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ABSTRACT

COMPUTATIONAL MODELING OF THERMAL AND
SHRINKAGE-INDUCED CRACKING IN CONCRETE

Ghasabeh, Mehran

Ph.D., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Serdar Göktepe

Co-Supervisor: Prof. Dr. İsmail Özgür Yaman

March 2021, 201 pages

This work is concerned with the computational modeling of thermal and shrinkage-

induced cracking in concrete. Thermal and hygral gradients develop within concrete

structures of varying sizes and aspect ratios due to the intrinsic physicochemical phe-

nomena accompanied by adverse environmental effects. These spatio-temporal gra-

dients invariably result in uneven volumetric deformations that can cause stress con-

centrations when the concrete is sufficiently rigid. Then, when the gained tensile

strength is lower than the principal stresses generated by the non-uniform volume

changes, cracks will occur and make concrete structures prone to deleterious envi-

ronmental effects that can cause consequent destructive durability problems. There-

fore, predictive computational models are crucial to conduct crack risk analyses not

only during the design stage but also during and after the construction of important

concrete structures. For this purpose, we develop multi-field computational mod-

els to simulate thermal and shrinkage-induced cracking separately. For the former,

we developed a novel chemo-thermo-mechanical model coupled with a quasi-brittle

phase-field model where the hydration, thermal, mechanical, and fracture problems
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are solved in a coupled manner. For the drying shrinkage-induced cracking, we de-

velop a new coupled chemo-hygro-mechanical model within the framework of poro-

viscoelasticity to describe the basic and drying creep of concrete in short- and long-

terms. The latter model is further supplemented by a cohesive phase-field model to

simulate shrinkage-induced cracking. The capabilities of the proposed models are

assessed through the benchmark problems and experimental results reported in the

literature.

Keywords: Thermal Cracking, Chemo-Thermo-Mechanical Model, Phase-Field Model,

Poroviscoelasticity, Shrinkage-Induced Cracking
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ÖZ

BETONDA ISI VE RÖTREDEN KAYNAKLI ÇATLAMALARIN
HESAPLAMALI MODELLENMESİ

Ghasabeh, Mehran

Doktora, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Serdar Göktepe

Ortak Tez Yöneticisi: Prof. Dr. İsmail Özgür Yaman

Mart 2021, 201 sayfa

Bu çalışma betonda ısı ve rötreden kaynaklanan çatlakların hesaplamalı modelleme-

sini konu almaktadır. Değişken boyut ve en-boy oranlarına sahip beton yapılarında,

olumsuz çevresel etkilerin de eşlik ettiği içsel fizikokimyasal olaylar nedeniyle sı-

caklık ve bağıl nem değişimine bağlı gradyanlar gelişir. Bu uzamsal ve zamansal

gradyanlar, genellikle beton yeterince rijitleştiğinde, gerilme yoğunlaşmaları oluştu-

rabilecek düzensiz hacimsel şekil değişimlerine neden olur. Bu durumda, kazanılan

gerilme dayanımı, düzensiz hacim değişiklikleri sonucunda oluşan asal gerilmelerden

daha düşük olduğunda çatlaklar oluşup, beton yapıları bunu izleyen daha yıkıcı dura-

bilite sorunlarına neden olabilecek zararlı çevresel etkilere daha açık hale getirecektir.

Bu nedenle kestirime dayalı hesaplamalı modeller, önemli beton yapıların çatlak riski

analizlerini sadece tasarım aşamasında değil, inşası sırasında ve sonrasında da ya-

pabilmek için kritik önemdedir. Bu amaçla, ısı ve rötre kaynaklı çatlamayı ayrı ayrı

modellemek için çok alanlı hesaplamalı modeller geliştirildi. İlki için, hidratasyon,

ısıl, mekanik ve kırılma problemlerinin bağlaşık bir şekilde çözüldüğü yarı kırılgan
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bir faz alanı modeliyle birleştirilmiş yeni bir kemo-termo-mekanik model önerilmek-

tedir. Kuruma rötresine bağlı çatlama için, betonda temel ve kuruma sünmesini kısa

ve uzun vadede tanımlamak için poroviskoelastisite kuramı kullanılarak yeni bir bağ-

laşık kemo-higro-mekanik model sunulmaktadır. İkinci model ayrıca rötre kaynaklı

çatlamayı dikkate almak için kohezif bir faz-alan modeli ile birleştirilmiştir. Önerilen

modellerin yeterlikleri, bu modellerin kullanımı ile elde edilen sonuçların literatürde

bildirilen kıyaslama problemleri ve deneysel sonuçlarla karşılaştırılarak değerlendi-

rilmiştir.

Anahtar Kelimeler: Isıl Çatlama, Kemo-Termo-Mekanik Model, Faz Alanı Modeli,

Poroviskoelastisite, Rötreye Bağlı Çatlama

viii



To Angle of My Life Noras, Hero of My Life Rahim

and Spring of My Life Bahar

ix



ACKNOWLEDGMENTS

The Revelations of Devout and Learn’d

Who rose before us, and as Prophets burn’d,

Are all but Stories, which, awoke from Sleep

They told their comrades, and to Sleep return’d.

"Omar Khayyam"

First and foremost, I would like to thank my dear professor, Assoc. Prof. Dr. Serdar

Göktepe, for the efforts he made in my education and training, and for the good and

unforgettable years we had together. Years that are very fruitful and constructive for

me from a scientific and educational point of view. I am grateful to my professor for

his trust in me. In addition to the admirable knowledge he had in guiding my thesis,

the influential guidance, experiences and supports he provided to me are invaluable.

I would also like to thank my dear co-advisor, Prof. Dr. İsmail Özgür Yaman, for his
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never forget her friendship, exceptional help and encouragement. Her friendship is

extremely valuable to me.

I would like to particularly thank Özgür Paşaoğlu with whom we had great days in
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CHAPTER 1

INTRODUCTION

1.1 Concrete and Hydration

Concrete is a widely used construction material in the world. For millennia, it has

been used in constructing the pioneering architectural achievements at least as far

back as the Egyptian times and Roman empire. Concrete owes this remarkable pop-

ularity to its several advantages. It is known for its high compressive strength so that

it can be easily adopted to meet the requirements related to the specific degree of

strength and the deformability needed in a specific design by modifying the water,

cement and aggregate ratio. Concrete gains it strength and stiffness over time. There-

fore, it will be a durable construction material if its production process is followed

by providing correct specifications dictated by the specific requirements for the de-

sired service life. The accelerated construction times of the concrete structures, the

limited maintenance requirements and the consequent reduction in life-cycle costs

distinguish the economical benefits of concrete among other alternative construction

materials [1]. Higher thermal mass characteristic of concrete causes thermal stability

as its main benefit optimizes the energy performance of concrete constructions [2].

The versatility is another benefit of concrete which makes it applicable in construct-

ing different types of structures such as buildings, roads, infrastructures, dams, and

nuclear power plants.

Conventional concrete is produced by mixing Portland cement with sand, crushed

rock, and water. Hence, concrete is considered as a composite material that con-

sists fundamentally of a binding medium (cement paste) and fragments of aggregate

embedded within the medium. Concrete has a highly heterogeneous and complex
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microstructure, due to numerous capillary porosities, nonhydrate granules, and crys-

talline solids at the microscale. For engineering applications, however, it is convenient

to consider concrete as a homogeneous material of the macroscale with smeared in-

homogeneities. The properties of concrete such as strength, rigidity, dimensional sta-

bility, and durability are determined by the characteristics of hydrated cement paste,

aggregates, and the interfacial transition zone between the cement paste and aggre-

gates.

Concrete gains its physical characteristics such as rigidity, strength and durability

through a set of exothermic chemical reactions that is collectively referred as hy-

dration. To understand the physicochemical mechanisms controlling the mechanical

properties of cementitious materials such as the stiffness, strength, deformability, and

durability, predictive modeling and characterization of the hydration process and heat

development are of primary concerns. The hydration of cement is a quite complex set

of competing chemical reactions of different kinetics and amplitudes, and is related to

complex physico-chemical phenomena at the microlevel of material description. As

concrete is composed of water phases, layers of hydrates, unhydrated cement and gel

porosities, it can be considered as a porous medium.

During the hydration process, water diffuses through the layers of recently formed

hydrates to reach the unhydarated cement, then new hydrates are produced within

the time scale of micro-diffusion process. This water is physically or chemically

combined [3, 4]. The microdiffusion of free water though the layers of hydrates are

schematically represented in Figure 1.1. To this end, the aformentioned microdiffu-

sion may be evaluated as a predominant mechanism controlling the hydration reaction

at the microlevel of the porous medium. From this point of view, it is observed that

the water content in terms of the moisture distribution within cementitious materi-

als is an important factor. This field primarily dominates the hydration process of

cementitious materials so the physico-chemical properties of concrete are dependent

mainly on the moisture distribution. The driving force of the free water microdiffu-

sion is known as affinity. The affinity is specified in terms of Gibbs free energy and

the hydration extent at constant pressure and temperature [5]. In reality, the affinity

of a chemical potential describes the imbalance between the chemical potentials of

the free water and the water combined in the solid phase [6].
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Free water

Layer of hydrates

Unhydrated cement

Figure 1.1: The demonstration of micro-diffusion of free water through layers of

hydrates to reach unhydrated cement during course of hydration [3].

The hydration of cement compounds is an exothermic chemical reaction, which is

accompanied by the release of energy in the form of heat. At early age, during the

hardening of young concrete, the process of heat liberation leads to remarkable tem-

perature increase and volume changes in concrete. In the first day after casting, the

generated heat may produce a temperature rise up to 50−60◦C under adiabatic condi-

tions. In this duration, the viscous effects are significant and due to quite low stiffness

of concrete, the temperature increase is primarily accompanied by moderate com-

pressive stresses. The concrete initiates to cool down later on, while the stiffness is

significantly continuing to increase [7].

The hydration process instantly begins when the cement ingredients come into con-

tact with free water, and heat is consequently liberated at every moment until the

hydration is accomplished. As a matter of fact, this chemical process does not reach

100% level of accomplishment, the heat generation and the strength gain also con-

tinue in a mature concrete. At the microscopic level of concrete, there are five main

mineral components forming Portland cement. These major components are alumi-

nates, including tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF),

silicates, including tricalcium silicate (C3S) and dicalcium silicate (C2S), and calcium

sulfate (CS̄), also known as gypsum, sometimes hydrated (CS̄H2). Calcium silicates

constitute about 75% of cement, therefore, the primary compounds during the hydra-

tion process are produced as a result of the reactions between silicates and water. The

dissolution of hydrates is a slow process so the silicates do not have immediate, but

have major effect on concrete strength and durability in the long term. The hydra-
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tion process can be described in five stages, according to the rate of heat of hydration

evolution [5], see Figure 1.2.
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Figure 1.2: Cement hydration process in terms of the evolution of rate of heat of

hydration.

In the first stage, also known as the mixing stage, when water gets contact with ce-

ment particles C3A and gypsum (CS̄) dissolve at once. Then, solid compounds are

produced from these materials within a short time of about 15 minutes. The process

results in the significant heat generation that increases at a high speed. In this period,

a substance coating the cement grains is produced from the reaction between fast-

dissolving gypsum, dissolved C3A and water. The hydration product is solid without

a specific composition or crystalline form. In general, it is referred to as gel-like et-

tringite (C-A-S̄-H). It decreases the speed of the aluminate reactions so the amount of

generated heat is reduced by the end of the mixing stage [1].

The second stage is subsequently observed 1 − 3 hours after mixing. As a general

rule, in this period the aluminate reactions are controlled by C-A-S̄-H gel so it is

accompanied by the almost complete deceleration of heat generation, and concrete

is mainly in the plastic state. The second stage is also called as the dormant period

[8]. During dormancy, the cement dissolution is extending so the water is getting

saturated with dissolved calcium and hydroxyl (OH) ions, but silicates (C2S and C3S)

dissolve at a slow rate. Finally, the water becomes fully saturated with calcium ions,

and the hardening process initiates [1].

A few hours after mixing, concrete begins to set. This period is accompanied by the
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third stage in which, the rate of heat of hydration development increases. The third

stage is strongly governed by C3S and as a result of the reaction between silicates and

water, calcium silicate hydrate (C-S-H) and calcium hydroxide (CH) form. C-S-H is

the primary desirable hydration product, resulting form the reaction and silicate, both

C3S and C2S, with water. This product contributes to rigidity and strength gain of

concrete ant its low permeability [1]. When the setting of concrete is ceased, it starts

to gain strength. The solid concrete is characterized by its strength, elastic, plastic and

viscous properties. In the third stage, thermal and drying effects induce development

of tensile stress after final set. The solidifying concrete in this stage is considered

as early-age concrete. The period is the followed by the fourth stage, in which the

hydration decelerates again.

In the fourth stage, the chemical reactions between remaining water and undissolved

cement grains are continuing, also the rate of C3S reactions begins to slow down.

Therefore, the rate of heat generation first increases then it begins to slow down.

Moreover, after the temperature reaches a peak point, CS̄ continuously reacts with

aluminates so it will be consumed. The remaining aluminates reacts with ettringite to

produce monosulfate. However, monosulfate does not have any significant affect on

the properties of concrete [1].

In the fifth stage, the hydration reaches almost a steady state so the concrete continues

to gains its strength and mechanical properties, although with a slow rate. This stage

corresponds to the hardened state of concrete. If there are any remaining C3S and

water in concrete, they will keep on the hydration reaction to produce C-S-H. During

the fifth stage, C2S reacts with water but more slowly than C3S. After several days,

C3S will mostly react and the rate of C2S hydration starts to be remarkable.

1.2 Concrete as a Porous Medium

The governing equations, derived within the thermodynamically consistent theory of

Reactive Porous Media, deal with the description of response of the porous media to

the physio-chemical phenomena. A porous medium, also designated as a fluid-solid

mixture consists of a solid matrix and a variety of connected pores saturated by fluid,
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see Figure 1.4. According to this definition, a cement paste or concrete is regarded as

a hydrophilic porous medium whose solid skeleton is composed of uhydrated cement

and hydrates, and the pores completely filled with water and randomly distributed

within the cement paste. In general, water can be found in concrete in several phases,

as capillary water, water vapor, free adsorbed water and hindered adsorbed water

[9, 10, 11, 12].

In Figure 1.3, the different water phases coming across between two cement gel sur-

faces are demonstrated. The capillary water in the form of liquid, filling the vacan-

cies between the cement particles, which are known as capillary pores. The state of

capillary water is thermodynamically expressed through the capillary pressure. As

an assumption, the capillary water can behave as incompressible gas if the capillary

pores are not fully saturated and an equilibrium is constructed between the capillary

water, air and water vapor. In the vicinity of pore walls, the van der Waals forces

hold the adjacent molecules of water vapor at the solid surface where they form thin

adsorbed water layers. The specific mass of the adsorbed layer per unit solid surface

and its average thickness δ̄a are determined as a function of relative humidity ϕ. It is

fairly assumed that the layer reaches its maximum thickness about 5 molecules, i.e.

about 13 Å for ϕ→ 1. Under high relative humidity conditions, in small micro-pores

also known as gel pores with the sizes of a few Å, the hindered adsorbed water layers

form due to the incomplete development of adsorbed water layers [10]. The exis-

tence of the hindered adsorbed water will appear in terms of the large local pressure,

well-known as the disjoining pressure. It may have the magnitude of up to 300 MPa.

Moreover, the capillary tension develops in a water filled pore due to the presence

of capillary menisci formed between the pores [11]. The capillary pressure in a pore

with a radius of 10 µm is about 30 MPa [13]. As the pores inside the cement gel have

the enormous internal surface area about 500× 105 mm2 per mm3, the capillary ten-

sion and disjoining pressure govern the stress level in the microstructure of concrete

[14].

The largest portion of the pores includes micropores (d < 2.5nm) and mesopores

(2.5 ≤ d < 50 nm). However, the small portions of the pores are formed by the

macropores whose diameters are of about 50 nm to 10 µm. The structure and size of

the pores strongly dominate the diffusion mechanism of concrete [15]. The diameter
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water vapor

capillary water
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Figure 1.3: The demonstration of different water phases between the cement gel sur-

face with average thickness of the adsorbed water layer of δ̄a [10].

of the pores varies over a very wide range. Also, their structures change with age. To

this end, the process of the moisture diffusion within the concrete is more complex,

also the determination of the diffusion parameters such as diffusivity and moisture

capacity is not straightforward. Three particular diffusion mechanisms are defined

in concrete. These mechanism which may occur individually or simultaneously are

known as molecular diffusion, Knudsen and surface diffusion [15].
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Figure 1.4: Schematic demonstration of a porous medium including solid skeleton

and fluid-saturated pores.

The molecular diffusion, also known as the ordinary diffusion takes place inside the

macropores (capillary pores) of concrete. The field force of the pore in terms of
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adsorption attracts the water molecules to the pore wall. At low relative humidity,

the first layer of waters molecules is formed on the wall of a pore. As the relative

humidity increases, more water molecules adhere to the wall so the number of layers

of the water molecules covering the pore wall increases. Thus, there exits not enough

free space for vapor inside the macropores. As a result, the mean free path of water

molecules surrounded by the water-adsorbed pore wall get narrower, because of the

increase in the thickness of the water molecular layers. This path is smaller than one

surrounded just by the solid wall of the pore. This treatment decreases the resistance

against the diffusion process [15].

At higher pore humidity, menisci completely filled by the adsorbed water forms on

both sides of the necks which narrowly connect the large pores together. At one end

of the neck the water molecules are condensed while at the other end, they evaporate.

These condensation and evaporation processes effectively characterize the diffusion

process. This ordinary diffusion process is dominant when the mean free path of va-

por, of 80 nm at 25◦C is small relative to the size of the macropore. As the macropores

constitute a small portion of the pores in concrete, the ordinary diffusion process is

less dominant mechanism. Knudsen diffusion process is defined as a resistance oc-

curring in the mesopores where the water molecules strike together and collide with

the pore walls. In the Knudsen diffusion, the pore size defines the resistance against

the diffusion process. Also, pore connection and turtuosity are necessary to consider

in the description of Knudsen diffusion mechanism. Therefore, smaller pores present

larger resistance, thus the diffusivity becomes smaller [15].

The surface diffusion mainly occurs in some mesopores and micropores, such as the

pores belong to the parallel wall. The adsorption force holds the water molecules on

the wall. The mass transport related to the surface diffusion is thermally activated

that there exist jumps between the adsorption site of the water molecules. Thus, this

process represents higher resistance than Knudsen diffusion process. The significance

of the surface diffusion is featured when a greater volume of the water adsorbed to

the pore wall. It occasionally happens at low relative humidity [15].
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1.3 Thermal and Hygral Phenomena in Concrete

Thermally Induced Volume Changes and Cracking in Concrete. In the case of

thermal effects, the main causes for volume changes are due to the nonuniform tem-

perature distribution during the construction process and the existence of thermal gra-

dients near the surface of the structure owing to convection phenomena arising from

interaction. Therefore, the risk of cracking due to thermal variation may be observed

in two main different patterns in concrete structures. The first one is cracking in the

interior part of the body due to the cooling process as a result of the nonuniform

distribution of maximum temperature getting down to the mean annual temperature

several years after completion of the dam. The second one is cracking near the sur-

face of the body as a consequence of the thermal gradient development through the

fast surface cooling due to the ambient temperature [16]. The second process has a

key role in occurrence of critical durability problems in the first week after placing

concrete. In the literature, the thermally induced cracking in concrete structures have

been investigated by developing couplings in terms of the cross-effects between the

hydration process, the temperature evolution and the corresponding deformation [3].

The studies have been generally conducted within the framework of the theory of Re-

active Porous Media [17]. This theory contributes to derive the governing relations

and constitutive equations dealing with the continuum mechanical problems.

Shrinkage Phenomenon in Concrete. The water content variation and the related

moisture diffusion process at the micro-structure of the cementitious material may

lead to the early-age durability phenomena by inducing volume changes in concrete.

In the presence of the hygral gradients near the surface of concrete elements, the

stresses generated in concrete, when the stresses reach the tensile strength, micro-

cracks may occur. In the literature, the mechanism related to the autogenous shrink-

age leads to (i) an increase of capillary tension in pore fluids due to the formation of

menisci, (ii) an increase of surface tension causing reduction of thickness of water

adsorbed on solid surface, and (iii) a decrease in disjoining pressure in hindered ad-

sorption area [18]. All these mechanisms result in autogenous shrinkage. When the

concrete is subjected to the environment with a lower humidity than the initial one in

the pore system of concrete, the hygral gradients are constructed between the interior
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and the exterior of concrete. These gradients act as the driving force for the moisture

transport to the environment. This phenomenon is referred to the drying shrinkage. It

is accompanied by the volume reduction and consequently stresses are generated in

concrete, if the body is mechanically restrained and the stresses reach the maximum

critical stress of concrete, cracking is initiated.

Creep Response in Concrete. Creep is an other time- and stress-dependent phe-

nomenon that occurs in cementitious materials. In general, creep behavior classified

into three common types, according to the hygral and thermal effects. These creep

types Basic creep, drying creep and thermal creep. The basic creep occurs under con-

stant temperature, when the concrete is completely sealed and there is no moisture

exchange between the interior of concrete and the environment. Drying creep, the

so-called Pickett effect is observed in concrete when it is exposed to the environment

with relative humidity lower than that in the interior of concrete. Thermal transient

creep occurs in concrete under varying temperature conditions.

As a matter of fact, creep in concrete originates from its response to the mechanical,

hygral and thermal effects at the microlevel that its structure is discussed in Section

1.2. In the microstructure of concrete, there are highly localized sites which treat

like bridges connecting opposite walls of micropores to each other. These bridges

contain hindered adsorbed water. The atomic bonds within these bridges are under

very high tensile micro-pre-stresses. These micro-pre-stresses are produced by the

disjoining pressure of the hindered adsorbed water in the gel pores and by very large

volume changes induced by the hydration and the drying effects localized within the

gel pores bonds. The deviatoric and volumetric creep at the macroscopic scale is

believed to be caused by the viscous shear slip due to the frequent interatomic bond

breakage and reformation. The kinetic energy of random vibrations of atoms induced

by thermal effects and the magnitude of the activation energy barrier determine the

bond breakage. Indeed, the interatomic bond breakage increases by the reduction in

the activation energy barrier owing to the increase of the tensile microprestress. [19].
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1.4 Modeling Aspects

The reaction of cement hydration, as any other chemical reaction is strongly depen-

dent on the variation of water content and temperature evolution in cementitious mate-

rials. To model the temperature-dependency of the hydration reaction, the Arrhenius

law [20] is employed. This law is widely used to numerically formulate the evolution

of hydration process, thereby determining the development of the mechanical prop-

erties of concrete. In the literature, there are several other methods applied to model

hydration reaction. These methods are mainly based on the equivalent time and the

affinity laws. The concept of equivalent time was first introduced in the work of Ras-

trup [21] as an alternative method to maturity. The equivalent age is defined as a time

duration in which the concrete undergoing curing at a constant temperature reaches

the same maturity as the concrete subjected to the actual curing history [5].

The affinity laws are constructed on a Arrhenius law by defining the affinity as the

driving force of the hydration process within the framework of thermodynamics. To

numerically formulate these model, it is required to consider a variable quantifying

the extent of the hydration. This variable is called the degree of hydration [22]. It is

defined as the ratio of the mass of the hydrated products to the mass of the hydrated

products when the hydration reaches its ultimate state [23]. This definition is also pro-

portional to the ratio of cumulative liberated heat at a certain time to the cumulative

heat released by the almost complete cement hydration [24].

The evolution of the mechanical characteristics of concrete such as the elastic and

viscous properties, the strength and its deformability, is determined by developing a

realistic aging model [22]. It is introduced as a substitute for the concept of maturity.

The latter does not sufficiently describe the degree of hydration with a thermodynam-

ically consistent framework. Moreover, it does not consider the hydration kinetics

[22]. Therefore, a realistic aging model describes the evolution of mechanical prop-

erties through the degree of hydration and the temperature. The definition of the

hydration and heat development based on the degree of hydration and aging model

can help us investigate the durability phenomena when early-age concrete is subjected

to thermal or hygral effects.
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Investigating the durability phenomena in concrete under thermal and hygral effects

using the computational methods provides robust prediction and knowledge of con-

crete response to the external factors such as the mechanical loading and environmen-

tally induced thermal and hygral effects at early age and beyond. Beside, the fracture

mechanism of concrete is studied by considering all these effects and the couplings

between them to precisely model the fracture in concrete and conduct a crack risk

analysis. It is of primary concern in understanding behavior of concrete at early ages

and beyond, because the existence of the crack accelerate the ingress of the external

deteriorative substances which may cause the additional durability problems in the

long term.

In the literature, there exist several works dealing with the modeling of durability of

problem in concrete. In the work of Cervera et al. [7] a coupled chemo-thermo-

mechanical model is proposed for concrete to investigate the hydration process and

the aging effects on development of the mechanical properties of concrete, also the

evolution of temperature at the early-age of concrete is studied. This chemo-thermo-

mechanical model within the framework of viscoelasticity is applied to simulate the

constructions of roller-compacted dams by investigating the aging effect, the temper-

ature evolution, the stress distribution and the risk of tensile damage in [25, 16].

Lackner and Mang [23] develops a three-dimensional chemo-plastic material model

for the simulation of early-age damage in the roller-compacted concrete. The hydra-

tion model in this study is developed within a multisurface chemoplasticity model to

determine the evolution of the intrinsic material properties. The temperature evolution

during the construction of the roller-compacted concrete is studied by incorporating

the thermomechanical model. Then, the crack risk analysis is performed based on

determination of a correlation between distribution of the maximum stress and the in-

stant tensile strength without explicit account for the crack initiation and propagation.

To investigate the fracture mechanism in concrete, the phase-field models [26, 27]

have attracted remarkable prevalence among the researchers who deal with the com-

putational modeling of fracture in concrete over the recent years. Although, this

approach is widely used to model cracking under the mechanical loading, there ex-

ist few recent works incorporate the computational chemo-thermo-mechanics along
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with the phase-field model to simulate the brittle fracture caused by the early-age

shrinkage and hydration heat [28, 29, 30].

In the case of modeling of the hygral effects in concrete, a microprestress-solidification

theory has been developed to investigate the aging and drying effects along with

the creep response in concrete [19, 31]. This model has been widely applied in

the literature to model transitional thermal creep of early-age concrete [11], also it

is coupled with the microplane model to investigate the primary aspect of concrete

behavior, such as creep, shrinkage, thermal deformation and cracking in [32]. The

microprestress-solidification theory is then modified in [33], and applied to model

the thermal and moisture effects on creep response of concrete. Cervera et. al [34]

extends the chemo-thermo-mechanical models to examine the short- and long-term

creep response of concrete and damage by considering a viscoelastic model that is

motivated by the microprestress-solidification theory.

1.5 Objective of the Thesis

In this study we aim at modeling the thermal and shrinkage-induced cracking in con-

crete structures. We develop a phenomenological model to consider the effect of

hydration process and the environmental conditions on the temperature evolution in

massive concrete structures and cracking. This model is founded on a basis of an ap-

proach which includes a coupling between the thermo-chemo-mechanical model and

the cohesive zone phase-field model.

Apart from the modeling approaches suggested in the literature, the shrinkage strain

is not obtained by using an empirical expression including the hygromechanical ex-

pansion coefficient and the change in humidity, we aim to develop a physically mo-

tivated coupled constitutive modeling approach. This model is furnished by a robust

computational framework to address the durability problems that arise from drying

shrinkage and creep within the three-dimensional framework of poro-viscoelasticity.

Furthermore, we couple this model with the cohesive zone phase-field model to in-

vestigate the shrinkage-induced cracking.
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1.6 Scope and Outline of the Thesis

The thesis is concerned with the development of a phenomenological model to be

used for analyzing the short- and log-term behavior of concrete structures under me-

chanical loads and environmental conditions such as varying states of temperature

and humidity. The effects of environmental conditions will be considered for thermal

and shrinkage-induced cracking observed respectively in massive concrete structures

such as dams and the structures which have relatively low ratios of volume-to-surface

areas.

The basic ideas and the novel aspects of this thesis are

• Developing a robust numerical modeling of thermally induced cracking in mas-

sive concrete structures accounting for the effect of temperature evolution, au-

togenous shrinkage and the thermal transient creep at early ages.

• Formulate the stress-strain response of hardening concrete within the incremen-

tal scheme.

• Extending the cohesive phase-field model to simulate for the first time the

quasi-brittle thermal fracture in roller-compacted concrete.

• Developing novel multi-field interface elements between the lifts of the con-

crete dam.

• Developing a robust numerical modeling of creep and drying shrinkage in a

concrete structure with a higher ratio of surface-area-to-thickness within the

framework of poro-viscoelasticity.

• Applying the microprestress theory to model the viscoelastic behavior of con-

crete in the long-term accounting for the hygral effects.

• Proposing a physically motivated approach to model the drying shrinkage and

creep response in concrete.

• Extending the cohesive phase-field model to simulate shrinkage induced-cracking

in concrete.
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To this end, we adopt a thermodynamically consistent cohesive zone phase field-

model, also known as the unified phase-field model to investigate the mechanical and

environmentally-induced fracture mechanism of concrete. In Chapter 2, we present

the formulations associated with the phase-field models including the approximation

and regularization of the crack topology, the dissipation function, the energetic degra-

dation function, and general softening laws adopted for different types of fracture,

governing and constitutive equations. We then represent the finite element discretiza-

tion of the phase-field equation. Furthermore, the representative numerical examples

are demonstrated to validate the numerical modeling capabilities of the phase-field

method and the current implementation.

Chapter 3 is devoted to numerical modeling of early-age cracking in roller-compacted

concrete (RCC) dam in the presence of the varying environmental temperature condi-

tions. To this end, coupled chemo-thermo-mechanical approach is numerically devel-

oped to investigate the cross-effect of evolution of both temperature and the degree

of hydration, and consequent cracking on the durability and mechanical properties of

concrete structures. This the first chemo-thermo-mechanical model coupled with the

cohesive zone phase-field model for an aging concrete.

In Chapter 4, we develop a coupled constitutive modeling approach that is furnished

by robust computational framework to address the durability problems that arise from

drying shrinkage within the three-dimensional framework of poro-viscoelasticity. In

this chapter, the adsorption-desorption isotherm model and the microprestress theory

are applied within the general framework of poroelasticity to numerically model the

variation of the evaporable water content of concrete in terms of the relative humid-

ity change, and account for the viscoelastic behavior of concrete in terms of creep

response. In contrast to the existing models of poromechanics where the pressure is

a primary field, here we construct the model base on relative humidity. The results

obtained using the proposed method have been constructed with a broad spectrum of

experiments reported in the literature that cover various types of creep in concrete.

Chapter 5 is dedicated to the numerical model of shrinkage-induced cracking in con-

crete structures by applying the cohesive-zone phase-field model coupled with the

constitutive modeling approach presented in Chapter 4.
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The thesis closes with Chapter 6 where the concluding remarks and the outlook are

presented.
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CHAPTER 2

PHASE-FIELD MODELING OF MECHANICAL FRACTURE IN BRITTLE

AND QUASI-BRITTLE MATERIALS

2.1 Introduction

In engineering applications, the prediction of crack initiation and propagation in struc-

tures made up of different materials under mechanical loading and environmental

conditions is greatly important. Therefore, in the field of solid mechanics the in-

vestigation of failure mechanisms can contribute to explain the origination of failure

processes in many materials such as concrete, rock, ceramics, metals, polymers, and

biological soft and hard tissues. For many years, the numerical methods have been

developed in the literature to quantitatively render the relationship between the crack

length, the intrinsic resistance to crack growth, and the crack propagation criterion.

The classical theory of brittle fracture has been theoretically pioneered in the work

of Griffith [35] and Irwin [36]. They founded the theory of linear elastic fracture

mechanics for brittle fracture, in which a global energy approach was developed to

predict the crack initiation and propagation. Accordingly, the crack growth is ob-

served when the elastic stored energy in the bulk material reaches a critical value.

This critical value is defined as the surface energy dissipated for crack propagation.

The numerical modeling of fracture in concrete structures dates back to the late 1960s

by Ngo and Scordelis [37], and Rashid [38] who presented discrete crack and smeared

crack models, respectively. In the literature, the computational approaches that have

been developed to simulate the fracture of cementitious materials are specifically cat-

egorized in three general classes: discrete crack models, lattice models, and contin-

uum damage models. The classical discrete crack approaches [39, 40] require specific
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techniques, which introduce discontinuities fields. According to this approach, cracks

are modeled as a surface of discontinuities with explicit or implicit geometric mod-

eling. The basic drawback of the classical discrete crack methods is that in a situa-

tion with complex crack topologies, they suffer from the issues of severe dependency

on mesh-alignment and spurious stress locking [41]. These deficiencies have been

avoided by proposing new discrete advanced approaches, which include the extended

finite element model (XFEM) with the enriched displacement field with discontinu-

ities [42, 43, 44]. However, the implementation of this approach is troublesome in the

three-dimensional framework to predict the special cases of crack topology such as

crack branching and merging [45, 27]. As another approach, the so-called cohesive

zone modeling technique, pioneered by Barenblatt [46], is developed by introducing

the traction-separation laws at the interface elements between the predefined crack

surfaces [47, 48, 49]. This approach also requires sufficient degree of mesh refine-

ment to circumvent the oscillation due to element-wise failure. Also, this method is

inapplicable to the mesh without the predefined crack paths.

In the classical lattice model, the solid is discretized by trusses or beam elements.

A fracture criterion which can be a threshold quantity such as stress or energy is

specified. This quantity is calculated for each element. When its value exceeds the

fracture limit, the elements are removed from the current mesh [50]. The results of

simulations are dependent invariantly on the element type and the fracture criterion.

In the literature, there are some works applied this technique to study the fracture

mechanism in concrete [51, 52, 53]

Continuum damage models constitute another class of methods used to simulate frac-

ture in cementitious materials, first proposed by Kachanov [54]. In these methods,

there are one or several variables, which determine the degradation of material stiff-

ness. The main disadvantage of this method is that this technique is highly dependent

on the spatial discretization (mesh size and orientation), which results in an ill-posed

mathematical description at a certain level of accumulated damage [55, 56]. To cir-

cumvent the ill-posedness of classical local continuum damage models associated

with spatial dicretization in the finite element simulations, non-local damage models

have been developed by introducing an internal length scale. The purpose of intro-

ducing the internal length scale is to regularize the localization of damage, thereby
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overcoming the mesh sensitivity of the damage models [55].

Furthermore, the deficiencies of the classical damage methods have been suppressed

by introducing variational methods based on energy minimization as proposed by

Francfort and Marigo [57], Bourdin, Francfort an Marigo [58], Dal Maso and Toador

[59] and Buliga [60]. Overcoming the difficulties associated with the computational

modeling of fracture on the basis of the sharp crack discontinuities especially in the

case of the complex crack topologies is motivated by the Γ-convergence theorem

[61]. Adoption of the Γ-convergence approximations in the regularization setting of

the variational methods established on the energy minimization is primarily motivated

by image segmentation functional proposed in the work of Mumford and Shah [62].

The application of Γ-convergence approximations on the free discontinuity problems

is explained in detail in the work of Ambrosio and Tortorelli [63], Dal Maso and

Toador [59], and Braides et al. [61, 64]. The approximation provides regularization

of a sharp crack surface topology based on a concept of diffuse crack zone. This zone

is featured by a scalar auxiliary variable the so-called crack phase-field that charac-

terizes the smooth transition between the intact solid and the fractured domain. These

approaches to brittle fracture designated as the phase-field methods. The governing

equation expressing the phase-field method has been principally founded on the clas-

sical Ginzburg-Landau-type evolution equation, which is also mentioned in Hakim

and Karma [65], Karma et al. [66], and Estigate et al. [67]. The theories of energy

minimization are mainly expressed in the rate-independent setting in the precedent

studies. However, the time-dependent viscous regularizations may also be applied to

these phase-field models, as in the work outlined in Hakim and Karma [65].

In general, the aforementioned studies are exclusively applicable in the special cir-

cumstance, where the monotonous loading applied to an arbitrary sub-domain of a

fracturing solid, and they are not described in a thermodynamically consistent frame-

work. Also, the energy-release driving force does not differentiate the fracture in

tension and compression. Miehe et al. [26] extended the variationally-based phase-

field approach to fracture within the thermodynamically consistent framework. They

implemented this method straightforwardly as a multi-field finite element problem

without explicitly modeling discontinuities. The main features which promote the

work of Miehe et al. [26] are determining the fracture in tension, characterizing the
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dissipation, and introducing the viscosity as a regularization of the rate-independent

formulation. Furthermore, this formulation was modified in [68] to overcome some of

the difficulties by supplementing anisotropic formulation in terms of the asymmetric

tension-compression split to capture crack initiation only in tension by introducing an

operator split algorithm for a staggered update of the history field associated with the

energetic driving force. They also extended the phase-field model within the multi-

field finite element solver to the multi-physics problems such as the crack propagation

in thermo-elastic solids [69, 70] and the hydrualic fracturing in fluid-saturated porous

media based on the coupled problem of Darcy-Biot-type fluid transport [71, 72, 73].

