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ABSTRACT

VISUALIZATION OF DEEP NETWORKS TRAINED FOR BIPOLAR
DISORDER CLASSIFICATION BY USING FNIRS MEASUREMENTS

Babacan, Oğuzhan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. İlkay Ulusoy

February 2021, 71 pages

Deep learning applications have achieved impressive performances on many medi-

cal problems such as classification of disorders, effects of a treatment or unspotted

symptoms of a disease, etc. While modern deep learning progress is impressive in

such areas, genuine understandings of its working principles are not clear. For that

matter, the term black box has often been associated with deep learning algorithms.

The majority of previous studies have concentrated on networks’ successes and have

computed their performances in terms of accuracy levels. However, this thesis fo-

cuses on disintegrating the internal working mechanisms of neural networks into in-

tuitive and understandable components. It makes them easy to understand and to

interpret from medical experts’ perspectives. With this purpose in mind, pre-trained

Convolutional Neural Networks and Residual Neural Networks are utilized by using

time-series neuroimaging data, i.e. Functional Near-Infrared Spectroscopy (fNIRS)

measurements, belonging to two classes, namely healthy and bipolar, and their visu-

alization outputs are attained. Since these outputs are complex time-series data, they

are analyzed by statistical methods such as chi-square and t-tests so that the intrinsic

features of healthy and bipolar subjects specific to their classes are obtained. Results
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are compared with previous medical studies and are analyzed so that potential reasons

behind the classification results are provided. The contribution of this thesis is pro-

viding an inference about visualization outcomes of different neural networks, which

are trained for the bipolar disorder classification using fNIRS data. Therefore, this

study tries to fill the void between medical researchers and deep learning experts.

Keywords: fNIRS, Deep Learning, Bipolar Disorder, Classification, Visualization,

Class Activation Map
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ÖZ

BİPOLAR HASTALIĞI SINIFLANDIRMASI İÇİN FNIRS ÖLÇÜMLERİ
KULLANILARAK EĞİTİLMİŞ DERİN AĞLARIN

GÖRSELLEŞTİRİLMESİ

Babacan, Oğuzhan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İlkay Ulusoy

Şubat 2021 , 71 sayfa

Derin öğrenme uygulamaları, hastalıkların sınıflandırılması, bir tedavinin etkileri veya

bir hastalığın belirlenmemiş semptomları gibi birçok tıbbi problem üzerinde etkile-

yici performanslar elde etmiştir. Modern derin öğrenme gelişimi bu alanlarda etki-

leyici olsa da çalışma prensiplerinin gerçek kavrayışı net değildir. Bu nedenle, derin

öğrenme algoritmaları genellikle kara kutu terimiyle ilişkilendirilmiştir. Önceki ça-

lışmaların çoğu, ağların başarılarına odaklanmış ve performanslarını doğruluk sevi-

yeleri açısından hesaplamışlardır. Bununla birlikte, bu tez, sinirsel ağların iç çalışma

mekanizmalarının sezgisel ve anlaşılır bileşenlere bölünmesine odaklanmaktadır ve

bunların anlaşılmasını ve tıp uzmanlarının bakış açısından yorumlanmasını kolaylaş-

tırmaktadır. Bu amaçla, önceden eğitilmiş Evrişimsel Sinir Ağları ve Artık Değerli

Sinir Ağlarına sağlıklı ve bipolar olmak üzere iki sınıfın zaman serisi verileri olan

Fonksiyonel Yakın Kızılötesi Spektroskopi (fNIRS) ölçümleri uygulanmış ve bunlara

ait görselleştirme çıktıları elde edilmiştir. Bu çıktılar karmaşık zaman serisi verileri

oldukları için ki-kare ve t-testleri gibi istatistiksel yöntemlerle analiz edilerek sağlıklı
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ve bipolar deneklerin kendi sınıflarına özgü iç özellikleri elde edilmiştir. Sonuçlar

önceki tıbbi çalışmalarla karşılaştırılıp ve analiz edilerek sınıflandırma sonuçlarının

ardındaki olası nedenler verilmiştir. Bu tezin katkısı, fNIRS verileri kullanılarak bi-

polar bozukluk sınıflandırması amacıyla eğitilmiş farklı sinir ağlarının görselleştirme

sonuçları hakkında bir çıkarım sağlamaktır. Bu nedenle, bu çalışma tıp araştırmacıları

ile derin öğrenme uzmanları arasındaki boşluğu doldurmaya çalışmaktadır.

Anahtar Kelimeler: fNIRS, Derin Öğrenme, Bipolar Bozukluk Hastalığı, Sınıflan-

dırma, Görselleştirme, Sınıf Aktivasyon Haritası
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Prof. Dr. Nevzat Güneri Gençer, Assoc. Prof. Dr. Yeşim SerinAğaoğlu Doğrusöz

and Assoc. Prof. Dr. Bora Başkak for being in my jury and sharing their insightful

comments and questions.

I am grateful to my family for their endless support, understanding and love. My
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Nowadays, the applications of deep learning have achieved impressive performance

on many computer vision-related tasks, such as object detection, speech recognition,

image retrieval, etc. On the other hand, as mentioned in [1], it appears that the dis-

criminatory power of a feature is heavily dependent on the difficulty of the task. A

more straightforward classification task results in simpler features even when the data

is the same. As a result of that the CNN automatically generates features of just

enough complexity to perform the task at hand. In other words, training on a more

challenging task (e.g. a larger number of classes) yields features that are more infor-

mative and special to the representative class members.

Nonetheless, while these deep neural networks provide superior performance, the

lack of disintegration of their internal working mechanism into intuitive and under-

standable components makes them hard to identify and interpret from a human vision

perspective [2]. Consequently, when today’s intelligent systems fail, they fail mys-

teriously without any warning or explanation, leaving an inconsistent output behind.

To establish trust in intelligent systems and make progress in their integration into our

everyday lives, we are supposed to develop ‘transparent’ models that explain what,

how, and why they predict. Typically, this transparency is beneficial on three sides

of Artificial Intelligence (AI) development. First, when AI is significantly weaker

than humans and not reliably deployable, transparency gives users the ability to iden-

tify failure cases and to spend their efforts on improving the system in the required

directions. Second, in the case where AI’s power is equivalent to that of humans,
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the aim is to preserve trust and confidence in the system. Finally, when AI is exces-

sively stronger than humans, the purpose of developing transparent models is machine

teaching [3], which is a concept that a machine lends assistance to humans about how

to make better decisions [2].

While modern deep learning progress is impressive, model developers do not fully

understand its working principles. For that matter, the term “black box” has often

been associated with deep learning algorithms. How could a model’s results be trusted

if there is no convincing answer about how it works? In order to find a satisfying

answer for these kinds of questions, the lack of interpretability and transparency of

neural networks from the learned features to the underlying decision processes is

needed to be handled.

Making sense of why a particular model misclassifies data or behaves poorly can be

challenging for model developers. Similarly, end-users interacting with an applica-

tion that relies on deep learning to make decisions may question its reliability if no

explanation is given by the model or become confused if the explanation is inexplica-

ble. For example, if a self-driving car makes an awful decision and harms a person,

the reason behind it could not be quantified. Then, there would be no way to fix it,

which could lead to even more disasters. These challenges are often worse due to

the requirement of having a large dataset to train a great majority of deep learning

models. As threatening as these problems are, they will likely become even more

widespread as more AI-powered systems are deployed in the world.

Therefore, a general sense of model understanding is beneficial and often required to

address the aforementioned issues. Without taking a look at what is happening inside

the neural network, model developers remain unaware of all this. In a nutshell, it

is not possible for developers to know where the network is looking and what it is

concentrating on, or what features it is relying on while making a decision. Thus,

visualizing neural networks is essential in making them work robustly in practical,

real-world use cases.

Researchers compete to reach the most accurate and stable models, thanks to a great

variety of medical data. However, as mentioned at the beginning of the chapter, these

models cannot extract biological insights lied behind the decision mechanism. Visu-

2



alization of deep networks has bridged this gap as it provides an opportunity to look at

the inside of the network. This is crucial for medical researchers to receive feedback

about the questions they investigate, such as which symptoms are more distinctive for

diagnosing a disease or which part of treatment is more effective.

1.2 Proposed Methods and Models

Motivated by the aforementioned problems, this study’s main objective is to provide

interpretable feedback that highlights the reason taken by the pre-trained classifier.

In other words, we aim to visualize the activation maps of networks trained for the

diagnosis of bipolar disease by using neuroimaging data to understand the networks’

operation. Training and tuning hyperparameters of neural networks are out of this

thesis’s scope, and our study covers the process after getting well-trained models

from Evgin’s work [4].

Hence state-of-the-art visualization method, heatmap of class activation, is applied

as a base method during the thesis, and heatmaps of CNN and ResNet models are

generated. As the input is time series data collected from healthy and bipolar subjects

while completing a psychological test, the visualization method outputs are time-

series data. They indicate heatmaps of activation in the time scale for each of the

subjects. However, directly observing these heatmaps and making a remark according

to them is unfavorable since the data comes from different subjects. Their interactions

with the environment, which might trigger their activation maps for a brief time,

are unpredictable. For this reason, in order for psychiatrists to obtain reliable and

meaningful results, the traditional visualization approach is needed to be updated.

In this study, after getting activation heatmaps of networks, we further calculate av-

erage activations for each of 6 unequal time partitions, which are parts of the overall

test, explained in detail in Section 3.2. Then, by using these average activations of

each partition, the differentiation of healthy and bipolar groups, as well as the com-

parison of different networks, are analyzed with statistical tools in the scope of this

thesis. Thanks to this work, essential parts of the test for classification and the dis-

tribution of activations belong to healthy and bipolar subjects can be introduced into

3



medical experts’ concerns.

In accordance with this purpose, the chi-square test of independence is applied to

reveal whether bipolar disorder is related to a specific partition number that shows

the maximum activation in the neural network. On the other side, the Welch’s t-test is

performed so that healthy and bipolar populations’ distributions in terms of the neural

network’s activation can be examined for each partition of the test. The difference

between these populations’ means is investigated. In order for this study to achieve

its goal, both CNN and ResNet models are operated with various tuning options.

1.3 Contributions and Novelties

While neural networks can deal with large amounts of monotonous data and learn

to classify data based on training examples, researchers still need to comprehend the

cause and effect relation, supposing that they are interested in explanation instead of

absolute classification. In her thesis [5], Hoşgören, who is a psychiatrist, investigated

whether healthy and bipolar subjects have distinguishable patterns in terms of the

verbal fluency test score and asserted that there is no remarkable difference between

those of both subject groups. However, thanks to Evgin’s work [4], with the power

of deep learning, bipolar and healthy subjects have been classified successfully over

75 percent by using their medical recordings obtained while performing the verbal

fluency task.

