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ABSTRACT

DECENTRALIZED INVENTORY PLANNING WITH TRANSSHIPMENTS
IN A MULTI-PROJECT ENVIRONMENT

Soylu Nazlı, Duygu

M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. İsmail Serdar Bakal

Co-Supervisor: Assoc. Prof. Dr. Seçil Savaşaneril Tüfekci

February 2021, 94 pages

Many companies in project-based industries manage their inventories in a decentral-

ized manner on a project-by-project basis. Even if one project has excess supply of

a material, the other may have excess demand of it, which increase inventory costs

of the company. These costs can be decreased if material transshipments between

projects are allowed. In this study, motivated by the defense industry applications

in Turkey, we investigate ordering decisions of two different agents, who make in-

ventory decisions for two different projects, in a two-period problem. We study

a transshipment mechanism where a project transfers its excess inventory at a unit

transfer price to a project with excess demand. We prove the existence and unique-

ness of the corresponding equilibrium between agents and characterize it. We also

study two benchmark settings, decentralized setting without transfers and centralized

setting, to discuss the benefits of allowing transfers. Numerical analyses show that

agents achieve significantly more profits with transshipments compared to decentral-

ized setting without transfers. We also show that the amount of benefits introduced

by transshipments depend on the right selection of transfer prices.
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ÖZ

TRANSFERLERE İZİN VERİLEN ÇOKLU PROJE ORTAMINDA
MERKEZİ OLMAYAN ENVANTER PLANLAMA

Soylu Nazlı, Duygu

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İsmail Serdar Bakal

Ortak Tez Yöneticisi: Doç. Dr. Seçil Savaşaneril Tüfekci

Şubat 2021 , 94 sayfa

Proje bazlı çalışan birçok firma için envanter yönetimi, proje bazında merkezi olma-

yan bir şekilde yapılmaktadır. Bir proje bir malzemenin fazla arzına sahip olsa bile,

diğerinin fazla talebi olabilir ve bu da şirketin envanter maliyetlerini artırır. Proje-

ler arasında malzeme transferlerine izin verilirse bu maliyetler azaltılabilir. Türkiye

merkezli savunma sanayi uygulamalarından hareketle yürütülen bu çalışmada, iki pe-

riyotlu bir problemde iki farklı projenin karar vericilerinin aynı malzemeyi tedarik

etme politikaları incelenmiştir. Bir projenin fazla arzını, belirli bir transfer fiyatı kar-

şılığında, fazla talebi olan bir projeye transfer ettiği bir transfer mekanizmasını inceli-

yoruz. Ayrıca, transferlerin getirdiği faydanın değerini tartışmak için iki karşılaştırma

noktası, iki projenin de birbirinden bağımsız yönetildiği ve ikisinin de merkezi karar

verici tarafından yönetildiği problemler üzerinde çalışıyoruz. Sayısal analiz, trans-

ferlerin varlığında ulaşılan çözümün, merkezi olmayan yönetimle gelen çözümden

önemli ölçüde daha fazla kar elde getirdiğini göstermektedir. Ayrıca, transferlerin

sağladığı avantajların miktarının, transfer fiyatlarının doğru seçimine bağlı olduğu da
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sayısal analizlerle gösterilmiştir.

Anahtar Kelimeler: envanter yönetimi, oyun teorisi, proje bazlı şirketler
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CHAPTER 1

INTRODUCTION

Inventory management has its own challenges in defense and aerospace industries,

where various types of complex-structured final products are produced. Although

their production quantities are certain as they usually work with their customers on

contracts, there are several reasons creating uncertainty in their production quantities

and schedules.

To begin with, complex structure of the final product causes variance in compliance

to the specifications for the intermediate and final products, resulting in high wastage

rates and randomness in total production quantity. Continuous changes in the bill of

materials (BOM) and/or production process of the intermediate and final products in

order to keep up with developing technology bring additional uncertainty to total pro-

duction quantities. Moreover, although defense companies mostly work on contract

basis, non-contract development activities are also carried out intensively in these

companies. Both BOM and production processes become clear over time in these

activities, which results as another source of randomness in total production quantity.

Uncertainties in total production quantities and BOM are reflected as uncertainties in

raw material needs.

For those companies whose customers are states and armies, production schedules

tend to change due to the uncertainties arising from cross-country diplomacy. For ex-

ample, a COTS (commercial of the shelf) fastener purchased from an abroad country

may not be supplied due to political reasons, even though the materials are available

at the customer. Their production schedules are also affected by the constant changes

in the production processes to keep up with developing technology and the instantly

changing needs of their customers. Uncertainty in the production schedule affects

1



material requirement and workforce plans.

Project based management is another source of uncertainty for these companies. Due

to customer-based deliveries, production and inventory management is carried out on

a project basis. The decisions on production and inventory management are made

by separate decision makers for each project. One of the motivations for this type

of management is that the company has different budget constraints on all projects.

For example, the budget of a newly started design project and the budget of a product

that has started mass production within the scope of a customer contract are required

to be followed separately. Moreover, with different penalty costs of not delivering

the products to customers on time, each project has different priority levels for the

company, which requires allocation of raw materials and resources among projects.

As these penalty costs are much higher in defense sector compared to other sectors,

decision makers of each project tend to carry more inventory separately. On the other

hand, because of the uncertainties above, there are also cases that while a project has

excess supply of a material, another project of the same company may have to suspend

production due to the lack of this material. As a result, project-based management

creates inefficiencies in inventory management.

In this thesis, we study the quantification of the inefficiencies generated due to the

simultaneous existence of excess supply and excess demand in project-based compa-

nies. If a centralized decision maker could make inventory and production decisions

for all projects, these inefficiencies could be eliminated. On the other hand, due to

the motivations mentioned above, this solution is not applicable for the project-based

companies. Therefore, we investigate the effects of allowing transshipments among

parties on inventory costs.

Our problem involves ordering behavior of two separate decision makers, agents, to

meet their material demand over two-period horizon, where both agents are required

to determine their order quantities at the beginning of the planning horizon. Demand

of both agents has randomness in quantity. Both agents have perfect information on

all parameters. The agents are asymmetric in the sense that the period of demand

realization is certain for agent 2 whereas it has a probabilistic nature for agent 1.

We investigate the benefits of allowing transshipments among parties. When one of

2



the agents has excess demand whereas the other has excess supply, transshipments

of materials between agents, which will be referred as transfers in the remainder of

the thesis, are allowed at a unit transfer price. Given transfer opportunity, decisions

of both agents affect each other. Hence, with both parties aiming to maximize their

profits, we consider this problem using game theoretical concepts and show that there

exists a unique non-zero equilibrium for this problem.

In order to quantify these inefficiencies generated due to the project-based manage-

ment, we investigate decentralized setting, where each agent makes procurement de-

cisions independently, and centralized setting, where a single decision maker makes

procurement decisions for the same problem environment. We observe that as the

level of coordination among the decision makers increases, total profits increase. In

other words, total profits achieved when transfers are allowed are higher than that

in decentralized setting whereas they are lower than that in centralized setting. We

conduct numerical analysis in order to investigate how the equilibrium is affected by

the problem parameters. Numerical analysis also shows that the benefits of transfers

depend on the transfer prices. We observe that selection of the best transfer price per

unit gains importance as the procurement cost per unit increases. We also show that

when the period in which demand will be realized is probabilistic, there may not be a

transfer price that will enable the centralized optimal solution.

In the remainder of the thesis, we continue with the review of the literature in Chapter

2. We introduce a detailed problem definition and investigate ordering behaviors of

benchmark settings in Chapter 3. Chapter 4 involves a detailed analysis of ordering

decisions when transfers are allowed. We provide numerical studies in Chapter 5 and

conclude with our findings and future research suggestions in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

There are many studies in literature on the use of game theory concepts in supply

chain management. Cachon and Netessine [4] provide a review of the existing litera-

ture based on a classification of game theoretical concepts. Leng and Parlar [8] also

present a review based on a classification of supply chain management topics.

According to Cachon and Netessine [4], use of cooperative game theory to investigate

supply chain topics is becoming more popular with the increasing attention paid to

bargaining and negotiations. Özen et al. [11] provide a review of studies specifically

on inventory cooperation using newsboy models where the solution is established us-

ing the concept of the core. The concept of a non-empty core is crucial for cooperative

games since it ensures the existence of allocations for which no sub coalitions can be

formed. Hartman et al. [6] made an important contribution to the literature with the

study on inventory centralization of n retailers selling an identical good over a single-

period horizon and provide conditions for a non-empty core. Müller et al. [12] and

Slikker et al. [18] independently show that in the problem setting defined by Hartman

et al. [6], if players are allowed to make transshipments after demand realization, the

core is always non-empty.

As an extension to these studies, Özen et al. [15] consider a supply chain of n re-

tailers and m warehouses. They consider a two-stage problem. At the first stage,

retailers determine their order quantities, and these quantities become available at

warehouses. The second stage starts with the realization of demand for all retailers.

Retailers determine the quantity to be transferred from the warehouses at this stage.

Özen et al. [15] investigate the joint profits of cooperative game and show that this

game has a non-empty core. As a further extension, Özen et al. [16] introduce a gen-
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eral framework of newsvendor problems with warehouses. Using a similar two-stage

stochastic programming approach, they prove that every general newsvendor game

with warehouses has a non-empty core. Wang and Parlar [19] investigate the impact

of coordination among three players. They use the concept of core for cooperation

model and present the conditions for non-empty core. Moreover, they prove the exis-

tence of Nash equilibrium under cooperation.

In their review, Leng and Parlar [8] state that non-cooperative game models are more

common in literature compared to cooperative ones. They highlight the common

use of Nash and Stackelberg equilibria as solution models in non-cooperative games.

Lippman and McCardle [9] illustrate the existence of equilibrium in a single-period

inventory problem of two-players and n-players under substitution. They consider

total industry demand as a random variable and assume that the allocation of demand

to the players is based on a pre-determined splitting rule. They show that total in-

ventory level of the players always increases in the case of perfect substitution, and

investigate the relation between the inventory levels at equilibrium and the splitting

rule. Parlar [17] investigates a single-period inventory problem of two substitutable

products. Different than Lippman and McCardle, he considers that the products have

independent random demands. He shows the existence of a unique Nash equilibrium

in this non-cooperative game and provides upper and lower bounds for the solution.

Parlar [17] also investigates the problem where the players act irrationally to damage

the other one, called as the maximin problem, and shows that it’s solution is equiva-

lent to that of a classical newsvendor problem.

As an extension to Parlar [17], a single-period game of three competing players with

independent random demands is investigated by Wang and Parlar [19]. They prove

the existence of Nash equilibrium when players make independent ordering deci-

sions. Similar to Lippman and McCardle [9], in this case they also observe that the

optimal order quantity of players is larger than that under the newsboy model since

the players have motivation of sales through substitution. The work of Parlar [17]

is also extended to n products by Netessine and Rudi [13]. They study a problem

setting under consumer-driven substitution where unsatisfied demand for one product

can be satisfied by another product in deterministic proportions. They also investigate

centralized inventory management and the effect of demand correlation on profits for
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this problem setting. Extending the work in [17], Avşar and Baykal-Gürsoy [2] focus

on a substitutable product inventory problem of two players over an infinite hori-

zon with lost sales, where each player aims to minimize discounted costs over the

planning horizon. They prove the existence and uniqueness Nash equilibrium within

the class of stationary base stock strategies. Similar to Parlar [17], Kapur et al. [7]

investigate the existence of Nash equilibrium in a two-retailer, single-period game,

where transshipments among retailers are allowed at a transshipment price. The main

difference is that Parlar [17] studies the case where customer demand is transferred

between retailers whereas Kapur et al. [7] study the case where available units are

transferred between retailers. Kapur et al. [7] also argue that the joint profits depend

on the transshipment price, and prove the existence of a set of transshipment prices

which achieves the joint optimal solution.

There are also studies on non-cooperative game models in multi-echelon supply chain

settings. Cachon [3] investigates a single-item problem of a supplier and a retailer

over infinite planning horizon where each party uses a base stock policy. Given

stochastic interarrival times of customers to retailers, he uses continuous Markov

chain concepts and prove the existence of equilibrium for the optimal base stock

levels in this supply chain. Cachon [3] also shows that the joint profits obtained with

Nash equilibrium is always less than the optimal profits and investigates possible

contracts that may result in supply chain optimal base stock levels. Güllü et al. [5]

consider a decentralized supply chain of one supplier and two retailers. Each retailer

faces random demand and follows a periodic review system. In their study, at the end

of supplier lead time, the retailers have the opportunity to revisit their order quantity,

which are determined at the beginning of supplier lead time, without changing total

quantity ordered from supplier. The costs of these transfers are assumed to be negligi-

ble. The opportunity of transfer would be beneficial for both parties as demand during

supplier lead time is random. They show the existence of a unique Nash equilibrium

for optimal-order up-to levels of retailers.

Mahajan and Ryzin [10] examine a non-cooperative game with a two-echelon supply

chain of a monopolist retailer and n horizontally competing suppliers. They show

that a mixed coordination of Retailer Managed Invetory (RMI) and Vendor Man-

aged Inventory (VMI) can improve total system profits. In their study, Netessine and
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Shumsky [14] establish the existence of a unique Nash equilibrium for the seat inven-

tory control problem in airline sector under both horizontal and vertical competition,

and utilize revenue sharing contracts as a mean of coordination. Anupindi et al. [1]

investigate the case of n retailers and m warehouses over single-period horizon using

a mix of competitive and cooperative framework. In their study, n retailers decide

on the quantity that will arrive to the retailer and be stocked at the warehouse on the

behalf of the retailer. After demand realization, retailers decide on the allocation of

local residual stocks and pooled warehouse stocks to satisfy excess demand of all par-

ties. Anupindi et al. [1] construct a mathematical model and establish the conditions

for the existence of a Nash equilibrium.

Our study can be considered as an extension to Parlar [17] and Kapur et al. [7]. We

study a non-cooperative game of two agents having random demands over a two-

period horizon, where both agents aim to maximize their expected profits. We assume

that both agents determine their order quantities for both periods at the beginning of

the period. When one of the agents has excess supply whereas the other has excess

demand, transfers of materials between the parties are allowed at a transfer price of t

in the second period. These transfers construct the base for the use of non-cooperative

game theory. Different than the existing literature, there is a difference between the

levels of uncertainty faced by the agents in our study: While agent 2 knows that

the demand will be realized at the second period, agent 1 knows the probability that

demand is realized at the second period. The existence of holding and penalty costs

charged at the end of the first period also makes our study different from the existing

literature.
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CHAPTER 3

PROBLEM DEFINITION AND BENCHMARK SETTING

We investigate a two-period inventory problem of two decision makers, called as

agent 1 and agent 2. In our study, we represent two different types of projects in the

defense industry industries with two different agents. Although the production time

is certain in contract-based mass production projects, the amount of material to be

transferred to the production line is uncertain. On the other hand, in design projects

which are carried out for development purposes, both the production time and the

amount of material to be transferred to production have uncertainty. With this moti-

vation, we are working on a stylized profit maximization problem of 2-agents. In the

problem, agent 1 represents design projects and agent 2 represents mass production

projects.

In order to meet their random demand, both agents are required to determine their or-

der quantities at the beginning of the planning horizon before any demand uncertainty

resolves. While demand faced by agent 2 is ensured to be realized in the second pe-

riod, demand faced by agent 1 has a probability of occurrence at each period. Hence,

agent 2 places an order only for the second period whereas agent 1 can place an order

for both periods. Both agents have information on all demand parameters and mod-

els. Our aim is to analyze the benefit of allowing transfers between two agents in the

second period if one agent has excess demand and the other has excess supply.

We provide the parameters and decision variables in the following table. Below, we

describe the structure of costs and revenues (see Table 3.1).

• Quantity remaining on hand at the end of the first period is charged by a holding

cost per unit, h.
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Table 3.1: Parameters and Decision Variables

X Demand of agent 1

Y Demand of agent 2

Z Sum of demands X and Y

f(x) Probability density function of X

g(y) Probability density function of Y

v(z) Probability density function of Z

k Probability that X is realized in the first period

r Sales price per unit

c Purchase cost per unit

h Holding cost per unit per period

w Backorder cost per unit for the first period

l Lost sales cost per unit for the second period

s Salvage value per unit

t Transfer price per unit

qd
1i Quantity ordered by agent 1 to arrive in period i in the decentralized setting

Qd
1 Total quantity ordered by agent 1 in the decentralized setting

qd
2 Quantity ordered by agent 2 to arrive in period 2 in the decentralized setting

qc
i Quantity ordered to arrive in period i in the centralized setting

Qc Total quantity ordered in the centralized setting

q1i Quantity ordered by agent 1 to arrive in period i in the 2-agent setting

q2 Quantity ordered by agent 2 to arrive in period 2 in the 2-agent setting

Q1 Total quantity ordered by agent 1 in the 2-agent setting

• If demand realizes in the first period and quantity on hand is not enough to

fulfill it, a backorder cost is charged per unit, w, for the amount of underage.

Excess demand at the end of the first period will be met in the second period if

possible.

• Quantity remaining on hand at the end of the second period is salvaged at a

salvage value per unit, s.

• Demand not fulfilled at the end of the second period is charged by a lost sales
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cost per unit, l.

• If transfers are allowed, excess inventory at the end of the second period will

be transferred between players at a transfer price per unit, t.

• All costs and revenue parameters are exogenous.

In this chapter, we introduce decentralized and centralized settings as building blocks.

In the decentralized setting, we analyze the problem of agent 1, who faces demand

X (see Table (3.1) for notation). We also show that the problem of agent 2, who

faces demand Y , is a special case of the problem of agent 1 in the form of a classical

newsboy problem. In the centralized setting, we consider a central agent facing both

X and Y .

We assume r + l > c, t > s and c > s without loss of generality as the system would

not operate otherwise.

3.1 Decentralized Setting

In this problem setting, two agents place orders for the coming two periods at the be-

ginning of the first period without interaction. We start with introducing the sequence

of events for agent 1:

1. The agent determines order quantities for period 1 and period 2 at the beginning

of the first period.