In the literature, the existing phase-field approaches have been widely applied to brit-

tle fracture, however there exist few works [74, 75, 76], in which a phase-field model

was proposed for cohesive fracture. Recently, a unified phase-field model of quasi-

brittle failure was developed in the work of Wu [27]. Accordingly, in contrast to

the existing phase-field models, this model adopts a novel constitutive functions opti-

mal for quasi-brittle failure. The proposed phase-field theory converges to a cohesive

zone model as the internal length scale vanishes. In addition, several general soften-

ing laws, e.g., linear, exponential, hyperbolic and Cornelissen [77], which is typically

used for quasi-brittle solids have been incorporated to improve the accuracy of the

model. There exist some works that have implemented the unified phase-field model

to model both brittle and quasi-brittle fracture under the purely mechanical loading

[78, 79, 80, 81]. The failure of a quasi-brittle material such as concrete whose post-

cracking response is accompanied by softening can be modeled by the phase-field

regularized cohesive zone model. Apart from this fact, this model avoids the troubles

associated with the length scale and consequently the mesh-dependency of the global

response of the fracturing solid.

In the phase-field model the regularization of diffuse crack topology is principally

governed by the length scale parameter, such that Γ-convergence approaches to a

sharp crack topology for a vanishing length scale parameter. The regularized crack

surface is resolved by designating a definite minimum element size with respect to

the length scale parameter [26, 68]. Moreover, a precise prediction of the behavior

of fracturing solid is obtained by determining the length scale as a function of the

mechanical properties of the material [82, 69, 83, 84]. Nevertheless, in the phase-field
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regularized cohesive model, the length scale parameter has insignificant effect on the

overall response of the material. This parameter at most changes the localization

bandwidth. Nevertheless, it is required to be sufficiently resolved by the mesh size

within the localization bandwidth to obtain the numerical results converging to the

analytical ones [27].

This chapter is organized as follows. We first demonstrate the phase-field approxima-

tion of crack topology and express the formulations related to the crack surface func-

tional and the corresponding crack surface density function in the one-dimensional

setting. These formulations are then extended to the multi-dimensional case. To de-

scribe the homogeneous evolution of the crack phase-field and its regularization, the

geometric crack function is introduced. Then, the energetic degradation function for

the brittle and cohesive fracture is presented to investigate the effect of the crack evo-

lution on the mechanical response of the material. Furthermore, the formulations of

the dissipation function are demonstrated to derive the evolution equation of damage

field. The common types of softening laws and the associated optimal parameters are

demonstrated. The implementation of these laws in the phase-field model allows us

to have a robust prediction of the structural response of the material without requiring

the length scale parameter as a function of mechanical properties.

The description of a constitutive framework of the phase-field model is given by deriv-

ing the variational equation and the associated constitutive relations which determine

the mechanical behavior and the evolution equation of the crack phase-field. Then

we continue with the representative numerical examples related to the convergence of

the crack surface functional Γℓ to the sharp crack topology in both brittle and quasi-

brittle fracture. Moreover, the capability of the phase-field models in predicting the

crack patterns and the behavior of the fracturing material is exhibited by the several

numerical examples. In particular, the brittle and quasi-brittle fracture under mechan-

ical loading in different representative numerical examples are demonstrated in terms

of the evolution of crack pattern and the overall structural response. In addition, the

results obtained in this study are compared with the numerical and the experimental

findings reported in the literature, to verify our current implementation of the phase-

field models.
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2.2 Phase-Field Approximation of Crack Topology

We motivate the theoretical aspects of the phase-field approach by considering a one-

dimensional bar of cross-section Γ and of infinite length, L ∈ [−∞,+∞] occupying

the domain B = Γ× L with a material point positioned at x ∈ L of its axis. The bar

is assumed to contain a crack at the axial position x = 0 where Γ quantifies the fully

broken crack surface [26]. To approximate this sharp crack topology, an auxiliary

field variable d(x) ∈ [0, 1], also known in the literature as the crack phase-field is

introduced as

d(x) =







1 for x = 0.

0 otherwise.
(2.1)

where this variable characterizes for d = 0 and d = 1 the unbroken and the fully

broken state of the material, respectively. Therefore, consistent with the continuum

theory of damage, in a homogenized macroscopic scheme, the description of micro-

cracks growth is related to the scalar damage field d. The diffuse and sharp crack

topologies along the axis of the bar are demonstrated in Figure 2.1. As is depicted,

the sharp crack topology is regularized by the internal length scale parameter ℓ. As ℓ

approaches to 0, ℓ → 0, a diffuse crack, demonstrated in Figure 2.1a converges to a

sharp crack shown in Figure 2.1b. It represents the characteristic effect of the length

scale parameter ℓ on the spatial distribution of the crack phase-field.

1 1

ℓ −→ 0

d(x)d(x)

xx

(a) (b)

Figure 2.1: Diffuse and sharp crack topology. (a) A diffuse crack at x = 0 versus (b)

a sharp crack at x = 0 modeled with the length-scale parameter ℓ.
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In the one-dimensional bar, the crack phase-field d(x) can be mathematically repre-

sented by the following homogeneous differential equation

α′(d)− 2ℓ2d,xx = 0 (2.2)

where α(d) is the geometric crack function which represents the homogeneous evolu-

tion of the crack phase-field. This equation is subjected to the Dirichlet-type boundary

conditions of d (0) = 1 and d (±Du) = 0 where Du indicates the ultimate half band-

width of localization band. It can be shown that, the differential equation presented

in (2.2) is the Euler equation of the variational principle

d = Arg
{

inf
d∈W

I(d)

}

with W = {d | d(0) = 1, d(±Du) = 0} . (2.3)

The functional I(d) is established, by integrating Galerkin-type weak form of the

homogeneous differential equation (2.2)

I(d) =
1

c0

∫

B

{
α(d) + ℓ2(d,x )

2
}
dV (2.4)

where c0 > 0 is a scaling parameter. It will be defined for the the brittle and quasi-

brittle fracture in the following subsection. Using dV = Γ dx and approximating

the ultimate solution of the non-smooth crack phase-field d(x) = du(x), we obtain

I(d = du) = Γℓ, which relates the functional I to the crack surface Γ. To this end,

the crack surface functional is introduced in the following form [26, 27]

Γℓ(d) :=
1

ℓ
I(d) =

1

c0ℓ

∫

B

{
α(d) + ℓ2(d,x)

2
}
dV. (2.5)

Indeed, the crack surface functional is calculated by integrating the crack surface

density function per unit volume of the solid body γ(d; d,x ), this function is given by

γ(d; d,x ) =
1

c0ℓ

{
α(d) + ℓ2(d,x)

2
}
, (2.6)

which represents the area of the crack surface per unit volume within the solid body

domain. The scaling parameter c0 normalizes the crack surface functional Γ that

converges to Γℓ for the sharp crack topology when the body is fully degraded.

2.2.1 Regularization of Phase-Field for Crack Topology

In this section, the geometric crack function α(d) is introduced [27]. This function

governs the distribution of the crack phase-field and characterizes the crack surface
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density function γ(d;∇xd), and governs the value of the scaling parameter c0. In the

literature, the following generic quadratic form is used

α(d) = zd+ (1− z)d2 ≥ 0 ∀d ∈ [0, 1] (2.7)

where z is a positive parameter z ∈ [0, 2]. As the crack phase-field bounded between

0 and 1, the geometric crack function α(d) ∈ [0, 1] is expected to fulfill the character-

istics of α(0) = 0 for the intact state (d = 0) and α(1) = 1 for the fully broken state

(d = 1). The geometric crack function versus the crack phase-field curves for varying

values of z are depicted in Figure 2.2. The crack geometric function for the classical

brittle fracture mechanism is expressed by setting z = 0 and z = 1, likewise it is set

to z = 2 for the quasi-brittle fracture.

z = 0.0

z = 0.5

z = 1.0

z = 1.5

z = 2.0

0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.2 0.4 0.6 0.8 1
d

α
(d
)

Figure 2.2: The geometric crack function α(d) versus the crack phase-field for differ-

ent values of the parameter z.

The description of a diffuse crack topology in the one-dimensional space can be sim-

ply extended to the multi-dimensional setting. Let B ⊂ R
δ be the reference config-

uration of a material body with dimension δ ∈ {1, 2, 3} in space and ∂B ⊂ R
δ−1 its

surface as demonstrated in Figure 2.3. In addition, L represents the localization zone,

as ∂L demonstrates its surface. In the following, the time-dependent crack phase-field

is represented to study crack propagation for T ⊂ R of time as follows

d :







B × T → [0, 1],

(x, t) 7→ d(x, t).
(2.8)
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Next, in the multi-dimensional setting the regularized crack functional Γℓ(d) is intro-

duced in terms of the crack surface density function γ(d;∇xd)

Γℓ(d) =

∫

B

γ(d;∇xd) dV with γ(d;∇xd) =
1

c0

(
1

ℓ
α(d) + ℓ|∇xd|2

)

. (2.9)

nL

L
∂L

Γℓ(d)Γ

BB

∂B∂B

ℓ

(a) (b)

Figure 2.3: Sharp and diffuse crack topologies. (a) Sharp crack surface Γ embedded

into the solid B and (b) the regularized crack surface Γℓ(d) is a functional of the crack

phase-field d over the crack phase-field localization zone L.

The crack surface density function γ(d;∇xd) is described per unit volume of the solid

and depends on the crack phase-field d and its spatial gradient ∇xd. The crack surface

density function represents the density of the crack surface area. It has decisive role

in the modeling of crack propagation. As demonstrated in Figure 2.3a, a given sharp

crack topology Γ(t) ⊂ R
δ−1 is assumed inside the body B at time t. The regularized

crack phase-field d(x, t), see Figure 2.3b is obtained from the minimization principle

d(x, t) = Arg
{

inf
d∈WΓ(t)

Γℓ(d)

}

(2.10)

subjected to the Dirichlet-type constraints

WΓ(t) = {d | d(x, t) = 1 at x ∈ Γ(t)} . (2.11)

The variational principle in (2.10) is represented in the form of the Euler equations as

follows

α′(d)− 2ℓ∆d(x) = 0 in B and ∇xd · nL = 0 on ∂L (2.12)

where ∆d is the Laplacian of the crack phase-field (∆d := div(∇xd)) and nL presents

the outward unit normal on ∂L. Moreover, the length scale parameter ℓ controls the

diffuse crack phase field topology. In particular, the length scale parameter ℓ char-

acterizes the width of the localization band. In order to show the numerical solution
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converging to the original problem, we let ℓ → 0 according to the convergence the-

orem presented in [61], as it will be presented in Subsections 2.5.2 and 2.5.6 for the

brittle and the quasi-brittle phase-field models, respectively.

It is represented in the work of Miehe et al. [26], that the regularized crack surface

Γℓ(d) is resolved, i.e. Γℓ(d) ≈ Γ by choosing the element size smaller than the length

scale parameter as h < ℓ/2 for the brittle type of the fracture. In the case of the

phase-field regularized cohesive zone model, Wu [27] recommends that for providing

a robust prediction of the fracture, the solid domain should be discretized with a

element size much smaller than the length scale parameter as h ≤ (0.1 ∼ 0.2)ℓ.

The length scale and mesh dependency of the phase-field model will be discussed in

Subsection 2.2.3.

The scaling parameter c0 in (2.4) and (2.5) is derived for the fully developed crack

referring to (2.12). At first, (2.12) is multiplied by d,x and then integrated with respect

to the coordinate xn = (x−xS) ·nS where xS represents the closest point along the

crack path S , we obtain

α(d)− ℓ2|∇nd| = 0 (2.13a)

yielding γ =
2α(d)

c0ℓ
and |∇nd| :=

dd

dxn
=

√

α(d)

ℓ
. (2.13b)

We can define the scaling parameter c0 by inserting (2.13b) and dV = 2|dxn|Γ in

(2.9), and substituting dd ℓ/
√

α(d) for |dxn| as

c0 = 4

∫ 1

0

√

α(β)dβ. (2.14)

2.2.2 Energetic Degradation Function and Associated Softening Laws

According to the theory of elasticity, the reference energy storage function Ψ0 repre-

sents the elastic strain energy stored in the bulk of an isotropic solid per unit volume.

While the crack is growing, the degradation acts on the reference energy storage func-

tion in a multiplicative manner. Therefore, the degradation of the reference energy is

given by

Ψ̂(ε, d) = [g(d) + κ] Ψ̂0(ε) (2.15)
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where κΨ̂(ε) with κ ≈ 0 is the artificial elastic residual energy at a fully broken

state d = 1 to avoid the complete degradation of the stored energy [26]. When the

degradation functions treat on Ψ, it affects the overall response of the body. This

treatment may not result in the physically realistic results, such as the occurrence of

cracking in both tension and compression states. To this end, an asymmetric tension-

compression split energy storage function is introduced by additively decomposing

Ψ0 into a positive part Ψ+
0 , due to tension and a negative part Ψ−

0 due to compression.

In brittle and quasi-brittle, the degradation function affects only the positive part

Ψ̂(ε, d) = [g(d) + κ] Ψ̂+
0 (ε) + Ψ̂−

0 (ε). (2.16)

The definition of the energy storage function and derivation of the stress response of

the degrading material will be described in detail in Section 2.3.

In the literature there are several degradation functions adopted in simulating the var-

ious types of fracture in solid material. These functions are respectively represented

for linear, quadratic and rational generic form (2.17) in Figure 2.4. In this work, to

model the bulk response of a fracturing solid undergoing the energy degradation, the

following generic form of the energetic degradation function is adopted [27]

g(d) :=
1

1 + φ(d)
=

(1− d)p

(1− d)p +Q(d)
with φ(d) =

Q(d)

(1− d)p
(2.17)

for the exponent p = 2 and the continuous function Q(d) > 0, which is defined in the

form of a polynomial expression as follows

Q(d) = a1d+ a1a2d
2 + a1a2a3d

3 = a1dP (d)

with P (d) = 1 + a2d+ a2a3d
2

(2.18)

where the material constants a1, a2, and a3 are calibrated from the standard material

properties for different softening laws.

The material constants a1, a2 and a3 are specified for the constitutive function g(d)

optimal for brittle and quasi-brittle fracture. At first, the equivalent cohesive zone

model is designated by applying the proposed phase-field theory to a one-dimensional

problem. Let us assume a sufficiently long bar with x ∈ [−L,L] in which the crack

evolution is not affected by the outer boundary conditions. The loads are applied at

both ends of the bar by increasing displacements u∗ in the opposite directions. In this
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Figure 2.4: Different types of the energetic degradation function g(d) adopted widely

in the literature.

case, the distributed body forces are neglected. The crack is assumed to be initiated

at the axial position x = 0 and the localization band is lumped in the definite domain

[−Du, Du], which is dependent on deformation. During the displacement-controlled

loading, the homogeneous stress field σ(x) along the bar is described by the following

constitutive equation

σ(x, d) = g(d)E0ε(x) (2.19)

where d represents the crack phase-field, E0 is the elastic modulus and ε(x) denotes

the strain field along the bar. The imposed displacement u∗ at the free end is deter-

mined by integrating the strain

u∗ =
σ(x)

E0

∫ L

0

g−1(d) dx =
σ(x)

E0

[

L+

∫ D

0

φ(d) dx

]

=
σ(x)

E0

L+
1

2
w(σ(x))

(2.20)

where the function φ(d) is specified as φ(d) := g−1(d) − 1 according to (2.18) and

w(σ) is designated as the apparent displacement jump defined through the following

expression

w(σ) :=
2σ

E0

∫ D

0

φ(d) dx. (2.21)

The governing equations for the one-dimensional bar subjected to loading at both
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ends by increasing the displacement in the opposite directions are given by

σ′ = 0, (2.22a)

Gc

c0

[
1

ℓ
α′(d)− 2ℓd,xx

]

= −1

2
g′(d)E0ε

2(x) (2.22b)

where the distributed body forces are neglected for the simplicity. As a consequence,

(2.22b) is simply reformulated as

σ2φ′(d)− 2E0Gc

c0ℓ

[
α′(d)− 2ℓ2d,xx

]
= 0. (2.23)

In (2.22) and (2.23), Gc indicates the critical energy release rate. When the crack

phase-field initiates within the localization zone, we focus on the localizated solu-

tion to the homogeneous differential equation (2.23) which is obtained in terms of

the ultimate inverse crack phase-field x(d; du) and the half width of localization band

D(du). The ultimate inverse crack phase-field pivoting at the most on the crack geo-

metric function in (2.7) is respectively defined as follows [27]

x(du, z) =







ℓ
√

(1− z)
F̂(du, z) z ∈ [0, 1]

ℓ
√

(1− z)
Ĝ(du, z) z ∈ [1, 2]

(2.24)

where the auxiliary functions F̂(du, z) and Ĝ(du, z) are presented as

F̂(du, z) = ln

[

2
√

(1− z) + 2− z

2
√

(1− ξ) [zdu + (1− ξ)d2u] + 2(1− ξ)du + z

]

, (2.25a)

Ĝ(du, ξ) = ln

[

arcsin
z − 2(z − 1)du

z
− arcsin

2− z

z

]

. (2.25b)

Likewise, the localization bandwidth is defined by

Du(z) =







ℓ
√

(1− z)
ln

[

2
√

(1− z) + 2− z

z

]

z ∈ [0, 1]

ℓ
√

(1− z)

[
π

2
− arcsin

2− z

z

]

z ∈ [1, 2]

(2.26)

The following typical cases are described in detail to comprehend the above results:

• z = 0: This case results in geometric crack function α(d) = d2 that has been

widely adopted in the classical phase-field models for brittle fracture [26, 68,
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85]. The scaling parameter c0, the half bandwidth Du, and the ultimate crack

phase-field du(x) are respectively given by

c0 = 2, Du = +∞, du(x) = exp(−|x|
ℓ
). (2.27)

• z =
1

2
: This case is considered to develop a variational approach to fracture

[86] and gradient damage models [58]. It results in α(d) = 1
2
(d+d2) where the

scaling parameter c0, the half bandwidth Du and the ultimate crack phase-field

du(x) are respectively given by

c0 = 3−
√
2

4
ln(3 + 2

√
2), Du =

√
2ℓ ln(3 + 2

√
2),

du(x) =
3− 2

√
2

4
exp(

√
2x

2ℓ
) +

3 + 2
√
2

4
exp(

−
√
2x

2ℓ
)− 1

2
.

(2.28)

• z = 1: This case with the geometric crack function α(d) = d is adopted in

[82, 87] to develop a gradient-based damage model applied to brittle fracture.

The corresponding geometric parameters including the scaling parameter c0,

the half bandwidth Du and the ultimate crack phase-field du(x) then become

c0 =
8

3
, Du = 2ℓ, du(x) =

(

1− |x|
2ℓ

)2

. (2.29)

• z = 2: This case is introduced in [27] and adopted in [78, 88, 80] to simulate

the quasi-brittle failure in solid material especially concrete with the geometric

crack function α(d) = 2d − d2. The scaling parameter c0, the half bandwidth

Du and the ultimate crack phase-field du(x) are respectively determined as

c0 = π, Du =
π

2
ℓ du(x) = 1−

(

sin
|x|
ℓ

)

. (2.30)

The ultimate crack phase-field du(x) with du(x = 0) = 1 for the aforementioned

values of parameter z is demonstrated in Figure 2.5. It can be simply seen that, in the

end a localized crack phase-field evolves within the finite domain x ∈ [−Du, Du].

The localized solution to the homogeneous equation (2.23) is determined by multi-

plying (2.23) by d,x and integrating over x. Doing so, the following expression is

obtained as

σ2φ(d)− 2E0Gc

c0ℓ

[
α(d)− 2ℓ2(d,x )

2
]
= 0. (2.31)
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Figure 2.5: Ultimate crack phase-field du(x) for various values of z adopted in geo-

metric crack function α(d)

As a result, the stress field σ is analytically computed at the point x = 0 where the

crack phase-field reaches its maximum value d∗ as

σ(d∗) :=

√

2E0Gc

c0ℓ

α(d∗)

φ(d∗)
= ft

√

[z + (1− z)d∗] (1− d∗)p

zP (d∗)
. (2.32)

where ft the failure strength is defined as

ft := lim
d∗→0

σ(d∗) :=

√

2E0Gc

c0ℓ
· α

′(0)

φ′(0)
, then ft =

√

2E0Gc

c0ℓ

z

a1
(2.33)

For the AT1-type brittle phase-field model [89] with z = 0, the geometric crack

function at d = 0 is α(0) = 0 so the tensile strength in (2.33) is ft = 0. It means that

we can not define any initial elastic stage, therefore, the failure criterion is activated

when the loading is started to be applied. But, for the AT2-type brittle phase-field

model [63] with z = 1, and the cohesive zone phase-field model (PF-CZM) with

z = 2, the value of the tensile strength in (2.33) is ft > 0 so there is an initial elastic

stage in which the material remains intact with d = 0. For characterization of the

different types of the phase-field model are presented in Table 2.1.

As the stress field σ =

√
√
√
√2E0Gc

c0ℓ
·
α(d)

φ(d)
as a solution to the differential equation

(2.23) is inserted into (2.21) and the apparent displacement jump across the localiza-
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tion band is analytically given by

w(d∗) = C0
∫ d∗

0

[
P (d∗)

(1− d∗)p
· z + (1− z)βd
z + (1− z)d∗

− P (βd)

(1− β)p

]− 1
2
√
βd · P (βd)
(1− βd)p

dβd

(2.34)

where C0 =
4Gc

√
z

c0ft
reflects the effects of the physical properties of the solid material

on the apparent displacement jump. The ultimate crack opening w∞ with vanishing

stress is defined by

w∞ =
2πGc

c0ft

√

zP (1) lim
d∗→1

(1− d∗)1−p/2. (2.35)

For the different value of p it is equivalently represented by

w∞ =







0 p < 2,

2πGc

c0ft

√

zP (1) p = 2,

+∞ p > 2.

(2.36)

The derivation of the aforementioned equivalent cohesive zone model allows to pre-

dict the typical softening laws and determine the associated material constants in the

energetic degradation function (2.17). The softening curves for the various types of

the material behavior are defined through the relation between the stress field σ(d∗)

and the apparent displacement jump w(d∗) presented in (2.32) and (2.34), respec-

tively. The initial slope of the softening curve k0 < 0 is determined by

k0 = − c0
4π

f 2
t

Gc

[z(a2 + p+ 1)− 1]3/2

z2
(2.37)

Referring to (2.33), (2.36) and (2.37), the constants a1, a2, and a3 are defined through

the following expressions [27]

a1 =
2z

c0

ℓch

ℓ
with ℓch :=

E0Gc

f 2
t

, (2.38a)

a2 =
1

z

[(

−4πz2

c0

Gc

f 2
t

k0

)2/3

+ 1

]

− (p+ 1), (2.38b)

a3 =







0 p > 0,

1

a2

[

1

z

(
c0w∞ft
2πGc

)2

− (1 + a2)

]

p = 2.
(2.38c)
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There exist several general softening laws in the literature, such as linear, exponential,

hyperbolic and Cornelissen’s laws. A generic traction-separation curve is demon-

strated in Figure 2.6. In this curve, the filled area under the traction-separation σ−w

curve denotes the critical fracture energy release rate Gc. Also, the initial slope,

shown with the slope of the red line is defined as k0 = − ft
w0

.

The softening laws frequently applied to model the brittle and quasi-brittle fracture

are described in terms of the model parameters a1, a2 and a3, and the initial slope of

the softening curve k0 and the ultimate crack opening w∞ as follows

0
0

1

k0

w

ft

Gc

σ

w0 w∞

Figure 2.6: A generic traction-separation σ−w curve with the critical fracture energy

release rate Gc, and the initial slope of k0 = − ft
w0

.

• Linear softening curve: z = 2, p = 2, a2 = −1

2
and a3 = 0

σ(w) = ft max

(

1− ft
2Gc

w, 0

)

, k0 = − f 2
t

2Gc

, w∞ =
2Gc

ft
(2.39)

• Exponential softening curve: z = 2, p =
5

2
, a2 = 25/3−3 ≈ 0.1748 and a3 = 0

σ(w) = ft

(

− ft
Gc

w

)

, k0 = − f 2
t

Gc

, w∞ = +∞ (2.40)

• Hyperbolic softening curve: z = 2, p = 4, a2 = 27/3 − 9

2
≈ 0.5397 and a3 = 0

σ(w) = ft

(

1 +
ft
Gc

w

)−2

, k0 = −2f 2
t

Gc

, w∞ = +∞ (2.41)
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• Cornelissen’s softening curve [77]: z = 2, p = 2, a1 = 1.3868, a3 = 0.6567

σ(w) = ft
[
(1 + η31r

3) exp(−η2r)− r(1 + η31) exp(−η2)
]

(2.42a)

k0 = −6.9574
ft
wc

= −1.3546
f 2
t

Gc

(2.42b)

w∞ = 5.1361
Gc

ft
with r =

w

w∞

(2.42c)

where r denotes the normalized crack opening and the typical constants for normal

concrete are set as η1 = 0.3 and η2 = 6.93. This softening curve is mainly used to

model fracture mechanism in concrete [27].

The comparison between the analytical and the approximated formulations of the

general softening curves are demonstrated in Figure 2.7. It shows that there is a good

agreement between the analytical and the approximated results.

2.2.3 Length Scale and Mesh Dependency of the Phase-Field Models

Based on the specific form of the geometric crack function α(d) and the degradation

function g(d) described above, we can classify the phase-field approaches for brittle

and quasi-brittle fracture into three common models [90]. These models are AT1 [89]

model developed in the work of Pham et al. [82], also see [87], AT2 [63] model pi-

oneered by the work of Bourdin et al. [91] and extended in the work of Miehe et al.

[26, 68], and the phase-field regularized cohesive zone model (PF-CZM) proposed

in the work of Wu [27] as distinguished and presented in Table 2.1. As AT1 and

AT2 models are typically applied to the brittle fracture, PF-CZM is applicable to both

brittle and quasi-brittle fracture while AT1 and PF-CZM have an elastic domain, that

is the cracking initiates when the crack driving force reaches a critical value, AT2

model does not possess an elastic domain. Furthermore, in AT1 and AT2 models, the

length scale parameter ℓ is defined in terms of the mechanical properties of the ma-

terial. This parameter, however, is just a numerical one in PF-CZM. In the literature,

although the length scale parameter ℓ is initially considered as a numerical parameter

as shown in [26, 68], it is regarded as a material parameter depending on the other
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Figure 2.7: Softening laws. (a) Linear softening law, (b) Exponential softening law,

(c) Hyperbolic softening law, and (d) Cornelissen’s softening law (ft = 3.0 MPa and

Gc = 0.12 N/mm).

mechanical properties [69, 79, 92, 83]. The numerical length scale parameter is com-

puted in terms of the Griffith’s characteristic ℓch = EGc/σ
2
c where σc is the critical

strength of material.

Comparison of the existing phase-field models [90] indicates that PF-CZM predicts

the structural response and the crack pattern in a good agreement with the experi-

mental findings. When the length scale is chosen as much smaller than the problem

dimensions and with an element size h ≤ (0.1 ∼ 0.2)ℓ, the crack-phase-field is re-

solved to an adequate degree. Then the results converge without any dependency on

mesh discretization. However, the results obtained by using AT1 and AT2 models are

dependent strongly on the length scale parameter determined as a function of material

properties. If the length scale parameter is chosen smaller than the value dictated by

the material parameters, AT1 and AT2 models overestimate the structural response,

however a good match is observed in terms of the crack pattern between the numeri-
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cal results and experiments. When the length scale as a constant parameter is chosen

according to the material parameters, the structural response is acceptably predicted,

whereas the crack path diffuses highly, which is numerically meaningless [90]. The

geometrical characteristics of these phase-field models are summarized in Table 2.1

Table 2.1: Geometrical parameters for three common phase-field approach to brittle

and quasi-brittle fracture

Model α(d) g(d) ℓ Du

AT1 d (1− d)2
3

8
ℓch 2ℓ

AT2 d2 (1− d)2
27

256
ℓch ∞

PF-CZM 2d− d2
(1− d)p

((1− d)p) +Q(d)
numerical parameter

π

2
ℓ

2.3 Variational Equations and Associated Governing Equations

In this section, we develop a constitutive framework for brittle and quasi-brittle phase-

field model of fracture. A coupled problem of fracture under the mechanical loading

is formulated in terms of the two primary field variables, the total strain tensor ε(x, t)

and the crack phase-field d(x, t). Therefore, the state of a material point x for the

coupled crack phase-field problem in a solid body is defined by

State(x, t) := {ε(x, t), d(x, t)}. (2.43)

The displacement field u(x, t) of the material point x ∈ B at time t ∈ T is deter-

mined as

u :







B × T → R
δ

(x, t) 7→ u(x, t)
(2.44)

As a consequence, the small strain tensor is defined as the symmetric displacement

gradient

ε(u) := ∇su =
1

2

[
∇T
x u+∇xu

]
. (2.45)

The general formulation of this coupled problem begins through the introduction of

the total energy functional of a degraded body in terms of the displacement field u
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and the crack phase-field d. The energy storage functional of an isotropic solid and

defined by

E(u, d) =
∫

B

Ψ̂(ε(u), d) dV, (2.46a)

with Ψ̂(ε(u), d) = [g(d) + κ] Ψ̂+
0 (ε) + Ψ̂−

0 (ε) (2.46b)

and Ψ̂0(ε) := Ψ̂+
0 (ε) + Ψ̂−

0 (ε) =
λ

2
tr [ε]2 + µ tr[ε2]. (2.46c)

In (2.46c) the energy storage function Ψ is written in an additively decomposed form

as a function of elastic constants, Lamé constant λ and shear modulus µwhere Ψ+ and

Ψ− are the positive and negative parts of the energy storage function associated with

the tensile and compressive deformations, respectively. The positive and negative

parts of the energy storage function are respectively defined as

Ψ̂+
0 (ε) =

λ

2
〈tr [ε]〉2+ + µ tr[ε2+] and Ψ̂−

0 (ε) =
λ

2
〈tr [ε]〉2− + µ tr[ε2−] (2.47)

In (2.47), the negative and positive parts of the strain tensor representing the ten-

sile and compressive modes, respectively. They are determined by using the spectral

decomposition of the strain tensor ε =
∑3

i=1 εini ⊗ ni, where {εi}i=1,2,3 are the

principal strains and {ni}i=1,2,3 are the principal strain directions. Therefore, ε+ and

ε− are defined as

ε+ =
3∑

i=1

〈εi〉+ni ⊗ ni and ε− =
3∑

i=1

〈εi〉−ni ⊗ ni. (2.48)

Note that the bracket operators 〈x〉+ := (x+ |x|) /2 and 〈x〉− := (x− |x|) /2 are

used in (2.47) and (2.48).

The macro- and micro-balance equations are derived from the standard argument of

virtual work.

Ė(u̇, ḋ) +D(ḋ, d)− P(u̇) = 0 (2.49)

where Ė(u̇), the rate of energy storage functional, is defined as follows

Ė(u̇, ḋ) =
∫

B

[∂dΨḋ+ ∂εΨ : ε̇] dV, (2.50)

P(u̇) represents the external power functional as

P(u̇) =

∫

B

b̄(x, t) · u̇ dV +

∫

∂Bt

t̄(x, t) · u̇ dA (2.51)
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where b̄ denotes the prescribed volume-specific body force in B and t̄ indicates the

surface traction on ∂Bt. In (2.49), D(ḋ, d) indicates the dissipation functional.

Dissipation Function for Crack Phase-Field Evolution. Cracking is an irreversible

and an inherently fully dissipative process. This fact allows us to derive the time-

dependent evolution of cracking by the means of the regularized crack surface [26].

Thus, the temporal growth of regularized crack surface evolution reads

Γ̇ℓ(d) =

∫

B

γ̇(d;∇xd) dV =

∫

L

(δdγ)ḋ dV ≥ 0 (2.52)

where the variational derivative of the crack surface density function is defined as

δdγ := ∂dγ − div[∂∇xdγ] =
1

c0

[
1

ℓ
α′(d)− 2ℓ∆d

]

. (2.53)

A diffuse fracture topology is created by the work for a given regularized crack sur-

face functional Γℓ(d)

Ŵc(d) =

∫

L

Gcγ(d;∇xd) dV, (2.54)

where Gc is the critical energy release rate. The crack dissipation is determined by

the rate of work functional

D := Ẇ (d; ḋ) =

∫

L

Φ(d,∇xd, ḋ,∇xḋ) dV (2.55)

where Φ(d,∇xd, ḋ,∇xḋ) denotes the constitutive dissipation function per unit volume

Φ(d,∇xd, ḋ,∇xḋ) := Gcγ̇(d;∇xd) = Gc(δdγ)ḋ. (2.56)

According to the second law of thermodynamics, the crack dissipation is required to

be positive D ≥ 0. The global irreversibility constraint of crack evolution is locally

conformed by a positive variational derivative of the crack surface function δdγ ≥ 0

and a positive evolution of the crack phase-field ḋ ≥ 0. These local constraints for

the rate-independent evolution of crack phase-field can be fulfilled by introducing the

local threshold function [26]

f(βd; d) = βd −Gcδdγ(d) ≤ 0 (2.57)

in terms of the variable βd, representing the driving force field dual to the crack phase-

field d. This expression designates a range without crack accumulation for f < 0.

38



Therefore, the dissipation function can be defined by the constrained optimization

problem

Φ(d,∇xd; ḋ,∇xḋ) = sup
βd,λL≥0

[

βdḋ− λL (β −Gcδdγ(d))
]

(2.58)

where λL is a Lagrange multiplier field. This field is set to λL = ḋ by considering

the necessary conditions of the constrained optimization problem in (2.58). Hence,

the local evolution of the phase-field ḋ is determined in terms of the local driving

force βd and the phase-field itself through the following conditions, also known as

the Karush-Kuhn-Tucker optimality conditions

ḋ ≥ 0, βd ≤ Gcδdγ(d), ḋ(βd −Gcδdγ(d)) = 0. (2.59)

The numerical treatment of the phase-field model is stabilized by a viscous regular-

ization of the rate-independent formulation. To this end, the constitutive dissipation

function is rewritten in terms of the viscous regularization setting [26]

Φ(d,∇xd; ḋ,∇xḋ) = sup
β,λL≥0

[

βdḋ−
1

2ηd
〈βd −Gcδdγ(d)〉+

]

(2.60)

The necessary conditions of this optimization problem ensure

∂βd

(

βdḋ−
1

2ηd
〈βd −Gcδdγ(d)〉+

)

= 0 then ḋ =
1

ηd
〈βd −Gcδdγ(d)〉+

(2.61)

where ηd ≥ 0 is a viscosity parameter determines the rate-dependency of the model.

In fact, it stabilizes the numerical treatment especially at the post-cracking steps

where the brutal crack propagation is observed. For the rate-independent formula-

tion with ηd → 0, a steeper descent is observed in the structural response for brittle

fracture. However, by applying a viscous regularization with ηd > 0, this wicked

behavior of the material is smoothed out [68].

