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ABSTRACT

DEEP METRIC LEARNING WITH DISTANCE SENSITIVE ENTANGLED
TRIPLET LOSSES

Karaman, Kaan
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

February 2021, 101 pages

Metric learning aims to define a distance that is able to measure the semantic dif-

ference between the instances in a dataset. The most recent approaches in this area

mostly utilize deep neural networks as their models to map the input data into a fea-

ture space by finding appropriate distance metrics between the features. A number of

loss functions are already defined in the literature based on these similarity metrics

to discriminate instances in the feature space. In this thesis, we particularly focus on

triplet loss functions in order to designate their gradients. It is argued that the gradi-

ents of the vanilla triplet loss function do not force the instances in a triplet along the

right direction with the right magnitude. Hence, the similarities between the instances

in a triplet and the natural phenomena of a free electrostatic charge being affected by

several forces due to the other charged bodies located in certain coordinates in the

space are exploited to determine the right direction and magnitude. Considering the

partial gradients of the loss function with respect to the anchor, positive and negative

instances of any valid triplet generated from the dataset, four novel triplet loss func-

tions are proposed that cope with the problem pointed out. It is shown that these loss
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gradients gradually solve the drawbacks of the vanilla loss function. The performance

increment of these losses, especially the METU loss, over the other triplet losses is

presented by the results of several fair experiments on a commonly used fine-grained

dataset: CUB200-2011. The results of the proposed techniques are comparable with

respect to the score values of the state-of-the-art methods in the deep metric learning

topic.

Keywords: Deep Learning, Metric Learning, Fine-grained Classification, Image Clas-

sification, Image Retrieval, Object Classification
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ÖZ

DERİN METRİK ÖĞRENME İÇİN UZAKLIĞA DUYARLI DOLAŞIK
ÜÇÜZ MALİYET FONKSİYONLARI

Karaman, Kaan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Şubat 2021 , 101 sayfa

Metrik öğrenmenin amacı veri kümesindeki örnekler arasındaki anlamsal farkı ölçen

bir mesafe tanımlamaktır. En son teknoloji yaklaşımlar, girdileri öznitelik uzayına

eşleyen model olarak derin sinir ağlarını kullanır. Literatürde, öznitelik uzayındaki

örnekleri ayırt etmek için bu benzerlik ölçütlerine dayalı olarak bir dizi kayıp fonksi-

yonu tanımlanmıştır. Bu çalışmada, gradyan problemini belirlemek için standart üçlü

kayıp fonksiyonunu analiz ettik. Daha açık ifade etmek gerekirse, standart üçlü kaybı

fonksiyonunun gradyanlarının, üçlüdeki örnekleri doğru büyüklüklerle doğru yönlere

itmediğini gözlemledik. Daha sonra, serbest hareket edebilen bir yüklü cismin kuv-

vetler nedeniyle haraket etmesi ile kayıp fonksiyonunun kısmi gradyanları nedeniyle

eniyilenmesi arasındaki benzerliği gösterdik. Bu durumdan yola çıkarak, dört orijinal

maliyet fonksiyonu önerdik. Bu dört kayıp fonksiyonu, diğer üçlü kayıp fonksiyon-

larının kusurlarını kademeli olarak çözmektedir. Bu kayıpların standart üçlü kayıp

fonksiyonuna göre performans artışı, özellikle METU maliyet fonksiyonu için, kendi

tasarladığımız adil deneylerin sonuçlarıyla gösterilmiştir. Ayrıca, yaygın olarak kulla-
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nılan bir ince-detaylı veri kümesi üzerinde gerçekleştirilen bu deneylerin sonuçlarını

da gösterdik. Bu veri kümesi, CUB-200-2011’dir. Ek olarak, bu çatı altında yapılan

deneylerde önerilen kayıpların aldığı sonuçlar, derin metrik öğrenme konusundaki

aynı kategoride yer alan son teknoloji yöntemlerin performans skor değerleriyle kar-

şılatırılabilecek seviyededir.