2. Order placed for the first period, qd11, arrives at the beginning of the first period.

3. If demand realizes in the first period, then quantity available on hand is used to

fulfill the demand. If quantity on hand is not enough to fulfill demand in the

first period, excess demand will be met in the second period if possible.

Quantity remaining on hand at the end of the first period will be carried over to

the second period.

4. End of period 1 costs are incurred.
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5. Order placed for the second period, qd12, arrives at the beginning of the second

period.

6. If demand realizes in the first period and excess demand is carried to the second

period, then quantity available on hand is used to fulfill this demand. If it

realizes in the second period, then total quantity ordered is used to fulfill the

demand.

Quantity remaining on hand is salvaged, and excess demand becomes lost sales

at the end of second period.

7. End of period 2 costs and revenues are computed.

Note that events 2, 3, 4 and 5 do not take place for agent 2 since she faces demand Y

which occurs in the second period.

We proceed with the profit function of agent 1. Let x represent the demand realization.

If it occurs in the first period, the profit function of agent 1, denoted as π′, is given as

follows:

π′ = r ·min
{
x,Qd

1

}
+ s

[
Qd

1 −min
{
x,Qd

1

}]
− l
[
x−min

{
x,Qd

1

}]
− cQd

1

− h
[
qd11 −min{x, qd11}

]
− w

[
x−min{x, qd11}

] (3.1)

where Qd
1 = qd11 + qd12.

In (3.1), the first two terms are revenues from sales and salvaging. The remaining

terms are lost sales, procurement, holding and backorder costs.

If demand occurs in the second period, the profit function of agent 1, denoted as π′′,

is written as follows:

π′′ = r ·min
{
x,Qd

1

}
+ s

[
Qd

1 −min
{
x,Qd

1

}]
− l
[
x−min

{
x,Qd

1

}]
− cQd

1 − hqd11

(3.2)

Comparing π′ and π′′, we observe that both expressions have the same revenues of

sales and salvage, and the same costs of lost sales and procurement. The difference

between them is due to the holding and backorder costs incurred in the first period.

Hence sales, salvage revenues, lost sales costs and procurement cost do not depend

on which period demand X is realized whereas holding and backorder costs depend
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on this realization. As a result, expected profit function of agent 1, denoted as E[πd1 ],

can be constructed as follows:

E[πd1 ] = kE[π′] + (1− k)E[π′′]

= r

[∫ Qd
1

0

xf(x)dx+

∫ ∞
Qd

1

Qd
1f(x)dx

]
+ s

∫ Qd
1

0

(Qd
1 − x)f(x)dx

− l
∫ ∞
Qd

1

(x−Qd
1)f(x)dx− c(Qd

1)− (1− k)hqd11

− k

[
h

(∫ qd11

0

(qd11 − x)f(x)dx

)
+ w

(∫ ∞
qd11

(x− qd11)f(x)dx

)]
(3.3)

We will find the optimal order quantities given this expected profit function. We first

investigate concavity of E[πd1 ].

Lemma 3.1.1. E[πd1 ] is jointly concave in qd11 and qd12.

Proof. All the proof are in the Appendices. �

Proposition 3.1.1. Optimal order quantities for the expected profit function (3.3) are

determined according to the following framework.

(qd11
∗
, qd12

∗
) =


(0, F−1(ρ1)) if ρ2 ≤ 0

(F−1(ρ2), F−1(ρ1)− F−1(ρ2)) if ρ1 ≥ ρ2 > 0

(F−1(ρ3), 0) if ρ2 > ρ1 > 0

where ρ1 =
(
r+l−c
r+l−s

)
, ρ2 =

(
kw−h(1−k)
k(h+w)

)
and ρ3 =

(
r+l−c+kw−h(1−k)
r+l−s+k(h+w)

)
.

An initial observation from Proposition 3.1.1 is about the ratios which affect the op-

timal order decision of agent 1. We showed that the holding and backorder costs

depend on the period X is realized whereas sales revenues, procurement costs, sal-

vage revenues and lost sales costs are independent of that. Using sales revenues,

procurement costs, salvage revenues and lost sales costs, we can interpret underage

costs as cu = r + l − c and overage costs as co = c − s, yielding the critical fractile

of ρ1 = r+l−c
r+l−s .

Moreover, given Qd
1, increasing qd11 by one unit would increase the expected overage

costs from the first period by h (kF (x) + (1− k)) = hkF (x) + h(1 − k) and de-

crease the expected underage costs from the first period by w (k (1− F (x))) = kw−
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kwF (x). As the expected overage and underage costs of an additional unit would be

equal for the optimal order quantity, we obtain that hkF (x)+h(1−k) = kw−kwF (x)

yielding the ratio of F (x) = kw−h(1−k)
k(h+w)

= ρ2. We also observe that whether to place

an order for the first period depends on the value of ρ2: An order is placed for the first

period if ρ2 > 0, i.e., kw > h(1− k).

Note that kw can be interpreted as the cost of understocking in period 1 whereas

h(1 − k) can be considered as the cost of overstocking. Hence, we can argue that

an order is placed for the first period if cost of understocking is larger than cost of

overstocking. Obviously, a higher value of backorder cost and a higher probability

that X occurs in the first period favor an order for the first period whereas a higher

holding cost creates an incentive not to order.

If it is not profitable to order for the first period, i.e., kw < h(1 − k), holding and

backorder costs do not affect total quantity ordered. That is, it is optimal to order only

for the second period as holding and backorder costs are irrelevant. In such a case,

the optimal solution is characterized by the critical fractile solution of a newsvendor

facing demand X .

When it gets profitable to order for the first period, i.e., as ρ2 increases beyond 0,

holding and backorder costs affect quantity ordered by agent 1. If h + w is high and

procurement cost, c, is close to salvage value, s, under this condition, i.e., ρ1 ≥ ρ2,

it is interesting to note that the total order quantity, Qd
1, is determined by ρ1, which is

independent of holding and backorder costs. However, backorder and holding costs

are not irrelevant since they determine the allocation of total order quantity among

two periods. On the other hand, if h + w becomes lower and/or procurement cost,

c, becomes higher relative to salvage value, s, i.e., ρ2 ≥ ρ1, the optimal solution

suggests to place a single order for the first period.

As a result, if an order is placed for the second period, i.e., qd12
∗
> 0, backorder

and holding costs do not have an impact on total quantity ordered, which is equal to

F−1(ρ1).

Finally, we observe that agent 2’s problem is a specific version of agent 1’s problem.

When k = 0 and X = Y , the optimal order quantity of agent 1 is characterized by
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the critical fractile solution of a newsvendor. Moreover, when k = 0 and/or w = 0,

agent 1 does not order for the first period to avoid overage costs. This problem also

can be considered as a newsvendor problem. Note that given X = Y , when k = 0

and/or w = 0, the problem of two agents become exactly the same, and we observe

that the expected profits of both agents are equal in the decentralized setting.

3.2 Centralized Setting

In this section, we consider the problem of a central decision maker who faces de-

mands X and Y and gives orders at the beginning of the planning horizon to arrive at

the beginning of both periods. The sequence of events for this case is as follows:

• The centralized agent places orders for the two periods.

• Order placed for period 1, qc1, arrives at the beginning of the first period.

• If X is realized in the first period, then quantity available on hand is used to

fulfill the demand.

• End of period 1 costs and revenues are incurred.

• Order placed for period 2, qc2, arrives at the beginning of the second period.

• Y realizes. If X is realized in the first period and excess demand is carried to

the second period, then quantity available on hand is used to fulfill demand Y

and excess demand of X . If no excess demand of X remains from period 1,

quantity available is used to fulfill demand Y . If X is realized in the second

period, then total quantity ordered is used to fulfill both demands. Quantity

remaining on hand at the end of the second period is salvaged, and quantity not

fulfilled is charged by lost sales cost.

• End of period 2 costs and revenues are incurred.

The decision variables and parameters presented in Table (3.1) are used to express the

profit function of the centralized agent. Recall that Qc = qc1 + qc2.
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If X is realized in the first period, the profit function, πc′ is as follows:

πc′ =r ·min
{
x+ y,Qc

}
− l
[
x+ y −min

{
x+ y,Qc

}]
− cQc

+ s
[
Qc −min

{
x+ y,Qc

}]
− h
[
qc1 −min{x, qc1}

]
− w

[
x−min{x, qc1}

]
(3.4)

In (3.4), the first two terms are revenues from sales and salvaging. The remaining

terms are lost sales, procurement, holding and backorder costs.

The profit function when X occurs in the second period, denoted as πc′′, is written as

follows:

πc′′ =r ·min
{
x+ y,Qc

}
− l
[
x+ y −min

{
x+ y,Qc

}]
− cQc

+ s
[
Qc −min

{
x+ y,Qc

}]
− hqc1

(3.5)

Comparing πc′ and πc′′, sales revenues, salvage revenues, lost sales costs and pro-

curement costs are the same in both expressions since these are independent of the

period X is realized as in the decentralized case. The costs incurred at the end of

period 1 differ between the two expressions since the period X is realized affects end

of period 1 costs.

Using the realizations πc′ and πc′′, and the notation of convolution demand Z, the

expected profit function is written as follows:

E[πc] = kE[πc′] + (1− k)E[πc′′]

= r

[∫ Qc

0

zv(z)dz +

∫ ∞
Qc

Qcv(z)dz

]
+ s

∫ Qc

0

(Qc − z)v(z)dz

− l
∫ ∞
Qc

(Qc − z)v(z)dz − cQc + (1− k)hqc1

− k

[
h

∫ qc1

0

(qc1 − x)f(x)dx+ w

∫ ∞
qc1

(x− qc1)f(x)dx

]
(3.6)

Lemma 3.2.1. E[πc] is jointly concave in qc1 and qc2.

Definition 3.2.1. Let qc1
′ denote the order quantity for period 1 which satisfy

0 = −(r + l − s)V (Qc) + r + l − c− (k(h+ w))F (qc1) + kw − h(1− k) (3.7)

for qc2 = 0.
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Proposition 3.2.1. The optimal order quantities of a central player is given by:

(qc1
∗, qc2

∗) =


(0, V −1(ρ1)) if ρ2 ≤ 0

(F−1(ρ2), V −1(ρ1)− F−1(ρ2)) if ρ1 ≥ ρ2 > 0

(qc1
′, 0) if ρ2 > ρ1 > 0

Recall that ρ1 =
(
r+l−c
r+l−s

)
and ρ2 =

(
kw−h(1−k)
k(h+w)

)
.

Considering Proposition 3.1.1 and Proposition 3.2.1, it should be remarked that the

expressions defining the structure of the optimal solution are similar for the decen-

tralized and centralized settings. We observe that cost of not fulfilling demand in

the first period is the motivation of decision maker to order for the first period. This

motivation defines the same critical fractile, ρ2, in both settings.

On the other hand, there are differences in optimal order quantities between the two

settings. Table (3.2) below provides a summary of these quantities.

kw < h(1− k)

(ρ1 > 0 > ρ2)

kw ≥ h(1− k)

ρ1 ≥ ρ2 ρ1 < ρ2

Qd
1
∗

= F−1(ρ1)

Qc∗ = V −1(ρ1)

Qd
1
∗ ≤ Qc∗

Qd
1
∗

= F−1(ρ1)

Qc∗ = V −1(ρ1)

Qd
1
∗ ≤ Qc∗

Qd
1
∗

= F−1(ρ3)

Qc∗ = qc1
′

Qd
1
∗ ≤ Qc∗

0 = qd11
∗

= qc1
∗ 0 ≤ qd11

∗
= qc1

∗ 0 < qd11
∗ ≤ qc1

∗

0 < qd12
∗ ≤ qc2

∗ 0 < qd12
∗ ≤ qc2

∗ 0 = qd12
∗

= qc2
∗

Table 3.2: Comparison of the optimal ordering decisions in the decentralized and

centralized settings

Recall that agent 1 in the decentralized setting faces X , whereas the central agent

faces X + Y . Thus, the central agent orders at least as many as agent 1 in total.

If an order is placed for the second period, i.e., ρ1 ≥ ρ2, the first period order quan-

tities are the same for both settings because the motivation behind placing an order

is the expected cost of not fulfilling demand in the first period, which remains the

same for both settings. Due to the reasoning above, the second period order quantity
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of the central agent is at least as much as that of agent 1 in the decentralized setting.

In addition, if ρ1 ≥ ρ2 > 0 the first period order quantity is equal to F−1(ρ2) in

both settings. In fact, we show in the proofs of Propositions 3.1.1 and 3.2.1 that the

maximum quantity that can be attained for the first period is also equal to F−1(ρ2).

On the other hand, if an order is placed only for the first period, i.e., ρ2 > ρ1, the

central agent orders at least as many as agent 1 for the first period.
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CHAPTER 4

DECENTRALIZED AGENTS IN THE PRESENCE OF TRANSFER

OPPORTUNITY

In this chapter, we consider two rational agents acting independently to maximize

their individual profits. In the beginning of the planning horizon, agent 1 faces with

demand X and is expected to place an order for both periods denoted as q11 and q12

while agent 2 faces with demand Y and places an order to arrive at period 2, denoted

as q2. The sequence of events for the two-agent setting is summarized below:

• Agents make their ordering decisions independently at the beginning of period

1.

• Order placed by agent 1 for the first period, q11, arrive at the beginning of the

first period.

• If demand for agent 1, X , realizes in the first period, agent 1 uses quantity

available on hand to fulfill the demand.

• End of period 1 costs and revenues are incurred for agent 1.

• Orders placed for the second period by both agents, q12 and q2, arrive at the

beginning of the second period.

• If X is realized in the first period and excess demand is carried to the second

period, agent 1 uses its order arrived in the second period to fulfill this excess

demand. If X is realized in the second period, then agent 1 uses total quantity

ordered to fulfill the demand.

• At the same time, demand for agent 2, Y , realizes. Agent 2 uses quantity on

hand to meet the demand.
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• Transfers between agents are possible if one of them has excess demand while

the other has excess supply. Transfer quantity is determined as the minimum

of excess demand and excess supply. The agent who has excess demand pays a

transfer price of t per unit to the agent with excess supply and satisfy its demand

if possible.

• Quantity remaining on hand at the end of the second period is salvaged at s,

and demand not fulfilled is charged by lost sales cost for both agents.

• End of period 2 costs and revenues are accounted.

Transfer payments and transfer earnings create the difference of this setting from the

decentralized and centralized settings. The amount of transfers between agents affects

the sales, excess supply and excess demand of both agents.

Let x be a realization for X and y be a realization for Y . The following four events

may take place at the end of the second period:

1. If Q1 ≤ x and q2 ≤ y, no transfers will take place and both agents sell the units

available individually. Recall Q1 = q11 + q12 (see Table (3.1) for notation).

2. If Q1 ≤ x and q2 > y, transfers from agent 2 to agent 1 will take place. The

transfer quantity will be equal to either excess demand of agent 1 or excess

supply of agent 2.

3. If Q1 > x and q2 ≥ y, no transfers will take place and both agents will sell the

units available individually.

4. If Q1 > x and q2 < y, transfers from agent 1 to agent 2 will take place. The

transfer quantity will be equal to either excess demand of agent 2 or excess

supply of agent 1.

Figure (4.1) provides an illustration for possible transfer quantities between agents.

Moreover, the amount of sales, transfers, excess demand and excess supply to be re-

alized by the end of the second period under these four scenarios can be seen in Table

(4.1) separately for both agents. In this table, Tij denotes the quantity transferred from
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Figure 4.1: Transfer quantities between agents

Q1 ≥ x Q1 < x

q2 ≥ y q2 < y q2 ≥ y q2 < y

T12 0 min{y − q2, Q1 − x} 0 0

T21 0 0 min{q2 − y, x−Q1} 0

S1 Q1 x Q1 + T21 Q1

S2 y q2 + T12 y q2

O1 Q1 − x Q1 − x− T12 0 0

O2 q2 − y 0 q2 − y − T21 0

U1 0 0 x−Q1 − T21 x−Q1

U2 0 y − q2 + T12 0 y − q2

Table 4.1: Transfer, sales, overstock and understock quantities of both agents for

possible demand realizations
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agent i to agent j whereas Si, Oi and Ui denote the sales, overstock and understock

quantities of agent i, respectively.

We continue with analyzing the expected profit function of agent 1. Using the quanti-

ties provided in Table (4.1), when X is realized in the first period, the profit function

of agent 1, π′1, can be written as follows:

π′1 =r ·min {x,Q1 +max{0, q2 − y}}+ s ·max {0, (Q1 − x−max{0, y − q2})}

− l ·max {0, (x−Q1 −max{0, q2 − y})} − cQ1

− t ·max {0,min {q2 − y, x−Q1}}+ t ·max {0,min {y − q2, Q1 − x}}

− h
[
q11 −min{x, q11}

]
− w

[
x−min{X, q11}

]
(4.1)

Given that X is realized in the second period, the profit function of agent 1, π′′1 , is as

follows:

π′′1 =r ·min {x,Q1 +max{0, q2 − y}}+ s ·max {0, (Q1 − x−max{0, y − q2})}

− l ·max {0, (x−Q1 −max{0, q2 − y})} − cQ1

− t ·max {0,min {q2 − y, x−Q1}}+ t ·max {0,min {y − q2, Q1 − x}}

− hq11

(4.2)

We know from the decentralized and centralized settings that the sales revenues, pro-

curement costs, salvage revenues and lost sales costs are independent of the period X

is realized, whereas backorder and holding costs depend on the period of realization.

Comparing (4.1) and (4.2), we observe that the period at which X occurs does not

affect these revenues and costs in this setting either. In addition, transfer quantities

are also independent of the period X is realized.