Nevertheless, it is not enough for medical experts to benefit from this study effec-

tively. They need to know how the classification process has been done, which part of

the data with which reason is more important, etc. This thesis contributes to a better

understanding of the working mechanism of neural networks used for the classifica-

tion of bipolar disorder.

In [6], our first study was concluded as the classification of bipolar disorder by us-

ing time-series neuroimaging data with 1D CNN. It was one of few publications an-

nounced in the field of bipolar disorder classification with a neural network, further-

more using fNIRS data for this purpose made it unique among others. In his study

[4], Evgin took a step forward and implemented state-of-the-art networks with higher
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accuracies for the same problem and data. Our thesis’s novelty comes from being

the leading publication that makes an inference about outcomes of visualizations of

different neural networks, which are trained for the classification of bipolar disorder

with Functional Near-Infrared Spectroscopy (fNIRS) data. Therefore, by this study,

we tried to fill the void between medical researchers and deep learning experts and

put a milestone for fresh research.

1.4 The Outline of the Thesis

Chapter 1 introduces the scope of the thesis by stating the problem and the motivation

behind the study. The approach followed and the contribution to the problem are also

provided.

Main methods of visualization of neural networks are described, and the terms and

concepts to be known are introduced in Chapter 2. The related works regarding vi-

sualization methods are examined in detail. Moreover, the literature survey of recent

approaches and methods are given at the end of this chapter.

In Chapter 3, the working principle of a neuroimaging method, namely fNIRS, is

explained. The attainment and properties of the input dataset are provided in detail.

Chapter 4 explains the detailed theoretical background that is needed to understand

the thesis. It introduces state-of-the-art deep neural networks used for generating

models, which are inputs of visualization methods. Furthermore, in this chapter, the

detailed background information of inferential statistics used while drawing conclu-

sions is described.

Chapter 5 describes the neural network architectures specific to the classification of

bipolar disease by using the fNIRS dataset. Moreover, the particular visualization

method, i.e. class activation map, is examined, and the modifications made on it to

obtain more useful inferences are provided. At the end of the chapter, the results

attained by statistical methods are summarized, and medical inferences that may lie

behind results are discussed.

Chapter 6 concludes the thesis by summarizing the work and results. Finally, the
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future work arising from this study is mentioned.
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CHAPTER 2

VISUALIZATION OF NEURAL NETWORKS AND RELATED WORKS

2.1 Neural Network Visualization Methods

Visualizing the output of a machine learning model is a great way to see how it pro-

gresses, regardless of the neural network’s complexity. Mainly training or validation

errors, as well as their accuracies, are concerned for the sake of the success criterion

while training deep networks. These two components provide information about how

the network performance is at each epoch. However, the working principle of the

Neural Network (NN), i.e. the way it succeeds at the classification, can be observed

and learned by way of the visualization of the neural network. Therefore, to clarify

the decision-making processes about why and how NN models generate their out-

puts, a visualization method is needed to be employed by transforming the complex

internal features of the network into visually observable patterns.

Figure 2.1: The analogy between Human vision and CNN visualization [7]. Left: the

human brain processes the target features through multiple visual neuron blocks is on

the left. Right: the main steps of the CNNs visualization are shown
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Neural network visualization takes the human visual cortex system as a reference [2]

and Figure 2.1 shows the similarities between them. On the left part of the figure, the

human brain processes the target features through multiple visual neuron blocks [8],

each of which may be specific to different features like colors, edges, and shapes [9].

While humans recognize a face, the neuron blocks with small receptive fields, i.e. V1,

are used for basic features such as edges and corners. In deeper blocks, i.e. V2 and

V4, complex features such as particular shapes and objects are detected. The final

decision-maker block, i.e. IT, consists of visual neurons having the most extensive

receptive fields, resulting in sensitivity to the entire face. On the other side of the

figure, the main steps of the CNNs visualization are shown. Characteristically, CNNs

extract basic features such as edges and colored spots in the first layer. Next, through

deeper layers, more comprehensive features such as some parts of objects and shapes

are detected. Finally, in the fully-connected layers, the final decision is made.

[10] and [11] state that a pattern to which a unit’s response is maximum is a repre-

sentation of what that unit is doing. In other saying, the maximum response of an

internal unit to input provides a fair characterization of what the unit does. That is the

reason some researchers study on different approaches and try to show the connection

between the feature space of a network and the input. They feed a vast dataset to the

network and investigate the inputs that activate neurons most [12], [13], [8].

Considering the rapid developments of NNs, the visualization has been extended to

interpret their working mechanism. In the rest of the chapter, this study divides visu-

alization methods into three main sections according to which part of the network to

be visualized, namely Visualization of Intermediate Layer Activations, Visualization

of Convolutional Filters, Visualization of Heatmaps of Class Activation.

2.1.1 Visualization of Intermediate Layer Activations

One way to investigate how a NN classifies the input is to look at the output of its

intermediate layers. By doing so, outputs of each filter of each layer are derived

so that they can be used to determine the way each filter in the network serves for

classification. Looking at the different outputs from convolutional layer filters, it

is expected to see how different filters in different layers are trying to highlight or
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activate different input parts.

According to Chollet [14], visualizing intermediate activations is to display the fea-

ture maps of various convolution layers of a network when a particular input provided.

Each channel of the input encodes relatively independent features. Therefore, it is re-

quired to plot every channel’s contents independently to visualize the overall feature

maps.

Since the first layer is used as a collection of various edge detectors, its activations

generally contain the information present in the input. As getting deeper layers, the

activations become increasingly abstract and less interpretable. By looking at the

example of cat image classification, a cat-likely face or body that existed in the image

might be recognized in the very first layer. On the other hand, higher-level concepts,

such as cat ear and cat feather, are encoded by the deeper layers.

Briefly, higher layers of the network extract less information about the image’s visual

contents and more information about the image class. Deep neural network effec-

tively acts as an information distillation pipeline. It starts working with the raw data

going in (in the cat image classification, the RGB pictures) and being repeatedly

transformed. By this means, the irrelevant information is filtered out, and useful in-

formation is magnified and refined. The activations’ sparsity increases with the depth

of the layer. While all filters are activated in the first layer, the filters of the following

layers become deactivated. Through deeper layers, more and more filters get blank,

meaning that the pattern encoded by the filter is not found in the input image.

A widely used activation maximization algorithm [10], [11] which stands behind the

visualization of layer activations is provided, in detail. Since the aim is to observe the

representation of what the layer is doing, a pattern in which the layer responds max-

imally is needed to be found. For this purpose, given a network of N layers, starting

from an input image, the input image pixels are modified to maximize the output of

a target layer l < N . Thanks to Equation 2.1 and Equation 2.2, the visualization

of layer activations could be handled as an optimization problem. Let θ represent

the parameters of a network (weights and biases), x be the input sample, x(i) be the

feature maps of convolutional layer i of the network, i.e. the activation of layer i,

and li be the layer’s activation function; the aim is to look for x∗ such that maximize
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the f
(
x(i)
)
, where f denotes the objective function. The maximization activation

algorithm assumes a fixed θ.

x(i) = li(θ, x) (2.1)

x∗ = argx max f
(
x(i)
)

(2.2)

Although this is a non-convex problem, a local maximum could be found by simple

gradient ascent in the input space. After calculating x(i) by Equation 2.1, the gradient

of the objective function with respect to that, df
dx(i) , is calculated. Then, the backprop-

agation is performed to get the gradient of the objective function with respect to the

input, x. Finally, the input image is renewed by gradient ascent using Equation 2.3,

where λ is the learning rate of the model.

x := x+ λ
df

dx
(2.3)

In Figure 2.2, activations of all filters of block1_conv2 layer of VGG16 model [15]

are plotted when the Lena image is used as input. As it can be observed, each of

the outputs contains different features, almost half of which are more apparent than

others. When we take a closer look at the activations, thanks to Figure 2.3, it can be

stated that the left image, i.e. the activation of filter 46 of the block1_conv2 layer,

focus on the feather on the hat. In contrast, the right one, the activation of filter 52 of

the block1_conv2 layer, is interested in the background of the image and some parts

of Lena’s face.
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Figure 2.2: Visualization of activations of all filters of block1_conv2 layer of the

VGG16 model

Figure 2.3: Visualization of activations of Filter 46 (left) and Filter 52 (right) of

block1_conv2 layer of the VGG16 model
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Unlikely Figure 2.2, most of the activations in Figure 2.4 has more abstract features

since it contains activations of all filters of block2_conv2 layer of the model because of

the aforementioned reason that going through deeper layers results in more complex

features extracted by the model.

Figure 2.4: Visualization of activations of all filters of block2_conv2 layer of the

VGG16 model

2.1.2 Visualization of Convolutional Filters

The alternative approach inspecting the model’s working principle is to represent the

visual pattern to which each filter of the network responds. Thanks to his book [14],

Chollet broadly explained the process, which mainly relies on the gradient ascent in

input space. In order to maximize the response of a specific filter, the gradient descent

is applied to the value of the input image. Starting with a blank input image, this

process generates an input image that the target filter gives the maximum response.

After taking a closer look at these images of filters from different convolution layers,

it becomes apparent what different layers are trying to learn from the image data

provided to them. The patterns encoded in filters of starting layers seem to be very

basic, composed of lines and other basic shapes, which tells us that the earlier layers

learn about basic features in images like edges, colors, etc. However, as going deeper
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into the network, the patterns become more complex. Hence, it can be stated that the

deeper layers are learning about much more abstract information. These layers begin

to resemble textures that existed in natural images such as eyes, leaves, posture, and

so on to generalize the classes and not the specific image. This is why some empty

filters in deeper layers can be encountered, as stated in the previous section. Those

particular filters are not activated for that image; put it differently, the image does not

have the information that the filter was interested in.

Figure 2.5: Visualization of convolutional filters of block1_conv1 and block2_conv1

layers of the VGG16 model

All 64 convolutional filters from block1_conv1 (left) and block2_conv1 (right) lay-

ers of VGG16 model [15] are given in Figure 2.5; whereas, block3_conv1 (left) and

block4_conv1 (right) layers are in Figure 2.6. When these filters are analyzed, the

abovementioned deductions can be verified such that the very first layer’s filters are

representatives of simple shapes while the last layer’s filters are experts for particular

patterns.
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Figure 2.6: Visualization of convolutional filters of block3_conv1 and block4_conv1

layers of the VGG16 model

The process is as follows: after building a loss function that maximizes the value of

a filter in a layer, the stochastic gradient descent is used to maximize the activation

value by adjusting the values of the input.