Anahtar Kelimeler: Derin Öğrenme, Metrik Öğrenme, İnce Detaylı Sınıflandırma,
Görüntü Sınıflandırma, Görüntüden Geri Kazanım, Nesne Sınıflandırma
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and conduct research with their comprehensive knowledge of various topics. Their
moral support and invaluable suggestions facilitate me to overcome several challenges
I encountered during this period.

I would like to acknowledge Dr. Veysel Yücesoy for the fruitful discussions and his
constructive feedback. Furthermore, I am grateful to him for the excellent research
environment he provided. In addition, I would like to express my gratitude to all
members of ASELSAN Research Center for a friendly environment, and in particular
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CHAPTER 1

INTRODUCTION

Object verification from visual data and image retrieval are two of the most popular

computer vision problems. These problems are typically encountered while search-

ing a similar image in a visual database. The aim of the algorithm in these fields is

to measure the semantical similarity of any two objects in the images. Moreover, the

methods proposed to solve these problems also enhance the performance of recogniz-

ing some unseen types of objects. Indeed, the image retrieval problem is regarded as

a sub-problem of the classification. Although the definitions of these two problems

vary from one to another, they are intrinsically related to each other.

In general, the classification task can be defined as follows: For a given image of an

object whose class is known, a classifier tries to predict the true label of the object.

In other words, the problem of classification focuses on the class probabilities of the

samples and the class accuracy of the model. On the other hand, the aim of the image

retrieval task is to learn the features of the objects in the images and distinguish the

samples with these features.

Nevertheless, the methods proposed for solving image retrieval problems can be uti-

lized as the feature extractors of the systems which are designed for classification

task in order to improve the effectiveness of the classification algorithms. Obviously,

if the first stage of the algorithm, which is a feature extractor, works fine, then the

class accuracy of classification (the ratio between the correct predictions and the total

number of predictions) will also increase. Therefore, the research efforts on these two

topics influence the performance of each other.
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1.1 Emerging of Deep Networks

There are plenty of studies focused on visual object classification via several tech-

niques in machine learning. These techniques are applied to some challenging datasets

in order to compare with each other. The ImageNet [5] is one of the most well-known

challenges among them. The classical techniques such as Support Vector Machine

(SVM) reached the highest performance score levels until the 2010s. However, a

significant improvement was encountered in 2012 with AlexNet, which is inspired

by LeNet (whose architecture consists of 4 layers as shown in Figure 1.1). Note that

LeNet has only two layers that are convolutional, while the others are fully connected.

Figure 1.1: The architecture of LeNet. The figure is taken from the original paper

[21].

On the other hand, AlexNet in Figure 1.2 has 8 layers. Thus, this approach based

on neural networks is called deep learning. The popularity of AlexNet is from be-

ing the first deep learning based method that won the ImageNet image classification

challenge.

Figure 1.2: The architecture of AlexNet. (The figure from the paper [20])
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After AlexNet, all the winners of the ImageNet challenge have utilized the deep learn-

ing based models [43, 35, 13]. The deep learning models dominate not only this chal-

lenge but also other challenges for various computer vision tasks. For example, the

Visual Object Tracking (VOT) challenge [18] is about the object tracking task, and

the deep learning based methods also lead this competition.

After ImageNet 2012 Challenge, some new network architectures were proposed.

The main aim of designing these architectures is to solve the over-fitting problem

that causes decreasing the performance score of the trained models. In order to avoid

over-fitting, the parameters in the models are reduced without decreasing the dis-

criminability capacity. There are mainly three milestone papers after AlexNet that

gradually solve this issue: VGGNet [30], GoogleNet [35], and ResNet [13].

The first study VGGNet [30] introduces the receptive field concept, which is the size

of the area in the image that a neuron in a filter can see (take into consideration while

calculating the output value). Then, by using 3×3 filters, the number of parameters in

the model can be reduced while increasing the depth. The second study, GoogleNet,

proposes the inception module and increases the depth to 22 layers [35]. On the other

hand, the last effort, ResNet in [13], shows the enhancement of the performance by

utilizing the residual connections (named skip-connections as well). Although these

prominent works have great successes, this field is still an active research area.