Given π′1 and π′′1 , the expected profit function of agent 1, E[π1], can be derived as

follows:

E[π1] = kE[π′1] + (1− k)E[π′′1 ]
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E[π1] = r

[∫ Q1

0

xf(x)dx+

∫ q2

0

∫ ∞
Q1+q2−y

(Q1 + q2 − y)f(x)g(y)dxdy

+

∫ Q1+q2

Q1

∫ Q1+q2−x

0

xf(x)g(y)dydx+

∫ ∞
Q1

∫ ∞
q2

Q1f(x)g(y)dydx

]

+ s

[∫ Q1

0

∫ q2

0

(Q1 − x)f(x)g(y)dydx

+

∫ Q1

0

∫ Q1+q2−x

q2

(Q1 + q2 − x− y)f(x)g(y)dydx

]

− l

[∫ ∞
Q1

∫ ∞
q2

(x−Q1)f(x)g(y)dydx

+

∫ q2

0

∫ ∞
Q1+q2−y

(x+ y −Q1 − q2)f(x)g(y)dxdy

]

+ t

[∫ Q1

0

∫ Q1+q2−x

q2

(y − q2)f(x)g(y)dydx

+

∫ Q1

0

∫ ∞
Q1+q2−x

(Q1 − x)f(x)g(y)dydx

]

− t

[∫ Q1+q2

Q1

∫ q2

Q1+q2−x
(q2 − y)f(x)g(y)dydx

+

∫ q2

0

∫ ∞
Q1+q2−y

(q2 − y)f(x)g(y)dxdy

]
− cQ1

− k

[
h

∫ q11

0

(q11 − x)f(x)dx+ w

∫ ∞
q11

(x− q11)f(x)dx

]
− (1− k)hq11

(4.3)

We continue with analyzing the expected profit function of agent 2.

Using Table (4.1), the profit function of agent 2 for a given realization of X and Y ,

denoted as π2, can be constructed as follows:

π2 =r ·min {y, q2 +max{0, Q1 − x}}+ s ·max {0, (q2 − y −max{0, x−Q1})}

− l ·max {0, (y − q2 −max{0, Q1 − x})} − cq2

− t ·max {0,min {y − q2, Q1 − x}}+ t ·max {0,min {q2 − y, x−Q1}}

Recall from the discussions about agent 1 that only holding and backorder costs de-

pend on the period X is realized. As a result, we observe that the profit function of
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agent 2 is independent of the probability that X is realized in period 1, k.

Given π2, we derive the expected profit function of agent 2, E[π2], as follows:

E[π2] =r

[∫ q2

0

yg(y)dy +

∫ Q1

0

∫ Q1+q2−x

q2

yf(x)g(y)dydx

+

∫ Q1

0

∫ ∞
Q1+q2−x

(Q1 + q2 − x)f(x)g(y)dydx+

∫ ∞
Q1

∫ ∞
q2

q2f(x)g(y)dydx

]

+ s

[∫ Q1

0

∫ q2

0

(q2 − y)f(x)g(y)dydx

+

∫ Q1+q2

Q1

∫ Q1+q2−x

0

(Q1 + q2 − x− y)f(x)g(y)dydx

]

− l

[∫ Q1

0

∫ ∞
Q1+q2−x

(x+ y −Q1 − q2)f(x)g(y)dydx

+

∫ ∞
Q1

∫ ∞
q2

(y − q2)f(x)g(y)dydx

]

+ t

[∫ q2

0

∫ ∞
Q1+q2−y

(q2 − y)f(x)g(y)dxdy

+

∫ Q1+q2

Q1

∫ Q1+q2−x

0

(x−Q1)f(x)g(y)dydx

]

− t

[∫ Q1

0

∫ Q1+q2−x

q2

(y − q2)f(x)g(y)dydx

+

∫ Q1

0

∫ ∞
Q1+q2−x

(Q1 − x)f(x)g(y)dydx

]
− cq2

(4.4)

Since the agents determine their order quantities simultaneously at the beginning of

the planning horizon, this inventory problem with transfers can be considered as a

simultaneous move non-zero sum game. We proceed with analyzing the best response

functions (BRF) of both parties to find the outcome of the corresponding game.

4.1 Best Response Function of Agent 1

We investigate the BRF of agent 1 in this section. For this purpose, we first argue

that the expected profit function of agent 1 is concave. We introduce definitions of
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functions which characterize the BRF. We establish the BRF and provide our related

findings.

Lemma 4.1.1. E[π1] is jointly concave in q11 and q12.

We make the following definitions and observations in order to establish the optimal

solution to the first agent’s problem.

Definition 4.1.1. Let qF11(q2) denote q11 value that satisfies ∂E[(π1)]
∂q11

= 0 for a given q2

when q12 = 0 (see (B.1) in Appendix).

Lemma 4.1.2. qF11(q2) is continuous and monotonically decreasing in q2.

Definition 4.1.2. Let qF12(q2) denote q12 value that satisfies ∂E[(π1)]
∂q12

= 0 for a given q2

when q11 = 0 (see (B.2) in Appendix).

Lemma 4.1.3. qF12(q2) is continuous and monotonically decreasing in q2.

Definition 4.1.3. Let qT12(q2) denote q12 value that satisfies ∂E[(π1)]
∂q12

= 0 for a given q2

when q11 = F−1(ρ2) (see (B.2) in Appendix).

Lemma 4.1.4. qT12(q2) is continuous and monotonically decreasing in q2.

In decentralized setting with transfer opportunity, we introduce ρn1 = r+l−c
r+l−t and ρn3 =

r+l−c+hk−h+kw
r+l−t . Recall that ρ1 and ρ3 in the decentralized and centralized settings

depend on the salvage value, whereas ρn1 and ρn3 depend on the transfer price, t. Since

agents transfer goods before salvaging if possible, here, c− t can be interpreted as the

overage cost while underage costs remain the same, resulting in these changes in the

ratios. Recall that ρ2 = kw−h(1−k)
k(h+w)

.

Lemma 4.1.5. Given ρ2 > 0, q11 = F−1(ρ2) and q12 = 0, there exists a unique

q2, denoted as q′2, which satisfies ∂E[(π1)]
∂q11

= 0 and ∂E[(π1)]
∂q12

= 0 iff the condition
t−c
t−s ≤ ρ2 ≤ ρn1 holds.

Definition 4.1.4. Let qT2 denote the order quantity of agent 2, q2, defined as

qT2 =


−∞ if ρ2 > ρn1 and ρ2 >

t−c
t−s

q′2 if t−c
t−s ≤ ρ2 ≤ ρn1

∞ if ρ2 < ρn1 and ρ2 <
t−c
t−s
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Proposition 4.1.1. The best response function of agent 1 is characterized as follows:

i. If ρ2 < 0

a. If t > c

(q∗11, q
∗
12) =

(
0, qF12(q2)

)
b. If t < c

(q∗11, q
∗
12) =

(0, 0) if q2 ≥ V −1(ρn1 )(
0, qF12(q2)

)
if q2 < V −1(ρn1 )

ii. If ρ2 > 0

c. If kw + t > h(1− k) + c

(q∗11, q
∗
12) =


(
qF11(q2), 0

)
if q2 ≥ qT2(

F−1(ρ2), qT12(q2)
)

if q2 < qT2

d. If kw + t < h(1− k) + c

(q∗11, q
∗
12) =


(0, 0) if q2 > V −1(ρn3 )(
qF11(q2), 0

)
if V −1(ρn3 ) ≥ q2 ≥ qT2(

F−1(ρ2), qT12(q2)
)

if q2 < qT2

Investigating the BRF for agent 1 in Proposition 4.1.1, we observe that it has similar-

ities with the optimal ordering decisions in the decentralized and centralized settings.

Below, we elaborate on these similarities.

As in the centralized setting and the decentralized setting with no transfers, agent 1

does not order when holding cost is relatively larger than the backorder costs for the

first period, regardless of the second agent’s order. However, the opposite is no longer

true. That is, when kw > h(1 − k), agent 1 might still not order for the first period

depending on q2 and t.

We should emphasize that agent 1 of this setting considers possible benefits of trans-

fers: For agent 1, kw+t can be interpreted as the cost of fulfilling demand from agent

2 in the second period whereas h(1−k) + c can be interpreted as the cost of fulfilling

by ordering in first period. If kw+ t < h(1− k) + c and if agent 2 orders beyond the

threshold of V −1(ρn3 ), agent 1 is better off with not placing any orders despite the fact
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that kw > h(1 − k). We can explain the reasoning as follows: Although it is more

costly not to order for the first period without the second agent, i.e., kw > h(1− k),

it may be less costly not to order given the supply opportunity from agent 2. Agent

1 can use this opportunity if agent 2 carries enough inventory for both agents, i.e

q2 ≥ V −1(ρn3 ). On the other hand, she definitely places an order for period 1 if any of

the conditions kw+ t < h(1− k) + c and q2 > V −1(ρ3) does not hold. That is, given

kw > h(1− k), if it is not beneficial to backorder and satisfy demand with transfers,

i.e., kw + t > h(1 − k) + c, or agent 2 does not have enough units for both agents,

q2 < V −1(ρn3 ), agent 1 certainly places an order for the first period.

Similar to the previous settings, it was presented in the proof of Proposition 4.1.1 that

the maximum quantity that can be ordered by agent 1 for period 1 is also equal to

F−1(ρ2). We also observe that if agent 1 places a non-zero order for both periods, the

order quantity of period 1 depends on ρ2 as in previous settings, i.e., q∗11 = F−1(ρ2).

It was further shown in the decentralized and centralized settings that total order quan-

tity and allocation decisions are shaped by the relation between ρ1 and ρ2. However,

we show that there is a difference in two-agent setting with transfers: The order quan-

tity of agent 2 has an impact on agent 1’s decision in two-agent settings. To explain

the reasoning, we recall that for the previous settings, if ρ1 ≥ ρ2 > 0, it is optimal to

order for both periods; and total and the first period order quantities are determined

according to ρ1 and ρ2, respectively. If ρ2 > ρ1, it is optimal to order for the first

period only and the order quantity is determined according to the critical fractile of

ρ2. On the other hand, these relations cannot be used to describe the optimal behavior

of agent 1 when two agents interact. Given kw > h(1−k), the optimal order decision

of agent 1 depends on the order quantity of agent 2: If agent 2 does not order enough

for both agents, i.e., q2 < qT2 , agent 1 will place an order for both periods.

4.2 Best Response Function of Agent 2

In this section, we proceed to the BRF of agent 2. After arguing that its expected

profit function is concave, we make definitions of functions that characterize the BRF

of agent 2. We complete the section with the BRF and our related findings.
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Lemma 4.2.1. E[π2] is concave in q2.

Lemma 4.2.2. Let qF2 (Q1) denote q2 value that satisfies ∂E[(π2)]
∂q2

= 0 for a given Q1.

There exists qF2 (Q1) ≥ 0 for ∀Q1 ∈ (0,∞) (see (B.21) in Appendix).

Lemma 4.2.3. qF2 (Q1) is continuous and monotonically decreasing in Q1.

Proposition 4.2.1. The best response of agent 2 is characterized as follows:

a. If t > c

q∗2 = qF2 (Q1)

b. If t < c

q∗2 =

0 if Q1 ≥ V −1(ρn1 )

qF2 (Q1) if Q1 < V −1(ρn1 )

While determining its order quantity, agent 2 also considers possible benefits of trans-

fers: For agent 2, t can be interpreted as the cost of fulfilling demand with units

transferred from agent 1 in the second period, whereas c can be interpreted as cost

of fulfilling by ordering from the supplier. If t < c, agent 2 may be better off with

not placing any orders and supplying all required units from agent 1. Agent 2 can

use this opportunity if agent 1 has enough inventory for both agents, i.e., V −1(ρ1).

However, the agent definitely places an order if it is not beneficial to satisfy demand

with transfers, i.e., t > c, or agent 1 does not have enough units for both agents,

Q1 < V −1(ρ1).

Another observation is that the allocation decision of agent 1 does not affect the or-

dering decision of agent 2. Since transfers take place in the second period and excess

demand or supply is carried to the second period, quantity allocated by agent 1 for

the first period does not have an impact on order quantity of agent 2.

4.3 Nash Equilibrium

With the interacting choices of two agents, we can investigate their optimal ordering

decision using the concept of a two-person simultaneous move non-zero sum game.
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We will investigate the existence and uniqueness of Nash equilibrium in the presence

of transfers. As the best response of agent 2 depends on q11 + q12 rather than their

individual values, the outcome of the game can be characterized on the (q2, Q1) plane.

Continuity of and boundedness of best response functions is necessary and sufficient

for the existence of Nash equilibrium. We use the optimal solution structures in

Proposition 4.1.1 and (4.2.1) to prove continuity since it is not possible to derive

the BRFs explicitly.

Lemma 4.3.1. The best response functions are continuous and bounded on the (q2, Q1)

plane.

Theorem 4.3.1. The corresponding simultaneous move non-zero sum game has a

Nash equilibrium.

Given its existence, we continue the analysis on the uniqueness of Nash equilibrium.

If the best response function of one agent is always decreasing faster than that of the

other, then these two functions will intersect at a unique point. Hence, we continue

by analyzing the slopes of the functions that characterize the BRFs.

Lemma 4.3.2. The slope of qF2 is always strictly smaller than the slope of qF11, qF12 and

qT12.

Theorem 4.3.2. The corresponding game has a unique Nash equilibrium.

Corollary 4.3.2.1. Q∗1 > 0 and q∗2 > 0 at equilibrium.

As a result, we conclude that there exists a unique non-zero equilibrium in the decen-

tralized setting with transfers. Figure (4.2) illustrates the bounds on the best response

functions and the unique non-zero equilibrium for all possible parameter alignments.

Gathering the results in Propositions 4.1.1 and 4.2.1 with the observations in Figure

(4.2), we can obtain important information about the optimal order quantities at the

equilibrium. Recall from these propositions that depending on the relation between t

and c, optimal order quantity of the agents can be equal to 0. From the best response

function of agents in Figure (4.2), we can see that order quantities at equilibrium are
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Figure 4.2: Illustration of best response functions for all possible parameter settings
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non-zero, as stated in Corollary 4.3.2.1. It is noteworthy that both agents place an

order even if the transfer price between agents is lower than the price of the product.

This is due to the fact that no agent will order as much as the central decision maker.

As a result, regardless of the relationship between t and c, the optimal order quantity

of agent 2 at equilibrium is characterized as q∗2 = qF2 (Q1) and that of agent 1 can be

given as:

i. If ρ2 ≤ 0

(q∗11, q
∗
12) =

(
0, qF12(q2)

)
ii. If ρ2 ≥ 0

(q∗11, q
∗
12) =


(
qF11(q2), 0

)
if q2 ≥ qT2(

F−1(ρ2), qT12(q2)
)

if q2 < qT2

Observe that if ρ2 ≤ 0, agent 1 is ensured to place an order for the second period.

The agent does not place any orders for the first period since the expected holding

costs are higher. Also, observe that if ρ2 ≥ 0, agent 1 is ensured to place an order

for the first period to avoid expected backorder costs. Whether to place an order for

the second period depends on the optimal order quantity of agent 2 at this condition.

If agent 2 places a sufficiently large order, agent 1 is better off with placing an order

only for the first period.
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CHAPTER 5

COMPUTATIONAL ANALYSIS

In this section, we perform a thorough computational analysis using Matlab in order

to evaluate the effects of introducing transfer opportunity in a decentralized environ-

ment. We will investigate whether the profits obtained at Nash equilibrium achieve the

joint profits obtained in the centralized setting. In addition, we will observe the effects

of problem parameters on the solutions and improvement gained through transfers.

For this purpose, we introduce a base parameter setting (see Table (5.1)) and compute

optimal order quantities and corresponding expected profits for three settings (see

Table (5.2)). We assume that demand for both agents are assumed to be normally dis-

tributed. Recall that ρ1 = r+l−c
r+l−s , ρ

n
1 = r+l−c

r+l−t , ρ2 = kw−h(1−k)
hk+kw

, ρ3 = r+l−c+kw−h(1−k)
r+l−s+hk+kw

and ρn3 = r+l−c+kw−h(1−k)
r+l−t .

Table 5.1: Parameters and Ratios in Computational Analysis

r 50 c 20 h 5 w 10

l 0 s 0 k 0.5 t 25

µx 100 σx 25 µy 100 σy 25

ρ1 0.60 F−1(ρ1) 106.34 V −1(ρ1) 208.96 ρn1 1.20

V −1(ρn1 ) ∞ ρ2 0.33 F−1(ρ2) 89.23 ρ3 0.57

F−1(ρ3) 104.11 ρn3 1.30 V −1(ρn3 ) ∞

In Table 5.2, q11 and q12 represents the order quantities of the agents facing demandX

and q2 represents the order quantity of the agent facing demand Y . In addition, we use

D for decentralized setting, C for centralized setting and N for decentralized setting
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with transfer opportunity, which we will interchangeably refer as 2-agents setting in

the remainder of the chapter.

Table 5.2: Optimal order quantities and expected profits

Setting Agent 1 Agent 2 Total Profits

q11 q12 E[π1] q2 E[π2] E[π1] + E[π2]

D 89.23 17.11 2198.91 106.34 2517.08 4715.99

C 89.23 119.72 4998.87 N/A N/A 4998.87

N 89.23 16.02 2339.95 105.25 2658.12 4998.07

In our numerical studies, we often make similar comments for the agents who face

demand X , which are the central agent and agent 1 in decentralized settings, i.e.,

the decentralized and 2-agents settings. Therefore, in the remainder of this chapter,

unless specifically stated otherwise, the definition of agent 1 includes both agent 1 in

these decentralized settings and the central agent.

We start with analyzing the solutions of the base case. In our base case, demands X

and Y have the same distribution. Therefore, if demand X is ensured to realize in the

second period like demand Y , i.e., if k = 0, both agents would have the same optimal

decision in the decentralized and 2-agents settings. Thus, an initial observation is

that the differences in agents’ ordering decisions are due to the positive value of the

probability that X is realized in the first period, i.e., k > 0. We also observe that

E[π1] < E[π2] in row D and N of Table (5.2) as a result of this additional uncertainty.