2.1.3 Visualization of Heatmaps of Class Activation

2.1.3.1 Class Activation Map

The other visualization method for debugging the decision process in classification

networks is the class activation map (CAM). It is a technique to identify the discrimi-

native regions in the input specific to a class. In other words, CAM produces heatmaps

of class activation over input data so that regions in the data relevant to the class can

be observed. As stated by [14], a class activation heatmap of an image is a 2D grid

of scores associated with a specific class. Every location in the input is used for the

generation of the heatmap, indicating how important each location is concerning the

class. For instance, when a cat image is fed into a cat vs. dog convolutional network,

its CAM visualization provides a heatmap for the class ‘cat’, indicating which parts

of the image are cat-like.
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As indicated by [16], to be able to create a CAM, the network architecture is restricted

to contain a global average pooling (GAP) layer after the final convolutional layer.

The loss for average pooling benefits from the network to identify all discriminative

regions of an object. As a result of this, the image regions’ importance for a specific

class can be identified by projecting back the output layer’s weights on the feature

maps. The activation heatmaps might differ from layer to layer in the network since

all layers view the input image differently and create a unique abstraction of the image

based on their filters. Because the class prediction result depends majorly on the final

convolutional layer, it is suggested to focus on it as the target layer.

The algorithm of CAM, provided in [16], assumes that the bias term is ignored as

it has almost no impact on the classification performance. For a given image, let

fk(x, y) denote the activation of unit k in the last convolutional layer at (x, y). Then

F k, the output of the GAP, becomes
∑

x,y fk(x, y). Therefore, the class score which

is the input to softmax, Sc, is
∑

k w
c
kF

k for a given class c, where wc
k is the weight

corresponding the class and unit indicating the importance of F k for class c. After

putting F k into Sc, the Equation 2.4 is obtained:

Sc =
∑
k

wc
k

∑
x,y

fk(x, y) =
∑
x,y

∑
k

wc
kfk(x, y) (2.4)

The class activation map for class c, Mc, is defined as a weighted linear sum of the

visual patterns at different locations as given in Equation 2.5. Figure 2.7 clearly shows

the relationship between weights and activations while generating the class activation

map.

Mc(x, y) =
∑
k

wc
kfk(x, y) (2.5)
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Figure 2.7: The relation between weights and activations while generating the class

activation map [16]

Thus, the class score can be expressed as Sc =
∑

x,yMc(x, y) which proves the fact

that the class activation map calculated from the spatial grid (x, y) results in the clas-

sification of class c. By upsampling the class activation map to the input image’s size,

the most relevant regions for the particular category are identified on the image. Some

examples of highlighted image regions are provided in Figure 2.8.

Figure 2.8: A couple of examples of highlighted image regions for the predicted

answer class in the visual question answering [16]
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2.1.3.2 Gradient-weighted Class Activation Mapping

The original CAM method described in the previous section requires feature maps to

be directly connected to the softmax layer. In other words, it is used for classification

purposes in CNNs having a GAP layer after the final convolutional layer and then a

dense layer without any fully-connected layers between them. Therefore, since CAM

is not applicable for most of the cases, in order to use it, the network is needed to

be modified and to be retrained. Thanks to the study [2], there is an alternative and

more general deep visualization method: Gradient-weighted Class Activation Map-

ping (Grad-CAM), which computes the gradients of the target function with respect

to the layer outputs efficiently with backpropagation in order to produce a localiza-

tion map highlighting the important regions on the input. This algorithm is simply

shown in Figure 2.9. Grad-CAM is applicable to a wide range of CNN models with-

out architectural changes or retraining. On the other side, given that the network is a

CAM-computable structure, Grad-CAM converges to CAM.

Figure 2.9: The algorithm behind Grad-CAM [2]

Chollet explains the logic behind the Grad-CAM implementation as weighting a spa-

tial map of “how intensely the input activates different channels” by “how impor-

tant each channel is with regard to the class,” resulting in a spatial map of “how

intensely the input activates the class” [14]. Formally, in order to obtain the Grad-
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CAM, Lc
Grad-CAM ∈ Ru×v, of width u and height v for any class c; first, the gradient

of yc, the score for class c, with respect to feature maps Ak of a convolutional layer,

i.e. ∂yc

∂Ak is needed to be computed, where k is a unit of the layer. Next, these back-

propagation gradients are global-average-pooled to calculate the neuron importance

weights, αc
k, as given in Equation 2.6:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
i,j

(2.6)

αc
k captures the interest of feature map k for a target class c. It is combined with

forward activation maps and the result is followed by a ReLU operation to get the

Grad-CAM output given in Equation 2.7.

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k

)
(2.7)

Note that the output is in the same dimension as the last convolutional layer which

necessitates a resizing process in order to apply to on the original input. On the other

hand, the ReLU process is used so that features with positive effects on the class of

interest could be observable. Without the ReLU, i.e. not neglecting negative valued

pixels, the Grad-CAM localization map might emphasize more than the target class

and the classification performance might decreases.

[14] puts forward the following assumption: Let the second before the last layer has

K feature maps, Ak, which are pooled by using average pooling method and linearly

transformed to obtain the score of class c as shown in Equation 2.8.

Sc =
∑
k

wc
k

1

Z

∑
i,j

Ak
ij =

1

Z

∑
i,j

∑
k

wc
kA

k
ij (2.8)

Note that when Grad-CAM is applied to a specific architecture that has weights wc
k

between feature maps and outputs αc
k = wc

k. This result proves that Grad-CAM is

a strict generalization of CAM. Figure 2.10 illustrates the dog-classification Grad-

CAM output when a photo that has a dog and a cat in it, given as input. On the left,

the heatmap is seen while the right side is the original photo with the heatmap applied

to it.
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Figure 2.10: The Grad-CAM output when a photo that has a dog and a cat in it is

given into a network trained to detect dogs.

2.2 Related Works

Neuroimaging methods that are handy tools for medical experts to attain images of the

brain have been popular for a long time to observe the brain’s functioning, identify

mental illnesses, or even explain the relationship between a disorder and its symp-

toms. With the development of a promising deep learning field, several methods have

recently been published to diagnose mental disorders by using neuroimaging data.

For the purpose of mental disorder classification, there are some state-of-the-art stud-

ies have been published. In [17], Lehmann et al. benefited from an electroencephalo-

gram (EEG) to obtain the record of electrical activities of the brain and use them in

their classification algorithm with the purpose of early recognition of Alzheimer’s. In

[18], magnetic resonance images (MRI) of the brain was used to reveal the incidence

of schizophrenia and to estimate the effectiveness of pharmacological treatment by

the help of an artificial vision algorithm. Besides, in [19], Morillo et al. announced a

web platform, namely the Psycho Web, to diagnose patients’ mental disorders.

Other than absolute classifications of psychological diseases by using neuroimaging

data for training neural networks, the visualization methods applied into these net-
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works have been getting more popular day by day since it is an effective way to

give medical experts feedback on biological insights that are lied behind the decision

mechanism. In [20], Riaz et al. studied with fMRI time-series signals of the Attention

Deficit Hyperactivity Disorder patients and control group and constructed a CNN-

based deep learning model for classification. They also analyzed feature importance

maps for both classes learned by their method and stated that the importance value

assigned by the network to particular functional connectivity was different for both

classes. Another study was conducted with an fMRI dataset practiced by Sarraf et al.

[21], to classify Alzheimer’s Disease via deep convolutional neural networks. They

generated heat maps of weights, filters, and activations belong to different layers of

different networks. Their findings reveal significant differences between Alzheimer’s

and healthy subjects in various regions of the brain. Similarly, in their work, Feng

et al. [22] classified Alzheimer’s disease by using cortical morphometric measures

derived from structural MRI dataset in spherical CNN. In order to analyze the human

cortex behaviours, they generate class activation maps in the spherical form defined

in SO(3) space.

Oviedo et al. [23] used an alternative data type, X-ray diffraction (XRD) data, in

order to classify XRD patterns of subjects. By using CAM, they visualize the main

discriminative regions of an XRD pattern, such as peak and series of peaks, that were

used to classify all the training data belonging to a certain class. Consequently, they

could identify the root cause of misclassification and could design a more robust

experiment. Based on the class activation mapping method, Shi et al. [24] used real-

time data from inertial measurement unit (IMU) in a CNN-based model and obtained

the heatmap of the original time-series data, which highlights the contributing region.

By analyzing this region in detail, they manually extract effective characteristics such

as which interval of time-series data can best predict the occurrence of a fall. Ghosh

et al. [25], on the other hand, proposed a novel method, i.e. cue-combination for

Class Activation Map (ccCAM), that can be used for the networks in which inserting

the Global Average Pooling (GAP) layer is not available. To identify the frequency

bands that involved important information, they generated the ccCAMs for all time

points and group-averaged (averaging across all time points and subjects in a group)

the maps. After having two 2D maps for the control and exercise groups, Ghosh et al.
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found significantly different behaviours between them.

Gao et al. [26] proposed a novel method named Dense-CAM, which is the combina-

tion of DenseNet and CAM in order to visualize the whole network and to generate

more accurate and more robust deep model visualization. Thanks to the skip connec-

tions between the last layer and any of the front layers in DenseNets, they attained

more information for visualization than the original CAM, whose resolution is re-

stricted to the last convolutional layer’s size. They asserted that unlike to visualizing

the network’s final process, obtaining the combined features of the whole network is

much more beneficial while interpreting visualization outputs.

In order to compare the resolutions of the CAM from a different viewpoint, the study

of Fawaz et al. [27] can be analyzed. They generated visualizations of Fully Con-

volutional Network (FCN) and Residual Neural Network (ResNet) trained for time

series classification (TSC). They explored that thanks to the skip connections in it,

the ResNet could filter out discriminative regions with higher confidence than FCN,

resulting in the lower accuracy of FCN. Moreover, they observed that CNN is able to

localize a given discriminative shape regardless of where it appears in the time series.

It proves CNN’s capability of learning time-invariant warped features. As a conclu-

sion, they emphasized that interpretable analysis of TSC with a DNN is a significant

research area since it enables to identify which regions of a time series data constitute

the reason for the classification.