Insertion of the functionals and application of Gauss theorem, (2.49) is explicitly

represented as

∫

B

−[−div[∂εΨ] + b̄] · u̇+ [∂dΨ+ ∂ḋΦ− div[∂∇xḋΦ̇]]ḋ] dV

+

∫

∂Bt

[∂εΨ · n− t̄] · u dA+

∫

∂L

[∂∇xḋΦ · n]ḋ dA = 0
(2.62)
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Then, the two coupled balance equations are obtained for the phase-field model of

fracture as
div[∂εΨ] + b̄ = 0,

div[∂∇xdΦ]− [∂dΨ+ ∂ḋΦ] = 0
(2.63)

considering the Neumann-type boundary conditions

σn = t̄ on ∂Bt and ∂∇xḋ · n = 0 on ∂L (2.64)

The asymmetric tension-compression split degrading energy storage function Ψ̂(ε, d)

in (2.46) acts as the potential to derive the constitutive equations for the stress tensor σ

and the crack energetic driving force βd. These aforementioned constitutive equations

are given by

σ̂(ε, d) :=
∂Ψ̂(ε, d)

∂ε
= [g(d) + κd] σ̂

+
0 (ε)− σ̂−

0 (ε) (2.65a)

β̂d(ε, d) := −∂Ψ̂(ε, d)

∂d
= −g′(d)Ψ̂+

0 (ε) (2.65b)

In (2.65), σ+
0 and σ−

0 express respectively the positive and negative parts of the

stress tensor of a fictitious intact solid body. These compressive and tensile stresses

are determined in terms of the principal strains and their directions as follows

σ±
0 :=

∂Ψ±
0

∂ε
=

3∑

i=1

[λ〈ε1 + ε2 + ε3〉± + 2µ〈εi〉±]ni ⊗ ni (2.66)

where the Lamé constants λ and µ can be expressed in terms of the elastic modulus

E and the Poisson’s ratio ν

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
(2.67)

By using (2.49) and applying the Neumann-type boundary (2.64) conditions the spe-

cific form of the balance equations of the coupled problems are derived. These bal-

ance equations, namely the conservation of linear momentum and the non-local crack

phase-field evolution equation are represented as

div [σ̂(ε, d)] + b̄ = 0, (2.68a)
[
Gc

c0ℓ

(
α′(d)− 2ℓ2∆d

)
+ ηḋ+ g′(d)H

]

= 0 (2.68b)
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The evolution equation of the crack phase-field in (2.68b) is reformulated in terms

of the local history field H in (2.68b) to enforce the damage evolution according

to the thermodynamic principle of ḋ > 0. The positive part of the reference free

energy function Ψ+
0 in (2.68a) is used to compute the local history field H. This field

represents the maximum local history field of positive reference energy required to

derive the crack phase-field d

Hn+1(x, t) := max
s∈[0,t]

Ψ+
0 (εn(x, s)). (2.69)

The history field H is updated within the typical time step [tn, tn+1] according to the

operator split algorithm which uses a staggered scheme to update the crack phase-

field and the displacement field [68]. Therefore, the current history field Hn+1 :=

H(x, tn+1) is defined in terms of the displacement field un at time tn. The initial

condition for the history field is set as H0 := H(x, t = t0) = 0 so the current value

of maximum reference energy obtained in history is given by [68]

H =







Hn+1 for Hn+1 > Hn,

Hn otherwise.
(2.70)

This expression indicates that the energy H drives the current crack phase-field d

at time tn+1. This energetic driving force is defined in the case of damage loading

dependent on the displacement un at time tn. On this account, the non-local equation

of crack phase-field evolution, (2.68b) is rewritten as

div q̂d(d;∇xd)− β̂d(d; ḋ) + f̂d(ε, d) = 0. (2.71)

The functions related to the spatial and temporal evolution of crack phase-field β̂d(d; ḋ),

q̂d(d;∇xd) and f̂d(ε, d) are respectively defined as

f̂d(d; ḋ) =
Gc

c0ℓ
α′(d) + ηdḋ (2.72a)

q̂d(d;∇xd) = −2Gcℓ

c0
∇xd, (2.72b)

β̂d(ε, d) = −g′(d)Ĥ(ε). (2.72c)

In general, this non-local (gradient-enriched) equation is used to calculate the tempo-

ral and spatial variation of the crack phase-field. The aforementioned softening laws

are simply used by adopting the regularized material parameters for different type of
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fracture in a solid material. It should be noted that the phase-field damage model

for the quasi-brittle fracture is implemented by imposing the damage boundedness

0 ≤ d ≤ 1 and the irreversibility condition ḋ ≥ 0. We deal with this matter by ap-

plying a general scheme referred to as the constrained optimization problem that is

associated with variational inequalities with box constraints and solved by the Scal-

able Nonlinear Equations Solver (SNES) [93]. The SNES library of PETSc provides a

powerful suite of data-structure-neutral routines for solving the large-scale nonlinear

and general constrained problems.

2.4 Finite Element Formulation

In this section, we apply the conventional Galerkin method to derive the weak form of

the conservation of linear momentum and the evolution equation of the crack phase-

field in (2.68). To this end, the square integrable weight functions δu ∈ U0 and δd ∈
V0, which satisfy the homogeneous Dirichlet-type boundary conditions (δu = 0 on

∂Bu and δd = 0 on ∂Ld), are multiplied with the local residual differential equations,

presented in (2.68). Then the weighted residual equations are integrated over the

solid volume by explicitly applying the integration by parts to obtain the following

weighted residual expressions for the balance of linear momentum

Gu(δu,u, d) = Gu
int(δu,u, d)−Gu

ext(δu)=0 (2.73)

and the succeeding expression for the evolution equation of the crack phase-field

Gd(δd,u, d) = Gd
int(δd,u, d)−Gd

ext(δd,u, d)=0. (2.74)

The specific forms of the internal Gu
int and external Gu

ext terms in (2.73) are separately

defined as

Gu
int(δu,u, d) :=

∫

B

σ̂ : δε dV ,

Gu
ext(δu) :=

∫

B

b̄ · δu dV +

∫

∂Bt

t̄ · δu dA .

(2.75)

In the same fashion, the following expressions represent the specific forms of the

internalGd
int and externalGd

ext terms associated with the evolution of crack phase-field
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problem

Gd
int(δd,u, d) :=

∫

B

−∇x(δd) · q̂ dV ,

Gd
ext(δd,u, d) := −

∫

L

δd (β̂d + f̂d) dV

(2.76)

where the functions related to the spatial and temporal evolution of crack phase-field

β̂d(d; ḋ), q̂d(d;∇xd) and f̂d(ε, d) already are given in (2.72c).

Owing to the nonlinear constitutive equations, the weighted residual equations (2.73)

and (2.74) are nonlinear functions of the state variables. Thus monolithic or staggered

treatment of the these equations requires the adoption of Newton-type iterative solu-

tion schemes within the framework of the implicit finite element method. Although

we use the staggered scheme to solve the coupled problems, the constraint lineariza-

tion is derived for the monolithic scheme. In the former, the off-diagonal terms of the

global tangent vanish identically. As a consequence, the consistent linearization of

the weighted residuals are conducted with respect the state variables at an intermedi-

ate iteration step at which the variables are assumed to take the respective values ũ

and d̃

LinGu(δu,u, d)|
ũ,d̃ := Gu(δu, ũ, d̃) + ∆Gu(δu, ũ, d̃; ∆u,∆d) = 0 ,

LinGd(δd,u, d)
∣
∣
ũ,d̃

:= Gd(δd, ũ, d̃) + ∆Gd(δd, ũ, d̃; ∆u,∆d) = 0

(2.77)

where the incremental terms ∆Gu and ∆Gd are obtained through the Gâteaux deriva-

tive and represented in the following forms

∆Gγ = ∆Gγ
int −∆Gγ

ext with γ = u, d . (2.78)

Then, the incremental terms are defined with respect to the related equations. At first,

the increment ∆Gu

int is expressed in the specific form as

∆Gu
int =

∫

B

δε : ∆σ̂ dV (2.79)

where the increment of the stress tensor ∆σ̂ is given by

∆σ̂ = C
uu : ∆ε+Cud∆d . (2.80)

In this expression, Cuu is the fourth-order tangent moduli tensor defined as the deriva-

tive of the stress tensor with respect to the strain tensor and Cud is the second-order
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tensor, which is the derivative of the stress tensor with respect to the crack phase-field.

The fourth order Cuu is defined through the following expression

C
uu := ∂

ε
σ̂ = g(d)

[

λ
〈tr(ε)〉+
tr(ε)

1⊗ 1+ 2µP+

]

+

[

λ
〈tr(ε)〉−
tr(ε)

1⊗ 1+ 2µP−

]

(2.81)

where P
+ := ∂ε [ε+(ε)] and P

− := ∂ε [ε−(ε)] are introduced as the fourth-order

tensors projecting the total strains onto their positive and negative parts, that is ε+ =

P
+ : ε and ε− = P

− : ε. These fourth-order tensors are given by [68]

P
+ =

3∑

i=1

3∑

j=1

∂〈εi〉+
∂εi

ni ⊗ ni ⊗ nj ⊗ nj

+
3∑

i=1

3∑

i 6=j

1

2

〈εi〉+ − 〈εj〉+
εi − εj

ni ⊗ nj ⊗ (ni ⊗ nj + nj ⊗ ni),

P
− = I− P

+.

(2.82)

Also the second order tensor Cud is determined as

Cud := ∂dσ̂ = g′(d) [λ〈tr(ε)〉+1+ 2µε+] (2.83)

The incremental term ∆Gd is determined through the following formulation

∆Gd := ∆uG
d +∆dG

d

=

∫

B

[

δdCdu
]

: ∆ε dV +

∫

B

[−∇x(δd) ·∆q̂] dV

+

∫

B

[

∂dβ̂d + ∂df̂
]

∆d dV

(2.84)

where the increment of the crack phase-field flux ∆q̂d

∆q̂ = −D̂∇x(∆d) with D̂:=− ∂∇xdq̂ =
2Gc l

c0
1, (2.85)

and the second order tensor is Cdu =
∂β̂d
∂ε

Now, the isoparametric Galerkin Finite Element approach is applied to numerically

evaluate the weak form of the governing equations. To this end, we use the spatial

dicretization of the coupled problem within the solid domain B by dividing it into

finite elements of domain Bh
e , i.e. B ≈ Bh =

⋃nel
e=1 Bh

e where nel denotes the total
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number of elements within the domain B. The displacement field u(x, t), the crack

phase-field d(x, t), and their associated weight functions, δu and δd, are expressed

by using the shape functions within an element domain Bh
e

δuh
e =

nen∑

i=1

N iδU e
i , δdhe =

nen∑

k=1

NkδDe
k ,

uh
e =

nen∑

j=1

N jU e
j , dhe =

nen∑

l=1

N lDe
l .

(2.86)

In this expression, nen demonstrates the number of nodes per element within the do-

main Bh
e . U e

i and δU e
i are the vectors of the nodal displacements and displacement

weight functions. Also, De
l and δDe

k indicate the nodal crack phase-field variables

and its weight functions. Moreover, N i presents the shape function associated with

node i. In the following, the gradient of the weight functions of the displacement field

and crack phase-field with element e are defined as

∇x(δu
h
e ) =

nen∑

i=1

δU e
i ⊗∇xN

i ,

∇x(δd
h
e ) =

nen∑

k=1

δDe
k ⊗∇xN

k .

(2.87)

Likewise, the spatial gradient of the incremental fields with element e are specified as

∇x(∆uh
e ) =

nen∑

j=1

∆U e
j ⊗∇xN

j ,

∇x(∆d
h
e ) =

nen∑

l=1

∆De
l ⊗∇xN

l .

(2.88)

The discrete residual vectors are obtained by incorporating the dicretized representa-

tion (2.86) and (2.87) in (2.73) and (2.74) along with (2.75) and (2.76)

Ru
I =A

nel

e=1

{ ∫

Bh
e

∇xN
i · σ̂ dV −

∫

Bh
e

N ib dV −
∫

∂Be
t

N i t̄ dA
}

= 0 ,

Rd
K =A

nel

e=1

{

−
∫

Bh
e

∇xN
k · q̂ dV +

∫

Bh
e

Nk (Ĥ + f̂) dV
}

= 0

(2.89)

where the assembly operator A operates the standard assembly of element contri-

butions at the local element nodes i, k = 1, 2, . . . , nen to the global residuals at the
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global nodes I,K = 1, 2, . . . , nnd. Likewise, the tangent matrix of the coupled prob-

lem is obtained by inserting (2.86), (2.87) and (2.88) into (2.79) and (2.84) through

the following expressions

Kuu
IJ =A

nel

e=1

{ ∫

Bh
e

∇xN
i · Ĉuu · ∇xN

j dV
}

,

Kud
IL =A

nel

e=1

{ ∫

Bh
e

(∇xN
i · Ĉud

)Nk dV
}

,

Kdu
KI =A

nel

e=1

{ ∫

Bh
e

(NkCdu∇xN
i) dV

}

,

Kdd
KL =A

nel

e=1

{ ∫

Bh
e

∇xN
k · D̂∇xN

l dV +

∫

Bh
e

Nk(∂dĤ + ∂df̂)N
l dV

}

(2.90)

In these expressions, A denotes the assembly operator of the element contribution

at the local element nodes i, j, k, l = 1, . . . , nen to the global tangent moduli at the

global nodes I, J,K, L = 1, . . . , nnd of the mesh with nnd nodes. As a consequence,

the global form of the tangent matrix for the specific coupled problems is written as

K :=






Kuu Kud

Kdu Kdd




 . (2.91)

The solutions related to mechanical and crack phase-field DOFs are calculated at

time t = tn+1 for an intermediate iterative values D̄. To this end, the global residual

vectors and the global coupled tangent matrices separately defined as R̄ := R(D̄)

and K̄ := K(D̄) with the global unknown vector including the mechanical and crack

phase-field DOFs as D := [U D]T are used to calculate the iterative solutions of the

mechanical and crack phase-field DOFs at the global nodes of a finite element mesh

D = D̄− K̄
−1 · R̄. (2.92)

We us the Finite Elements Analysis Program (FEAP) [94] to implement our user

material (UMAT) and user element (UEL) codes. The finite element meshes are con-

structed for the numerical examples using the ABAQUS/CAE software [95]. The

common solvers that are used by the Finite Element Analysis Program (FEAP) is

not capable of solving non-standard phase-field fracture model (PF-CZM), in which

the boundedness condition of crack phase-field degree of freedom d is not guaranteed.
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Therefore, it is required to solve a bound-constrained optimization problem regarding

Rd
K in (2.89) as an optimization bounded by the following condition

0 ≤ d̄K,n ≤ d̄K,n+1 ≤ 1 (2.93)

For this purpose, we have used the nonlinear solver (SNES) to deal with the afore-

mentioned boundedness and irreversibility conditions as suggested in [80]







d̄K,n < d̄K,n+1 < 1 Rd
K = 1

d̄K,n+1 = d̄K,n Rd
K < 1

d̄K,n+1 = 1 Rd
K > 1

(2.94)

2.5 Representative Numerical Examples

In this section, the modeling capacity of the phase-field approach with respect to the

brittle and quasi-brittle fracture is demonstrated by means of representative numer-

ical examples. At first, the numerical solution of the variational problem of diffuse

crack topology introduced in this chapter is presented to investigate the effect of the

length scale parameter on the regularized crack functional Γℓ(d) in (2.9) associated

with the brittle [68] and quasi-brittle [27] fracture. We then apply the phase-field ap-

proach to a variety of the problems to simulate the brittle and quasi-brittle fracture in

solids under the mechanical loading. These examples are selected from the bench-

mark problems widely employed in the literature. In the case of the brittle fracture,

crack propagation is simulated in the single notched square plate under pure tension

and pure shear, and in the three-point bending test [68]. The quasi-brittle fracture

is investigated by modeling a Mode-I failure of bending concrete beam [27], mixed

mode failure of L-shaped panel [27], and the crack evolution in the Brazilian split

tension test of concrete. The material parameters and the geometric crack function

used in the representative numerical examples are given in Table 2.2. In addition to

the mechanical parameters, the value of the length scale parameter value will be given

in the units of mm, for each numerical example.
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Table 2.2: Material properties, degradation, and geometric crack functions used in the

representative numerical examples

Parameter/Function Description Unit EX1-EX4 EX5 EX6 EX7 EX8

E Elastic modulus [GPa] 210 0.1 20 25.85 20

ν Poisson’s ratio [–] 0.375 0 0.2 0.18 0.2

ft Tensile strength [MPa] − 1 2.4 2.7 2.7

Gc Critical fracture energy release rate [kJ/m2] 2.7 0.1 0.113 0.09 0.113

g(d) Degradation function [–] (1− d)2
1

1 + φ(d)

1

1 + φ(d)

1

1 + φ(d)

1

1 + φ(d)

α(d) Geometric crack function [–] d2 2d− d2 2d− d2 2d− d2 2d− d2

2.5.1 A Square Plate with a Notch

In this example, the Γℓ-convergence to sharp crack topology, i.e. Γℓ → Γ referring

to Figure 2.3 is represented by a notched unit-square plate with the edge length of

1 mm. This plate has a pre-cracked path with a length of 0.5 mm at the mid of the

plate, along which the Dirichlet boundary condition d = 1 is prescribed [26]. The

geometry and dimensions of the square plate are illustrated in Figure 2.11a. The

related finite element simulations are carried out for different length scales based on

a very fine mesh with constant mesh size h ≈ 0.00082, consisting of 1, 488, 400 four-

node quadrilaterals. In Figure 2.8, the results of the finite element simulations of

the regularization of a crack topology of the brittle failure with the geometric crack

function α(d) = d2 are depicted. Accordingly, the large length scale ℓ = 0.2 yields

the approximated regularized in (2.9) Γℓ = 0.55013 and the smaller value of the

length scale parameter ℓ = 0.007 yields Γℓ = 0.50400 ≈ Γ = 0.5.

In Figure 2.9 the results of regularization of a crack topology for the geometric crack

function α(d) = 2d− d2, obtained through the finite element simulations are demon-

strated [27]. In comparison with the brittle failure, the regularized crack functional Γℓ

of the quasi-brittle failure has smaller values. For the largest and the smallest values of

the length scale selected here, we obtain Γℓ = 0.58734 and Γℓ = 0.50350 ≈ Γ = 0.5,

respectively. The results represent that the Γ-convergence of the regularized crack

surface functional Γℓ(d) can reach its sharp crack counterpart by resolving the in-
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(a) (b) (c) (d)

0 1
d

Figure 2.8: Regularized crack surface Γℓ characterized by the crack phase-field d for

different values of the length scale ℓ with α(d) = d2 : (a) ℓ = 0.2 with Γℓ = 0.59388,

(b) ℓ = 0.1 with Γℓ = 0.55013, (c) ℓ = 0.02 with Γℓ = 0.51020, (d) ℓ = 0.007 with

Γℓ = 0.50400.

corporated length scale with sufficiently fine mesh. The evaluated crack phase-field

localized within a narrow band whose width is scaled by the internal length scale.

(a) (b) (c) (d)

0 1
d

Figure 2.9: Regularized crack surface Γℓ characterized by the crack phase-field d

for different values of the length scale with α(d) = 2d − d2 ℓ: (a) ℓ = 0.2 with

Γℓ = 0.58734, (b) ℓ = 0.1 with Γℓ = 0.54355, (c) ℓ = 0.02 with Γℓ = 0.50888, (d)

ℓ = 0.007 with Γℓ = 0.50350.

2.5.2 Convergence Study on the Brittle Phase-Field Model (EX1)

Before representing the numerical examples related to the fracture under the mechan-

ical loading, we conduct a convergence study on the mesh-dependency of the numer-

ical results. For this purpose, a single edge notched tension test is considered. The

geometry and dimensions of the plate are demonstrated in Figure 2.11. The domain
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is discretized with a structured mesh consisting of four-node quadrilateral elements

with different element sizes. The length scale parameter is chosen as a constant value

of ℓ = 0.05, and the element size in each analysis is set to h ≤ 0.5ℓ, in order to

regularize the crack surface functional Γℓ. The material parameters used in this study

and the related geometric crack function for this type of brittle fracture are given in

Table 2.2.

h = 0.025
h = 0.011
h = 0.0083
h = 0.0067
h = 0.0042
h = 0.0024

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
[k

N
]

u [×10−3 mm]

Figure 2.10: Load-displacement curve of the single edge notched tension test ob-

tained by the convergence study.

The displacement-driven loading is computationally performed by monotonically in-

creasing displacement on the surface of the top surface of the specimen with con-

stant displacement increment of ∆u = 10−5 mm in the first 500 time steps and with

∆u = 10−6 mm in the remaining time steps because of the brutal character of the

crack propagation.

The structural response in terms of the load-displacements curves are shown in Figure

2.10 for different element sizes. The results indicate that the structural response of

a fracturing material modeled by the brittle phase-field model is mainly independent

of the element size, as by decreasing the element size to sufficiently refine the plate

domain, the structural response becomes independent of the element size.
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2.5.3 Single Edge Notched Tension Test (EX2)

The brittle failure is investigated in a square plate with a notch horizontally placed

at middle height from the left outer surface to the center of the specimen [68]. The

geometry of the specimen, its boundary conditions, boundary conditions, and the

finite element model are shown in Figure 2.11. The mesh is sufficiently refined in the

center strip of the specimen where the crack is predicted to propagate. The domain

of the specimen is discretized with 64, 556 four-node quadrilateral elements with the

effective size of h = 0.001 mm. In order to regularize the crack surface Γℓ, the

maximum mesh size is chosen to be one half of the length scale, which is set to ℓ =

0.015 mm. The mechanical properties of the material, the geometric crack function,

and the displacement-driven loading condition are the same as the previous example

in Subsection 2.5.3. The further simulations are performed to clarify the effect of the

length scale parameter ℓ and the viscosity ηd.

0.50.5

0.5

0.5

ū(t)

(a) (b)

Figure 2.11: Single edge notched compact tension test (a) Geometry, dimensions

and boundary conditions (All dimensions in mm), (b) Finite element mesh with the

effective element size h = 0.001 mm in the center strip of the specimen.

The patterns of the crack propagation at different displacement stages predicted by the

brittle phase-field theory [68] for the rate-independent case are illustrated in Figure

2.12. The load-deflection curves for single edge notched tension test and the compar-

ison with the results reported in [68] are depicted for ℓ = 0.015 mm and ℓ = 0.075

mm in Figure 2.13 and Figure 2.14, respectively. The results are represented for the
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Figure 2.12: Single edge notched tension test. Crack propagation path for ηd = 0

kNs/mm2 and ℓ = 0.015 mm at a displacement of (a) u = 5.71 × 10−3 mm, (b)

u = 5.83× 10−3 mm, and (c) u = 5.91× 10−3 mm.

different values of the length scale parameter and the viscosity.
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(a) (b)

Figure 2.13: Load-deflection curve of the Single edge notched tension test for (a)

ℓ = 0.015 mm and ηd = 0 kNs/mm2 and (b) ℓ = 0.015 mm and ηd = 1 × 10−3

kNs/mm2.

By comparing the structural response in terms of the load-displacement curve, see

Figure 2.13a and Figure 2.14a, it is observed that for the rate-independent case with

ηd = 0 kNs/mm2 the load-displacement curves abruptly descends in the post-cracking

regime. Whereas this brutal crack propagation is smoothened by the viscous model

with ηd = 1× 10−3 kNs/mm2 as it is visualized in Figure 2.13a and Figure 2.14b.
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Figure 2.14: Load-deflection curve of the Single edge notched tension test for (a)

ℓ = 0.0075 mm and ηd = 0 Ns/mm2 and (b) ℓ = 0.0075 mm and ηd = 1 × 10−3

Ns/mm2.

2.5.4 Single Edge Notched Shear Test (EX3)

In this example, as the previous one the same square plate with a horizontal notch

is used for a shear test [68]. The geometric setup of the specimen, the dimensions,

the boundary conditions, and the finite element model are illustrated in Figure 2.15.

Also, the plate is prevented from the vertical deformation at its right and left edges.

The crack pattern is captured satisfactorily by refining the mesh in the lower right

diagonal strip of the specimen where the crack is expected to propagate. The do-

main of the specimen is discretized with 64, 556 four-node quadrilateral elements

with the effective element size of h = 0.002 mm. The length scale parameter is set

to ℓ = 0.0075. For the material parameters and the geometric crack function adopted

in this example, we refer to Table 2.2. The viscosity is set to η = 0 Ns/mm2 for

the rate-independent case. The displacement-driven loading is computationally per-

formed by monotonically increasing the displacement on the top face with a constant

displacement increment of ∆u = 1× 10−5 mm.

The patterns of crack propagation at different displacement stages are illustrated in

Figure 2.16. Moreover, the load-displacement curves for the single edge notched

shear test and the comparison with the result in [68] are depicted in Figure 2.17
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Figure 2.15: Single edge notched pure shear test (a) Geometry,dimensions and bound-

ary conditions (All dimensions in mm), (b) Finite element meshes with the effective

element size h = 0.002 mm in along the right diagonal strip.

(a) (b) (c)
0
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d

Figure 2.16: Single edge notched pure shear test. Crack propagation path for η = 0

kNs/mm2 at a displacement of (a) u = 6.02 × 10−3 mm, (b) u = 6.52 × 10−3 mm,

and (c) u = 7.04× 10−3 mm.

2.5.5 Asymmetric Notched Three-Point Bending Test (EX4)

In this example, we apply the brittle phase-field model to simulate the growth of the

curvelinear crack in an asymmetric notched three-point bending test. The numeri-

cal and experimental results associated with this problem are given in the work of

Bittencourt et al. [96]. It is also simulated in the work of Miehe et al. [68] by imple-

menting the phase-field model. The geometry of the beam, its boundary and loading

conditions are depicted in Figure 2.18a. The beam domain is discretized by the linear
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Figure 2.17: Load-deflection curve of the single edge notched shear test for ℓ =

0.0075 mm and ηd = 0 kNs/mm2

triangular elements with a refined zone around the expected crack path as shown in

2.18b. The effective elements size is h = 0.01 mm, which is set to ℓ = 0.1 mm for

the remaining domain which yields 66, 556 elements. The length scale parameter is

set to ℓ = 0.02 mm.

u
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1 mm

1 mm

2 mm

2 mm

2.75 mm

4 mm
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(a)

(b)

Figure 2.18: Asymmetric notched three-point bending beam. (a) geometry, dimen-

sions, loading and boundary conditions, and (a) finite element mesh with the effective

element size h = 0.01 mm in the damage critical zone.
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The mechanical parameters are taken from [68]. These parameters and the geometric

crack function for this type of brittle fracture are given in Table 2.2. The viscosity is

set to ηd = 0 kNs/mm2 for the rate-independent fracture model. The displacement-

driven loading is computationally applied by increasing the displacement monotoni-

cally at the center of the top surface with a constant incremental value of ∆u = 10−5

mm.

In Figure 2.19, the visualization of the numerical result of the crack trajectory in the

current work is compared with ones experimentally investigated in [96]. It represents

that the phase-field model is capable of capturing such a curvelinear crack pattern,

which cannot be easily simulated by the classical damage models.

(a) (b)

d

0

1

Figure 2.19: Crack trajectory of the assymetric notched three point bending test ob-

tained by (a) the current work, and (b) the experimental work by Bittencourt et al.

[96]

2.5.6 Convergence Study on the Cohesive Zone Phase-Field Model (EX5)

In the first step, we conduct two convergence studies in this part, to investigate the

mesh size and the length scale dependency of the cohesive zone phase-field model.

For this purpose, a three point bending beam, reported in [97], is considered. The

geometry of the beam, its dimensions, and the loading and boundary conditions of

the three-point bending test are shown in Figure 2.20. The displacement-controlled

loading is monotonically imposed at the midpoint of the top surface with a constant

displacement increment of ∆u = 10−4 mm.

The solid domain is discretized with the linear triangular elements, refined along
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Figure 2.20: Geometry, dimensions, loading and boundary conditions of a symmetric

three point bending test
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Figure 2.21: Load-displacement of the symmetric three-point bending test obtained

by the convergence study.

the path where the crack is expected to propagate. However, the element size in

remaining domain has the constant value of h = 0.1 mm as shown in Figure 2.22.

The corresponding mechanical properties, taken from [97], and the geometric crack

function adopted for this type of quasi-brittle fracture are presented in Table 2.2. We

choose a constant value of ℓ = 0.25 mm. The Griffith’s characteristic length scale

parameter is calculated as ℓch = 10 mm. The corresponding material parameters of

Cornelissen’s softening low are a1 = 50.93, a2 = 1.3868 and a2 = 0.6567.

We conduct the analyses with different element size along the critical path. The re-

sulting load-displacement curves for different values of the element size are demon-

strated in Figure 2.21. The results indicate that when the mesh is sufficiently resolved
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within the critical zone with the critical mesh size, chosen smaller than the length

scale parameter h ≤ (0.1 ∼ 0.2)ℓ, the results become mesh-independent.

Figure 2.22: Finite element discretization of the three-point bending beam test with

the effective element size h = 0.01 mm.
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Figure 2.23: Three-point bending test. Crack pattern at (a) u = 0.25 mm, (b) u = 0.5

mm, (c) u = 1 mm, and (d) results obtained from the convergence study on the length

scale dependency.

In the second step, we perform analyses to validate the length scale independency of

the structural response. To this end, we repeat the three-point bending beam test as

presented in the first step of the convergence study with the constant element size, but

the length scale parameter is different for each analysis. The domain is discretized

by 59, 132 elements with the effective element size h = 0.01 mm around the centroid

of the beam. The crack patterns at three different loading steps are demonstrated in

Figure 2.23a for the length scale parameter ℓ = 0.05. The load-displacements curves

for different values of the length scale parameter along with one obtained in [97],

are presented in Figure 2.23b. The load-deflections curves for distinct length scale

parameter values are nearly equal to each other. The results indicate that the length

scale parameter has a negligible effect on the structural response when it is sufficiently
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small.

2.5.7 Mode-I Failure of a Three Point Bending Beam (EX6)

We validate the capability of the unified phase-field model in predicting the crack path

in a concrete notched beam under the three-point bending test reported in [98]. The

geometry of the test specimen, its dimensions, the loading and boundary conditions

are demonstrated in Figure 2.24. The discretization is refined in the expected crack

propagation zone (around the centroid of the beam), rendering a discretization with

54,498 elements with the effective element size of h = 0.25 mm being used in the

critical zone, as demonstrated in Figure 2.24.

Thickness: 100 mm

u

450 mm

5 mm

100 mm
50 mm

(a)

(b)

Figure 2.24: Three-point bending test. (a) Geometry, loading and boundary condi-

tions of a notched concrete beam (b) Finite element discretization with the effective

element size h = 0.25 mm.

The material parameters, taken from [98], and the corresponding geometric crack

function for this type of quasi-brittle fracture are represented in Table 2.2. The in-

ternal length scale ℓ = 1.25 mm as represented in [27]. As regards the material

properties, the Griffith’s characteristic length scale is determined ℓch ≈ 392.36 mm.
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The model parameters, used in formulation of the softening law according to Cor-

nelissen’s approach are chosen to be a1 = 399.65, a2 = 1.3868, and a3 = 0.6567.

The displacement-driven loading is imposed at the midpoint of the top surface of the

beam. The loading is monotonically increased with a constant incremental value of

∆u = 10−4 mm.

In Figure 2.25, the numerical results are presented in terms of the crack path topology.

Beside, the comparison between the experimentally and numerically obtained load-

deflection curves are depicted in Figure 2.26.
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Figure 2.25: Prediction of crack pattern for three-point bending of a notched concrete

beam.
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Figure 2.26: Load-deflection curves for three-point bending of a notched concrete

beam.
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2.5.8 Mixed-Mode Failure of a L-Shaped Panel (EX7)

As another example, the mixed mode failure test of a L-shaped panel is presented

[99]. The geometry, the loading and boundary conditions of the related specimen are

represented in Figure 2.27a. The discretization is refined in a region where the crack

propagation is expected to be observed, yielding 53, 579 linear triangular elements

with the effective mesh size as h = 0.5 mm. In Figure 2.27b, the finite element mesh

is illustrated. The material constants, reported in [99], and the geometric crack func-

tion are shown in Table 2.2. The internal length scale is set to ℓ = 2.5 mm. The

Griffith’s characteristic length scale is calculated ℓch ≈ 319.14 mm. The correspond-

ing material parameters of Cornelissen’s softening low are a1 = 81.27, a2 = 1.3868

and a2 = 0.6567. The displacement-driven loading is imposed at a point located 30

mm towards left form the right edge of the specimen. The loading is monotonically

increased with a constant value of ∆u = 10−4 mm.

u

Thickness: 150 mm

(a) (b)

u

250 mm

250 mm

250 mm250 mm

30 mm

Figure 2.27: L-shaped panel. (a) Geometry, dimensions, loading and boundary con-

ditions, (b) finite element discretization with the effective element size h = 0.5 mm.

Figure 2.28 represents the crack path topology, respectively obtained by the phase-

field cohesive zone model and experiments. Furthermore, the load-deflection curves

obtained numerically and experiment are compared in Figure 2.29.
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Figure 2.28: L-shaped panel. Crack patterns obtained by (a) the cohesive zone phase

field model in the current work and (b) the experiment reported in [99].
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Figure 2.29: Load-deflection curves for the L-shaped panel.

2.5.9 Crack Evaluation in Brazilian Split Tensile Test of Concrete (EX8)

The tensile strength is one of the primary properties of concrete, so its definition is of

great importance for engineers to determine the load at which the concrete members

may crack. Due to the difficulties related to conducting the direct tension test, an

indirect test method has been developed by means of a tensile splitting experiment

(Brazilian test). These difficulties correspond to holding the test specimen properly

in the testing machine without introducing stress concentration and application of a

pure tensile load on the plain concrete specimen, which is free from eccentricity to

62



the specimen. The Brazilian test is conducted by subjecting a standard cylindrical

concrete specimen to compressive loads applied along two diametrically opposite

lines. Figure 2.30 illustrates the geometry, the boundary and loading conditions, and

the finite element model. The domain is discretized by totally 28, 321 quadrilateral

elements with the constant element size of h = 0.8 mm.

Figure 2.31 visualizes the crack propagation obtained by the phase-field cohesive

zone model. Likewise Figure 2.32 demonstrates maximum principal stress along the

diameter of the cylindrical specimen. It can be observed that the maximum principal

stress yields in the concrete specimen are approximately equal to the tensile strength

of the concrete.

Tensile stress occurs perpendicular to the direction of loading and almost uniformly

distributed over the diameter of the cylindrical specimen, however, near the loading

points local compressive stresses are generated and tensile stresses are not observed

at all. Eventually, these tensile stresses cause the splitting of the cylinder by cracking

along the diameter. The brittle crack propagation in Brazilian disk test conducted

on rocks is investigated in [100] by adopting brittle phase-field model. Moreover,

the failure mechanism of the sandstone under Brazilian test with different loading

geometries is studied by means of the brittle phase-field model in [101].

The material parameters, and geometric crack function associated with the quasi-

brittle fracture are given in Table 2.2. The internal length scale is chosen to be ℓ = 4

mm. The Griffith’s characteristic length scale is calculated ℓch ≈ 319.14 mm regard-

ing the material constants. The corresponding material parameters of Cornelissen’s

softening low are a1 = 101.59 mm, a2 = 1.3868 and a2 = 0.6567. The displacement-

driven loading is performed on a bearing strip whose width is about 50 mm, and

placed at the top of the specimen. The loading is monotonically increased with a

constant value of ∆u = 10−4 mm.

The tensile stress, perpendicular to the direction of loading is distributed over the

diameter and induce the splitting of the cylindrical concrete specimen so cracking

occurs parallel to the loading path. As it is known the direct and the split tensile

strength of concrete are calculated as the function of the compressive strength as

fdt = 0.35
√
fc and fst = 0.5

√
fc, respectively [102]. Therefore, we can determine
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Figure 2.30: Brazilian test of concrete: (a) Geometry, loading and boundary condi-

tions, and (b) finite element discretization with h = 0.8 mm.
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Figure 2.31: Prediction of crack pattern in concrete specimen under Brazilian tensile

test at (a) u = 0.102 mm, (b) u = 0.212 mm and (c) u = 0.24 mm.
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Figure 2.32: Distribution of the maximum principal stress along the diameter of the

specimen at displacement u = 0.238 mm.
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the split tensile strength of concrete as fst = 1.429fdt. The split tensile strength can

also be determined using the following expression [103]

fst =
2Pmax

π l D
(2.95)

where Pmax indicates the maximum load at the onset of cracking, l andD represent the

length and the diameter of the cylindrical specimen, respectively. These are l = 300

mm andD = 150 mm. As the direct tensile strength is fdt = 2.7 MPa in this example,

the split tensile strength is computed as fst = 3.86 MPa. Then the maximum load in

(2.95) is theoretically calculated as Pmax = 272.65 kN. We obtain the maximum load

from the numerical results as Fmax = 271 kN, which is in good agreement with the

theoretical value, see Figure 2.33.

Referring to Figure 2.32, it is observed that there is a difference between the calcu-

lated maximum principal stress, that its distribution is demonstrated in Figure 2.32

is different from the direct tensile strength computed form the analytical expression

as fdt = 2.7 MPa. This originates from the basic principles and the derivation of the

cohesive zone phase-field model. In this study, the crack driving force βd is calculated

as a function of the tensile strains, that are calculated differently for the non-identical

mechanical displacements. In addition, within the framework of the cohesive zone

phase-field model, the formulation is predominantly derived for the Mode I fracture,

but in this example there exist a mixed-mode fracture.
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Figure 2.33: Load-deflection curve for Brazilian split tensile test.
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2.6 Concluding Remarks

In this chapter, a thermodynamically consistent framework for the phase-field model

is presented and used to simulate the brittle and quasi-brittle fracture in solid bodies

by using Finite Element Method. At first, we have derived the general form of a reg-

ularized crack surface functional in terms of the crack geometric function. Then, we

have introduced the dissipation function for crack phase-field evolution which is also

dependent on the geometric crack function. Furthermore, the energetic degradation

function based on the optimal constitutive functions associated with the specific form

of the softening law has been represented. To this end, we solve a crack phase-field

problem over a one-dimensional bar to obtain the inverse crack phase-field an half

with of localization band which contributes to relate the optimal parameters for the

softening laws.