We should highlight that the total order quantity of both agents is non-zero in 2-agents

setting, as shown in Corollary 4.3.2.1. Moreover, observing that agent 1 places an

order for both periods, we conclude that order quantity of agent 2 is not sufficiently

enough, i.e., q2 < qT2 .

In fact, we observe that agent 1 places an order for both periods in all settings. When

agent 1 orders for both periods, the total order quantity will not be affected by the

holding and backorder costs incurred at the end of the first period. Therefore, total

order quantities of agent 1 and agent 2 are equal in the decentralized and 2-agents
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settings.

Although holding and backorder costs do not have an impact on the total quantity

ordered, meaning that ρ2 < ρ1, a positive value of ρ2 implies that it is in the best

interest of agent 1 to place an order for period 1 in all settings. These holding and

backorder costs are taken into account for setting the order quantity for the first period,

hence we observe q11 = F−1(ρ2) in all rows of Table (5.2). On the other hand, we also

observe that the central agent places a larger order for the second period compared to

agent 1 in the decentralized and 2-agents settings in order to meet demand Y .

A final remark is that under transfers, total expected profit is always greater than

that of decentralized solution. In fact, the expected profits of both players in the 2-

agents setting are larger than those without transfer opportunity since transfers make

it possible for agents to share their excess demand and excess supply if possible.

The following figure demonstrates the best response functions of agents and the

unique equilibrium achieved in decentralized setting with transfers.
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Figure 5.1: Best response functions in the base case

In Figure (5.1), we can observe that qT2 is finite under the base setting. Using Propo-

sition 4.1.1, we can show that the part of the blue line, i.e., Q∗1(q2), which lies at the

right of q2 = qT2 corresponds to the function qF11(q2), whereas that lies at the left of

q2 = qT2 corresponds to the function qT12(q2). Observe that at the equilibrium point,
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q∗2 < qT2 . Thus, agent 1 places an order for both periods.

Recall that when ρ2 > 0, agent 1 definitely places an order for the first period. Also

recall that order quantity for the first period is bounded by F−1(ρ2) (see Proof of

Proposition 4.1.1 in Appendix). We observe that total order quantity of agent 1 is

higher than F−1(ρ2), which is in line with the fact that agent 1 places an order for

both periods.

In order to investigate the improvement achieved with transfers, we introduce a per-

formance indicator, P , defined as

P =
E[π1] + E[π2]−

(
E[πd1 ] + E[πd2 ]

)
E[πc]−

(
E[πd1 ] + E[πd2 ]

)
P measures the percentage of gain achieved by transfer opportunity over the decen-

tralized setting compared to that by the centralized solution. A high P-value indicates

that total profit obtained at Nash equilibrium is close to the profits obtained in the

centralized solution, i.e., the joint optimal solution.

In numerical analysis, we encountered scenarios where the P value is relatively low.

In these scenarios, it is observed that although the profit obtained at Nash equilibrium

is not close to the joint optimal profit, it is significantly higher than that in the de-

centralized solution. Therefore, we defined another performance indicator, I , which

measures the percentage improvement achieved by transfers in terms of decentralized

solution.

I =
E[π1] + E[π2]−

(
E[πd1 ] + E[πd2 ]

)∣∣E[πd1 ] + E[πd2 ]
∣∣

We will now continue with analyzing changes in the optimal order decisions with

changes in parameters. For this purpose, we take the base parameter set and change

one parameter at a time.

5.1 Effect of uncertainty about when X occurs, k

Table (5.3) shows the results for ∀k ∈ {0, 0.1, ..., 1}.

Note that order quantity of agent 2 in decentralized setting is constant for ∀k in Table

5.3 since expected profits of agent 2 in decentralized setting does not depend demand
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of agent 1.

Expected backorder costs of not satisfying demand in the first period increases as k

increases. In decentralized setting, when probability that X occurs in the first period

is low, i.e., k < 0.33, agent 1 does not place an order for period 1. When it is

moderate, it places an order for both periods and aggregate order quantity is constant.

If this probability is sufficiently large, i.e., k > 0.83, then the cost of not satisfying

demand in the first period becomes higher than that of not satisfying demand at all

and agent 1 places an order only for the first period. Although there is a similar

behavior of agent 1 in the 2-agents setting, we should highlight that this behavior

depends on both expected backorder cost of not satisfying demand in the first period

and the order quantity of agent 2. It should also be underlined that the profit figures

with transfers improve considerably in 2-agents setting compared to the decentralized

solution. Another interesting finding is that both agents decrease their total order

quantities with the motivation of transfers from the other agent for ∀k under the base

case.

We observe in Table 5.3 that total order quantity of the central agent is constant for

∀k and it always places a non-zero order for period 2. The reason is that the central

agent is required to fulfill the demand X + Y . Therefore, even if it is certain that X

will occur in the first period, i.e., k = 1, the central agent can minimize the expected

backorder costs of not satisfying demand in the first period by ordering a portion of

its total order amount in the first period. As k becomes moderate, this probability

decreases, hence we observe that the order quantity of the central agent for the first

period decreases. When it backorder costs are sufficiently low, i.e., k < 0.33, the

central agent also does not place an order for period 1 as agent 1 in decentralized

settings. It is significant that the central agent’s total order quantity is less than that in

the 2-agents setting. Moreover, the gap between total quantities increase for k ≥ 0.8.

For k ≥ 0.8, agent 1 places an order only for the first period. This leads to a slight

decrease in the level of coordination among parties in the 2-agents setting, hence total

order quantity at equilibrium diverges from that in joint optimal solution.

The following figures illustrate how the performance measures change in k. With

P > 0 and I > 0 for ∀k, we can argue that the solution at Nash equilibrium always
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performs better than that of the decentralized setting. Also observe that P decreases

for k ≥ 0.8 in Table (5.3) due to the slight decrease in the level of coordination among

parties mentioned above.

(a) P vs k (b) I vs k

Figure 5.2: Changes in P and I with k

The following figure illustrates how total profits change in k in all settings.

Figure 5.3: Changes in expected profits with k

Observe in Figure (5.3) that profits have an inverse unimodal shape with respect to k.

As k gets closer to 0 or 1, the uncertainty on the period whichX is realized decreases,

explaining the shape of these profit functions. Also observe in Figure (5.2b) that I is

unimodal in k. We know that parties suffer less from the increased level of uncertainty

as the level of coordination increase. Thus, solutions at Nash equilibrium decrease

less compared to decentralized solution, explaining the shape of I .
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5.2 Effect of backorder cost, w

Table (5.4) presents the optimal order quantities and profits for ∀w ∈ {0, 2, ..., 30}.

Firstly, note that the optimal decision of agent 2 in the 2-agents setting remains the

same for ∀w since its expected profit function does not depend on this parameter. On

the other hand, as w increases, expected costs of not placing an order for the first

period increases for the agent 1 in all settings. Thus, the motivation to order for the

first period increases.

When backorder costs are low, i.e., w ≤ 5, agent 1 does not place an order for the first

period. Asw increases, expected penalty costs from period 1 become unavoidable and

force agent 1 to place an order for the first period. If backorder costs are moderate,

i.e., w < 20, agent 1 in decentralized setting place an order for both periods. We

observe a similar behavior in the setting with transfers. Besides that the backorder

costs are moderate, we also conclude that order quantity of agent 2 is low enough for

agent 1 to place an order for both periods in the 2-agents setting.

Another interesting result is that total order quantity of agent 1 is constant if the

backorder costs are not high, i.e., w < 20. Total order quantity of the central agent is

also constant for 20 ≤ w ≤ 30 since it can manage the increase in backorder costs by

allocating its total order quantity over two periods. We also observe that when agent

1 in all settings place an order for both periods, the order quantity for this period is

equal and depends on the critical fractile of holding and backorder costs, i.e., ρ2.

When backorder costs are considerably high, i.e., w ≥ 20, agent 1 in the decentral-

ized setting places a single order for the first period. We observe the same ordering

behavior in agent 1 under transfers. Hence, we can conclude that order quantity of

agent 2 is sufficiently high for agent 1 to place a single order for period 1. We can

also conclude that when backorder costs are high, agent 1 becomes motivated to fulfill

all its demand in the first period in the decentralized and 2-agents settings, resulting

in an increase in its total order quantity without placing an order for the second pe-

riod. This situation deteriorates the level of coordination provided by transfers among

parties compared to that by the centralized solution.
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Another observation is that P > 0 and I > 0 for ∀w, concluding that transfer option

leads to a higher profit. In addition, also observe that P is constant for w ≤ 18. In

scenarios where w ≤ 18, we observe that the total order quantity is constant for all

players. We also observe that the order quantity in the first period is equal for agent

1 in all settings. For instance, when w = 14, agent 1 order F−1(ρ2) = 98.4 for the

first period. When w = 16, its order quantity for period 1 increase to F−1(ρ2) =

101.5. Since the first period order quantities remain equal while total order quantity

is constant, a change in backorder cost will affect the total profits by the same amount

in all settings. In other words, the differences in total profits will remain equal. Thus,

as a ratio of these differences, we observe P is constant for w ≤ 18. On the other

hand, although the improvement with transfers compared to decentralized setting is

constant for w ≤ 18, total profits in the decentralized settings decrease. That is why

we observe an increase in I for w ≤ 18.

The decrease in P for w ≥ 20 in Table (5.3) can be explained by the deterioration in

the level of coordination as mentioned above.

We also find that I increases in w for w ≥ 20. The reason is that although total profits

at Nash equilibrium decrease since the level of coordination introduced by transfers

decreases, total profits in the decentralized setting decrease more.

5.3 Effect of holding costs, h

Table (5.5) presents the optimal solution for h ∈ {0, 1, ..., 10}.

Increase in h creates the opposite effects of that inw and k: As holding costs increase,

agent 1 in all settings will decrease the order quantity for period 1 as expected costs

of overstocking for the first period increase.

For h < 10, i.e., when ρ2 > 0, expected backorder costs are higher than expected

holding costs from period 1, which makes it profitable to for agent 1 to place an

order for the first period. As h increases further, holding costs dominate backorder

costs from period 1 and force to decrease the order quantity for the first period in all

settings. When h ≥ 10 and ρ2 ≤ 0, we observe that agent 1 does not place an order
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for the first period, whereas its total order quantity is constant.

Also observe that the 2-agents setting is beneficial for both parties with P > 0 and

I > 0 in Table (5.5) for ∀h. For h ≤ 2, agent 1 is motivated to satisfy its demand

in the first period. Since transfer opportunity exists only for the second period, it

tries to meet its demand without using this opportunity. Hence, we can conclude that

the level of coordination among parties is relatively low when holding costs are low.

Thus, as h increases up to 3, we observe an increase in P and I .

In scenarios where h ≥ 3, we observe that the total order quantity is constant for all

players. Additionally, in these scenarios, we observe that the order quantity for the

first period is the same for agent 1 in all settings. For example, when h = 4, agent

1 orders F−1(ρ2) = 95.5 for the first period. When h = 5, this order quantity falls

to F−1(ρ2) = 89.2. Since their first period order quantities remain equal while their

total order quantity is constant, a change in holding cost will affect total profits by an

equal amount in all settings. The differences in total profits will be the equal. Thus,

as a ratio of these differences, we observe P is constant for h ≥ 3. On the other hand,

although the improvement with transfers compared to decentralized setting is constant

for h ≥ 3, total profits in decentralized settings decrease. Therefore, I increases in h

for h ≥ 3.

5.4 Effect of procurement costs, c

Table (5.6) presents the optimal solution for c ∈ {10, 12, ..., 40}.

As procurement costs increase, profits and total order quantities in all settings tend to

decrease in (Table (5.6)).

When procurement cost is not high, i.e., c ≤ 33.3, agent 1 in decentralized setting

places an order for each period since expected cost of not meeting demand in the

first period is less than expected cost of not meeting demand at all, i.e., ρ1 > ρ2.

Order quantity of agent 1 for the first period remains constant and equal to F−1(ρ2)

for c ≤ 33.3 as it is proposed in Proposition 3.1.1. When procurement costs are

sufficiently high, expected backorder costs become relatively higher than expected
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costs of not satisfying demand at all, i.e., ρ1 < ρ2. Hence, agent 1 places an order

only for the first period.

We also observe in Table (5.6) that the centralized agent splits its total order quantity

among two periods for ∀c. Note that its order quantity for the first period remains

constant at F−1(ρ2) for ∀c while its order quantity for the second period decrease in

c, reflecting the decrease in its total order quantity.

For agent 1 in the 2-agents setting, we observe in Table (5.6) that q12 = 0 for c ≥ 34

since agent 2 places a sufficiently large order as defined in Proposition 4.1.1. For

2 ≤ c ≤ 32, both agents in the 2-agents setting decrease their order quantity for the

second period as c increases. Order quantity of agent 1 for the first period is constant

and determined by F−1(ρ2) as in the previous settings discussed above. On the other

hand, for c ≥ 34, it is optimal for agent 1 to set q12 = 0 and decrease q11 beyond

F−1(ρ2).

Finally, observe that both P and I are positive for ∀c, thus both agents obtain more

profits at Nash equilibrium compared to decentralized solution. Note that I is increas-

ing in c (see Figure (5.4b)). On the other hand, as it can be shown in Figure (5.4a), P

is unimodal in c.

(a) P vs c (b) I vs c

Figure 5.4: Changes in P and I with c

For low values of c, both parties tend to order more in all settings. Hence, although

the 2-agents setting close to centralized setting, we observe that P is low as profits

obtained in decentralized setting is also close to that in centralized setting. For high

46



values of c, both parties tend to order less. Hence, as c increases, although solution

from under transfers bring more profits in addition to decentralized solution, resulting

in higher I values, expected profits are much higher in centralized solution, explaining

the decrease in P .

5.5 Effect of unit revenue, r

Table (5.7) presents the optimal solution for r ∈ {26, 40, ..., 82}.

An initial remark is that changes in r affect all decision makers as expected profit

function of all parties depend on this parameter. Moreover, the increase in r and c

have the opposite impact on optimal decisions. As r increases, it becomes more costly

to not satisfy a unit. Thus, total order quantities of all decision makers increase.

As expected cost of not satisfying demand in the first period is higher than expected

holding costs, i.e., kw−h(1−k) > 0, agent 1 places an order for the first period in all

settings. Agent 1 in decentralized setting does not place an order for period 2 when

unit revenues are low, i.e., r ≤ 30, since expected backorder costs of the first period

dominate all other costs and determine total order quantity. For r > 30, the business

become profitable such that expected costs from the first period become less important

than the expected cost of lost sales. Hence, we observe that it places an order for both

periods and set the first period order quantity equal to qd11 = F−1(ρ2). However, note

that this is not the case for agent 1 in the 2-agents setting. In this setting, agent 1

places an order for both periods since agent 2 places an order below the threshold qT2
at equilibrium for ∀r. We also observe in Table (5.7) that the centralized agent places

an order for both periods as it faces the demand X + Y . Also note that order quantity

for the first period does not depend on the parameter r in the latter two settings thus

we observe q11 = qc1 = F−1(ρ2) for ∀r.

As in the previous sections, we observe P > 0 and I > 0 for all r, which ensures

that the solution at Nash equilibrium is better than that of decentralized solution. We

observe that I significantly decreases in r whereas P significantly increases.

As r increases, more units will be ordered for all parties in all settings, so their ability
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to manage both overage and underage risks increases. To investigate this in detail,

we provide the following figure, where how much additional profits can be obtained

by the central solution is provided. We compute this as
E[πc]−(E[πd

1 ]+E[πd
2 ])

(E[πd
1 ]+E[πd

2 ])
. We also

provide I , the measure of additional percentage profits at equilibrium, for changing

values of r in the following figure.

Figure 5.5: Percentage difference between total profits at equilibrium with transfers

and that of the central agent in r

Observe that both figures are monotonically decreasing. Thus, the difference of total

profits in all settings are decreasing in r. As a first result, the solution from the 2-

agents setting cannot bring much benefits in addition to decentralized setting, which

is reflected as a decrease in I . As a second result, all settings provide closer total

profits as r increases, which explain the increase in P as r increases.

5.6 Effect of mean of demand X , µx

Holding the coefficient of variation constant at 0.25, Table (5.8) shows the optimal

solutions for µx ∈ {20, 60, ..., 700}.

An initial observation is that total order quantities of agent 1 in all settings increase

as µx increases. On the other hand, we observe in Table (5.8) that as demands re-

semble, optimal order quantity of agent 2 in the 2-agents setting decreases. The
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minimum quantity ordered by agent 2 equals to 105.25 105.3 for µx = 100 in Table

(5.8) under transfers. Moreover, we also observe that the performance indicator P

follows a similar behavior, which yields to the conclusion that the solution obtained

at the equilibrium become closer to that of the centralized setting as demands become

asymmetric, i.e., the difference in the mean values increase.

We should highlight that as X and Y become asymmetric, the gap between expected

overstock and understock quantities of agents increase. In fact, the probability of

overstock and/or understock for the agent facing the demand with lower mean might

decrease if transfers are allowed. In other words, we expect to observe that the agent

who face demand with a lower mean benefits more from transfers. In order to inves-

tigate this, we examine the percentage increase achieved by transfers for both agents,

which can be computed as E[πi]−E[πd
i ]

E[πd
i ]

. The following figure provides the results.

Figure 5.6: Percentage improvement achieved by transfers compared to decentralized

profits with changing µx

In Figure (5.6), we observe that agent 1 benefits more when the demand it faces has

relatively lower mean. As µx increase, we observe that this advantage is overtaken by

agent 2. This reasoning also provides an explanation for the shape of P in µx.

If we look at Figure (5.6) from another perspective, while µy is constant, total profit

of agent 2 in the decentralized solution is also constant. When µx < µy the percent-

age improvement achieved by agent 2 using the transfer opportunity is around 2%.