To the best of our knowledge, Wang et al. [28] is the first comprehensive study that

introduced one-dimensional CAM with an application to TSC. Their proposed FCN

and ResNet were able to classify time series data from scratch. They observed that the

discriminative regions of time series data for the right classes are highlighted when

visualizing these networks. The visual demonstrations of both networks’ filters were

observed similarly, even though ResNet tends to overfit the noncomplex data much

easier than FCN. However, they expressed that after making an effort to regularize the

model, the gradients could flow directly through the bottom layers by using shortcut

connections in the ResNet, which vastly improved the model’s interpretability. They

suggested benefiting from the visualization of ResNet rather than CNN when the data

is large and complex.
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CHAPTER 3

FUNCTIONAL NEAR-INFRARED SPECTROSCOPY AND DATASET

3.1 Functional Near-Infrared Spectroscopy

Neuronal activity can be determined considering the changes in the brain’s oxygena-

tion level since cerebral hemodynamics’ variation is directly related to functional

brain activity. These changes can be detected with the help of an optical apparatus

and light in the near-infrared range. Typically, an optical apparatus consists of a light

emitter and a light detector. Photons that interact with tissue are either absorbed or

scattered. Light in the near-infrared range with the wavelengths of 700 to 900 nm (the

optical window) can penetrate most biological tissues by means of the low absorbance

of their main components, as reported by Ayaz et al. [29].

Fortunately, in the optical window, the absorption spectra of oxygenated and deoxy-

genated hemoglobin (Hb) remain separate. Hence the spectroscopic separation of

these compounds is possible when the wavelengths of 695 and 830 nm are used.

Once the photons are sent into the human head, they are either scattered by different

layers of the head (skin, skull, brain, etc.) or absorbed mainly by oxy- and deoxy-Hb

[30]. A photo-detector placed nearly 3 cm away from the light source collects the

photons that travel along the "banana-shaped path" between the source and detector

due to scattering. The illustration of emitter-detector pairs and the banana-shaped

path is given in Figure 3.1.
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Figure 3.1: The illustration of emitter-detector pairs as well as the banana-shaped

path used in the fNIRS measurement [31]

According to Cui et al. [32], functional near-infrared spectroscopy (fNIRS) is an op-

tical non-invasive neuroimaging modality to monitor the concentration of both oxy-

and deoxy-Hb particles. It allows making a set of observations of the neural activity

[33], while the subject is able to perform a particular task because of the portability

and compactness of its apparatus. This ability provides an opportunity to take mea-

surements under natural conditions with subjects sitting on a chair as seen in Figure

3.2. In other words, the fNIRS system’s interest is taking a snapshot of the cortical

activity across brain regions by acquiring data at each channel with separately located

probes.

Unlike to functional magnetic resonance imaging (fMRI); fNIRS does not require the

participant to stand still on a bed. Thus, fNIRS can be used for more naturalistic

experiments, including face-to-face communication or natural body movements, and

is well suited for real-time applications. However, it is challenging to improve signal

quality and reduce noise induced by external contributions such as scalp blood flow,

blood pressure, heart rate, or head motion.
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Figure 3.2: Hitachi ETG-4000 optical imaging system to be used for fNIRS measure-

ments [30]

3.2 Dataset

The neuroimaging data used in this thesis is the fNIRS data obtained from Ankara

University Brain Research and Application Center laboratory during the period be-

tween 1 April 2014 and 30 July 2014, and it is firstly used by Hoşgören [5] for her

medical study. Besides the dataset, the information provided in this section is mainly

taken from her study [5].

The Hitachi ETG-4000 optical imaging system (HitachiMedicalCo., Tokyo, Japan) is

used to collect 24-channel fNIRS data with the resolution of 100 milliseconds, i.e.

with the frequency of 10 Hz, enabling a detailed clarification of temporal changes in

relative cerebral blood volume. 2 channels from 24 probes of the device are available

indeed; however, the only difference is the wavelengths operated in them. Moreover,

fNIRS signals are affected by physiological activities such as oscillations of systemic

arterial circulation (0.1 Hz), and breathing (0.2-0.3 Hz) as stated by [34]. This prob-

lem is overcome by the high-pass (5 Hz), low-pass (0.001 Hz) and motion average

filters. During measurements, participants’ body movements are automatically de-
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tected by the ETG-4000 device, which makes it possible to produce motion average

filters. A researcher blind to the study group manually analyzes channels responsi-

ble for these artifacts, and outlier data is omitted from the study. According to Allin

et al. [35], fNIRS studies with the verbal fluency test prove that subjects with the

bipolar disease tend to have lower prefrontal activation. Whereas, Hoşgören [5] does

not detect any differences between healthy and the bipolar subjects in terms of brain

activation during the test.

All processes concerning the data measurement and experiment are approved by the

Ethics Committee of Ankara University Medical Faculty. Before the study, these

processes are also announced to all participants, and each of them gives approval

both verbally and in written. Bipolar subjects in this dataset are the patients who are

diagnosed bipolar disorder according to the DSM-IV-TR and whose IQs are above at

least 80. Furthermore, they have all been in the remission from the disease, which is

defined as absence or minimal symptoms of both mania and depression, for at least

one month. On the other side, healthy subjects do not have any psychological disorder

according to the SCID-I. Moreover, there is no difference between healthy and bipolar

subjects in terms of age, gender, IQ, and educational background.

Verbal fluency test is one of the tests that can be performed while fNIRS data being

collected. In this test, a subject is asked to generate as many words starting with the

given letter as she/he can in a certain time. In the original form of the test /f/, /a/, /s/

letters are used to generate words; however, thanks to Tumaç [36], in the adapted form

to Turkish language, the most commonly used 3 letters in the Turkish words, i.e. /k/,

/a/, /s/, are chosen. The participant’s overall test point is calculated by summing up

the numbers of words generated by each of these letters in a minute. In the study that

the fNIRS data collected, the verbal fluency task (VF-task) is designated by adopting

the verbal fluency test. It comprises two blocks in a single session with a total duration

of 225 seconds.

26



Figure 3.3: The time table of the verbal fluency test with its 6 partitions shown

In the first 30 seconds, namely the first pre-task, the participant is asked to repeat

/a/, /e/, /o/ letters sequentially without a break so that the brain’s basic activity while

talking can be determined. After that, the first task is carried out. The participant is

supposed to generate as many words as she/he can, starting with the letter /s/ for 20

seconds, then with the letter /a/ for another 20 seconds, and finally, with the letter /k/

for once again 20 seconds. Next, during 20 seconds, the participant again repeats /a/,

/e/, /o/ letters after and after. The second block is then repeated with the sequence

of the second pre-task, second task, and second post-task; 25, 60, and 30 seconds

respectively. In the second task, the letters being used for word generation are /m/, /i/,

and /s/, sequentially. All 6 partitions belong to the VF-test are given in the timetable

in Figure 3.3.

Since a single subject’s data is collected from 24 channel devices with 100 millisec-

onds resolution, from each channel 2251 samples, 54024 samples in total, are taken.

As there are 2 different wavelengths for each channel, the data consists of 108048

samples. Even though 82 subjects participating in the test, only 71 of them are ready

to use. This is because 5 of them are left out due to the lack of the noise cancellation

process, and 6 of them have missing parts in their fNIRS data.

Thanks to Evgin’s study [4], working with basic architectures, overfitting occurs ow-

ing to outliers in the data, regardless of any modification made. To find them out, the

subjects are trained and tested using random shuffles with relatively small test sets.

After each subject’s success, some subjects have insufficient classification successes

even with a great number of trials. Consequently, the worst 10 subjects are removed

resulting in that 61 subjects, 33 control and 28 bipolar, are left.
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CHAPTER 4

BACKGROUND INFORMATION

4.1 Deep Learning

In recent times, deep learning has impressed daily life in various areas such as intel-

ligent web search, online advertising, and pattern recognition. Besides, by improving

deep learning methods, the human-level AI has been developed as well, see [37],

[38] for more discussions. With deep learning techniques, computers are allowed to

operate without being explicitly programmed. They are constructed with algorithms

that they can learn from data and make data-driven decisions. Even though it is quite

complex to understand how neural networks work, the logic behind them is straight-

forward.

First of all, a neural network consists of neurons connected to each other, while each

connection of the NN has a weight that determines how important the relationship of

the connected neurons is. Besides, each neuron has an activation function that defines

the neuron’s output. The decision of how the network being updated according to

the loss function is given by an optimizer. After training the network, each neuron’s

weights and bias are learned, which is the unique part of deep learning. Until this

learning procedure is finished, the neural network process iteratively in the forward

and backward directions.

In the forward propagation, the input data is passed through the network. All neu-

rons in a layer receive the information from the previous layer’s neurons, process it

according to the activation function, and transmit it to the next layer’s neurons. After

the data crosses all the layers with this procedure, the final layer is reached, and the

label prediction is made. Once the forward propagation process is done, a loss func-
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tion is used to calculate the error and to measure how good/bad the predicted result is

compared to the correct result.

Next, the loss score is calculated, and this information is propagated backward, start-

ing from the final layer. It means that the loss information is sent back to all the neu-

rons in the hidden layers contributing to the prediction. This process is repeated, layer

by layer, until all the neurons are informed about their individual contributions to the

total loss, and they are updated to lessen this loss. Finally, when forward propagation

and back propagation operations are repeated numerously, the weights of connections

between neurons are adjusted so that the loss can be as close as possible to a certain

extent. When the number of layers and units in a single layer increases, the NN is

called Deep neural networks (DNN), representing functions with higher complexity.

The whole process is visualized in Figure 4.1.

Figure 4.1: The general algorithm behind neural networks [14]

In this study, the labeled multivariate time series dataset belongs to healthy and bipo-

lar subjects is used to detect the disease. Therefore, a supervised multi-channel deep

neural network is needed to be constructed as a classifier. As reported in [39], Con-

volutional Neural Network (CNN) and Residual Neural Network (ResNet) are able

to classify time-series datasets with premium performance. Considering that, Convo-

lutional Neural Network and Residual Neural Network are chosen to be built for this
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classification problem during the experimental procedure.

4.1.1 Convolutional Neural Network

Having been used for numerous applications, CNNs have been constructed with many

structures containing complexly interconnected layers. According to Qin et al. [7],

the convolution filters convolve with their inputs resulting in learned features. The

neurons of deeper layers are expected to extract more complicated features. Finally,

after the whole feature map is extracted, the network converges to the classification

output. One of the most common CNN architectures can be seen in Figure 4.2.