Contrary to the classical phase-field model, which has been widely applied to model

the brittle fracture in the solid bodies, the cohesive-zone phase-field model is pre-

sented in this study to predict the quasi-brittle fracture in a solid body especially in

concrete. This approach allows us to predict the post-cracking response of the ma-

terial which is accompanied by softening. In the traditional phase-field models, the

response of the material strongly depends on the length scale parameter. This pa-

rameter is defined as a function of the mechanical properties of the material which

also governs the spatial discretization of the solid body. However, the cohesive-zone

phase-field approach overcomes this drawback where the length scale parameter has

a negligible effect on the global response of the material so that it no longer depends

on the mesh size and bias. It just affects the localization bandwith so by sufficiently

refining the mesh size the crack phase-field is resolved within the localization band

and, the results converge to the analytical ones [27].

The cohesive-zone phase-field model is implemented by using the Scalable Nonlinear

Equations Solvers (SNES) to solve a bounded-constrained optimization problem in

which the crack irreversibility is enforced. The presented numerical results represent

the capabilities of the phase-field model in predicting the fracture in solid bodies

especially for the case of materials which exhibit the quasi-brittle behavior under the

mechanical loading.
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In the following chapter, the cohesive-zone phase-field model will be used to simulate

thermally-induced cracking in hardening concrete and its response is investigated the

varying environmental temperature conditions.
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CHAPTER 3

PHASE-FIELD MODELING OF THERMAL CRACKING IN MASS

CONCRETE

3.1 Introduction

In massive concrete structures, the volumetric deformation due to temperature changes

is of great importance since it may induce cracking. In the concrete technology of

massive structures construction, the cracks resulting from the volume changes due to

the thermal gradient between the interior and exterior of the structures are a primary

concern. It has also a considerable effect on the stress state of massive structures. The

variation of temperature is related to the amount of heat generated in the course of

the hydration process of cement. This heat generation also influences the behavior of

concrete at the early ages [25, 16].

The behavior of concrete at the early ages is the cross-effect between the hydration

reactions, temperature evolution, and deformation, which can lead to cracking. The

risk of cracking due to temperature variations in a massive structure such as a concrete

dam is required to differentiate two primary patterns. It is concerned with cracking

due to the cooling process that may take several years after the completion of the

dam, and cracking near the surface as a result of the surface cooling due to the ambi-

ent air temperature. The latter process may become an essential issue during the first

week after concreting [16]. The increasing number of massive concrete structures

constructed around the world and the importance of their serviceability require de-

tailed methodologies to estimate practically the risk of thermally induced cracking in

the massive concrete constructions. As a consequence, the failure mechanics of mas-

sive concrete structures is appealed great significance in the field of the prediction of
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fracture in engineering applications.

In the literature, there exist studies investigating the fracture mechanism to develop

convincing methodologies for the realistic assessment of the risk of thermally induced

cracking in the massive concrete structures.

The more relevant features of the concrete behavior at early ages, e.g. the cement

hydration, the aging effects, temperature variation, creep and damage are studied in

[25, 16]. In the latter study, the numerical approach is proposed within the frame-

work of chemo-thermo-elasticity to predict the temporal evolution of the degree of

hydration and the production of the heat of hydration. Moreover, a damage model

based on the theory of continuum damage mechanics is presented to perform the

stress analysis of the evolutionary construction process of RCC dams, and the conse-

quent cracking in the interior of the dam body due to the cooling process, in which the

nonuniform distribution of maximum temperature decreases down to the mean annual

temperature, and cracking near the surface as a consequence of the thermal gradient

in concrete is induced by environmental conditions. The thermally induced stress in a

massive concrete structure can be classified in two general types: (i) self-stress which

may develop as a result of the non-linear distribution of the internal temperature with-

out any external constraint and (ii) the restraint-stress, which is produced by external

boundary constraints so the solid body cannot deform freely as temperature varies.

De Schutter has conducted finite element simulation to investigate the occurrence of

thermal cracking in massive hardening concrete elements using the degree of hydra-

tion based parameter laws [104]. Moreover, in the study, the crack initiation and prop-

agation are simulated through a smeared cracking approach with non-linear softening

behavior. Furthermore, a three-dimensional material model based on the Rankine

criterion is presented in [23] to simulate the early-age cracking of concrete. The pro-

posed model is employed for the chemo-thermo-mechanical analysis of RCC dam. In

addition, crack risk analysis is conducted to capture the potentially cracking paths.

Over the recent years, the phase-field model has been more favored by several re-

searchers to simulate cracking under thermal effects. This method has been widely

applied to simulate the brittle fracture. In the work of Miehe et al. [69], it is de-

veloped to model the brittle fracture in thermo-elastic solids and then it is extended
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to model crack propagation in a thermo-elastic-plastic solid by developing a general-

ization of continuum phase-field model from brittle to ductile fracture coupled with

thermo-plasticity [70].

The phase-field model is applied in [28], to computationally modeling the brittle frac-

ture caused by the heat generated during the hydration process and autogenous shrink-

age in concrete at early ages. In addition to the thermal and early-age shrinkage effect,

response of a degrading concrete to the basic and transient thermal creep effects are

also investigated in [29, 30].

The existing phase-field approaches have been applied mainly to brittle fracture, ex-

cept for few works [74, 75, 76], in which the phase field-model was proposed for

cohesive fracture. Recently, a unified phase-field model of quasi-brittle failure was

developed in [27]. Accordingly, in contrast to the existing phase-field models, this

present model adopts a novel constitutive functions optimal for quasi-brittle failure.

The proposed phase-field theory converges to a cohesive zone model as the inter-

nal length scale vanishes. Moreover, several softening laws, e.g., linear, exponen-

tial, hyperbolic and Cornelissen’s ones [77] were incorporated for quasi-brittle solid,

to improve the accuracy of the model. This unified phase-field model was used to

model the quasi-brittle failure in the solids under the different mechanical loading

[78, 79, 80, 81]. In reality however, there are other factors affect the materialistic

behavior of concrete especially at its both short- and long-term serviceability such

as thermal and hygral effects originating from the various environmental conditions.

To computationally predict the behavior of massive concrete structures under these

environmental effects, especially potential crack topology, the phase-field regularized

cohesive zone model can be favorable.

In this study, a coupled constitutive modeling approach through the robust computa-

tional framework is developed to address the thermally induced cracking in massive

concrete dams. In the literature, there are limited studies which explicitly account for

the fracture under coupled chemo-thermo-mechanical effects by implementing the

phase-field model. To a large extent, the existing phase-field models have been ap-

plied to brittle fracture. In this study, a phase-field regularized cohesive zone model,

the so-called unified phase-field model by means of an associated softening law is
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used to simulate the approximately actual behavior of hardening concrete subjected

to thermally induced cracking. In contrast to the current phase-field model in which

a hybrid formulation is used, we apply an anisotropic formulation with tension/com-

pression split, described in [105, 26, 106]. However, this split causes non-linearity in

the displacement subproblem and increases the computational costs. In the case of

mixed-mode cracking, on the other hand, it improves the precision of the solutions.

The performance of the present coupled chemo-thermo-mechanical cohesive zone

phase-field model is validated by regarding the multiphysics problem in the roller-

compacted concrete. To this end, the temperature distribution, the crack initiation

and propagation under the effects of the ambient temperature and the latent heat of

hydration are investigated. Moreover, we examine the effect of cracking on the tem-

perature distribution by performing additional analyses.

3.2 Theory

In this section, we introduce the governing equations of the multi-field boundary-

value problem of chemo-thermo-mechanics along with the phase field approximation

of quasi-brittle fracture.

3.2.1 Geometry and Kinematics

Let B ⊂ R
δ be a solid body with the boundary ∂B ⊂ R

δ−1 within the δ-dimensional

space where δ ∈ {2, 3} as depicted in Figure 3.1. The position change of the material

point P ∈ B, initially situated at point x, at time t is represented by the displacement

field u(x, t). Within the geometrically linear framework, the strain tensor ε is defined

as the symmetric displacement gradient ε(x, t) := 1
2
(∇u+∇Tu).

Moreover, we approximate the sharp crack Γ present in the body B, Figure 3.1a, by

the crack phase field d smeared over the localization zone L, bounded by ∂L, as

shown in Figure 3.1b. The value of the crack phase field d varies within the interval

d ∈ [0, 1] where the lower bound d = 0 and the upper d = 1 bound represent the intact

state and the fully broken state of the material, respectively. Within the framework of
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Figure 3.1: Schematic representations of fracture in a solid body B through (a) a

sharp crack topology Γ and (b) as a diffuse crack smeared in the localization zone L
described by the crack phase field d.

phase field fracture models, the total surface area of the sharp crack is approximated

by

S :=

∫

Γ

dA ≈
∫

B

γl(d;∇d) dV (3.1)

see e.g. Francfort & Marigo [57]. Following Miehe et al. [26], we refer to the

function γl(d;∇d) as the crack surface (area) density function that depends on the

crack phase field d, its gradient ∇d, and the length scale parameter l. The latter

controls the width of the localization zone L where the intensity of the crack phase

field d decays from the central line of the localization zone L along the crack in

the transverse direction towards ∂L as depicted in Figure 3.1b. In other words, the

smaller the length scale parameter l is, the sharper the gradient of the crack phase

field ∇nd in the lateral direction nL becomes.

Following Wu [27], the majority of various kinds of the crack surface density function

used in the phase field fracture models can be expressed in a unified manner through

the expression

γl(d;∇d) :=
1

c0 l

[
α̂(d) + l2|∇d|2

]
with c0 := 4

∫ 1

0

√

α(y) dy (3.2)

where the so-called the geometric crack function α̂(d) represents the local geometric

crack resistance and governs the homogeneous evolution of the crack phase field d.

The scaling factor c0 is introduced to make the phase field models capture the area of

the sharp crack Γ, shown in Figure 3.1.
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3.2.2 Thermodynamic State

The overall behavior of mass hardening concrete is considered to be controlled by

chemical, thermal, mechanical, and fracture phenomena that are generally coupled at

different scales. Although the water transport-related hygral phenomena are equiva-

lently important in early ages of concrete structures especially with high surface area-

thickness ratio, we leave out the hygral effects from the scope of the present work that

focuses solely on the thermal cracking in mass concrete. Therefore, we construct a

chemo-thermo-mechanical model at macro scale within the framework of the theory

of reactive porous media, originally proposed by Ulm & Coussy [17, 3, 4, 6]. To

this end, the local thermodynamic state of hardening concrete possibly undergoing

thermal quasi-brittle fracture is described by the following four state variables

State(x, t) := {ε(x, t), d(x, t), θ(x, t), ξ(x, t)} . (3.3)

The strain tensor ε(x, t) and the crack phase field d(x, t) have already been intro-

duced in the preceding section. In addition to the latter, we have the temperature

field θ(x, t) and the degree of hydration ξ(x, t) that characterize the thermal state and

the chemical state of hardening concrete, respectively. A fundamental state function

governing the coupled chemo-thermo-mechanical behavior of hardening concrete ex-

hibiting thermal cracking is the Helmholtz free energy function

Ψ = Ψ̂(ε, d, θ, ξ). (3.4)

formulated in terms of the state variables (4.1).

According to the theory of reactive porous media, the hardening concrete is consid-

ered as a closed thermodynamic system where the boundaries are impermeable to any

mass transfer. Apparently, this assumption simplifies the process of hydration greatly

and allows one to quantify the hydration extent through a single variable, namely the

degree of hydration ξ. The latter can be conceived as the molar mass ratio of the

chemically bonded water through hydration reactions to the total amount of initially

free water. Therefore, the degree of hydration ξ is an essential field variable represent-

ing the growth of rigidity and strength of hardening concrete [24, 107, 108]. Owing to

the closed system assumption, the degree of hydration ξ is considered as an internal

state variable whose thermally activated evolution is governed by an Arrhenius-type
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ordinary differential equation as suggested in Ulm & Coussy [4], Cervera et al. [7],

Lackner & Mang [23].

3.2.3 Governing Differential Equations

In this section, we introduce the differential equations that govern the evolution of the

state variables, given in (4.1). In particular, the balance of linear momentum and the

conservation of energy, through the transient heat conduction equation, describe the

spatio-temporal evolution of external state variables, the displacement field u(x, t)

and the temperature field θ(x, t), respectively. To obtain the evolution equations for

the crack phase field d(x, t) and the degree of hydration ξ(x, t), associated with the

intrinsically dissipative phenomena of fracture and highly exothermic hydration reac-

tions, respectively, we extend the energy equivalence principle, recently proposed by

Wu [78], towards chemo-thermo-mechanics incorporating phase field fracture.

B B
∂Bu ∂Bθ

∂Bt ∂Bh

L L

∂L ∂L
nL nL

x ∈ B x ∈ B
(a) (b)b̄

r̄

t̄

h̄θ

n n

Figure 3.2: Schematic representations of the Dirichlet and Neumann boundary con-

ditions for the (a) mechanical and (b) thermal problems.

The balance of linear momentum representing the quasi-static stress equilibrium

div σ̂ + b̄ = 0 (3.5)

in terms of the stress tensor σ̂ and the given volume-specific body forces b̄ governs

the evolution of the displacement field u(x, t) along with the Dirichlet u = ū on

∂Bu and the Neumann σn = t̄ on ∂Bt boundary conditions where n is the outward

unit surface normal on ∂B. Clearly, the respective parts of the boundary ∂Bu and ∂Bt

satisfy ∂B = ∂Bu ∪ ∂Bt and ∂Bu ∩ ∂Bt = ∅ as shown in Figure 3.2a.
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The first law of thermodynamics ė = σ : ε̇ + Qext describes the rate of energy

balance in terms of the volume-specific internal energy e, the internal stress power

σ : ε̇, and the externally supplied thermal power Qext := − div qθ + r̄ where qθ

denotes the outward heat flux vector and r̄ is the given volume-specific external heat

source. Substituting the Legendre transformation e = Ψ + θη between the internal

energy and the Helmholtz free energy, we arrive at the following version of the first

law

θη̇ = Dloc +Qext (3.6)

where Dloc := σ : ε̇−Ψ̇−ηθ̇ ≥ 0 denotes the intrinsic dissipation due to the internal

dissipative mechanisms. The non-negativeness of Dloc is dictated by the second law

of thermodynamics. Expanding the rate of the free energy Ψ̂(ε, d, θ, ξ) in (3.4) in

terms of its partial derivatives with respect to the state variables (4.1) and their rates,

we obtain the Clausius-Planck inequality

Dloc := [σ − ∂
ε
Ψ̂] : ε̇− [∂θΨ̂ + η] θ̇ − ∂dΨ̂ḋ− ∂ξΨ̂ξ̇ ≥ 0 .

Based on the Coleman’s exploitation method, see e.g. Coleman & Gurtin [109],

we demand that the non-negativeness of Dloc must be fulfilled for arbitrary rates of

the controllable external variables ε and θ. Based on this argument, the expressions

within the brackets vanish identically to yield the well-known constitutive definitions

of the stress tensor σ and the entropy η through

σ̂ = ∂
ε
Ψ̂(ε, d, θ, ξ) and η̂ = −∂θΨ̂(ε, d, θ, ξ) . (3.7)

The local dissipation expression then reduces to the following form

Dloc := −∂dΨ̂ḋ− ∂ξΨ̂ξ̇ ≥ 0 ,

from which it is clear that the chemical hydration and fracture processes are the main

dissipative mechanisms of the chemo-thermo-mechanical phase field fracture model.

Within the framework of the phase field modeling of brittle and quasi-brittle fracture,

the local dissipation arising from fracture Dd
loc := −∂dΨ̂ḋ ≥ 0 can be alternatively

expressed as a product of the rate of crack surface density function γ̇l(d;∇d), intro-

duced in (3.1,3.2), and the critical energy release rate Gc representing the amount of

energy needed to advance a crack by unit area; that is,

Dd
loc = Y ḋ = Gc γ̇l(d;∇d) ≥ 0 . (3.8)
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where Y := −∂dΨ̂ is the local driving force of the crack phase field d. Moreover,

the rate of the crack surface density function can be expressed through the variational

derivative of γl(d;∇d)

γ̇l(d;∇d) = δdγl ḋ with δdγl := ∂dγl − div(∂∇dγl) . (3.9)

Clearly, this equality holds for homogeneous Neumann boundary conditions, i.e.

∂∇dγl · nL = 0 on ∂L where nL denotes the outward unit normal defined on the

boundary ∂L of the crack phase field localization zone L as shown in Figures 3.1 and

3.2. For the specific form of γl(d;∇d), given in (3.2), the variational derivative can

be expressed as

δdγl(d;∇d) =
1

c0 l

[
α̂′(d)− 2l2 div(∇d)

]
.

Substituting the representation (3.9) into (3.8), we obtain

g(Y, d) ḋ = 0 with g(Y, d) := Y −Gcδdγl . (3.10)

Owing to the irreversibility constraint ḋ ≥ 0, this equality can be written in the form

of a Karush-Kuhn-Tucker-type conditional evolution equation






g(Y, d) < 0 for ḋ = 0 ,

g(Y, d) = 0 for ḋ > 0

(3.11)

where g(Y, d) ≤ 0 can be conceived as the fracture criterion. When the rate of crack

phase field is positive (ḋ > 0), the differential equality g(Y, d) = 0 describes the

spatial evolution of the crack phase field d within L. The nonlocal damage evolution

(3.11)2 can then be recast into the form, analogous to (3.5)

div q̂d − Ĥd + f̂d = 0 (3.12)

where Ĥd ≡ Y indicates the crack driving force, while the remainder terms q̂d :=

− 2l
c0
Ĝf (ξ)∇dwith qd ·nL = 0 on ∂L and f̂d :=

Ĝc(ξ)
c0 l

α̂′(d) characterize the resistance

to the crack phase field evolution and diffusion. In brittle and quasi-brittle fracture,

the crack driving force Ĥd is alternatively identified often with the highest tensile

deformation energy generated locally, thereby allowing the crack initiation and prop-

agation in a thermodynamically consistent manner. In the numerical implementation,

we account for the fact that the crack phase field remains bounded within d ∈ [0, 1]
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through the bound-constrained optimization solver provided by the PETSc package

[93] as suggested in Wu [80].

The local dissipation Dξ
loc := −∂ξΨ̂ξ̇ ≥ 0 due to the hydration reactions, responsible

for the growth of concrete in strength and rigidity, can be expressed as a product of

the chemical driving force Ãξ and the rate of the degree of hydration ξ̇; that is,

Dξ
loc = Ãξ ξ̇ = −∂ξΨ̂ξ̇ ≥ 0 .

The latter energetic equivalence identifies the chemical driving force, often referred

to as the normalized chemical affinity, Ãξ := −∂ξΨ̂ as the energy conjugate variable

to the degree of hydration. Within the context of the theory of reactive porous me-

dia, the chemical affinity Ãξ represents the imbalance between the free water and the

bonded water in hydrates. Since hydration is a thermally activated process, the evolu-

tion of the degree of hydration is assumed to be described by the thermodynamically

consistent, Arrhenius-type first-order kinetics activated by temperature, see e.g. Ulm

& Coussy [4], Lackner & Mang [23],

ξ̇ = Ãξ exp

(

−Ea

Rθ

)

with ξ0(x) = ξ(x, t = 0) (3.13)

where the parameters Ea and R denote the activation energy and the universal gas

constant with R = 8.315 J/(mol K), respectively. The ratio Ea/R, which can be

experimentally determined, ranges from 3000 to 8000 K for concrete. According to

van Breugel [110] for many practical purposes at least for Portland cement, Ea =

33500 J/mol for θ ≥ 293 K.

Expanding the rate of entropy using the constitutive expression for entropy (3.7) and

inserting the result into the energy balance expression (3.6), we arrive at the transient

heat conduction equation

c θ̇ = Ĥξ + Ĥε + Ĥθ
d +Qext

where c := θ∂θη = −θ∂θθΨ̂ is the volume-specific heat capacity, Ĥξ := (Ãξ −
θ∂θÃξ)ξ̇ stands for the chemical heating, and Ĥε := θ∂θσ : ε̇ and Ĥθ

d := (Y −θ∂θY )ḋ

denote the thermoelastic heating and the heating due to irreversible evolution of crack

phase field, respectively. Compared to the chemical heating Ĥξ, the latter two types
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(Ĥε, Ĥθ
d) of heating are assumed to be negligible under moderate rates of chemo-

thermo-mechanical cracking processes. Moreover, in the chemical dissipation ex-

pression the hydration dissipation Ãξ ξ̇ is negligible compared to the exothermic heat-

ing −θ∂θÃξ ξ̇, see Ulm & Coussy [4], Lackner & Mang [23]. In the absence of any

deformation and cracking, the heat of hydration Lξ can be measured through calori-

metric measurements under nearly adiabatic conditions per unit mass. Therefore, the

chemical heating can be approximated by Ĥξ ≈ Lξ ξ̇. This, along with the above sim-

plifying asssumptions, leads us to the following transient heat conduction equation

div q̂θ − Ĥθ + f̂θ = 0 , (3.14)

analogous to the evolution equation for the crack phase field (3.12). Here, Ĥθ := Lξ ξ̇

indicates the heating due to hydration and f̂θ := c θ̇ − r̄ accounts for the thermal

energy storage and external heat supply. The spatio-temporal evolution of the tem-

perature field θ(x, t) is described by the transient heat conduction equation that is

complemented by the Dirichlet θ = θ̄ on ∂Bθ and the Neumann qθ · n = h̄θ on ∂Bh

boundary conditions and the initial condition θo(x) = θ(x, t = 0) in B. The parts

of the boundary, ∂Bθ and ∂Bh, are complementary ∂B = ∂Bθ ∪ ∂Bh and disjoint

∂Bθ ∩ ∂Bh = ∅ as shown in Figure 3.2b.

The governing differential equations (3.5,3.12,3.14,3.13) along with the associated

boundary and initial conditions are summarized in Table 3.1.

3.2.4 Constitutive Equations

The governing differential equations of the chemo-thermomechanical phase field frac-

ture model, given in Table 3.1, are coupled through the constitutive equations for the

stress tensor σ̂ in (3.5), the crack-driving force Ĥd in (3.12), and the hydration power

Ĥθ in (3.14). Besides these coupling terms, the geometric crack function α̂(d) in

(3.2) contributing to the crack resistance term f̂d, the normalized chemical affinity

Ã(ξ) in (3.13), and the heat flux vector q̂θ in (3.14) need to be specified for hardening

concrete to complete the theoretical description of the model. Hence, this subsection

is devoted to the constitutive equations.
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Table 3.1: Governing equations of the chemo-thermo-mechanical phase field fracture

model

Field Problem Equation # BC’s / IC’s

u(x, t) Mechanical divσ + b̄ = 0 (3.5) u = ū on ∂Bu

σn = t̄ on ∂Bt

d(x, t) Phase Field Fracture div q̂d − Ĥd + f̂d = 0 (3.12) qd · n = 0 on ∂L

θ(x, t) Thermal div q̂θ − Ĥθ + f̂θ = 0 (3.14) θ = θ̄ on ∂Bθ

qθ · n = h̄θ on ∂Bh

θo(x) = θ(x, t = 0) in B

ξ(x, t) Hydration ξ̇ = Ãξ exp

(

−
Ea

Rθ

)

(3.13) ξo(x) = ξ(x, t = 0) in B

Stress Response. To account for the tension-compression asymmetry in the failure

behavior of concrete, as suggested in Miehe et al. [68], we decompose the total stress

response into the tensile and compressive parts

σ = σ̂(ε, d, θ, ξ) = ĝ(d) σ̂+
0 (ε, θ, ξ)− σ̂−

0 (ε, θ, ξ) (3.15)

where only the tensile part of the stress tensor is affected by damage through the

monotonically decreasing degradation function

ĝ(d) :=
(1− d)p

(1− d)p +Q(d)
(3.16)

where following cubic polynomial is assumed for the rigorously positive function

Q(d)

Q(d) = a1d+ a1a2d
2 + a1a2a3d

3 (3.17)

with p > 0 and Q(d) > 0 as suggested in Wu [27] being inspired by Lorentz &

Godard [86]. The degredation function g(d) ∈ [0, 1], a monotonically decreasing

function of the crack phase field d, is required to fulfill the following conditions

g′(d) < 0 , g(0) = 1 , g(1) = 0 , and g′(1) = 0 for all d ∈ [0, 1] . (3.18)
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Since the material model is constructed for hardening concrete that continuously

gains strength and rigidity, the current non-degraded stress response is formulated

in the following incremental form

σ̂±
0 = σ̂±

0n +∆σ̂±
0 (3.19)

in terms of the non-degraded stress tensor σ̂±
0n at time tn and the incremental stress

tensor ∆σ̂±
0 introduced for a typical time step [tn, tn+1]. This incremental form ac-

counts for the fact that new products of hydration begin to contribute to the stiffness

of hardening concrete from the onset of their hydration as suggested in Bažant [111],

Ulm & Coussy [4], Cervera et al. [7], Lackner & Mang [23] among others. The

incremental undamaged stress response is then specified as

∆σ̂±
0 = λ̂(ξ)∆〈tr εe〉±1+ 2µ̂(ξ)∆εe± (3.20)

where λ̂(ξ) > 0, µ̂(ξ) > 0 denote the Lamé constants that grow as a function of the

degree of hydration, as specified in (3.36). The chemo-thermomechanical coupling

has been incorporated in the stress response through the stress-producing elastic part

of the strain tensor εe that is defined as

εe := ε− εth − εau − εttc (3.21)

where the thermal strain tensor εθ, the autogenous shrinkage strain tensor εau, and the

rate of the transitional thermal creep strain tensor εttc are described by

εθ := αθ∆θ 1 , εau := −κ
〈
ξ − ξ0
1− ξ

〉

+

1 , and ε̇ttc := λttc | θ̇ | σ̂0 , (3.22)

respectively. The thermal strain εθ accounts for the temperature-induced expansion

through the thermal expansion coefficient αθ and the change in temperature ∆θ :=

θ − θ0 relative to the reference temperature θ0. Likewise, the autogenous shrinkage

strain εau accounts for the self-dessication phenomenon caused by the consumption

of water by the hydration process, see e.g. Tokyay [112], through the autogenous

shrinkage coefficient κ as suggested in Briffaut et al. [113]. Moreover, the transitional

thermal creep εttc has been incorporated in the model to take into account the stress-

induced thermal strain due to the transient temperature history in terms of the the

transitional thermal creep coefficient λttc, see Thelandersson [114].
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The tensile and compressive parts of the elastic strain tensor εe are defined as

εe± :=
δ∑

i=1

〈ǫi〉± mi (3.23)

where 〈ǫi〉± := (|ǫi| ± ǫi)/2 designate the Macaulay brackets, also used in (3.22)2. In

this definition, we use the principal values ǫi and the principal tensors mi := ni ⊗ni

for i = 1, . . . , δ of the elastic strain tensor based on the spectral decomposition of the

elastic strain tensor εe =
∑δ

i=1 ǫi ni ⊗ ni. The tensile and compressive parts of the

incremental elastic strain tensor entering the incremental stress expression (3.20) can

then be obtained as

∆εe± := εe± −∆εe±n . (3.24)

Crack Driving Force. The irreversibility of the crack evolution can be accounted

for in the model by replacing the the definition of the crack phase field driving force,

which is originally derived in a thermodynamically consistent manner as Ĥd = Y =

−∂dΨ̂ = −ĝ′(d)Ψ̂+
0 , with

Hd := −ĝ′(d)Hmax (3.25)

where Hmax represents the crack driving force

Hmax(x, t) := max
s∈[0,t]

(Ψ̂+
0 ( ε(x, s), θ(x, s), ξ(x, s) )) (3.26)

as suggested in Miehe et al. [68]. The positive part of the energy due to tension is

defined as

Ψ̂+
0 (ε, θ, ξ) := Ψ̂+

0n +∆Ψ̂+
0 (ε, θ, ξ) (3.27)

where the incremental positive part of the free energy can be computed as

∆Ψ̂+
0 (ε, θ, ξ) := σ̂+

0 : ∆〈ε〉+ . (3.28)

Crack Resistance. As mentioned in Section 3.2.3, the resistance to the spatial evo-

lution of the crack phase field is governed by

q̂d(d, ξ) := −2l

c0
Ĝc(ξ)∇xd and f̂d(d, ξ) =

Ĝc(ξ)

c0ℓ
α̂′(d) (3.29)

where the geometric crack function α̂d(d) governing the homogeneous evolution of

the crack phase field is assumed to be expressed as a quadratic function of d

α̂(d) = zd+ (1− z)d2 ≥ 0 for z ∈ [0, 2] . (3.30)
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Depending up on the value of z, different phase field fracture formulations can be

recovered. In particular, the phase field fracture models developed, for example, by

Miehe et al. [68], Bourdin et al. [91] employs α̂(d)|z=0 = d2, the gradient damage

model of Pham et al. [82] utilizes α̂(d)|z=1 = d, and the quasi-brittle phase field

model proposed by Wu [27] uses α̂(d)|z=2 = 2d− d2. These phase field models have

been referred to as AT1, AT2, and PF-CZM, respectively, in the recently published

studies, see e.g. Mandal et al. [115]. While AT1 and AT2 are limited to brittle

fracture, PF-CZM can be used to model brittle and quasi-brittle fracture. Since we

model thermal cracking in hardening mass concrete by using PF-CZM, we set z = 2.

Thermal Heating. While the heating due to hydration Ĥθ(ξ̇) := Lξ ξ̇ has already

been introduced in Section 3.2.3, we extend the definition of the term f̂θ in (3.14)

towards

fθ = f̂θ(θ, d, ; θ̇) = cθ̇ − r̄ + R̂c
θ(θ, d) (3.31)

to incorporate the convective heat exchange at crack faces through the additional heat

sink R̂c
θ(θ, d). This phenomenon is numerically motivated by presuming that the

deformed crack surfaces are in contact with an ambient temperature θ∞ inside the

free space induced by the crack opening and shown to be modeled approximately by

R̂c
θ(θ, d) := −2

hc
ℓ
(θ − θ∞)d2 (3.32)

in terms of the convective heat exchange parameter hc in Miehe et al. [69].

Heat Conduction. In this study, besides the degrading stress-strain response, the

damage-dependent growth of non-mechanical effects in damaged zone is examined

[70]. To this end, the thermal conductivity is formulated as a function of crack phase

field d; that is,

qθ = q̂θ(θ, d) := −k̂θ(d)∇θ with k̂θ(d) = (1− d)2ksθ + d2kcθ . (3.33)

Here, ksθ ≥ 0 and kcθ ≥ 0 stand for the coefficients of thermal conductivity differ-

entiating the thermal conduction response of concrete between non-degraded case

(kθ = ksθ) and fully degraded case (kθ = kcθ).

Chemical Hydration and Growth in Rigidity and Strength. The normalized chem-

ical affinity Ãξ, the driving force of the evolution of the degree of hydration ξ, is
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assumed to be described by

Ãξ(ξ) := aξb(1− ξ)c (3.34)

in terms of the degree of hydration ξ and the constants a, b, and c that can be favorably

fitted to experimental data as shown in Lackner & Mang [23].

The hydration-induced growth of concrete in rigidity and strength is modeled through

aging expressions that specify the mechanical properties such as the modulus of elas-

ticity E, the compressive strength fc, the tensile strength ft, and the critical energy

release rate Gc in terms of ξ. As we focus primarily on the thermal cracking of roller-

compacted concrete dam benchmark, borrowed from [23], we consider the following

growth equations

Ê(ξ) = E∞

√

ξ , f̂c(ξ) =
ξ − ξ0
1− ξ0

f∞
c , f̂t(ξ) = 0.1f̂c(ξ) , and Ĝc(ξ) = ξG∞

c

(3.35)

where E∞, f
∞
c , and G∞

c denote the values of the modulus of elasticity, the com-

pressive strength, and the critical energy release rate of concrete when the hydration

process is completed with ξ = 1. As a consequence, by assuming a constant value

for Poisson’s ratio, the Lamé constants in the incremental stress expression (3.20)

λ̂(ξ) :=
ν

(1 + ν)(1− 2ν)
Ê(ξ) and µ̂(ξ) :=

Ê(ξ)

2(1 + ν)
. (3.36)

Having the theoretical description of the coupled chemo-thermomechanics along with

the phase field fracture, we now proceed with the numerical solution procedures that

are used to solve inital boundary-value problems.

3.3 Finite Element Formulation

In this section, we construct the corresponding weak forms of the governing differen-

tial equations, whose strong forms are summarized in Table 3.1, and discretize them

both in space and time by using finite element and finite difference methods for the

respective cases. Moreover, the system of nonlinear equations obtained through dis-

cretization is linearized consistently for the iterative Newton-type solvers.

For the spatial discretization, we employ the conventional Galerkin method to derive

the weak forms of the governing differential equation by multiplying each of them
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with the associated weight function δu ∈ U0, δd ∈ V0 and δθ ∈ W0 whose square

of integrals remain finite-valued and they meet the conditions of the homogeneous

boundary conditions; that is, δu = 0 over ∂Bu, δd = 0 over ∂Bd, and δθ = 0 over

∂Bθ). The weighted residual equations, integrated over the body, take the following

form

Gu(δu;u, d, θ) = Gu
int(δu;u, d, θ) − Gu

ext(δu)=0 ,

Gd(δd;u, d, θ) = Gd
int(δd;u, d, θ) − Gd

ext(δd;u, d, θ)=0 ,

Gθ(δθ; d, θ) = Gθ
int(δθ; d, θ) − Gθ

ext(δθ; d, θ)=0 .

(3.37)

for the mechanical, phase field fracture, and thermal problems after the integration by

parts of the terms that involve second-order spatial derivatives. Note that as the tran-

sient evolution of the degree of hydration ξ is expressed as a function of the tempera-

ture, (3.13) locally at a quadrature point, it is solved numerically only by discretizing

the evolution equation in time. Therefore, in the above equations, the degree of hy-

dration does not appear as an additional independent field but treated as a local history

(internal) variable.

The specific forms of the internal and external functionals of the mechanical problem

(3.37)1 are given by

Gu
int(δu;u, d, θ) :=

∫

B

δε : σ̂ dV ,

Gu
ext(δu) :=

∫

B

δu · b̄ dV +

∫

∂Bt

δu · t̄ dA .

(3.38)

where b̄ and t̄ are the volume-specific body force and the surface traction vector,

respectively. In the case of the crack phase-field fracture, the internal end external

Galerkin functionals are defined as

Gd
int(δd; d, θ) :=

∫

B

−∇x(δd) · q̂d dV ,

Gd
ext(δd;u, d, θ) :=

∫

B

δd (Ĥd − f̂d) dV .

(3.39)
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Analogously, for the thermal problem, we have

Gθ
int(δθ; θ) :=

∫

B

−∇x(δθ) · q̂θ dV ,

Gθ
ext(δθ; θ) :=

∫

B

δθ (Ĥθ − f̂θ) dV −
∫

∂Bh

δθ h̄θ dA .

(3.40)

The weighted Galerkin functionals are consistently linearized with respect to the field

variables about their intermediate values ũ, d̃, and θ̃ to arrive at

LinGu(δu;u, d, θ)|
ũ,d̃,θ̃ := Gu(δu; ũ, d̃, θ̃) + ∆Gu = 0 ,

LinGd
∣
∣
ũ,d̃,θ̃

:= Gd(δd, ũ, d̃, θ̃) + ∆Gd = 0 ,

LinGθ(δθ; θ)
∣
∣
θ̃

:= Gθ(δθ, θ̃) + ∆Gθ = 0 .

(3.41)

The incremental terms

∆Gu := ∆Gu(δu; ũ, d̃, θ̃; ∆u,∆d,∆θ)

∆Gd := ∆Gd(δd, ũ, d̃, θ̃; ∆u,∆d,∆θ)

∆Gθ := ∆Gθ(δθ, θ̃; ∆θ),

derived through the Gâteaux derivative, can be expressed in terms of the external and

internal functionals according to (3.37); that is,

∆Gγ = ∆Gγ
int −∆Gγ

ext with γ = u, d, θ . (3.42)

As stated in (3.38)1, ∆Gu
int is obtained as

∆Gu
int =

∫

B

δε : ∆σ̂ dV (3.43)

where the total stress increment can be expressed as

∆σ̂ = C
uu : ∆ε+Cud∆d+Cuθ∆θ , (3.44)

where the fourth order tensor Cuu denotes the derivative of the total stress tensor with

respect to the strain tensor ε, and the second order tensors Cuθ and Cud are defined

as the derivatives of the stress tensor with respect to the temperature and the crack

phase-field, respectively,

C
uu := ∂

ε
σ̂ , Cud := ∂dσ̂ and Cuθ := ∂θσ̂ . (3.45)
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Based on these definitions, (3.43) can be recast into

∆Gu
int =

∫

B

δε : Cuu : ∆ε dV +

∫

B

δε : Cud∆d dV +

∫

B

δε : Cuθ∆θ dV .

