
FINDING AN ENERGY EFFICIENT PATH FOR A PLUG - IN ELECTRIC
VEHICLE VIA SPEED OPTIMIZATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BİLGENUR ERDOĞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

FEBRUARY 2021

Approval of the thesis:

FINDING AN ENERGY EFFICIENT PATH FOR A PLUG - IN ELECTRIC
VEHICLE VIA SPEED OPTIMIZATION

submitted by BİLGENUR ERDOĞAN in partial fulfillment of the requirements for
the degree of Master of Science in Industrial Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Esra Karasakal
Head of Department, Industrial Engineering

Assist. Prof. Dr. Mustafa Kemal Tural
Supervisor, Industrial Engineering

Examining Committee Members:

Prof. Dr. Meral Azizoğlu
Industrial Engineering, METU

Assist. Prof. Dr. Mustafa Kemal Tural
Industrial Engineering, METU

Assoc. Prof. Dr. Sedef Meral
Industrial Engineering, METU

Assist. Prof. Dr. Sakine Batun
Industrial Engineering, METU

Assist. Prof. Dr. Özlem Çavuş İyigün
Industrial Engineering, Bilkent University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Bı̇lgenur Erdoğan

Signature :

iv

ABSTRACT

FINDING AN ENERGY EFFICIENT PATH FOR A PLUG - IN ELECTRIC
VEHICLE VIA SPEED OPTIMIZATION

Erdoğan, Bı̇lgenur

M.S., Department of Industrial Engineering

Supervisor: Assist. Prof. Dr. Mustafa Kemal Tural

February 2021, 106 pages

Given an origin-destination pair over a directed network, the problem of determining

a path joining origin and destination, the speed of a plug-in electric vehicle on each

road segment, i.e., arc, along the path, the charging stations the vehicle will stop by,

and how much to recharge at each stop so as to minimize the total amount energy

consumption of the vehicle is considered. There are speed limits on each road seg-

ment, and the vehicle has to arrive at the destination on or before a given time-limit.

For this problem, firstly, a mixed-integer second order cone programming formula-

tion is proposed. Secondly, to be able to solve larger size instances, a matheuristic

is developed. Lastly, a variable neighborhood search (VNS) heuristic is designed for

this problem. Solution quality and computation times of the heuristics and the exact

algorithm are compared on different instances.

Keywords: plug-in electric vehicle, min-cost path problem, second order cone pro-

gramming, matheuristic, variable neighborhood search

v

ÖZ

FİŞLİ ELEKTRİKLİ ARAÇLAR İÇİN HIZ OPTİMİZASYONU İLE ENERJİ
TÜKETİMİNİ ENAZLAYAN YOL BULMA

Erdoğan, Bı̇lgenur

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Mustafa Kemal Tural

Şubat 2021 , 106 sayfa

Başlangıç ve bitişi önceden karar verilmiş bir ağ üzerinde, gidilecek yolu, her yol

bölmesi üzerindeki hızı, aracı şarj etmek için durulacak istasyonları ve şarj miktarla-

rını belirleyen, fişli elektrikli araçlar için toplam enerji tüketimini enazlayan problem

üzerinde çalışılmıştır. Her yol parçasında hız sınırları belirlenmiş, tüm yol için za-

man kısıtı verilmiştir. İkinci dereceden konik programlama, matsezgisel, değişken

komşu arama algoritmaları çözüm yöntemleri olarak kullanılmıştır. Çözüm kalitesi

ve hesaplama zamanları belirlenen çözüm yöntemleri için farklı örnekler üzerinde

karşılaştırılmıştır.

Anahtar Kelimeler: fişli elektrikli araç, minimum maliyetli yol bulma problemi, ikinci

dereceden konik programlama, matsezgisel, değişken komşu arama

vi

To my family...

vii

ACKNOWLEDGMENTS

I would like to thank my supervisor Assist. Prof. Dr. Mustafa Kemal Tural for his

support and guidance. He made great contributions to me during this research.

I would also like to present my gratitude to the examining committee members of

this thesis Prof. Dr. Meral Azizoğlu, Assoc. Prof. Dr. Sedef Meral, Assist. Prof.

Dr. Sakine Batun and Assist. Prof. Dr. Özlem Çavuş İyigün for their feedback

and contributions to enhance this study. I am very grateful to be a student of such

esteemed academicians. Also, I am proud of being a part of METU-IE department

and very grateful to all professors of this department for their teachings and directions

to academia.

I thank my parents who encourage me to make research. They never witheld their

endless patience and love from me. I am indebted to my husband, Alper, who sup-

ported me in any case and any time. I feel grateful to my brother and sister for

helping me feel better during stressful times. Furthermore, I really appreciate all the

help Arsham Atashi Khoei given me in C++ and CPLEX. I thank also my dear friends

Kadir Berkay Aydemir and Caner Sezgin for their supports in coding. Finally, I thank

my dear friends and my dear Professors at METU-IE who are always supporting me

emotionally. They have a special place in my life.

This study was supported by TÜBİTAK 2210/A National Graduate Scholarship Pro-

gram.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 7

2.1 Minimum Cost Path and Routing Problems for Electric Vehicles . . . 7

2.2 Energy Consumption Behavior of Electric Vehicles 9

2.3 Matheuristic Approaches for Minimum Cost Path and Routing Prob-
lems . 11

2.4 Meta-Heuristic Approaches for Routing and Energy Consumption
Optimization Problems . 13

3 ENERGY EFFICIENT PATH PROBLEM FOR A PLUG – IN ELECTRIC
VEHICLE VIA SPEED OPTIMIZATION 17

3.1 Problem Definition . 17

ix

3.2 Mathematical Model . 20

3.2.1 Notation . 21

3.2.2 Formulation . 22

4 SOLUTION METHODOLOGY . 27

4.1 A Matheuristic Approach . 27

4.1.1 Definitions and Notation . 28

4.1.2 Algorithm Construction . 29

4.2 A VNS Approach . 36

4.2.1 Definitions and Notation . 36

4.2.2 Algorithm Construction . 41

5 COMPUTATIONAL EXPERIMENTS . 49

5.1 Instance Generation . 49

5.2 Preliminary Experiments . 53

5.3 Computational Results . 58

6 CONCLUSIONS . 93

REFERENCES . 95

APPENDICES

A PEVEEP-MISOCP MODEL . 99

B PEVTEPP-MIP MODEL . 101

C PEVTEPP-MISOCP MODEL . 103

D PEVFEEP–MISOCP MODEL . 105

x

LIST OF TABLES

TABLES

Table 1.1 Electric Vehicle Types . 3

Table 2.1 Energy Consumption Function Parameter Values used in [1] 10

Table 3.1 The Values of Coefficients in Energy Consumption Model 19

Table 4.1 Mathematical Models used in Matheuristic 29

Table 5.1 Summary of Parameters Generated Based on Number of Nodes over

a Network . 52

Table 5.2 Preliminary Experiments for Matheuristic while k = 1 and K = 1 . 54

Table 5.3 Preliminary Experiments for Matheuristic while k = 5 and K = 1 . 55

Table 5.4 Preliminary Experiments for Matheuristic while k = 5 and K = 5 . 55

Table 5.5 Preliminary Experiments for VNS heuristic while KRON = 5 and

K = 5 . 56

Table 5.6 Preliminary Experiments for VNS heuristic while KRON = 15 and

K = 5 . 57

Table 5.7 Preliminary Experiments for multistart (I = 3) VNS heuristic while

KRON = 15 and K = 5 . 57

Table 5.8 Preliminary Experiments for multistart (I = 5) VNS heuristic while

KRON = 15 and K = 5 . 58

xi

Table 5.9 Optimal Solutions for the Instances with nodes 24 and 41 using

PEVEEP-MISOCP . 59

Table 5.10 Optimal Solutions for the Instances with nodes 50 using PEVEEP-

MISOCP . 60

Table 5.11 Optimal Solutions for the Instances with nodes 146 using PEVEEP-

MISOCP . 61

Table 5.12 Optimal Solutions for the Instances with nodes 195 using PEVEEP-

MISOCP . 62

Table 5.13 Solutions for the Instances with nodes 24 and 41 using Matheuristic

with MIP Initialization . 67

Table 5.14 Solutions for the Instances with nodes 50 using Matheuristic with

MIP Initialization . 68

Table 5.15 Solutions for the Instances with nodes 146 using Matheuristic with

MIP Initialization . 68

Table 5.16 Solutions for the Instances with nodes 24 and 41 using Matheuristic

with kth Path Initialization . 71

Table 5.17 Solutions for the Instances with nodes 50 using Matheuristic with

kth Path Initialization . 72

Table 5.18 Solutions for the Instances with nodes 146 using Matheuristic with

kth Path Initialization . 72

Table 5.19 Solutions for the Instances with nodes 195 using Matheuristic with

kth Path Initialization . 73

Table 5.20 Solutions for the Instances with nodes 321 using Matheuristic with

kth Path Initialization . 74

Table 5.21 Analysis of PEV Speed with changing T on networks with 50 nodes 75

Table 5.22 Solutions for the Instances with nodes 24 and 41 using VNS heuristic 78

xii

Table 5.23 Solutions for the Instances with nodes 50 using VNS heuristic . . . 79

Table 5.24 Solutions for the Instances with nodes 146 using VNS heuristic . . . 79

Table 5.25 Solutions for the Instances with nodes 195 using VNS heuristic . . . 80

Table 5.26 Solutions for the Instances with nodes 321 using VNS heuristic . . . 81

Table 5.27 Solutions for the Instance with 40 nodes 82

Table 5.28 Comparison of Heuristic Performances on Networks whose Node

sizes are 24 and 41 . 83

Table 5.29 Comparison of Heuristic Performances on Networks whose Node

sizes are 50 and 146 . 84

Table 5.30 Comparison of Heuristic Performances on Networks whose node

sizes are 195 and 321 . 85

Table 5.31 Exact Solutions of some Networks with Tight Upper Time Limit Tnew 89

Table 5.32 Matheuristic with MIP Initialization Solutions of some Networks

with Tight Upper Time Limit Tnew . 90

Table 5.33 Matheuristic with kth Path Initialization Solutions of some Net-

works with Tight Upper Time Limit Tnew 90

Table 5.34 VNS Heuristic Solutions of some Networks with Tight Upper Time

Limit Tnew . 91

xiii

LIST OF FIGURES

FIGURES

Figure 3.1 Energy Consumption Function per unit distance traveled of a PEV 19

Figure 4.1 Matheuristic Algorithm with MIP Initialization 31

Figure 4.2 An Illustration of Station Insertion Algorithm 37

Figure 4.3 An Illustration of Replacement of Expensive Nodes Algorithm . 39

Figure 4.4 An Illustration of Short Cut Algorithm 40

Figure 4.5 VNS Algorithm . 42

Figure 5.1 Solution of the Instance (50− 30− 3) 64

Figure 5.2 An Illustration of Increase in Variable Vij along a Path 88

xiv

LIST OF ABBREVIATIONS

EV Electric Vehicle

HEV Hybrid Electric Vehicle

IVNS Iterated Variable Neighborhood Search

MCPP-PHEV Minimum Cost Path Problem for a Plug-In Electric Vehicle

MIP Mixed Integer Programming

MISOCP Mixed Integer Second Order Cone Programming

PEV Plug-In Electric Vehicle

PEVEEP Plug-in Electric Vehicle Energy Efficient Path Problem

PEVEEP-MINLP Mixed Integer Nonlinear Programming Type Energy Consump-

tion Minimization Model

PEVEEP-MISOCP Mixed Integer Second Order Conic Programming Type Energy

Consumption Minimization Model

PEVFEEP-SOCP Mixed Integer Second Order Conic Programming Type Energy

Consumption Minimization Model along a fixed path

PHEV Plug-In Hybrid Electric Vehicle

PEVTEPP-MIP Mixed Integer Programming Type Time Minimization Model

PEVTEPP-MISOCP Mixed Integer Second Order Conic Programming Type Time

Minimization Model

SOCP Second Order Cone Programming

TTRP Truck and Trailer Routing Problem

VND Variable Neighborhood Descent

VNS Variable Neighborhood Search

VNSB Variable Neighborhood Search Branching

WCSPP Weight Constrained Shortest Path Problem

xv

xvi

CHAPTER 1

INTRODUCTION

In recent years, number of studies related with CO2 emissions, sustainable systems

and green problems involving environmental concerns in their objective functions

increased. More research will be made in near future thanks to the increasing envi-

ronmental awareness of humanity to protect "our home", the world.

In this direction, electric vehicles make a major contribution to have a greener envi-

ronment. Due to their lower tailpipe carbon dioxide emissions compared to vehicles

with internal combustion engines, they will be more attractive year by year.

A recent study shows that transportation, mainly fuel consumption of transportation,

is responsible for 24% of global total energy consumption [2]. This consumption can

be decreased by using fewer vehicles or adapting advanced engine technologies. In

addition to saving from emissions, electric vehicles also do not produce noise pol-

lution. Hence, governments start to take preventive actions to reduce harmful gases

which causes global warming and extinction of living creatures in the long term. For

example, Energy Union put some obligations and targets on emissions for new cars

produced in European Countries between 2025 and 2030 [3], and it is estimated that

these limitations will provide 15% to 37.5% reductions in emissions [3]. Therefore,

the use of electric vehicles has gained popularity.

There are 3 types of electric vehicles that are currently in use. First one is plug-

in electric vehicle (PEV). These vehicles only use electricity as an energy source.

They should be plugged in to recharge itself. As they have a limited battery capacity,

recharging stations are needed to address their charging needs. The second type of

electric vehicles is hybrid electric vehicles (HEV). These vehicles use two types of

1

energy resources, electricity and fuel. They have internal combustion engines which

convert fuel energy to electrical energy while driving. Thirdly, plug-in hybrid electric

vehicles (PHEV) include both internal combustion and electrical engines. They can

be recharged by plugging in like PEVs. When they are out of electrical energy, they

switch to internal combustion engine to provide continuous driving like HEVs. This

classification can be seen in Table 1.1.

From both economic and environmental perspectives, electric vehicles have some

benefits. However, they have also some limits for users. PEV users want to know

more about driving ranges, driving costs and tax-related issues, i.e. governmental

incentives, of PEVs. PEVs have limited battery capacities and can not make long dis-

tance trips without recharging due to their limited ranges. On the other hand, HEVs

can recharge themselves using fuel energy while driving which provides fewer num-

ber of stops to recharge and shorter travel times. PHEVs can also make long distance

trips using both engines while reducing emissions by electrical engine and switching

to internal combustion engine when out of electrical energy. So, PEVs and HEVs

need electrical recharging stations and fuel refilling stations on the road, respectively.

On the other hand, PHEVs use both electrical recharging stations and fuel refilling

stations on the road. Number of recharging stations around, traffic congestion, speed

of the vehicle, distances of the roads, time windows, driver skills, physical conditions

of the road are some of the factors affecting the performance of electric vehicles.

In this study, we used a PEV on a network with several stations where the vehicle can

be recharged. There is a directed network where we are trying to find a path connect-

ing predetermined origin and destination nodes. Moreover, the problem decides the

speed of the vehicle optimizing energy consumption along the path. In order not to

be out of energy while driving, the vehicle has to stop at electrical recharging stations

whose locations are predetermined in this network. In the literature, many studies

assume that the vehicles travel at a constant speed; in our study, however, speed is

a decision variable. For each road segment there are speed limits and the driver can

drive at any speed without violating these limits. These speed limits may be given as

parameters to the problem reflecting the real life, legal speed limits. Speed limits may

also be determined using traffic congestion. If there is a traffic congestion, a vehicle

can drive at a speed level impacted by the traffic conditions. Moreover, there is a time

2

Table 1.1: Electric Vehicle Types

Vehicle Type Engine Type Energy Outsource

Plug-in Electric Vehicle (PEV) Electrical Engine Electricity

Hybrid Electric Vehicle (HEV)

Electrical Engine

Internal Combustion Engine

Fuel

Plug-in Hybrid Electric Vehicle (PHEV)

Electrical Engine

Internal Combustion Engine

Electricity

Fuel

limitation on total travel and charging time. Toward these properties, an optimization

problem finding an energy efficient path is analyzed, which decides the speed of the

vehicle based on energy consumption while satisfying the time and speed limits. This

problem is defined as finding an energy efficient path for a plug-in electric vehicle via

speed optimization. Throughout the thesis, it is abbreviated as PEVEEP which means

plug-in electric vehicle energy efficient path problem. To summarize, the following

decisions are included in our model:

• Finding a path joining origin to destination considering connectivity of the

nodes over the network

• Determining the speed of the vehicle on each road segment along the path

• Determining where to stop to recharge the battery and how much to recharge

In order to make these decisions a mathematical model is constructed. We assumed

an electric vehicle with some energy at the beginning of the trip which has a pre-

determined energy consumption behavior. This behavior is defined using an energy

consumption function in the literature, which is a function of speed. This function

is an equation of the third degree which makes the problem nonlinear. This problem

aims to minimize the energy consumption while making sure that the destination is

reached before the time limit. Also, violation of the speed limits is not allowed.

One of the minimum cost path problems is weight constrained shortest path problem

(WCSPP). In WCSPP, each arc in the network has an associated weight in addition to

3

distance. This problem tries to find the shortest path between origin and destination

nodes where total of arc weights should be less than a predetermined value. This

problem is known to be NP-hard [4]. The problem considered here is a generalization

of the WCSPP. Consider an instance of the WCSPP, where each arc has a positive

length and weight. In our problem, energy consumption over travel time per unit

distance can be any value greater than or equal to some constant c assuming that

there are no time limits. We scale the lengths in WCSPP such that length over the

weight is at least c for every arc. Now the weights in WCSPP become our travel

times and lengths become energy consumptions, where the speeds are fixed in every

arc. Furthermore, we assume that the initial energy is large enough so that there is

no need to stop at a station to recharge. Thus, we have converted an instance of the

WCSPP to an instance of PEVEEP. So, the PEVEEP is NP-hard as well.

A mixed integer second order cone programming formulation is provided to solve the

PEVEEP. Moreover, as the formulation becomes inadequate for larger instances, at

matheuristic and a VNS heuristic are developed for the problem. Solution quality and

computation times are analyzed. A contribution of this study is introduction of speed

optimization while finding an energy efficient path. Up to now, related studies work

with constant predetermined speeds on a network. On the other hand, speed is a de-

cision variable in our problem. Based on this problem definition, we solved instances

from the literature that are used for another problem previously. A matheuristic ap-

proach is also introduced in this thesis. This approach first tries to find a feasible path

on the directed network. Feasibility in terms of time is provided by the help of a new

problem definition: time efficient path problem for an electric vehicle (PEVTEPP).

This problem is a mixed integer programming (MIP) problem that aims to find a path

on a network which satisfies a total time restriction where speed is a parameter. On the

other hand, feasibility in terms of energy is provided by the help of another problem

definition: energy efficient path problem for an electric vehicle along the fixed path.

This problem is modeled as second order cone programming (SOCP) problem which

minimizes the energy consumption along the decided path previously (PEVFEEP-

MISOCP). A third degree function of a speed is used in the objective function of this

problem. At the same time, speed is a decision variable, and the model is nonlinear.

After feasibility is provided, matheuristic makes improvements on energy consump-

4

tion level by considering alternative paths and using PEVFEEP-MISOCP model.

Our second solution method is a variable neighborhood search (VNS) heuristic which

includes different local search methods. This heuristic starts with an initial path which

is constructed using an initialization method. Then, improvement on this path is made

using the defined local search methods while satisfying time and energy feasibility.

In other words, the algorithm starts with a feasible or infeasible path, and results with

a feasible path whose energy consumption level is the smallest one among other tried

paths throughout the VNS algorithm implementation.

Organization of the thesis is as follows: Chapter 2 includes a literature review of the

related studies, instances, parameters and heuristic approaches. Problem definition

is given in Chapter 3. Solution approaches for the PEVEEP are detailed in Chapter

4. The details of computational experiments are provided in Chapter 5. Finally,

conclusion and future research directions are presented in Chapter 6.

5

6

CHAPTER 2

LITERATURE REVIEW

Minimum cost path and routing problems, behavior of electrical vehicle batteries,

matheuristic and metaheuristic approaches for these types of problems are reviewed

in detail in this chapter.

2.1 Minimum Cost Path and Routing Problems for Electric Vehicles

In 2014, Schneider et al. studied a PEV routing problem with time windows and

recharging stations [5]. They consider requirement of visits to recharge stations dur-

ing a tour based on limited battery capacity. As a solution method, a heuristic combin-

ing two metaheuristics, neighborhood search and tabu search, is proposed. Positive

effect of this hybrid metaheuristic is investigated. A mixed integer programming for-

mulation is also provided which minimizes the total distance traveled on a network.

In addition to classical vehicle routing problem, stopping decisions are made in this

study. Connectivity of customer visits and recharging stations, and flow conservation

constraints are included. Moreover, time limits for recharging stations and travels on

each road segment are given as constraints.

In 2014, Baum et al. also studied a PEV routing problem. They stated that the energy-

optimal tour can be too long, or the fastest route can be infeasible as energy consumed

per distance increases [6]. So, a bicriteria optimization to obtain Pareto sets of routes

is considered. Velocity can change on each road segment but a limited number of

discrete speed values are available. Baum et al. aims to propose a full Pareto set of

all nondominated paths where speed variables a re not continuous.