Observe that it increases as the µx increases. As a result, we conclude that transfers

provide more benefits for the agent with lower mean demand.
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Another interesting result is that as µx becomes closer to µy, we observe that I in-

creases. When µx is low, total profit of the decentralized solution is low and transfers

bring lower overall benefit. On the other hand, the transfers bring high overall im-

provement but total profit of the decentralized solution increase further while µx is

high. As a fraction of these two terms, we conclude that the value of I is low when

the asymmetry is high. Where the mean demand for both agents is equal, transfers

will bring a moderate level of improvement to both agents. In this case, the profit in

the decentralized solution can also be considered as moderate. In summary, the agent

with smaller mean demand benefits more from asymmetry, so the total profit obtained

compared to the decentralized solution is lower.

5.7 Effect of mean of demand Y , µy

Table (5.9) presents the optimal solution for µy ∈ {20, 60, ..., 700} while coefficient

of variation is constant at 0.25.

Our findings in this subsection follow similar lines with the previous subsection. First

of all, total order quantities of agents who face demand Y increase as µy increases.

We also observe in Table (5.9) that as demands become symmetric, optimal order

quantity of agent 1 decreases. The minimum quantity ordered by agent 1 in the 2-

agents setting equals to 105.25 105.3 for µy = 100 in Table (5.9).

Observe that P follows a similar behavior as in the previous section. Thus, we make

the same conclusion: As demands become asymmetric, the solution obtained at the 2-

agents setting become closer to that of the centralized setting, explaining the behavior

of P .

Another interesting finding is that total order quantities in the 2-agents setting is equal

for the same mean value in Tables (5.8) and (5.9). For example, observe that for

µx = 160, total order quantity at equilibrium is equal to 273.9 in (5.8). This is equal

to total order quantity at equilibrium for µy = 160 in Table (5.9).

To explain the reasoning, recall the findings on the base case that total order quantities

of both players are equal if µx = µy since ρ1 > ρ2. Also recall that we change only
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the value of mean in this and previous section, hence we still have ρ1 > ρ2. Thus,

total order quantity of agent 1 when µx = 160 must also be equal to that of agent 2

when µy = 160. In addition, since one of the mean values are always equal to 100,

we observe these equalities.

Similar to the previous subsection, in order to investigate whether the increase in

µy is beneficial for the agents under transfers, we introduce the percentage increase

achieved by transfers, which is computed as E[πi]−E[πd
i ]

E[πd
i ]

. The following figure provides

the results.

Figure 5.7: Percentage improvement achieved by transfers compared to decentralized

profits for changing µy

Observe in Figure (5.7) that agent 2 benefits more when demand it faces a demand

with a lower mean. Also observe that this advantage is overtaken by agent 1 as µy

increase, which explains the shape of P in µy.

Moreover, note that total profit of agent 1 in the decentralized solution is constant

as µx is constant. When µy is low, the percentage improvement achieved by agent

1 under transfers is low compared to the case when µy is high, which favors our

conclusion in the previous section that transfers provide more benefits for the agent

with lower mean demand.

We also observe that as µy gets closer to µx, I increases. The reasoning is the same

as in the previous section: Transfers would help the parties to obtain more benefits
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compared to decentralized solution when demands become symmetric.

5.8 Effect of standard deviation of demand X , σx

Table (5.10) presents the optimal solution for σx ∈ {3, 6, ..., 33}.

Looking at Table (5.10), we observe that as the σx increases, the profit of agent 1

falls in all cases. Since the increase in standard deviation also causes uncertainty to

increase, the profits decrease. We observe that the highest decrease in total profits is

in the decentralized setting whereas the lowest decrease is in the centralized setting.

Additionally, looking at the change in total order quantities, we can observe that as

σx increases, total order quantity of agent 1 increases in all cases, whereas its order

quantity for period 1 decreases. As σx increases, F−1(ρ2) decreases since ρ2 < 0.5,

while F−1(ρ1) and V −1(ρ1) increase because ρ1 > 0.5. This causes agent 1’s order

quantity of period 1 to decrease and that of period 2 to increase in all scenarios.

Note that in the 2-agents setting where transfers are allowed, ρ1 does not have a direct

impact on the total order quantity. However, this relationship of rates also causes a

decrease in period 1 order quantity and increase in period 2 order quantity over the

profit function in this setting.

We observe that profits of agent 2 increases in σx in the 2-agents setting. In order

to investigate the rate of this improvement, we present the percent improvement in

total profits of agent 2 in terms of the profits of decentralized solution in Figure (5.8),

which is computed as E[π2]−E[πd
2 ]

E[πd
2 ]

.

In Figure (5.8), observe that percent improvement in total profits increase in σx. Re-

call that decentralized total profits is constant for agent 2 since only σx changes. As

uncertainty in demand X decreases, overage and underage quantitites of agent 1 de-

crease. Hence, the possibility of transfers among players decrease, which leads to a

decrease in transfer earnings for agent 2. Therefore, we can conclude that when its

counterpart has a demand with lower standard deviation, in other words a demand

with less uncertainty, agent 2 obtains less improvements due to transfers.
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Figure 5.8: Percentage improvement of agent 2 achieved by transfers compared to

decentralized profits

In the decentralized setting with transfers, looking at agent 2’s order quantity, we

see that it decreases as the standard deviation increases. Recall that agent 2’s best

response function is monotonically decreasing in Q1. As a result, this decrease is due

to the increase in the total order quantity of agent 1.

When we examine the performance indicators, we see that P > 0 and I > 0, indicat-

ing that transfer opportunity brings the total profit closer to the joint optimal solution.

In addition, we observe that P decreases while I increases as σx increases. The rea-

son for this is that as σx increases, total profit decreases the most in the decentralized

solution, and the least in the centralized solution. In other words, as σx increases,

the difference between the total profit obtained in the Nash equilibrium and that in

the decentralized solution increases, which explains the increase of I . Similarly, we

observe that P decreases since the increase in σx causes the difference between total

profits of the centralized solution and the solution of 2-agents setting to increase.

5.9 Effect of standard deviation of demand Y , σy

Table (5.11) presents the optimal solution for σy ∈ {3, 6, ..., 33}.

Firstly, we observe in Table (5.11) that as the σy increases, the uncertainty in demand
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Y increases, which results in an increase in total order quantities of agents who face

demand Y . In addition, we observe that agent 1 orders for both periods in all setting.

Recall that the order quantity for the first period is determined by F−1(ρ2) when an

order is placed for both periods. Since both the demand X and ρ2 = kw−h(1−k)
k(h+w)

do not

change, the first period order quantity of agent 1 is the same for all σy.

Moreover, in the 2-agents setting, we observe that the increase in σy is accompanied

by a decrease in the total order quantity of agent 1. This is because the best response

function of agent 1 decreases monotonically with respect to q2, which increases in σy.

In Table (5.11), we also observe that when transfers are allowed, agent 1’s total profit

increases σy. To analyze this increase further, we examine the percentage improve-

ment agent 1 achieved over the decentralized solution as in the previous section,

which is computed as E[π1]−E[πd
1 ]

E[πd
1 ]

. We present the results in Figure (5.9).

Figure 5.9: Percentage improvement of agent 1 achieved by transfers compared to

decentralized profits

In Figure (5.9), similar to the previous section, observe that percent improvement

in total profits increase in σy. As a result, we conclude that agent 1 obtains more

improvements due to transfers if agent 2 has a demand with higher standard deviation.

Finally, we find that P > 0 and I > 0 in Table (5.11), meaning that the solution

at Nash equilibrium is beneficial compared to decentralized solution. Similar to pre-
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vious section, we observe that P decreases while I increases in σy. The reasoning

follows similar lines with the discussions in the previous section: As uncertainty

increases, total profits at Nash equilibrium decrease less compared to that in the de-

centralized solution whereas it decrease more compared to that in the centralized

solution.

5.10 Effect of transfer prices, t

(Table 5.12) presents the results for t ∈ {12, 14, ..., 40}.

In the decentralized setting with transfer opportunity, we observe that both agents

place non-zero orders at equilibrium as shown in Corollary 4.3.2.1. Since agent 2

does not place a sufficiently large order, i.e., q2 < qT2 , agent 1 places an order for both

periods. Agent 1’s order quantity for the first period depends on the critical fractile

of holding and backorder costs, i.e., ρ2.

Both agents tend to increase their total order quantity as t increases with the motiva-

tion of transferring goods to the other party. This increase in total order quantity is

beneficial for both parties up to t = 22, where both E[π1] and E[π2] attains its maxi-

mum value. Moreover, note that P > 0 and I > 0 for ∀t in Table (5.12), concluding

that the performance of Nash equilibrium is always better than that of decentralized

game. P is also maximum for t = 22. For t values that are close to 12 or 40, we ob-

serve that both P and I decrease. The decrease in P shows decreasing capability of

the solution at Nash equilibrium to achieve centralized solution whereas the decrease

in I shows decreasing capability of solution at Nash equilibrium to achieve more

than decentralized solution. As both indicators decreasing, introduction of transfers

become less beneficial as t gets close to 12 or 40.

The changes in P and I for ∀t can be shown in the following figures.

Figures (5.10a) and (5.10b) illustrates that both P and I is unimodal in t, and they

attain the highest value for the same transfer price. Thus, we can argue that under this

parameter setting, it is possible to encourage both parties by setting the most efficient

transfer price. Numerical analysis show that t = 22.0485 gives the maximum P and
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(a) P vs t (b) I vs t

Figure 5.10: Changes in P and I with t

I . Thus it is the value of t that brings the highest benefits.

In order to analyze the existence of a t value that will provide the total profit brought

by the central solution, we expand our numerical studies. In the following analysis,

we investigate the performance of solution from the 2-agents setting as overage and

underage costs of both periods change. We use the base case presented in Table (5.1)

by changing backorder costs, procurement costs and transfer prices. Backorder cost

,w, is evaluated at {0, 5, 15, 30, 50} to investigate the effect of changing expected

holding and backorder costs from the first period. Procurement cost, c, is evaluated at

{5, 10, 25, 40, 45} to investigate the effect of changing expected underage and overage

costs of the game computed at the end of the second period. Finally, transfer price, t,

is evaluated at {1, 2, ..., 49} to observe the performance of decentralized setting with

transfers.

In Table (5.13), 50 instances of the analysis are provided in 25 rows. Each row has

information about two instances with two different t values: The values that the de-

centralized setting with transfer opportunity performs the best and the worst.

For the sake of simplicity, we use E[πd] and E[πN ] as total profits from decentralized

and solution from the 2-agents setting in Table (5.13), respectively. We use P and I

to investigate the performance of solution from the decentralized setting with trans-

fers as defined in previously. Recall that P measures how close the profits obtained

at Nash equilibrium is to centralized solution compared to decentralized solution,
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whereas I measures how much additional profits obtained by transfers in addition to

decentralized solution. tb, ρb1, E[πbN ], P b and Ib represent the values for the best solu-

tion from the decentralized setting with transfers whereas tw, ρw1 , E[πwN ], Pw and Iw

represent that for the worst solution from the decentralized setting with transfers.

Before investigating the performance of solution from the decentralized setting with

transfers, we start with analyzing how the performance indicators P and I change in

t. We choose four scenarios where

• P and I are both relatively high, which corresponds to setting 22,

• P and I are both relatively low, which corresponds to setting 15,

• P is relatively high I is relatively low, which corresponds to setting 4, and

• P is relatively low I is relatively high, which corresponds to setting 20.

Remarking the discussion about unimodality of P shown for the base case, we present

Figures (5.11a) and (5.11b) which show P and I changes in t for these settings in

Table 5.13.

Looking at these figures, it can be seen that both performance indicators are unimodal

in t. In fact, numerical analysis show that these performance measures are unimodal

in all 25 settings provided in (5.13). Numerical analysis also show that both perfor-

mance indicators attain the maximum value for the same transfer price. Hence, we

argue that there exists a transfer price that maximizes P and I under all operable

parameter settings.

In fact, it has been shown by Kapur ( [7]) that there exists a transfer price that will

provide the joint optimal profits for a single-period problem. From our numerical

studies, we argue that in a two-period problem with k > 0, there exists a transfer

price for which both P and I are maximized. Moreover, we can also suggest that

P and I are unimodal with respect to t. Thus, we conclude that there exists a t

value for which transfers bring the highest benefits. On the other hand, this t value

does not necessarily coordinate the system, i.e., achieve total joint profits, in a two-

period problem. For example, in scenario 15 where tb = 20, we see that total profits

obtained at Nash equilibrium is at most 3824.9 whereas that at central solution is
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(a) P vs t

(b) I vs t

Figure 5.11: P and I for changing t values

equal to 3863.2. We also observe that both P b and Ib values are relatively low for this

setting. Hence, there may not exist a transfer price that would achieve joint optimal

profits in this setting.

Note that when k > 0.5 and transfers are allowed, if backorder costs are high, agent

1 has a motivation to place an order only for the first period. On the other hand,

this may not be the case for the central agent. The centralized decision maker, who

faces X+Y , might still have the flexibility to partition its total order quantity for two

periods. In such cases, introduction of transfers may become incapable of achieving

the central solution.

We will now investigate the performance of solution from the decentralized setting

with transfers with respect to c and w. To begin with, independent of the backorder
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costs, we observe that the best solution from the 2-agents setting is very close to the

centralized solution when purchasing costs are low, which can be observed for cases

1-10 in Table (5.13). We also observe that the percentage of profits gained in the de-

centralized setting with transfer opportunity in addition to decentralized solution are

relatively low, i.e., at most 3%. In cases with low procurement costs, decision makers

are motivated to order more in all settings, decreasing the probability of understock

in all settings. Thus, the additional profits that can be obtained both by transfers and

by centralization decrease. Hence, we observe that P is high whereas I is low. These

explain the reason why the minimum value of P b is 98.3% whereas the maximum

value of Ib is 2.9 in the cases 1-10 in Table (5.13).

Comparing the best performances with the worst ones for the cases 1-10, we observe

that max{Ib − Iw} = 0.8% whereas max{P b − Pw} = 33.9%. Selection of the

best t can be regarded as less important since the possible gains by selecting the right

value of t brings 0.8%, in addition to the profits obtained in worst case.

We will now continue with the analysis of cases 11-15, where c is moderate. We ob-

serve in Table (5.13) that asw increase beyond 15, P b decreases whereas Ib increases.

As c increase, total units on hand become scarce so coordination gains importance

among the agents. Centralized solution brings more profits compared to the solution

from the 2-agents setting, whereas solution from the 2-agents setting brings more

profits compared to the decentralized solution as w increase. Hence, P b decreases in

w whereas Ib increases.

Using Table (5.13), we see that max{Ib − Iw} = 1.5% whereas max{P b − Pw} =

15% for the cases 11-15. Selection of the best t value can be regarded as more impor-

tant than it is for cases 1-10 since the possible gains by selecting the right value of t

brings more profits in addition to the profits obtained in worst case.

Finally, we observe that performance of the best solution from the 2-agents setting

highly depend on the backorder cost when the procurement cost is high. We use cases

16-25 in Table (5.13) to complete this part of the analysis. Observe that increase in

w can decrease P b more than 20%. Also note that if the decentralized solution brings

profits, i.e., E[πd] > 0, the solution of 2-agents setting brings profits in addition to the

decentralized profits up to Ib = 100%. As c increase, due to high overage costs to be
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charged at the end of second period, all agents tend to decrease their order quantities

in all settings. With available total order quantity becoming lower, we observe that

the profits that can be gained by coordination increase further, explaining why we

observe the ten highest Ib values for these cases.

In order to comment on the changes in P b values, we elaborate our investigation on

the range of w: We first consider the cases 16, 17, 18, 21 and 22, where w is low

compared to c, i.e., ρ1 > ρ2. Agents who face demand X has the flexibility to split

their orders among two periods in these cases. On the other hand, for the cases 19, 20,

23, 24 and 25 wherew is high compared to c, i.e., ρ2 > ρ1, agent 1 in the decentralized

setting with transfer opportunity is forced to satisfy its demand without using the

transfer opportunity in the second period. Hence, the level of coordination provided

by transfer opportunity is close to that provided by the centralized solution for the

cases 16, 17, 18, 21 and 22 where we observemin{P b} = 95.5%. On the other hand,

it is lower for the cases 19, 20, 23, 24 and 25 where we observe max{P b} = 89.4%.

To compare these best performances with the worst performances for the cases 16-25,

we compute min{Ib − Iw} = 3.9% whereas min{P b − Pw} = 14.8%. Selection

of the best t can be regarded as important since both performance indicators change

significantly. Moreover, expanding this analysis on the range of w discussed in the

previous paragraph, we find that determination of the right transfer price is the most

important if both c and w are high, i.e., ρ1 is low whereas ρ2 is high, since min{Ib −
Iw} = 7.1% while min{P b − Pw} remains constant at 14.8%.

It should also be remarked that at the most extreme cases 24 and 25 in Table (5.13),

where decentralized solution cannot bring profits, we observe that even the worst

solution from the 2-agents setting brings significant profits for the decision maker,

highlighting the importance of introducing transfer opportunity when w and c are

high.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK SUGGESTIONS

In companies working on a project basis, inventory decisions are made by different

decision makers for each project, and common raw materials are transferred to pro-

duction on a project basis. For this reason, although an item is overstocked for a

project, it may be understocked for another project and cause the production to stop.

For defense industry companies where penalty costs are higher compared to many

sectors, the ignorance of such situations cause an increase in both holding and back-

order costs.

In this study, we discussed the inventory management problem of common resources

in a company carrying out two different projects over two-period horizon. We as-

sumed that agents of the projects independently set order quantities at the beginning

of the time horizon. Demands faced by both agents has quantitative uncertainty. De-

mand of the second agent is realized in the second period whereas the demand of the

first agent has a probability of realization in the second period. Hence, agent 2 places

an order for the second period whereas agent 1 places an order for both periods.

In order to examine the change in the expected profits of agents in case company

stocks can be shared between projects, we examine the situation where agents are al-

lowed to transfer materials at a transfer price when one has excess supply whereas the

other has excess demand. We have observed that when transfers are allowed between

agents, their expected profit functions depend on the opponent’s total order quantity.