(3.46)

Regarding the thermal part of the coupled problem, the increment of the internal

functional is expressed as

∆Gθ
int =

∫

B

−∇x(δθ) ·∆q̂θ dV (3.47)

where the increment of the heat flux vector can be written as

∆q̂θ = −K̂ · ∇x(∆θ) where K̂:=− ∂∇xθq̂θ = kθ 1 . (3.48)

In the latter the dependency of the heat flux on the crack phase field has been sup-

pressed for the sake of conciseness. Moreover, the increment of the external thermal

functional in terms of the temperature field comes out to be

∆Gθ
ext :=

∫

B

δθ (∆Ĥθ −∆f̂θ) dV (3.49)

with the increment of the heating and viscous thermal resistance being

∆Ĥθ = ∂θĤθ
︸ ︷︷ ︸

Tθ

∆θ and ∆f̂θ = ∂θf̂θ
︸︷︷︸
tθ

∆θ . (3.50)

In the case of the crack phase field, the increment of the corresponding functional is

expressed as

∆Gd
int =

∫

B

−∇x(δd) ·∆q̂d dV (3.51)

where

∆q̂d = −D̂ · ∇x(∆d)− d̂∆θ

with D̂ := −∂∇xdq̂d = Gc l 1

and d̂ := −∂θq̂d = ∂θGc l∇xd .

(3.52)

Similarly, the increment of the external functional for the phase field fracture is given

by

∆Gd
ext :=

∫

B

δd (∆Ĥd −∆f̂d) dV (3.53)

where the increment of the crack driving force and the viscous crack resistance are

introduced in the following form

∆Ĥd = −Cud : ∆ε+Hθ ∆θ and ∆f̂d = hd ∆d+ hθ ∆θ (3.54)
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along with the tangent tensors

Cud := −∂
ε
Ĥd = ∂dσ̂ , Hθ := ∂θĤd and hd := ∂df̂d , hθ := ∂θf̂d . (3.55)

The isoparametric finite element method is used to discretize the unknown fields in

space to transform the integral-type weak forms (3.37) into a system of equations.

The field variables of the coupled problem, the displacement u(x, t), the temperature

θ(x, t), the crack phase field d(x, t) and the weight functions associated with these

fields are interpolated over each finite element through

δuh
e =

nen∑

i=1

N iδde
i , δdhe =

nen∑

j=1

N jδDe
j , δθhe =

nen∑

k=1

NkδT e
k ,

uh
e =

nen∑

l=1

N lde
l , dhe =

nen∑

m=1

NmDe
m , θhe =

nen∑

n=1

NnT e
n .

(3.56)

where nen represents the number of nodes in each finite element. The spatial gradients

of the weight functions can then be expressed as

∇x(δu
h
e ) =

nen∑

i=1

δde
i ⊗∇xN

i ,

∇x(δd
h
e ) =

nen∑

j=1

δDe
j ⊗∇xN

j ,

∇x(δθ
h
e ) =

nen∑

k=1

δT e
k ⊗∇xN

k .

(3.57)

Likewise, the spatial gradient of the increment of the generalized displacement vector,

the crack phase field, and the temperature field are given as

∇x(∆uh
e ) =

nen∑

l=1

∆de
l ⊗∇xN

l ,

∇x(∆d
h
e ) =

nen∑

m=1

∆De
m ⊗∇xN

m ,

∇x(∆θ
h
e ) =

nen∑

n=1

∆T e
n ⊗∇xN

n .

(3.58)

Incorporating the discretized representations (3.56,3.57) in the integral expressions of
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the weak form (3.37-3.40), we end up with the discrete residual vectors

Ru
I =A

nel

e=1

{ ∫

Bh
e

∇xN
i · σ̂ dV −

∫

Bh
e

N ib dV −
∫

∂Be
t

N i t̄ dA
}

= 0 ,

Rd
J =A

nel

e=1

{

−
∫

Bh
e

∇xN
j · q̂d dV −

∫

Bh
e

N j (Ĥd − f̂d) dV
}

= 0 ,

Rθ
K =A

nel

e=1

{

−
∫

Bh
e

∇xN
k · q̂θ dV −

∫

Bh
e

Nk (Ĥθ − f̂θ) dV
}

= 0 ,

(3.59)

where the operator A designates the standard assembly of element contributions at

the local element nodes i, j, k = 1, ..., nen to the global residuals at the global nodes

I, J,K = 1, ..., nnd of a mesh with nnd nodes. Likewise, the tangent matrices arising

from the linearization of the residual vectors can be expressed as

Kuu
IL =A

nel

e=1

{ ∫

Bh
e

∇xN
i · Ĉuu · ∇xN

l dV
}

,

Kud
IM =A

nel

e=1

{ ∫

Bh
e

(∇xN
i · Ĉud

)Nm dV
}

,

Kuθ
IN =A

nel

e=1

{ ∫

Bh
e

(∇xN
i · Ĉuθ

)NN dV
}

,

Kdu
JL =A

nel

e=1

{ ∫

Bh
e

N j(Cud · ∇xN
l) dV

}

,

Kdd
JM =A

nel

e=1

{ ∫

Bh
e

∇xN
j · D̂∇xN

m dV −
∫

Bh
e

N j(Hd − hd)N
m dV

}

,

Kdθ
JN =A

nel

e=1

{ ∫

Bh
e

∇xN
j · d̂Nn dV −

∫

Bh
e

N j(Hθ − hθ)N
n dV

}

,

Kθθ
KN =A

nel

e=1

{ ∫

Bh
e

∇xN
k · K̂∇xN

n dV −
∫

Bh
e

Nk(Tθ − tθ)N
n dV

}

.

(3.60)

Denoting the overall residual vector as a combination of the residual vectors of the

89



associated sub-problems as R := [Ru Rd Rθ]T and the nodal unknowns as D :=

[d D T ]T , the Newton update equation for the nodal degrees of freedom can be

expressed as

D = D̄− K̄
−1 · R̄ (3.61)

where R̄ := R(D̄), K̄ := K(D̄) indicate the global residual vector and the global

coupled tangent matrix, respectively. The global coupled tangent matrix in terms of

the sub-tangent matrices is expressed as

K :=










Kuu Kud Kuθ

Kdu Kdd Kdθ

0 0 Kθθ










.

3.4 Representative Numerical Examples

In this section, the illustrative numerical examples are demonstrated to validate the

primary properties and capabilities of the proposed formulation. The numerical ex-

amples are devoted to the unified phase-field damage model with the anisotropic for-

mulation to simulate the quasi-brittle failure in concrete specimens, under coupled

chemo-thermomechanical effects. In the illustrated numerical examples, unstructured

piece-wise linear triangular and quadrilateral elements are employed to discretize the

computational domain. Only the sub-domains close to the crack surface require a

specific minimum element size to resolve the length scale (ℓ) in the finite element

approximation. Indeed, the uniformity of meshes affects the approximation quality

of the surface energy. Therefore, a posteriori re-meshing domain will enhance the

precision of the energy estimation. For that reason, the length scale (ℓ) affects the

materialistic response and the solution convergence strongly so the element sizes are

chosen inevitably much smaller than the internal length scale (ℓ).

We employ the proposed material model to investigate the crack initiation and propa-

gation in the Roller-Compacted-Concrete (RCC) dam under thermal loading. In this

case, the effect of the material constants corresponding the hydration process and the

environmental temperature on the thermally-induced cohesive fracture is investigated.
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The staggered scheme is employed to solve the discretized governing equations re-

lated to the mechanical, thermal and phase-field part of the boundary-value problem.

In massive concrete structures, excessive cement content generates comparatively

high heat of hydration. Indeed, the lower thermal conductivity of concrete causes

thermal gradients near the surfaces ascribed to heat convection phenomena between

the interior and the exterior side of the structure.

In this example, we exceptionally focus on the case for RCC dams. In contrast to

the conventional concrete dams, the RCC dams require simple design and construc-

tion concepts, and they are economically competitive. The simplicity of the RCC

dam construction leads to a reduction in the construction time and allow for a higher

production rate. However, the primary difference between RCC and conventional

concrete is the low cement content and the no-slump consistency of the former which

considerably reduce the latent heat of hydration, up to approximately one-third con-

ventional types of concrete. Nevertheless, a remarkable temperature rise may be still

observed due to the high concreting rate practiced in RCC dams.

In the current examples, we first conduct a chemo-thermo-mechanical analysis to

capture the temperature evolution in RCC dams under the various ambient temper-

atures at early ages. In [23], a three-dimensional chemoplastic material model was

implemented to simulate early-age cracking in the RCC dam. The crack risk analy-

ses are conducted in the framework of chemoplasticity model for concrete. On the

other hand, we here apply the proposed approaches to capture the risk of early-age

cracking in the RCC dam; however, the plastic strains are neglected in the current

analyses as we explicitly account for cracking. However, the effects related to the au-

togenous shrinkage and transitional thermal creep are considered. The geometry, the

dimensions and the boundary conditions of the RCC dam are represented in Figure

3.3.

The total height of the dam is 37.8 m and its width at the bottom is 29 m. The

construction phases contain the bottom, middle, and top parts whose construction

takes 42 days, 21 days, and 14 days, respectively. The dam is discretized by means of

totally 80,250 four-node quadrilateral plain strain elements. The material properties,

taken from [23, 116] are presented in Table 3.2. To model the connection between the
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qn = αR(θ − θ∞)

qn = αR(θ − θ∞)

qn = αR(θ − θ∞)

2.1 m

6 m

7.5 m
12.6 m

12.6 m

12.6 m

29 m

Bottom

Middle

Top

Path A

(a) (b)

Figure 3.3: RCC dam. (a) Geometry, dimensions and mechanical boundary condi-

tions and (b) thermal boundary conditions.

interior and exterior of the dam at the RCC-air and the rock-air the boundary of the

finite element model, the convective heat flux is defined as qn = αR(θ − θ∞), with

αR is the corresponding surface conductance calculated as a function of wind speed

and depends on either roughness or smoothness of surface at solid-air interfaces. In

this case, this coefficient is taken as αR = 4 J/(s m2 K) for the RCC-air interfaces and

as αR = 20 J/(s m2 K) for the RCC-rock interfaces [117].

In this study, totally five representative numerical examples are presented. In the first

three examples, RCC1, RCC2, RCC3, the existence of the convective heat exchange

at the crack faces is not considered. However, in comparison with RCC1, the ambient

temperature is dropped by 10◦C in RCC2 and the latent heat of hydration is kept

constant, and in RCC3, in addition to ambient temperature dropped by 10◦C, the

latent heat of hydration is increased by 50%. In the succeeding two examples, RCC4,

RCC5, the examples RCC2 and RCC3 are repeated by incorporating the convective

heat exchange at crack faces.

In the current study, to prevent the sudden cracking of the middle and the top lifts

of the dams at the onset of their analyses during the construction process, a novel

multifield interface element is developed between the concrete lifts. This element

provides a contact between the nodes located at the discontinuities between the lifts
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Table 3.2: Material properties of RCC used in the coupled phase-field chomo-thermo-

mechanical analysis [23, 116]

Parameter Unit Definition Equation Value

Hydration

ξ0 [–] Percolation threshold (3.13) 0.01

Ea/R [K] Normalized activation energy (3.13) 4× 103

a, b, c [–] Chemical affinity parameters (3.34) 57.0, 0.75, 7.05

Mechanical

E∞ [N/mm2] Final Young’s modulus (3.35) 22× 103

ν [–] Poisson’s ratio (3.36) 0.15

f∞
c [N/mm] Final compressive strength (3.35) 13.6

Phase-Field

G∞
c [N/mm] Final critical energy release rate (3.29) 0.06

ℓ [mm] Internal length scale (3.29) 275

c0 [-] Scaling parameter (3.29) π

Thermal

c [kJ/(K kg)] Specific heat capacity (3.31) 2500

kθ [J/(K m s)] Thermal conductivity (3.33) 1.679

α [1/K] Thermal expansion coefficient (3.22) 8.33× 10−6

Lξ [J/m3] Latent heat of hydration (3.14) 45× 103

hc [J/(s m 2 K)] Convective heat exchange coefficient (3.32) 0.0

Creep and shrinkage

κ [-] Autogenous shrinkage coefficient (3.22) 45× 10−6

λttc [-] Transitional thermal creep coefficient (3.22) 0.08

of the dam, Figure 3.3 to enforce the displacement field and the temperature field to

be transferred across these discontinuities. However, the interface element ensures

debonding between the crack phase-field of the nodes across the discontinuities.

In the first example (RCC1), the ambient temperature is set to θ∞ = 15 ◦C. The

initial temperatures of RCC and rock are θ0 = 20 ◦C and θ0 = 10 ◦C. The latent

heat of hydration per unit volume of low-paste RCC referred to as RCC 90 is defined
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t = 42 days t = 63 days t = 77 days

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

θ [◦C]

d [−]

σmax [MPa]

32.8

27.1

21.4

15.7

10.0

1.0

0.75

0.5

0.25

0.0

1.30

0.91

0.45

0.0

−0.52

Figure 3.4: RCC1: The crack phase-field, the temperature field, and the maximum

principal stress distribution without convective heat exchange at the cracks in RCC

dam.

as the amount of latent heat of an RCC material with a cementitious content of 90

kg/m3, so Qξ = 90 × 500 = 45 × 103 kJ/m3, where 500 kJ/kg declares the latent

heat of 1 kg cementitious material. Figure 3.4 illustrates the results associated with

the distributions of the crack phase-field, the temperature and the maximum principal

stress at the end of the construction phase of each part of the RCC dam without

considering a convective heat exchange at the free crack surfaces.
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Figure 3.5: RCC1: Temperature evolution along Path A at the end of the construction

of each part.

The maximum principal stress under the coupled chemo-thermo-mechanical effects at

the end of the construction is bounded by the tensile strength at complete hydration,

ξ = 1. Regarding the results obtained, the thermally-induced cracking is observed

at the bottom and along the downstream side faces of the dam when the maximum

principal stress reaches the tensile strength of concrete at that moment. According

to the results obtained in the literature, due to the geometric properties of the RCC

dam, it leans towards its upstream face. The placing speed is another factor affects

the temperature distribution and evolution. At a faster of speed placing, the loss of

hydration heat may decrease due to less time allowed for thermal conduction on the

boundaries of the dam. By comparing the temperature distribution among the three

different parts of the dam, it may be deduced that a greater area is cooled down in the

bottom part than the other parts at the end of 77 days.

Also, the evolution of the temperature field during the construction process along Path

A, see Figure 3.3, is represented in Figure 3.5 at the end of the construction of each

part. The results show that the maximum temperature, evolved in each part decreases

by passing the time until the end the construction.

In the second example (RCC2), the effect of the ambient temperature θ∞ is investi-

gated, so it is dropped by 10◦C. The results regarding the distribution of the temper-
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t = 42 days t = 63 days t = 77 days

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 3.6: RCC2: The crack phase-field, the temperature field, and the maximum

principal stress distribution without convective heat exchange at the cracks in RCC

dam

ature field, the crack phase-field and the maximum principal stress is represented in

Figure 3.6. The results describe that by decreasing the ambient temperature a higher

temperature gradient is established between the interior and exterior of the dam, and

in comparison with RCC1 a greater part of the internal area is cooled down. These

effects consequently induce higher stresses that are greater than the instant tensile

strength of concrete at the RCC-air boundaries so a greater region of the dam experi-
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Figure 3.7: RCC2: Temperature evolution along Path A at the end of the construction

of each part.

ences cracking.

Moreover, the evolution of the temperature field during the construction process along

Path A, see Figure 3.3, are represented in Figure 3.7 at the end of the construction of

each part. The results represent that by decreasing the ambient temperature by 10◦C

i.e. θ∞ = 5◦C comparing to the previous example RCC1, the maximum temperature

within the parts decreased by about 5◦C. Also, the maximum temperature evolved

within the dam decreases during the construction process. This decrease is a little bit

grater than that obtained in the previous example.

Additional analysis is conducted to investigate simultaneously the effect of the ambi-

ent temperature θ∞ and latent heat of hydration Qξ (RCC3). For this purpose, The

ambient temperatures decreased by 10◦C i.e. θ∞ = 5◦C, and the latent heat of hy-

dration is increased by 50% (Qξ = 67.5 kJ/m3). The higher latent heat of hydration

increases the internal temperature at the end of the dam construction. The higher tem-

perature, on the other hand, and the lower ambient temperature cause higher tempera-

ture gradient in comparison to the first and second examples (RCC1 and RCC2). The

maximum principal stress reaches the instant tensile strength of concrete, so a greater

area near to the boundaries, especially at the downstream, is subjected to cracking.

In Figure 3.8, the distributions of the crack phase-field, the temperature field, and the
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t = 42 days t = 63 days t = 77 days

(a) (b) (c)
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Figure 3.8: RCC3: The crack phase-field, the temperature field, and the maximum

principal stress distribution without convective heat exchange at the cracks in RCC

dam.

maximum principal stress are respectively depicted.

Furthermore, the evolution of the temperature field during the construction process

along Path A, see Figure 3.3, are represented in Figure 3.9 at the end of the con-

struction of each part. The results demonstrate that by increasing the latent heat of

hydration, the maximum temperature reached within the dam increases in comparison
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Figure 3.9: RCC3: Temperature evolution along Path A at the end of the construction

of each part.

to the first (RCC1) and second (RCC2) examples. Also, the maximum temperature

evolved at the end of the construction of each part decreases by about 1 and the tem-

perature is decreased by 3◦C at the boundaries by passing the time until the end of the

construction process.

In the following, the effect of the crack phase-field on the temperature evolution

through a convective heat exchange at crack faces, and the thermal conductivity are

investigated by conducting additional analyses. For this purpose, in the fourth exam-

ple (RCC4) the convection is activated by setting a convective heat exchange coef-

ficient hc = 2.5 J/(sm2K) in (3.32), and the second example (RCC2) is reanalyzed,

where the ambient temperature is dropped by 10◦C i.e. θ∞ = 5◦C. The results asso-

ciated with the distributions of the crack phase-field, the temperature and maximum

principal stress are presented respectively in Figure 3.10.

In Figure 3.11 the evolution of the temperature field during the construction process

along Path A, see Figure 3.3, is depicted. The results validate that by considering a

convective heat exchange, the body initiates to be cooled down along the crack path,

and this sever reduction in the temperature is observed along the specified path on the

height of the dam.

In the last example (RCC5), we repeat the third example (RCC3) by considering the
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t = 42 day t = 63 day t = 77 day
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Figure 3.10: RCC4: The crack phase-field, the temperature field, and the maximum

principal stress distribution with convective heat exchange at the cracks in RCC dam.

convective heat exchange at crack faces hc = 2.5 J/(s m2 K) in (3.32) and degrading

thermal conductivity to investigate the coupled effects of the ambient temperature and

latent heat of hydration on the distribution and evolution of the temperature and crack

phase-field also their mutual effect on each other. In Figure 3.12 the results relating

to the distributions of the crack phase-field, the temperature field and the maximum

principal stress are shown.
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Figure 3.11: RCC4: Temperature evolution along Path A at the end of the construction

of each part.

In Figure 3.13 the evolution of the temperature field during the construction process

along Path A, see Figure 3.3, are visualized. By applying a convective heat exchange

along the crack surfaces, decreasing the ambient temperature, and increasing the la-

tent heat of hydration, although the maximum temperature within the dam increases,

the temperature is severely decreases at the boundary and along the crack surfaces.

Concerning the results obtained through the chemo-thermo-mechanical framework

coupled with the cohesive zone phase-field approach, it is observed that the increase

in the latent heat of hydration by 50% leads to increase the internal temperature up

to 39.5◦C in comparison with RCC1 state at which it is up to 32.8◦C. On the other

hand, the decrease in the ambient temperature by 10◦C causes a greater part of the

dam’s internal area to be cooled down. These effects increase the temperature gradi-

ent between the interior and exterior parts of the dam. A more significant temperature

gradient induces higher tensile stresses at the RCC-air boundaries, so cracking initi-

ates when these stresses reach the instant tensile strength of concrete. Cracking at the

dam boundaries may justify a convective heat exchange at crack faces and affect the

thermal conductivity. Therefore, additional analyses are conducted on this purpose.

The results show that by considering the convection and degrading thermal conduc-

tivity, the body of the dam is cooled down through the crack faces. By comparing

the results of RCC2 and RCC3 with the results of RCC4 and RCC5, it can be easily
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Figure 3.12: RCC5: The crack phase-field, the temperature field, and the maximum

principal stress distribution with convective heat exchange at the cracks in RCC dam.

observed that at the crack faces due to the convective heat exchange, the body starts

to cool down, and both the maximum and minimum temperature decrease. Also, the

reduction in thermal conductivity due to degradation can increase the risk of early-age

cracking.
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Figure 3.13: RCC5: Temperature evolution along Path A at the end of the construction

of each part.

3.5 Concluding Remarks

In this study, a coupled chemo-thermo-mechanical model along with the cohesive

zone, the phase-field approach is developed for the simulation of early-age cracking

of concrete. The proposed coupled chemo-thermo-mechanical model evaluates the

evolution of the mechanical properties of concrete during the hydration process. Fur-

thermore, the cohesive zone phase-field approach is applied to predict the possibility

of cracking under chemo-thermo-mechanical effects at early ages accounting for the

consequence of the ambient temperature and the latent heat of hydration on the tem-

perature, the maximum principal stress, and the crack phase-field distribution in RCC

dam. Contrary to the existing phase-field model in the literature which have been de-

veloped for the brittle failure in the solids, in this study the cohesive zone phase-field

model used for the material like concrete by incorporating a general softening law

frequently adopted for quasi-brittle failure.

The capability of this type of phase-field model is illustrated and validated by a num-

ber of representative numerical examples. In the phase-field models applied to the

brittle crack propagation, the overall global response of the material intrinsically de-

pends on the internal length scale parameter and the mesh size which dominate the
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maximum load at the time of crack initiation. Adoption of the phase field regularized

cohesive zone model decreases the sensitivity of the results to the value of the length

scale parameter. This phase field theory is extended to the coupled multi-physics

problems in a real structural scale to investigate the bulk material cracking under

complex multi-field material response accounting for a chemo-thermomechanically-

induced effects involving temperature evolution during the hydration process, heat

transport owing to the conduction at the boundaries and convection at the free crack

surfaces. In this study, five examples are represented in the case of the RCC dam to

investigate the effect of ambient temperature, latent heat of hydration, and convective

heat exchange at the crack faces. By decreasing the ambient temperature and increas-

ing the latent heat of hydration a greater part of the dam subjected to cracking. This

effect is attributed to the higher temperature gradient between the interior and exterior

part of the dam. The convective heat exchange at the crack faces is expressed as an

additional heat sink causing heat loss at the crack faces. The results obtained in this

study agrees well with the findings reported in the work of Lackner and Mang [23].
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CHAPTER 4

A PORO-VISCOELASTIC MODEL FOR DRYING SHRINKAGE AND

CREEP IN CONCRETE

4.1 Introduction

This chapter is concerned with the theoretical and computational modeling of drying

shrinkage and creep in hardening and mature concrete at early ages and beyond. The

associated formulations are conducted by developing a coupled constitutive model-

ing approach, which is furnished by the robust multi-physics computational tools

within the framework of poroviscoelasticity. In the literature, the majority of the rel-

evant works are associated with the determination of shrinkage-induced volumetric

strain, based on purely empirical data, through the coefficient of hygral contraction

analogous to the coefficient of thermal expansion in the coupled thermo-mechanical

problems. The corresponding hygral contraction coefficient is described as a lin-

ear, or hyperbolic function of the internal relative humidity [118]. In contrast, we

employ a physically motivated technique where the pore pressure is obtained as a

function of the water content that is determined using sorption-desorption equations

for a given value of the local relative humidity. This equation, which is a fundamen-

tal aspect of the drying process, allows us to relate the internal relative humidity and

the evaporable water content in pores. Therefore, the proposed model accounts for

the hygro-chemo-mechanical cross-coupling effects between the shrinkage-induced

strain development due to the pressure evolution through humidity variations and the

stress concentrations in hardening and hardened viscoelastic concrete.

At early ages of concrete, several physicochemical phenomena such as hydration,

shrinkage, and creep occur at the same time. Therefore, their effects may not be
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straightforwardly decoupled. The computational modeling will equip us to investi-

gate the response of the concrete elements individually, subject to the shrinkage and

creep phenomenal at early ages and beyond. In contrast to the existing studies in lit-

erature, the proposed model provides almost accurate formulations without anymore

requirement for any experimentally based and the empirical equation describing the

shrinkage-induced volumetric strain. Consequently, the comparison of the numeri-

cal examples with experiments demonstrates the excellent predictive capacity of the

proposed model.

In a cementitious material, the moisture content is an essential parameter, which

strongly governs the full treatment of the physio-chemical aspect of hydration process

and aging effect. Therefore, the determination of the moisture distribution mechanism

within concrete is practically important to obtain a better investigation of the durabil-

ity phenomena related to the moisture variation induced by the hydration process

itself and the environmental conditions. When concrete comes into a general defini-

tion, it is characterized as a multi-phase composite material, consisting of aggregates

embedded in a matrix of mortar [119]. The matrix of mortar is composed of fine

aggregates embedded in the cement paste. Volume changes in concrete induced by

either the thermal or the hygral effects are predominantly dependent on the behavior

of the hydrated cement paste. During the course of the hydration process, the capillary

pores are formed as a residue of the spaces filled by water. Apart from the capillary

pores, the water-filled gel pores form within the cement paste. The total mass of water

per unit volume of the material consists of adsorbed water, capillary water, hindered

adsorbed water, and a negligible mass of vapor. Therefore, any cementitious mate-

rial is defined as a hydrophilic porous material that contains a wide range of pores

of different and their structures evolving with age. Therefore, the moisture transport

within concrete is complicated. Indeed, several physicochemical processes occuring

especially at early ages, and also, a long-term state of concrete that govern creep and

shrinkage.

In cementitious-based composite materials the recognition of corresponding hygro-

chemo-mechanical behavior such as creep and shrinkage, and fracture regarding the

initiation and propagation of micro-cracks require a comprehensive theoretical de-

scription. This encompasses the coupling between these phenomena occuring simul-
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taneously and expresses their effects on concrete behavior in detail. In cementitious

materials, shrinkage is generally associated with loss of water in either hardening or

hardened state. This moisture transport occurs when concrete is brought into con-

tact with the environment possessing a lower relative humidity than one in its own

pore system. On the other hand, creep is another time-dependent phenomenon, ob-

served during short- and long-term state of concrete when it is subjected to a constant

mechanical loading, aging effects, and variation of interior water content.

Basic creep and drying creep (Pickett effect) are two extensively used terminologies

which particularize creep as the time-dependent deformation that occur when con-

crete is loaded in a sealed condition while the moisture is not allowed to escape and

when concrete under load is allowed to dry in response to the different environmental

conditions, respectively. Creep has recoverable and irreversible components, when

concrete is unloaded, although the elastic strain is completely recovered, the accumu-

lated creep strain is partially recovered. The composition and type of Portland cement

and admixtures, the type of aggregates, the water/cement ratio, the relative humidity

of the place where the concrete is stored for curing, temperature, the strength of con-

crete, state of stress, age, and the size of concrete specimen are of considerable impor-

tant factors that effect the creep response of concrete [119]. Among these variables,

relative humidity and temperature are governed by the environmental conditions. The

others can be classified as the intrinsic characteristics of concrete. The effects of the

temperature and the humidity variation are investigated both experimentally and nu-

merically.

In the literature, there is a variety of experimental and numerical studies focused on

the understanding the creep and shrinkage phenomena. Most of the numerical studies

have used the microprestress-solidification theory to investigate the effect of the aging

due to continuing cement hydration process and the effects of the environmental con-

ditions such as the temperature and the relative humidity to describe creep response

of concrete. The numerical modeling of early age creep of ordinary concrete and

its application to tunneling as a coupled creep-chemoplastic problem is addressed

in [120, 121]. In these studies, two creep mechanisms are introduced within the

framework of closed reactive porous media. These mechanisms are associated with

a stress-induced water movement and redistribution, and a relaxation mechanism in

107



the micropores of cement gel expressing the long-term and short-term creep, respec-

tively. In [122, 123, 19, 31] a micromechanics-based creep model is proposed for a

solidifying material to obviate deficiencies of the forms of the creep law with aging

to determine the creep strain as a sum of aging and nonaging viscoelastic strain and

an aging viscous strain. This proposed formulation was verified by applying it to

concrete specimens undergo no significant drying.

In addition to solidification theory, the long-term aging which cannot be described

by the volume growth of hydration products, the microprestress theory has been pre-

sented [19, 31]. This theory considers the long-term aging as the relaxation of tensile

microprestress in the bonds or bridges that cross the micropores in hardened cement

gel filled by hindered adsorbed water, see Figure 1.3. The breakage and reformation

of the bonds across the micropores resulting in viscous shear between the opposite

walls of micropores lead to long-term creep. The relaxation reduces the effective

viscosity of the shear slip so the long-term aging comes with the flow term is ob-

served in the creep model. In this manner, the microprestress theory contributes to

interpret drying creep or strain-induced shrinkage not due to the volumetric growth

of hydration production, but due to the relaxation of tensile microprestress. In [124],

the previously proposed microprestress-solidification theory is used to numerically

simulate the effect of temperature changes to capture the transitional thermal creep.

The results demonstrate that the chemical potential of pore water which is sensitive to

both pore humidity and temperature is the key factor governing the creep prediction

through the concept of microprestress. This theory is improved in [33, 125, 126] by

reformulating the governing equation of the microprestress in terms of viscosity by

explicitly considering the effect of relative humidity and temperature variations, and it

is verified by applying to the experimental benchmark problems at variable humidity

and temperature.

The model, designated as the solidification-microprestress-microplane is developed

in [32] to account for the relevant aspects of concrete behavior, such as creep, shrink-

age, thermal deformation and cracking initiating from the early ages up to the state

of the several years of age. In the latter, a multi-physics framework is introduced to

numerically model: (i) the visco-elastic behavior of concrete such as creep/relaxation

through the solidification theory, (ii) drying creep, long-term creep and variation of
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relative humidity and temperature through the microprestress theory, and (iii) the mi-

croplane model [127] to describe cracking and damage under hygrothermal effects in

concrete. Furthermore, a hygro-thermo-mechanical model for high performance con-

crete and its application for self-desiccation and drying tests associated with moisture

transport and heat transfer are represented in [12, 128]. Within the scope of this

model, diffusion equation is formulated in terms of pore relative humidity, this equa-

tion is coupled with the heat balance equation by considering the heat liberated dur-

ing hydration and silica fume reaction. Moreover, the relative humidity is determined

as a function of the amount of evaporable water by adopting adsorption/desoprtion

isotherm [129].

A coupled thermo-hygro-mechanical model based on the framework of the micro-

prestress-solidification theory to investigate time-dependent deformation of hardened

concrete incorporating aging, creep, drying shrinkage, thermal dilation, and tensile

cracking is represented in [130]. This proposed model is also applied to the cou-

pled multi-physics problems at a structural scale. The long-term mechanical behavior

of concrete at early ages is studied in [34] by adopting a viscoelastic aging model

through the solidification-microprestress theory to reproduce the creep and relaxation

phenomena. An improved microprestress-solidification (MPS) theory is proposed in

[131] to study the size effect of drying creep and capture the humidity dependence

of transient thermal creep effect where the expression related to the evolution of the

microprestress and its relation with the viscosity of the flow term is modified. Sim-

ulation of creep response of concrete, dealing with non-linearity of the numerical

model, the multi-axiality of loading, and temperature and drying effect within the

poro-mechanical framework is studied in [132]. The so-called hybrid mixture theory

which considers concrete as a multiphase porous visco-elastic material along with

the solidification-type model is applied in [133, 134, 135] to develop a numerical

model of the hygro-thermo-chemo-mechanical phenomena by focusing on creep and

shrinkage.

The early age behavior of massive concrete structures is studied in [136, 137] by

conducting a thermal active restrained shrinkage ring test and developing a numer-

ical analysis through a coupled chemo-thermo-elastic-damage model. In the study,

the proposed model is used to simulate the active ring test and a concrete nuclear
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containment construction to evaluate evolution of mechanical characteristics, auto-

genous shrinkage, temperature effect and the coupling between creep and damage.

A micromechanical model for the cementitious materials, extended to the domain of

diffusion-driven phenomena is represented in [138]. Drying shrinkage and the result-

ing cracking under hygro-mechanical coupled problem is investigated by taking into

account the effect of the aggregates and the degree of drying.

Determination of relationship between shrinkage and interior humidity of concrete

and its moisture diffusion coefficient as a function of the interior humidity is exper-

imentally investigated in [139, 140] to evaluate shrinkage-induced effects leading to

cracking risk in concrete structures. Moreover, an internal humidity based microme-

chanical model, based on experimental findings, is developed in [141] to study auto-

genous and drying shrinkage in concrete structures at early-ages. The dry-wet cycle

as one of the aggressive environmental conditions is researched through the experi-

ments and theoretical simulations to evaluate the shrinkage behavior of concrete by

regarding the variation of the internal humidity [142].

In further studies, the moisture movement in early-age concrete and consequent ce-

ment hydration and drying shrinkage induced cracking from ring test to circular col-

umn and concrete pavement under the effects of environmental conditions, internal

curing and water to cement ratio are investigated in [143, 144, 145, 146]. In the litera-

ture, the many other studies examined fluid transport in porous media. The effect of a

freely moving pore fluid on the porous media under quasi-static deformation was first

developed in 1923 by Terzaghi [147]. Then it was extended the three-dimensional

consolidation process of soil which was determined by settlement under water ex-

traction from the voids in response to the gradual application of load variation by

Biot [148] in 1941. A new derivation of Biot’s theory of linear poroelasticity is de-

veloped in a modern thermodynamically consistent framework [149]. This recently

developed formulation introduces the fluid-solid mixture as a single homogenized

continuum body contrary to the theory of mixture [150] in which the fluid-solid mix-

ture is treated as a multicomponent mixture. Although, there is a variety of works

focused on moisture transfer in concrete [151, 152, 153, 154], there has not been any

comprehensive work which develops a coupling between the theory of poroelasticity

with hygro-chemo-mechanical model to study creep and shrinkage, and their associ-
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ated hygromechanical effects in concrete.

In this study, a coupled constitutive modeling approach, furnished with a robust

computational framework, is developed to address the durability problems that arise

from drying shrinkage within the three-dimensional framework of poroviscoelastic-

ity. Hence, the proposed approach accounts for the hygro-chemo-mechanical cross

coupling effects between the shrinkage-induced strain development due to the pres-

sure evolution through humidity variations and the stress concentrations in hardening

or hardened viscoelastic concrete.

To this end, we additively decompose the stress expression into the effective stress

of the viscoelastic concrete skeleton and the pressure developing in pores. The vis-

coelastic model of the skeleton takes into account short- and long-term creep effects

through the well-known microprestress theory. The material parameters related with

the rigidity and strength of concrete are assumed to evolve with the degree of hy-

dration. In the proposed model, as opposed to the modeling approaches suggested

in the literature, the shrinkage strain is not obtained directly by using an empirical

formula involving the hygromechanical expansion coefficient and the change in hu-

midity. Instead, we employ a physically motivated approach where the pore pressure

is obtained as a function of water content that is determined using sorption-desorption

equations for a given value of the local relative humidity. In addition to the conser-

vation of linear momentum equation, the Darcy-type transient continuity equation is

used to calculate the temporal and spatial variation of the relative humidity.

In this chapter, first the governing equations of the hygro-chemo-mechanical model

are introduced. Then, the aging effect and the evolution of the mechanical proper-

ties of concrete are defined through a physico-chemical model based on the definition

of the degree of hydration. In the following, the constitutive equations, including

the overall stress tensor, the relative humidity flux and moisture storage are intro-

duced. The total stress tensor is decomposed into the effective stress tensor and the

pore pressure. The long-term viscoelastic behavior of concrete is described through

the micoprestress theory to define the concrete viscosity as a function of the hygral

effects. The moisture storage in the evolution equation of the relative humidity is

calculated through the adsorption-desorption isotherm model. Indeed, we define the
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water content as the state variable representing the hygral part of the problem, but to

model the experiments in the literature, it is required to define the governing equation

and the constitutive relations in terms of relative humidity. The adsorption-desorption

isotherm model provides us with a relationship between the water content and the rel-

ative humidity.