Figure 4.2: The VGG16 network, which is the most common CNN architecture

Therefore, with the increase in complexities of problems, networks become more

complex, and the number of layers, the layer depth, increases as stated in [7]. More-

over, for training and testing procedures, the network is supported by sophisticated

and well-defined algorithms and back propagation methods. Consequently, a vast

amount of labeled data is required to enhance network ability by iteratively training

the extensive neurons, as well as the interconnection between them.
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4.1.2 Residual Neural Network

Deep learning algorithms are based on the idea that the deeper the hierarchy of lay-

ers, the higher the representations of patterns. Therefore, in order to get a higher

accuracy level, researchers tend to increase hierarchical compositions through deep

networks. However, by adding new layers one after another, a network could en-

counter the degradation problem. It arises when the network’s accuracy goes up until

to a level and becomes saturated, which is followed by rapid degradation, see Figure

4.3. Unexpectedly, such degradation is not caused by overfitting but by adding more

layers to a suitably deep model as verified in [39].

Figure 4.3: Training error (left) and test error (right) on the 20-layer and 56-layer

networks [39]

Considering the presence of the degradation problem, optimizing the solution by

constructing a deeper network is nothing but adding shortcut connections between

nonsuccessive layers as He et al. introduces [39]. They suggested a residual block

architecture with identity mapping as shortcut connections.
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Figure 4.4: The illustration of a residual layer with a shortcut connection

As shown in Figure 4.4, shortcut connections do not add extra parameters and do not

increase computational complexity. Moreover, lower layers’ inputs are forwarded to

deeper layers in the form of shaped information instead of abstract information. Thus,

the operation of the network is favorable to increase accuracy.

4.2 Statistics

Under some circumstances, it may become too difficult to obtain a population’s true

data. At this stage, inferential statistics come out as a solution to use a sample from

the population to make reasonable guesses about the population’s features. However,

it is important to use unbiased samples in the statistical tests. If the sample is not a

fair representation of the population, then valid statistical inferences cannot be made.

Inferential statistics have two main uses on populations:

• making predictions about them

• testing hypotheses to speculate about them

Provided that collected data on income and job of a randomly selected sample of

people in a country, inferential statistics can be applied to estimate the mean income
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or test the hypothesis of the relationship between income and job about the whole

employed population of the country thanks to the sample data.

In this study, no estimation about populations is made; instead, it is analyzed whether

the data of 2 groups, healthy and bipolar subjects, is used to obtain information about

their corresponding populations’ insights. Hence, we are interested in testing the

hypotheses side of statistics. We can use it for the purpose of populations’ comparison

or inquisition of the relationship between variables.

Inferential tests are either parametric or non-parametric. As parametric tests usually

have stricter requirements than non-parametric tests, they can make more statistically

robust inferences for a population. The preconditions that the sample data is supposed

to meet are as follows:

1. Normality of data: the data must be normally-distributed.

2. Independence of observations (i.e. no auto-correlation): The observations/-

variables included in the test must not be related to each other.

3. Homogeneity of variance: the variance of a population being compared must

be similar to that of other populations. If one of them has a significantly differ-

ent variance, it will limit the test’s effectiveness.

If data does not meet the assumptions of normality or homogeneity of variance, a non-

parametric statistical test can be performed. Non-parametric statistical tests are used

with the data that can be labeled without providing any quantitative. Each observation

corresponds to no more than a single category. On the other side, parametric tests

assume specific characteristics of a data set. Statistical tests are divided into three

categories: tests of comparison, correlation, and regression.

4.2.1 Statistical Test Types

4.2.1.1 Comparison Tests

Comparison tests are proper tools to analyze if the means of populations differ from

each other in order to observe the effect of a categorical variable on some other char-

34



acteristics of the population. If three or more groups are compared, or multiple pair-

wise comparisons are made, using an ANOVA or a post-hoc test is a reliable solution.

On the other hand, the comparison of two groups’ means, such as the average elec-

tricity use of two cities, can be made by using the t-test.

In this study, there are two groups in the population, and the categorical variable,

namely bipolar or healthy, are used as the predictor. On the other hand, the outcome

can be measured as a quantitive variable, such as the average activation value of vi-

sualization output. Hence, the t-test is chosen as one of the statistical tests used in

Section 5.3 to observe whether subjects with bipolar disease have different distribu-

tions of visualization outputs compared to healthy subjects.

4.2.1.2 Correlation Tests

If two variables associate with each other can be investigated by the correlation test.

There are three main correlation tests. While the most powerful one is Pearson’s r test,

the Spearman’s r test is suitable for interval variables when the data is not normally

distributed. Other than these, the chi-square test uses nominal variables. Therefore, it

is used in the experiments of this study to check whether there is a relation between

the predictor of the categorical variable, i.e. bipolar or healthy, and its outcome, i.e.

the time partition that maximum visualization output occurs.

4.2.1.3 Regression Tests

Regression tests inquire if changing a predictor variable affects an outcome variable.

Most of the regression tests are parametric, meaning that the data is supposed to

be normally distributed. However, since this study’s fNIRS data does not meet the

regression test conditions, this type of statistical test is neglected in the experiments.

35



4.2.2 Definitions of Statistical Parameters

4.2.2.1 P-value

Calculating a test statistic is a necessity for all statistical tests. It refers to a value

providing the difference between the test’s variables’ relationship and the null hy-

pothesis of no relationship. As an alternative for the test statistic, a probability value,

i.e. p-value, can be used. It defines a probability that the results from the sample data

of a population are occurred by chance. To illustrate, a p-value of .01 means that the

probability of the results happening by chance and the null hypothesis being true is

1%. In a general manner, the p-value is decided as .05 (5%).

4.2.2.2 Confidence Interval

To overcome the statistical test’s variability, it is more convenient to provide an in-

terval estimate instead of a single value for a parameter. It is called the confidence

interval, and it is related to a confidence level, which defines the probability of the

interval comprising the parameter estimate. A 95% confidence interval means that if

a research is repeated 100 times by using the same method but different sample data,

it is expected to observe the parameter estimate residing in the specified range for

95 times. However, it cannot be deduced that the actual parameter of the population

lies within that range. In order to be sure about that, it is required to collect the data

of the full population. However, provided that random sampling and suitable sample

size are ensured, the parameter is supposed to be in the confidence interval a certain

percentage of the time.

4.2.3 Statistical Tests Used in Experiments

4.2.3.1 Chi-Square Test

Chi-square tests are non-parametric statistical tests for categorical variables. Types

of chi-square test, as well as the interpretation of the test, are given in the following

sections.
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The Goodness of Fit Chi-Square Test The goodness of fit chi-square test inves-

tigates whether the distribution calculated from the theoretical frequencies coincides

with that of observed frequencies of the sample. In other words, it is a good way

to check if the sample’s frequency distribution matches what is expected from the

broader population. Given that the actual frequencies are close to the theoretical

ones, the chi-square statistic will be small, which concludes in there will be consis-

tency between theoretical and actual distributions. The mathematical deduction for

the corresponding hypothesis is given in Equation (1.9).

Null Hypothesis (H0): The data follows a specified distribution. χ2 Equation:

χ2 =
n∑

i=1

(Oi − Ei)
2

E
(4.1)

where, Ei is the expected value and Oi is the observed value for bin i when the data

follows the specified distribution. To calculate the expected value for bin i:

Ei = N ∗ pi (4.2)

Here, pi is the hypothesized proportion of observations for bin i and N is the total

sample size.

The Chi-Square Test of Independence On the other side, the chi-square test for

independence compares two nominal variables from a single sample by using a con-

tingency table to check whether they are independent. In other words, it can be used

to reveal the significance of the relationship between two categorical variables. For

example, after collecting data on hobbies and job for each participant, one can benefit

from this test to investigate whether hobbies are related to the occupation.

Null Hypothesis (H0): The two categorical variables are independent, i.e. there is no

relationship between the variables.

To calculate the expected value for a cell:

Eij =
RiCj

N
(4.3)

where R = row, C = column, N = total, for ith row and jth column.
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χ2 Equation:

χ2 =
n∑

i=1

(Oi − Ei)
2

E
(4.4)

Performing Chi-Square Test Theoretically, when the actual and expected values

were the same, the chi-square test statistic would be zero. Therefore, it can be stated

that the smaller the test statistic, the more similar the observed and expected data.

A chi-square test statistic is a single value that defines the significance of the differ-

ence between observed values and the expected values, considering that there is no

relationship in the population. The decision of if a test statistic is sufficient to indicate

a significant difference is given by comparing the calculated chi-square value and a

critical value from a chi-square table. On the condition that the chi-square value is

greater than the critical value, then the difference is significant enough concerning the

specified criteria. As an alternative, the p-value can also be used for the same reason.

After the null and alternate hypotheses are set, a test statistic, as well as a p-value, are

calculated and interpreted.

4.2.3.2 T-Test

The t-test is used to show the significance of the difference of two groups’ means.

It benefits from the hypothesis testing to determine if two groups are different or if

a process affects the population. The t-test also investigates if the differences could

have happened by chance; in other words, it reveals how significant the differences

are. The t-test is a parametric test; therefore, the same assumptions that the data is

supposed to meet provided in the previous subsection are valid as other parametric

tests.

Types of T-Test The decision of which t-test needed to be used is given based on

two things. Firstly, the t-test is divided into three types concerning if the comparison

is made between the groups from a single population or two populations:

• Paired t-test: Suitable, if the groups of the same population at different times

38



are used (e.g. the distance covered by a team in the first and second halves of a

match).

• Two-sample t-test (i.e. the Welch’s t-test): Valid, if the groups come from

two separate populations (e.g. comparison of the average test scores of males

and females).

• One-sample t-test: Performed, if one group is compared against a known value

(e.g. comparing the income of a coal miner to the minimum wage of 2825

Turkish Liras).

The other criteria on variations of the t-test is which direction of the difference being

tested:

• Two-tailed t-test: Performed, if the only criteria is two populations being dif-

ferent from one another.

• One-tailed t-test: Performed, in order to check whether the mean of one pop-

ulation is greater or less than the other.

In this thesis, we benefit from the t-test to compare the means of two populations,

i.e. bipolar and healthy subjects. By this means, we investigate whether two groups,

bipolar and healthy, are distinguishable from each other regarding their visualization

outputs. Hence, the two-tailed, two-sample t-test is preferred.

Performing T-Test The t-test evaluates the difference between two group means by

comparing the difference in the means of each group, considering both groups’ stan-

dard errors. In other words, the t-value gives the ratio of the two groups’ difference

versus the difference inside the groups. A t-value of 5 means that a sample from a

group is five times different from the other group as it is within the original group.