Therefore, this problem is investigated using two-player, non-zero, continuous game

theory concepts. We show that there exists a unique equilibrium and characterize it

for all possible parameter settings.

69



We also analyze decentralized setting, where both decision makers determine their

order quantities without interacting with each other, and centralized setting, where

order quantities are determined by a single decision maker for all projects. The de-

centralized setting corresponds to the common inventory management strategy of the

project-based companies.

We observe that the selection of the right transfer price becomes more important if the

procurement costs are high. Numerical analysis also shows that when demands are

asymmetric, introduction of transfers brings more percentage benefits to the demand

with lower mean.

An immediate extension of the study in this thesis would be to consider three or more

projects. With the increasing level of pooling of uncertainty, we expect total profits

to increase further when transfers are allowed compared to decentralized setting. On

the other hand, when the number of projects increase more than two, sub coalitions

may be formed among projects. Therefore, it would be challenging to demonstrate

the existence of a Nash equilibrium.

Another extension could be to investigate the situation where agents determine their

order quantities at the beginning of each period. In this case, a solution to this two-

period problem can be found by using dynamic programming methods. In addition,

a planning horizon with more than two periods can also be considered.

Finally, a problem setting where demands of both projects have possibility to occur

in the first period can be analyzed. In such a problem, one agent’s demand may

be realized while that of other’s is still uncertain. For this reason, the problem can

be examined under the condition that demand of both agents must be realized for

transfers to take place.
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APPENDIX A

PROOFS OF CHAPTER 3

A.1 Proofs of Section 3.1

Proof of Lemma 3.1.1: Given a continuous and regular function of qd11 and qd12, we

compute the derivatives to construct the Hessian matrix of E[πd1 ].

∂E[π](qd11, q
d
12)

∂qd11

= −(r + l − s)F (Qd) + r + l − c− k(h+ w)F (qd11) (A.1)

− h(1− k) + kw

∂E[π](qd11, q
d
12)

∂qd12

= −(r + l − s)F (Qd) + r + l − c (A.2)

∂2E[π](qd11, q
d
12)

∂qd11
2 =− (r + l − s)f(Qd)− (k(h+ w))f(qd11)

∂2E[π](qd11, q
d
12)

∂qd12
2 =− (r + l − s)f(Qd)

∂2E[π](qd11, q
d
12)

∂qd11∂q
d
12

=− (r + l − s)f(Qd)

∂2E[π](qd11, q
d
12)

∂qd12∂q
d
11

=− (r + l − s)f(Qd)

Then, the Hessian is as follows:

=

−(r + l − s)f(Qd)− (k(h+ w))f(qd11) −(r + l − s)f(Qd)

−(r + l − s)f(Qd) −(r + l − s)f(Qd)


As r+ l > c > s, it can be concluded that all entries of the Hessian are negative. Set-

ting M = −(r + l − s)f(Qd) ≤ 0 for simplification, the determinant of the Hessian

is computed as:
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=

∣∣∣∣∣∣M − (k(h+ w))f(qd11) M

M M

∣∣∣∣∣∣ = −M(k(h+ w))f(qd11)

As the multiplication of two negative terms, we conclude that the determinant is posi-

tive. Having the second order derivatives negative and the determinant of the Hessian

positive, we prove that E[πd1 ] is jointly concave in qd11 and qd12. �

Proof of Proposition 3.1.1: Since E[πd1 ] is jointly concave in qd11 and qd12, Karush-

Kuhn-Tucker conditions will yield the optimal solution. Imposing nonnegativity con-

ditions on order quantities and using the first order derivatives in (A.1) and (A.2), the

conditions are constructed as follows:

0 =− (r + l − s)F (Qd) + r + l − c− k(h+ w)F (qd11) (A.3)

− h(1− k) + kw + µ1

0 =− (r + l − s)F (Qd) + r + l − c+ µ2 (A.4)

µ1 ≥0 (A.5)

µ2 ≥0 (A.6)

−qd11 ≤0 (A.7)

−qd12 ≤0 (A.8)

−qd11µ1 =0 (A.9)

−qd12µ2 =0 (A.10)

We will construct the proof in two parts: ρ2 < 0 and ρ2 ≥ 0. First observe that both

qd11 and qd12 cannot be zero in an operable setting, in other words (qd11)∗ + (qd12)∗ =

(Qd)∗ > 0. Since Qd = 0 implies F (Qd) = 0, we get µ2 = −r − l + c < 0 from A.4

which violates (A.6).

i. ρ2 < 0: We show that qd11 = 0 and qd12 > 0. From (A.4), one can write (A.3) as

follows:

µ1 = µ2 + (k(h+ w))F (qd11) + h(1− k)− kw (A.11)

Since ρ2 < 0, i.e. kw < h(1− k), µ1 > 0 in (A.11), which implies from (A.9)

that qd11 = 0.Since qd11 + qd12 = Qd > 0, one concludes qd12 > 0 and from (A.10)

µ2 = 0. Using this, we get F (qd12) = ρ1 from (A.4).
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ii. ρ2 ≥ 0: When kw ≥ h(1− k), it is possible to show that qd11 > 0.

– If (qd12)∗ = 0, then qd11 > 0 since (Qd)∗ > 0.

– If (qd12)∗ > 0, then (A.10) implies µ2 = 0. Further assume that qd11 = 0,

requiring µ1 > 0 from (A.9). Substituting (A.4) into (A.3) under these

conditions, we obtain µ1 = h(1−k)−kw > 0, conflicting with the initial

condition of kw > h(1− k).

Hence, we conclude that qd11 > 0 when kw > h(1 − k). Under this condition,

F (Qd) and F (qd11) can be derived from (A.3) and (A.4) as follows:

F (qd11) =
kw − h(1− k)− µ2

hk + kw
= ρ2 −

µ2

hk + kw
(A.12)

F (Qd) =
r + l − c+ µ2

r + l − s
= ρ1 +

µ2

r + l − s
(A.13)

Given kw > h(1−k), we can further show that if ρ2 ≥ ρ1, the optimal solution

yields qd11 > 0 and qd12 = 0. To prove this argument, assume that qd12 > 0,

yielding µ2 = 0 from (A.10). Recall that qd12 > 0 implies Qd = qd11 + qd12 > qd11.

Referring (A.12) and (A.13), the relation F (Qd) = ρ1 + µ2
r+l−s ≥ F (qd11) =

ρ2 − µ2
hk+kw

must hold, which boils down to F (Qd) = ρ1 > F (qd11) = ρ2,

conflicting with the initial argument. Hence, qd12 = 0 and µ2 > 0 must hold if

ρ2 ≥ ρ1. Setting qd12 = 0 and µ1 = 0 in (A.3), the optimal order quantity for

the first period can be found as F (qd11) = ρ3.

On the other hand, given kw > h(1 − k), it can be proven that if ρ2 ≤ ρ1, the

optimal solution yields qd11 > 0 and qd12 > 0. We use proof by contradiction as

follows: Assume that qd12 = 0, yielding µ2 > 0 from (A.10). Having qd12 = 0

implies Qd = qd11. Recalling (A.12) and (A.13), the condition F (Qd) = ρ1 +

µ2
r+l−s ≥ F (qd11) = ρ2 − µ2

hk+kw
boils down to F (Qd) = ρ1 + µ2

r+l−s = ρ2 −
µ2

hk+kw
= F (qd11). This equality cannot hold for µ2 > 0 if ρ2 ≤ ρ1, completing

the proof. (A.3) and (A.4) yields qd11 = F−1(ρ2) and qd12 = F−1(ρ1)−F−1(ρ2)

under these conditions.

�
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A.2 Proofs of Section 3.2

Proof of Lemma 3.2.1: For a continuous and regular function of two variables, con-

cavity is controlled using the Hessian matrix. We compute the derivatives to construct

the Hessian matrix of E [πc].

∂E [πc(qc1, q
c
2)]

∂qc1
=− (r + l − s)V (Qc) + r + l − c− (k(h+ w))F (qc1) (A.14)

+ kw − h(1− k)

∂E [πc(qc1, q
c
2)]

∂qc2
=− (r + l − s)V (Qc) + r + l − c (A.15)

∂2E [πc(qc1, q
c
2)]

∂qc1
2 = −(r + l − s)

∫ Qc

0

f(x)g(Qc − x)dx− f(qc1)(k(h+ w))

∂2E [πc(qc1, q
c
2)]

∂qc2
2 = −(r + l − s)

∫ Qc

0

f(x)g(Qc − x)dx

∂2E [πc(qc1, q
c
2)]

∂qc1∂q
c
2

= −(r + l − s)
∫ Qc

0

f(x)g(Qc − x)dx

∂2E [πc(qc1, q
c
2)]

∂qc2∂q
c
1

= −(r + l − s)
∫ Qc

0

f(x)g(Qc − x)dx

We define M =
∂2E[πc(qc1,q

c
2)]

∂qc2
2 =

∂2E[πc(qc1,q
c
2)]

∂qc1∂q
c
2

=
∂2E[πc(qc1,q

c
2)]

∂qc2∂q
c
1

. Furthermore, we define

M =
∂2E[πc(qc1,q

c
2)]

∂qc1
2 + f(qc1)k(h + w). For a feasible inventory problem, M is ensured

to be negative as r + l > s. With this definition, Hessian matrix is written as

=

M − (k(h+ w)f(q1) M

M M


Its determinant can be computed as follows:

=

∣∣∣∣∣∣M − f(qc1)(k(h+ w)) M

M M

∣∣∣∣∣∣ = −Mf(qc1)(k(h+ w))

Having the second order derivatives negative and determinant of the Hessian positive,

we prove that E [πc] is jointly concave in qc1 and qc2. �

Proof of Proposition 3.2.1: Since the expected profit function is jointly concave in

qc1 and qc2, the unique optimal order quantities for this function given nonnegativity

constraints on order quantities can be found using Karush-Kuhn-Tucker conditions,
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which are constructed as below:

0 =− (r + l − s)V (Qc) + r + l − c− (k(h+ w))F (qc1) + kw − h(1− k) + µ1

(A.16)

0 =− (r + l − s)V (Qc) + r + l − c+ µ2 (A.17)

µ1 ≥0 (A.18)

µ2 ≥0 (A.19)

−qc1 ≤0 (A.20)

−qc2 ≤0 (A.21)

−qc1µ1 =0 (A.22)

−qc2µ2 =0 (A.23)

We will establish the proof in two parts: ρ2 < 0 and ρ2 ≥ 0. Qc = 0, i.e. F (Qc) = 0,

implies µ2 < 0 from (A.17). It contradicts with the KKT condition of dual feasibility

in (A.19), yielding (qc1)∗ + (qc2)∗ = (Qc)
∗ > 0.

• ρ2 < 0: We prove that (qc1)∗ = 0 and (qc2)∗ > 0. From (A.17), (A.16) can be

rewritten as follows:

µ1 = µ2 + k(h+ w)F (qc1) + h(1− k)− kw (A.24)

As ρ2 < 0, i.e. kw < h(1 − k), µ1 > 0 in (A.24), which requires from (A.22)

that qc1 = 0. The condition (qc1)∗ + (qc2)∗ = (Qc)∗ > 0 requires qc2 > 0, which

implies from (A.23) that µ2 = 0. Using this, we get V (qc2) = ρ1 from (A.17).

• ρ2 ≥ 0: The inequality kw ≥ h(1 − k) implies qc1 > 0 as in the single agent

case and we explain the reasoning as follows:

– Since (qc1)∗ + (qc2)∗ = (Qc)∗ > 0, qc2 = 0 implies qc1 > 0.

– If qc2 > 0, we obtain µ2 = 0 from (A.23). Having qc1 = 0 under this

condition requires µ1 > 0 from (A.22). Substituting (A.17) into (A.16)

under these conditions, we obtain µ1 = h(1 − k) − kw > 0, conflicting

with the initial condition of kw > h(1− k).
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As a result, we conclude that (qc1)∗ > 0 if kw > h(1− k). Then, we can derive

V (Qc) and F (qc1) from (A.16) and (A.17) as follows:

F (qc1) =
kw − h(1− k)− µ2

hk + kw
= ρ2 −

µ2

hk + kw
(A.25)

V (Qc) =
r + l − c+ µ2

r + l − s
= ρ1 +

µ2

r + l − s
(A.26)

Recalling (A.12) and (A.13), we should point out the similarities of the ex-

pressions for total and first period order quantities in single and central agent

settings. Recall that V (x) ≤ F (x) in the forthcoming part of this proof.

As in the single agent case, it can be argued that if ρ2 ≥ ρ1, the optimal solution

requires qc1 > 0 and qc2 = 0 given kw > h(1 − k). To prove by contradiction,

we assume qc2 > 0, yielding µ2 = 0 from (A.23). As qc2 > 0 implies Qc =

qc1 + qc2 > qc1, using (A.25) and (A.26), the relation V (Qc) = ρ1 + µ2
r+l−s ≥

F (qc1) = ρ2 − µ2
hk+kw

can be shown to hold. We can rewrite this relation as

V (Qc) = ρ1 > F (qc1) = ρ2 for µ2 = 0, conflicting with the initial argument.

Therefore, qc2 = 0 and µ2 > 0 must hold if ρ2 ≥ ρ1. Optimal order quantity for

the first period is found from (A.16) by substituting qc2 = 0 and µ1 = 0, which

corresponds to qc1
′ defined former in the proposition.

The proof is completed by showing that given kw > h(1 − k) and ρ2 ≤ ρ1,

the optimal solution yields qc1 > 0 and qc2 > 0. To prove using contradiction,

assume that qc2 = 0, requiring µ2 > 0 due to (A.23). Noting qc2 = 0 implies

Qc = qc1, we obtain V (Qc) = ρ1 + µ2
r+l−s = ρ2 − µ2

hk+kw
= F (qc1) using

(A.25) and (A.26). This equality cannot hold for µ2 > 0 if ρ2 ≤ ρ1, resulting

that qc1 = F−1(ρ2) and qc2 = V −1(ρ1) − F−1(ρ2) from (A.16) and (A.17) if

kw > h(1− k) and ρ2 ≤ ρ1.

�
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APPENDIX B

PROOFS OF CHAPTER 4

B.1 Proofs of Section 4.1

Proof of Lemma 4.1.1: As a continuous and regular function of q11 and q12, the Hes-

sian matrix of π1 is constructed to check concavity. We assume that r + l > t and

t > s without loss of generality as the system will not operate otherwise.

The derivatives are as follows:

∂E[π1(q11, q12)]

∂q11

= (r + l + s− 2t)

[∫ Q1

0

∫ Q1+q2−x

0

f(x)g(y)dydx

]
− (r + l − t) (V (Q1 + q2) + F (Q1)) + r + l − c

− (hk + kw)F (q11) + hk − h+ kw

(B.1)

∂E[π1(q11, q12)]

∂q12

= (r + l + s− 2t)

[∫ Q1

0

∫ Q1+q2−x

0

f(x)g(y)dydx

]
− (r + l − t) (V (Q1 + q2) + F (Q1)) + r + l − c

(B.2)

∂2E[π1(q11, q12)]

∂q2
11

=− (r + l − t)
[∫ Q1+q2

0

f(x)g(Q1 + q2 − x)dx

]
− (r + l − t)

[
−
∫ Q1

0

f(x)g(Q1 + q2 − x)dx

]
− (r + l − t) [−f(Q1)G(q2) + f(Q1)]

− (t− s)
[∫ Q1

0

f(x)g(Q1 + q2 − x)dx+ f(Q1)G(q2)

]
− (hk + kw)f(q11)
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∂2E[π1(q11, q12)]

∂q2
12

=− (r + l − t)
[∫ Q1+q2

0

f(x)g(Q1 + q2 − x)dx

]
− (r + l − t)

[
−
∫ Q1

0

f(x)g(Q1 + q2 − x)dx

]
− (r + l − t) [−f(Q1)G(q2) + f(Q1)]

− (t− s)
[∫ Q1

0

f(x)g(Q1 + q2 − x)dx+ f(Q1)G(q2)

]
∂2E[π1(q11, q12)]

∂q11∂q12

=− (r + l − t)
[∫ Q1+q2

0

f(x)g(Q1 + q2 − x)dx

]
− (r + l − t)

[
−
∫ Q1

0

f(x)g(Q1 + q2 − x)dx

]
− (r + l − t) [−f(Q1)G(q2) + f(Q1)]

− (t− s)
[∫ Q1

0

f(x)g(Q1 + q2 − x)dx+ f(Q1)G(q2)

]
∂2E[π1(q11, q12)]

∂q12∂q11

=− (r + l − t)
[∫ Q1+q2

0

f(x)g(Q1 + q2 − x)dx

]
− (r + l − t)

[
−
∫ Q1

0

f(x)g(Q1 + q2 − x)dx

]
− (r + l − t) [−f(Q1)G(q2) + f(Q1)]

− (t− s)
[∫ Q1

0

f(x)g(Q1 + q2 − x)dx+ f(Q1)G(q2)

]

Noting that ∂2E[π1(q11,q12)]

∂q212
= ∂2E[π1(q11,q12)]

∂q12∂q11
= ∂2E[π1(q11,q12)]

∂q11∂q12
, we set ∂2E[π1(q11,q12)]

∂q212
=

M and remark that ∂2E[π1(q11,q12)]

∂q211
+ (hk + kw)f(q11) = M . Using this substitution,

Hessian matrix of the expected profit function of player 1 is constructed as:

=

M − (kh+ kw)f(q11) M

M M


Its determinant can be computed as follows:

=

∣∣∣∣∣∣M − (kh+ kw)f(q11) M

M M

∣∣∣∣∣∣
= −Mf(q11)(hk + kw)

As M ≤ 0, the second order derivatives are proven to be non-positive while the

determinant is non-negative. Therefore, we conclude that the expected profit function

is jointly concave in q11 and q12. �
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Proof of Lemma 4.1.2: Setting I1 =
∫ q11(q2)

0
f(x)g(q11(q2) + q2 − x)dx, f = f(q11(q2)),

G = G(q2) and I2 =
∫ q11(q2)+q2

0
f(x)g(q11(q2) + q2 − x)dx, ∂q11

∂q2
is obtained from

(B.1) as

∂qF11

∂q2

=− (r + l − t)(I2 − I1) + I1(t− s)
(r + l − t) (I2 − I1 + f(1−G)) + (t− s)(I1 + fG) + f(hk + kw)

(B.3)

Since r + l > t > s, I2 ≥ I1 and f ≥ fG, (B.3) is non-positive, concluding that

qF11 is continuous and monotonically decreasing in q2 under this setting. It should be

remarked that qF11(q2) is strictly decreasing in q2 for nonzero order quantities. �

Proof of Lemma 4.1.3: Setting I1 =
∫ qF12(q2)

0
f(x)g(qF12(q2) + q2 − x)dx, f = f(qF12(q2)),

G = G(q2) and I2 =
∫ qF12(q2)+q2

0
f(x)g(qF12(q2) + q2 − x)dx, we obtain ∂qF12

∂q2
as

∂qF12

∂q2

= − (r + l − t)(I2 − I1) + I1(t− s)
(r + l − t) (I2 − I1 + f(1−G)) + (t− s)(I1 + fG)

(B.4)

Having r + l > t > s, I2 ≥ I1 and f ≥ fG, (B.4) is ensured to be non-positive,

concluding that qF12(q2) is continuous and monotonically decreasing in q2. Moreover,

the function is strictly decreasing for nonzero order quantities of q12 and q2. �

Proof of Lemma 4.1.4: We get ∂q
T
12

∂q2
as follows

∂qT12

∂q2

= − (r + l − t)(I2 − I1) + I1(t− s)
(r + l − t) (I2 − I1 + f(1−G)) + (t− s)(I1 + fG)

(B.5)

where I1 =
∫ q11+qT12(q2)

0
f(x)g(q11 + qT12(q2) + q2 − x)dx, f = f(q11 + qT12(q2)), G =

G(q2) and I2 =
∫ q11+qT12(q2)+q2

0
f(x)g(q11 + qT12(q2) + q2 − x)dx.