7

A minimum cost path problem for PHEVs without any time constraints or cycles is

studied in [4]. Cycle occurs when PHEV drives at a loop starting and finishing at

the same node in order to produce electrical energy using its hybrid property. The

problem tries to find a path with minimum total energy consumption between origin

and destination nodes. Shortest path problem is a special case of this problem where

the cost is the total distance of the path. As the problem is NP - hard, a mixed integer

quadratically constrained formulation, a discrete approximation dynamic program-

ming heuristic, and a shortest path heuristic are presented in this paper as solution

methodologies. Depreciation, degradation, stopping and route costs are included in

the objective function. Energy consumption is only dependent to distance, the con-

sumption rate between two nodes is taken as constant. This is the most related study

with this thesis in the literature. The difference between these two problem definitions

are the cost terms included and the definition of speed as a variable.

Likewise, a problem of energy - efficient shortest routes for PHEVs is studied in [7].

It is stated that recharging takes much more time than refueling; thus, there should

be a balance between speed, range and selection of stops. A mathematical model of

finding shortest routes on a network is provided in the paper. It differs from the other

studies in the literature with respect to recharging type of the vehicle. Recharging

can occur both at nodes and on edges. As there can be recharging on edges, the

vehicle desires to make a cycle when the energy consumption is negative. Hence, the

structure is more complicated than the classical shortest path problem, and the main

concern is to prevent these cycles on a route. A fully polynomial-time approximation

scheme is proposed for the problem.

A time dependent electric vehicle routing problem is studied in [8] which involves

a fleet of electric vehicles and a set of customers to be served. Departure times and

speed on each arc are decided while minimizing a cost function representing total

energy consumption. An integer linear programming model is proposed. Also, an

iterated variable neighborhood search (IVNS) and a variable neighborhood descent

method (VND) are proposed in addition to a speed optimization method. Time de-

pendency comes from time windows on each node and traffic congestion on each arc.

An electric vehicle routing problem with time windows is proposed by Goeke and

Schneider [5]. Cost function here includes energy cost (electric price), driver’s wage

8

for each vehicle, purchasing of vehicles and time windows penalties. VND and VNS

procedures first decide optimal routes without optimizing speed. After that, departure

time and speed optimization process starts to solve. Partial recharging is not allowed

in this study. Here, IVNS finds new solutions for some benchmark instances available

in the literature.

Another problem considering state-of-charge optimization of PHEVs is proposed by

Vasant et al. [9]. This problem tries to make minimum number of stops and optimize

the use of energy in the battery. Particle swarm optimization and Gravitational search

algorithm are applied. Partial recharging is allowed, and each charging station has a

capacity for the number of vehicles it can serve. State of charge and waiting tie at each

station are decided under capacity limitations. Different nature-inspired algorithms

are used to make charging decisions only.

2.2 Energy Consumption Behavior of Electric Vehicles

In this thesis, the minimum cost path problem is studied for a PEV. Differently from

the literature, the problem aims to find a path with some recharging stations, and

energy consumption also depends on speed. An energy consumption function for an

electric vehicle battery is used as the objective function. Finding an accurate model

for energy consumption is the most important part of the parameter selection.

There are different models in the literature for energy consumption function estima-

tion with a lot of parameters to predict the behavior of the battery. In [10], a prediction

function is suggested based on real world data. This study provides a formulation for

energy requirement at the wheels. It includes 5 parts: the rolling resistance, poten-

tial energy, aerodynamic losses, kinetic energy and energy for the acceleration of

rotational parts. It also notices the energy loss from heating and air - conditioning

systems.

An analytical model determining a time-dependent optimal velocity profile for an

EV so that it minimizes electricity usage along the path considering route character-

istics and traffic conditions is solved in [11]. It is stated that battery consumption is

lower with smoother acceleration and deceleration values. A formula for EV’s instan-

9

Table 2.1: Energy Consumption Function Parameter Values used in [1]

Parameter Value Unit

M 1500 kg

fr 0.015 -

r 0.110 Ω

A 1.800 m2

g 9.810 m/s2

Rt 0.300 m

Pa 2 kW

taneous power is provided, and energy consumption is estimated by integrating the

function over time. The paper uses the parameters of another study from the literature

which is published by Wu et al. in 2015 [12]. A data collection system is established

in order to specify the values of vehicle weight, resistance of motor, radius of tire etc.

Recently, there is a study about estimation of the energy consumption behavior of

the battery in an EV [1]. Instantaneous power (P) estimated in [1] is defined by the

function;

P = (AV 2 + frMg +BV/Rt)× V + rR2
t /K

2 × (AV 2 + frMg +BV/Rt)
2 + Pa

where V is the speed of the vehicle, r is the resistance of the conductor, M is the

mass of the vehicle, g is the gravity acceleration, A is the aerodynamic constant, fr is

the rolling resistant constant, B is bearings’ damping coefficient, K is armature con-

stant, Rt is tire radius , and Pa is the ancillary loss including the loss sourcing from

air condition, external lights and audio. Parameters of this model are provided in Ta-

ble 2.1. As acceleration and deceleration are neglected in our study, instantaneous

power estimation function is multiplied by t in order to generate energy consumption

function of a battery of an electric vehicle. In this study, the model proposed by Li et

al. in [1] is used in this thesis.

10

2.3 Matheuristic Approaches for Minimum Cost Path and Routing Problems

A matheuristic is a heuristic combining mathematical programs and heuristics. Heuris-

tics generally ease the way of generating a solution compared to exact algorithms.

Heuristic improvements make the solution algorithm run faster, while exact algo-

rithms try to give solutions with minimum optimality gap. In this thesis, four different

mathematical programs are used. One of them is a stand alone solution approach for

the PEVEEP and the others used as subroutines within other solution approaches. In

order to improve the solution, a heuristic based on edge exchange is applied at the

end. Inspirational studies on similar problems in the literature are mentioned below.

In 2014, Archetti and Speranza provided a survey on matheuristics for routing prob-

lems. They classified the heuristics as decomposition, improvement and column

generation-based approaches [13]. By the help of mathematical models, matheuris-

tics obtain high quality solutions. There are more than twenty studies on routing

problems under each classification in the last decade. As there are few studies related

to minimum cost path problem for a PEV, matheuristics on routing problems can be

inspirational. Likewise, Villegas et al. studied a matheuristic for truck and trailer

routing problem (TTRP) in [14]. They proposed simple two phase matheuristic. First

step is to find the local optima in a set – partitioning formulation of TTRP. Second

phase uses the local optima for matheuristic. It is stated that studied matheuristic

outperforms state of the art methods in terms of both solution quality and solution

time.

Moreover, a matheuristic approach is proposed for the pollution – routing problem

by Kramer et al. [15]. The objective of the problem is minimizing environmental

costs considering capacity and time windows constraints. Matheuristic is constructed

in three steps. First step is local search-based metaheuristic. Second step is integer

programming approach that uses the routing decisions at first step. At the end, speed

is decided based on a speed optimization algorithm. By the help of hybridization,

both routing and speed decisions are made. It is stated that the proposed method is

better than previous algorithms in terms of solution quality and time.

Travel times and CO2 emissions are analyzed under time - dependent vehicle routing

11

problem by Franceschetti et al. [16]. Concept of this vehicle routing problem is

similar to the problem we study in terms of speed optimization. As the amount ofCO2

emission is correlated with speed, speed limit is applied. A tabu search procedure is

proposed. Routing decisions are made assuming a constant speed. Then, speed, time

and emission improvements are made in later steps.

When electric vehicles are concerned, there are 3 main studies involving heuristic ap-

proaches for EV routing problems. Montoya et al. proposed a metaheuristic consid-

ering nonlinear charging functions and limited ranges of electric vehicles [17]. This

nonlinearity makes the solution process more difficult though there is no speed opti-

mization. Therefore, infeasibility occurs frequently. Routing decisions and charging

decisions are made iteratively by the help of iterated local search (ILS) and a heuristic

concentration in order to ensure feasibility. Although the proposed metaheuristic may

sometimes cause overly expensive solutions, it performs well on some instances.

Bruglieri et al. studied a matheuristic for EV routing problem with time windows

[18]. They also proposed a time efficient route considering recharging requirements.

Although they proposed a mixed integer linear programming formulation, a variable

neighborhood search branching (VNSB) matheuristic is also designed because of the

hardness of the problem. Numerical results are compared with previous VNSB meth-

ods in terms of solution quality and time.

Likewise, a matheuristic for EV routing problem with capacitated charging stations

is proposed by Froger et al [19]. Differently from the literature, charging stations are

not assumed to be uncapacitated. They can recharge a limited number of electric ve-

hicles at the same time. This assumption affects routing decisions in terms of where

to stop. There is again a non - linear charging function for each EV. Mixed integer

programming formulation is proposed. Then, a matheuristic named route first and

assemble second is developed for the problem. Relaxing capacity constraints, route

decisions are made at first stage. Second stage works for assembling the routes ac-

cording to charging decisions by the help of Bender’s decomposition. Furthermore,

minimum cost path for PHEVs without any time constraints is the most similar study

to the problem in [4]. Speed decisions are excluded as charging function is only

dependent to distance. Based on that, a shortest path heuristic is presented in this

12

paper as a solution methodology [4]. In step 1, problem chooses a path by the help of

the solution of a shortest path problem on a network. Then, where to stop decisions

are made. Also, because of degradation cost, the heuristic considers the amount of

recharge. Likewise, here we consider time limits, battery capacities and speed limits.

As charging function of EV depends on velocity here, different solution approaches

are proposed in this thesis. We proposed solution methods considering speed as a

decision variable differently from the study in [4] which uses shortest path heuristics.

2.4 Meta-Heuristic Approaches for Routing and Energy Consumption Opti-

mization Problems

Many meta-heuristic approaches come into play when exact algorithms become in-

sufficient to find an optimal solution in a limited time. Exact solution approaches

can take too much time to solve an optimization problem due to the complexity of

these problems. Hence, many meta-heuristic methods have been developed in the

recent past. Local and global search methods are the mainly used by meta-heuristic

approaches. Simulated annealing, tabu search, variable neighborhood search and it-

erated local search methods are based on improving local solution in order to obtain

better ones. Memetic algorithms, nature-inspired and metaphor-based heuristics can

also be accepted as recently popular solution methods. Meta-heuristic methods bal-

ance precision, quality, and accuracy versus space and time efficiency [20].

Abousleiman and Rawashdeh propose two metaheuristics, ant colony optimization

and particle swarm optimization, to find an energy efficient route for electric vehicles

[20]. Dijkstra’s algorithm can be accepted as the most popular algorithm used in

routing problems. However, it becomes insufficient by growing concerns of real-life

routing problems. This method needs positive edge costs and gives a shortest path

route based on problem inputs. Though it gives an exact solution in a considerable

time, optimal solution to the energy efficient routing problem is not always based on

the shortest path of the instance. For example, in this study we are trying to include

speed optimization and define velocity as another positive cost on edges.

Furthermore, Bellman-Ford’s algorithm can cope with negative cycles over a network

13

in order to find the shortest path but with increasing complexity of the algorithm. Neg-

ative cycles mainly occur while using HEVs as they are producing electrical energy

by the help of combustion engine on driving mode with fuel. So, it is stated in [20]

that traditional shortest path algorithms fail to solve the energy efficient path problems

due to increased number of concerns and decision variables in those problems. Here,

the paper finds a path from source to destination based on some selection parameters

such as; speed limits, elevation changes, length of edges, battery capacity and traffic

lights. Bellman-Ford’s algorithm uses an energy consumption equation of the bat-

tery. This equation includes selection parameters mentioned. Moreover, Ant Colony

Optimization (ACO) and Particle Swarm Optimization (PSO) algorithms try to find

minimum energy value using this equation. Both algorithms find optimal solutions

fast on some specific instances in the literature. Simplicity of PSO provides lower so-

lution times compared to ACO algorithm. The study of Abousleiman et al. is another

paper about this ACO algorithm [21] on EVs. It is stated that some solutions reveal

significant improvements in the energy consumption of the electric vehicle if recom-

mended tour is driven compared to tours suggested by Google Maps and MapQuest.

In addition to nature-inspired algorithms, a simulated annealing algorithm for PHEVs

is proposed by Vincent et al. [22]. This study focuses on an extension of Green Vehi-

cle Routing Problem for plug-in hybrid electric vehicles. It tries to optimize electrical

energy and fuel consumption considering availability of electric charging and fuel sta-

tions [22]. It constructs initial solution using the Nearest Neighbor algorithm. Vehicle

energy capacity and time constraint are also taken into consideration while taking a

tour based on distances. Simulated algorithm defined here, uses penalty costs in the

objective function to handle time and energy capacity constraints. Some capacitated

vehicle routing benchmark problems are used to try proposed simulated annealing

approaches. It is shown that average difference between solutions found and optimal

ones is the lowest in the literature [22].

In 2005, Ropke and Pisinger suggested an adaptive large neighborhood search method

for the Pickup and Delivery problem [23]. The problem tries to serve all customers

whose pickup and delivery locations are known using limited number of vehicles. A

cost function is constructed to minimize, and time windows and capacity constraints

are taken into consideration in the mathematical model. Here, three different parts

14

are involved in the objective function. Sum of distances traveled by vehicles, sum

of the travel times of the vehicles and total number of requests met are multiplied

by weights in the objective function. Proposed method uses insertion and removal

algorithms. At each iteration, algorithm chooses the next customer using a measure

including a distance term, a time term, a capacity term and the vehicles serving the

customer [23]. In addition to this, adaptive large neighborhood search uses the infor-

mation of past performance of each neighborhood. Then, it chooses the neighborhood

search performing well. Therefore, algorithm finds slightly better solutions in a faster

manner for some vehicle routing problem benchmarks in the literature.

15

16

CHAPTER 3

ENERGY EFFICIENT PATH PROBLEM FOR A PLUG – IN ELECTRIC

VEHICLE VIA SPEED OPTIMIZATION

In this chapter, the PEVEEP is defined and a mathematical model is presented.

3.1 Problem Definition

A problem about energy optimization of a PEV over a network is proposed in this

thesis. Minimization of energy consumption by optimizing speed over a network and

making charging decisions under given time and speed limits are aimed in this prob-

lem. In the literature, in most of the related stuides energy consumption functions are

only dependent on distance. These problems are similar to the Shortest Path Prob-

lem and Minimum Cost Path Problem. In this study, a nonlinear energy consumption

function dependent also on speed in addition to distance is considered.

It is known that weight constrained shortest path problem (WCSPP) is NP–hard for

directed graphs [4]. The problem tries to find a shortest path from source to sink

node where total weight of the path is less than some predetermined value. Likewise,

we are trying to find a path with minimum energy consumption between origin and

destination nodes while satisfying time and energy constraints for each arc. Here,

weights of arcs can be accepted as travel times. As every instance of the MCPP-

PHEV can be turned into an instance of the PEVEEP, our problem is also NP-hard.

A nonlinear function representing the behavior of an electrical vehicle battery is taken

as the objective function in our problem. This function is based on the model sug-

gested by Li et al. [1]. Power loss of an electric vehicle is as follows:

17

P = (AV 2 + frMg +BV/Rt)× V + rR2
t /K

2 × (AV 2 + frMg +BV/Rt)
2 + Pa

Pa = Pac + Pbm + Pel + Pau

where Pa is the ancillary power loss. It includes power used by air conditioner, battery

management, external lights and audio. It is stated that all of them are independent

of velocity. P represents the total power loss including ancillary power loss. In this

function, acceleration of the vehicle is included. As it is a term dependent to the

time passes, by taking the integral of instantaneous power estimation function with

respect to time passes, we find an energy consumption function of this PEV. However,

it is assumed that acceleration is zero all the time, and speed is constant throughout

an edge over the network in this problem. Hence, the terms including acceleration

are neglected. At the end, instantaneous power estimation function is multiplied by

the time spent in order to get the energy consumption function on each edge. After

simplifications, energy consumption function per unit distance traveled becomes as

follows:

E = a× V 3 + b× V 2 + c× V + d+ e/V

Corresponding coefficient values of the terms including orders of velocity, V , can be

seen in Table 3.1. Values of coefficients are calculated based on the parameters given

in the Table 2.1.

As there is no acceleration and the velocity remains the same throughout the edge

once decided. However, an electrical vehicle can have different speed values on dif-

ferent edges because of various speed limits. Upon this scheme, an optimization

problem is analyzed which decides the speed of the vehicle considering battery us-

age, time and speed limits. It is known that an electric vehicle has limited driving

range due to its limitations on the number of batteries it can have, battery capacity

and recharging stations around. Because of their technologies, batteries can offer a

specified level of energy. Each battery has a weight. If M , weight of the vehicle,

increases, then the energy consumption of the vehicle increases as well. Hence, the

number of batteries on an electric vehicle should be kept at the minimum level. There-

fore, number of stops can be too much with increasing speeds and distances. In this

problem, vehicle wants to go faster due to time limitation. On the other hand, en-

18

Table 3.1: The Values of Coefficients in Energy Consumption Model

Coefficient Value Unit

a = (rR2
t /K

2)A2 1.023× 10−5 kg · s/m

b = A+ (2ABrRt/K
2) 0.324 kg

c = B/Rt + (2MgAfr +B2)r/K2) 3.348 kg ·m/s

d = frMg(1 + 2BrRt/K
2) 220.868 kg ·m2/s2

e = f 2
r (Mg)2rR2

t /K
2 + Pa 2004.747 kg ·m3/s3

Figure 3.1: Energy Consumption Function per unit distance traveled of a PEV

ergy consumption should be lower in order to have a smaller number of requirements

for recharging and energy saving purposes. Under these tradeoffs, a formulation is

proposed to find the optimal speed, travel time, charging time, charging amount and

consumed energy on each edge of the decided path.

Before proposing our solution methods for this problem, energy consumption behav-

ior of the PEV is analyzed. The energy consumption function of a PEV with respect

to speed is displayed in Figure 3.1 considering the parameter values in Table 3.1.

The function provided has a convex shape where it takes different values according

to changing speed values. It has a local minimum when V is equal to 13.035 m/s

(46.926 km/h). This is an acceptable speed level for urban road segments, while the

vehicle may be obliged to drive faster on inter-urban road segments in real life.

19

3.2 Mathematical Model

Using the energy consumption function as objective, the PEVEEP tries to find a path

from source node to sink node. There is a directed network, G = (N , A), given to

the problem where the model tries to find a path. N represents the set of nodes and

A the set of arcs. To specify the decisions of path selection, some binary variables

are added to the model. This path is decided according to V and D values of each

arc to minimize energy consumption over the network. As objective function is a

third degree function of V , it has a significant impact on the total energy consump-

tion value. This makes the problem nonlinear. Moreover, V should be in between

specified speed limits. Hence, we included constraints to put limits on decision vari-

able V . In addition to these, the sum of travel times and charging times should be

less than a given time limit. Energy balance should be constructed between entering

and leaving each node. Hence, there are constraints including the energy levels of

each node on the path and energy consumption levels on each arc. Moreover, PEV

has to recharge according to its initial energy level in battery. This initial energy level

is a predetermined value which is higher than the lowest energy level and lower than

the highest energy level. In order not to be out of charge while driving, there is an

amount where PEV has to reservoir. Battery on the PEV has also a capacity reflecting

the real life conditions. All the equations related to energy level are written including

the battery capacity and energy stock. Energy level, velocity and travel time variables

are nonnegative variables in the proposed mathematical model. In addition to those,

charging time is measured using the variables representing energy taken at each sta-

tion. There is a fixed time for a PEV per stop at a recharging station. This waiting

time may correspond to overcrowding at a station. As each recharging station has a

capacity and recharging takes long times, a vehicle may enter the queue at the station.

This fixed time is represented in the mathematical model using binary variables. In

addition, PEV spends time per unit energy taken. Total charging time and total travel

time spent over the network must be less than the total time limit. An arc cannot be

involved in the route again if it is used previously. This path construction is provided

by the help of classical shortest path problem constraints.

Notation and formulation are given next.

20

3.2.1 Notation

The notation used in the mathematical model over the directed graph G = (N ,A) is

as follows:

Sets:

N : Sets of nodes,N = {1, ..., N} where 1 is the origin node and N is the destination

node

A: Sets of arcs or road segments

S: Sets of stations, N ⊇ S

Parameters:

Si =

1 if i ∈ S,

0 otherwise
i ∈ N

Uij: Upper speed limit on each arc (i, j) ∈ A (m/sec)

Lij: Lower speed limit on each arc (i, j) ∈ A (m/sec)

C: Capacity of the battery (Joule)

m: Minimum charge level of the battery (Joule)

I: Starting charge level of the battery (Joule)

A: Time spent per stop to recharge (sec)

B: Time spent per unit energy recharged (sec)

Dij: Length of each arc (i, j) ∈ A (meter)

T : Limit on the time elapsed between origin and destination nodes (sec)

a: Coefficient of the variable (V)3 in the energy consumption function (kg · s/m)

b: Coefficient of the variable (V)2 in the energy consumption function (kg)

c: Coefficient of the variable (V) in the energy consumption function (kg ·m/s)
d: A constant in the energy consumption function (kg ·m2/s2)

e: Coefficient of the variable (V)−1 in the energy consumption function (kg ·m2/s2)

M : A large constant value

1: Origin node

N : Destination node

21

Decision Variables:

Eij: Battery consumption of the vehicle per unit time on each arc (i, j) ∈ A (Joule)

Vij: Velocity of the vehicle on each arc (i, j) ∈ A (m/s)

eci: Charge amount of the battery at node i ∈ S (Joule)

eai: Charge level of the battery at the arrival to node i ∈ N (Joule)

edi: Charge level of the battery at the departure from node i ∈ N (Joule)

tij: Travel time on arc (i, j) ∈ A (sec)

cti: Time spent on charging the battery at node i ∈ S (sec)

xij =

1 if (i, j) ∈ A is included in chosen path,

0 otherwise

yi =

1 if PEV stops at node i ∈ S to recharge,

0 otherwise

3.2.2 Formulation

A mathematical programming model is proposed for the PEVEEP here.