The capability of the proposed three-dimensional model is validated by several rep-

resentative numerical examples of boundary-value problems. These examples are the

experiments performed in the literature, including the basic creep, flexural creep, and

drying shrinkage tests.

4.2 Theory

In this section, the principal equations of the coupled boundary value problem of the

hygro-chemo-mechanics are developed within the framework of poroviscoelasticity

in hardening concrete by presenting the governing differential equations and the con-

stitutive equations.

4.2.1 Geometry and Kinematics

The geometry and kinematics, related to the mechanical part of the problem is pre-

sented in Section 3.2.

4.2.2 Thermodynamic State

In the traditional theory of poroelasticity, the related formulations have been pre-

sented based on the concept of pore pressure. In this study, we construct our formu-

lation based on the relative humidity as a field variable. Indeed, the pore pressure is

implicitly calculated through a relation in which the variation of water content is de-

termined as a function of the relative humidity. But we first formulate the balance law

for the diffusing fluid in terms of the mass content of the evaporable fluid. Express-

ing the mass content of evaporable fluid in terms of the relative humidity through the
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adsorption-desorption isotherm model, the associated balance law is reformulated for

the relative humidity, that the effect of its variation is projected to the stress response

in terms of the pore pressure. To this end, we derive the related expressions with

regard to the concept of chemical potential, conjugate to the mass content of evap-

orable water, referring to [149, 155, 156, 157], then we implicitly relate the chemical

potential to the relative humidity through the adsorption-desorption isotherm model.

As a result of this local simplification, the following governing and constitutive ex-

pressions are rewritten as a function of relative humidity.

As is known, when concrete is in the hardening state, a highly exothermic and ther-

mally activated reaction, the so-called hydration process mainly governs the evolution

of the mechanical properties and critical fracture energy of the material. Based upon

the theory of porous media [158] proposed by Ulm and Coussy [3, 4], at a macro-

scopic level, the hydration process is specified as a chemical reaction in which the

free water is a reactant phase combining with the unhydrated cement to form com-

bined water in the hydrates as a product phase. At the microscopic level, the diffusion

of water through the layers of already formed hydrates may be taken into account as

the governing mechanism in the kinematics of the reaction [7]. The process of hy-

dration is quantified by the hydration extent through a single variable, known as the

degree of hydration ξ.

The degree of hydration, ξ(x, t) is identified to inspect the aging phenomena cor-

responding to the effect of the hydration process on the coupled chemo-thermo-

mechanical behavior of concrete resulting in the growth of rigidity and strength of

hardening concrete. A coupled problem of isothermal hygro-chemo-mechanics within

a framework of poroviscoelasticity is formulated in terms of four primary field vari-

ables, namely the total strain tensor ε(x, t), the mass content of evaporable fluid

we(x, t), the viscous strain α(x, t) and the degree of hydration ξ(x, t). The first two

state variables are the external variables and the remaining are the internal variables

State(x, t) := {ε(x, t), we(x, t),α(x, t), ξ(x, t)}. (4.1)

These state variables govern the volume-specific Helmholtz free energy which defines

the coupled hygro-chemomechanical potential

Ψ = Ψ̂(ε, ϕ,α, ξ) (4.2)
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Moreover, the spatial and temporal evolution of the primary field variables are gov-

erned by two fundamental field equations: the balance of linear momentum and the

mass balance law for the diffusing fluid. Additionally, the evolution of the degree of

hydration can be expressed as a thermally activated process through an Arrhenius-

type differential equation, based on the theory of reactive porous media developed by

Coussy [158], and its application to (chemoplasticity) concrete as proposed by Ulm

and Coussy [3, 4].

4.2.3 Governing Differential Equations

In this section, we introduce the differential equations that govern the evolution of

the state variables, given in (4.1). In particular, the balance of linear momentum and

the continuity equation of evaporable water content, express the spatio-temporal evo-

lution of external state variables, the displacement field u(x, t) and the evaporable

water content we(x, t), respectively. The evolution equation of the degree of hy-

dration ξ(x, t) is generally obtained through a thermo-chemo-mechanical model. In

addition to this model, we adopt a micro-presrtress theory to determine the viscous

strain α(x, t).

The balance of linear momentum that adopts the following well-known local spatial

form

div σ̂ + b̄ = 0, (4.3)

represents the quasi-static stress equilibrium in terms of the total stress tensor σ̂,

B B
∂Bu ∂Bϕ

∂Bt ∂Bh

x ∈ Bx ∈ B
(a) (b)b̄

t̄

h̄ϕ

n n

Figure 4.1: Schematic representations of the Dirichlet and Neumann boundary con-

ditions for the (a) mechanical and (b) hygral problems.
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and the volume-specific body forces b̄. This expression governs the evolution of

the displacement field u(x, t) in conjunction with the Dirichlet boundary u = ū

on ∂Bu and the Neumann σn = t̄ on ∂Bu boundary conditions where n represents

the outward unit surface normal on ∂B. It is obvious that the respective parts of the

boundary ∂Bu and ∂Bt satisfy ∂B = ∂Bu ∪ ∂Bt and ∂Bu ∩ ∂Bt = ∅ as demonstrated

in Figure 4.1.

The local balance law for the diffusing fluid expressing the temporal and spatial vari-

ation of the mass content of the evaporable fluid is given by

ẇe = − div ĵ(we,∇xwe) (4.4)

where the flux ĵ(we;∇xµϕ) = −M̂ (ε, we)∇xµϕ represents the spatial variation

in the mass content of evaporable fluid in a porous medium induced by diffusion

across the boundary as a function of the positive-semidefinite fluid mobility tensor

M̂ (ε, we). For an isothermal process, the balance laws (4.3) and (4.4) are employed

to state the temporal changes in free energy of a porous medium B, see Figure 4.1,

which is not greater than the power extended on B, plus the flux of energy carried into

B. Therefore, the free energy imbalance under isothermal conditions and neglected

inertial effects is written as

∫

B

Ψ̇ dV

︸ ︷︷ ︸

Ė

≤
∫

∂B

σn · u̇+

∫

B

b̄ · u̇ dV
︸ ︷︷ ︸

Pext

−
∫

∂B

µϕj · n dA

︸ ︷︷ ︸

Qext

(4.5)

where Ė represents the represents the rate of change of the internal energy of part B,

Pext is the external mechanical power exerted on part B by the surface tractions σn

and body force b̄, and Qext represents the the flux of energy carried into B by the flux

j of diffusing fluid. The energy carried into part B by fluid transport is characterized

by introducing primitive quantity, namely the chemical potential field µϕ(x, t). The

chemical potential or Gibbs function per unit mass of the fluid phase is given by

[156, 157, 159]

µϕ =

∫ pw

pw0

dpw

ρf
(4.6)

where pw is the pore pressure, brought about by the variation of mass content of

evaporable fluid inside the porous medium. By applying the divergence theorem to
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the integral over ∂B, the inequality in (4.5) becomes is reread as
∫

B

(Ψ̇− σ : ε̇− (divσ + b̄) · u̇+ µ div j + j · ∇xµϕ) dV ≤ 0 (4.7)

Referring (4.3) and (4.4), the local form of the free energy imbalance is given by

Ψ̇− σ : ε̇− µẇe + j · ∇xµϕ ≤ 0 (4.8)

According to the first law of thermodynamics ω̇ = σ : ε̇ + Qext expresses the rate

of energy balance in terms of the volume-specific ground canonical internal energy

ω, the internal stress σ : ε and the externally supplied hydraulic power Qext = j ·
∇xµϕ. The stress and the chemical potential can be used as independent variables by

performing a Legendre transformation ω = Ψ − µµwe between the internal energy

and Helmholtz free energy, we arrive at the following form of the first law

−weµ̇ϕ = Dloc +Qext (4.9)

where Dloc := σ : ε̇ − Ψ̇ + µϕẇe ≥ 0 denotes the intrinsic dissipation due to

the internal dissipative mechanisms. The non-negativeness of Dloc is dictated by the

second law of thermodynamics. Expanding the rate of the free energy Ψ̂(ε, we,α, ξ)

in (4.2) in terms of its partial derivatives with respect to the state variables (4.1) and

their rates, we obtain the Clausius-Planck Inequality

Dloc := [σ − ∂εΨ̂] : ε̇− [µϕ − ∂we
Ψ̂]ẇe − ∂ξΨ̂ξ̇ − ∂αΨ̂ : α̇ ≥ 0. (4.10)

Based on the Coleman’s exploitation method, see e.g. Coleman & Gurtin [109], we

demand that the non-negativeness of Dloc must be fulfilled for arbitrary rates of the

controllable external variables ε and we. Based on this argument associated with

the thermodynamic restrictions, the expressions in the brackets vanish identically to

yield the well-known constitutive definitions of the stress tensor σ and the chemical

potential µϕ through

σ̂ = ∂εΨ̂(ε, we,α, ξ) and µϕ = ∂we
Ψ̂(ε, we,α, ξ). (4.11)

In this study, we employ a physically motivated approach, where the pore pressure is

implicitly identified as a function of the relative humidity. To this end, we reformu-

late the balance law for diffusing water, and rewrite the expression with reference to

relative humidity. Indeed, the formulation based on the concept of the relative humid-

ity contributes to simulate the behavior of concrete under hygro-chemo-mechanical
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effects referring to the experimental studies in the literature. Therefore, the balance

equation for diffusing water (4.4) is recast into the general form analogous to (4.3)

div q̂ϕ − Ĥε−ϕ + f̂ϕ = 0 (4.12)

where div q̂ϕ stands for the humidity flux vector, f̂ϕ describes the moisture storage,

which is defined through the adsorption-desorption isotherm model as a function of

the relative humidity field and Ĥε−ϕ represents the coupled hygro-mechanical effect,

as this effect is not remarkable, it can be neglected. Therefor, (4.12) is rewritten as

div q̂ϕ + f̂ϕ = 0 . (4.13)

The spatio-temporal evolution of the relative humidity field ϕ(x, t) is expressed by

the evolution equation of the relative humidity that is accompanied by the Dirichlet

boundary condition ϕ = ϕ̄ on ∂B, the Neumann boundary condition qϕ · n = h̄ϕ

on ∂Bϕ and the initial condition ϕ0(x) = ϕ(x, t = 0) in B, see Figire 4.1. The

local dissipation due to the hydration reactions Dξ
loc := −∂ξΨ̂ξ̇ ≥ 0 responsible for

the growth of concrete in strength and rigidity can be expressed as a product of the

chemical driving force Âξ and the rate of the degree of hydration ξ̇; that is,

Dξ
loc = Âξ ξ̇ = −∂ξΨ̂ξ̇ ≥ 0 (4.14)

where Âξ := − ∂ξΨ̂(ε, ϕ, ,αξ) presents the chemical affinity, defined as an energy-

conjugate variable of the degree of hydration. Since hydration is a thermally activated

process, the evolution of the degree of hydration is assumed to be described by the

thermodynamically consistent, Arrhenius-type first-order kinetics activated by tem-

perature [7]

ξ̇ =
Âξ

η̂ξ
exp

(

−Ea

Rθ

)

(4.15)

where η̂ξ which represents the microdiffusion of the free water through the already

formed hydrates. Since the growth of layers of hydrates increases the diffusion time of

the free water to reach the unhydrated cement, it is defined as an increasing function

of the degree of hydration ξ [7].

In (4.15), Ea and R denotes the activation energy and the universal constant for ideal

gases with R = 8.315 J/(mol K) respectively. The ratio Ea/R can be experimentally

determined, ranging from 3000 to 8000 K for concrete. According to [110] for many
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practical purposes, at least for Portland cement, Ea = 33500 J/mol for θ > 293 K

and Ea = 33500 + 1470 × (293 − θ) J/mol. Therefore, the aging model based on

the definition of the degree of hydration is developed to clarify the variation of the

mechanical properties. The ultimate value of the hydration degree is ξ∞ is always

less than one. It means that the complete hydration of concrete is never achieved.

The hydration process was completely attained if the ideal conditions would be ac-

complished, i.e., an adequate water-cement ratio should be supplied to provide full

hydration and absolute contact between water and cement grains [160]. The calcula-

tion of ultimate degree of hydration ξ∞ is proposed by Pantazopoulou & Mills [161]

for normal concrete with respect to the referential water-cement ratio w/c as follows

ξ∞ =
1.031w/c

0.194 + w/c
. (4.16)

In (4.10) the local dissipation origination from the viscous effects is determined as

follows

Dα
loc = βα : α̇ with βα = −∂α Ψ. (4.17)

4.2.4 Constitutive Equations

The governing equations of two main fields, the deformation and relative humidity,

the evolution equation of the degree of hydration, and the corresponding boundary

and initial conditions introduced in the previous subsection, give a complete descrip-

tion of a coupled boundary-value problem of hygro-chemo-mechanics. In the current

subsection, the constitutive equations expressing the total stress tensor σ̂, the effec-

tive stress tensor σ̂eff, the pore pressure pwi , the relative humidity flux q̂ϕ, the moisture

storage fϕ, and the coupled hygro-mechanical force Hε−ϕ are manifested.

Stress Response. The total stress tensor is introduced over N Maxwell branches in

the rheological model applied for the long term behavior of concrete as

σ̂(ε, ϕ,αi, ξ) = σ̂eff −
N∑

i=1

b̂i(ξ)χ
ws
s pwi 1 (4.18)

where the effective stress tensor σ̂eff is defined as

σ̂eff =
N∑

i=1

K̂dr
i (ξ)tr(ε

e
i )1 + 2µ̂i(ξ)dev(εei ) (4.19)

118



with dev(ε) = ε − 1

3
tr ε and K̂dr

i (ξ) is the bulk modulus of the porous medium.

The latter is calculated as a function of the Biot’s effective parameter b̂i(ξ), the Biot’s

modulus M̂i(ξ), the undrained bulk modulus of concrete K̂i(ξ), and χws
s , which indi-

cates the fraction of skeleton area in contact with water

K̂dr
i (ξ) = K̂i(ξ)− b̂2i (ξ)M̂i(ξ)χ

ws
s (4.20)

Pore Pressure. The change in the mass content of fluid per its unit volume ζ causes

the pressure in the pores pw contributing the stress response at the macroscopic scale.

Indeed, if we rewrite the volume specific free energy function Ψ̂ in terms of the vol-

umetric change of the fluid mass content, the pore pressure is identified as

pwi := ∂ζΨ̂ = M̂i(ξ)ζ − M̂i(ξ)b̂i(ξ)tr(εe)− pw0 with ζ =
ŵe(ϕ)− w0

ρf
(4.21)

where M̂i(ξ) = M∞ξ and b̂i(ξ) = 0.9995 − (1 − b∞)ξ respectively describe the

instant Biot Modulus and Biot coefficient as the functions of their ultimate values and

the degree of hydration. In the literature, the storage coefficient of the porous medium

is determined as a measure of the amount of water content that can be forced into a

porous solid under pressure while the volume of the porous solid is kept constant

[148, 162]. Its inverse is defined as the Biot modulus M∞ described as a ratio of the

variation of the pore-pressure to the change in the variation of the water content. The

Biot coefficient b∞ measures the ratio of the water volume squeezed out to the volume

change of the porous body if it is compressed while the water is being allowed to

escape [148, 162]. The ultimate value of the Biot’s effective parameter is constrained

between 0 and 1 as 0 ≤ b∞ ≤ 1. If b∞ = 0, the water content in the pores does not

vary due to the volume change of the porous medium, in return if b∞ = 1, the change

in the water content is equal to the volume change. According to the definitions of the

Biot’s constants, it is understood that the porosity of concrete is a governing parameter

determining the values of these macroscopic poroelastic parameters of concrete.

In general, during the hydration process, the production of the hydrates decreases

the porosity of concrete. Therefore, the strength of concrete increases. It means

that there fundamentally exists an inverse relationship between the porosity and the

concrete strength [163]. In the progress of hydration, the decrease in porosity reduces

the ratio of the change in the water content to the volume change of the concrete so
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the value of b̂(ξ) decreases from its initial value b̂(ξ = 0) = 1 to its ultimate value

reached at the hardened state. Also, the decrease in the concrete porosity reduces the

moisture capacity so the Biot’s modulus M̂(ξ) increases.

E1

E2

η1

η2

εei αi

Figure 4.2: Schematic illustration of the rheological model representing the long-term

behavior of concrete.

Microprestress Theory. Since the duration of creep response of concrete to a fixed

mechanical loading decreases significantly with an increasing age at loading, the ag-

ing model founded on the solidification theory is not sufficient to describe the long-

term aging of concrete. Therefore, besides the aging model, the microprestress model

has been proposed to determine the long-term behavior of concrete [7]. The long-term

behavior of concrete refers to the the situations of sustained loading or the straining

due to the thermal and chemical effects caused by the hydration process itself. This

model is mainly devised to model the creep and shrinkage as the conventional dura-

bility phenomena in concrete structures. A viscoelastic aging approach based on a

rheological model shown in Figure 4.2 is adopted to simulate the creep and relax-

ation phenomena.

This rheological model is presented in the form of the Generalized Maxwell Models

arranged in parallel. These springs and dashpots have independently varying elastic

moduli and viscosities. The proposed solidification theory cannot sufficiently pre-

dict the long-term behavior of concrete such as the considerable decrease in creep

duration for a fixed load with increasing age at loading, still after many years, so the

microprestress theory has been developed [7, 14]. At the micro level of the material,
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the so-called microprestress is interpreted as a tensile stress in the cement paste gen-

erated by the disjoining pressure of the hindered adsorbed water in the micropores,

and by very large and highly localized volume changes in the course of the hydration

process. It is presumed to be much bigger than any stress acting on the macroscopic

level. The tensile microprestresses are carried by the bonds and bridges crossing the

gel pores in the hindered cement gel. The long-term creep is supposed to occur as a

result of viscous shear slips between the opposite walls of the micropores in which

the bonds, conveying the microprestress, break and reform. The change of relative

humidity has a significant effect of the microprestress at the long-term, thereby the

nonlinear differential equation is proposed [33, 130] to implicitly calculate the micro-

prestress

Ṡ + ψ̂s(ϕ)c0S
2 = k1

∣
∣
∣
∣

d(θ0lnϕ)
dt

∣
∣
∣
∣
, and ψ̂s(ϕ) = αs + (1− αs)ϕ

2

with S(t0) =
1

c0t0

(4.22)

where c0 and k1 are constant parameters, and ψ̂s(ϕ) is a humidity dependent variable

represents the variation rate of microprestress relaxation at different values of hu-

midities with αs ≈ 0.1. The factor ψ̂s(ϕ) is associated with a transformed time which

determines the rate of microprestress relaxation. Moreover, S(t0) represents the ini-

tial condition for microprestress and t0 the time shows the start of humidity variations.

This formulation contributes to theoretically determining evolution of flow term vis-

cosity as

η̂µ(S) =
1

Sc0q4
with ηµ(t0) =

t0
q4

and q4 =
1

E∞τµ0cµ0

(4.23)

here q4 is a parameter associated with basic creep and ηµ(t0) presents the initial con-

dition for viscosity. The basic creep parameter, q4 is correspondingly determined as

a function of the ultimate elastic modulus, and two additional parameters τµ0 and

cµ0 . These two parameters express respectively the initial value of relaxation time,

and the material constant governing the evolution rate of the viscosity. [34]. The

formulation related to viscosity definition is promoted by completely eliminating the

microprestress and reformulate the differential equation (4.22) in terms of viscosity.

To this end, the microprestress is rewritten as a function of viscosity as S = 1/ηµc0q4

from the combination of (4.22) and (4.23), and its differentiation with respect to time
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yields Ṡ = −η̇µ/(η2µc0q4). By substituting S and Ṡ into (4.22), it leads to a nonlinear

first-order differential equation as

η̇µ +
µs

θ0

∣
∣
∣
∣
θ0
ϕ̇

ϕ

∣
∣
∣
∣
η2µ =

ψs

q4
(4.24)

Viscous Strains. The viscous strain tensor is defined by considering the effect of

aging and flow term on the retardation time of the dashpots in the rheological model.

By assuming a serial combination between these effects, the evolution law for the

viscous strain in each Maxwell element is defined as

α̇i =
1

η̂i
σ̂eff

i (εei , ξ), with
1

η̂i
=

1

ηi
+

1

η̂a
+

1

η̂µ
and ηi = τiÊi(ξ) (4.25)

where η̂i represents the viscosity of each Maxwell element, and ηi and τi are the

viscosity of each dashpot, respectively. η̂a = τ̂aÊi(ξ) represents the effect of aging

on the elastic modulus where τ̂a denotes the aging-dependent retardation time and

Êi(ξ) is the elastic modulus of the ith spring in the generalized Maxwell model, see

Figure 4.2. It is used to show that even though ηi and η̂µ are large enough, there

remains some viscous after even long time passed from the onset of development of

mechanical properties. The aging dependent retardation time is given by

η̂a(ξ) = Êi(ξ)Êc(ξ)/
ˆ̇Ec(ξ). (4.26)

In (4.24) η̂µ indicates the viscosity related to the flow term presented. The evolution

equation of the flow term viscosity with initial condition is numerically treated by

approximating the current value of the viscosity as ηn+1
µ = ηnµ +∆ηnµ at time tn+1 =

tn + ∆t. By applying finite differences and approximating ηµ by the average of ηn

and ηn+1, to this end (4.24) is written as

∆ηnµ
∆t

+
|∆(θ0 lnϕ)n|

θ0∆t
µs

(
ηnµ + 0.5∆ηnµ

)1/2
=
ψs

q4
(4.27)

In this equation, we have,

∆(θ0 lnϕ)n = θ0 lnϕn+1 − θ0 lnϕn (4.28)

Accordingly, (4.24) is simplified in the following form

η̇µ + A2η2µ = B2 (4.29)
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where,

A =

√

µs |∆(θ0 lnϕ)n|
∆tθ0

and B =

√

ψs

q4
(4.30)

Finally, by considering an analytical solution to (4.29) which are described in details

in [33], the viscosity of the flow term is written as

ηn+1
µ = ηnµ +∆ηnµ with ∆ηnµ =

(1− ẽ)(B2 − A2(ηnµ)
2)

A(B(1 + ẽ) + Aηnµ(1− ẽ))
(4.31)

by expanding ẽ into Taylor series, it is written as

ẽ = 1− 2AB∆t+ 2A2B2(∆t)2 (4.32)

Adsorption-Desorption Isotherm Model. The pore pressure in concrete is calcu-

lated by using the so-called water vapor adsorption-desorption isotherms implicitly.

It contributes to building the relationship between the amount of evaporable water

and relative humidity. If we investigate one-way drying or one-way wetting, the ex-

act values of the adsorption and desorption curves and their shapes are not of main

importance. Also, the comparison of the results presented that the shape of adsorption

and desorption curve is almost the same [15, 164].

For this reason, in the following, desorption isotherm is used respecting both ad-

sorption and desorption isotherms. In the literature there are a number of formula-

tions used to determine the desorption isotherm of normal concrete. The best-known

isotherm model is the Brunauer-Emmette-Teller (BET) [165] developed from statisti-

cal thermodynamics of adsorption. But, the range of validity to the BET equation for

cement and concrete ordinarily covers the relative pressure (humidity) from 0.01 to

0.1. Therefore, the common BET theory has been modified in favor of obtaining im-

proved agreement with experimental isotherm data in the multi-layer region. Some

of the modified models are: the Brunauer-Deming-Deming-Teller (BDDT) model,

derived form statistical thermodynamics of adsorption and the modified form of the

BET equation [166], the Hasley’s model (FHH) applied for the physical adsorption

on non-uniform and heterogeneous surfaces [167], the Hillbors’s formula derived by

a small modification to the BET theory to promote its application for cylindrical and

slit-shaped pores [168], and the Brunauer-Skalny-Bodor (BSB) model applied for the

nonporous solids [169].
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In this study, the semi-empirical model proposed by Mjörnell [170] is used. Accord-

ing to this model, the content of evaporable water content ŵe(ϕ) is calculated as

ŵe(ϕ) = c [aϕ1 (1− exp(−aϕ3ϕ)) + a2(exp(a
ϕ
3ϕ)− 1)]

aϕ1 =
0.15ξ

1− exp(−a3)
, aϕ2 =

w0/c− 0.33ξ

exp(aϕ3 )− 1
, and aϕ3 = −(w0/c)f1 + f2

(4.33)

where c is the cement content, aϕ1 , aϕ2 and aϕ3 are the degree of hydration (ξ) dependent

parameters, w0/c is the initial water-cement ratio, and f1 and f2 indicate two shape

factors. The moisture capacity Ĉ(ϕ) is consecutively calculated as the derivative of

the desorption isotherm,

Ĉ(ϕ) = ŵ′
e(ϕ) := c [aϕ1a

ϕ
3 exp(−aϕ3ϕ) + aϕ2a

ϕ
3 exp(a

ϕ
3ϕ)] . (4.34)

Therefore, the pore pressure is explicitly calculated as a function of the relative hu-

midity presented in (4.21) where the respective solid-phase equilibrium pressure is

specified as psi = χws
s pwi . The temporal and spatial variation of the internal moisture

content is implicitly described through the balance equation of relative humidity in

terms of the moisture capacity and the humidity flux vector.

Moisture Storage. The moisture storage fϕ is implicitly evaluated by using physi-

cally motivated adsoption-desorption dependent expression and the degree of hydra-

tion evolution referring (4.15) and (4.34)

f = f̂(ϕ; ϕ̇) := Ĉ(ϕ)ϕ̇+ κϕŴ(ϕ, ξ̇) with Ŵ(ϕ, ξ̇) =
ŵe(ϕ)

c
ξ̇. (4.35)

Before the concrete is subjected to drying shrinkage, the variation of water content

due to the hydration process may cause the autogenous shrinkage, which is taken into

account by κϕŴ(ϕ, ξ̇) in (4.35) where κϕ is a constant representing the evolution

of the autogenous shrinkage. This expression is implicitly determined as a function

of the relative humidity and the degree of hydration, which is introduced based on

a cross-coupling between the evolution of degree of hydration and the variation of

water-cement ratio calculated through the adsorption-desorption isotherm model. In-

deed, this additional relation can contribute to obtain a robust prediction of relative

humidity variation by considering both the hydration process and environmental ef-

fects, and the consequent autogenous and drying shrinkage in concrete structures.
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Humidity Flux Vector. The spatial variation of the relative humidity is expressed by

the humidity flux vector q̂ in terms of the effective diffusivity tensor D̂eff(ϕ) and the

humidity gradient ∇ϕ
q̂ϕ(ϕ;∇ϕ) = −D̂eff(ϕ)∇ϕ. (4.36)

The effective diffusivity of concrete is strongly dominated by the relative humidity.

To this end, the effective diffusivity of concrete, referring [15], is written as

D̂eff(ϕ) = [D0 +D1 ˆ̟ (̺, ϕ)] 1 (4.37)

where D0 and D1 are constants respectively, defining the values of the effective dif-

fusion coefficient at zero relative humidity and fully saturated states. Owing to the

nonlinear relation between the effective diffusivity and the relative humidity, a hyper-

bolic function ˆ̟ (̺, ϕ) is justified depending on the relative humidity as

ˆ̟ (̺, ϕ) = 1− 2−10̺(ϕ−1)

(4.38)

The relation between the effective diffusion coefficient and the relative humidity with

respect to the shape factor ̺, and the variation of the water content and its derivative

with respect to the relative humidity are illustrated in Figure 4.3.
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Figure 4.3: (a) Effect of the shape factor on the effective diffusion coefficient, and (b)

the relative water content and its derivative with respect to the relative humidity

Chemical Hydration and Growth in Rigidity and Strength. The chemical affinity

Âξ in (4.15) is defined as a function the degree of hydration as [7]

Âξ = kξ(ξ +
Aξ0

ξ∞kξ
)(ξ − ξ∞). (4.39)
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The microdiffusion of the free water through the already formed hydrates is described

by introducing the viscosity dependent function η̂ξ in (4.15), as follows

η̂ξ = ηξ0 exp(ηξ
ξ

ξ∞
). (4.40)

The aging expressions are introduced to model the hydration-induced growth of con-

crete in rigidity and strength which specify the mechanical properties such as the

compressive strength fc, the tensile strength ft, the elastic modulus E and the Pois-

son’s ratio ν. The effects of the hydration process and temperature on the mechanical

properties of concrete is represented through the introduction of the aging parame-

ter χ = χ̂(ξ, θ). The evolution equation of the aging parameter by considering the

thermal and the hydration-induced effects is written as

χ̇ = λ̂θλ̂ξ ξ̇ (4.41)

where λ̂θ and λ̂ξ are respectively formulated as

λ̂θ =

(
θmax − θ

θmax − θr

)nθ

, λ̂ξ = Afξ + Bf (4.42)

in which, θmax accounts for the maximum temperature, nθ is a material parameter

regularizing the temperature dependency of the aging model, and Af and Bf are the

constants control the variation of the aging variable with respect to the degree of

hydration. To this end, the mechanical properties including the compressive strength

fc, the tensile strength ft, the elastic modulus Ec and the Poisson’s ratio ν of the

concrete are respectively defined as

f̂c(χ) = χf∞
c [MPa]

f̂t(χ) = 1.40(f̂c(χ)/10)
2/3 [MPa]

Êc(χ) = 2.15 · 104(f̂c(χ)/10)1/3 [MPa]

ν̂(χ) = 0.18 sin(ξπ/2) + exp(−10ξ) [-]

(4.43)

To impose the convective boundary condition, the so-called Robin boundary condi-

tion, the humidity transports at the boundaries of the solid bodies are modeled by

introducing the humidity flux prescribed as qn = αs(ϕ − ϕ∞). In which αs is the
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Table 4.1: Governing equations of the hygro-chemo-mechanical model

Field Problem Equation # BC’s / IC’s

u(x, t) Mechanical divσ + b̄ = 0 (4.3) u = ū on ∂Bu

σn = t̄ on ∂Bt

ϕ(x, t) Hygral div q̂ϕ + f̂ϕ = 0 (4.13) ϕ = ϕ̄ on ∂Bϕ

qϕ · n = h̄ϕ on ∂Bh

ϕo(x) = ϕ(x, t = 0) in B

ξ(x, t) Hydration ξ̇ = Ãξ exp

(

−
Ea

Rθ

)

(4.15) ξo(x) = ξ(x, t = 0) in B

α(x, t) Viscous strain α̇ = σeff
1

η̂
(ε, ξ) (4.25) αo(x) = α(x, t = 0) in B

convection parameter, also known as the surface emissivity, representing the humid-

ity transfer occur due to the moisture movement over the boundaries of the body, and

ϕ∞ is the ambient humidity. The governing equations, constitutive relations, and the

corresponding Dirichlet boundary and initial conditions related to the problem deter-

mined with the framework of the poroviscoelasticity are summarized in Table 4.1.

The material parameters used in the formulation to express the governing equations

and constitutive relations corresponding to the hygro-chemo-mechanical model are

presented in Table 4.2. These parameters are classified according to the aging for-

mulations of the material properties, poroviscoelastic model and the hygral model in-

cluding the adsorption-desorption isotherms and the associated constitutive relations.

4.3 Finite Element Formulation

In this section, we construct the compatible linearization of weak integral of the non-

linear governing equations Eq. 4.3 and Eq. 4.12 which are introduced in the preceding

section. For this purpose, we employ conventional Galerkin method to the fundamen-
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Table 4.2: Material properties of the ordinary Portland cement concrete used in the

governing and constitutive expressions related to the hygro-chemo-mechanical model

Parameter Description Equation

Hydration and Aging

Ea/R Normalized activation energy (4.15)

ξ∞ Ultimate degree of hydration (4.40)

kξ/ηξ0 Hydration parameter (4.15)

Aξ/ηξ0 Hydration parameter (4.15)

ηξ0 Reference viscosity (4.40)

ηξ Exponent for viscosity (4.40)

θmax Maximum temperature for strength evolution (4.421)

θr Reference temperature (4.421)

nθ Temperature-based exponent for strength evolution (4.421)

Af , Bf Material properties for aging evolution (4.422)

f∞c Final compressive strength (4.431)

Poro-visco-mechanical

c0, k1 microprestress based material constants (4.22), (4.23)

αr Transformed time based material constant (4.22)

q4 Material constant related to basic creep (4.23)

τµ0 Initial value of relaxation time (4.23)

cµ0 Material constant related to evolution rate of viscosity (4.23)

θ0 Initial temperature (4.24)

µs microprestress parameter (4.24)

ηi Viscosity of ith dashpot in the Generalized Maxwell Model (4.25)

τi Retardation time of ith dashpot in the Generalized Maxwell Model (4.25)

b∞ Ultimate Biot’s coefficient (4.21)

M∞ Ultimate Biot’s modulus (4.21)

Hygral

w0 Initial water content (4.33)

c Cement content (4.33), (4.34), (4.35)

kϕ autogenous shrinkage-dependent constant (4.35)

χws Fraction of skeleton area in contact with water (4.18)

f1 shape factor of adsorption-desorption isotherm model (4.33)

f2 shape factor of adsorption-desorption isotherm model (4.33)

D0 Effective diffusion coefficient at zero relative humidity (5.17)

D1 Effective diffusion coefficient at fully saturated state (5.17)

̺ Effective diffusivity shape factor (5.18), (5.17)
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tal field equations by individually multiplying them by the weight functions δu ∈ U0,

δϕ ∈ V0 whose square of integrals are finite and they meet the conditions of the ho-

mogeneous boundary conditions (δu = 0 over ∂Bu, δϕ = 0 over ∂Bϕ). The weighted

residual equations, integrated over the volume, take the following forms for the con-

servation of linear momentum and the continuity of relative humidity after integrating

by part, 





Gu(δu;u, ϕ) = Gu
int(δu;u, ϕ)−Gu

ext(δu)=0 ,

Gϕ(δϕ;u, ϕ) = Gϕ
int(δϕ;u, ϕ)−Gϕ

ext(δϕ;u, ϕ)=0 .
(4.44)

It should be noted that since transient evolution of the degree of hydration ξ and

the viscous strain α are expressed as the functions of the temperature in (4.15) and

the effective stress tensor in (4.25), at a Gauss point, respectively, they are solved

only by discretizing in time space as a local history variable. Therefore, in the above

equations, the degree of hydration and the viscous strain do not appear as an additional

field. Accordingly, in the weak form derived for the conservation of linear momentum

((4.44)1), internal and external Galerkin functions (Gu
int, G

u
ext) are demonstrated as

follows

Gu
int(δu;u, ϕ) :=

∫

B

δε : σ̂ dV ,

Gu
ext(δu) :=

∫

B

δu · b̄ dV +

∫

∂Bt

δu · t̄ dA .

(4.45)

where b̄ and t̄ are respectively specific body forces and surface traction vector. Anal-

ogously, for the hygral part of the coupled problem, the internal and external Galerkin

functions (Gϕ
int, G

ϕ
ext) are defined as

Gϕ
int(δϕ;ϕ) :=

∫

B

−∇x(δϕ) · q̂ϕ dV ,

Gϕ
ext(δϕ;ϕ) :=

∫

B

δϕ − f̂ϕ dV −
∫

∂Bqϕ

δϕ h̄ϕ dA .

(4.46)

When the governing equations are not linear, the weighted residual functions are the

non-linear functions of the field magnitudes. Therefore, the coupled field equations

are numerically solved by implementing Finite Element Method, at the same time

Newton’s method as an iterative technique is applied to solve the coupled problems.

In the following, for each iteration step, the weighted Galerkin functions are consis-

tently linearized with respect to the field variables almost their intermediate values ũ
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and ϕ̃,

LinGu(δu;u, ϕ)|
ũ,ϕ̃ := Gu(δu; ũ, ϕ̃) + ∆Gu(δu; ũ, ϕ̃; ∆u,∆ϕ) = 0 ,

LinGϕ(δϕ;ϕ)|ϕ̃ := Gϕ(δϕ, ϕ̃) + ∆Gϕ(δϕ, ϕ̃; ∆u,∆ϕ) = 0 .

