

“Curriculumnet: Weakly supervised learning from large-scale web images,”

in Proceedings of the European Conference on Computer Vision (ECCV),

pp. 135–150, 2018.

[89] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich,

“Training deep neural networks on noisy labels with bootstrapping,” arXiv

preprint arXiv:1412.6596, 2014.

[90] E. Malach and S. Shalev-Shwartz, “Decoupling" when to update" from" how

to update",” in Advances in Neural Information Processing Systems, pp. 960–

970, 2017.

88

[91] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama, “Co-

teaching: Robust training of deep neural networks with extremely noisy la-

bels,” in Advances in Neural Information Processing Systems, pp. 8527–8537,

2018.

[92] X. Yu, B. Han, J. Yao, G. Niu, I. W. Tsang, and M. Sugiyama, “How does Dis-

agreement Help Generalization against Label Corruption?,” in International

Conference on Machine Learning, 2019.

[93] X. Wang, S. Wang, J. Wang, H. Shi, and T. Mei, “Co-mining: Deep face recog-

nition with noisy labels,” in Proceedings of the IEEE International Conference

on Computer Vision, pp. 9358–9367, 2019.

[94] P. Chen, B. B. Liao, G. Chen, and S. Zhang, “Understanding and utilizing

deep neural networks trained with noisy labels,” in International Conference

on Machine Learning, pp. 1062–1070, 2019.

[95] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight examples

for robust deep learning,” arXiv preprint arXiv:1803.09050, 2018.

[96] S. Jenni and P. Favaro, “Deep bilevel learning,” in Proceedings of the European

Conference on Computer Vision (ECCV), pp. 618–633, 2018.

[97] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-weight-

net: Learning an explicit mapping for sample weighting,” in Advances in Neu-

ral Information Processing Systems, pp. 1917–1928, 2019.

[98] Y. Wang, W. Liu, X. Ma, J. Bailey, H. Zha, L. Song, and S.-T. Xia, “Iterative

learning with open-set noisy labels,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 8688–8696, 2018.

[99] S. Thulasidasan, T. Bhattacharya, J. Bilmes, G. Chennupati, and J. Mohd-

Yusof, “Combating Label Noise in Deep Learning Using Abstention,” in In-

ternational Conference on Machine Learning, 2019.

[100] T. Liu and D. Tao, “Classification with noisy labels by importance reweight-

ing,” IEEE Transactions on pattern analysis and machine intelligence, vol. 38,

no. 3, pp. 447–461, 2015.

89

[101] R. Wang, T. Liu, and D. Tao, “Multiclass learning with partially corrupted

labels,” IEEE transactions on neural networks and learning systems, vol. 29,

no. 6, pp. 2568–2580, 2018.

[102] K.-H. Lee, X. He, L. Zhang, and L. Yang, “Cleannet: Transfer learning for

scalable image classifier training with label noise,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 5447–5456,

2018.

[103] O. Litany and D. Freedman, “Soseleto: A unified approach to transfer learn-

ing and training with noisy labels,” in International Conference on Learning

Representations workshop on Learning from Limited Labeled Data, 2018.

[104] W. Hu, Y. Huang, F. Zhang, and R. Li, “Noise-tolerant paradigm for training

face recognition cnns,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 11887–11896, 2019.

[105] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H. Valadez, L. Bo-

goni, and L. Moy, “Supervised learning from multiple experts: whom to trust

when everyone lies a bit,” in Proceedings of the 26th Annual international

conference on machine learning, pp. 889–896, ACM, 2009.

[106] Y. Yan, R. Rosales, G. Fung, R. Subramanian, and J. Dy, “Learning from mul-

tiple annotators with varying expertise,” Machine Learning, vol. 95, pp. 291–

327, jun 2014.

[107] R. Tanno, A. Saeedi, S. Sankaranarayanan, D. C. Alexander, and N. Silber-

man, “Learning from noisy labels by regularized estimation of annotator con-

fusion,” in Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pp. 11244–11253, 2019.

[108] F. Rodrigues and F. C. Pereira, “Deep learning from crowds,” in 32nd AAAI

Conference on Artificial Intelligence, AAAI 2018, pp. 1611–1618, 2018.