(PEVEEP-MINLP)

Minimize
∑
i∈N

∑
i∈N

Eij (3.1)

subject to

Eij ≥ (a× V 3
ij + b× V 2

ij + c× Vij + xij × d+ e× V −1ij)×Dij ∀(i, j) ∈ A

(3.2)∑
i∈N

x1i −
∑
i∈N

xi1 = 1 (3.3)

∑
i∈N

xNi −
∑
i∈N

xiN = −1 (3.4)

N−1∑
i=2

xij −
N−1∑
i=2

xji = 0 j = 2, . . . , N − 1 (3.5)

M × (1− xij) ≥ eaj − edi + Eij ∀(i, j) ∈ A (3.6)

M × (xij − 1) ≤ eaj − edi + Eij ∀(i, j) ∈ A (3.7)

22

Vij ≤ Uij × xij ∀(i, j) ∈ A (3.8)

Vij ≥ Lij × xij ∀(i, j) ∈ A (3.9)

xij ×Dij = Vij × tij ∀(i, j) ∈ A (3.10)

ea1 = I (3.11)

ecN = 0 (3.12)

cti = A× yi +B × eci ∀i ∈ S (3.13)

edi = eai + eci ∀i ∈ N (3.14)

edi ≤ C ∀i ∈ N (3.15)

eci ≤ yi × (C −m) ∀i ∈ S (3.16)

yj ≤
N−1∑
i=1

xij j = 2, . . . , N − 1 (3.17)

eaj ≤
N−1∑
i=1

xij × C j = 2, . . . , N − 1 (3.18)

eaj ≥
N−1∑
i=1

xij ×m j = 2, . . . , N (3.19)

T ≥
N∑
i=1

N∑
j=1

tij +
N∑
i=1

ctj (3.20)

N∑
i=1

xij ≤ 1 ∀j ∈ N (3.21)

Vij, tij, Eij ≥ 0 ∀(i, j) ∈ A (3.22)

eci, edi, eai, cti ≥ 0 ∀i ∈ N (3.23)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.24)

yi ∈ {0, 1} ∀i ∈ N (3.25)

The objective function includes the total energy consumption of the PEV. In other

words, sum of energy consumption values on each arc (i, j) ∈ A is minimized in the

objective function after the value of consumption on each road segment is determined.

Energy consumption of the PEV on each arc is provided in (3.2). It is calculated by

multiplying the unit energy consumption with the total travel time for each arc (i, j).

Moreover, we used the fact that distance over velocity gives the value of the travel

23

time on each road segment. Therefore, the term with V (−1)
ij is written as ttij after

it is multiplied by Dij in inequality (3.2). It forms the first term in inequality (3.2).

Remaining terms come from power function of a PEV defined in Chapter 3.1. They

all are multiplied by Dij . Total energy consumption on path is minimized by the help

of this inequality in objective function (3.1).

Inequalities (3.3), (3.4) and (3.5) are classical shortest path constraints to choose a

path over a network. Furthermore, constraints (3.6) and (3.7) give an energy balance

between two nodes if the edge incident to these nodes is used. In other words, if

PEV depletes its battery on an arc (i, j), the difference between energy levels of

nodes i and j should be balanced. Moreover, inequalities (3.8) and (3.9) put limits on

speed on each road segment (i, j). Constraint (3.10) establishes the relation between

distance, velocity and travel time. If an arc is used, distance of it should be equal to

multiplication of speed and travel time on this edge. Some initial and final conditions

on energy levels of the battery are provided in constraints (3.11) and (3.12). If a

node is reached from any node, energy level at arrival should be greater than m,

energy level at departure should be lower than C, and there is no refueling at sink

node. Inequality (3.13) computes the charging times. A represents the fixed time an

electrical vehicle spends on charging. B is the term for unit time of recharging. By

the help of these terms, an upper bound on charging time at each node i is provided.

If yi takes value of 0, charging amount, eci, will be equal to 0 for node i. As charging

amount is equal to 0, charging times, cti, will be also 0.

If a PEV recharges itself at any node, energy level at the departure from node i should

be equal to energy change at node i plus energy level at the arrival to node i. This

balance equation is provided in inequality (3.14). Maximum battery level can be C

while departing from a node i as stated in inequality (3.15). If a vehicle wants to

recharge at a node i, it should be checked whether or not there is a recharging station

at a node i. As stated before, C and m represent the maximum and minimum energy

levels at the batteries. Hence, (C −m) is the maximum amount of charging possible

as enforced in equation (3.16). There is a linkage constraint (3.17) linking xij and yi.

Constraints (3.18) and (3.19) satisfy these criteria.

A limit on total charging time and travel time along the path is given in inequality

24

(3.20). Constraint (3.21) states that the path can have at most one arc between the

nodes i andj. If an arc (i, j) is not used, its incident node cannot be used to stop. The

remaining constraints (3.22), (3.23), (3.24) and (3.25) are sign and binary restrictions

on decision variables.

In order to solve the PEVEEP-MINLP, we defined an MISOCP problem. SOCP

problem is an optimization problem where we minimize a linear objective function

over second order cone constraints of the from ||Ax+b|| ≤ rTx+d. Linear constraints

are second order cone constraints. Linear programs, convex quadratic programs and

quadratically constrained convex quadratic programs are some of the problems which

can be modeled as an SOCP problem [24]. SOCP problems are convex optimization

problems and they can be solved in polynomial time.

MISOCP is an SOCP problem where some variables are restricted to take integer

values. In our mathematical model, inequalities (3.2) and (3.10) are not linear. As all

other constraints are second order cone constraints, we rewrote inequalities (3.2) and

(3.10) using second order cone programming.

In order to make the energy consumption function conic, the terms V 3
ij and V 2

ij are rep-

resented as fij and lij , respectively. The term tij , travel time, corresponds to Dij/Vij

and placed into inequality redefined. Conic representation of the inequality (3.2) can

be seen below. This redefined inequality is replaced with (3.2).

Eij = e× tij +Dij × (b× lij + a× fij + c× V ij + xij × d)

Moreover, (3.10) is replaced with another redefined inequality. We wrote lij ≥ V 2
ij

and fij×Vij ≥ l2ij implying fij ≥ V 3
ij for all (i, j) ∈ A. First inequality is rewritten as:∥∥∥∥∥∥ Vij

(lij − 1)/2

∥∥∥∥∥∥ ≤ (lij + 1)/2 ∀(i, j) ∈ A

And second inequality is rewritten as:∥∥∥∥∥∥ lij

(fij − Vij)/2

∥∥∥∥∥∥ ≤ (fij + Vij)/2 ∀(i, j) ∈ A

25

lij, fij ≥ 0 ∀(i, j) ∈ A

In addition to those, we wrote x2ij ×Dij ≤ Vij × tij . It is rewritten as:∥∥∥∥∥∥ xij ×
√
Dij

(tij − Vij)/2

∥∥∥∥∥∥ ≤ (tij + Vij)/2 ∀(i, j) ∈ A

These are all SOCP constraints and the PEVEEP-MINLP is converted to an MISOCP

model. Finalized version of the PEVEEP-MISOCP model can be seen in Appendix

A.

26

CHAPTER 4

SOLUTION METHODOLOGY

In this chapter, we present 3 solution approaches for the PEVEEP. We first show that

formulation (PEVEEP-MINLP) can be turned into a mixed integer second order cone

programming (MISOCP) formulation. Then, we present a matheuristic and a VNS

heuristic for the PEVEEP.

4.1 A Matheuristic Approach

Computational experiments show that the proposed MISOCP formulation is unable to

solve large size instances optimally within reasonable times. Therefore, it is required

to have heuristic approaches to be able to solve larger size instances. Matheuris-

tics use the powerful sides of mathematical formulations and heuristics. Sometimes,

model-based heuristics are used to define matheuristics since mathematical model of

the problem is used for exploitation purposes in the heuristic [25]. On the other hand,

metaheuristics offer the chance of have faster algorithms because of the simplicity in

their definitions. In this chapter, a matheuristic is proposed for the PEVEEP com-

bining three different mathematical models and neighborhood search methods to get

good solutions in a faster way.

Based on experimental results, we have that an MISOCP determines values of energy

levels, time passed and velocity of the vehicle in a shorter time on a previously deter-

mined path. In other words, MISOCP solutions are obtained much faster if a path is

taken on rather than a network. Based on this information, a matheuristic approach

is proposed to solve the PEVEEP. Models used, definitions and notation are provided

next.

27

4.1.1 Definitions and Notation

In this thesis, a matheuristic that uses three different mathematical formulations is

proposed. Algorithm uses MIP formulations over a network in order to construct an

initial path. After a path is decided, MISOCP formulations are used to get values

of other decision variables except xijs along a fixed path. Before the algorithm is

constructed, two definitions are given.

Definition 1: A solution is energy feasible if energy requirement of an arc (i, j) is

less than or equal to the difference between energy levels at node i and j, edi and

eaj , where edi must be less than C and eaj must be greater than m. Otherwise, the

solution is accepted as energy infeasible.

Definition 2: A solution is time feasible if total of travel times and charging times

is less than or equal to T , and speed of each arc (i, j) is within the speed limits.

Otherwise, the solution is accepted as time infeasible.

In this matheuristic, 3 mathematical programs are used. A problem of time opti-

mization of a Plug – In Electric Vehicle (PEVTEPP - MIP) of a path is defined and

a mathematical model is proposed. It is a mixed integer programming model that

takes the velocity as a parameter and makes the initialization of the algorithm. As

Vijs are parameters, inequality (3.2) is not quadratic. Using the same constraints in

Chapter 3, the model tries to find a path minimizing total travel and charging time

over the network. There is no time limit on network so the problem tries to find a

path where its total time spent is the minimum. For the remaining steps, algorithm

uses 2 different optimization problems. First one is to make time improvements on

a fixed path using a time minimization model where velocity is a decision variable

(PEVTEPP – MISOCP) but xij is a parameter. Finally, a mathematical model to op-

timize energy usage along a fixed path (xij is a parameter) is defined (PEVFEEP –

MISOCP). It determines velocity values on a previously constructed path under given

time limit. Summary of these problems is in Table 4.1. Also, finalized versions of the

mathematical models can be seen in Appendix B, C and D.

28

Table 4.1: Mathematical Models used in Matheuristic

Problem Name Problem Type On a Fixed Path/Network Time Limit Applied? Is Velocity a DV/Parameter?

PEVEEP-MISOCP Energy Minimization Network Yes DV

PEVTEPP - MIP Total Time Minimization Network No Parameter

PEVTEPP - MISOCP Total Time Minimization Fixed Path No DV

PEVFEEP – MISOCP Energy Minimization Fixed Path Yes DV

In addition to given in chapter 3.2.1, the following notation is used in the matheuristic

approach.

k: Number of shortest paths constructed between a pair of nodes

K: Number of pairs of nodes chosen on a path

a: A counter in a while loop

b: A counter in a while loop

4.1.2 Algorithm Construction

As stated before, algorithm uses different optimization problems. Velocity of the

vehicle is used as a parameter at initialization step. By this way, computational effort

of the algorithm is tried to be lower. Matheuristic tries to exploit solutions using

these optimization problems. The pseudocodes of our matheuristic algorithm is given

in Algorithm 1. Also, in Figure 4.1 a decision tree for matheuristic algorithm with

MIP Initialization is given.

The algorithm uses T-Improvement and E-Improvement algorithms. While doing

this, it takes parameters k and K as given. Some other parameters of matheuristic

algorithm are the same with the parameters used in PEVEEP-MISOCP, where N is

the number of nodes on the network.

In step 3, PEVTEPP – MIP uses velocity as a parameter which is equal to maximum

of lower bounds on each arc (i, j) and optimal V . This is the best case in terms of

energy consumption over the network. As problem takes velocities as parameters,

this model finds the solution faster than PEVEEP - MISOCP. After a path is found

by PEVTEPP – MIP, energy feasibility is checked at step 5. If PEVTEPP – MIP is

29

energy infeasible, algoritm terminates. This means that instance cannot be solved. If

it is energy feasible, time feasibility is checked at step 8 and then problem continues

to find improvements on that path.

Furthermore, if objective function value of PEVTEPP – MIP is less than or equal to

deadline, problem is accepted as time feasible. In this case, E-Improvement is called

in step 16 to minimize energy consumption on that path and decide velocities on each

arc (i, j). E-Improvement algorithm tries to improve solution on hand in terms of

energy consumption. If the problem is time infeasible at step 8, T-Improvement algo-

rithm is called in order to have lower total time spent on the path than deadline. Af-

ter a feasible path is constructed by T-Path improvement algorithm, E-Improvement

algorithm is called in order to improve the solution on hand in terms of energy con-

sumption at step 13.

If E-Path improvement algorithm is concerned, this algorithm tries to find more effi-

cient path in terms of energy consumption over a network. A path is given to this al-

gorithm by the help of xij values. While the condition is satisfied, algorithm chooses

two nodes on that path in step 5. Then, k shortest paths between node i and j are

listed in step 7. Yen’s algorithm is an extremely efficient algorithm to list k shortest

paths between the same origin and destination of a network [26]. This algorithm is

used at each iteration to list k shortest paths between randomly chosen 2 nodes i, j.

After that, PEVFEEP - MISOCP is solved for all k paths. If one of the objective func-

tions is lower than the current value, then the path is changed with the path with lower

energy consumption. Until total number of iterations being equal to K, improvement

continues. If an improvement is made at current loop, smaller loop is broken in step

12. Different i and j values are tried in further iterations. At the end, a path with the

best objective function value is returned.

When T-Improvement algorithm is concerned, this algorithm tries to find a feasible

path in terms of total time spent over a network. A path is given to this algorithm by

the help of xij values. While the condition is satisfied, algorithm chooses two nodes

on the path in step 5. Then, k shortest paths between nodes i and j is listed in step

5. Yen’s algorithm is again used at each iteration to list the k shortest paths between

randomly chosen 2 nodes i, j. After that, PEVTEPP - MISOCP is solved for all k

30

Figure 4.1: Matheuristic Algorithm with MIP Initialization

31

paths. If one of the objective functions is lower than the current value, then the path is

changed with the path with lower time. If an improvement is made, both of two loops

are broken in steps 12 and 18. The algorithm stops once a feasible path is found. If a

feasible path whose total time of the path is less than or equal to T cannot be found,

then algorithm returns empty. Otherwise, it returns the best path option in terms of

energy.

32

Algorithm 1 Matheuristic for PEV
1: Input: All parameters in the PEVEEP-MINLP formulation

2: Output: Values of Z, xij , yi, Eij , Vij , eci, eai, edi, tij , cti that minimizes the

energy consumption over the network

3: Call PEV TEPP −MIP algorithm for the given network with fixed speeds Vij

← max(Vopt,Lij).

4: Output of PEV TEPP − MIP : A path with xPEV TEPP−MIP and objective

function value zPEV TEPP−MIP .

5: if PEV TEPP −MIP problem is infeasible then

6: Terminate Matheuristic algorithm.

7: else

8: if PEV TEPP −MIP problem is time infeasible (zPEV TEPP−MIP > T)

then

9: Call T − Improvement algorithm for the path with previously decided

xPEV TEPP−MIP s.

10: if T − Improvement algorithm returns empty then

11: Terminate Matheuristic algorithm.

12: else

13: Call E − Improvement algorithm for the path with previously de-

cided xT−Improvements.

14: end if

15: else

16: Call E − Improvement algorithm for the path with previously decided

xPEV TEPP−MIP s.

17: end if

18: end if

19: Return output of E − Improvement algorithm.

33

Algorithm 2 E-Improvement Algorithm for PEV
1: Input: All parameters in the PEVEEP-MINLP formulation, k, K,

xPEV TEPP−MIP OR xT−Improvement.

2: Output: Values of ZE−Improvement, yi, Eij , Vij , eci, eai, edi, tij , cti that mini-

mize the energy consumption over the path.

3: Call PEV FEEP−MISOCP for given path. Objective function of the problem

is equal to ZPEV EEP−SOCP0. Let xBEST−PEV EEP−SOCP = xPEV EEP−SOCP0

and ZBEST−PEV EEP−SOCP = ZPEV EEP−SOCP0. a = 0.

4: while a < K do

5: Choose two nodes i and j randomly on the given path. List k shortest paths

from i to j. b = 0.

6: while b < k do

7: Call PEV FEEP − MISOCP for reconstructed path with xbij where

nodes between i and j are replaced with bth shortest path.

8: Let Zb
ij be the corresponding value.

9: if Zb
ij < ZBEST−PEV EEP−SOCP then

10: Change the path with the path from node i to j node.

11: ZBEST−PEV EEP−SOCP = Zb
ij and xBEST−PEV EEP−SOCP = xbij

12: break

13: end if

14: b = b+ 1.

15: end while

16: a = a+ 1.

17: end while

18: Return xBEST−PEV EEP−SOCP and output of PEV FEEP −MISOCP where

last improvement is made.

34

Algorithm 3 T-Improvement Algorithm for PEV
1: Input: All parameters in the PEVEEP-MINLP formulation, k, K,

xPEV TEPP−MIP .

2: Output: Values of ZT−Improvement, yi, Eij , Vij , eci, eai, edi, tij , cti that mini-

mize the energy consumption over the path.

3: Call PEV TEPP − MISOCP for given path. Objective function of the

problem is equal to ZPEV TEPP−MISOCP0. Let xBEST−PEV TEPP−MISOCP =

xPEV TEPP−MISOCP0 and ZBEST−PEV EEP−SOCP = ZPEV EEP−SOCP0.

4: while a < K do

5: Choose two nodes i and j randomly on given path. List k shortest paths from

i to j. b = 0.

6: while b < k do

7: Call PEV TEPP − MISOCP for reconstructed path with xbij where

nodes between i and j are replaced with bth shortest path. Let Zb
ij be the corre-

sponding objective function value.

8: if Zb
ij < ZBEST−PEV TEPP−MISOCP then

9: Change the path with the path from node i to j node.

ZBEST−PEV TEPP−MISOCP = Zb
ij and xBEST−PEV TEPP−MISOCP = xbij

10: break

11: end if

12: b = b+ 1.

13: end while

14: if ZBEST−PEV TEPP−MISOCP ≤ T then

15: feasibility = 1

16: break

17: end if

18: a = a+ 1.

19: end while

20: if feasibility = 1 then

21: Return xBEST−PEV TEPP−MISOCP and output of PEV TEPP −MISOCP

where last improvement is made.

22: else

23: Return ∅

24: end if
35

4.2 A VNS Approach

Variable Neighborhood Search method can be accepted as a meta-heuristic based on

systematic changes of neighborhoods [27]. It tries to find a local minimum and a

global minimum by perturbation techniques. VNS has been successfully applied to

several non-linear and combinatorial optimization problems such as vehicle routing

problems. The VNS method tries find local optima first using neighborhood structures

defined. Then, exploitation is increased using these all different neighborhoods [27].

Once an incumbent solution is found, neighborhood structure is changed with another

one. We next define the proposed VNS algorithm for the PEVEEP and introduce the

related notation.

4.2.1 Definitions and Notation

Neighborhood definition is an important part of VNS algorithms as they provide the

exploitation and exploration power of the VNS. They should be built as compatible

with the objective function and lean to take solutions faster. Our problem has 3 main

concerns: energy feasibility, time feasibility and energy optimization. In order to

solve those, 3 different neighborhood structures are defined.

Station Insertion: This neighborhood definition partitions the set of nodes into two.

S is used to represent station nodes over the network. This definition uses a local

search method where a station node not on the decided path can be chosen from S

and joined to the path using shortest path between nodes i, j and station s which are

randomly chosen. This search continues until total number of iterations is reached or

all arrival energy levels to all nodes on the path is greater than or equal to m, in other

words energy feasibility is provided.

Furthermore, this search uses a parameter which is TotalEA which is equal to sum

of arrival energy levels to all nodes on the path, eaj , which are less than or equal to

m. If they are nonpositive, their absolute values are taken for calculations. It can be

said that a path is energy feasible if TotalEA = 0. Steps of this search can be seen

in Algorithm 6.