Since r+ l > t > s, I2 ≥ I1 and f ≥ fG, (B.5) is ensured to be non-positive. Hence,

qT12(q2) is continuous and monotonically decreasing in q2. Furthermore, qT12(q2) is

strictly decreasing in q2 for nonzero order quantities of q12 and q2. �

Proof of Lemma 4.1.5: Proving that the profit function of agent 1 is jointly concave

in q11 and q12, Lemma 4.1.1 also proves that (B.1) and (B.2) are continuous and

monotonically decreasing in q11 and q12. Taking the derivative of these expressions
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with respect to q2, we obtain the same following expression:

∂2(E[π1])

∂q11∂q2

=
∂2(E[π1])

∂q12∂q2

= −(t− s)
∫ q11+q12

0

f(x)g(q11 + q12 + q2 − x)dx

− (r + l − t)
[∫ q11+q12+q2

0

f(x)g(q11 + q12 + q2 − x)dx

]
+ (r + l − t)

[∫ q11+q12

0

f(x)g(q11 + q12 + q2 − x)dx

]
(B.6)

In (B.6), we find that the derivative is less than 0 for all values of feasible q11, q12

and q2. Hence, (B.1) and (B.2) are also continuous and monotonically decreasing in

q2. Then, the existence of a feasible q2 requires these expressions to be non-negative

as q2 → −∞ and to be non-positive as q2 → ∞ given ρ2 > 0, q11 = F−1(ρ2) and

q12 = 0. With these values, (B.1) and (B.2) become identical. Substituting these

values and evaluating the expression at q2 → −∞, we get

−(r + l − t)F (Q1) + r + l − c ≥ 0 (B.7)

yielding the condition ρ2 ≤ ρn1 = r+l−c
r+l−t .

Substituting q11 = F−1(ρ2) and q12 = 0 for q2 →∞, we get

−(t− s)F (Q1) + t− c ≤ 0 (B.8)

yielding the condition ρ2 ≥ t−c
t−s .

As a result, t−c
t−s ≤ ρ2 ≤ ρn1 is a necessary and sufficient condition for a feasible value

of q2 satisfying (B.1) and (B.2) given ρ2 > 0, q11 = F−1(ρ2) and q12 = 0.

Combining the results in (B.7) and (B.8) of Lemma 4.1.5, given ρ2 > 0, q11 =

F−1(ρ2) and q12 = 0, we find that (B.1) and (B.2) are negative for ∀q2 if ρ2 > ρn1 and

ρ2 >
t−c
t−s . We also prove that these expressions are positive for ∀q2 if ρ2 < ρn1 and

ρ2 <
t−c
t−s . Moreover, we observe that if t < c, we have t−c

t−s < 0 whereas ρ2 > 0,

concluding that the inequalities ρ2 < ρn1 and ρ2 <
t−c
t−s cannot hold simultaneously

under this parameter setting.

A final remark using Lemma 4.1.5 is that the inequality t−c
t−s ≥ ρ2 ≥ ρn1 cannot hold:

Firstly, if t ≤ c, we have t−c
t−s ≤ 0 whereas ρn1 > 0, conflicting with the initial

inequality. Secondly, if t > c, we have 1 > t−c
t−s > 0 whereas ρn1 > 1, proving the

statement. �
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Proof of Proposition 4.1.1: Since E[π1(q11, q12)] is proven to be jointly concave in

q11 and q12, Karush-Kuhn-Tucker analysis will yield optimal order decisions of agent

1 given quantity ordered by the other agent, q2. Using nonnegativity conditions on

order quantities and the first order derivatives in (B.1) and (B.2) , KKT conditions are

written below.

0 =(r + l + s− 2t)

[∫ Q1

0

∫ Q1+q2−x

0

f(x)g(y)dydx

]
+ r + l − c

− (r + l − t) (V (Q1 + q2) + F (Q1))− (hk + kw)F (q11)

− h(1− k) + kw + µ1

(B.9)

0 =(r + l + s− 2t)

[∫ Q1

0

∫ Q1+q2−x

0

f(x)g(y)dydx

]
+ r + l − c

− (r + l − t) (V (Q1 + q2) + F (Q1)) + µ2

(B.10)

Plugging (B.10) into (B.9), we obtain that

0 = −µ2 − (hk + kw)F (q11)− h(1− k) + kw + µ1 (B.11)

µ1 ≥0 (B.12)

µ2 ≥0 (B.13)

−q11 ≤0 (B.14)

−q12 ≤0 (B.15)

−q11µ1 =0 (B.16)

−q12µ2 =0 (B.17)

Given q2 = 0, having Q1 = 0 yields r+ l− c+µ2 = 0 from (B.10), implying µ2 < 0.

It contradicts with (B.13). Thus, Q1 = q11 + q12 > 0 if q2 = 0.

i. ρ2 < 0:

When ρ2 < 0, all terms except µ1 is negative in the RHS of (B.11). Hence,

µ1 > 0 and q∗11 = 0.

When µ2 > 0, q12 = 0 from (B.17) which leads to Q1 = 0. Then, (B.10) can

be rewritten as follows:

V (q2) =
r + l − c+ µ2

r + l − t
= ρn1 +

µ2

r + l − t
(B.18)
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a. t > c:

When t > c, ρn1 > 1. Then µ2 must be negative for (B.18) to hold, which

is a contradiction. From (B.13), µ2 = 0 and from (B.17), q∗12 > 0.

Plugging q∗11 = 0 and µ2 = 0 into (B.11), we obtain µ1 = h(1−k)−kw >

0. From (B.10) and Definition 4.1.2, q∗12 = qF12(q2). Note that qF12(q2) must

be non-negative for all q2, to satisfy (B.14).

Observe that (B.2) is decreasing in q12 for all q2. For q11 = q12 = 0, (B.2)

is non-negative, while for q11 = 0, q12 → ∞, it is negative. Thus, there

must exist qF12(q2) > 0. In conclusion, q∗11 = 0, µ1 = h(1 − k) − kw >

0, q∗12 = qF12(q2) > 0 and µ2 = 0 satisfy KKT conditions for part a,

completing the proof.

b. t ≤ c

When t ≤ c, ρn1 ≤ 1. We analyze this case in two parts: If V (q2) ≥ ρn1 ,

µ2 = (r + l − t) (V (q2)− ρn1 ) > 0 and q∗12 = 0 satisfies (B.18). Plugging

µ2 into (B.11), µ1 = µ2 + h(1 − k) − kw > 0, satisfying the KKT

conditions. If V (q2) < ρn1 , µ2 > 0 and q12 = 0 cannot satisfy (B.18).

Hence, µ2 = 0 and q∗12 > 0. Remaining of the proof follows similar lines

with part a.

ii. ρ2 ≥ 0:

We make the following observations:

Observation 1: Since ρ2 > 0, if µ1 > 0, we have q11 = 0. To satisfy (B.11), we

need to have µ2 > 0 and hence q12 = 0. Equivalently, if µ2 = 0, µ1 = 0. Thus,

underoptimality if q12 > 0, then q11 > 0 and if q11 = 0, then q12 = 0.

Observation 2: Suppose µ1 = 0. Then from (B.11),

F (q11) = ρ2 −
µ2

hk + kw
(B.19)

Note q12 > 0 iff q11 = F−1(ρ2). Moreover, q12 = 0 if 0 < q11 ≤ F−1(ρ2).

Observation 3: Finally, assume µ1 > 0 and µ2 > 0, requiring Q1 = 0 from

(B.12) and (B.13). From (B.9)

V (q2) = ρn3 +
µ1

r + l − t
(B.20)

84



For V (q2) < ρn3 , there does not exist µ1 satisfying (B.20). Thus, Q1 = q11 +

q12 > 0 if V (q2) < ρn3 .

c. kw + t > h(1− k) + c

In this case, we have ρn3 > 1, which results V (q2) < 1 < ρn3 . Since

V (q2) < ρn3 , from Observations 1 and 3 above, µ1 = 0, q∗11 > 0 must

hold.

q∗11 and q∗12 changes with respect to q2, qT2 and ρ2. We identify four cases

as follows:

1. t−c
t−s ≤ ρ2 ≤ ρn1 and q2 < qT2 : We have −∞ < qT2 < ∞ from

Definition 4.1.4. For q11 = F−1(ρ2) and q12 = 0, (B.1) and (B.2) is

positive for ∀q2 ∈ (0, qT2 ) from Lemma 4.1.5. Furthermore, (B.1) and

(B.2) equals to s − c < 0 for q11 = F−1(ρ2) and q12 → ∞. Thus,

for a given q2 ∈ (0, qT2 ), there exists q12 > 0, which makes (B.1) and

(B.2) equal to 0. Revisiting Definition 4.1.3, this value is denoted as

qT12(q2).

In conclusion, q∗11 = F−1(ρ2), µ1 = 0, q∗12 = qT12(q2) and µ2 = 0

satisfy KKT conditions.

2. t−c
t−s ≤ ρ2 ≤ ρn1 and q2 ≥ qT2 : qT2 is finite from Definition 4.1.4.

For q11 = F−1(ρ2) and q12 = 0, (B.1) and (B.2) are identical and

non-positive for ∀q2 ∈ (qT2 ,∞) from Lemma 4.1.5. In addition, for

q11 = 0 and q12 = 0, (B.1) equals to r + l − c + kw − h(1− k) > 0

whereas (B.2) equals to r + l − c > 0. Thus, for a given q2 and

q12 = 0, there exists ∃q11 ∈ (0, F−1(ρ2)) for which (B.1)= 0 holds.

Referring to Definition 4.1.1, this value of q11 corresponds to qF11(q2).

q11 = qF11(q2) > 0 requires µ1 = 0 from (B.16). From (B.11), for

qF11(q2) ∈ (0, F−1(ρ2)), q12 = 0 and µ1 = 0, we obtain µ2 = kw −
h(1− k)− (hk + kw)F (qF11(q2)), which is non-negative. Hence, we

observe that q∗11 = qF11(q2), q∗12 = 0, µ1 = 0 and µ2 = kw−h(1−k)−
(hk+ kw)F (qF11(q2)) satisfies KKT conditions for any q2 ∈ (qT2 ,∞).

3. t−c
t−s > ρ2 and ρn1 > ρ2: qT2 is not finite. For q11 = F−1(ρ2) and

q12 = 0, Lemma 4.1.5 shows that RHS of (B.1) and (B.2) is positive

for ∀q2 ∈ (0,∞).
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The analysis continues similar to case 1. As a result, we observe that

q∗11 = F−1(ρ2), q∗12 = qT12(q2), µ1 = 0 and µ2 = 0 satisfies KKT

conditions under this case for ∀q2 ∈ (0,∞).

4. t−c
t−s < ρ2 and ρn1 < ρ2: qT2 is defined as−∞ in Definition 4.1.4. From

Lemma 4.1.5, if q11 = F−1(ρ2) and q12 = 0, we know that (B.1) and

(B.2) are negative for ∀q2 ∈ (0,∞).

The remaining analysis follows steps similar to case 2. As a result,

we observe that q∗11 =F
11 (q2), q∗12 = 0, µ1 = 0 and µ2 = kw − h(1−

k) − (hk + kw)F (qF11(q2)) satisfies KKT conditions under this case

∀q2 ∈ (0,∞).

d. kw + t < h(1− k) + c:

In this case, kw+ t < h(1−k)+ c implies t < c. Thus, we have t−c
t−s < ρ2

and qT2 <∞. kw + t < h(1− k) + c also implies ρn3 < 1. Since ρn3 < 1,

either V (q2) < ρn3 or V (q2) ≥ ρn3 .

- If V (q2) ≥ ρn3 , from Observation 3, there exist µ1 > 0 and µ2 > 0

satisfying (B.20), which implies q∗11 = q∗12 = 0.

- If V (q2) < ρn3 , from Observation 3, Q∗1 > 0. Given this condition, q∗11

and q∗12 change with respect to q2, qT2 and ρ2. We identify three cases as

follows:

1. t−c
t−s ≤ ρ2 ≤ r+l−c

r+l−t and q2 < qT2 : For q2 ∈ (0, qT2 ), q11 = F−1(ρ2),

q12 = qT12 and µ1 = 0 and µ2 = 0 satisfies (B.12) and (B.13). q∗11 =

F−1(ρ2), µ1 = 0, q∗12 = qT12(q2) and µ2 = 0 satisfy KKT conditions.

The proof follows similar lines as in case 1 of part c.

2. t−c
t−s ≤ ρ2 ≤ r+l−c

r+l−t and qT2 ≤ q2 < V −1(ρn3 ): The proof follows

similar lines as in case 2 of part c. We observe −∞ < qT2 < ∞.

For a given q2 ∈ (qT2 , V
−1(ρ3)), there exists q11 > 0, i.e. qF11(q2), for

which (B.1)=0 holds.

In conclusion, q∗11 = qF11(q2), µ1 = 0, q∗12 = 0 and µ2 = −(hk +

kw)F (qF11) + kw − h(1− k) > 0 satisfy KKT conditions.

3. t−c
t−s < ρ2 and r+l−c

r+l−t < ρ2: qT2 is not finite from Definition 4.1.4.

For any q2, the set of variables q∗11 = qF11(q2), µ1 = 0, q∗12 = 0

and µ2 = −(hk + kw)F (qF11) + kw − h(1 − k) > 0 satisfies KKT
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conditions. The proof follows similar lines to case 4 in part c.

�

B.2 Proofs of Section 4.2

Proof of Lemma 4.2.1: As a continuous and regular function of q2, the second order

derivative of the expected profit expression is checked.

∂E[π2(q2)]

∂q2

=− (r + l + s− 2t)

[∫ Q1

0

∫ Q1+q2−x

0

f(x)g(y)dydx− F (Q1)G(q2)

]
− (t− s)V (Q1 + q2)− (r + l − t)G(q2) + r + l − c

(B.21)

∂2E[π2(q2)]

∂q2
2

=− (r + l − t)
[∫ Q1

0

f(x)g(Q1 + q2 − x)dx

]
− (r + l − t) [−F (Q1)g(q2) + g(q2)]− (t− s) [F (Q1)g(q2)]

− (t− s)
[∫ Q1+q2

0

f(x)g(Q1 + q2 − x)dx−
∫ Q1

0

f(x)g(Q1 + q2 − x)dx

]
Since

∫ Q1+q2
0

f(x)g(Q1 + q2 − x)dx ≥
∫ Q1

0
f(x)g(Q1 − x)dx and g(q2)F (Q1) ≤

F (Q1), the second order derivative expression is ensured to be negative, yielding that

the expected profit function of player 2 is concave for an operable setting. �

Proof of Lemma 4.2.2: Taking the derivative of (B.21) with respect to Q1, we obtain

∂2(E[π2(q2)])

∂q2∂Q1

=− (t− s)
∫ Q1+q2

0

f(x)g(Q1 + q2 − x)dx

− (r + l + s− 2t)

[∫ Q1

0

f(x)g(q11 + q12 + q2 − x)dx

] (B.22)

In (B.22), we find that the derivative is defined and less than 0 for all values of feasible

Q1 and q2. Hence, (B.21) is continuous and monotonically decreasing in Q1. Since

(B.21) is also decreasing in q2 due to the concavity of agent 2’s profit function, we

can argue that the existence of a positive-valued q2 requires (B.21) to be non-negative

at q2 → 0 and non-positive at q2 → ∞. Evaluating (B.21) at q2 → −∞, we get

s − c, which negative for all Q1 values. Evaluating (B.21) at q2 → 0, we obtain

−(r + l − t)V (Q1) + r + l − c.
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Observe that for t > c, −(r + l − t)V (Q1) + r + l − c > 0. Then, there exists

qF2 (Q1) > 0 for ∀Q1 given t > c.

Moreover, observe that for t ≤ c,−(r+ l−t)V (Q1)+r+ l−c > 0iff V −1(ρ1) > Q1.