The formula for the two-sample t-test, i.e. the Welch’s t-test, is given in Equation

4.5. In this formula, n1 and n2 are the numbers of observations in each group being

compared; while x1 and x2 are their means, respectively. s2 is the standard error of
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these two groups and t is the t-value.

t =
x̄1 − x̄2√

(s2
(

1
n1

+ 1
n2

)) (4.5)

As in other inferential statistical tests, in the t-test, a larger test statistic value indi-

cates a more significant difference between the groups. The calculated t-value can be

compared with the corresponding critical value from the t-value chart according to

the degrees of freedom and the specified confidence interval. Suppose the calculated

t-value is greater than the true t-value from the confidence table. In that case, the null

hypothesis that the two groups are equal can be rejected, and it is concluded that the

two groups are different.
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CHAPTER 5

IMPLEMENTATION

This section introduces the architectures and methods used to classify bipolar disease

on the subjects chosen. The features are extracted using the proposed architectures,

and the classification is applied using these methods. Due to the limited number of

participants, only 41 subjects, 21 from the control group and 20 from bipolar patients,

are chosen as the training set. For all the networks being evaluated, the same training

sets are used for a fair comparison.

NVIDIA GTX 1650 GPU is used for the training process, and the code is imple-

mented by using Tensorflow 2.1.0 and Keras API 2.3.1. Adam Optimizer, an algo-

rithm for first-order gradient-based optimization of stochastic objective function, is

chosen as an optimizer in all networks. It is based on adaptive estimates of lower-

order moments. It is computationally efficient and is well suited for large problems in

terms of data or parameters. Most importantly, it is also appropriate for non-stationary

objectives and problems with very noisy or sparse gradients, making it suitable for

fNIRS data. Decay rates of the first and second moments of the optimizer are set to

0.8 and 0.9. The networks are trained with a batch size of 5 samples for all networks.

Furthermore, the learning rates of all networks are set to 3e−5. Other than these set-

tings, special tuning processes related to the CNN and the ResNet are covered in the

following sections.

41



5.1 Deep Neural Networks

5.1.1 Convolutional Neural Network

The models constructed and tuned by Evgin [4] are taken as a baseline for both the

CNN and ResNet architectures used in this study. In the fully convolutional neural

network, the sigmoid activation function is preferred over the ReLU activation func-

tion since it gives better performance when considering that fNIRS data has negative

feature points. The network has three convolutional layers directly connected. After

the first layer, there is a batch normalization process in order to overcome difficulties

caused by the nature of fNIRS data. Each layer has 128 filters with the kernel size

of 16, and they are convolved by a stride size of 3. After the last convolutional layer,

global average pooling (GAP) and dense layer are inserted to minimize overfitting by

reducing the total number of parameters in the model. The classification’s key layer

is the GAP layer, which establishes the mapping relationship between feature maps

and classes. This layer is crucial for this study because the Class Activation Map is

chosen as a visualization method during the experiment. Hence, to generate CAM,

the network architecture must have a GAP layer after the final convolutional layer,

and then a linear (dense) layer, as declared by [16]. The layer structure is visualized

in Figure 5.1.

Figure 5.1: The diagram of the 3-layer Convolutional Neural Network that is used in

the study
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5.1.2 Residual Neural Network

In the CNN model, when the number of layers getting greater than 3, the accuracy

sharply diminishes, and the model is not trained as expected. Therefore, to evaluate

deeper models while preserving the capability of training, Residual Neural Networks

are chosen as an alternative model for this research. Thanks to Evgin study [4], a

tuned ResNet is developed with appropriate parameters. After different trial and error

cycles, the number of layers and between which layers shortcuts tie are decided. The

best performance model includes six layers and shortcut connections between input-

3rd layer and 3rd-6th layers. The first 3 layers constitute the first block, while the

second block consists of the remaining 3 layers. Each layer of these blocks and the

shortcut layers include 64 filters. Besides, the kernel sizes of the first, second, and

third layers of each block are 16, 8, and 4, respectively, while the kernel sizes of both

shortcut layers are 1. The diagram of the model is provided in Figure 5.2.

Figure 5.2: The diagram of the Residual Neural Network that is used in the study

Like the CNN model, the ResNet model has batch normalization after the first convo-

lutional layer. It ends with a dense layer after the GAP layer, which is the condition
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for CAM.

5.2 Class Activation Maps

This study aims to visualize activation maps of networks that are trained for the di-

agnosis of bipolar disease by using time-series multivariate fNIRS data to understand

the networks’ decision mechanism. Experiments are conducted with the CNN and

ResNet models detailed in the previous section to evaluate class activation maps ac-

cording to the purpose. From the visualization methods mentioned in Section 2.1,

visualization of intermediate layer activations and visualization of convolutional fil-

ters are unsuitable for this case. This is because it is too complex to interpret in-

termediate layer activations and filters when time-series input is used because the

human perception of its visualization is not so understandable as an image visual-

ization. The Grad-CAM method, on the other hand, converges to CAM in case the

network already has a CAM-computable structure [2]. Additionally, in deeper layers,

the features become more sparse and localized, and visualization helps to explore any

potential dead filters, i.e. all zero features for many inputs. All in all, the visualization

of the last convolutional layer is the most useful method, and it is chosen among other

alternatives for this study.

Consequently, 1-D CAM makes it possible to identify which regions of time series

input constitute the bipolar disorder classification; hence, it is preferred as an applica-

tion to time-series data throughout the study. 1-D CAM is a time-series output whose

content coincides with that of input data explained in Section 3.2, see an example of

it in Figure 5.3.
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Figure 5.3: The Class Activation Map generated by the ResNet model for the ’Subject

35’, with the healthy label. Partitions of the VF-test lie between red dashed lines.

Their names from left to right: Pre-task 1, Task 1, Post-task 1, Pre-task 2, Task 2,

Post-task 2

The above figure is the class activation map belonging to the ’Subject 35’ gener-

ated from a ResNet model. In this example and others, the 24-channel fNIRS data

is used unless otherwise specified. There is a heatmap changing with time samples

on the upper side of the figure, making it a time-dependent heatmap. The change in

heatmap from yellow to dark blue corresponds to changing from highly discrimina-

tive region to region with no contribution to the classifier’s decision. The color bar for

the heatmap is provided on the right of the above figure, and it can be used for other

figures given below as a reference. Below the heatmap, the activation map’s actual

output can be seen with the time in seconds on the x-axis and activation magnitude on

the y-axis. The x-axis values from 0 to 225, which corresponds to 225 seconds verbal

fluency test period in which there are 6 unequal partitions explained in Section 3.2
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in detail. On the other hand, the activation distribution varies from subject to a sub-

ject according to the value of the subject’s raw fNIRS data collected during the test.

Therefore, it can become meaningless while comparing few subjects because their

raw data magnitudes can vary due to the environmental factors to which the subjects

are exposed. However, considering all healthy and bipolar subjects as groups, their

distributions gain meaning and make it possible to acquire significant interpretations.

Furthermore, the activation stays consistent in the same subject’s heatmap, enabling

us to compare activations belonging to different time samples of the same subject.

In Figure 5.4, CAM outputs of the CNN and ResNet models belong to the ’Subject

32’, who is labeled as healthy, are given. It shows that both networks’ activation maps

follow similar distribution; however, the ResNet’s output has a sharp rise and fall,

whereas CNN contains a smooth pattern. The reason for the ResNet models having

noisy shapes is that the size of the last convolutional layer of the ResNet model is the

same as the input data, i.e. 2250, while that of CNN is much smaller, i.e. 77, which

results in smoother distribution and lower resolution compared to the ResNet.

Figure 5.4: The Class Activation Map generated by the CNN (on left), and ResNet

(on right) networks for the ’Subject 32’ with the healthy label.

In the above graph, there are two peaks where this subject’s classification decision

mostly comes from. The first peak starts with the beginning of the test, i.e. the first

pre-task of the test, and consistently drops till the end of the first VF task. Then,

after the Post-task 1 and the Pre-task 2 with relatively low activation, the second peak

occurs with the beginning of the second VF task and activation decreases over time
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until the end of Post-task 2.

5.2.1 Modifications on CAM

Other examples of heatmaps of activation in time for different subjects, namely the

’Subject 64’ and ’Subject 15’, with the bipolar label are given in Figure 5.5 and Figure

5.6, respectively.

Figure 5.5: The Class Activation Map generated by the CNN (on left), and ResNet

(on right) networks for the ’Subject 64’ with the bipolar label

Figure 5.6: The Class Activation Map generated by the CNN (on left), and ResNet

(on right) networks for the ’Subject 15’ with bipolar label

As it can be deduced from these figures, the CAM outputs of subjects even with

the same label, can have different distributions in the time scale. Consequently, it is
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impractical to directly observe these heatmaps and make a consistent remark from

them. Therefore, the traditional visualization approach is needed to be updated.

The CAM outputs acquired from our networks have the same dimension as the time-

series input data. They involve 2250 time points corresponding to the 225 seconds

VF-test period in which there are 6 unequal partitions explained in Section 3.2 in

detail. Psychiatrists generally focus on these partitions instead of single time points.

They make inferences about partitions, more specifically the whole task durations, not

a single time sample. Therefore, our study gains meaning if the VF-test is divided into

these partitions and if each partition’s characteristic is revealed and compared. For

this purpose, we average activations of each partition so that the statistical tests can be

conducted in a single partition and their results can make sense from the perspective

of psychiatrists. Besides, averaging of activations enables us to generalize the distri-

bution in the partition while the characteristic feature of the partition is preserved. As

an alternative modification, we sort 6 partitions of the test to find the partition with

the maximum activation distribution. This method gives us the flexibility to discover

the partitions’ importances in the whole test duration while differentiating bipolar and

healthy subjects.

5.2.1.1 Averaging of Activations

Between boundaries of a partition, which is explained in Section 3.2, the average of

all activations is calculated and is assigned as the new activation value of that parti-

tion. This process is applied for all partitions, and the heatmap is updated accordingly.

Thanks to the application of the averaging method, we have 6 activation values, one

for each partition of fNIRS data of a subject. It enables us to compare those of all

subjects with respect to their classes. One example of heatmaps with averaged acti-

vation is shown in Figure 5.7. After this phase, the t-test is one of the most suitable

statistical methods to check whether there is a significant difference between healthy

and bipolar subject populations, which will be performed in Section 5.3.2.
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Figure 5.7: The CAM (above), and the average CAM (below) generated by the CNN

for the ’Subject 60’ with bipolar label

5.2.1.2 Sorting of Activations

Other than averaging activations of each partition of a subject, we sort them in order

starting from the most active partition to the least active one. Therefore, we are able

to examine if bipolar disorder is related to a specific partition of class activation maps

and if it is detected by only looking at that partition of fNIRS data of a subject.