36

1 2 3 4 5

1 2 3 4 5

1 2

i

s

j

4 5

× ×
An Energy Infeasible Path from Node 1 to Node 5

Removal of Arcs (2, 3) and (3, 4)

Connection of a Station Node s ∈ S to the Path using unvisited Nodes i and j ∈ N

Figure 4.2: An Illustration of Station Insertion Algorithm

An illustration of Station Insertion is shown in Figure 4.2. There is an example path

where node 1 is the source node, and node 5 is the destination node. The path between

them is energy infeasible, where TotalEA > 0. Hence, Algorithm 6 tries to add a

station node to the path in order to increase energy levels, ea and ed, at arrival and

departure. First of all, algorithm starts with choosing 2 nodes on the path. Assuming

that these nodes are 2 and 4, road segment between them is removed. Then, station s∈
N is chosen randomly. New path is constructed by the help of shortest paths between

node s and nodes 2, 4. Dijkstra’s algorithm works for the edges with positive costs

proposed by Dijkstra in [28]. It is an efficient algorithm in terms of solution quality

and time. It is used at every iteration until energy feasibility is provided. If the

connection between s and chosen nodes cannot be provided, then algorithm starts

from beginning by choosing a new random pair. Else, energy feasibility of the path is

checked in the next step.

Replacement of Expensive Nodes: This neighborhood definition tries to make en-

ergy consumption lower on the path by exchanging road segments. It uses a local

search method where two nodes are randomly chosen and the road segment between

37

them is removed from the path, the chosen nodes are then reconnected using shortest

path between them. Dijkstra’s algorithm is again used at every iteration to find the

shortest path between two randomly chosen nodes. This search continues until total

number of iterations is reached. If an energy improvement is made, solution on hand

jumps into new one. At the same time, sum of arrival energy levels of all nodes on the

path is greater than or equal to the previous one, in other words new path should be

closer to be energy feasibility than the best solution on hand. Also, total time spent

on the path should be lower than T in order to keep the path time feasible. Steps of

this search can be seen in Algorithm 7.

An illustration of Station Insertion is shown in Figure 4.3. In the figure, an example

path is given where node 1 is the source node, and node 5 is the destination node.

The path between them may be time or energy infeasible. Feasible paths may also

be subject to replacement of expensive nodes to have an improvement on energy con-

sumption. Algorithm 7 tries to change road segment between two randomly chosen

nodes. First of all, algorithm starts with choosing a pair of nodes. Assuming that

these nodes are 2 and 4, road segment between them is reconstructed by the help of

shortest path between nodes 2 and 4. If energy consumption of the new path is larger

than the previous one or energy infeasible, then algorithm starts from beginning with

the path on hand by choosing a new random pair. Else, reconstructed path is accepted

as the new solution on which improvements continue to be made.

Short Cut: This neighborhood definition benefits from short distances of direct edges

to make energy consumption lower on the path by exchanging road segments with di-

rect edges between two nodes, randomly chosen. This search continues until total

number of iterations is reached or there is no direct edge between any two nodes on

the path. If an energy improvement is made, solution on hand jumps into the new

one. At the same time, sum of arrival energy levels of all nodes on the path is greater

than or equal to the previous one, in other words new path should be closer to energy

feasibility than the best solution on hand. Also, total time spent on the path should be

lower than T in order to keep the path time feasible. Steps of this search can be seen

at Algorithm 8.

An illustration of Short Cut is shown in Figure 4.4. Here, an example path is shown

38

1 2 3 4 5

1 2 3 4 5

2 i j t 4

1 2 i j t 4 5

× ×
A Path from Node 1 to Node 5

Removal of Arcs (2, 3) and (3, 4)

New Path constructed between Nodes 2 and 4 using unvisited Nodes i, j and t ∈ N

New Path constructed from Node 1 to Node 5

Figure 4.3: An Illustration of Replacement of Expensive Nodes Algorithm

where node 1 is the source node, and node 5 is the destination node. All types of paths

in terms of feasibility may again be subject to this algorithm to have an improvement

on energy consumption. Algorithm 8 tries to change road segment between two ran-

domly chosen nodes. First of all, algorithm starts with choosing a node on the path.

Assuming that this node is 2, Adjacents set is constructed from the nodes where

there is a direct edge between node 2 and other nodes on the path. Then, a node from

this set is chosen randomly. This node is 4 in this case. Road segment between these

nodes is replaced with arc (2, 4). If energy consumption of new path is larger than the

previous one or energy infeasible, then algorithm starts from beginning with the path

on hand by choosing a new random node. Else, reconstructed path is accepted as the

new solution on which improvements continue to be made.

In addition to the notation in chapter 3.2.1, notation used in VNS approach is as fol-

lows:

x′: An inherited adjacent matrix from the previous step at VNS algorithm

I: A predetermined value where a pair of nodes can be chosen on the path to replace

K: A predetermined value where a pair of nodes can be chosen on the path to replace

iteration: A counter in a while loop

t: A counter in a while loop

v: A counter in a while loop

39

1 2 3 4 5

1 2 3 4 5

1 2 4 5

× ×
A Path from Node 1 to Node 5

Removal of Arcs (2, 3) and (3, 4)

New Path constructed from Node 1 to Node 5

Figure 4.4: An Illustration of Short Cut Algorithm

40

4.2.2 Algorithm Construction

The pseudo code of the proposed VNS is given in Algorithm 4. Also, in Figure 4.5 a

decision tree for VNS algorithm is shown.

VNS algorithm starts with a random initialization technique which is explained in Al-

gorithm 5. This procedure starts from the origin node 1, and finishes at the destination

node N . At each step two nodes are joined using their total distances to N . There is

an adjacent set involving the nodes whose distances to N is lower than the distance

of the current node to N . A node from the adjacent set of the current node is chosen

randomly and an arc between them is constructed. At the end, a connected path start-

ing from 1 and ending at N is obtained. After initial path is constructed in step 3 of

Algorithm 4 , energy consumption on this path is calculated without looking for any

feasibility, time or energy. Until total number of iterations reaches I , algorithm uses

3 different local search methods: Station Insertion, Replacement of Expensive Nodes

and Short Cut. Algorithm starts with Station Insertion as this method increases the

number of nodes on the path while connecting a station to the current path. In other

words, VNS can explore more different areas thanks to starting with this insertion

procedure. Also, this search tries to provide energy feasibility. Also, first concern

should be thought during the algorithm construction is energy feasibility. If path is

energy feasible (TotalEA ≥ 0) or stopping criteria is satisfied in Algorithm 6, then

the VNS algorithm continues with Replacement of Expensive Nodes.

Replacement of Expensive nodes takes the path which is the result of Station Insertion

as an input. Then, two nodes on the path are chosen randomly. The road segment (i, j)

is changed with the shortest path between them. New path constructed at each step

is compared with the solution on hand in terms of their energy consumption values.

At each step, in order to keep the path time feasible and energy feasible, TotalT

and TotalEA values are also checked. If the condition in step 10 in algorithm 7 is

satisfied, the new path is accepted as the best solution. Then, algorithm continues

until total number of iterations reaches to K.

Finally in step 8, Short Cut method is used to provide energy improvement on the path

resulted by Replacement of Expensive Nodes. This method searches for a set of nodes

41

Figure 4.5: VNS Algorithm

where there is at least one direct edge between them. If this set is empty, algorithm 8

terminates. Otherwise, it continues until total number of iterations reaches to K.

After all local search methods are completed, the PEVFEEP-MISOCP is called to

determine TotalEnergyConsumption, xij , yi, Eij , Vij , eci, eai, edi, tij , cti where

all i, j ∈ N that minimizes the energy consumption for the selected path.

42

Algorithm 4 VNS Algorithm for PEV
1: Input: All parameters in the PEVEEP-MINLP formulation, I .

2: Output: Values of Z, xij , yi, Eij , Vij , eci, eai, edi, tij , cti that minimizes the

energy consumption over the path.

3: Call InitializationProcedure. Let initial path constructed be named as x0 and

its total energy consumption as Z0.

4: xBEST−V NS = x0 and ZBEST−V NS = Z0.

5: while Iteration ≤ I do

6: Call StationInsertion for given path x0. Energy consumption of the de-

cided path is equal to ZSI , and the path decided by this neighborhood is xSI .

7: Call ReplacementofExpensiveNodes for given path xSI . Energy con-

sumption of the decided path is equal to ZRON , and the path decided by this

neighborhood is xRON .

8: Call ShortCut for given path xRON . Energy consumption of the decided

path is equal to ZSC , and the path decided by this neighborhood is xSC .

9: Call PEV FEEP −MISOCP for given path xSC . Objective function of

the problem is equal to ZCURR.

10: if ZCURR ≤ ZBEST−V NS then

11: xBEST−V NS = xSC and ZBEST−V NS = ZCURR.

12: end if

13: Iteration = Iteration+ 1.

14: end while

15: Return xBEST−V NS and output of PEV FEEP − MISOCP where last im-

provement is made.

43

Algorithm 5 Initialization Procedure
1: Input: D, N .

2: Output: Value of x representing a path from 1 to n.

3: i = 1, x = ZeroMatrice.

4: Let di be the shortest distances constructed using D from each node representing

total length of the path from node i to node N .

5: Adjacentsi is the number of neighbors including any node j which are satisfying

inequality dj ≤ di.

6: while i 6= N do

7: Construct the set of Adjacentsi. Make an ascending order of edges and give

ordered numbers. r = randbetw(0, 1).

8: p = 1/|Adjacentsi|. Find the k where (k + 1)p is higher than r for the first

time, r 6 (k + 1)p. Then, edge j is chosen by corresponding order of (k + 1).

9: i = j, xij = 1

10: end while

11: Return x.

44

Algorithm 6 Station Insertion Algorithm
1: Input: All parameters in the PEVEEP-MINLP formulation, x0, K.

2: Output: Value of x representing a path from 1 to n.

3: Calculate TotalEA0 which is equal to sum of all arrival energy levels to node

i, eai,∈ N of the initial path.

4: xBEST−SI = x0 and TotalEABEST−SI = TotalEA0.

5: while iteration ≤ K do

6: if TotalEABEST−SI > 0 then

7: break

8: end if

9: Choose two nodes i and j randomly on given path. Choose a station node

s ∈ S randomly.

10: First connect node i to station s, then connect node s to node j using shortest

paths between them. Construct a path whose adjacent matrix is xiteration.

11: Calculate TotalEAiteration which is equal to sum of arrival energy levels to

node i ∈ N .

12: if TotalEABEST−SI < TotalEAiteration then

13: xBEST−SI = xiteration and TotalEABEST−SI = TotalEAiteration.

14: end if

15: iteration = iteration+ 1.

16: end while

17: Return xBEST−SI .

45

Algorithm 7 Replacement of Expensive Nodes Algorithm
1: Input: All parameters in the PEVEEP-MINLP formulation, xSI , K.

2: Output: Value of x representing a path from 1 to n.

3: Calculate TotalEA0 sum of arrival energy levels to node i ∈ N , TotalEnergy0

total energy consumed, TotalT0 total time spent of the initial path.

4: xBEST−RON = xSI and TotalEnergyBEST−RON = TotalEnergy0 ,

TotalTBEST−RON = TotalT0, TotalEABEST−RON = TotalEA0.

5: while iteration ≤ K do

6: Choose two nodes i and j randomly on given path.

7: Connect node i to node j using shortest path between them. Construct a path

whose adjacent matrix is xiteration.

8: Calculate TotalEAiteration sum of arrival energy levels to node i ∈ N ,

TotalEnergyiteration total energy consumed, TotalTiteration total time spent of

the constructed path.

9: if TotalEABEST−RON < TotalEAiteration and TotalEnergyiteration <

TotalEnergyBEST−RON and (TotalTiteration < TotalTBEST−RON or

TotalTiteration < T) then

10: xBEST−RON = xiteration and TotalEnergyBEST−RON =

TotalEnergyiteration , TotalTBEST−RON = TotalTiteration,

TotalEABEST−RON = TotalEAiteration.

11: end if

12: iteration = iteration+ 1.

13: end while

14: Return xBEST−RON .

46

Algorithm 8 Short Cut Algorithm
1: Input: All parameters in the PEVEEP-MINLP formulation, xRON , K.

2: Output: Value of x representing a path from 1 to n.

3: Calculate TotalEA0 sum of arrival energy levels to node i ∈ N , TotalEnergy0 total energy

consumed, TotalT0 total time spent of the initial path.

4: xBEST−SC = xRON and TotalEnergyBEST−SC = TotalEnergy0 , TotalTBEST−SC =

TotalT0, TotalEABEST−SC = TotalEA0.

5: while iteration ≤ K do

6: while t 6= N do

7: for v = 1 to N

8: if xBEST−SC(t, v) ≥ 1 where v 6= t+ 1 then

9: v is in a set of nodes Adjacents where there is a direct edge between t and v.

10: end if

11: end for

12: t = t+ 1.

13: end while

14: if Adjacentsisempty then

15: break

16: else

17: Choose a node i randomly on given path. Connect node i to node j using direct edge

between them where j ∈ Adjacents is chosen randomly. Construct a path whose adjacent matrix

is xiteration.

18: Calculate TotalEAiteration sum of arrival energy levels to node i ∈ N ,

TotalEnergyiteration total energy consumed, TotalTiteration total time spent of the constructed

path.

19: if TotalEABEST−SC < TotalEAiteration and TotalEnergyiteration <

TotalEnergyBEST−SC and (TotalTiteration < TotalTBEST−SC or TotalTiteration < T)

then

20: xBEST−SC = xiteration and TotalEnergyBEST−SC = TotalEnergyiteration ,

TotalTBEST−SC = TotalTiteration, TotalEABEST−SC = TotalEAiteration.

21: end if

22: end if

23: iteration = iteration+ 1.

24: end while

25: Return xBEST−SC .

47

48

CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter, computational results of the solution methodologies proposed in Chap-

ter 4 are presented. Random problem instances are created using MATLAB, and al-

gorithms are tested using the library CPLEX 12.10.0 via C++. Test environment is an

Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 8GB RAM Windows 10 PC.

Solutions of the Exact Algorithm, Matheuristic Approach and VNS heuristic are com-

pared in terms of their computational times. Moreover, effect of instance parameters

on computational times for each algorithm is discussed. Instances taken from the

literature and the randomly generated instances are discussed in Chapter 5.1. Pre-

liminary experiments to set some parameters of the algorithm are detailed in Chapter

5.2. Discussions on computational times based on instance parameters and algorithm

properties are presented in Chapter 5.3.

5.1 Instance Generation

During our literature review, we recognized that speed optimization on PEVs and

finding an energy efficient path for PEVS are not studied at the same time. As it

is our contribution to literature, there is no available benchmark instances defined

for the PEVEEP. Hence, we used available network instances defined for another

problem which is defined as the mixed capacitated arc routing problem by Belenguer

and Gouevia et al. [29], [30]. These instances are publicly accessible. All the graphs

defined here are incomplete, and the structure fits to minimum cost path problems.

Also, a cost on each arc is defined. Graph is directed, and there can be no arc defined

as (j, i) while there is an arc (i, j). We used these costs as the distances which is

49

D. Capacities defined by Belenguer and Gouevia et al. are not used in our problem.

Various graphs are constructed here in terms of number of nodes and arcs. This also

enriches our computational analysis.

These instances are modified for our problem definition. On these networks, we have

introduced lower and upper speed limits for each arc. A time limit is also set. A PEV,

with parameters defined in Chapter 3.1, is used in all instances. In addition to those,

some nodes are defined as stations where a PEV can recharge its batteries by stopping

at these nodes. Maximum and minimum battery capacities, which are C and m, of

PEV are also determined. An initial energy level, I , is given to PEV to start its path.

Some of these added parameters are decided using MATLAB. Others are defined

during preliminary experiments. A detailed explanation on instance generation is

given in Table 5.1.

For all sizes, lower and upper speed limits on each arc are generated randomly. L

follows uniform distribution between 40 and 70 km/h, and U follows uniform distri-

bution between 80 and 120 km/h for each arc. We put these limits considering real

life instances. The values are acceptable for urban-roads. Also, energy consumption

function of the PEV, Figure 3.1, has optimal energy level at V equals to 46.926 km/h.

If an arc has a lower L value than optimal V , then the best speed value in terms of

energy consumption is the optimal V . On the other hand, if an arc has a higher L

value than optimal V , then the best speed is L.

Values of m, C and I are determined based on lower speed limits and distances of

the arcs. In order to have an energy feasible path, I should be more than the total

energy consumption until first station node where PEV can stop and recharge the

battery. m and C decided with respect to I value. During preliminary experiments,

these determined values give feasible paths for PEV. Therefore, they are used in all

instances whose sizes are from 24 to 321 nodes. Likewise, T is decided so that there

can be a time feasible path while algorithms try to solve the problem. Total charging

time and total travel time of PEV from node 1 to node N is a respectable amount.

T is determined based on preliminary results of each instance. Graphs whose sizes

greater than 195 needs larger amount of time which is equal to 5× 106 sec.

A station pattern for each graph is constructed using uniform distribution. In order

50

to analyze the effect of number of stations on solutions, we defined different station

densities for each node size, which are 20%, 30% and 40%. A node is a station node

with a probability of 0.2 if station density is equal to 20% for a graph. Probabilities

are 0.3 and 0.4 if station densities are 30% and 40% respectively. At the end, we

expect totally Station Density × |N | stations on hand. For instance, for the graphs

whose node sizes are 41, there should be about 12 randomly chosen stations if station

density is 30%.

In addition to those instances, a graph whose node size is equal to 40 is created where

it has two node clusters with different properties. First cluster includes arcs whose

lengths are uniformly distributed between 15 and 20 km. This cluster is assumed to

be in a rural area whose road segments are shorter and not appropriate to drive faster.

Hence, L follows a uniform distribution between 30 and 50 km/h, and U follows

a uniform distribution between 60 and 90 km/h. Also, there is no electric recharge

station in this area. Second cluster is assumed to be in an urban area whose road

segments are longer and appropriate to drive faster. In this case, L follows a uniform

distribution between 60 and 80 km/h, and U follows a uniform distribution between

90 and 120 km/h. Stations are available at some nodes, and distance of each road

segment is uniformly distributed between 40 and 60 km. These two areas connected

by the help of bridges defined between last 6 nodes of the 1st cluster and first 6 nodes

of the 2nd cluster. These arcs have the same properties with the arcs in the 1st cluster

so that a vehicle can reach a station by the help of lower L and D values. Moreover,

we used different m value than in the Table 5.1 which is equal to 108 joule. As C and

I values are dependent to m, their values are also changed. In order to analyze this

graph, we just used 40% density level.

In Chapter 5, computational experiments are presented using node sizes 24, 41, 50,

146, 195 and 321. Also, the PEVEEP is solved on the graph constructed by us to

discuss the effect of graph structure.

51

Ta
bl

e
5.

1:
Su

m
m

ar
y

of
Pa

ra
m

et
er

s
G

en
er

at
ed

B
as

ed
on

N
um

be
ro

fN
od

es
ov

er
a

N
et

w
or

k

Pa
ra

m
et

er
|N

|=
24

|N
|=

41
|N

|=
50

|N
|=

14
6

|N
|=

19
5

|N
|=

32
1

L
U

[4
0,

70
]k
m
/h

U
[4

0,
70

]k
m
/h

U
[4

0,
70

]k
m
/h

U
[4

0,
70

]k
m
/h

U
[4

0,
70

]k
m
/h

U
[4

0,
70

]k
m
/h

U
U

[8
0,

12
0]
k
m
/h

U
[8

0,
12

0]
k
m
/h

U
[8

0,
12

0]
k
m
/h

U
[8

0,
12

0]
k
m
/h

U
[8

0,
12

0]
k
m
/h

U
[8

0,
12

0]
k
m
/h

m
1.

5
×

10
8

1.
5
×

10
8

1.
5
×

10
8

1.
5
×

10
8

1.
5
×

10
8

1.
5
×

10
8

C
2
×
m

2
×
m

2
×
m

2
×
m

2
×
m

2
×
m

I
1.

5
×
m

1.
5
×
m

1.
5
×
m

1.
5
×
m

1.
5
×
m

1.
5
×
m

T
27
.7

78
h

(1
06
se
c)

27
.7

78
h

(1
06
se
c)

27
.7

78
h

(1
06
se
c)

27
.7

78
h

(1
06
se
c)

13
8.

88
9
h

(5
×

10
6
se
c)

13
8.

88
9
h

(5
×

10
6
se
c)

S
R

an
do

m
ly

se
le

ct
ed

no
de

s

20
%

,3
0%

an
d

40
%

of
N

R
an

do
m

ly
se

le
ct

ed
no

de
s

20
%

,3
0%

an
d

40
%

of
N

R
an

do
m

ly
se

le
ct

ed
no

de
s

20
%

,3
0%

an
d

40
%

of
N

R
an

do
m

ly
se

le
ct

ed
no

de
s

20
%

,3
0%

an
d

40
%

of
N

R
an

do
m

ly
se

le
ct

ed
no

de
s

20
%

,3
0%

an
d

40
%

of
N

R
an

do
m

ly
se

le
ct

ed
no

de
s

20
%

,3
0%

an
d

40
%

of
N

52

5.2 Preliminary Experiments

In this thesis, we used two different heuristic approaches and an exact solution method.

By changing parameters while taking runs using heuristic methods, effects of them

on the solution quality and CPU time are analyzed.