[109] J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo, “Whose

vote should count more: Optimal integration of labels from labelers of un-

known expertise,” in Advances in neural information processing systems,

pp. 2035–2043, 2009.

90

[110] S. Branson, G. Van Horn, and P. Perona, “Lean crowdsourcing: Combining

humans and machines in an online system,” in Proceedings - 30th IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-

Janua, pp. 6109–6118, 2017.

[111] H. Izadinia, B. C. Russell, A. Farhadi, M. D. Hoffman, and A. Hertzmann,

“Deep classifiers from image tags in the wild,” in Proceedings of the 2015

Workshop on Community-Organized Multimodal Mining: Opportunities for

Novel Solutions, pp. 13–18, ACM, 2015.

[112] N. Manwani and P. Sastry, “Noise tolerance under risk minimization,” IEEE

transactions on cybernetics, vol. 43, no. 3, pp. 1146–1151, 2013.

[113] A. Ghosh, N. Manwani, and P. Sastry, “Making risk minimization tolerant to

label noise,” Neurocomputing, vol. 160, pp. 93–107, 2015.

[114] N. Charoenphakdee, J. Lee, and M. Sugiyama, “On symmetric losses for learn-

ing from corrupted labels,” in International Conference on Machine Learning,

2019.

[115] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, “Convexity, classification,

and risk bounds,” Journal of the American Statistical Association, vol. 101,

no. 473, pp. 138–156, 2006.

[116] A. Ghosh, H. Kumar, and P. Sastry, “Robust loss functions under label noise

for deep neural networks,” in Thirty-First AAAI Conference on Artificial Intel-

ligence, 2017.

[117] X. Wang, Y. Hua, E. Kodirov, and N. M. Robertson, “Imae for noise-robust

learning: Mean absolute error does not treat examples equally and gradient

magnitude’s variance matters,” arXiv preprint arXiv:1903.12141, 2019.

[118] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep

neural networks with noisy labels,” in Advances in neural information process-

ing systems, pp. 8778–8788, 2018.

[119] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey, “Symmetric cross

entropy for robust learning with noisy labels,” in Proceedings of the IEEE In-

ternational Conference on Computer Vision, pp. 322–330, 2019.

91

[120] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, “Learning with

noisy labels,” in Advances in neural information processing systems, pp. 1196–

1204, 2013.

[121] V. Mnih and G. E. Hinton, “Learning to label aerial images from noisy data,” in

Proceedings of the 29th International conference on machine learning (ICML-

12), pp. 567–574, 2012.

[122] Y. Xu, P. Cao, Y. Kong, and Y. Wang, “L_dmi: A novel information-theoretic

loss function for training deep nets robust to label noise,” in Advances in Neural

Information Processing Systems, pp. 6222–6233, 2019.

[123] G. Patrini, F. Nielsen, R. Nock, and M. Carioni, “Loss factorization, weakly

supervised learning and label noise robustness,” in International conference on

machine learning, pp. 708–717, 2016.

[124] B. Van Rooyen, A. Menon, and R. C. Williamson, “Learning with symmet-

ric label noise: The importance of being unhinged,” in Advances in Neural

Information Processing Systems, pp. 10–18, 2015.

[125] B. Han, I. W. Tsang, and L. Chen, “On the convergence of a family of robust

losses for stochastic gradient descent,” in Joint European conference on ma-

chine learning and knowledge discovery in databases, pp. 665–680, Springer,

2016.

[126] L. P. Garcia, A. C. de Carvalho, and A. C. Lorena, “Noise detection in the

meta-learning level,” Neurocomputing, vol. 176, pp. 14–25, 2016.

[127] B. Han, G. Niu, J. Yao, X. Yu, M. Xu, I. Tsang, and M. Sugiyama, “Pumpout:

A meta approach for robustly training deep neural networks with noisy labels,”

arXiv preprint arXiv:1809.11008, 2018.

[128] J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, “Learning to learn from noisy

labeled data,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 5051–5059, 2019.

[129] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li, “Learning from noisy

labels with distillation,” in Proceedings of the IEEE International Conference

on Computer Vision, pp. 1910–1918, 2017.

92

[130] M. Dehghani, A. Severyn, S. Rothe, and J. Kamps, “Learning to learn from

weak supervision by full supervision,” arXiv preprint arXiv:1711.11383, 2017.