Then, there exists qF2 (Q1) > 0 for ∀Q1 ∈ (0, V −1(ρ1)) given t ≤ c. �

Proof of Lemma 4.2.3: We take q2 as a function of Q1 in (B.21), denoted as qF2 (Q1).

Given F = F (Q1), g = g(qF2 (Q1)), I2 =
∫ Q1+qF2 (Q1)

0
f(x)g(Q1 + qF2 (Q1)− x)dx

and I1 =
∫ Q1

0
f(x)g(Q1 + qF2 (Q1)− x)dx, we obtain ∂qF2

∂Q1
as follows:

∂qF2
∂Q1

= − (t− s)(I2 − I1) + I1(r + l − t)
(t− s)(gF + I2 − I1) + (r + l − t)(g(1− F ) + I1)

(B.23)

Since r+ l > t > s and I2 ≥ I1, (B.23) is ensured to be non-positive. Hence, qF2 (Q1)

is continuous and monotonically decreasing in Q1. Furthermore, qF2 (Q1) is strictly

decreasing in Q1 for nonzero order quantities of Q1. �

Proof of Proposition 4.2.1: Karush-Kuhn-Tucker analysis will yield optimal order-

ing decision of agent 2 given quantity ordered by the other agent since E[π2(q2)] is

concave in q2 given the convex set constructred with the nonnegativity condition on

q2. We write the conditions as follows using the first order expression in (B.21).

0 = −(r + l + s− 2t)

[∫ Q1

0

∫ Q1+q2−x

0

f(x)g(y)dydx−G(q2)F (Q1)

]
− (t− s)V (Q1 + q2)− (r + l − t)G(q2) + r + l − c+ µ

(B.24)

µ ≥0 (B.25)

−q2 ≤0 (B.26)

−q2µ =0 (B.27)

An initial notice is that total quantity ordered by two agents cannot be zero: For

q2 = 0 given Q1 = 0, (B.24) can be rewritten as µ = −r− l+ c < 0, which conflicts

with (B.25).

Assume µ > 0, which requires q2 = 0 from (B.27) and implies 0 < V (Q1) ≤ 1.

(B.24) can be rewritten as follows:

0 = −(r + l − t)V (Q1) + r + l − c+ µ (B.28)
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a. t > c:

For t > c, (B.28) yields µ < 0, conflicting with (B.25). Therefore, given t > c,

the optimal solution requires µ = 0 and q∗2 > 0, which corresponds to qF2 (Q1)

by definition. Using Lemma 4.2.2, q∗2 = qF2 (Q1)∗ and µ = 0 satisfies KKT

conditions.

b. t ≤ c:

From (B.28), we observe that µ > 0 for Q1 > V −1(ρn1 ). Hence, q∗2 = 0 and

µ = (r + l − t)V (Q1)− r − l + c satisfies KKT conditions if Q1 > V −1(ρn1 ).

For Q1 < V −1(ρn1 ), (B.28) yields µ < 0, conficting with (B.25). Thus, we

conclude that given t ≤ c and Q1 < V −1(ρn1 ), the optimal solution requires

µ = 0 and q∗2 > 0, which corresponds to qF2 (Q1) by definition. q∗2 = qF2 (Q1)∗

and µ = 0 satisfies KKT conditions using Lemma 4.2.2.

�

B.3 Proofs of Section 3.3

Proof of Lemma 4.3.1. : Firstly, we use Proposition 4.1.1 to show continuity as fol-

lows:

• ρ2 < 0 and t > c: We prove that Q∗1(q2) is continuous in q2, using Lemma

4.1.3.

• ρ2 < 0 and t < c: For q2 ≥ V (−1)(ρ1), Q∗1(q2) is constant at Q∗1 = 0, ensuring

continuity in q2. For q2 < V (−1)(ρ1), Q∗1 = qF12(q2) from Proposition 4.1.1.

Q∗1(q2) is continuous and monotonically decreasing in q2 using Lemma 4.1.3.

We proceed with the intersection point, q2 = V −1(ρ1). From Proposition 4.1.1,

we obtain limq2→V −1(ρ1)+ Q1(q2) = 0. Substituting q2 = V −1(ρ1) into (B.2),

we find limq2→V −1(ρ1)− Q1(q2) = qF12 (V −1(ρ1)) = 0. Thus, we argue that

Q∗1(q2) is continuous in q2 for ρ2 < 0 and t < c.

• ρ2 > 0 and kw + t > c + h(1 − k): For q2 ≥ qT2 , we have Q∗1 = qF11(q2).

Using Lemma 4.1.2, we find that Q∗1(q2) is continuous in q2. For q2 < qT2 ,
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Q∗1 = F−1(ρ2)+qT12(q2). Using Lemma 4.1.4,Q∗1(q2) is shown to be continuous

in q2.

We furthter investigate the intersection point, q2 = qT2 . From Proposition

4.1.1, we have lim
q2→qT2

+ Q1(q2) = qF11(q2). Substituting q11 = qF11(qT2 ) and

q12 = 0 in (B.1), we find lim
q2→qT2

+ Q1(q2) = F−1(ρ2). Moreover, we have

lim
q2→qT2

− Q1(q2) = F−1(ρ2) + qT12(q2) from Proposition 4.1.1. Substituting

q12 = qT12(qT2 ) in (B.2), we find lim
q2→qT2

− Q1(q2) = F−1(ρ2). Having the same

solution for the intersection point, we conclude that Q∗1(q2) is continuous in q2.

• ρ2 > 0 and kw + t < c + h(1 − k): For q2 ≥ V −1(ρ3), Q∗1(q2) is constant

at Q∗1 = 0, ensuring continuity in q2. For V −1(ρ3) ≥ q2 ≥ qT2 , we have

Q∗1 = qF11(q2), whereas for qT2 > q2, we have Q∗1 = F−1(ρ2) + qT12(q2). Similar

to part c, we use Lemma 4.1.2 and Lemma 4.1.4 to ensure continuity of the best

response function, respectively.

We proceed with the intersection points at q2 = V −1(ρ3) and q2 = qT2 . Begin-

ning with q2 = V −1(ρ3), observe that limq2→V −1(ρ3)+ Q1(q2) = 0 from Propo-

sition 4.1.1. Substituting q11 = qF11 (V −1(ρ3)) and q12 = 0 in (B.1), we also get

limq2→V −1(ρ3)− Q1(q2) = 0, ensuring continuity at q2 = V −1(ρ3).

The proof for the second intersection point is the same as in part c. We obtain

lim
q2→qT2

+ Q1(q2) = lim
q2→qT2

− Q1(q2) = F−1(ρ2) by using Proposition 4.1.1

and (B.1), concluding that Q∗1(q2) is continuous in q2 for part d.

As a result, Q∗1(q2) is continuous in q2 for all possible parameter values.

Secondly, optimal solution structure in Proposition 4.2.1 is used to show continuity.

• t > c: q∗2 = qF2 (Q1) from Proposition 4.2.1. Using Lemma 4.2.3, we conclude

that q∗2(Q1) is continuous and monotonically decreasing in Q1.

• t < c: For Q1 > V −1(ρn1 ), q∗2(Q1) = 0, hence continuous. For Q1 < V −1(ρ1),

we have q∗2 = qF2 (Q1) from Proposition 4.2.1, for which we ensure continuity

using Lemma 4.2.3.

We also investigate the intersection point at Q1 = V −1(ρ1) to complete the

proof. We observe that limQ1→V −1(ρ1)+ q2(Q1) = 0. Plugging Q1 = V −1(ρ1)
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into (B.21), we also find limQ1→V −1(ρ1)− q2(Q1) = 0. Having the same solution

at the intersection point, we argue q∗2(Q1) is continuous in q2.

As a result, q∗2(Q1) is continuous in Q1 for all possible parameter alignments.

Together with the results above, Lemmas 4.1.2, 4.1.3, 4.1.4 and 4.2.3 ensure the con-

tinuous and monotonically decreasing property of the best response functions on the

(q2, Q1) plane. Given this property, we ensure that the upper and lower bounds are

located at the values of 0 and∞ on the plane.

Using Propositions 4.1.1 and 4.2.1, we will elaborate on possible parameter settings

to investigate the bounds of the functions. We denote ā as the upper bound and a
¯

as

the lower bound in the following parts of the proof.

1. ρ2 < 0 and t > c : For q2 = 0, we have Q̄1 = q̄12 = qF12(0). As V (x) ≤ F (x),

q̄12 ≤ V −1 (ρ1) = V −1( r+l−c
r+l−s). We obtain the lower bound on Q1 by setting

q2 →∞, which is Q
¯

1 = F−1( t−c
t−s).

For Q1 = 0, we have q̄2 = qF2 (0). As V (x) ≤ G(x), q̄12 ≤ V −1 (ρ1). We

obtain the lower bound on q2 by setting Q1 →∞, which is q
¯

2 = G−1( t−c
t−s).

2. ρ2 < 0 and t < c: For q2 = 0, we have Q̄1 = q̄12 = qF12(0). As V (x) ≤ F (x),

q̄12 ≤ V −1 (ρ1). We obtain the lower bound on Q1 by setting q2 → ∞, which

is Q
¯

1 = 0.

For Q1 = 0, we have q̄2 = qF2 (0). As V (x) ≤ G(x), q̄12 ≤ V −1 (ρ1). We

obtain the lower bound on q2 by setting Q1 →∞, which is q
¯

2 = 0.

3. ρ2 > 0 and t > c: For q2 = 0, we have Q̄1 = F−1(ρ2)+q̄12 = F−1(ρ2)+qT12(0).

As V (x) ≤ F (x), Q̄1 ≤ V −1 (ρ1). We obtain the lower bound on Q1 by setting

q2 →∞, which is Q
¯

1 = q
¯

11 = qF11(∞) = 0.

ForQ1 = 0, we have q̄2 = qF2 (0). As V (x) ≤ G(x), q̄12 ≤ V −1 (ρ1). We obtain

the lower bound on q2 by setting Q1 →∞, which is q
¯

2 = qF2 (∞) = G−1( t−c
t−s).

A final remark is that q2
¯
> 0 as t > c under this parameter setting.

4. ρ2 > 0, t < c and kw + t > h(1 − k) + c: For q2 = 0, we have Q̄1 =

F−1(ρ2) + q̄12 = F−1(ρ2) + qT12(0). As V (x) ≤ F (x), Q̄1 ≤ V −1 (ρ1). We
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obtain the lower bound on Q1 by setting q2 → ∞, which is Q
¯

1 = qF11(∞) =

F−1( t−c+kw−h(1−k)
kw+hk

). Note that this value is positive since kw+t > h(1−k)+c

under this parameter setting.

For Q1 = 0, we have q̄2 = qF2 (0). As V (x) ≤ G(x), q̄12 ≤ V −1
(
r+l−c
r+l−s

)
. We

obtain the lower bound on q2 by setting Q1 →∞, which is q
¯

2 = 0.

5. ρ2 > 0, t < c and kw + t < h(1 − k) + c: For q2 = 0, we have Q̄1 =

F−1(ρ2) + q̄12 = F−1(ρ2) + qT12(0). As V (x) ≤ F (x), Q̄1 ≤ V −1 (ρ1). We

obtain the lower bound on Q1 by setting q2 →∞, which is Q
¯

1 = 0.

For Q1 = 0, we have q̄2 = qF2 (0). As V (x) ≤ G(x), q̄12 ≤ V −1 (ρ1). We

obtain the lower bound on q2 by setting Q1 →∞, which is q
¯

2 = 0.

As a result, we prove that both best response functions are bounded on the (q2, Q1)

plane. �

Proof of Theorem 4.3.1. Lemma 4.3.1 proves that best response functions are con-

tinuous and bounded, which is the necessary and sufficient condition to prove the

existence of a Nash equilibrium. �

Proof of Lemma 4.3.2. We begin with comparing qF11 and qF2 . We can compute the

slopes of functions in (q2, Q1) plane, dq11
dq2

using implicit derivation from the first order

conditions in (B.1) and (B.21) with q12 = 0. Using (B.3), since (r+l−t) (f(1−G))+

fG(t − s) + f(hk + kw) ≥ 0, we prove that the slope of qF11(q2) is always greater

than −1.

To compare this to the slope of qF2 , we obtain dq11
dq2

of qF2 using (B.21 ) as

dq11

dq2

= −(r + l − t)(I1 + g(1− F )) + (t− s)(I2 − I1 + gF )

I1(r + l − t) + (t− s)(I2 − I1)
< −1 (B.29)

where F = F (q11), g = g(q2), I2 =
∫ q11+q2

0
f(x)g(q11 + q2 − x)dx and I1 =∫ q11

0
f(x)g(q11 + q2 − x)dx.

Note that the slope of qF2 is always less than −1 using (B.29). This completes the

proof that qF2 is steeper than qF11 in (q2, Q1) plane.
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We continue with qF12 and qF2 . Slopes of the functions in (q2, Q1) plane, dqF12
dq2

, can

be obtained from the first order conditions in (B.2) and (B.21) by means of im-

plicit derivation. Recall the equation (B.3) where f = f(q12), G = G(q2), I1 =∫ q12
0

f(x)g(q12 + q2 − x)dx and I2 =
∫ q12+q2

0
f(x)g(q12 + q2 − x)dx, since (r + l −

t) (f(1−G)) + fG(t− s) ≥ 0, we prove that the slope of qF12 is always greater than

−1.

Moreover, using (B.21), we obtain the slope of qF2 on the (q2, Q1) plane as

dqF12

dq2

= −(r + l − t)(I1 + g(1− F )) + (t− s)(I2 − I1 + gF )

I1(r + l − t) + (t− s)(I2 − I1)
(B.30)

where F = F (q12), g = g(q2), I2 =
∫ q12+q2

0
f(x)g(q12 + q2 − x)dx and I1 =∫ q12

0
f(x)g(q12 + q2 − x)dx. Since (r + l − t) (g(1− F )) + gF (t − s) ≥ 0 , we

ensure dq12
dq2

< −1.

As a result, we prove that qF2 is steeper than qF12 in (q2, Q1) plane.

Finally, we compare qT12 and qF2 . With q11 = F−1(ρ2), we obtain the slopes from the

first order conditions in (B.2) and (B.21).

We use (B.5), where I1 =
∫ F−1(ρ2)+q12

0
f(x)g(F−1(ρ2) + q12 + q2 − x)dx, f = f(F−1(ρ2)+

q12)G = G(q2) and I2 =
∫ F−1(ρ2)+q12+q2

0
f(x)g(F−1(ρ2) + q12 + q2 − x)dx to inves-

tigate the slope of qT12. As (r+ l− t) (f(1−G)) + fG(t− s) ≥ 0, its slope is always

greater than −1.

We obtain dqT12
dq2

from (B.21) as

dqT12

dq2

= −(r + l − t)(I1 + g(1− F )) + (t− s)(I2 − I1 + gF )

I1(r + l − t) + (t− s)(I2 − I1)
< −1 (B.31)

where I2 =
∫ F−1(ρ2)+q12+q2

0
f(x)g(F−1(ρ2) + q12 + q2 − x)dx, F = F (F−1(ρ2) +

q12), g = g(q2) and I1 =
∫ F−1(ρ2)+q12

0
f(x)g(F−1(ρ2) + q12 + q2 − x)dx.

Comparing the slopes, we prove that qF2 is steeper than qF11 on the (q2, Q1) plane. �

Proof of Theorem 4.3.2. Given the existence of the equilibrium in Theorem 4.3.1,

uniqueness of the equilibrium requires that the slope of the best response function of

one agent is always strictly smaller than that of the other.
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If Q∗1(q2) is constant, dQ∗
1(q2)

dq2
= 0. If q∗2(Q1) is constant, dq∗2(Q1)

dq2
= −∞. Together

with Lemma 4.3.2, we prove that dQ∗
1(q2)

dq2
> −1 >

dq∗2(Q1)

dq2
.

As a result, the slope of q∗2(Q1) is always strictly smaller than that of Q∗1(q2), com-

pleting the proof. �

Proof of Corollary 4.3.2.1. We will elaborate on five possible parameter alignments.

1. ρ2 < 0 and t > c: For t > c > s, Q
¯

1 = q
¯

12 = F−1( t−c
t−s) > 0 and q

¯
2 =

G−1( t−c
t−s) > 0, which ensure Q∗1 = q∗12 > 0 and q∗2 > 0 at equilibrium.

2. ρ2 < 0 and t < c: It is shown that Q̄1 and q̄2 are bounded by V −1(ρ1).

Q∗1 = 0 requires q∗2 > V −1(ρn1 ) from Proposition 4.1.1, whereas q∗2 = 0 re-

quires Q∗1 > V −1(ρn1 ) from Proposition 4.2.1. Recall that t > s, yielding

V −1(ρn1 ) > V −1(ρ1). Hence, both agents have positive order quantities at the

unique equilibrium point.

3. ρ2 > 0 and t > c: Having Q
¯

1 = qF11(∞) = F−1( t−c+kw−h(1−k)
kw+hk

) > 0 and

q
¯

2 = G−1( t−c
t−s) > 0, the agents are ensured to place positive order quantities.

4. ρ2 > 0, t < c and kw + t > h(1 − k) + c: We found that Q̄1 = V −1(ρ1).

However, the value of Q1 that makes q∗2 = 0 is V −1(ρn1 ) > Q̄1 = V −1(ρ1).

Hence, Q∗1 > 0. In addition, the lower bound on agent 1’s order quantity is

shown to be positive, completing the proof.

5. ρ2 > 0, t < c and kw + t < h(1− k) + c: From Proposition 4.1.1, the value of

q2 that makes Q∗1 = 0 is V −1(ρn3 ). However, V −1(ρn3 ) > V −1(ρ1) ≥ q̄2 since

kw − h(1− k) > 0 and t > s. Thus, Q∗1 > 0 at equilibrium.

Moreover, q∗2 = 0 requires Q∗1 > V −1(ρn1 ) from Proposition 4.2.1. However,

V −1(ρn1 ) > Q̄1 = V −1(ρ1). Hence, q∗2 > 0 at equilibrium.

�
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