For the matheuristic approach, two parameters are used which are k and K. We

keep the values of these parameters same both subroutines, E-Improvement and T-

Improvement. As they work with same logic in terms of construction of new paths, it

is logical to keep the parameters same. K is the total number of random pairs chosen

to make path exchanges between them. It offers to try various pair of i and j values

which increases the probability of reaching a good solution. If it is too large, solution

quality may be better, but computational times become high. Hence, it is important

to choose K value large enough providing both good solution quality and reasonable

computational times. On the other hand, there is a parameter k which is used for

number of shortest paths constructed between chosen pair of nodes i and j. Algorithm

chooses kth shortest path from the beginning at each trial. If path exchange using kth

shortest path improves the objective function, then loop is broken in order to work

with a new pair of nodes. Using different values of k and K, different instances with

different patterns are tried. Graph sizes are chosen as medium size instances to make

a reasonable comparison, 24 and 50. The representation (|N | −Density−Pattern)

is used for explanation of instances.

There are 3 tables containing summary information about Matheuristic which are

Tables 5.2, 5.3 and 5.4. Matheuristic starts with PEVTEPP-MIP algorithm, then tries

to provide feasibility and improvement on the initial solution. In Table 5.2, k and

K are taken as 1, and algorithm is tried on instances whose sizes are 24 and 50.

Sixth column represents whether the algorithm finds the optimal solution given by

PEVEEP-MISOCP. While k and K equals to 1, only optimal solutions of the graph

(50− 20− 1) and (50− 20− 2) are found. Solution times range between 0.475 and

4.378 sec. In this situation, value of k is increased to 5 in order to have better solution

quality. This means that Algorithms 2 and 3 can try other paths a little bit longer

than the shortest path. However, solution quality is not changed and solution times

are worse in Table 5.3 than in Table 5.2. Therefore, K is increased 5 so that we can

53

Table 5.2: Preliminary Experiments for Matheuristic while k = 1 and K = 1

k K |N| Density Pattern
Is the Best

Solution

Found?

Optimality

Gap

(%)

Solution

Time

(sec)

1 1

24

20 1 - 10.327 0.475

20 3 - 10.327 0.678

40 2 - 10.327 0.691

40 3 - 10.327 0.792

50

20 1 + 0 4.378

20 2 + 0 2.162

30 1 - 1.800 3.490

30 3 - 0.207 3.320

have better algorithm settings. Then, algorithms try more number of pairs randomly

chosen. In other words, exploration increases by the help of the parameter set k = 5

and K = 5. Solution quality and solution times of the algorithm is presented in

Table 5.4. It is seen that all the solutions for these chosen networks are optimal. It

can also be said that algorithm is still fast as it runs in most 21.724 seconds for the

network (50 − 20 − 1). It is an expected result in terms of both solution quality and

computational times because number of total trials increased compared to previous

parameter selections. So, parameter selection for Matheuristic, Algorithm 1, is made

as k = 5 and K = 5.

In addition to matheuristic, parameters are also decided for the VNS algorithm. VNS,

Algorithm 4 uses parameter I . Also, neighborhood searches, Algorithms 6, 7 and 8,

uses K. VNS algorithm starts with an initial path decided by the algorithm 5. Then,

totally I iterations are used for restart. At each iteration, improvement is made K

times on a different initial path. Based on preliminary observations, it is seen that

Replacement of Expensive Nodes definition makes better improvements compared to

other neighborhood searchs. Hence, we defined anotherK, which isKRON , to decide

number of pairs randomly chosen on a path to make improvements.

In Table 5.5, KRON and K are accepted as 5, and algorithm is tried on instances

54

Table 5.3: Preliminary Experiments for Matheuristic while k = 5 and K = 1

k K |N| Density Pattern
Is the Best

Solution

Found?

Optimality

Gap

(%)

Solution

Time

(sec)

5 1

24

20 1 - 10.327 1.483

20 3 - 10.327 1.404

40 2 - 10.327 2.079

40 3 - 10.327 1.577

50

20 1 + 0 8.417

20 2 + 0 6.424

30 1 - 1.800 6.198

30 3 - 0.207 5.521

Table 5.4: Preliminary Experiments for Matheuristic while k = 5 and K = 5

k K |N| Density Pattern
Is the Best

Solution

Found?

Optimality

Gap

(%)

Solution

Time

(sec)

5 5

24

20 1 + 0 5.834

20 3 + 0 4.951

40 2 + 0 5.769

40 3 + 0 6.230

50

20 1 + 0 21.724

20 2 + 0 19.438

30 1 + 0 17.803

30 3 + 0 18.088

55

Table 5.5: Preliminary Experiments for VNS heuristic while KRON = 5 and K = 5

KRON K |N| Density Pattern

Is the Best

Solution

Found?

Optimality

Gap

(%)

Solution

Time

(sec)

5 5

24

20 1 + 0 0.515

20 3 + 0 0.472

40 2 + 0 0.504

40 3 + 0 0.520

50

20 1 - 43.868 1.601

20 2 + 0 1.291

30 1 + 0 1.129

30 3 - 32.539 2.352

146

20 1 - 111.358 14.506

30 1 - 79.932 10.485

50 1 - 5.342 7.779

whose sizes are 24, 50 and 146. I is equal to 1 to make comments on other parameters

first. Instances with node size 146 are also added to see effect of parameter selection

on solution quality and solution time better. For this parameter selection, optimal

solutions are found for 6 of 11 instances. Solution times range between 0.472 and

14.506 sec. Then, KRON is accepted as 15 so that Replacement of Expensive nodes

can make more number of searches to have better solution quality. As it can be seen

in Table 5.6, same optimal solutions are found while solution time increases. Also,

an extra optimal solution is found for (146− 50− 1). Moreover, for the solutions not

optimal, optimality gap becomes smaller for this parameter selection.

For these levels of KRON and K, I is set different values, 3 and 5. Algorithm starts

from beginning at each iteration up to I . As total number of trials is increased, so-

lution times are a little bit higher for the values of I , 3 and 5. In Tables 5.7 and 5.8,

solutions of VNS algorithm can be seen. While I is equal to 5, optimal solutions

are found for all instances except the instance (146 − 30 − 1). Furthermore, algo-

rithm still has reasonable solution times compared to Matheuristic results in Table

5.4. Thus, KRON , K and I are accepted as 15, 5 and 5, respectively.

56

Table 5.6: Preliminary Experiments for VNS heuristic while KRON = 15 and K = 5

KRON K |N| Density Pattern

Is the Best

Solution

Found?

Optimality

Gap

(%)

Solution

Time

(sec)

15 5

24

20 1 + 0 1.121

20 3 + 0 1.280

40 2 + 0 1.114

40 3 + 0 1.139

50

20 1 - 43.868 3.690

20 2 + 0 3.467

30 1 + 0 3.310

30 3 - 28.290 4.331

146

20 1 - 107.771 32.626

30 1 - 15.371 24.910

50 1 + 0 22.453

Table 5.7: Preliminary Experiments for multistart (I = 3) VNS heuristic while

KRON = 15 and K = 5

KRON K |N| Density Pattern

Is the Best

Solution

Found?

Optimality

Gap

(%)

Solution

Time

(sec)

15 5

24

20 1 + 0 5.795

20 3 + 0 5.385

40 2 + 0 5.191

40 3 + 0 5.390

50

20 1 - 19.342 26.781

20 2 + 0 17.318

30 1 + 0 18.556

30 3 - 44.980 23.877

146

20 1 - 2.478 102.553

30 1 - 2.478 81.838

50 1 + 0 73.830

57

Table 5.8: Preliminary Experiments for multistart (I = 5) VNS heuristic while

KRON = 15 and K = 5

KRON K |N| Density Pattern

Is the Best

Solution

Found?

Optimality

Gap

(%)

Solution

Time

(sec)

15 5

24

20 1 + 0 8.772

20 3 + 0 9.077

40 2 + 0 8.340

40 3 + 0 8.986

50

20 1 + 0 21.646

20 2 + 0 23.642

30 1 + 0 22.563

30 3 + 0 22.754

146

20 1 + 0 186.683

30 1 - 2.478 158.006

50 1 + 0 137.856

5.3 Computational Results

In this chapter, we analyzed instances with different sizes and densities. In total,

6 different network size and 3 different densities for each network size are used. As

mentioned in Chapter 5.1, stations are randomly assigned at each network. So, station

pattern is another factor on objective function values and solution times. In this study,

it is aimed to make observations on computational times of two different algorithms

proposed and the exact method PEVEEP-MISOCP.

PEV properties are accepted as the same for all instances. Velocity remains the same

on each arc once it is decided. L and U values are the same for networks with same

node size. It does not change for the network while its pattern and station density is

changed. First of all, PEVEEP-MISOCP problem is solved using the mathematical

model and algorithm proposed in Chapters 3 and 4. For each instance, exact solutions

and solution times are in Tables 5.9, 5.10, 5.11 and 5.12. Solution times and solution

quality of the exact algorithm changes by node size and station pattern. At each

row of the table, there is a different station pattern while node size or density may

58

Table 5.9: Optimal Solutions for the Instances with nodes 24 and 41 using PEVEEP-

MISOCP

|N|
Density

%
Pattern Optimal Path

Total Time

Spent

(sec)

Energy

Consumption Value

(×108)

Solution Time

(sec)

24 20 1 1-20-21-24 10363 0.582 1.426

24 20 2 1-20-21-24 11492 0.582 1.491

24 20 3 1-20-21-24 9601 0.582 1.451

24 30 1 1-19-22-23-24 12195 0.642 2.271

24 30 2 1-20-21-24 9602 0.582 1.392

24 30 3 1-20-21-24 10364 0.582 1.661

24 40 1 1-20-21-24 10329 0.582 1.575

24 40 2 1-20-21-24 10363 0.582 1.543

24 40 3 1-20-21-24 10330 0.582 1.430

41 20 1
1-2-3-9-10-11-17-

20-27-32-36-40-41
77221 1.940 31.030

41 20 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
54087 1.940 67.160

41 20 3
1-2-3-9-10-11-17-

20-27-32-36-40-41
55670 1.940 48.327

41 30 1
1-2-3-9-10-11-17-

20-27-32-36-40-41
55798 1.940 11.905

41 30 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
56752 1.940 9.530

41 30 3
1-2-3-9-10-11-17-

20-27-32-36-40-41
60470 1.940 6.326

41 40 1
1-2-3-9-10-15-25

-31-35-36-40-41
60029 2.060 95.480

41 40 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
55534 1.940 81.580

41 40 3
1-2-3-9-10-15-16-

19-26-32-36-40-41
60956 2.120 84.411

59

Table 5.10: Optimal Solutions for the Instances with nodes 50 using PEVEEP-

MISOCP

|N|
Density

%
Pattern Optimal Path

Total Time

Spent

(sec)

Energy

Consumption

Value

(×107)

Solution

Time

(sec)

50 20 1
1-15-23-28-27-35

-36-38-46-45-50
24087 10.030 14.863

50 20 2 1-15-24-29-37-44-45-50 18044 9.143 25.875

50 20 3 1-15-24-29-37-44-45-50 37367 9.143 11.556

50 30 1 1-15-24-30-38-46-45-50 39834 9.501 32.610

50 30 2 1-15-24-29-37-44-45-50 18336 9.143 32.524

50 30 3 1-15-23-29-37-44-45-50 34968 9.650 15.536

50 40 1 1-15-24-29-37-44-45-50 42899 9.143 32.009

50 40 2 1-15-24-29-37-44-45-50 18149 9.143 22.517

50 40 3 1-15-24-29-37-44-45-50 18044 9.143 16.244

remain same. So, 6 × 3 × 3 = 54 different instances are tried. Node sizes, densities

and patterns are shown in first, second and third columns of the Tables, respectively.

Fourth column includes the chosen paths for each instance. Objective function value,

total time spent and solution times are shown in remaining columns. For all the

solutions, parameters given in Table 5.1 are used.

For the instances whose node sizes are 24, solution times range between 1.39 and

2.27 seconds. Station density does not have a big impact on solutions as there is not

too much difference between solution times with varying densities. Optimal solution

is found as the path 1 − 19 − 22 − 23 − 24 for the instance (24 − 30 − 1) where

its objective function value is equal to 6.420 × 107 joule. For other networks whose

sizes are 24, objective function value is equal to 5.821 × 107 joule. Optimal path for

those is 1− 20− 21− 24. Total time spent on the network is around 106 seconds for

node size 24. It includes charging time and total travel time in it.

On the other hand, it is seen that different objective function values are calculated for

the graphs whose node sizes are 41. Instances (41− 40− 1) and (41− 40− 3) have

60

Table 5.11: Optimal Solutions for the Instances with nodes 146 using PEVEEP-

MISOCP

|N|
Density

%
Pattern Optimal Path

Total Time

Spent

(sec)

Energy

Consumption Value

(×108)

Solution Time

(sec)

146 20 1
1-69-70-71-72-83-98-

99-112-113-127-135-146
56718 1.171 2482.880

146 20 2
1-69-70-71-72-83-98-

99-112-113-127-135-146
27435 1.171 3954.210

146 20 3
1-69-70-71-72-83-98-

99-112-113-127-135-146
28833 1.171 5377.590

146 30 1
1-69-70-71-72-83-98-

99-112-113-127-135-146
28833 1.171 4890.101

146 30 2
1-69-70-71-72-83-98-

99-112-113-127-135-146
30655 1.171 3549.090

146 30 3
1-79-80-94-95-122-

123-124-144-145-146
24356 1.142 5307.320

146 40 1
1-79-80-94-95-122-

123-124-144-145-146
26301 1.142 2627.290

146 40 2
1-79-80-94-95-122-

123-124-144-145-146
24844 1.142 5820.510

146 40 3
1-79-80-94-95-122-

123-124-144-145-146
29791 1.142 5343.900

61

Table 5.12: Optimal Solutions for the Instances with nodes 195 using PEVEEP-

MISOCP

|N|
Density

%
Pattern Optimal Path

Total Time

Spent

(sec)

Energy

Consumption Value

(×108)

Solution Time

(sec)

195 20 1

1-17-31-32-33-34-35-51

-59-74-87-88-89-90-91-92-105-

123-124-141-159-160-

176-193-194-195

106415 2.528 30229.600

195 20 2

1-17-31-32-33-34-35-51

-59-60-76-77-89-90

-91-92-105-123-124

-141-159-160-161-177-194-195

94130 2.516 15103.100

195 20 3

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

73810 2.516 21604.600

195 30 1

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

98867 2.516 25729.300

195 30 2

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

81015 2.516 10502.800

195 30 3

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

112894 2.516 25216.400

195 40 1

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

79549 2.516 50945.000

195 40 2

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

79269 2.516 46526.300

195 40 3

1-17-31-32-49-56

-57-73-74-75-87-88-

89-90-91-92-105-123-124

-141-159-160-176-193-194-195

80493 2.534 13823.000

62

higher energy consumption values compared to remaining networks, which are 2.060

× 108 joule and 2.120 × 108 joule, respectively. This sources due to the locations

of stations on the graph. If PEV needs energy on the path, but the station is not near,

then PEV deviates from the energy optimal path to recharge its battery. In this case,

path selection can change for different densities and patterns. As expected, due to

longer distances energy consumption increases.

Another reason which increases energy consumption level is higher values of lower

limits, L. PEV wants to be driven at optimal speed which is equal to 13.035 m/sec.

Due to limitations on speed, L and U , sometimes it has to deviate from the optimal

speed. Time limit also causes a change in this situation, and PEV sometimes needs

to drive faster. If optimal path on a network has higher values for L compared to

other instances with same properties, energy consumption can be higher. As stated

in Chapter 3, energy consumption function of a PEV is a third degree function of

V . Hence, L values are important while the algorithm selects optimal path. Total

time spent on network is around 60000 seconds for node size 41 except the instance

(41−20−1) whose total time spent on the network is 77221.1 seconds. This variation

is also due to total distance and V values of the chosen path. As the path gets longer,

total time spent on the path has a higher value. If we look at the impact of densities

on solution times, it can be said that solution times become higher while density is

larger. Solution time for instances whose densities are 20% is in between 31 and 68

seconds, while it is in between 81 and 96 seconds for the instances with 40% density.

Here we can say that number of alternative paths to be constructed increases if there

are more number of stations on a network. In other words, PEV can be driven at

many different roads whose energy consumption levels are close. Therefore, exact

algorithm has difficulty in path selection increasing the computational effort.

For the graphs whose node sizes are 50, instances (50 − 20 − 1), (50 − 30 − 1) and

(50− 30− 3) have higher energy consumption values, which are 1.003 × 108 joule,

9.501 × 107 joule and 9.650 × 107 joule, respectively. Speed at each edge is equal

to 13.035m/sec if it is higher than the value of L. Otherwise, PEV is driven at L. For

each network, different levels of L and different station patterns cause these different

path selections. Algorithm tends to choose an edge whose L is lower. Solution times

range between 11.56 sec and 32.61 sec. For the instances, (50−30−1), (50−30−1)

63

1

2

5
9

10

13

15

23

24

28

29

30

36

37

38

39

41

42

43

44

45

46

48

49

50

Figure 5.1: Solution of the Instance (50− 30− 3)

and (50−30−1), station pattern probably causes a lot of feasible path options. Hence,

algorithm gets difficulty in choosing the best one and computational time increases.

As 41 and 50 are near values, solution times of instances whose node sizes are 50

is near to solution times of instances whose node sizes are 41. Optimal solution

is found as path 1 − 15 − 23 − 28 − 27 − 35 − 36 − 38 − 46 − 45 − 50 for the

instance (50 − 20 − 1). For (50 − 30 − 1) and (50 − 30 − 3), the optimal paths are

1− 15− 24− 30− 38− 46− 45− 50 and 1− 15− 23− 29− 37− 44− 45− 50.

Optimal path is chosen as 1 − 15 − 24 − 29 − 37 − 44 − 45 − 50 for the remaining

instances whose objective function values are 9.143 × 107 joule. Total time spent on

each network ranges between 18044 and 42890 seconds. In Figure 5.1 an illustration

of the solution (50-30-3) is shown. All the arcs of the network are not given. A

representation is used to illustrate this solution. Thick lines show the chosen path

over the network, and dashed lines represent some other possible paths between two

nodes. Tiny lines also show some of the real arcs of the network. Pink nodes are

station nodes, and there are more number of stations which are not shown. The path

is starting from the node 1, and ends at the node 50. The PEV stops at node 23 in

order to recharge its battery.

For the graphs with 146 nodes, solution times increase substantially compared to

smaller size instances which are 24, 41 and 50. Solution times for these instances are

in between 2482.88 and 5820.51 sec. It can be said that solution times becomes much

higher if number of nodes on a network increases too much. Solving the instances

64

with 146 nodes can be accepted as much more demanding in terms of solution times

compared to previous instances. Here, there are a lot of path options for each instance

due to larger instance size. Algorithm again tends to choose an edge whose L is lower.

Instances (146−20−1), (146−20−2), (146−20−3), (146−30−1) and (146−30−2)

have higher energy consumption values, which are 1.171 × 108 joule. Optimal path

is chosen as 1−69−70−71−72−83−98−99−112−113−127−135−146. Remaining

instances use the path 1− 79− 80− 94− 95− 122− 123− 124− 144− 145− 146

whose objective function value is equal to 1.142 × 108 joule. Total time spent on the

network is around 30000 seconds except the instance (146−20−1) whose total time

is nearly equal to 57000 seconds.

Likewise, instances with 195 nodes have also higher computational times. Solution

time is equal to 50945 seconds for the instance (195−40−1). Station pattern assigned

to this network may cause difficulty in path selection. Other ones have solution times

which are still much higher than the solution times of instances whose node sizes

are 146. It can be said that size of the network has a big impact on the solution

performance of the exact algorithm. Instances (195 − 20 − 1) and (195 − 40 − 3)

have higher energy consumption values, which are 2.528 × 108 joule and 2.534 ×
108 joule, respectively. Total energy consumption value for optimal path is equal to

2.516 × 108 joule for other instances. Optimal paths chosen are much longer than

the ones in previous solutions with smaller sizes. Hence, energy consumption values

are higher as total distance increases. Total time spent on the network is in between

73000 and 113000 seconds due to longer optimal paths whose total distances are

higher compared to previous graphs.

For the graphs whose node sizes are 321, exact algorithm could not solve the in-

stances. Although algorithms are run for 3 days, even a solution with an optimality

gap cannot be reached. For the exact algorithm solutions, it can be said that taking

exact solutions becomes more difficult while node sizes increase. Densities and sta-

tion patterns affect the solution time differently. Hence, it is difficult to generalize the

effect of these parameters for all instances. Station pattern is the main property of the

graph deciding number of feasible paths over a network and computational effort to

reach an optimal solution.

65

As computational effort becomes higher for the larger instances, heuristic approaches

are proposed in this thesis. Two different experiments are conducted using matheuris-

tic approach. First experiment includes the application of matheuristic starting with

an MIP solution of PEVTEPP-MIP in Appendix B. This initialization methods solve

an MIP model for a given instance. Second initialization method uses kth shortest

path over the network. If the chosen path is energy feasible, then matheuristic starts

to improve the solution on hand. It is expected to have higher computational times

when MIP initialization is used due to the computational effort behind it. For each

instance, heuristic solutions and solution times are in Tables 5.13, 5.14 and 5.15. So-

lution times and solution quality of the matheuristic algorithm are recorded. At each

row of the table, there is a different station pattern while node size or density may

remain same. So, all instances used for the exact algorithm are tried again. Node

sizes, densities and patterns are shown in the first, second and third columns of the

Tables. Fourth column includes the chosen paths for each instance. Objective func-

tion value, total time spent and solution times are shown in remaining columns. For

all the solutions, parameters given in Table 5.1 and Chapter 5.2 are used. Optimality

gap is calculated for each instance.