[131] M. Dehghani, A. Severyn, S. Rothe, and J. Kamps, “Avoiding your teacher’s

mistakes: Training neural networks with controlled weak supervision,” arXiv

preprint arXiv:1711.00313, 2017.

[132] G. Algan and I. Ulusoy, “Meta soft label generation for noisy labels,” in Pro-

ceedings of the 25th International Conferance on Pattern Recognition, ICPR,

pp. 7142–7148, 2020.

[133] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The jour-

nal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[134] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-

sarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[135] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond em-

pirical risk minimization,” in International Conference on Learning Represen-

tations, 2018.

[136] G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton, “Regularizing

neural networks by penalizing confident output distributions,” arXiv preprint

arXiv:1701.06548, 2017.

[137] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pp. 2818–2826, 2016.

[138] D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-training can improve

model robustness and uncertainty,” in International Conference on Machine

Learning, pp. 2712–2721, PMLR, 2019.

[139] I. Jindal, M. Nokleby, and X. Chen, “Learning deep networks from noisy labels

with dropout regularization,” in 2016 IEEE 16th International Conference on

Data Mining (ICDM), pp. 967–972, IEEE, 2016.

93

[140] X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. M. Erfani, S.-T. Xia, S. Wijew-

ickrema, and J. Bailey, “Dimensionality-driven learning with noisy labels,” in

International Conference on Learning Representations, 2018.

[141] S. Azadi, J. Feng, S. Jegelka, and T. Darrell, “Auxiliary image regularization

for deep cnns with noisy labels,” in International Conference on Learning Rep-

resentations, 2016.

[142] X. Sun and H. Zhou, “An empirical comparison of two boosting algorithms on

real data sets with artificial class noise,” in Advances in Information Technol-

ogy and Education, pp. 23–30, Springer, 2011.

[143] J. Cao, S. Kwong, and R. Wang, “A noise-detection based adaboost algorithm

for mislabeled data,” Pattern Recognition, vol. 45, no. 12, pp. 4451–4465,

2012.

[144] J. Bootkrajang and A. Kabán, “Boosting in the presence of label noise,” in

Uncertainty in Artificial Intelligence - Proceedings of the 29th Conference,

UAI 2013, pp. 82–91, sep 2013.

[145] Q. Miao, Y. Cao, G. Xia, M. Gong, J. Liu, and J. Song, “Rboost: label noise-

robust boosting algorithm based on a nonconvex loss function and the numeri-

cally stable base learners,” IEEE transactions on neural networks and learning

systems, vol. 27, no. 11, pp. 2216–2228, 2015.

[146] B. Sun, S. Chen, J. Wang, and H. Chen, “A robust multi-class adaboost algo-

rithm for mislabeled noisy data,” Knowledge-Based Systems, vol. 102, pp. 87–

102, 2016.

[147] X. Yu, T. Liu, M. Gong, and D. Tao, “Learning with biased complemen-

tary labels,” in Proceedings of the European Conference on Computer Vision

(ECCV), pp. 68–83, 2018.

[148] Y. Kim, J. Yim, J. Yun, and J. Kim, “Nlnl: Negative learning for noisy la-

bels,” in Proceedings of the IEEE International Conference on Computer Vi-

sion, pp. 101–110, 2019.

94

[149] Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun, “Learning discriminative recon-

structions for unsupervised outlier removal,” in Proceedings of the IEEE In-

ternational Conference on Computer Vision, vol. 2015 Inter, pp. 1511–1519,

2015.

[150] Y. Duan and O. Wu, “Learning with Auxiliary Less-Noisy Labels,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 28, no. 7,

pp. 1716–1721, 2017.

[151] S. C. S. H. S. Lim and K. Brain, “Choicenet: Robust learning by revealing

output correlations,” arXiv preprint arXiv:1805.06431, 2018.

[152] W. Zhang, Y. Wang, and Y. Qiao, “Metacleaner: Learning to hallucinate clean

representations for noisy-labeled visual recognition,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 7373–

7382, 2019.

[153] P. H. Seo, G. Kim, and B. Han, “Combinatorial inference against label noise,”

in Advances in Neural Information Processing Systems, pp. 1171–1181, 2019.