Likewise, for the image retrieval task, the deep metric learning based algorithms are

also utilized due to their significant performances. These methods always utilize deep

networks, i.e., similar to the network architectures in the classification task, but the

loss functions are quite different. In this study, we focus on image retrieval on fine-

grained datasets with deep metric learning techniques.

1.2 Deep Metric Learning

The aim of metric learning is to find out an embedding space and a distance function

that any semantically similar instances are mapped in the nearby locations, and the

remaining ones are located at further positions with respect to each other [15]. In

order to solve this problem, several loss functions are proposed, such as contrastive
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[2], and triplet losses [14]. However, one of the recent surveys about this area [26]

argues that the accuracy scores taken by the studies in this field do not indicate the

actual performance increment due to the flaws in their experimental methodologies.

Hence, a framework should be designed in the first place to test all the methods that

utilized the triplets to be fair against all these techniques.

As an initial observation, we notice a gap in the literature that the gradients of the

loss function do not give the logical magnitude and direction. At this point, we try to

exploit a well-known physical phenomenon: Electrostatic forces. The point charges

try to minimize their potential energies with moving due to the electrostatic forces af-

fecting them, which can be simply calculated by the partial derivatives of the potential

energy of the system with respect to the coordinates of each particle. Likewise, we es-

tablish the analogies between these charged particles & the objects in the embedding

space, the loss function value & the overall potential energy of the system, and the

forces due to charges & the gradients of the loss function with respect to each anchor,

positive, and negative items. Then, we determine the gradients that are affected on

the items in a triplet and design a novel loss function inspired by this phenomenon.

1.3 Datasets for Image Retrieval

There are several new benchmark datasets that have been utilized in this field until

2012 in order to evaluate the performance of the models and the optimization tech-

niques. Mainly, these datasets can be divided into two categories: Coarse-grained

and fine-grained datasets. The coarse-grained ones include the samples that are in

more than a single metaclass, in contrast to the fine-grained datasets. Hence, the

performance of the models becomes lower on the fine-grained ones.

In this thesis, we conduct simulations on a common fine-grained dataset: CUB200-

2011 [40], in addition to a synthetic dataset generated by Gaussian distribution, for

showing the effectiveness of our novel method in comparison with the recent methods

that also attack the retrieval problem by using the triplets. The performance scores

of the models are calculated by the zero-shot learning scenario. Finally, the models

trained with the proposed methods give promising results.
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1.4 Problem Statement

In a mathematical perspective of the problem, let the given dataset D contains N

training and M −N test images, that is D = Dtrain ∪Dtest = {Xi}Ni=1 ∪{Xi}Mi=N+1,

where Xi = (xi, yi) denotes the ith sample, xi ∈ <n is the vector of the pixel values,

and yi ∈ {1, . . . , L} is the label. For the open-set split, the constraints, i.e. yi 6=
yj,∀i ∈ {1, . . . , N} and ∀j ∈ {N + 1, . . . ,M} are satisfied. The network model is

defined as the function gθ,Λ(xi) = fi : <(m+l) ×<n → <k where fi is the embedding

space coordinates of the ith image, the θ ∈ <m denotes the trainable variables and the

Λ ∈ <l is for the hyper-parameters. This notation indicates that the model maps the

image from n-dimensional space into k-dimensional embedding (or feature) space.

The feature space can be defined as a metric space; then, there should be a distance

defined on the k-dimensional space that satisfies the properties of the norms, denoted

as d(·, ·) : <k ×<k → <.

The fundamental objective of metric learning can be defined as follows: For ∀i, j, k ∈
N + 1, . . . ,M and the sets Ai = {xj|yi = yj} and Bi = {xk|yi 6= yk}, the inequality

d(g(xi), g(xj)) < d(g(xi), g(xk)) where xj ∈ Ai and xk ∈ Bi should be satisfied.