For the instances whose node sizes are 24, solution time is around 5 seconds for each

instance. Station density does not affect solution times too much as seen. Optimal

solutions are found for each network. Hence, for all instances whose node sizes

are 24, optimal paths are reached. This heuristic solves PEVFEEP-MISOCP at the

end of the algorithm to decide energy and speed variables. After the path is chosen,

this model is solved for each instance. Optimality Gap column is equal to 0 at each

row in Table 5.13. Matheuristic with MIP initialization works with a little bit higher

computational times compared to exact algorithm for these networks.

For the instances where number of nodes is equal to 41, solution times range between

13.039 seconds and 17.740 seconds. Optimality gap is also 0 for these networks.

A big impact of density levels on networks cannot be observed. Solution times of

Matheuristic with MIP initialization is lower compared to solution times of exact

algorithm for these networks while the solution quality is same. Hence, Mathheuristic

with MIP initialization can be preferred. Likewise, all solutions taken by matheuristic

for graphs with 50 nodes are exact. Solution times are lower compared to solution

66

Table 5.13: Solutions for the Instances with nodes 24 and 41 using Matheuristic with

MIP Initialization

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality

Gap

(%)

24 20 1 1-20-21-24 0.582 5.481 0

24 20 2 1-20-21-24 0.582 5.660 0

24 20 3 1-20-21-24 0.582 4.800 0

24 30 1 1-19-22-23-24 0.642 6.003 0

24 30 2 1-20-21-24 0.582 5.911 0

24 30 3 1-20-21-24 0.582 5.599 0

24 40 1 1-20-21-24 0.582 5.962 0

24 40 2 1-20-21-24 0.582 5.877 0

24 40 3 1-20-21-24 0.582 5.907 0

41 20 1
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 17.740 0

41 20 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 16.269 0

41 20 3
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 17.072 0

41 30 1
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 16.865 0

41 30 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 16.231 0

41 30 3
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 16.464 0

41 40 1
1-2-3-9-10-15-25

-31-35-36-40-41
2.060 14.834 0

41 40 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 16.409 0

41 40 3
1-2-3-9-10-15-16-

19-26-32-36-40-41
2.120 13.039 0

67

Table 5.14: Solutions for the Instances with nodes 50 using Matheuristic with MIP

Initialization

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×107)

Solution Time

(sec)

Optimality Gap

(%)

50 20 1
1-15-23-28-27-35

-36-38-46-45-50
10.030 21.877 0

50 20 2 1-15-24-29-37-44-45-50 9.143 19.895 0

50 20 3 1-15-24-29-37-44-45-50 9.143 21.715 0

50 30 1 1-15-24-30-38-46-45-50 9.501 18.813 0

50 30 2 1-15-24-29-37-44-45-50 9.143 12.147 0

50 30 3 1-15-23-29-37-44-45-50 9.650 18.355 0

50 40 1 1-15-24-29-37-44-45-50 9.143 19.444 0

50 40 2 1-15-24-29-37-44-45-50 9.143 19.259 0

50 40 3 1-15-24-29-37-44-45-50 9.143 20.819 0

Table 5.15: Solutions for the Instances with nodes 146 using Matheuristic with MIP

Initialization

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality Gap

(%)

146 20 1
1-69-70-71-72-83-97-

110-111-125-134-145-146
1.194 246.635 1.96

146 20 2
1-79-92-93-94-95-

122-123-124-144-145-146
1.171 235.025 0

146 20 3
1-79-80-94-108-121-

122-123-124-144-145-146
1.180 177.819 0.77

146 30 1
1-69-70-71-72-83-

97-110-111-125-134-145-146
1.194 661.030 1.96

146 30 2
1-79-80-94-108-121-

122-123-124-144-145-146
1.180 283.124 0.77

146 30 3
1-79-80-94-95-122-

123-124-144-145-146
1.142 302.958 0

146 40 1
1-79-80-94-95-122-

123-124-144-145-146
1.142 349.652 0

146 40 2
1-79-80-94-95-122-

123-124-144-145-146
1.142 468.248 0

146 40 3
1-79-80-94-95-122-

123-124-144-145-146
1.142 420.103 0

68

times of exact algorithm.

If we come to larger instances, performance of Matheuristic with MIP initialization

strictly dominates the performance of exact algorithm in terms of solution times. So-

lution times range between 177.819 seconds and 661.030 seconds. This difference

is due to the initialization part of the algorithm. For the instance (146 − 40 − 1),

algorithm solves PEVTEPP-MIP problem slower compared to other instances. Due

to station pattern differences, solution times are a little bit different from each other

though node size is still same. However, solution quality of the heuristic is not same

with the exact algorithm. For the instances (146−20−1), (146−20−3), (146−30−1)

and (146−30−2) optimality gaps are 1.96%, 0.77%, 1.96% and 0.77%, respectively.

Algorithm gives exact solutions for remaining instances. Although solution quality is

not better, the algorithm can still be used because of its lower solution times.

PEVTEPP-MIP problem takes maximum of optimal speed and L as Vij values at the

beginning of the algorithm execution. Then, it tries to find a path over the network

minimizing total time spent on. It needs a significant effort, and it cannot give a solu-

tion for the instances whose sizes are 195. Therefore, we tried another initialization

technique based on randomly chosen k shortest paths over the network. This method

lists k paths while initiating the algorithm, then one of them is randomly chosen. If it

is an energy feasible path, algorithm starts.

Solutions of this method can be seen in Tables 5.16, 5.17, 5.18, 5.19 and 5.20. For

the instances whose node sizes are 24, 41 and 50, performance of algorithms with two

different initialization methods are nearly the same. Neither of these two dominates

the other. However, kth path initialization method is faster for graphs with 146 nodes.

All the solutions are exact except for the instances (146 − 20 − 1) and (146 − 30 −
1). Optimality gaps can be accepted as significant which are 16.99%. Compared

to exact solution method, there is huge difference for all the instances in terms of

computational times. It is also observed that algorithm gives exact solutions in a

faster way for the instances with 195 nodes. Also, it dominates the previous method

with its lower computational effort. Matheuristic with kth path initialization also finds

solutions for the instances with 321 nodes. They are best known solutions on hand,

and computation times are reasonable which are around 300 seconds. They will be

69

compared with the solutions of VNS algorithm.

It can be said that energy consumption levels for these instances are much more higher

than the smaller ones due to longer distances of best paths. PEV drives through

approximately 30 nodes which increases the total energy consumption as expected.

Also, it stops more compared to other paths to recharge the battery at stations. Solu-

tion times range between 262 and 304 seconds. All the solutions are better than the

solutions of VNS algorithm except for the instance (321− 20− 1). Energy consump-

tion level is 3.515× 108 joule for this network. Moreover, objective function is equal

to 3.478 × 108 joule for (321 − 40 − 2) and (321 − 40 − 3). PEV consumes 3.480

× 108 joule at first instance, (321 − 20 − 1). Objective functions of remaining in-

stances is equal to 3.471× 108 joule. As algorithm does not spend too much time on

initialization, solutions are taken in shorter time intervals. Also, it is more probable

to have feasible node combinations while exchanging the path between two chosen

nodes because of longer path selections. There can be more number of trials giving

better and feasible path exchanges. In addition to parameters, feasible path exchanges

also affect the solution time. Algorithm randomly selects a pair of nodes where there

is an exchange between. If this exchange makes the path feasible or better in terms

of energy, the while loop is broken. So, computational effort is lower in these cases

by chance. For both initialization methods, there can be solutions affected by this

property.

Likewise, we proposed VNS algorithm starting with a path which is randomly con-

structed based on an initialization method. We have while loops for this algorithm

again under three different neighborhood search definitions. For the neighborhoods,

StationInsertion and ShortCut, not performing the changes if the path is energy

feasible is possible. Also, shortcut cannot be executed when the candidate set, in-

cluding nodes where there is a direct edge between them, is empty. This situation

may cause significant differences in solution times between instances with same size.

VNS solutions can be seen on Tables 5.22, 5.23, 5.24, 5.25 and 5.26.

All the solutions found by VNS for instances with 24 nodes are exact. Solution times

are around 9 seconds except for the instance (24 − 30 − 1). This instance is solved

in about 15 seconds. This is probably sources from energy efficient but infeasible

70

Table 5.16: Solutions for the Instances with nodes 24 and 41 using Matheuristic with

kth Path Initialization

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality

Gap

(%)

24 20 1 1-20-21-24 0.582 5.824 0

24 20 2 1-20-21-24 0.582 7.585 0

24 20 3 1-20-21-24 0.582 7.074 0

24 30 1 1-19-22-23-24 0.642 6.795 0

24 30 2 1-20-21-24 0.582 5.803 0

24 30 3 1-20-21-24 0.582 7.553 0

24 40 1 1-20-21-24 0.582 4.460 0

24 40 2 1-20-21-24 0.582 6.289 0

24 40 3 1-20-21-24 0.582 6.266 0

41 20 1
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 10.278 0

41 20 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 13.650 0

41 20 3
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 10.488 0

41 30 1
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 21.049 0

41 30 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 19.353 0

41 30 3
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 15.690 0

41 40 1
1-2-3-9-10-15-25

-31-35-36-40-41
2.060 8.223 0

41 40 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 10.061 0

41 40 3
1-2-3-9-10-15-16-

19-26-32-36-40-41
2.120 8.952 0

71

Table 5.17: Solutions for the Instances with nodes 50 using Matheuristic with kth

Path Initialization

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×107)

Solution Time

(sec)

Optimality Gap

(%)

50 20 1 1-15-23-28-27-35-36-44-45-50 10.510 21.615 4.79

50 20 2 1-15-24-29-37-44-45-50 9.143 16.567 0

50 20 3 1-15-24-29-37-44-45-50 9.143 16.705 0

50 30 1 1-15-24-30-38-46-45-50 9.501 17.262 0

50 30 2 1-15-24-29-37-44-45-50 9.143 16.196 0

50 30 3 1-15-23-29-37-44-45-50 9.650 18.427 0

50 40 1 1-15-24-29-37-44-45-50 9.143 15.628 0

50 40 2 1-15-24-29-37-44-45-50 9.143 15.669 0

50 40 3 1-15-24-29-37-44-45-50 9.143 13.644 0

Table 5.18: Solutions for the Instances with nodes 146 using Matheuristic with kth

Path Initialization

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality Gap

(%)

146 20 1
1-79-80-94-108-121-131-132

-122-123-124-125-126-127-135-146
1.370 125.660 16.99

146 20 2
1-69-70-71-72-83-98-

99-112-113-127-135-146
1.171 137.632 0

146 20 3
1-69-70-71-72-83-98-

99-112-113-127-135-146
1.171 153.105 0

146 30 1
1-79-80-94-108-121-131-132

-122-123-124-125-126-127-135-146
1.370 127.060 16.99

146 30 2
1-69-70-71-72-83-98-

99-112-113-127-135-146
1.171 132.348 0

146 30 3
1-79-80-94-95-122-

123-124-144-145-146
1.142 133.020 0

146 40 1
1-79-80-94-95-122-

123-124-144-145-146
1.142 185.200 0

146 40 2
1-79-80-94-95-122-

123-124-144-145-146
1.142 134.205 0

146 40 3
1-79-80-94-95-122-

123-124-144-145-146
1.142 147.486 0

72

Table 5.19: Solutions for the Instances with nodes 195 using Matheuristic with kth

Path Initialization

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality

Gap

(%)

195 20 1

1-17-31-32-33-34-35-51

-59-74-87-88-89-90-91-92-105-

123-124-141-159-160-

176-193-194-195

2.528 252.230 0

195 20 2

1-17-31-32-33-34-35-51

-59-60-76-77-89-90

-91-92-105-123-124

-141-159-160-161-177-194-195

2.516 274.882 0

195 20 3

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

2.516 238.417 0

195 30 1

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

2.516 101.717 0

195 30 2

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

2.516 247.438 0

195 30 3

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

2.516 277.815 0

195 40 1

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

2.516 137.172 0

195 40 2

1-17-31-32-33-34-35-51

-59-60-76-77-89-90-

91-92-105-123-124-141

-159-160-161-177-194-195

2.516 276.057 0

195 40 3

1-17-31-32-49-56

-57-73-74-75-87-88-

89-90-91-92-105-123-124

-141-159-160-176-193-194-195

2.534 112.697 0

73

Table 5.20: Solutions for the Instances with nodes 321 using Matheuristic with kth

Path Initialization

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality

Gap*

(%)

321 20 1

1-18-28-61-62-63-83-100-101-136-137

-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283

-284-285-301-302-318-319-320-321

3.480 270.150 0

321 20 2

1-18-28-61-62-99-120-121-135-136

-137-155-156-173-174-175-176

-212-213-214-231-248-249-250-262

-283-284-285-301-302-318-319-320-321

3.471 303.200 0

321 20 3

1-18-28-61-62-99-120-121-135-136

-137-155-156-173-174-175-176

-212-213-214-231-248-249-250-262-

283-284-285-301-302-318-319-320-321

3.471 291.064 0

321 30 1

1-2-3-4-20-21-22-23-24-25-37-38

-72-90-91-110-129-144-158-178-

195-216-217-218-219-220

-253-266-287-288-289-321

3.515 290.656 0.40

321 30 2

1-18-28-61-62-99-120-121-135-136-137

-155-156-173-174-175-176-212-

213-214-231-248-249-250-262-283-

284-285-301-302-318-319-320-321

3.471 285.319 0

321 30 3

1-18-28-61-62-99-120-121-135-136-

137-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283-284

-285-301-302-318-319-320-321

3.471 288.900 0

321 40 1

1-18-28-61-62-99-120-121-135-136-

137-155-156-173-174-175-176-

212-213-214-231-248-249-250-262-

283-284-285-301-302-318-319-320-321

3.471 299.961 0

321 40 2

1-18-28-61-62-99-120-121

-135-136-137-155-156-173-174-175-

176-177-178-195-216-217-218-219

-220-253-266-287-288-289-321

3.477 262.030 0

321 40 3

1-18-28-61-62-99-120-121-135

-136-137-155-156-173-174-175-176-

177-178-195-216-217-218-219-220

-253-266-287-288-289-321

3.477 271.869 0

*(Optimality gaps are calculated according to best known solutions)

74

Table 5.21: Analysis of PEV Speed with changing T on networks with 50 nodes

|N|
Density

%
Pattern α

T

(sec)
Path Found

Energy Consumption

Value

(×108)

Average Speed

Along the Path

(m/sec)

Average Increase

in Average Speed

(%)

Solution Time

(sec)

50 20 1 1 24087
1-15-23-28-27-35

-36-38-46-45-50
1.003 14.263 0 19.561

50 20 1 0.9 21678
1-15-23-28-27-35

-36-38-46-45-50
1.004 14.598 2.35 21.854

50 20 1 0.85 20474
1-15-23-28-27-35

-36-38-46-45-50
1.013 15.922 11.63 22.682

50 20 1 0.8 19269
1-15-23-28-27-35

-36-38-46-45-50
1.052 18.401 29.01 22.662

50 30 2 1 18336 1-15-24-29-37-44-45-50 0.914 14.796 0 17.238

50 30 2 0.9 16502
1-15-24-29-37

-44-45-50
0.935 17.276 16.76 20.001

50 30 2 0.89 16319
1-15-24-29-37

-44-45-50
0.943 17.829 20.50 19.942

50 30 2 0.88 16135
1-15-24-29-37

-44-45-50
0.956 18.588 25.63 20.519

50 30 3 1 34968
1-15-23-29-37

-44-45-50
0.965 15.550 0 12.354

50 30 3 0.55 19232
1-15-23-29-37

-44-45-50
0.965 15.801 1.62 18.417

50 30 3 0.53 18533
1-15-23-29-37

-44-45-50
0.973 16.668 7.19 19.421

50 30 3 0.52 18183
1-15-23-24-29-

37-44-45-50
0.981 17.173 9.21 19.803

75

paths. In this case, algorithm tries more number of options to reach the best path.

Moreover, it is possible to have insignificant differences in solution times while den-

sity is changing. This is because of the structure of the algorithm. Independently from

the density, algorithm makes K and I number of iterations for all options. However,

node size affects the solution time as path constructions are more difficult due to a lot

of combinations. For the instances whose node sizes are 41 and 50, solution times are

around 20 seconds. All the solutions are exact except for the instance (41− 40− 3).

Energy consumption level is found as 2.153 × 108 joule, and the gap is 1.56%. Gap

can be accepted as small, and solution time is one fourth of the solution time of exact

algorithm. If we look at the solutions of instances whose sizes are 146, VNS works

with much more smaller computational times compared to the exact algorithm. Exact

solutions are obtained except for the instances (146 − 20 − 2) and (146 − 30 − 1).

Optimality gaps are 1.54% and 2.56%, respectively. Instances (146 − 40 − 2) and

(146− 40− 3) have higher computational times compared to other instances with the

same node size. This probably results from not executing some of the neighborhood

searches for other solutions.

First and last network with node size 195 have solutions with gaps 1.58% and 0.24%,

respectively. Energy consumption value of the instance (195 − 20 − 1) is equal to

2.569 × 108 joule. Gap between optimal solution is not too much large. Objective

function value is 2.540 × 108 joule for the network (195− 40− 3). There is a huge

difference in terms of solution times between VNS and exact solution method for this

node size. Hence, VNS is more preferable compared to exact method considering

small optimality gaps.

Node size has a big impact on solutions provided by VNS heuristic. Since number of

path exchanges are affected by the size of candidate set, solution time increases while

the number of nodes increases. As expected, solutions of instances with 321 nodes

are taken in longer time intervals. Due to their heavy computational requirements,

Matheuristic with kth path initialization and VNS algorithm only find solutions for

the instances with 321 nodes. Matheuristic approach gives the best solutions except

for the instance (321− 30− 1). VNS solves this instance in 786.187 seconds. Total

energy consumption is equal to 3.501 × 108 joule. Other instances also have very

small gaps, ranging between 0.09% and 0.26%. Solution of (321 − 20 − 1) is found

76

same by VNS and Matheuristic with kth path initialization, whose objective function

value is equal to 3.480 × 108 joule. Furthermore, some experiments are made on

instances whose node sizes are 50 using a solution method to comment on velocity

decisions of the PEV under different total time limits. Table 5.21 shows the results

of experiments. Table includes instances whose upper time limits are generated using

total time of the tour found in exact solutions. We used a parameter α at different

values to get tight upper time limits. Fourth column represents the value of α, which

makes the analysis on PEV speed more clear. α should be chosen in a way that the

problem is still feasible. Therefore, each instance is analyzed under different values

of α. Fifth column is the multiplication of total time spent along the exact path and

α. Here, it is seen that solution times, in last column, increases with decreasing

value of T . Moreover, average speed along the selected path is given in column 7.

First row shows the results of experiments under untight time limit for each instance.

When time limit is not tight, speed on each arc is equal to maximum of Lij and

optimal speed. Hence, average increase in speed is calculated based on the average

speed at first row of each different instance result. It is expected that as the time

limit gets lower, PEV drives faster to ensure time feasibility while trying to balance

energy consumption on arcs. In other words, as α becomes smaller, average speed

and the energy consumption along the path increases. For each instance except the

(50− 30− 3), chosen path is the same while time limit gets smaller. However, values

of speeds increase. If we look at the solution of the instance (50 − 30 − 3) while α

is equal to 0.52, PEV changes its path because of lower energy consumption on that

changed part of the road segment.