[154] L. Niu, W. Li, and D. Xu, “Visual recognition by learning from web data:

A weakly supervised domain generalization approach,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 2774–2783,

2015.

[155] B. Zhuang, L. Liu, Y. Li, C. Shen, and I. Reid, “Attend in groups: a weakly-

supervised deep learning framework for learning from web data,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

pp. 1878–1887, 2017.

[156] B. Han, J. Yao, G. Niu, M. Zhou, I. Tsang, Y. Zhang, and M. Sugiyama, “Mask-

ing: A new perspective of noisy supervision,” in Advances in Neural Informa-

tion Processing Systems, pp. 5836–5846, 2018.

[157] A. P. Dawid and A. M. Skene, “Maximum likelihood estimation of observer

error-rates using the em algorithm,” Journal of the Royal Statistical Society:

Series C (Applied Statistics), vol. 28, no. 1, pp. 20–28, 1979.

95

[158] J.-X. Zhong, N. Li, W. Kong, S. Liu, T. H. Li, and G. Li, “Graph convolutional

label noise cleaner: Train a plug-and-play action classifier for anomaly detec-

tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1237–1246, 2019.

[159] C. Li, V. S. Sheng, L. Jiang, and H. Li, “Noise filtering to improve data

and model quality for crowdsourcing,” Knowledge-Based Systems, vol. 107,

pp. 96–103, 2016.

[160] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in

Proceedings of the 26th annual international conference on machine learning,

pp. 41–48, ACM, 2009.

[161] M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent variable

models,” in Advances in Neural Information Processing Systems, pp. 1189–

1197, 2010.

[162] L. Jiang, D. Meng, S.-I. Yu, Z. Lan, S. Shan, and A. Hauptmann, “Self-paced

learning with diversity,” in Advances in Neural Information Processing Sys-

tems, pp. 2078–2086, 2014.

[163] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Loop: local outlier

probabilities,” in Proceedings of the 18th ACM conference on Information and

knowledge management, pp. 1649–1652, ACM, 2009.

[164] J. Vuurens, A. P. de Vries, and C. Eickhoff, “How much spam can you take? an

analysis of crowdsourcing results to increase accuracy,” in Proc. ACM SIGIR

Workshop on Crowdsourcing for Information Retrieval (CIR’11), pp. 21–26,

2011.

[165] P. Wais, S. Lingamneni, D. Cook, J. Fennell, B. Goldenberg, D. Lubarov,

D. Marin, and H. Simons, “Towards building a high-quality workforce with

mechanical turk,” Proceedings of computational social science and the wis-

dom of crowds (NIPS), pp. 1–5, 2010.

[166] P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on amazon me-

chanical turk,” in Proceedings of the ACM SIGKDD workshop on human com-

putation, pp. 64–67, ACM, 2010.

96

[167] Y. Kong, “Dominantly truthful multi-task peer prediction with a constant num-

ber of tasks,” in Proceedings of the Fourteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, pp. 2398–2411, SIAM, 2020.

[168] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-

supervised learning with ladder networks,” in Advances in neural information

processing systems, pp. 3546–3554, 2015.

[169] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-

averaged consistency targets improve semi-supervised deep learning results,”

in Advances in neural information processing systems, pp. 1195–1204, 2017.

[170] M. E. Houle, “Dimensionality, discriminability, density and distance distribu-

tions,” in 2013 IEEE 13th International Conference on Data Mining Work-

shops, pp. 468–473, IEEE, 2013.

[171] T. G. Dietterich, “An experimental comparison of three methods for construct-

ing ensembles of decision trees: Bagging, boosting, and randomization,” Ma-

chine learning, vol. 40, no. 2, pp. 139–157, 2000.

[172] D. I. Inouye, P. Ravikumar, P. Das, and A. Dutta, “Hyperparameter selection

under localized label noise via corrupt validation,” in NIPS Workshop, 2017.

[173] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual

recognition challenge,” International journal of computer vision, vol. 115,

no. 3, pp. 211–252, 2015.

[174] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-

resnet and the impact of residual connections on learning,” arXiv preprint

arXiv:1602.07261, 2016.