(4.47)

The incremental terms ∆Gu and ∆Gϕ, derived by Gâteaux derivative are rewritten as

functions of the external and internal terms according to Eq. (4.44)1,2 ,3

∆Gγ = ∆Gγ
int −∆Gγ

ext with γ = u, ϕ . (4.48)

As stated in Eq. (4.45)1, ∆Gu
int is obtained as

∆Gu
int =

∫

B

δε : ∆σ̂ dV (4.49)

In this expression, the total stress increment is specified as

∆σ̂ = C
uu : ∆ε+Cuϕ∆ϕ , (4.50)

where the fourth order tensor Cuu is determined as the derivative of the total stress

tensor with respect to the strain tensor, and the second order tensor Cuϕ are described

respectively as the derivative of the total stress tensor with respect to the relative

humidity,

C
uu := ∂

ε
σ̂ , Cuϕ := ∂ϕσ̂ (4.51)

Based on the expressions stated above, Eq. (4.49) is rewritten as

∆Gu
int =

∫

B

δε : Cuu : ∆ε dV +

∫

B

δε : Cuϕ∆ϕ dV (4.52)

On the other hand, as regards the hygral part of the coupled problem, the increment

of the internal Galerkin function is expressed as

∆Gϕ
int =

∫

B

−∇x(δϕ) ·∆q̂ϕ dV (4.53)

where the increment of the relative humidity flux is stated as

∆q̂ϕ = −D̂eff · ∇x(∆ϕ) where D̂eff:=− ∂∇xϕq̂ϕ = Deff 1 (4.54)

The increment of the external Galerkin function in terms of the relative humidity field

is also defined as

∆Gϕ
ext :=

∫

B

δϕ (−∆f̂ϕ) dV, (4.55)
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Isoparametric Gelerkin method will be followed in order to approximate the weak

forms Eq. (4.44)1,2 ,3 given in the form of continuous integral equations above. The

basic state variables of the coupled problem, the above-introduced generalized dis-

placement u(x, t) and the relative humidity field ϕ(x, t), and the weighted functions

associated with these fields are interpolated on each finite element

δuh
e =

nen∑

i=1

N iδde
i , δϕh

e =
nen∑

j=1

N jδΦe
k ,

uh
e =

nen∑

k=1

N lde
l , ϕh

e =
nen∑

l=1

NnΦe
n .

(4.56)

where nne represents the number of nodes on each finite element. Then the spatial

gradients of the weighted residual functions are presented as

∇x(δu
h
e ) =

nen∑

i=1

δde
i ⊗∇xN

i ,

∇x(δϕ
h
e ) =

nen∑

j=1

δΦe
j ⊗∇xN

j .

(4.57)

Likewise, the spatial gradient of the increment of the generalized displacement vector

and the relative humidity field are respectively demonstrated as

∇x(∆uh
e ) =

nen∑

l=1

∆de
l ⊗∇xN

k ,

∇x(∆ϕ
h
e ) =

nen∑

m=1

∆Φe
m ⊗∇xN

l ,

(4.58)

Incorporating the discretized representations Eq. 4.56 and (4.57) in (4.44)1,2 along

(4.45) and (4.46), we end up with the discrete residual vectors

Ru
I =A

nel

e=1

{ ∫

Bh
e

∇xN
i · σ̂ dV −

∫

Bh
e

N ib̄ dV −
∫

∂Be
t

N i t̄ dA
}

= 0 ,

Rϕ
J =A

nel

e=1

{

−
∫

Bh
e

∇xN
j · q̂ϕ dV −

∫

Bh
e

N j (Ĥε − f̂ϕ) dV
}

= 0 ,

(4.59)

where the operator A designates the standard assembly of element contributions at

the local element nodes i, j = 1, ..., nen to the global residuals at the global nodes
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I, J = 1, ..., nnd of a mesh with nnd nodes. Likewise, by means of (4.56), (4.57) and

(4.58) along with (4.46) and (4.46), the tangential matrices

Kuu
IL =A

nel

e=1

{ ∫

Bh
e

∇xN
i · Ĉuu · ∇xN

l dV
}

,

K
uϕ
IM =A

nel

e=1

{ ∫

Bh
e

(∇xN
i · Ĉuϕ

)Nm dV
}

,

K
ϕu
JL =A

nel

e=1

{ ∫

Bh
e

N j(Cuϕ · ∇xN
l) dV

}

,

Kϕϕ
JM =A

nel

e=1

{ ∫

Bh
e

∇xN
j · D̂∇xN

m dV −
∫

Bh
e

N j(−φd)N
m dV

}

,

(4.60)

To this end the global residual vectors associated with the hygro-chemo-mechanical

problems are represented as R := [Ru Rϕ]T , and the global vectors embracing the

mechanical and hygral degrees of freedom (DOFs) are defined as D := [d Φ]T .

Furthermore, the global coupled tangent matrix including the determined tangential

matrices are presented as

K :=






Kuu Kuϕ

Kϕu Kϕϕ






The repetitive solutions of determined mechanical, hygral DOFs at the global nodes

of the finite element meshes are obtained through the following equation

D = D̄− K̄
−1 · R̄ (4.61)

where R̄ := R(D̄), K̄ := K(D̄) indicates respectively the global residual vectors

and global coupled tangent matrix. The solutions related to predefined DOFs are

calculated at time t = tn+1 for an intermediate repetitive values D̄. This problem is

solved with a staggered approach.
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4.4 Representative Numerical Examples

In this section, the thermodynamically consistent poroviscoelastic model, proposed in

this chapter is validated through the experimental results of creep and shrinkage. The

numerical results obtained from the proposed approach are partly presented in [171].

We first investigate the basic creep behavior of concrete consider without considering

the drying effects. The intrinsic creep response of concrete accounting for the me-

chanical loading and the hygral effects is then studied through the flexural deflection

test. Drying shrinkage in a concrete ring, slabs and square prismatic specimens is

simulated in this section to demonstrate the capability of the proposed model.

In the following representative numerical examples, a generalized Maxwell model

with tow elements are used, see Figure 4.2 in which for simplicity, we take the upper

branch retardation time as τ1 = ∞ and its elastic modulus takes the ultimate value

E1 = E∞. The relation between E1 and E2 are assumed to be 3 : 1, i.e. the elastic

modulus belonging to the upper branch reaches about the 0.33% its ultimate value

when the degree of hydration reaches its asymptotic value [34]. Also, for the upper

branch we use the ultimate value of the Biot’s coefficient b1 = b∞ and the Biot’s

modulus, M1 =M∞, as these parameters are determined as function of the degree of

hydration for the lower branch.

4.4.1 Basic Creep Tests

The basic creep occurs in a concrete specimen under fixed mechanical loading, while

it is completely sealed so that the humidity transfer between the interior and exterior

of the solid body is not allowed. In the first example (BC-C-R120/80), we inves-

tigate the experimental studies reported in [172] consisting of monotonic and cyclic

tests. In the monotonic creep experiments, the specimens are subjected to an axial

compressive stress 30% of the instant compressive strength at the age of loading. The

specimens used in the monotonic and cyclic tests are cylinders whose geometric di-

mensions are presented in Figure 4.4. In the finite element model, a single eight-node

brick element is used to discretize the domain. The cyclic loading scenario, applied

on the cylindrical specimen is depicted in Figure 4.5.
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σ = 0.3f̂c(χ)

100 mm

160 mm

σ

120 mm

320 mm

(a) (b)

Figure 4.4: Basic creep tests. (a) Geometry, dimensions and loading conditions of

the cylindrical specimen used in the analysis of monotonic test, and (b) Geometry,

dimensions and loading conditions of the cylindrical specimen used in the analysis of

cyclic test.
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Figure 4.5: Cyclic loading condition applied on the cylindrical concrete specimen

The results obtained through the numerical approach versus the experiments [172]

are demonstrated in Figure 4.6. The results represent that the model applied in this

study has a good capability of predicting the basic creep response under the cyclic

loading. In terms of the monotonic loading, the proposed model presents an accepted

prediction capability at t = 72 h, t = 168 h and t = 675 h, however, at the earlier ages

(t = 18 h and t = 24 h), there exist differences between the experimental and numer-

ical results. To obtain improved predictions, it is required to reanalyze the problem

with the parameters which control the development of concrete creep response and

its strength. The hydration process is a complex phenomenon and the effects of what

occurs in the microstructure of the concrete may not be completely considered in the
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macroscopic model, such as the effect of the variation of the interior humidity due to

the self-desiccation phenomenon on the hydration model and the consequences of the

aging effect in terms of the development of physicochemical characteristics of con-

crete. Moreover, the results show that as the applied load is increased with the age at

loading, the creep-induced strain increases in the both monotonic and cyclic loading

test. The material properties for this example, taken form [34] are given in Table 4.3.
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Figure 4.6: Basic creep tests: (a) cyclic test on the cylindrical concrete specimen, and

(b) monotonic test on the cylindrical concrete specimen

In the second example (BC-P-SQ), the experimental results associated with the basic

creep, reported in [173] are numerically modeled. The study investigated experimen-

tally the effects of creep on the longer span concrete bridges where the effect of load-

ing age on the creep behavior of the concrete specimens is evaluated. The experiments

were conducted on the square prismatic concrete specimens. The specimens are com-

pletely sealed to observe the basic creep behavior in concrete specimens. They are

subjected to a constant value of compressive stress with σ̄0 = 7 MPa at different

ages of concrete with t = 8, 14, 21, 28, 84 and 182 days. The initial temperature is

θ0 = 20◦C. The geometric set-up, the dimensions of the specimens and the loading

condition are illustrated in Figure 4.7. In the finite element model, a single eight-node

brick element is used to discretize the domain. The numerical and experimental re-

sults in terms of the longitudinal compressive strain corresponding to the loading at

t = 8, 14, 21, 28, 84, and 182 days are demonstrated in Figure 4.8.

The results obtained from the proposed model are conforming to the experiments.
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150 mm
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600 mm

Figure 4.7: Basic creep tests. Geometry, dimensions of the specimens with square

cross-section and loading condition.
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Figure 4.8: Basic creep tests: (a) the square prismatic specimens are loaded at the age

of 8, 21 and 84 days , and (b) the square prismatic specimens are loaded at the age of

14, 28 and 182 days

The results validate the decrease in the creep-induced strain with the increase in the

loading age at a constant stressing level. However, there exists small differences be-

tween the experiments and the model, as it is observed the model fits the experiments

well at t = 8 day, t = 14 day and t = 21 day. To obtain a better match at t = 28 day,

t = 84 day and t = 182 day, it may be required to modify the parameters associated

with the aging and the microprestress models associated with the development of the

mechanical properties and the viscosity of the dashpot that represents long-term vis-

cous flow. The other reason may be related to the ratio of the springs elastic moduli

in the Generalized Maxwell Model. In this example, the material properties related

to the chemo-mechanical model are derived by fitting the empirical equation, given

136



in [173] for the evolution of the elastic modulus of the hardening concrete. These

parameters are given in Table 4.3.

In the third example (BC-C-R75), the basic creep test is conducted on the cylindri-

cal specimens made up of high-strength concrete which is used in the bridge con-

struction [174]. The study investigated experimentally and numerically the short-

and long-term behavior of a prestressed bridge constructed from a high performance

concrete. The behavior of long-span continuous box girder bridges made up of pre-

stressed concrete is highly sensitive to the creep and shrinkage phenomena. In [174],

the analysis was conducted by applying the solidification-microprestress-microplane

model (SMM), proposed in [32].

The specimens are subjected to a constant σ̄0 = 14 MPa compressive stress at differ-

ent concrete ages (2 and 28 days). They are loaded at constant temperature θ0 = 20◦C.

The geometry, the dimensions of the concrete specimens and the loading condition

are shown in Figure 4.9. To discretize the finite element model, we use a single

eight-node brick element. The results of the creep tests comparing to the experimen-

tal findings are exhibited in 4.10. The material properties adopted for the numerical

studies of the basic creep related to the examples demonstrated above are given in

Table 4.3.

σ̄0

φ = 150 mm

300 mm

Figure 4.9: Basic creep tests. Geometry, dimensions of cylindrical concrete specimen

and loading condition.
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The numerically obtained results are consistent with the experiments and ones ob-

tained from the SMM model. Also, it is observed that at the constant level of stress-

ing as the age of concrete increases the creep-induced strain decreases in the speci-

men. To obtain a better fit, it may be required to redefine the parameters governing

the development of the mechanical properties and the ones related to the viscosities

of the dashpot such as the constants employed in the microprestress model and the

calculation of the viscous trains. The material properties associated with the chemo-

mechanical model for the hardening concrete are obtained by fitting the evolution of

elastic modulus and compressive strength reported in [174]. These parameters are

presented in Table 4.3.
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Figure 4.10: Basic creep tests. (a) cyclic test on the cylindrical concrete specimen,

and (b) monotonic test on the cylindrical concrete specimen

4.4.2 Flexural Creep Tests

In the literature, concrete creep response to different environmental conditions is gen-

erally measured using the unaxial compressive or tensile test. However, the measure-

ment obtained form a test including the effects of creep and shrinkage, it is required to

decouple the creep deformation from the measured total deformation. To quantify the

intrinsic creep from the measured deformation, the flexural deflection test is proposed

in [175]. The intrinsic creep property of concrete is shrinkage- and size-independent,

and it is only dependent on the mixture proportion of concrete. Therefore, the aim of

138



Table 4.3: Material properties of the Portland cement concrete used for the creep tests

analyses

Parameter Unit BC-C-R120/80 BC-P-SQ BC-C-R75

Hydration and Aging

w0/c [–] 0.5 0.47 0.37

θ0 [K] 294 294 294

Ea/R [K] 4× 103 4.45× 103 4.14× 103

ξ∞ [–] 0.75 0.58 0.67

kξ/ηξ0 [1/h] 1× 106 8× 106 1× 106

Aξ/ηξ0 [–] 1× 10−4 1× 10−6 1× 10−6

ηξ [–] 7.5 6 5.5

Af , Bf [–] 2.56, 0.37 3.25, 1.125 2.01, 0.95

f∞c [MPa] 47.5 40 69.5

Poro-visco-mechanical

µs [1/(MP h)] — — —

αr [–] 0.1 0.1 0.1

τµ0 [h] 7× 102 7× 102 1× 103

cµ0 [1/h] 6× 10−3 6× 10−3 1× 10−2

τ1 [h] ∞ ∞ ∞

τ2 [h] 15 15 25

b∞ [–] 0.4 0.4 0.4

M∞ [MPa] 6× 103 6× 103 6× 103

this type of test is to reduce the effect of shrinkage on the measured creep, specially

for concrete at early ages when the drying condition in not inevitable. The flexural

test is conducted based on a four-point bending beam, shown in Figure 4.11. For this

purpose, the concrete beams with dimensions of 50 mm in height, 50 mm in width,

and 1220 mm in length are used. The deflections of beam at specified points are

measured by a linear variable differential transformer (LVDT). The beams are sealed
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in all faces for the sealed cases and for the unsealed cases only the top and bottom

faces of the specimens are exposed to drying condition, i.e. the environment with the

relative humidity of ϕ = 40%.

The locations of the LVDTs to measure the beam deflection are at the mid-span and

the 350 mm from the mid-span, see Figure 4.11. The beam specimens are subjected to

their weights, and the external loads of 10 kg are symmetrically applied at the points

located 200 mm from the supports as illustrated in Figure 4.11. To this end, the time-

dependent deflection of the loaded beam is in the main caused by the external load as

well as the self-weight of the beam and its deflections under drying creep is calculated

based on the approach proposed in this study and the results are compared with the

experiments. The geometry, the placement of the measuring devices, the dimensions,

the boundary and the loading conditions, and the sealing state of the beam specimens

are illustrated in Figure 4.11. The beam is discretized with 4270 eight-node brick

elements. The material properties used for analyzing the flexural test of the four-

point bending beam FC-BEAM are given in Table 4.4.

In the current example, only two Maxwell elements are used, see Figure 4.2, in which

for simplicity, we take the upper branch retardation time as τ1 = ∞ and its elastic

modulus takes the ultimate value E1 = E∞. The ratio of E1 to E2 is assumed to be

3 : 1, i.e. the elastic modulus belonging to the lower branch reaches about the 0.33%

its ultimate value when the degree of hydration reaches its asymptotic value. Also,

for the upper branch we use the ultimate value of the Biot’s coefficient b1 = b∞ and

the Biot’s modulus M1 = M∞, as these parameters are determined as a function of

the degree of hydration for the lower branch. The material properties related to the

chemo-mechanical model are derived by fitting the evolution of the elastic modulus

given in [175]. The parameters related to the viscous and the hygral parts of the model

are obtained through the fitting of the experimental results.

The numerically and experimentally measured creep-induced deflection of the con-

crete beam for the sealed and the drying cases are respectively demonstrated in Figure

4.12. The results obtained through the proposed model in this study are in good agree-

ment with ones are experimentally obtained. In this example, we aim to solve a prob-

lem which has a more complex phenomenology involving the cross-effects of the vis-
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Figure 4.11: Flexural creep test: (a) geometric dimensions, boundary and loading

conditions of loaded specimens (b) condition of sealed specimens and (c) condition

of unsealed specimens

coelastic and hygral responses. Another point should be considered is the complexity

of the physicochemical phenomena occuring during the hydration at the microstruc-

ture of the concrete, which may not be completely contemplated in the macroscopic

formulation such as the effect of the variation of the internal water content originat-

ing from the chemical or autogenous shrinkage at the early ages. Therefore, we can

obtain a better prediction of the experiments by modifying the parameters associated

with the aging model that is applied to determine the evolution of the mechanical pa-

rameters and the determination of the dashpot viscosities used to define the viscous

response of concrete. Moreover, redefining the parameters related to the diffusivity

of concrete may present an accepted fit in terms of the drying shrinkage. On the

other hand, it may be demanded to reformulated the expression dealing with the au-

togenous shrinkage in (4.35), to have a more robust simulation of the self-desiccation

phenomenon at the early ages. The distribution of the beam deflection at the end of

the test for the sealed case is represented in Figure 4.13.

The distribution of the relative humidity and the beam deflection at the end of the test

for the drying case are depicted in Figure 4.14.
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Figure 4.12: Flexural deflection of concrete beam under different conditions: (a)

sealed curing under self-weight of the beam and (b) exposed simultaneously to drying

at the age of 7 days under self weight and external loading.
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Figure 4.13: Distribution of the creep-induced deflection in the concrete beam under

the sealed condition at the end of the test.
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Figure 4.14: Flexural deflection of concrete beam under drying condition. (a) Distri-

bution of the relative humidity and (b) distribution of the creep-induced deflection, in

the concrete beam at the end of the test.

4.4.3 Drying Shrinkage Tests in Concrete Ring Specimens

In the case of drying shrinkage where the concrete structure is subjected to the envi-

ronment with the humidity lower than the internal one, we study the distribution the

internal relative humidity and shrinkage induced effects in steel-concrete composite

ring test [145]. A steel ring has the outer diameter φs
out = 320 mm and inner diameter

φs
in = 260 mm, and the outer and inner diameters of the composite ring are respec-

tively φc
out = 360 mm and the φc

out = 320 mm, i.e. the thickness of concrete is 35

mm used in this study. The height of the specimen is 150 mm. The fresh concrete

is cast into the ring mold in two layers and consolidated by a vibrating table. The

casting faces are sealed with soft plastic sheet to prevent moisture exchange with its

surroundings after finishing the surfaces. After 3 days, the plastic sheet is removed

but the top and bottom surfaces are still sealed, so the specimen is subjected to the

environmental condition with ϕ∞ = 40% from the circumferences. The geometric

dimension of the ring specimen and its two-dimensional finite element model is rep-

143



resented in Figure 4.15. The concrete ring domain is discretized with 2400 four-node

quadrilateral plain strain elements.

In the literature, the results are obtained in terms of the evolution of internal humid-

ity and shrinkage induced strain, through the micromechanical model proposed in

[140]. The micromechanical approach is an analytically derived model, developed

on the basis of the capillary tension in capillary pores. According to the model, the

shrinkage-induced stress and strain are computed in terms of the radius of meniscus,

formed between the capillary pores during the hydration process, the variation of rela-

tive humidity and the surface tension of water. The micromechanical approach is fun-

damentally constructed on a theoretical model including semi-empirical formulation

to calculate the shrinkage-induced stress-strain response of concrete. The variation

of the relative humidity in terms of the autogenous shrinkage is determined based on

a semi-empirical expression, as well. After fitting the experimentally recorded varia-

tion of the relative humidity, the shrinkage-induced strain is determined as a function

of the the shrinkage coefficient also know as the coefficient of hygral contraction in

the literature, which acts in a multiplicative format on the relative humidity. In this

study, in contrast to the micromechanical model, we apply the physically based poro-

viscoelastic approach to model the drying shrinkage in the concrete ring specimen.
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Figure 4.15: Drying shrinkage: (a) geometric dimensions of the steel-concrete com-

posite ring, (b) FEM model and boundary conditions (all dimensions are in mm)
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The results in terms of the evolution of internal relative humidities and shrinkage

induced strains at the outer, the central and the internal surfaces of the ring specimen

filled with concrete having the characteristic strength of about 50 MPa on the 28th day

of its age (C30) are represented in Figure 4.16. Also, the distribution of the shrinkage

induced strains in concrete ring are presented in Figure 4.17.
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Figure 4.16: Drying shrinkage: the distribution of internal relative humidity (a) at the

outer surface, (b) at the center and (b) at the inner surface of the concrete specimen

(C30)
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Figure 4.17: Drying shrinkage: the distribution of shrinkage induced strain (a) at the

outer surface, (b) at the center and (c) at the inner surface of the concrete specimen

(C30)

The capability of the proposed approach in simulating drying shrinkage is represented

by further analysis of the steel-concrete ring test filled with the concrete having the

characteristic strength of about 50 MPa on the 28th day of its age (C50). The asso-
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ciated distribution of the relative humidity and shrinkage induced strain at the outer,

central and inner surfaces are respectively demonstrated in Figure 4.18 and Figure

4.19.
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Figure 4.18: Drying shrinkage: the distribution of internal relative humidity at (a)

outer surface, (b) center and (b) inner surface of the concrete specimen (C50)
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Figure 4.19: Drying shrinkage: the distribution of shrinkage induced strain at (a)

outer surface, (b) center and (b) inner surface of the concrete specimen (C50)

The results show that there is a good agreement between the micromechanical model

proposed in [145] and the model developed within the poro-viscoelasticity in the cur-

rent study. However, the small differences observed between the results of these two

approaches. These differences may originate from the dissimilarity of the approaches.

The distribution of the relative humidity (ϕ) and the maximum principal stress (σmax)

for the ring specimen with the concrete C30 and C50 are represented in Figure 4.20

and 4.21.
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Figure 4.20: Drying shrinkage: (a) Distribution of the relative humidity and (b) dis-

tribution of the maximum principal stress in the concrete ring specimen (C30).
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Figure 4.21: Drying shrinkage: (a) Distribution of the relative humidity and (b) dis-

tribution of the maximum principal stress in the concrete ring specimen(C50).

The material properties adopted in the chemo-mechanical model are taken from [145],

and the material constants associated with the viscous and the hygral parts are defined

by fitting the experimental results in terms of the distribution of relative humidity and

shrinkage-induced strain. The material properties of concrete C30 (DS-R-C30) and

C50 (DS-R-C50) used in the related analyses of drying shrinkage in ring specimens

are given in Table 4.4.
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Figure 4.22: Drying shrinkage test. (a) Geometry, dimensions and boundary condi-

tions, (b) drying condition of square prismatic specimen (DS-P-SQ) and (c) drying

condition of thick slab specimen (DS-P-TS).

4.4.4 Drying Shrinkage Tests in Concrete Prismatic Specimens

The proposed poroviscoelasticity approach is applied to simulate the behavior of con-

crete square columns and thick slabs under drying shrinkage, reported in [173]. This

study deals with the experimental investigation, aiming at validating shrinkage pre-

diction methods applied in design of longer span concrete bridges. The specimens,

used in this study are the square columns and the thick slabs. The geometric set-up,

the dimensions, the boundary conditions of the square prismatic columns (DS-P-SQ)

and the thick slabs (DS-P-TS) with H = W and L = 4 ×H are depicted in Figure

4.22. The domains of the square prismatic columns and the thick slabs are discretized

with 6912 eight-node brick elements. In the square prismatic columns (DS-P-SQ),

the four sides of the concrete specimens are exposed to the environment with ambient

relative humidity of ϕ∞ = 40%, and the ends of the specimens are sealed. In the

case of the thick slabs (DS-P-TS), the top and the bottom sides of the specimens are

exposed to the environment with ambient relative humidity of ϕ∞ = 40%, and the

other sides in addition to the ends of the specimens are sealed.

We analyze the drying shrinkage test in the square prismatic columns and thick slabs

with the dimensions of 100×100×400 mm3, 150×150×600 mm3 and 200×200×800

mm3. The results are numerically obtained in terms of the shrinkage-induced strain

and compared with the experiments reported in [173]. The shrinkage-induced strain

obtained from the analysis conducted using the proposed model for each of the square
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Figure 4.23: Drying shrinkage test. Shrinkage-induced strain for (a) 100 mm square

prismatic column (b) 150 mm square prismatic column, (c) 200 mm square prismatic

column, (d) 100 mm thick slab, (e) 150 mm thick slab and (f) 200 mm thick slab.

prismatic columns and the thick slabs are presented in Figure 4.23 in comparison with

the experiments.

The results show that the proposed model is able to provide a good prediction of

the structural response to the shrinkage phenomenon in concrete. The material prop-

erties used in the chemo-mechanical model are determined by fitting the empirical

expression representing the evolution of elastic modulus, given in [173]. The ma-

terial constants related to the viscous and the hygral parts are defined by fitting the

experimental results in terms of the shrinkage strains numerically.

4.5 Concluding Remarks

In the current study, we address the durability phenomena arise from drying shrinkage

and creep in concrete structures. To describe these problem computationally within

the three-dimensional thermodynamically consistent framework, we propose a phe-

nomenological approach. This approach accounts for the hygro-chemo-mechanical

cross coupling effects between the shrinkage-induced strain development due to the
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Table 4.4: Material properties of the Portland cement concrete used for the flexural

creep and drying shrinkage analyses

Parameter Unit FC-BEAM DS-R-C30 DS-R-C50 DS-P-SQ/TS

Hydration and Aging

w0/c [–] 0.3 0.62 0.43 0.47

θ0 [K] 296 294 294 294

Ea/R [K] 5× 103 4× 103 5× 103 4.45× 103

ξ∞ [–] 0.625 0.825 0.75 0.58

kξ/ηξ0 [1/h] 2.5× 107 5.25× 105 1× 105 8× 106

Aξ/ηξ0 [–] 1× 10−5 1× 10−5 1× 10−5 1× 10−6

ηξ [–] 6.5 7.25 7.25 5.5

Af , Bf [–] 1.125, 1.165 0.825, 1.02 0.53, 1.22 3.25, 1.125

f∞c [MPa] 75 34.1 50 40

Poro-visco-mechanical

µs [1/(MP h)] 7.02× 10−8 7.02× 10−8 7.08× 10−8 7.02× 10−8

αr [–] 0.1 0.1 0.1 0.1

τµ0 [h] 7× 102 7× 102 7× 102 1× 103

cµ0 [1/h] 6× 10−3 6× 10−3 6× 10−3 20× 10−3

τ1 [h] ∞ ∞ ∞ ∞

τ2 [h] 15 15 15 25

b∞ [–] 0.4 0.4 0.4 0.4

M∞ [MPa] 6× 103 6× 103 6× 103 6× 103

Hygral

c [kg/m3] 810 345 445 345

χws [–] 2.85× 10−2 1.25× 10−2 2.85× 10−2 1.35× 10−2

f1 [–] 2 2 2 2

f2 [–] 7 7 7 7

D0 [m2/d] 4.32× 10−8 1.296× 10−6 1.296× 10−6 8.424× 10−6

D1 [m2/d] 1.512× 10−4 9.504× 10−3 4.752× 10−3 3.681× 10−4

̺ [–] 4.5 5.95 5.95 5

αs [kg/(m2 s)] 225 57.5 57.5 2.225

ρf [kg/m3] 1× 10−6 1× 10−6 1× 10−6 1× 10−6

ρf [kg/m3] 997 997 997 997

pressure evolution through humidity variations and the stress concentrations in hard-

ening or hardened viscoelastic concrete. The evolution of mechanical properties of

concrete at early ages are described in terms of the hydration and aging phenomena

within the chemo-mechanical setting base on the theory of reactive porous media.
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We investigate the shrinkage in concrete which results from the variation of the inter-

nal water content due to the self-desiccation and the drying shrinkage phenomena. In

the literature, the majority of the studies have developed an empirical formulation to

compute the shrinkage-induced stress-strain response of concrete based on the exper-

imental results. In these studies, the shrinkage-induced strain is defined as a function

of a shrinkage coefficient, the so-called the coefficient of hygral contraction that acts

in a multiplicative manner on the variation of the water content or the relative hu-

midity. This coefficient is also determined as a linear or hyperbolic function of the

water content or the relative humidity. As opposed to the existing modeling methods,

we apply a physically motivated approach within the three-dimensional framework

of poroviscoelasticity, in which the general theory of poroelasticity is employed to

explain the shrinkage effect on the basis of the pore-pressure variation in the pore-

structure of concrete caused by the variation in the water content. The pore-pressure

is determined by using the adsorption-desorption isotherm model which defines the

water content in terms of the relative humidity. In this sense, the variation of the pore

pressure is implicitly computed as a function of the relative humidity. In addition,

the viscoelastic behavior of concrete is considered to explain the realistic short- and

long-term assessment of creep phenomena in concrete applying the microprestress

theory. The viscoelastic response is formulated on the bases of defining the viscos-

ity of concrete originated from the aging phenomenon and the flow term through the

well-known microprestress theory. The latter explains the effect of variation of tem-

perature and the relative humidity on the concrete viscoelastic response.

The material parameters used in each numerical example are taken from the related

experimental study in the literature. But, in the examples that some of the parameters

are not given for the specific type of concrete, I referred to the literature to take the

parameters from other studies which use concrete with the mix design close to my

cases. Otherwise I have performed the parametric studies until obtaining an accept-

able match between the analyses and the experiments considering the lower and upper

bound of the parameters.

The capability of the proposed model is then validated by computationally modeling

of creep and shrinkage in several representative numerical examples. These examples

include the basic creep, flexural creep and drying shrinkage. The obtained results
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agree well with the experiments. This indicates that the proposed poroviscoelastic

model provides a good prediction of concrete response to the creep and shrinkage

effects. These problems have complex phenomenology with many material parame-

ters expressing the coupled effects of the autogenous and drying shrinkage, and the

viecoelastic behavior. Also, the development of these parameters is defined regard-

ing the aging effect. In addition to the aging model, we use two other local models

to determine the viscosity of concrete based on the microprestress theory, and the

adsorption-desorption isotherm to implicitly compute the pore-pressure as a function

of the relative humidity. However, we can find some physical parameters for the def-

inite type of concrete from the literature, but others are defined through a parametric

study in which we keep up analyzing the problems until approximately capturing the

experimental results. Therefore, the predictive capability of the proposed model may

be improved by redefining the material parameters by following their upper and lower

limits. In the next chapter, we extend this model to incorporate the phase-field reg-

ularized cohesive zone model in order to investigate the concrete fracture under the

hygral effects, especially in the case of the drying shrinkage.
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CHAPTER 5

PHASE-FIELD MODELING OF SHRINKAGE-INDUCED CRACKING IN

CONCRETE

5.1 Introduction

Concrete structures, in particular at their early ages, may undergo significant defor-

mations due to autogenous and drying shrinkage accompanied by the time-dependent

creep phenomenon. Therefore, for any concrete structure, an accurate estimation of

the service life necessitates a sound understanding and quantitative prediction of creep

and shrinkage-induced deformations, and the associated stress concentrations. The

latter is greatly affected by durability-related phenomena that starts to arise due to the

initiation of micro-cracks as the principal stresses exceed the instant tensile strength

of hardening concrete. The drying shrinkage-induced localization of tensile stresses

result from uneven volume changes due to the change in relative humidity through the

loss of evaporable water from the surface of concrete, in contact with generally less

humid air. In the previous chapter, a coupled poroviscoelastic model is developed to

computationally account for the hygro-chemo-mechanical cross-coupling effects in

concrete at early ages due to imbalance of the internal and external relative humidity.

In this chapter, a further coupling is constructed between the poroviscoelastic model

and the cohesive zone phase-field approach to simulate the fracture of a concrete

structure subjected to drying shrinkage and creep.

In the literature, there exists a variety of studies investigating the failure mechanism

of concrete by accounting for a multi-physics coupling of chemo-thermo-mechanical

process. In these works, the effects of several factors such as thermal shrinkage,

autogenous and drying shrinkage, basic and thermal transient creep, and fracture are
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considered.

The effects of micro-cracking and stress-driven shrinkage on the Picket effects, i.e.

the pronounced increase in creep caused by the simultaneous existence of drying

effect and mechanical loading are investigated in [176, 177]. In these studies, the

shrinkage-induced strain is computed by multiplying a relative-humidity-dependent

coefficient of hygral contraction by the obtained relative humidity. This expression

is derived by fitting the experimental results. However, it is not implicitly mentioned

any fracture methods in these works.

The hydric damage model [178], proposed on the basis of the local elastic damage

model in the work of Mazars [179], is examined to analyze drying shrinkage-induced

damage in concrete. According to this method, the damage is modeled by intro-

ducing two local variables representing the hygral and mechanical effects. These

variables describe the mechanical damage effect projected on the tensile and com-

pressive stresses and the effect of the water content variation on the overall response

of concrete, respectively.

The effect of drying shrinkage on the mechanical behavior of concrete is examined

in [180] through an experimental study and numerical modeling. Within the numeri-

cal framework of this study, the hydro-mechanical model is coupled with the elasto-

plastic damage model proposed in [181], founded on the mechanics of partially satu-

rated porous media to take into consideration the desiccation-driven mechanical and

capillary plastic deformations, and damage evolution.

The aforementioned studies do not point out the effect of the creep relaxation on

the structural response of concrete to the cracking caused by the drying shrinkage.

The effect is examined by simulating the differential drying induced micro-cracking

of concrete in [182] accounting for the basic and the drying creep models. Crack-

ing is investigated by the isotropic elastic damage model [179] and the orthotropic

elastic-plastic damage model presented in [183]. The orthotropic elastic-plastic dam-

age model is adopted to describe the interaction between drying shrinkage, creep,

and cracking based on a coupling of the hydromechanical model with an orthotropic

elasto-plastic damage model. To this end, the damage is presumed to be isotropic

while the body is being subjected to the compressive stresses, whereas it is considered
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to be an orthotropic in tension due to the drying effects. The corresponding drying

shrinkage, basic creep, and drying creep strain tensors are determined in the form of

the semi-empirical expressions in terms of the functions of the relative humidity, as

the drying shrinkage is related to the water content through a linear relationship.

In order to examine behavior of massive concrete structures in terms of cracking dur-

ing hardening while both autogenous and thermal shrinkage are being constrained,

an experimental study related to the thermal actively restrained shrinkage ring test

is conducted in [136]. In [137], a numerical model is developed to express several

visco-chemo-thermo-mechanical phenomena happen concurrently at early ages, such

as hydration and consequent aging effect, thermal shrinkage, creep and fracture. In

this study, the evolution of the mechanical properties are expressed within a chemo-

thermal model. The autogenous shrinkage is determined as a function of the degree of

hydration, defined in the chemo-thermal model. The transient thermal creep is com-

puted in terms of the temperature evolution and a Kelvin-Voigt model is adopted to

describe the basic creep. Moreover, an elastic-damage model inspired in the work of

Mazars [179], is employed to simulate cracking under these coupling chemo-thermo-

mechanical effects. Further study, associated with the autogenous shrinkage and the

creep effects on the meso-scale modeling of concrete at an early age, and the conse-

quent evolution of damage field is reported in [184]. In these aforementioned works,

drying shrinkage is not addressed, and the autogenous shrinkage and the transient

thermal creep are defined as the local variables, reckoned as a function of the degree

of hydration and temporal evolution of the temperature.

The phase-field model [26], which has gotten remarkable popularity among the re-

searchers, is applied to investigate the crack propagation in deforming porous me-

dia induced by the variation of moisture content. It specially regards to the mod-

eling of hydraulic fracturing, the so-called fracking [71, 72, 73]. In theses studies,

the formulations are developed to express a macroscopic Darcy-Biot-type bulk re-

sponse of hydro-poro-elasticity, an evolution of regularized crack surface in the solid

skeleton, induced by the effective stress, modeling of Poiseuille flow in regularized

crack considering a deformation-dependent permeability, and modeling of hydraulic

fracturing caused by injections of fluid volume in prescribed spatial domains. The

total deformation-dependent permeability is defined in terms of both isotropic and
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anisotropic forms for unbroken and broken solids, respectively. The anisotropic per-

meability for the broken solid describes a modification of fluid transport law when

cracking initiates and fluid flow inside the crack path increases. This term is defined

as function of the total strain tensor and the crack opening. The brittle phase-field

model is further extended to model the desiccation-induced cracking in variably sat-

urated porous medium in the case of the compacted soil [185] within the framework

of the poromechanics. This work accounts for a coupling between the deformation,

the water-pressure, and the crack phase-field.