In addition to these instances, we created a network with a different structure. As

defined in Chapter 5.1, this network includes two different node clusters. These two

areas connected by the help of bridges defined between last 6 nodes of 1st cluster and

first 6 nodes of 2nd cluster. 40% level is used to analyze behavior of the PEV on this

graph. Our purpose is to show that driving on the shortest path is not always the op-

timal solution for energy efficient path problem using speed optimization. As values

of speeds at each road segment can change, energy consumption may have significant

changes. We ordered 10000 shortest paths of the network using Yen’s algorithm to

make observations on each. It can be stated that there is no energy feasible path in

77

Table 5.22: Solutions for the Instances with nodes 24 and 41 using VNS heuristic

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality

Gap

(%)

24 20 1 1-20-21-24 0.582 8.820 0

24 20 2 1-20-21-24 0.582 9.341 0

24 20 3 1-20-21-24 0.582 8.870 0

24 30 1 1-19-22-23-24 0.642 15.584 0

24 30 2 1-20-21-24 0.582 9.415 0

24 30 3 1-20-21-24 0.582 9.925 0

24 40 1 1-20-21-24 0.582 8.053 0

24 40 2 1-20-21-24 0.582 9.660 0

24 40 3 1-20-21-24 0.582 9.002 0

41 20 1
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 20.913 0

41 20 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 20.304 0

41 20 3
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 20.275 0

41 30 1
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 17.476 0

41 30 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 16.718 0

41 30 3
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 17.147 0

41 40 1
1-2-3-9-10-15-25

-31-35-36-40-41
2.060 21.327 0

41 40 2
1-2-3-9-10-11-17-

20-27-32-36-40-41
1.940 19.167 0

41 40 3
1-2-3-9-14-23-24

-25-31-35-36-40-41
2.153 22.943 1.56

78

Table 5.23: Solutions for the Instances with nodes 50 using VNS heuristic

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×107)

Solution Time

(sec)

Optimality Gap

(%)

50 20 1
1-15-23-28-27-35

-36-38-46-45-50
10.030 26.801 0

50 20 2 1-15-24-29-37-44-45-50 9.143 16.693 0

50 20 3 1-15-24-29-37-44-45-50 9.143 16.057 0

50 30 1 1-15-24-30-38-46-45-50 9.501 17.723 0

50 30 2 1-15-24-29-37-44-45-50 9.143 19.174 0

50 30 3 1-15-23-29-37-44-45-50 9.650 27.636 0

50 40 1 1-15-24-29-37-44-45-50 9.143 25.534 0

50 40 2 1-15-24-29-37-44-45-50 9.143 23.837 0

50 40 3 1-15-24-29-37-44-45-50 9.143 22.682 0

Table 5.24: Solutions for the Instances with nodes 146 using VNS heuristic

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality Gap

(%)

146 20 1
1-69-70-71-72-83-98-

99-112-113-127-135-146
1.171 173.915 0

146 20 2
1-79-92-93-107-108-121-

122-123-124-144-145-146
1.189 128.362 1.54

146 20 3
1-69-70-71-72-83-98-

99-112-113-127-135-146
1.171 149.095 0

146 30 1
1-79-80-94-95-122-123

-133-143-144-145-146
1.201 156.894 2.56

146 30 2
1-69-70-71-72-83-98-

99-112-113-127-135-146
1.171 139.795 0

146 30 3
1-79-80-94-95-122-

123-124-144-145-146
1.142 135.365 0

146 40 1
1-79-80-94-95-122-

123-124-144-145-146
1.142 116.507 0

146 40 2
1-79-80-94-95-122-

123-124-144-145-146
1.142 295.054 0

146 40 3
1-79-80-94-95-122-

123-124-144-145-146
1.142 295.957 0

79

Table 5.25: Solutions for the Instances with nodes 195 using VNS heuristic

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality

Gap

(%)

195 20 1

1-17-31-32-33-34-35

-51-59-60-76-77-89-102-116-133

-150-168-186-187-188-189

-190-191-192-193-194-195

2.569 289.926 1.58

195 20 2

1-17-31-32-33-34-35-51-59

-60-76-77-89-90-91-92

-105-123-124-141-159

-160-161-177-194-195

2.516 580.705 0

195 20 3

1-17-31-32-33-34-35-51-59

-60-76-77-89-90-91-92

-105-123-124-141-159

-160-161-177-194-195

2.516 564.908 0

195 30 1

1-17-31-32-33-34-35-51-59

-60-76-77-89-90-91-92

-105-123-124-141-159

-160-161-177-194-195

2.516 251.959 0

195 30 2

1-17-31-32-33-34-35-51-59

-60-76-77-89-90-91-92

-105-123-124-141-159

-160-161-177-194-195

2.516 576.781 0

195 30 3

1-17-31-32-33-34-35-51-59

-60-76-77-89-90-91-92

-105-123-124-141-159

-160-161-177-194-195

2.516 598.117 0

195 40 1

1-17-31-32-33-34-35-51-59

-60-76-77-89-90-91-92

-105-123-124-141-159

-160-161-177-194-195

2.516 252.989 0

195 40 2

1-17-31-32-33-34-35-51-59

-60-76-77-89-90-91-92

-105-123-124-141-159

-160-161-177-194-195

2.516 579.988 0

195 40 3

1-17-31-48-49-56-57-

58-74-75-87-88-89-90-91-

92-105-123-124-141-

159-160-176-193-194-195

2.540 596.368 0.24

80

Table 5.26: Solutions for the Instances with nodes 321 using VNS heuristic

|N|
Density

%
Pattern Path Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality

Gap*

(%)

321 20 1

1-18-28-61-62-63-83-100-101-136-137

-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283

-284-285-301-302-318-319-320-321

3.480 1179.040 0

321 20 2

1-18-28-61-62-63-83-100-101-136-137

-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283

-284-285-301-302-318-319-320-321

3.480 1040.010 0.26

321 20 3

1-18-28-61-62-63-83-100-101-136-137

-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283

-284-285-301-302-318-319-320-321

3.480 670.037 0.26

321 30 1

1-18-28-29-30-49-64-84-101-136

-137-155-156-173-174-175-176

-212-213-214-231-248-249-250-262

-283-284-285-301-302-318-319-320-321

3.501 786.187 0

321 30 2

1-18-28-61-62-63-83-100-101-136-137

-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283

-284-285-301-302-318-319-320-321

3.480 760.605 0.26

321 30 3

1-18-28-61-62-63-83-100-101-136-137

-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283

-284-285-301-302-318-319-320-321

3.480 680.517 0.26

321 40 1

1-18-28-61-62-63-83-100-101-136-137

-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283

-284-285-301-302-318-319-320-321

3.480 706.225 0.26

321 40 2

1-18-28-61-62-63-83-100-101-136-137

-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283

-284-285-301-302-318-319-320-321

3.480 689.348 0.09

321 40 3

1-18-28-61-62-63-83-100-101-136-137

-155-156-173-174-175-176-212-213

-214-231-248-249-250-262-283

-284-285-301-302-318-319-320-321

3.480 667.223 0.09

*(Optimality gaps are calculated according to best known solutions)

81

Table 5.27: Solutions for the Instance with 40 nodes

|N|
Density

%

Algorithm

Used

Path

Found

Energy

Consumption Value

(×108)

Solution Time

(sec)

Optimality

Gap

(%)

40 40

Exact 1-4-7-10-13-16-23-27-28-32-36-40 1.634 433.479 0

Matheuristic

with

MIP Initialization

1-4-6-9-12-15-23-27-34-35-39-40 1.650 41.732 0.98

Matheuristic

with kth

Path Initialization

- - - -

VNS heuristic 1-4-7-10-13-16-23-27-34-35-39-40 1.642 20.010 0.49

the first 10000 shortest paths. Thus, none of the algorithms selects one of the shortest

paths of the network. This makes the processes for each algorithm difficult as there

are few feasible path options. Solution of this network using PEVEEP-MISOCP and

2 heuristics can be seen on Table 5.27.

Objective function value is equal to 1.634 × 108 joule in exact solution. Solution

is taken in approximately 434 seconds. If we compare this network with the net-

works with same size in Table 5.9, solution time is much larger. This is because of

the complexity of the constructed graph. There are a lot of paths which are energy

or time infeasible. Hence, algorithms have difficulty in choosing the best one. More-

over, VNS heuristic performs better compared to matheuristic approach with MIP

initialization. Its gap and solution time is smaller than the results of the matheuristic.

VNS heuristic is preferable when it is compared to the matheuristic, but both heuristic

methods can be used in place of PEVEEP-MISOCP in order to get the solution in a

short period of time. As our second approach starts with a randomly chosen shortest

path, here we cannot use it to solve the problem on this network. When it is executed,

algorithm cannot start to solve the problem due to not being able to find an energy

feasible path. This result strongly supports our argument, a shortest path may not be

the optimal solution for the energy efficient path problem while velocity is a decision

variable.

Comparison is made between heuristics proposed, and performances can be seen in

Tables 5.28, 5.29 and 5.30. Dominating alternatives are shown using bold font. When

we compared the instances whose sizes are 24, optimality gaps for all heuristics are 0

82

Table 5.28: Comparison of Heuristic Performances on Networks whose Node sizes

are 24 and 41

Matheuristic with

MIP Initialization

Matheuristic with

kth Path Initialization
VNS heuristic

|N|
Density

%
Pattern

Optimality

Gap

(%)

Solution Time

(sec)

Optimality

Gap

(%)

Solution Time

(sec)

Optimality

Gap

(%)

Solution Time

(sec)

24 20 1 0 5.481 0 5.824 0 8.820

24 20 2 0 5.660 0 7.585 0 9.341

24 20 3 0 4.800 0 7.074 0 8.870

24 30 1 0 6.003 0 6.795 0 15.584

24 30 2 0 5.911 0 5.803 0 9.415

24 30 3 0 5.599 0 7.553 0 9.925

24 40 1 0 5.962 0 4.460 0 8.053

24 40 2 0 5.877 0 6.289 0 9.660

24 40 3 0 5.907 0 6.266 0 9.002

41 20 1 0 17.740 0 10.278 0 20.913

41 20 2 0 16.269 0 13.650 0 20.304

41 20 3 0 17.072 0 10.488 0 20.275

41 30 1 0 16.865 0 21.049 0 17.476

41 30 2 0 16.231 0 19.353 0 16.718

41 30 3 0 16.464 0 15.690 0 17.147

41 40 1 0 14.834 0 8.223 0 21.327

41 40 2 0 16.409 0 10.061 0 19.167

41 40 3 0 13.039 0 8.952 1.56 22.943

83

Table 5.29: Comparison of Heuristic Performances on Networks whose Node sizes

are 50 and 146

Matheuristic with

MIP Initialization

Matheuristic with

kth Path Initialization
VNS heuristic

|N|
Density

%
Pattern

Optimality

Gap

(%)

Solution Time

(sec)

Optimality

Gap

(%)

Solution Time

(sec)

Optimality

Gap

(%)

Solution Time

(sec)

50 20 1 0 21.877 4.79 21.615 0 26.801

50 20 2 0 19.895 0 16.567 0 16.693

50 20 3 0 21.715 0 16.705 0 16.057

50 30 1 0 18.813 0 17.262 0 17.723

50 30 2 0 12.147 0 16.196 0 19.174

50 30 3 0 18.355 0 18.427 0 27.636

50 40 1 0 19.444 0 15.628 0 25.534

50 40 2 0 19.259 0 15.669 0 23.837

50 40 3 0 20.819 0 13.644 0 22.682

146 20 1 1.96 246.635 16.99 125.660 0 173.915

146 20 2 0 235.025 0 137.632 1.54 128.362

146 20 3 0.77 177.819 0 153.105 0 149.095

146 30 1 1.96 661.030 16.99 127.060 2.56 156.894

146 30 2 0.77 283.124 0 132.348 0 139.795

146 30 3 0 302.958 0 133.020 0 135.365

146 40 1 0 349.652 0 185.200 0 116.507

146 40 2 0 468.248 0 134.205 0 295.054

146 40 3 0 420.103 0 147.486 0 295.957

84

Table 5.30: Comparison of Heuristic Performances on Networks whose node sizes

are 195 and 321

Matheuristic with

kth Path Initialization
VNS heuristic

|N|
Density

%
Pattern

Optimality

Gap

(%)

Solution Time

(sec)

Optimality

Gap*

(%)

Solution Time

(sec)

195 20 1 0 252.230 1.58 289.926

195 20 2 0 274.882 0 580.705

195 20 3 0 238.417 0 564.908

195 30 1 0 101.717 0 251.959

195 30 2 0 247.438 0 576.781

195 30 3 0 277.815 0 598.117

195 40 1 0 137.172 0 252.989

195 40 2 0 276.057 0 579.988

195 40 3 0 112.697 0.24 596.368

321 20 1 0 270.150 0 1179.040

321 20 2 0 303.200 0.26 1040.010

321 20 3 0 291.064 0.26 670.037

321 30 1 0.40 290.656 0 786.187

321 30 2 0 285.319 0.26 760.605

321 30 3 0 288.900 0.26 680.517

321 40 1 0 299.961 0.26 706.225

321 40 2 0 262.030 0.09 689.348

321 40 3 0 271.869 0.09 667.223
*(Optimality gaps are calculated according to best known solutions)

85

in Table 5.28. Instances up to (24− 30− 3) except (24− 30− 2), are solved faster by

matheuristic with MIP Initialization. For the instances whose sizes are 24 and densi-

ties are 40, first instance is solved faster by matheuristic with kth Path Initialization,

while the others are solved faster by matheuristic with MIP Initialization. It can also

be stated that difference between solution times is not too large. Moreover, for the

instances whose sizes are 41, VNS heuristic is again dominated in terms of both so-

lution quality and solution times by other 2 heuristics. All of them have 0 optimality

gap, but matheuristic with kth Path Initialization solves all the instances faster except

(41− 30− 1) and (41− 30− 2).

When we look at Table 5.29, VNS heuristic is the best option for some of the in-

stances. For the instance (50 − 20 − 3), it works faster with 0 optimality gap. For

other instances whose sizes are 50, except the instance (50−20−1), (50−30−2) and

(50−30−3), matheuristic with kth Path Initialization is the dominating alternative. It

is important to state that there are no too significant differences between these heuris-

tics for the networks with 50 nodes. For larger instances with 146 nodes, matheuris-

tic with MIP Initialization does not perform well as there are optimality gaps and

higher solution times. VNS heuristic performs better for the instances (146−20−1),

(146−20−3), (146−30−1) and (146−40−1). For remaining instances, matheuris-

tic with kth Path Initialization is the dominating one in terms of solution quality and

time.

For the networks with more than 195 nodes, matheuristic with MIP Initialization can-

not generate a solution due to initialization problems. At first step, PEVTEPP-MIP

tries to solve the instance in order to have an initial path which is energy feasible.

However, this takes too much time. So, performance of matheuristic with MIP Ini-

tialization is already dominated by other 2 heuristics. Therefore, they are not available

in Table 5.30. Matheuristic with kth Path Initialization performs better in terms of so-

lution quality and time for all instances except (321−20−1). This instance is solved

by matheuristic with kth Path Initialization in 290.656 seconds with 0.40% optimal-

ity gap. On the other hand, VNS gives the exact solution though its solution time is

higher.

To summarize, VNS heuristic performs well for some of the larger instances with

86

more than 41 nodes. Generally, matheuristic with kth Path Initialization is the best

option for all instances. Since initialization takes too much time using Matheuristic

with MIP Initialization, it is the best option only for the instances whose sizes are

smaller than 50 as expected.

Finally, total time spent along a fixed path, T , is changed to compare algorithm per-

formances under different conditions. We put tighter upper bounds on each network

to check whether PEV increases its speed or decrease number of stops to recharge.

For each instance, total time spent is measured and kept as a decision variable. As a

second step, these values are used to determine new time limits, Tnew. A fraction α is

multiplied by value of this total time spent. For example, if a PEV completes the path

in 100000 seconds, and α is equal to 0.9, then Tnew is determined as 90000 seconds.

Solution method takes this value as a parameter. If objective function does not change

with this Tnew, α gets smaller until we get a change in the energy consumption level.

Some of the instances are tried for this purpose. To make observation, instances with

two different node sizes are solved. Results can be seen in Tables 5.31, 5.32, 5.33 and

5.34.

Some of the instances cannot be solved by some of the heuristics. This probably

sources from not being able to perform path exchanges due to tight time limitation

on each path. In other words, algorithms cannot make too much path exchanges to

reach the best solution. Also, we made again fine tuning for Matheuristic approach

to get a feasible solution. K is used as 10 to explore more areas while k is still

5. On the other hand, VNS heuristic is able to solve the instances with the same

algorithm paramaters. Hence, the values of I , K and KRON are not changed. For

all the instances, it is expected to have an increase in energy level due to lower travel

times and higher values of speeds. Also, energy taken at recharging stations should be

less than the values taken previously. As there is a tight time limit over the network,

PEV tends to take one of these actions. When tight upper time limits are applied, the

best path over a network can change. An arc of the network with lower distance but

higher lower speed limit may be a better option under tight upper time limit. In other

words, it will be a better alternative although the PEV has to drive faster in order to

satisfy feasibility conditions. Moreover, another observation is made on the behavior

of PEV while it is under tight time limit. As mentioned, PEV tries to increase speed

87

1 2 3 4 5

1 2 3 4 5

V12 = 15.25 V23 = 13.035 V34 = 13.035 V45 = 16.50

V12 = 15.25 V23 = 15.25 V34 = 15.25 V45 = 16.50

A Path from Node 1 to Node 5 with different Vij values

Change in Values of V23 and V34

Figure 5.2: An Illustration of Increase in Variable Vij along a Path

on some of the arcs. It starts from the arc with smallest Vij . Vij is increased until the

second smallest speed value. After that, algorithm again checks each arc in order to

find smallest Vij value again. This iteration continues until time limitation is satisfied.

As the energy consumption behavior of the PEV is based on a third degree function of

V , it is better to have small increments on V while searching for a feasible solution.

If increment in Vij values causes energy infeasibility due to excess amount of energy

consumption, then the instance may not be solved for given time limit, T .

An illustration is shown in Figure 5.2. If there is a path from 1 to 5 with different Vij

values assigned to each arc, increase in velocity values starts from the minimum one,

which are V23 and V34. It is assumed that time requirement can be met increasing V23

and V34 values up to V12 = 15.25 m/sec which is second smallest value of V. If there

needs to be more increment on other V values to be under given time limit Tnew, then

V12, V23 and V34 will be evaluated together to increase their values.

Table 5.31 shows the exact solutions when tight upper time limit is applied on dif-

ferent instances. Last column of the table shows the energy increase as a percentage.

As shown in the table instance (41 − 30 − 2) shows the largest increment. Also, all

the instances except (146− 20− 2) drive on the same path. PEV changes its optimal

path on instance (146 − 20 − 2). For other instances, PEV drives at a larger speed

on each road segment. Moreover, Table 5.32 shows the solutions given by matheuris-

tic with MIP Initialization under tight upper time limit. All the solutions are exact as

shown in the last column of the Table. Compared to exact solution times, matheuristic

88

Table 5.31: Exact Solutions of some Networks with Tight Upper Time Limit Tnew

|N|
Density

%
Pattern α Path

Energy Consumption

Value

(×108)

Solution Time

(sec)

Energy Consumption

Increase

(%)

24 30 1 0.70 1-19-22-23-24 6.631 2.621 3.30

24 30 2 0.90 1-20-21-24 5.926 2.820 1.80

41 30 1 0.88 1-2-3-9-10-11-17-20-27-32-36-40-41 1.976 140.311 1.80

41 30 2 0.85 1-2-3-9-10-11-17-20-27-32-36-40-41 2.063 30.333 6.29

41 30 3 0.80 1-2-3-9-10-11-17-20-27-32-36-40-41 2.034 15.763 4.79

50 20 1 0.80 1-15-23-28-27-35-36-38-46-45-50 1.052 32.941 4.89

50 20 2 0.90 1-15-24-29-37-44-45-50 9.479 25.199 3.68

50 20 3 0.45 1-15-24-29-37-44-45-50 9.261 19.965 1.29

146 20 2 0.90 1-79-80-81-95-122-123-124-144-145-146 1.180 4274.790 0.68

195 40 1 0.90

1-17-31-32-33-34-35-51-59

-60-76-77-89-90-91-92-105-123

-124-141-159-160-161-177-194-195

2.529 15994.601 0.52

with MIP Initialization heuristic gives solutions faster. Likewise, Table 5.33 shows

the solutions given by matheuristic with kth Path Initialization under tight upper time

limit. This algorithm also finds all the solutions with 0 gap. It dominates the previous

heuristic for larger instances whose node sizes are 146 and 195. Matheuristic with

MIP Initialization does not solve the instance (195 − 40 − 1). On the other hand,

this heuristic solves all instances in a faster way. VNS solutions can be seen in Table

5.34. There are 3 instances, (24 − 30 − 1), (50 − 20 − 2) and (146 − 20 − 2), not

solved by VNS. Also, instance (195 − 40 − 1) is solved with optimality gap 4.03%.

It can be said that VNS solves these instances under time limitation faster but it gives

significant optimality gaps.