[175] G. Algan, I. Ulusoy, Ş. Gönül, B. Turgut, and B. Bakbak, “Deep learning from

small amount of medical data with noisy labels: A meta-learning approach,”

arXiv preprint arXiv:2010.06939, 2020.

[176] J. Cuadros and G. Bresnick, “Eyepacs: an adaptable telemedicine system for

diabetic retinopathy screening,” Journal of diabetes science and technology,

vol. 3, no. 3, pp. 509–516, 2009.

97

[177] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun: Con-

struction of a large-scale image dataset using deep learning with humans in the

loop,” arXiv preprint arXiv:1506.03365, 2015.

[178] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10

million image database for scene recognition,” IEEE transactions on pattern

analysis and machine intelligence, vol. 40, no. 6, pp. 1452–1464, 2017.

[179] T. Kaneko, Y. Ushiku, and T. Harada, “Label-noise robust generative adversar-

ial networks,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 2467–2476, 2019.

[180] K. K. Thekumparampil, A. Khetan, Z. Lin, and S. Oh, “Robustness of condi-

tional GANs to noisy labels,” in Advances in Neural Information Processing

Systems, vol. 2018-Decem, pp. 10271–10282, 2018.

[181] E. Fonseca, M. Plakal, D. P. Ellis, F. Font, X. Favory, and X. Serra, “Learn-

ing Sound Event Classifiers from Web Audio with Noisy Labels,” in ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing -

Proceedings, vol. 2019-May, pp. 21–25, 2019.

98

Curriculum Vitae

Personal Information

Surname, Name: Algan, Görkem

Nationality: Turkish (TC)

Date and Place of Birth: 4 September 1989, Konya

Phone: +90 533 079 89 90

email: gorkemalgan@gmail.com

Education

Degree Institution Graduation

MS Royal Institute of Technology, Stockholm 2014

MS Eindhoven University of Technology, Eindhoven 2014

BS METU Electrical-Electronics Engineering, Ankara 2012

Work Experience

Year Place Enrollment

2015-Present ASELSAN, Ankara Senior Computer Vision Engineer

Foreign Languages

Advanced English.

Publications

1. G. Algan and I. Ulusoy, “Image classification with deep learning in the presence

of noisy labels: A survey,”Knowledge-Based Systems, vol. 215,p. 106771, 2021

2. G. Algan and I. Ulusoy, “Meta soft label generation for noisy labels” in Pro-

ceedings of the 25th International Conference on Pattern Recognition, ICPR, pp.

7142–7148, 2020

99

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Preliminaries
	Problem Statement and Notations
	Label Noise Models
	Sources of Label Noise
	Meta Learning

	Related Work
	Noise Model Based Methods
	Noisy Channel
	Explicit calculation
	Iterative calculation
	Complex noisy channel

	Label Noise Cleaning
	Using data with clean labels
	Using data with both clean and noisy labels
	Using data with just noisy labels

	Dataset Pruning
	Removing Data
	Removing Labels

	Sample Choosing
	Curriculum Learning
	Multiple Classifiers

	Sample Importance Weighting
	Labeler Quality Assessment
	Discussion

	Noise Model Free Methods
	Robust Losses
	Meta Learning
	Regularizers
	Ensemble Methods
	Others
	Discussion

	Synthetic Label Noise Generation
	Methods from the Literature
	Uniform Noise
	Class-Dependent Noise
	Feature-Dependent Noise

	Proposed Noise Generation Algorithm

	Meta Soft Label Generation
	Training
	Training Phase-1
	Training Phase-2
	Meta Training Step
	Conventional Training Step

	Formulation of
	Reasoning of Classification Loss
	Meta Objective

	Meta-Label-Net
	Training
	Training Phase-1
	Training Phase-2
	Meta Training Step
	Conventional Training Step

	Learning with Unlabeled Data
	Reasoning of Meta-Objective

	Experiments
	CIFAR10
	Dataset Description
	Implementation Details
	Results

	Clothing1M
	Dataset Description
	Implementation Details
	Results

	Food101N
	Dataset Description
	Implementation Details
	Results

	WebVision
	Dataset Description
	Implementation Details
	Results

	Retinopaty of Prematurity
	Dataset Description
	Implementation Details
	Results

	Conclusion
	REFERENCES