Intricate fracture behavior in cementitious materials induced by autogenous shrink-

age and generated heat during the hydration process is investigated in [29, 28, 30]

by applying the brittle phase-field model [26]. In these studies, a coupling is con-

structed between the phase-field approach and the chemo-thermo-mechanical model.

By means of this model, the heat of hydration and the thermal transfer and the aging

effect on the mechanical properties are interpreted. The autogenous shrinkage and

the transient thermal creep are calculated in terms of the degree of hydration and the

development of the temperature, as for the basic creep a Kelvin-Voigt model is used.

The long-term nonlinear and time-dependent deformations, driven by the thermal,

shrinkage and creep effects are studied in [186] on the basis of the extension of the

localizing gradient enhanced damage model [187] to the extended microprestress-

solidification theory [126]. The strains driven by the flow term is determined as a

function of the microprestress and the associated viscosity, as the shrinkage-induced

strain conjugates the relativity humidity via the hygral contraction coefficient, which

is analogous to the thermal expansion coefficient in thermo-mechanical problems.

The consequent evolving damage is defined based on the elastic damage model char-

acterizing the nonlocal gradient form. To overcome the deficiencies related to the

standard gradient enhanced damage model [55, 188, 189] such as the counterfeit dam-

age initiation and propagation.

Referring to the literature, we notice that, there does not exist any work related to sim-

ulating the hygral effect-induced fracture in hardening concrete using the phase-field

regularized cohesive zone method. In the current study, we extend the phase-field reg-

ularized cohesive zone model, presented in Chapter 2 to the hygro-chemo-mechanical
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model proposed within the computational framework of the poroviscoelasticity in

Chapter 4 of this thesis.

In the following sections of the current chapter, we present the governing equations

and the constitutive relations associated with the hygro-chemo-mechanical model

coupled with the cohesive zone phase-field model, and the associated finite element

formulation. Then the capability of the model is represented by the numerical ex-

amples in which the hygral effects, such as shrinkage, induce cracking in hardening

concrete.

5.2 Theory

In this section, the principal relations, involving the governing differential and the

constitutive equations, of the coupled boundary value problem of the hygro-chemo-

mechanics along with the phase-field approximation of quasi-brittke fracture are de-

veloped within the framework of poroviscoelasticity in hardening concrete.

5.2.1 Thermodynamic State

In general, the comprehensive response of hardening concrete to chemical, water

transport-related hygral, mechanical, and fracture phenomena are coupled at differ-

ent scales. Therefore, we construct an isothermal hygro-chemo-mechanical model

at macro scale within the framework of the theory of reactive porous media, origi-

nally proposed by Ulm and Coussy [3, 190, 4, 6]. To this end, the local thermody-

namic state of hardening concrete possibly undergoing water transport hygral-induced

quasi-brittle fracture is expressed by the following five state variables

State(x, t) = {ε(x, t), ϕ(x, t), d(x, t), ξ(x, t),α(x, t)} . (5.1)

The strain tensor ε(x, t) and the crack phase field d(x, t) have already been introduced

in Chapter 2. In addition to the latter, we have the relative humidity field ϕ(x, t), the

degree of hydration ξ(x, t) and the viscous strain tensor α(x, t) that characterize the

hygral, chemical and the viscoelastic behavior of hardening concrete, respectively. A

fundamental state function governing the coupled chemo-thermo-mechanical behav-
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ior of hardening concrete exhibiting thermal cracking is the Helmholtz free energy

function

Ψ = Ψ̂ (ε, ϕ, d,α, ξ) , (5.2)

formulated in terms of the state variables (5.1).

According to the theory of reactive porous media, the hydration process in hardening

concrete is quantified through an evolution equation of the degree of hydration ξ. This

variable is an essential field variable indicating the aging effect in terms of the growth

of rigidity and strength of hardening concrete [7, 24, 191, 108]. For this purpose, the

degree of hydration ξ is considered as an internal state variable whose thermally ac-

tivated evolution is governed by an Arrhenius-type ordinary differential equation [7].

Considering the viscous effects originating from the effects of mechanical loading

and ambient conditions, the elastic strain tensor is defined as εe := ε − α where the

viscous strain tensor is considered as the local state variable. Its evolution equation is

obtained referring to the aging effects and the definition of the microprestress theory

[33].

5.2.2 Governing Differential Equations

B B
∂Bu ∂Bϕ

∂Bt ∂Bh

L L

∂L ∂L
nL nL

x ∈ Bx ∈ B
(a) (b)b̄

t̄

h̄ϕ

n n

Figure 5.1: Schematic representations of the Dirichlet and Neumann boundary con-

ditions for the (a) mechanical and (b) hygral problems.

In this section, we introduce the differential equations that govern the evolution of

the state variables, given in (5.1). In particular, the balance of linear momentum and

the conservation of energy, through the Darcy-type transient continuity equation, de-

scribe the spatio-temporal evolution of external state variables, the displacement field
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u(x, t) and the relative humidity field ϕ(x, t), respectively. Moreover, the evolu-

tion equation of the non-local damage evolution is introduced to express the spatial

evolution of the crack phase-field d within the localization zone L. To describe the

hydration reaction, and the viscoelastic response of concrete, the evolution equations

of the local state variables, i.e. the degree of hydration ξ and α are introduced, re-

spectively.

The balance of linear momentum represents the quasi-static stress equilibrium

div σ̂ + b̄ = 0, (5.3)

in terms of the total stress tensor σ̂, and the volume-specific body forces b̄. This

expression governs the evolution of the displacement field u(x, t) in conjunction with

the Dirichlet u = ū on ∂Bu and the Neumann σn = t̄ on ∂Bu boundary conditions

where n represents the outward unit surface normal on ∂B. It is obvious that the

respective parts of the boundary ∂Bu and ∂Bu satisfy ∂B = ∂Bu ∪ ∂Bt and ∂Bu ∩
∂Bu = ∅ as demonstrated in Figure 5.1.

The the Darcy-type transient equation of the relative humidity is recast into the gen-

eral form as

div q̂ϕ + fϕ = 0. (5.4)

This expression is accompanied by the Dirichlet ϕ = ϕ̄ on ∂Bϕ and the Neumann

q ·n = h̄ on ∂Bh boundary conditions and the initial condition ϕ0(x) = ϕ(x, t = 0)

in B. The parts of the boundary, ∂Bϕ and ∂Bh are complementary ∂B = ∂Bϕ ∪ ∂Bh

and disjoint ∂Bϕ ∩ ∂Bh = ∅ as shown in Figure 5.1b.

Also, the nonlocal evolution of the crack phase-field d is written as

div q̂d − Ĥd + fd = 0. (5.5)

The evolution equation of the degree of hydration ξ is defined by the thermodynami-

cally consistent, Arrhenius-type first-order kinetics activated by temperature

ξ̇ =
Âξ

η̂ξ
exp

(

−Ea

Rθ

)

, (5.6)

The governing equations corresponding to the coupled hygro-chemo-mechanical phase-

field model with the specified boundary and initial conditions are summarized in 5.1.
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Table 5.1: Governing equations of the chemo-thermomechanical phase field fracture

model

Field Problem Equation # BC’s / IC’s

u(x, t) Mechanical divσ + b̄ = 0 (5.3) u = ū on ∂Bu

σn = t̄ on ∂Bt

d(x, t) Crack Phase Field div q̂d − Ĥd + f̂d = 0 (5.5) qd · n = 0 on ∂L

ϕ(x, t) Hygral div q̂ϕ + f̂ϕ = 0 (5.4) ϕ = ϕ̄ on ∂Bϕ

qϕ · n = h̄ on ∂Bh

ϕo(x) = ϕ(x, t = 0) in B

ξ(x, t) Hydration ξ̇ = Ãξ exp

(

−
Ea

Rϕ

)

(5.6) ξo(x) = ξ(x, t = 0) in B

5.2.3 Constitutive Equations

The governing differential equations of the isothermal hygro-chemo-mechanical phase

field fracture model are coupled through the constitutive equations for the stress ten-

sor σ̂ in (5.3), and the crack-driving force Ĥd in (5.5). In addition to these coupling

terms, the moisture capacity fϕ, the relative humidity flux vector qϕ in (5.4), the crack

resistance term fϕ in (5.4), the chemical affinity Aξ, and the viscosity function η̂ rep-

resenting the microdiffusion of the free water through the already formed hydrates in

(5.6) is required to be specified for the hardening concrete to complete the theoretical

description of the model. Hence, this section is devoted to the constitutive equations.

Stress Response. To account for the tension-compression asymmetry in the failure

behavior of concrete, as discussed in the work of Miehe et al. [68], we decompose

the total stress response into the tensile and compressive parts

σ = σ̂(ε, ϕ, d, ξ,α) = ĝ(d)σ̂+
eff − σ̂−

eff
︸ ︷︷ ︸

σ̂eff

−
N∑

i=1

b̂i(ξ)χ
ws
s pwi 1 (5.7)

where only the tensile part of the stress tensor is affected by damage through the
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monotonically decreasing degradation function

ĝ(d) =
(1− d)p

(1− d)p +Q(d)
(5.8)

where following cubic polynomial is assumed for the rigorously positive function

Q(d)

Q(d) = a1d+ a1a2d
2 + a1a2a3d

3 (5.9)

with p > 0 and Q(d) > 0 as suggested in the work of Wu [27] being inspired by

Lorentz and Godard [86]. The degradation function ĝ(d) ∈ [0, 1], a monotonically

decreasing function of the crack phase field d, is required to fulfill the following

conditions

g′(d) < 0, g(0) = 1, g(1) = 0 and g′(0) = 0 for all d ∈ [0, 1] (5.10)

In 5.7, the effective stress tensor is defined as

σ̂±
eff =

N∑

i=1

K̂dr
i (ξ)〈tr εe〉±+2µ̂i(ξ) dev(ε

e)± with dev(εe) = εe−1

3
tr εe (5.11)

where K̂dr
i (ξ) is the instant bulk modulus constant of the porous medium. It is calcu-

lated as a function of the Biot’s effective parameter b̂i(ξ), the Biot’s modulus M̂ dr
i (ξ),

the undrained bulk modulus of concrete K̂i(ξ), and χws, which indicates the fraction

of skeleton area in contact with water

K̂dr
i (ξ) = K̂i(ξ)− b̂2i (ξ)M̂i(ξ)χ

ws
s (5.12)

Pore Pressure. For the derivation of the pore pressure, the reader is referred to Chap-

ter 4, Section 4.4.2.

Crack Driving Force. The crack driving force is previously derived in Chapter 3,

Section 3.2.4.

Crack Resistance. The definition of the crack resistance is demonstrated in Chapter

3, Section 3.2.4.

Micro-Prestress Theory. The micro-prestress theory which determines the flow term

viscosity as a function the temperature and the relative humidity is discussed in detail

in Chapter 4, Section 4.4.2.
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Viscous Strains. The viscous strains are determined according to the formulations,

introduced in Section 4.4.2.

Adsoption-Desorption Isotherm Model. The adsorption-desorption isotherm model

which applied to determine the relation between the water content and the relative

humidity is discussed in detail in Section 4.4.2.

Moisture Storage. The moisture storage fϕ := f̂ϕ(ϕ; ϕ̇) in (5.4) is implicitly eval-

uated by using physically motivated adsoption-desprption dependent expression and

the degree of hydration evolution referring to (5.6) and (4.34)

f̂ϕ(ϕ; ϕ̇) = Ĉ(ϕ)ϕ̇+ κϕŴ(ϕ, ξ̇) + R̂c
ϕ(ϕ, d) with Ŵ(ϕ, ξ̇) =

ŵe(ϕ)

c
ξ̇. (5.13)

In (5.13), the convective relative humidity exchange is incorporated at crack faces

through the additional relative humidity sink R̂c
ϕ(ϕ, d). This phenomenon is numeri-

cally motivated by presuming that the deformed crack surfaces are in contact with an

ambient relative humidity ϕ∞ inside the free space induced by the crack opening and

shown to be modeled approximately by

R̂c
ϕ(ϕ, d) := −2

hc
ℓ
(ϕ− ϕ∞)d2, (5.14)

in terms of the convective hygral exchange parameter hc. This approximation is per-

formed analogous to the convective heat exchange at crack faces induced by an addi-

tional heat source per unit volume, described in Miehe et al. [69].

Humidity Flux Vector. The spatial variation of the relative humidity is expressed

by the humidity flux vector q̂ϕ in terms of the effective anisotropic diffusivity tensor

D̂eff(ϕ, d) and the humidity gradient ∇ϕ

q̂ϕ(ϕ;∇ϕ) = −D̂eff(ϕ, d)∇ϕ (5.15)

where the effective diffusivity of concrete accounting for the effect of the relative

humidity and cracking is given by

D̂eff(ϕ, d) = D̂
u

eff(ϕ)(1− d2) + d2D̂c
eff(ϕ)(1 − nL ⊗ nL) (5.16)

where nL = ∇xd
‖∇xd‖

represents the unit vector orthogonal to the crack plane, D̂
u

eff(ϕ)

and D̂
c

eff(ϕ) tensors stand for the effective diffusivity of the undamaged and damaged

state of the material, respectively [45].
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The effective diffusivity of concrete is strongly dominated by the relative humidity.

To this end, the effective diffusivity of concrete, referring [15], is written as

D̂
u

eff(ϕ) = [D0 +D1 ˆ̟ (̺, ϕ)] 1 (5.17)

where D0 and D1 are constants respectively, defining the values of the effective dif-

fusion coefficient at zero relative humidity and fully saturated states. Owing to the

nonlinear relation between the effective diffusivity and the relative humidity, a hyper-

bolic function ˆ̟ (̺, ϕ) is justified depending on the relative humidity as

ˆ̟ (̺, ϕ) = 1− 2−10̺(ϕ−1)

(5.18)

Indeed (5.16) demonstrates that the effective anistropic diffusivity D̂eff(ϕ, d) de-

creases while the relative humidity is decreasing. In turn, cracking accelerates the

diffusivity by generating the entirely connected path for the diffusion process along

the crack surfaces, whereas in the direction orthogonal to the crack surface, the effec-

tive diffusivity does not change.

Chemical Hydration and Growth in Rigidity and Strength. The determination of

the chemical affinity which mathematically expresses the evolution of the chemical

hydration, and the definition of the evolution equation of the degree of hydration are

given in Section 4.4.2.

The mechanical properties including the compressive strength fc, the tensile strength

ft, the elastic modulus Ec, the Poisson’s ratio ν, the Biot’s effective coefficient b,

and the Biot’s modulus M are determined as function of the degree of hydration ξ in

Chapter 4. In addition, the critical energy release rate Gc of the concrete is defined as

Ĝc(χ) = χ5/6G∞
c .

5.2.4 Finite Element Formulation

In this section, we construct the corresponding weak forms of the governing differen-

tial equations, whose strong forms are summarized in Table 5.1, and discretize them

both in space and time by using finite element and finite difference methods for the

respective cases. Moreover, the system of nonlinear equations obtained through dis-

cretization is linearized consistently for the iterative Newton-type solvers.
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For the spatial discretization, we employ conventional Galerkin method to the fun-

damental field equations by individually multiplying them by the weight functions

δu ∈ U0, δd ∈ V0 and δϕ ∈ W0 whose square of integrals are finite and they meet

the conditions of the homogeneous boundary conditions (δu = 0 over ∂Bu, δd = 0

over ∂Bd and δϕ = 0 over ∂Bϕ). The weighted residual equations, integrated over

the volume of the object, take the following forms respectively for the conservation

of linear momentum, the hygral problem and the evolution of the crack phase-field

after integrating by parts,






Gu(δu;u, d, ϕ) = Gu
int(δu;u, d, ϕ)−Gu

ext(δu)=0 ,

Gϕ(δϕ;u, d, ϕ) = Gϕ
int(δϕ; d, ϕ)−Gϕ

ext(δϕ; d, ϕ)=0 ,

Gd(δd;u, d, ϕ) = Gd
int(δd; d, ϕ)−Gd

ext(δd;u, d, ϕ)=0 .

(5.19)

It should be noted that since transient evolution of the degree of hydration ξ and the

viscous strain α are expressed as the functions of the relative humidity and the effec-

tive stress at the local Gauss point, respectively, so they are solved only by discretizing

in time space. Therefore, in the above equations, the degree of hydration and the vis-

cous strain do not appear as the additional fields, instead, they are considered as the

internal fields.

Accordingly, in the weak form derived for the conservation of linear momentum

(5.19)1, internal and external Galerkin functions (Gu
int, G

u
ext) are given as follows

Gu
int(δu;u, d, ϕ) :=

∫

B

δε : σ̂ dV ,

Gu
ext(δu) :=

∫

B

δu · b̄ dV +

∫

∂Bt

δu · t̄ dA
(5.20)

where b and t̄ are the volume specific body forces and surface traction vector, re-

spectively. Analogously, for the hygral part of the coupled problem, the internal and

external Galerkin functions (Gϕ
int, G

ϕ
ext) are defined as

Gϕ
int(δϕ;ϕ) :=

∫

B

−∇x(δϕ) · q̂ϕ dV ,

Gϕ
ext(δϕ;ϕ) :=

∫

B

δϕ (Ĥϕ − f̂ϕ) dV −
∫

∂Bh

δϕ q̄ϕ dA .

(5.21)
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In the case of the crack phase-field evolution, the internal end external Galerkin func-

tions (Gd
int, G

d
ext) are given by

Gd
int(δd; d, ϕ) :=

∫

B

−∇x(δd) · q̂d dV ,

Gd
ext(δd;u, d, ϕ) :=

∫

B

δd (Ĥd − f̂d) dV −
∫

∂Bqd

δd q̄d dA .

(5.22)

When the governing equations are nonlinear, the weighted residual functions are the

non-linear functions of the field magnitudes. Therefore, the coupled field equations

are numerically solved by implementing Finite Element Method, at the same time

Newton’s method as an iterative technique is applied for solving the coupled prob-

lems. In the following, for each iteration step, the weighted Galerkin functions are

consistently linearized with respect to the field variables around their interval values

ũ, d̃ and ϕ̃,

LinGu(δu;u, d, ϕ)|
ũ,d̃,ϕ̃ := Gu(δu; ũ, d̃, ϕ̃)+ ∆Gu(δu; ũ, d̃, ϕ̃; ∆u,∆d,∆ϕ) = 0 ,

LinGd(δd;u, d, ϕ)
∣
∣
ũ,d̃,ϕ̃

:= Gd(δd, ũ, d̃, ϕ̃)+ ∆Gd(δd, ũ, d̃, ϕ̃; ∆u,∆d,∆ϕ) = 0 ,

LinGϕ(δϕ;ϕ)|ϕ̃ := Gϕ(δϕ, ϕ̃)+ ∆Gϕ(δϕ, ϕ̃; ∆ϕ) = 0 .

(5.23)

The incremental terms ∆Gu, ∆Gd and ∆Gϕ, derived by Gâteaux derivative are

rewritten as functions of the external and internal terms according to (5.19)1,2 ,5

∆Gγ = ∆Gγ
int −∆Gγ

ext with γ = u, d, ϕ . (5.24)

As stated in ((5.20)1), ∆Gu
int is obtained as

∆Gu
int =

∫

B

δε : ∆σ̂ dV. (5.25)

In this expression, the total stress increment is specified as

∆σ̂ = C
uu : ∆ε+Cud∆d+Cuϕ∆ϕ , (5.26)

where the fourth order tensor Cuu is determined as the derivative of the total stress

tensor with respect to the strain tensor, and the second order tensor Cuϕ and Cud are

described respectively as the derivative of the total stress tensor with respect to the

relative humidity and crack phase-field,

C
uu := ∂

ε
σ̂ , Cud := ∂dσ̂ and Cuϕ := ∂ϕσ̂ (5.27)
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Based on the expressions stated above, ((5.25)) is rewritten as

∆Gu
int =

∫

B

δε : Cuu : ∆ε dV +

∫

B

δε : Cud∆d dV +

∫

B

δε : Cuϕ∆ϕ dV

(5.28)

On the other hand, as regards the hygral part of the coupled problem, the increment

of the internal Galerkin function is expressed as

∆Gϕ
int =

∫

B

−∇x(δϕ) ·∆q̂ϕ dV (5.29)

where the increment of the heat flux is stated as

∆q̂ϕ = −K̂ · ∇x(∆ϕ)− k̂(∆ϕ) (5.30)

where K̂ and k̂ are determined as follows

K̂ := −∂∇xϕq̂ϕ = kϕ1 and k̂ := −∂dq̂ϕ = ∂dk̂ϕ(d)1 (5.31)

The increment of the external Galerkin function in terms of the relative humidity field

is also defined as

∆Gϕ
ext :=

∫

B

δϕ (−∆f̂ϕ) dV, (5.32)

here, the increment of the thermomechanical heating and viscous thermal resistance

are represented as

∆f̂ϕ = ∂ϕf̂ϕ ∆ϕ+ ∂df̂ϕ ∆d, (5.33)

in which the scalar-valued tangents td and tϕ are determined as

tϕ = ∂ϕf̂ϕ and td = ∂df̂ϕ (5.34)

In the case of the crack phase-field the corresponding increment of the Galerkin func-

tion is introduced in the following expression,

∆Gd
int =

∫

B

−∇x(δd) ·∆q̂d dV. (5.35)

Here, the increment of the crack phase-field diffusion is determined as

∆q̂d = −D̂ · ∇x(∆d)− d̂∆ϕ (5.36)

where D̂ and d̂ are defined as

D̂:=− ∂∇xdq̂d =
2Gc l

c0
1 and d̂:=− ∂ϕq̂d = ∂ϕ

2Gc l

c0
∇xd (5.37)
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Comparably, the increment of the external Galerkin function for the crack phase-field

is formulated as

∆Gd
ext :=

∫

B

δd (∆Ĥd −∆f̂d) dV (5.38)

where the increment of the crack driving force and the viscous crack resistance are

introduced in the following form

∆Ĥd = −Cud : ∆ε+Hd ∆d+Hϕ∆ϕ

and ∆f̂d = hd ∆d+ hϕ∆ϕ
(5.39)

Here, the tensor- and the scalar-valued tangents are respectively defined as

Cud := −∂
ε
Ĥd = ∂dσ̂ , Hd := ∂dĤd , Hϕ := ∂ϕĤd

and hd := ∂df̂d , hϕ := ∂ϕf̂d
(5.40)

Isoparametric Gelerkin method will be followed in order to approximate the weak

forms (5.19) given in the form of continuous integral equations. The basic state vari-

ables of the coupled problem, the above-introduced generalized displacement u(x, t),

the relative humidity fieldϕ(x, t), the crack phase-field d(x, t) and the weighted func-

tions associated with these fields are interpolated on each finite element

δuh
e =

nen∑

i=1

N iδde
i , δdhe =

nen∑

j=1

N jδDe
j , δϕh

e =
nen∑

k=1

NkδΦe
k ,

uh
e =

nen∑

l=1

N lde
l , dhe =

nen∑

m=1

NmDe
m , ϕh

e =
nen∑

n=1

NnΦe
n .

(5.41)

where nne represents the number of nodes on each finite element. Then the spatial

gradients of the weighted residual functions are presented as

∇x(δu
h
e ) =

nen∑

i=1

δde
i ⊗∇xN

i ,

∇x(δd
h
e ) =

nen∑

j=1

δDe
j ⊗∇xN

j ,

∇x(δϕ
h
e ) =

nen∑

k=1

δΦe
k ⊗∇xN

k .

(5.42)

Likewise, the spatial gradient of the increment of the generalized displacement vector,
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the crack phase-field and the relative humidity field are respectively demonstrated as

∇x(∆uh
e ) =

nen∑

l=1

∆de
l ⊗∇xN

l ,

∇x(∆d
h
e ) =

nen∑

m=1

∆De
m ⊗∇xN

m ,

∇x(∆ϕ
h
e ) =

nen∑

n=1

∆Φe
n ⊗∇xN

n ,

(5.43)

Incorporating the discretized representations (5.41) and (5.42) in (5.19) along with

(5.20), (5.21) and (5.22, we end up with the discrete residual vectors

Ru
I =A

nel

e=1

{ ∫

Bh
e

∇xN
i · σ̂ dV −

∫

Bh
e

N ib dV −
∫

∂Be
t

N i t̄ dA
}

= 0 ,

Rd
J =A

nel

e=1

{

−
∫

Bh
e

∇xN
j · q̂d dV −

∫

Bh
e

N j (Ĥd − f̂d) dV
}

= 0 ,

Rϕ
K =A

nel

e=1

{

−
∫

Bh
e

∇xN
k · q̂ϕ dV −

∫

Bh
e

Nk (−f̂ϕ) dV
}

= 0

(5.44)

where the operator A designates the standard assembly of element contributions at

the local element nodes i, j = 1, ..., nen to the global residuals at the global nodes

I, J = 1, ..., nnd of a mesh with nnd nodes. Likewise, tangential matrices are defined

as

Kuu
IL =A

nel

e=1

{ ∫

Bh
e

∇xN
i · Ĉuu · ∇xN

l dV
}

,

Kud
IM =A

nel

e=1

{ ∫

Bh
e

(∇xN
i · Ĉud

)Nm dV
}

,

K
uϕ
IN =A

nel

e=1

{ ∫

Bh
e

(∇xN
i · Ĉuϕ

)Nn dV
}

,

Kdu
JL =A

nel

e=1

{ ∫

Bh
e

N j(Cud · ∇xN
l) dV

}

,

Kdd
JM =A

nel

e=1

{ ∫

Bh
e

∇xN
j · D̂∇xN

m dV −
∫

Bh
e

N j(Hd − hd)N
m dV

}

,

Kdϕ
JN =A

nel

e=1

{ ∫

Bh
e

∇xN
j · d̂Nn dV −

∫

Bh
e

N j(Hϕ − hϕ)N
n dV

}

,

Kϕϕ
KN =A

nel

e=1

{ ∫

Bh
e

∇xN
k · K̂∇xN

n dV −
∫

Bh
e

Nk(−tϕ)Nn dV
}

.

(5.45)
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To this end the global residual vectors associated with the crack phase-field and ther-

mal problems are represented as R := [RuRdRϕ]T , and the global vectors embracing

the mechanical, thermal and crack phase-field degrees of freedom (DOFs) are defined

as D := [d D T ]T . Furthermore, the global coupled tangent matrix including the

determined tangential matrices are presented as

K :=










Kuu Kud Kuϕ

Kdu Kdd Kdϕ

0 0 Kϕϕ










The repetitive solutions of determined mechanical, thermal and crack phase-field

DOFs at the global nodes of the finite element meshes are obtained through the fol-

lowing equation

D = D̄− K̄
−1 · R̄ (5.46)

where R̄ := R(D̄), K̄ := K(D̄) indicates respectively the global residual vectors

and global coupled tangent matrix. The solutions related to predefined DOFs are

calculated at time t = tn+1 for an intermediate iterative values D̄.

5.3 Shrinkage-Induced Cracking in Concrete Ring

In this example we investigate the drying shrinkage-induced cracking in a concrete

ring. The current example is the same as the one that is considered in Section 4.4.3.

The geometry, the boundary conditions and the environmental condition in terms of

the ambient relative humidity of the notched concrete ring specimen are demonstrated

in Figure 5.2a. The ring specimen is discretized with 15, 600 four-node quadrilateral

elements. The finite element model is shown in Figure 5.2b.

The material parameters relate to the hygro-chemo-mechanical model considering

the viscoelastic behavior for DS-R-C30 are given in Table 4.4. Also the material

parameters associated with the regularized phase-field cohesive zone model are the

critical energy release rate to G∞
c = 150 J/m3, the internal length scale parameter

ℓ = 5 mm. The model parameters corresponding to the Cornelissen’s model in (5.9),

i.e. a2 = 1.3868 and a3 = 0.6567.

169



(a) (b)

35 mm

ϕ∞ = 40%

l

Figure 5.2: Drying shrinkage-induced cracking. (a) Geometry, boundary and envi-

ronmental conditions and (b) finite element discretization of the notched concrete ring

specimen with the length of notch l = 5 mm.

In the first analysis, the additional relative humidity sink in (5.13), and the effect of

the crack phase-field on the effective diffusivity tensor in (5.15) are not considered,

i.e. R̂(ϕ, d) = 0 and D̂eff(ϕ, d) = D̂eff(d). The crack paths induced by the drying

shrinkage and the distribution of the relative humidity at t = 13, t = 20, and t = 28

days are shown in Figure 5.3.

The further analysis is conducted to investigate the effect of the additional relative

humidity sink R̂(ϕ, d) in (5.13), and the effective diffusivity is supposed to degrade

in the case of fracture by (5.15). The effective diffusivity for the damaged body in

(5.15) is assumed to be D̂
c

eff(ϕ) = 100D̂
u

eff(ϕ). Also, the convective hygral exchange

parameter is set to hc = 5.125× 10−6 kg/(s m2) in (5.14). The results corresponding

to the crack path and the distribution of the relative humidity in the specimen are

represented in Figure 5.4.

The results show that by applying an additional relative humidity sink, the crack

surfaces are exposed to the environmental, therefore the relative humidity exchange

occurs along the crack paths. By comparing the distribution of the relative humidity

in Figure 5.3 with one in Figure 5.4, we observe that along the crack surfaces, the

relative humidity starts to move from the interior of concrete with higher relative

humidity to the exterior of concrete of concrete with the lower relative humidity.

Hence, a great part of the body may be exposed to the environment.
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Figure 5.3: Drying shrinkage-induced cracking without additional hygral sink and the

effective diffusivity is not degraded. Crack pattern at (a) t = 13 days, (b) t = 20 days

and (c) t = 28 days and temperature distribution at (d) t = 13 days, (e) t = 20 days

and (f) t = 28 days.

Using a degrading effective diffusivity reveals this fact that the effective diffusivity

of the undamaged material decreases while cracking is growing, in turn the effective

diffusivity of the degrading material, which is greater than the the effective diffusivity

of the undamaged material increases. Therefore, the diffusion process is intensified

in the material.

5.4 Concluding Remarks

In this study, cracking caused by drying shrinkage is modeled. To this end, we ex-

tend the hygro-chemo-mechanical model proposed in this study within the three-

dimensional framework of poroviscoelasticity by coupling it with the phase-field

regularized cohesive zone model. This approach accounts for the hygro-chemo-

mechanical cross coupling effects between the shrinkage-induced strain development

due to the pressure evolution through humidity variations, the stress concentrations
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Figure 5.4: Drying shrinkage-induced cracking with additional hygral sink and the

effective diffusivity is degraded. Crack pattern at (a) t = 13 days, (b) t = 20 days

and (c) t = 28, days and temperature distribution at (d) t = 13 days, (e) t = 20 days

and (f) t = 28 days.

in hardening or hardened viscoelastic concrete and crack phase-field. In addition, the

evolution of mechanical properties of concrete at early ages are expressed in terms of

the hydration and aging phenomena through a chemo-mechanical model based on the

theory of reactive porous media.

Although in the literature, there are some works studying the fracture mechanism of

concrete subjected to the drying shrinkage, but there exist no work investigating the

prediction of crack paths. Also, there is not any work studying the drying shrinkage

induced fracture, using the cohesive phase-field model in concrete material.

Moreover, the modeling of crack propagation in concrete caused by drying, we ex-

amine the effect of cracking on the moisture capacity and the effective diffusivity of

concrete in the current study.

The numerical results demonstrate the capability of the proposed model, employed

to conduct predictive crack risk analyses of structures with high area-thickness ratio
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where drying shrinkage may be critical.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis is concerned with the development of the computational modeling of dura-

bility phenomena in both hardening and hardened concrete. In this study, we have

specifically modeled cracking in concrete structures considering the cross-effect of

the evolution of the temperature, the relative humidity, and the degree of hydration on

the durability and mechanical properties of concrete structures. To model the crack

initiation and propagation, we have adopted the cohesive zone phase-field model

PF-CZM. The formulations related to the numerical modeling of fracture through

PF-CZM have been presented in Chapter 2 where the derivation of the governing

equations and the constitutive relations related to the brittle AT2 and the cohesive

phase-field PF-CZM models have been represented. Through benchmark problems

borrowed from the literature, we have validated our implementation and showed that

PF-CZM is an appropriate and powerful model to simulate quasi-brittle fracture in

concrete.

The constitutive modeling of the chemo-thermo-mechanical approach coupled with

PF-CZM, dedicated to thermal cracking observed in massive concrete structures has

been demonstrated in Chapter 3. To our best knowledge, in the literature, there exist

no work where the fracture in hardening concrete especially in the case of massive

concrete structures is investigated using PF-CZM. However, the few works where

the existing phase field-based approaches applied to multi-physics problems, are pre-

dominantly restricted to brittle fracture AT2. Another novel aspect of the proposed

model is that it has, for the first time, incorporated a hardening material in the phase-

field framework of fracture. The capabilities of the developed model have been repre-

sented through a crack risk analysis of a roller-compacted-concrete dam (RCC) where
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the stress concentrations that arise from high temperature gradients are generated by

the hydration process and the lower ambient temperature. To account for the casting

of concrete dams in successive layers, a new multi-field interface element has been

formulated and implemented to ensure the continuity of the displacement and tem-

perature fields across the lifts and to prevent phase-field cracks from propagating ar-

tificially through the diffusion term from a previously cast lift to the next one. The re-

sults obtained by using the proposed framework for the control case (RCC1) favorably

agree with the findings reported in the literature. Furthermore, the numerical crack

risk analyses conducted through the proposed chemo-thermo-mechanical model cou-

pled with PF-CZM underline the importance of controlling the rate of heat generation

and monitoring the temperature variations in the ambient temperature. Therefore, the

developed computational tool can be utilized to perform crack risk analyses not only

in the design stage but also during the construction and service of massive concrete

structures.

Furthermore, in Chapter 4, we have developed a coupled constitutive modeling ap-

proach that is furnished by robust computational framework to address the durability

problems that arise from drying shrinkage and creep within the three-dimensional

framework of poro-viscoelasticity. The proposed approach accounts for the hygro-

chemo-mechanical cross coupling effects between the shrinkage-induced strain de-

velopment due to the pressure evolution through humidity variations and the stress

concentrations in both hardening and hardened viscoelastic concrete. To this end, we

have additively decomposed the stress expression into the effective stress of the vis-

coelastic concrete skeleton and the pressure developing in the pores. The viscoelastic

model of the skeleton takes into account the short- and the long-term creep effects

through the well-known micro-prestress theory. The material parameters related to

the rigidity and strength of concrete are assumed to evolve with the degree of hy-

dration. The evolution of the material properties due to the aging effects are defined

through a chemo-thermo-mechanical model.

In the proposed isothermal hygro-chemo-mechanical model, contrary to the model-

ing approaches suggested in the literature, the shrinkage strain is not obtained by

using an empirical formula involving the hygromechanical expansion coefficient and

the change in humidity. Instead, we employ a physically motivated approach where
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the pore pressure is obtained as a function of water content that is determined using

adsorption-desorption isotherm model for a given value of the local relative humidity.

The excellent modeling capacity of the proposed model have been tested through var-

ious experimental studies borrowed from literature. These examples cover the basic

and flexural creep, and the drying shrinkage in concrete structures.

In Chapter 5, the coupled model of poro-viscoelasticity has been further supple-

mented by PF-CZM to perform the crack risk analysis of concrete structures subjected

to the coupled effects of drying shrinkage and creep. Additional representative exam-

ples of boundary-value problems have demonstrated the capabilities of the proposed

approach predicting cracking due to hygral effects. To our best knowledge, the pro-

posed model is the first one considering the physically motivated approach within the

framework of the poroviscoelasticity along with the cohesive zone phase-field model

PF-CZM.

For the future work, the proposed multi-field formulation supplemented by PF-CZM

can be extended to simulate the alkali-silica reaction-induced cracking in concrete

by developing a micromechanical constitutive model where the standard phase-field

model may be used to define the position of the aggregates and the interfacial tran-

sition zone. This model would provide a useful tool to investigate the effects of the

aggregates reactivity and the interfacial transition zone on the behavior of concrete

exposed to the alkali-silica reaction and the induced cracking.

Furthermore, we are planning to extend the hygro-chemo-thermo-mechanical model

within the framework of poro-viscoelasticity to account for the cross-effects of tem-

perature and relative humidity on the response of concrete to creep and drying shrink-

age, and couple this model with the cohesive phase-field model to perform the crack

risk analysis considering the cross-coupling effects due to the shrinkage-induced

strain generation arising from pressure evolution through humidity and temperature

variations. When striving for this, however, we feel that a more systematic technique

for identifying the model parameters should be developed so that the proposed model

can be used to describe these volume stability phenomena in various types of concrete

to predict potential durability risks before they occur.
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