89

Table 5.32: Matheuristic with MIP Initialization Solutions of some Networks with

Tight Upper Time Limit Tnew

|N|
Density

%
Pattern α Path

Energy Consumption

Value

(×108)

Solution Time

(sec)

Optimality

Gap

(%)

24 30 1 0.70 1-19-22-23-24 6.631 10.51 0

24 30 2 0.90 1-20-21-24 5.926 11.047 0

41 30 1 0.88 1-2-3-9-10-11-17-20-27-32-36-40-41 1.976 27.013 0

41 30 2 0.85 1-2-3-9-10-11-17-20-27-32-36-40-41 2.063 25.708 0

41 30 3 0.80 1-2-3-9-10-11-17-20-27-32-36-40-41 2.034 29.968 0

50 20 1 0.80 1-15-23-28-27-35-36-38-46-45-50 1.052 35.587 0

50 20 2 0.90 1-15-24-29-37-44-45-50 9.479 38.862 0

50 20 3 0.45 1-15-24-29-37-44-45-50 9.261 33.952 0

146 20 2 0.90 1-79-80-81-95-122-123-124-144-145-146 1.180 382.372 0

195 40 1 0.90 - - - -

Table 5.33: Matheuristic with kth Path Initialization Solutions of some Networks with

Tight Upper Time Limit Tnew

|N|
Density

%
Pattern α Path

Energy Consumption

Value

(×108)

Solution Time

(sec)

Optimality

Gap

(%)

24 30 1 0.70 1-19-22-23-24 6.631 22.147 0

24 30 2 0.90 1-20-21-24 5.926 5.537 0

41 30 1 0.88 1-2-3-9-10-11-17-20-27-32-36-40-41 1.976 30.181 0

41 30 2 0.85 1-2-3-9-10-11-17-20-27-32-36-40-41 2.063 21.631 0

41 30 3 0.80 1-2-3-9-10-11-17-20-27-32-36-40-41 2.034 11.462 0

50 20 1 0.80 1-15-23-28-27-35-36-38-46-45-50 1.052 28.724 0

50 20 2 0.90 1-15-24-29-37-44-45-50 9.479 38.591 0

50 20 3 0.45 1-15-24-29-37-44-45-50 9.261 40.195 0

146 20 2 0.90
1-79-80-81-95-122-123

-124-144-145-146
1.180 191.576 0

195 40 1 0.90

1-17-31-32-33-34-35

-51-59-60-76-77-89-90-91

-92-105-123-124-141-159

-160-161-177-194-195

2.529 192.736 0

90

Table 5.34: VNS Heuristic Solutions of some Networks with Tight Upper Time Limit

Tnew

|N|
Density

%
Pattern α Path

Energy Consumption

Value

(×108)

Solution Time

(sec)

Optimality

Gap

(%)

24 30 1 0.70 - - - 100

24 30 2 0.90 1-20-21-24 5.926 8.916 0

41 30 1 0.88 1-2-3-9-10-11-17-20-27-32-36-40-41 1.976 21.525 0

41 30 2 0.85 1-2-3-9-10-11-17-20-27-32-36-40-41 2.063 20.847 0

41 30 3 0.80 1-2-3-9-10-11-17-20-27-32-36-40-41 2.034 23.172 0

50 20 1 0.80 1-15-23-28-27-35-36-38-46-45-50 1.052 26.116 0

50 20 2 0.90 - - - 100

50 20 3 0.45 1-15-24-29-37-44-45-50 9.261 26.743 0

146 20 2 0.90 - - - 100

195 40 1 0.90

1-2-3-4-19-20-21-37-38-

39-40-63-64-92-105-123-124

-141-159-160-161-177-194-195

2.631 268.13 4.03

91

92

CHAPTER 6

CONCLUSIONS

Electric vehicles are important part of today’s technology and energy consumption

field. Their usage rates increase day by day because of the economic and environmen-

tal benefits. Hence, both theoretically challenging and practically important problems

arise. In the direction of this trend, a problem about energy optimization of a Plug-In

Electric Vehicle (PEV) over a network is analyzed in this thesis. Selection of stops

and velocity to reach minimum level of energy consumption are decided. In the liter-

ature, all of the studies trying to find an energy efficient path use velocity as a param-

eter. Here, it is considered as a decision variable and our objective is a third degree

function of the speed of the vehicle. After a literature review, energy consumption

function of the PEV is taken as objective in our problem. This function represents the

behaviour of the battery on the PEV based on some parameters, mainly V .

An MISOCP model is used in order to solve the problem. It is seen that the for-

mulation becomes inadequate for larger instances such as the graph with 321 nodes.

Hence, a heuristic approach is applied on the problem. Matheuristic proposed is

composed of 3 steps. Each step includes a different mathematical formulation. By

the help of these optimization problems, exploitation can be satisfied while finding

a solution. Moreover, improvement heuristics are applied between these steps. Fine

tuning of the parameters is an important part in order to reach different solutions and

exact solution at the end in the solution area. The proposed heuristic gives exact so-

lutions in shorter times for the problems whose solutions were found by the MISOCP

formulation. Also, larger instances are solved in reasonable time. Likewise, a VNS

based approach is proposed to determine an efficient path for a PEV. Speed optimiza-

tion part of the problem is realized by an MISOCP at final step of the VNS algorithm.

93

Again, it is seen that VNS algorithm is good at finding optimal or solutions near to

optimal in shorter time intervals compared to exact algorithm over large instances.

To conclude, computation times and solution quality of the proposed heuristic are

acceptable for the problems with previously decided optimal solutions.

As a future work, different instances can be solved using the heuristic methods on

hand. Moreover, T- Improvement, E-Improvement and VNS algorithms can be de-

veloped in terms of their computational efforts. New neighborhood definitions can be

made on speed optimization for a PEV. Moreover, a time dependent problem defini-

tion can be made considering the traffic congestion on road segments. In this case, a

dynamic programming method can be used to solve the problem. For further appli-

cations of PEVs, our problem definition can be modified in order to solve minimum

cost path problems for commercial vehicles, which is a valuable research direction.

94

REFERENCES

[1] Y. Li, L. Zhang, H. Zheng, X. He, S. Peeta, T. Zheng, and Y. Li, “Nonlane-

discipline-based car-following model for electric vehicles in transportation-

cyber-physical systems,” IEEE Transactions on Intelligent Transportation Sys-

tems, vol. 19, no. 1, pp. 38–47, 2017.

[2] I. IEA, W. UNSD, et al., “Who. tracking sdg 7: The energy progress report

2019,” Washington DC, 2019.

[3] E. Regulation, “Regulation (eu) 2018/1999 of the european parliament and of

the council of 11 december 2018 on the governance of the energy union and

climate action, amending regulations (ec) no 663/2009 and (ec) no 715/2009

of the european parliament and of the council,” tech. rep., Directives 94/22/EC,

98/70/EC, 2009/31/EC, 2009/73/EC, 2010/31/EU, 2012/27 . . . , 2018.

[4] O. Arslan, B. Yıldız, and O. E. Karaşan, “Minimum cost path problem for

plug-in hybrid electric vehicles,” Transportation Research Part E: Logistics and

Transportation Review, vol. 80, pp. 123–141, 2015.

[5] M. Schneider, A. Stenger, and D. Goeke, “The electric vehicle-routing problem

with time windows and recharging stations,” Transportation Science, vol. 48,

no. 4, pp. 500–520, 2014.

[6] M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner, “Speed-

consumption tradeoff for electric vehicle route planning,” in 14Th workshop

on algorithmic approaches for transportation modelling, optimization, and sys-

tems, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[7] M. Strehler, S. Merting, and C. Schwan, “Energy-efficient shortest routes for

electric and hybrid vehicles,” Transportation Research Part B: Methodological,

vol. 103, pp. 111–135, 2017.

95

[8] J. Lu, Y. Chen, J.-K. Hao, and R. He, “The time-dependent electric vehicle rout-

ing problem: Model and solution,” Expert Systems with Applications, p. 113593,

2020.

[9] P. Vasant, J. A. Marmolejo, I. Litvinchev, and R. R. Aguilar, “Nature-inspired

meta-heuristics approaches for charging plug-in hybrid electric vehicle,” Wire-

less Networks, vol. 26, no. 7, pp. 4753–4766, 2020.

[10] C. De Cauwer, J. Van Mierlo, and T. Coosemans, “Energy consumption pre-

diction for electric vehicles based on real-world data,” Energies, vol. 8, no. 8,

pp. 8573–8593, 2015.

[11] X. Wu, X. He, G. Yu, A. Harmandayan, and Y. Wang, “Energy-optimal speed

control for electric vehicles on signalized arterials,” IEEE Transactions on In-

telligent Transportation Systems, vol. 16, no. 5, pp. 2786–2796, 2015.

[12] X. Wu, D. Freese, A. Cabrera, and W. A. Kitch, “Electric vehicles’ energy

consumption measurement and estimation,” Transportation Research Part D:

Transport and Environment, vol. 34, pp. 52–67, 2015.

[13] C. Archetti and M. G. Speranza, “A survey on matheuristics for routing prob-

lems,” EURO Journal on Computational Optimization, vol. 2, no. 4, pp. 223–

246, 2014.

[14] J. G. Villegas, C. Prins, C. Prodhon, A. L. Medaglia, and N. Velasco, “A

matheuristic for the truck and trailer routing problem,” European Journal of

Operational Research, vol. 230, no. 2, pp. 231–244, 2013.

[15] R. Kramer, A. Subramanian, T. Vidal, and F. C. Lucídio dos Anjos, “A

matheuristic approach for the pollution-routing problem,” European Journal of

Operational Research, vol. 243, no. 2, pp. 523–539, 2015.

[16] A. Franceschetti, D. Honhon, T. Van Woensel, T. Bektaş, and G. Laporte, “The

time-dependent pollution-routing problem,” Transportation Research Part B:

Methodological, vol. 56, pp. 265–293, 2013.

[17] A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas, “The electric vehi-

cle routing problem with nonlinear charging function,” Transportation Research

Part B: Methodological, vol. 103, pp. 87–110, 2017.

96

[18] M. Bruglieri, F. Pezzella, O. Pisacane, and S. Suraci, “A matheuristic for

the electric vehicle routing problem with time windows,” arXiv preprint

arXiv:1506.00211, 2015.

[19] A. Froger, J. E. Mendoza, O. Jabali, and G. Laporte, A matheuristic for the

electric vehicle routing problem with capacitated charging stations. PhD thesis,

Centre interuniversitaire de recherche sur les reseaux d’entreprise, la . . . , 2017.

[20] R. Abousleiman and O. Rawashdeh, “Energy-efficient routing for electric vehi-

cles using metaheuristic optimization frameworks,” in MELECON 2014-2014

17th IEEE Mediterranean Electrotechnical Conference, pp. 298–304, IEEE,

2014.

[21] R. Abousleiman, O. Rawashdeh, and R. Boimer, “Electric vehicles energy effi-

cient routing using ant colony optimization,” SAE International Journal of Al-

ternative Powertrains, vol. 6, no. 1, pp. 1–14, 2017.

[22] F. Y. Vincent, A. P. Redi, Y. A. Hidayat, and O. J. Wibowo, “A simulated anneal-

ing heuristic for the hybrid vehicle routing problem,” Applied Soft Computing,

vol. 53, pp. 119–132, 2017.

[23] S. Ropke and D. Pisinger, “An adaptive large neighborhood search heuristic for

the pickup and delivery problem with time windows,” Transportation science,

vol. 40, no. 4, pp. 455–472, 2006.

[24] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Mathematical

programming, vol. 95, no. 1, pp. 3–51, 2003.

[25] M. A. Boschetti, V. Maniezzo, M. Roffilli, and A. B. Röhler, “Matheuristics:

Optimization, simulation and control,” in International Workshop on Hybrid

Metaheuristics, pp. 171–177, Springer, 2009.

[26] J. Y. Yen, “Finding the k shortest loopless paths in a network,” management

Science, vol. 17, no. 11, pp. 712–716, 1971.

[27] P. Hansen, N. Mladenović, R. Todosijević, and S. Hanafi, “Variable neighbor-

hood search: basics and variants,” EURO Journal on Computational Optimiza-

tion, vol. 5, no. 3, pp. 423–454, 2017.

97

[28] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,” Nu-

merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[29] J.-M. Belenguer, E. Benavent, P. Lacomme, and C. Prins, “Lower and upper

bounds for the mixed capacitated arc routing problem,” Computers & Opera-

tions Research, vol. 33, no. 12, pp. 3363–3383, 2006.

[30] L. Gouveia, M. C. Mourão, and L. S. Pinto, “Lower bounds for the mixed capac-

itated arc routing problem,” Computers & Operations Research, vol. 37, no. 4,

pp. 692–699, 2010.

98

APPENDIX A

PEVEEP-MISOCP MODEL

(PEVEEP-MISOCP)

Minimize
∑
i∈N

∑
i∈N

Eij (A.1)

subject to

Eij ≥ e× tij +Dij × (b× lij + a× fij + c× V ij + xij × d) ∀(i, j) ∈ A
(A.2)∥∥∥∥∥∥ Vij

(lij − 1)/2

∥∥∥∥∥∥ ≤ (lij + 1)/2 ∀(i, j) ∈ A (A.3)

∥∥∥∥∥∥ lij

(fij − Vij)/2

∥∥∥∥∥∥ ≤ (fij + Vij)/2 ∀(i, j) ∈ A (A.4)

∥∥∥∥∥∥xij ×
√
Dij

(tij − Vij)/2

∥∥∥∥∥∥ ≤ (tij + Vij)/2 ∀(i, j) ∈ A (A.5)

∑
i∈N

x1i −
∑
i∈N

xi1 = 1 (A.6)

∑
i∈N

xNi −
∑
i∈N

xiN = −1 (A.7)

N−1∑
i=2

xij −
N−1∑
i=2

xji = 0 j = 2, . . . , N − 1 (A.8)

M × (1− xij) ≥ eaj − edi + Eij ∀(i, j) ∈ A (A.9)

M × (xij − 1) ≤ eaj − edi + Eij ∀(i, j) ∈ A (A.10)

Vij ≤ Uij × xij ∀(i, j) ∈ A (A.11)

Vij ≥ Lij × xij ∀(i, j) ∈ A (A.12)

99

ea1 = I (A.13)

ecN = 0 (A.14)

cti = A× yi +B × eci ∀i ∈ S (A.15)

edi = eai + eci ∀i ∈ N (A.16)

edi ≤ C ∀i ∈ N (A.17)

eci ≤ yi × (C −m) ∀i ∈ S (A.18)

yj ≤
N−1∑
i=1

xij j = 2, . . . , N − 1 (A.19)

eaj ≤
N−1∑
i=1

xij × C j = 2, . . . , N − 1 (A.20)

eaj ≥
N−1∑
i=1

xij ×m j = 2, . . . , N (A.21)

T ≥
N∑
i=1

N∑
j=1

tij +
N∑
i=1

ctj (A.22)

N∑
i=1

xij ≤ 1 ∀j ∈ N (A.23)

Vij, tij, Eij, lij, fij ≥ 0 ∀(i, j) ∈ A (A.24)

eci, edi, eai, cti ≥ 0 ∀i ∈ N (A.25)

xij ∈ {0, 1} ∀(i, j) ∈ A (A.26)

yi ∈ {0, 1} ∀i ∈ N (A.27)

100

APPENDIX B

PEVTEPP-MIP MODEL

(PEVTEPP-MIP)

Minimize
N∑
i=1

N∑
j=1

tij +
N∑
i=1

ctj (B.1)

subject to

Eij ≥ e× tij +Dij × (a× V 3
ij + b× V 2

ij + c× Vij + xij × d) ∀(i, j) ∈ A
(B.2)∑

i∈N

x1i −
∑
i∈N

xi1 = 1 (B.3)

∑
i∈N

xNi −
∑
i∈N

xiN = −1 (B.4)

N−1∑
i=2

xij −
N−1∑
i=2

xji = 0 j = 2, . . . , N − 1 (B.5)

M × (1− xij) ≥ eaj − edi + Eij ∀(i, j) ∈ A (B.6)

M × (xij − 1) ≤ eaj − edi + Eij ∀(i, j) ∈ A (B.7)

Vij ≤ Uij × xij ∀(i, j) ∈ A (B.8)

Vij ≥ Lij × xij ∀(i, j) ∈ A (B.9)

xij ×Dij ≥ Lij × tij ∀(i, j) ∈ A (B.10)

ea1 = I (B.11)

ecN = 0 (B.12)

101

cti = A× yi +B × eci ∀i ∈ S (B.13)

edi = eai + eci ∀i ∈ N (B.14)

edi ≤ C ∀i ∈ N (B.15)

eci ≤ yi × (C −m) ∀i ∈ S (B.16)

yj ≤
N−1∑
i=1

xij j = 2, . . . , N − 1 (B.17)

eaj ≤
N−1∑
i=1

xij × C j = 2, . . . , N − 1 (B.18)

eaj ≥
N−1∑
i=1

xij ×m j = 2, . . . , N (B.19)

N∑
i=1

xij ≤ 1 ∀j ∈ N (B.20)

tij, Eij ≥ 0 ∀(i, j) ∈ A (B.21)

eci, edi, eai, cti ≥ 0 ∀i ∈ N (B.22)

xij ∈ {0, 1} ∀(i, j) ∈ A (B.23)

yi ∈ {0, 1} ∀i ∈ N (B.24)

102

APPENDIX C

PEVTEPP-MISOCP MODEL

(PEVTEPP-MISOCP)

Minimize
N∑
i=1

N∑
j=1

tij +
N∑
i=1

ctj (C.1)

subject to

Eij ≥ e× tij +Dij × (b× lij + a× fij + c× V ij + xij × d) ∀(i, j) ∈ A
(C.2)∥∥∥∥∥∥ Vij

(lij − 1)/2

∥∥∥∥∥∥ ≤ (lij + 1)/2 ∀(i, j) ∈ A (C.3)

∥∥∥∥∥∥ lij

(fij − Vij)/2

∥∥∥∥∥∥ ≤ (fij + Vij)/2 ∀(i, j) ∈ A (C.4)

∥∥∥∥∥∥xij ×
√
Dij

(tij − Vij)/2

∥∥∥∥∥∥ ≤ (tij + Vij)/2 ∀(i, j) ∈ A (C.5)

M × (1− xij) ≥ eaj − edi + Eij ∀(i, j) ∈ A (C.6)

M × (xij − 1) ≤ eaj − edi + Eij ∀(i, j) ∈ A (C.7)

Vij ≤ Uij × xij ∀(i, j) ∈ A (C.8)

Vij ≥ Lij × xij ∀(i, j) ∈ A (C.9)

ea1 = I (C.10)

ecN = 0 (C.11)

cti = A× yi +B × eci ∀i ∈ S (C.12)

edi = eai + eci ∀i ∈ N (C.13)

edi ≤ C ∀i ∈ N (C.14)

103

eci ≤ yi × (C −m) ∀i ∈ S (C.15)

yj ≤
N−1∑
i=1

xij j = 2, . . . , N − 1 (C.16)

eaj ≤
N−1∑
i=1

xij × C j = 2, . . . , N − 1 (C.17)

eaj ≥
N−1∑
i=1

xij ×m j = 2, . . . , N (C.18)

T ≥
N∑
i=1

N∑
j=1

tij +
N∑
i=1

ctj (C.19)

Vij, tij, Eij, lij, fij ≥ 0 ∀(i, j) ∈ A (C.20)

eci, edi, eai, cti ≥ 0 ∀i ∈ N (C.21)

yi ∈ {0, 1} ∀i ∈ N (C.22)

104

APPENDIX D

PEVFEEP–MISOCP MODEL

(PEVFEEP-MISOCP)

Minimize
∑
i∈N

∑
i∈N

Eij (D.1)

subject to

Eij ≥ e× tij +Dij × (b× lij + a× fij + c× V ij + xij × d) ∀(i, j) ∈ A
(D.2)∥∥∥∥∥∥ Vij

(lij − 1)/2

∥∥∥∥∥∥ ≤ (lij + 1)/2 ∀(i, j) ∈ A (D.3)

∥∥∥∥∥∥ lij

(fij − Vij)/2

∥∥∥∥∥∥ ≤ (fij + Vij)/2 ∀(i, j) ∈ A (D.4)

∥∥∥∥∥∥xij ×
√
Dij

(tij − Vij)/2

∥∥∥∥∥∥ ≤ (tij + Vij)/2 ∀(i, j) ∈ A (D.5)

M × (1− xij) ≥ eaj − edi + Eij ∀(i, j) ∈ A (D.6)

M × (xij − 1) ≤ eaj − edi + Eij ∀(i, j) ∈ A (D.7)

Vij ≤ Uij × xij ∀(i, j) ∈ A (D.8)

Vij ≥ Lij × xij ∀(i, j) ∈ A (D.9)

ea1 = I (D.10)

ecN = 0 (D.11)

105

cti = A× yi +B × eci ∀i ∈ S (D.12)

edi = eai + eci ∀i ∈ N (D.13)

edi ≤ C ∀i ∈ N (D.14)

eci ≤ yi × (C −m) ∀i ∈ S (D.15)

yj ≤
N−1∑
i=1

xij j = 2, . . . , N − 1 (D.16)

eaj ≤
N−1∑
i=1

xij × C j = 2, . . . , N − 1 (D.17)

eaj ≥
N−1∑
i=1

xij ×m j = 2, . . . , N (D.18)

T ≥
N∑
i=1

N∑
j=1

tij +
N∑
i=1

ctj (D.19)

Vij, tij, Eij, lij, fij ≥ 0 ∀(i, j) ∈ A (D.20)

eci, edi, eai, cti ≥ 0 ∀i ∈ N (D.21)

yi ∈ {0, 1} ∀i ∈ N (D.22)

106

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Literature Review
	Minimum Cost Path and Routing Problems for Electric Vehicles
	Energy Consumption Behavior of Electric Vehicles
	Matheuristic Approaches for Minimum Cost Path and Routing Problems
	Meta-Heuristic Approaches for Routing and Energy Consumption Optimization Problems

	Energy Efficient Path Problem For A Plug – In Electric Vehicle Via Speed Optimization
	Problem Definition
	Mathematical Model
	Notation
	Formulation

	Solution Methodology
	A Matheuristic Approach
	Definitions and Notation
	Algorithm Construction

	A VNS Approach
	Definitions and Notation
	Algorithm Construction

	Computational Experiments
	Instance Generation
	Preliminary Experiments
	Computational Results

	Conclusions
	REFERENCES
	PEVEEP-MISOCP MODEL
	PEVTEPP-MIP MODEL
	PEVTEPP-MISOCP MODEL
	PEVFEEP–MISOCP MODEL