To simplify what is done with the sorting of activations method, Figure 5.8 can be

examined.
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Figure 5.8: The CAM (above), and the sorted average CAM (below) generated by the

CNN for the ’Subject 60’ with bipolar label

In this figure, the CAM modified with the sorting method for the CNN model is

given. As shown from the above graph, the maximum activation is in Pre-task 1

which results in assigning the biggest rank, i.e. 5, for this partition in the below graph

of the figure. Then, the second maximum activation occurs in the middle of the above

graph corresponding to Pre-task 2 having the second biggest rank, i.e. 4, in the below

graph. This sorting process continues until the least active partition , i.e. Rank 0, is

determined.
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5.3 Results

Applying modifications on heatmaps, we can benefit from inferential statistical tests

as the independence of observations and homogeneity of variance properties hold. It

means medical experts can understand and interpret how fNIRS data of bipolar and

healthy subjects behave. Since we investigate the pre-trained networks’ insights and

try to understand how they classify bipolar disorder, we are obliged to study with

the training set because it is the only dataset that the networks benefit from while

learning the classification features and updating themselves accordingly. In other

words, we use the training set for the statistical tests as this study covers the analysis

of the trained networks and the extraction of the biological insights lied behind the

classifiers’ decision mechanism.

5.3.1 Chi-Square Test

For the goodness of chi-square test, we benefit from the sorting of activations method

explained in previous section. After that, we have all training subjects with their 6

partitions sorted. Finally, partitions with maximum activation of healthy and bipolar

subjects can be used in the goodness of chi-square test. However, it is not useful in

this case since the expected distribution of partitions with maximum activations for

healthy and bipolar subjects can not be estimated. The only inference obtained with

this test is whether the distribution follows the uniform distribution, and this can not

provide any meaningful information.

The chi-square test of independence, on the other hand, can give information about

the relationship between bipolar disorder and the partition number that maximum ac-

tivation occurs. While investigating this, two different networks, namely the CNN

and ResNet, are used with two different input combinations. These combinations are

generated by changing the channel number of fNIRS data. As given in Section 3.1,

the number of probes of the fNIRS device is 24, and there are two different wave-

lengths used in each probe to collect samples. Even the fNIRS data related to both

wavelengths resemble each other; it can be used as it is the 24-channel or 48-channel

data. Despite there is no significant difference between both input combinations, the
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features that networks extract might differ. For this reason, we use 24-channel in-

put data, as well as the 48-channel one, to obtain more information about the two

populations and the network.

The results belong to CNN models with the combinations mentioned above are given

in Table 5.1. When the alpha value is specified as .05, the table indicates we can-

not reject the null hypothesis such that having bipolar disorder is independent of the

partition number that maximum activation occurs. In other words, we can not state

whether a person is bipolar by looking at his/her partition number.

Table 5.1: Results of the chi-square test of independence for CNN models

χ2-value p-value

The CNN model with 24-channel data 8.92 .112

The CNN model with 48-channel data 7.55 .183

After getting no effective results from the chi-square test of independence with CNN

models, the alternative way is checking the same null hypothesis for the ResNet mod-

els with the same input combinations. Table 5.2 shows that reliable results exist for

the ResNet with 24 and 48 channel data (bold, in the table). The former’s p-value is

.035, while that of the latter is .039. They are both smaller than the alpha value of

0.05. Stated in other words, the likelihood of the occurrence of the relation between

the partition number and bipolar disorder by chance is below %5 in these models.

Hence, we are able to reject the null hypothesis and state that the most activated par-

tition number is dependent on whether a subject is bipolar or not.

Table 5.2: Results of the chi-square test of independence for the ResNet models

χ2-value p-value

The ResNet model with 24-channel data 12.01 .035

The ResNet model with 48-channel data 11.74 .039
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By considering these results, we investigate deeply which part of the verbal fluency

test activates most the visualization output, i.e. which part constitutes the basis of

networks’ decisions on the bipolar disorder classification. For this purpose, we in-

dependently conduct the chi-square test on each partition such that we divide the

timeline as 1 partition and the remaining. In other words, the effect of each partition

is checked while assuming the remaining partitions as a single partition. Accordingly,

Table 5.3 is constructed and it is shown that only Pre-task 1 has a meaningful p-value

(bold, in the table). On the other hand, there is no bipolar subject whose maximum

activation resides in Post-task 1, Pre-task 2, and Task 2; therefore, it is not applica-

ble to conduct the test for these partitions. In conclusion, it is most likely that the

partition number with the maximum activation of bipolar patients is Pre-task 1.

Table 5.3: Singular partition results of the chi-square test of independence for the

ResNet model with 24-channel data

χ2-value p-value

Pre-task 1 vs remaining parts 7.64 .006

Task 1 vs remaining parts 0.06 .802

Post-task 1 vs remaining parts N/A N/A

Pre-task 2 vs remaining parts N/A N/A

Task 2 vs remaining parts N/A N/A

Post-task 2 vs remaining parts 1.19 .276

Table 5.4 gives the chi-square test of independence result for the ResNet model with

48-channel input data. The p-value of Pretask 1 is significant, which supports the

aforementioned deduction such that bipolar subjects have their maximum activation

very likely in Pretask 1. Besides, in this model, none of all subjects has the maximum

activation at Posttask 2, instead of Pretask 2 from the previous model.
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Table 5.4: Singular partition results of the chi-square test of independence for the

ResNet model with 48-channel data

χ2-value p-value

Pretask 1 vs remaining parts 7.25 .007

Task 1 vs remaining parts 0.43 .51

Posttask 1 vs remaining parts N/A N/A

Pretask 2 vs remaining parts 0.36 .549

Task 2 vs remaining parts N/A N/A

Posttask 2 vs remaining parts N/A N/A

5.3.2 T-Test

In the previous section, the chi-square test is carried out so that the partition num-

ber’s dependency with maximum activation on the bipolar disorder can be checked.

However, in order to dive into deeper characteristics of healthy and bipolar subjects,

we need to understand the distribution of these two populations. At this point, the

t-test comes out as a solution such that whether there is a particular pattern in av-

erage activations of bipolar subjects distinguished from that of healthy subjects and

their means, as well as standard deviations, are investigated for that purpose. For

the use of the t-test, we need to average activations of each partition in itself, as we

did in the chi-square test. Then, since we have average activations of each partition

for all bipolar and healthy subjects, we are able to analyze the distribution of both

populations for each partition independently. However, before applying the t-test, it

is required to check if the dataset meets three main assumptions of the parametric

statistical test. The first two are the independence of observations and the homogene-

ity of population variance, and they are both valid for our dataset. The normality of

the dataset, which is the last assumption, is checked with an additional process. For

this purpose, after collecting average activations of both populations, we perform the

Kolmogorov-Smirnov test for goodness of fit with the null hypothesis that populations

follow normal distribution patterns.
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P-values of the test for the ResNet models are much greater than .05, which implies

that we cannot reject the null hypothesis. Hence, there is strong evidence of the

average activations of healthy and bipolar subjects being normally distributed. To il-

lustrate, the distribution of average activations belong to populations of healthy and

bipolar subjects in the Task 2 is given in Figure 5.9. These results are obtained by the

ResNet model with 24-channel data; however, results from the ResNet model trained

with 48 channel input data have similar distributions of average activations of healthy

and bipolar subjects. They both fulfill the condition of normal distribution. On the

other hand, the Kolmogorov-Smirnov test results of CNN models imply that aver-

age activations’ distributions belong to healthy and bipolar subjects are not normally

distributed.

Figure 5.9: The histogram plot of average activations of Task 2 belonging to the

ResNet model with 24-channel data

Average activations of bipolar subjects shown in Figure 5.9 with red lines are located

close to each other; whereas, those of healthy subjects reside in their neighborhood,

seen with blue lines. It is possible to make an inference that both populations’ vari-

ances differ from each other. To support this inference, means and standard deviations

of healthy and bipolar populations for each partition are given in Table 5.5 and Table
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5.6, respectively. In the former, the means of partitions stay between 2.63 and 2.94,

while those of the latter are between -3.16 and -1.64. On the other hand, standard

deviations are less than approximately 0.75 for the healthy population; whereas, they

range from 2.665 to 3.704 for the bipolar population.

Table 5.5: Means and standard deviations of average activations of 25 healthy subjects

belonging to the ResNet model with 24-channel data

Mean Standard Deviation

Pretask 1 2.94 0.735

Task 1 2.85 0.767

Posttask 1 2.86 0.596

Pretask 2 2.88 0.596

Task 2 2.63 0.566

Posttask 2 2.65 0.698

Table 5.6: Means and standard deviations of average activations of 21 bipolar subjects

belonging to the ResNet model with 24-channel data

Mean Standard Deviation

Pretask 1 -1.64 2.665

Task 1 -2.12 2.974

Posttask 1 -2.50 3.429

Pretask 2 -2.50 3.288

Task 2 -2.87 2.948

Posttask 2 -3.16 3.704

After the normality of the dataset is proven, since we have two populations with

different sizes and variances, the Welch’s t-test is applied for each of the partitions

independently. The null hypothesis for the test is that two populations come from

the same origin; however, they can be distinguishable from each other in proportion
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to the difference between the calculated t-value and the value of the test statistic. T-

values and p-values are provided in Table 5.7. When the degrees of freedom of the

population is calculated as 30, and the confidence interval is 95%, the value of the test

statistic is found as 1.697. By comparing this value with t-values from Table 5.7, we

find a significant difference between healthy and bipolar populations regarding their

visualization outputs since calculated t-values are much greater than 1.697. Table

5.8 confirms this result with better performance while using the ResNet model with

48-channel data.

Table 5.7: T-values and p-values of all partitions for the ResNet model with 24-

channel data

t-value p-value

Pretask 1 11.59 2.08e−12

Task 1 12.97 1.23e−12

Posttask 1 12.38 2.34e−12

Pretask 2 12.65 1.24e−12

Task 2 13.61 1.92e−13

Posttask 2 12.86 7.57e−13

Other than comparing healthy and bipolar subjects partition by partition, we investi-

gate whether the difference in average activations between two populations by taking

into consideration the entire test duration, in other words putting all 6 partitions as a

whole. For that purpose, we average the activations of the entire test for all subjects.

Then we apply the Kolmogorov-Smirnov test on both populations to check if their

distributions are normal. Nevertheless, test results belong to CNN models showing

that average activations’ distributions belong to healthy and bipolar subjects are not

normally distributed. However, distributions of average activations from the ResNet

models are normally distributed, enabling us to study on them and evaluate the re-

sults.
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Table 5.8: T-values and p-values of all partitions for the ResNet model with 48-

channel data

t-value p-value

Pretask 1 16.73 7.00e−18

Task 1 18.82 7.14e−18

Posttask 1 17.97 1.03e−16

Pretask 2 17.97 4.21e−17

Task 2 19.20 5.93e−18

Posttask 2 17.51 5.47e−17

Table 5.9 demonstrates that means of healthy and bipolar subjects for the ResNet

model with 24-channel data are 2.78 and -2.47, respectively; whereas variances of

those are 0.61 and 2.93. For the ResNet model with 48-channel data, these values are

2.79 and -6.05 for mean and 0.98 and 3.63 for the variance. These results indicate

that differences between means and variances of both populations are much greater

in the ResNet model with 48-channel data. After obtaining average activations of

healthy and bipolar subjects, we apply the Welch’s t-test for both the ResNet models.

According to Table 5.9 T-values and p-values of the ResNet model with 24-channel

input data are 12.97 and .43e−12, respectively; whereas those of the ResNet model

with 48-channel data are 19.20 and .57e−17. When the degrees of freedom is calcu-

lated as 27, and the confidence interval is decided as 95%, the corresponding value of

the test statistic is 1.703. Comparing this value with t-values from Table 5.9, we find

a significant difference between healthy and bipolar populations with regards to their

visualization outputs, since the t-values from Table 5.9 are much greater than 1.703.
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Table 5.9: Means and standard deviations of average activations of 21 bipolar and 25

healthy subjects when the performance of the whole test duration is investigated

Healthy Population Bipolar Population

Mean
Standard

deviations
Mean

Standard

deviations
t-value p-value

The ResNet with

24-channel input
2.78 0.61 -2.47 2.93 12.97 4.3e−13

The ResNet with

48-channel input
2.79 0.98 -6.05 3.63 19.20 5.7e−18

5.4 Discussions

It is important to investigate the specificity of certain neurophysiological abnormal-

ities to bipolar disorder in order to determine both the similarities and differences

between bipolar and healthy people. Even within the same task, i.e. VF-task, the

reported changes in the frontal lobe function between bipolar and healthy subjects

are so far inconsistent since outcomes of research differ from each other. Therefore,

it is open for improvement, and new inferences are needed to be revealed. In [40],

Onitsuka et al. review fNIRS studies of bipolar disorder and state that increases of

oxy-Hb and total-Hb in bipolar disorder patients are significantly smaller than those

in healthy subjects during the VF-task. In addition, their findings suggest that during

the VF-task, remitted subjects with bipolar disorder exhibit bilateral hypofrontality,

which means a state of decreased cerebral blood flow in the prefrontal cortex of the

brain. In [41], Kameyama et al. monitor changes in oxy-Hb concentration during the

cognitive task using frontal and temporal probes of two sets of 24-channel fNIRS de-

vices. They find that oxy-Hb increases in the bipolar disorder group are smaller than

those in the healthy control group during the early period of a VF-task, larger than

those in the healthy control group during this task’s late period. Since the activations

of healthy subjects are higher than those of bipolar ones, it is expected to produce

distinguishable patterns in their visualization outputs as well.
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Although previous researchers generally focus only on the VF-task duration, in our

study, our neural networks are trained by using the whole time period of the verbal

fluency test in order to investigate patterns that may lie behind the resting time pari-

tions, i.e. pre-task and post-task partitions, as well as the actual task partitions. The

results given in Section 5.3 are obtained for each time partitions comparing healthy

and bipolar subjects. Thanks to Table 5.2, we are able to state that the most activated

partition of the verbal fluency test is dependent on whether a subject is bipolar or

not. Besides, Tables 5.3 and 5.4 reveal that it is most likely that the partition with

the maximum activation of bipolar patients is the Pretask 1 of the test, i.e. the resting

state. This finding is crucial since it tells us that the differentiation between bipolar

and healthy subjects can occur even outside the test’s task partitions.

Furthermore, from Tables 5.7 and 5.8 given in the previous section, it can be deduced

that the significance of the difference between populations increases comparatively in

Task 1 and Task 2 parts of the verbal fluency test. Hence, it can be said that healthy

and bipolar subjects’ performances differentiate through the experiment but espe-

cially during actual task parts. It is unexpected since these results state that even

in the resting time, healthy and bipolar subjects produce brain signals that comprise

different patterns specific to their labels. Around Task-2, t-values are greater than

those of Task-1, which implies that differences between distributions of healthy and

bipolar subjects’ average activations are slightly more apparent in Task-2 compared

to Task-1, which coincides with the aforementioned findings of [40] and [41]. On the

other side, the results of the case where the entire VF-test duration investigated as a

whole are given in Table 5.9. These outcomes prove the aforementioned statement

that distributions of healthy and bipolar subjects’ average activations are significantly

different with distinctive characteristics.

Standard deviations of partitions for healthy subjects given in Table 5.5, are small

since the model is able to grab a common pattern for healthy subjects; as a conse-

quence, visualization outputs of healthy subjects have similar distributions. It is ex-

pected as a result of which brain activities of healthy subjects act in similar patterns.

Bipolar subjects, on the other hand, spread on a large area in Figure 5.9, with greater

standard deviations for all partitions. As it is known that bipolar subjects are in the

same phase of the disease while conducting the verbal fluency test [5], these differ-

60



ences of average activations between patients are not due to the variation of clinical

stage. Instead, they are most likely to be originated from differences in the severity

of disease for each individual.

The difference in the pattern in bipolar patients from healthy controls may be a sign of

neurodegeneration that occurs during the illness. Moreover, differences in activations

along the time course cause inconsistent results in cognitive activation regarding bipo-

lar disorder. Tests mentioned in the previous section are intense supporters of these

claims. This study may open a new window into psychiatrists so that they can work

through the aforementioned outcomes.

On the other hand, our test results show that the ResNet models outperform those of

CNN, which are in agreement with the deep learning literature. The study of Fawaz

et al. reveals the dominance of ResNet as the best performing deep network across

different domains, including the time domain [27]. The ResNet has higher success

in training the network due to its deep flexible architecture. The ResNet is able to

filter out discriminative regions with higher confidence, and its output has a higher

resolution, which enables us to visualize by using more samples. As mentioned in

4.1.2, this ability comes from the shortcut connection between convolutional blocks

providing the network to learn to skip unnecessary convolutions since the gradients

can flow directly through the bottom layers in the network. Therefore, the statistical

tests conducted during this study give more stable results for the ResNet models.
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CHAPTER 6

CONCLUSIONS

6.1 Conclusion and Future Works

In this study, we analyze the decision mechanism of neural networks trained for the

classification of the diagnosis of bipolar disorder by using the time-series neuroimag-

ing data, i.e. fNIRS measurements, taken during the verbal fluency test. The main aim

is to provide assistance to psychiatrists for understanding the characteristic features

of fNIRS data belong to bipolar patients.

In order to accomplish this goal, we benefit from CAM to visualize the Convolutional

Neural Network and Residual Neural Network. Since our dataset is time-series, the

visualization process differs from the traditional methods which use the image data.

Therefore, we modify the class activation maps so that the heatmap of time-series

data can be generated. After the modification, we are able to observe the importance

of every time interval of the verbal fluency test for any subject by visualizing the

heatmaps of activation in the time scale.

Directly observing these heatmaps and making an inference according to them is

unfavorable since the data comes from different subjects. Also, their interactions

with the environment, which might trigger their activation maps for a brief time, are

unpredictable. For this reason, in order for psychiatrists to obtain more trustworthy

and understandable results, we divide the heatmaps into partitions in accordance with

those of the verbal fluency test. Then, we calculate the average activations for each

partition. Using these average activations, we analyzed the differentiation of healthy

and bipolar groups and the comparison of CNN and ResNet models with statistical

tools. We apply the chi-square test of independence to reveal whether bipolar disorder
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is related to a specific partition of the test that shows the maximum activation in

the neural network. When we use the ResNet models, our findings reveal that it is

possible to state that the most activated partition of the verbal fluency test is dependent

on whether a subject is bipolar or not. Moreover, the maximum activations belonging

to bipolar subjects occur most likely in the test’s first resting time. Hence, given that

the maximum activation of a subject is in the first resting time, most likely she/he has

the bipolar disease.

On the other side, we perform the independent t-test so that the distributions of the

average activations of healthy and bipolar populations can be examined for each par-

tition of the test. According to our results, when both CNN and ResNet models are

used, the significance of the difference between populations increases comparatively

in the verbal fluency test’s first and second tasks. Hence, it can be said that healthy

and bipolar subjects’ performances differ through the experiment but especially dur-

ing actual task parts. In other words, healthy and bipolar subjects produce brain

signals which comprise different patterns specific to their labels. Furthermore, thanks

to our findings, the differences between distributions of healthy and bipolar subjects’

average activations are slightly more apparent in the second task compared to the first

one.

Moreover, we find that standard deviations of average activations of the healthy pop-

ulation for all partitions of the test are small compared to those of the bipolar popula-

tion since neural networks are able to grab a common pattern for healthy subjects. It

is expected as a result of which brain activities of healthy subjects act in similar pat-

terns. In other respects, the bipolar population has high standard deviations due to the

variability of the disease severity for each individual, such as the neurodegeneration

that occurs during the illness.

After getting more subjects’ fNIRS data, more trustworthy and stable networks with

higher accuracy can be obtained. Then, for future work, the experiment and the sta-

tistical tests that have been formerly failed due to the lack of a sufficient number of

subjects can be repeated, and the results can be evaluated by comparing them with the

current findings. Besides, the fNIRS data consists of time and channel information,

and in this study, we focus on showing the importance of the test’s time intervals.
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By this means, we provide psychiatrists with information that which part of the test

is more suitable to distinguish the bipolar and healthy subjects. However, the com-

parison of the channels can be studied as another future work. The most significant

channels that correspond to specific brain regions can be decided and used by psychi-

atrists to distinguish bipolar subjects.

65



66



REFERENCES

[1] A. Punjabi and A. K. Katsaggelos, “Visualization of feature evolution during

convolutional neural network training,” in 2017 25th European Signal Process-

ing Conference (EUSIPCO), pp. 311–315, 2017.

[2] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,

“Grad-cam: Visual explanations from deep networks via gradient-based local-

ization,” International Journal of Computer Vision, vol. 128, p. 336–359, Oct

2019.

[3] E. Johns, O. M. Aodha, and G. J. Brostow, “Becoming the expert - interactive

multi-class machine teaching,” 2015.

[4] H. B. Evgin, “Deep learning for the classification of bipolar disorder by using

fnirs measurements,” Master’s thesis, The Graduate School of Natural and Ap-

plied Sciences of Middle East Technical University, 2 2021.

[5] Y. H. ALICI, Bipolar Bozukluk Hastalarında Sozel Akıcılık Ve Dusunce Akıcılığı
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