Let the score function be able to measure the effectiveness of the model on test set

(in order to display the generalizations performance) which is defined as Sd(·) :

<n×(M−N) → <. The subscript d indicates the score function utilizes the distance

function d during the calculation of the score value. Note that the higher score value

can be evaluated from the better model. Then, the optimization problem can be de-

scribed in Equation (1.1).

max
Λ

(
max
θ
S
(
{gθ,Λ(xi)}Mi=N+1

))
(1.1)

One of the trivial solutions for solving this optimization problem is to find the optimal

θ̂ values from the second derivative of the score function. There are three reasons why

one cannot use this solution:

• The test samples cannot be utilized in the training phase. If they are used, then

the score value does not indicate the generalization performance of the model.
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It is defined as cheating in the literature of deep learning.

• The score function may not be convex; hence, the point that the second deriva-

tive of the score function equals 0 and is a saddle or a local extremum point.

• The score function needs M − N images to evaluate the score value, but this

evaluation needs excessive memory that causes increasing the complexity of

the model. Because of practical reasons, this technique cannot be exploited on

large datasets.

In order to solve the first issue, the training images may be used for evaluating the

score value as well. To elaborate, the training set can be split into two parts (train and

validation sets) similar to the zero-shot scenario, and all the outermost max can be

determined by the score calculated on the validation set, which is a standard method

in deep learning. Also, this can be done by the cross-validation technique.

The second issue can be overcome by using iterative optimization methods such as

steepest descent. Generally, the first-order derivative based iterative methods are used

with the concept of backpropagation for training the deep neural networks due to their

low computational requirements. The stochastic gradient descent (SGD), RMSprop,

and Adam optimizers are also frequently utilized techniques in this field. This opti-

mizers can determine the θ̂ but not Λ. In order to determine the hyper-parameters, the

various search algorithms may be exploited, such as grid search, random search, and

Bayesian optimization.

The last issue is about the computational complexity of the evaluation. All of the

datasets cannot be taken into account in one step of optimization. Hence, the mini-

batch concept may be utilized for coping with this problem. This solution also creates

its own problems. For instance, when the batch size is small, the optimizer cannot find

the local optimum location for the parameter set since it cannot take into account the

sufficient number of samples in the dataset and calculates the incorrect updates in

each batch. However, when the batch size is selected large enough, each batch can

generalize the overall distribution in the dataset.

After using the aforementioned solutions, the overall optimization problem reduces

to a sub-problem: What is the optimal (or sub-optimal) update for each sample in
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a mini-batch so that the embedding space is transformed into a new form that gives

better scores?

This optimal update can be adjusted directly with the help of designing the loss func-

tion in the framework. Another (indirect) way to modify the update is to use a miner

for selecting only the important samples in the train set during the training phase.

The instruments one can utilize while designing the framework are as follows: The

optimizers in deep learning are calculating the first derivative of the loss functions in

order to evaluate the backpropagation weights. In addition, any embedding vector of

a sample in the train set can be found while evaluating the loss value. The answer to

the question (if it exists) should utilize only these two pieces of information to form

the update.

1.5 Motivation

In this work, the studies in deep metric learning, especially on triplet-based methods,

are rigorously investigated with the framework implemented by us. To the best of

our knowledge, there is a gap in the literature that no logical explanation about the

relationship between the loss function design and the performance scores is stated.

In the light of the observations about the simulations performed on our framework,

we notice that one can make an analogy between the deep metric learning loss and

the electrostatic forces. By extending this analogy, we analyze the losses in the liter-

ature and regard their flaws. In addition, we propose the losses that cope with these

shortcomings in order to enhance the effectiveness of the model.

1.6 Contributions

Our contributions are three-fold:

• A novel loss function is proposed and its gradients are analyzed for the different

cases. The motivation behind the loss is also explained.

• We introduce a framework for examining the loss functions in a fair manner.
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• The proposed loss function is utilized in several experiments in our framework

and compared with some recent methods from the relevant literature through

experiments. We show the proposed method surpasses the performance of the

methods in the same category.
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CHAPTER 2

AN OVERVIEW ON DEEP METRIC LEARNING

In this chapter, we mainly analyze the deep metric learning techniques in the liter-

ature. The methods are explained in chronological order in Section 2.1 so that the

progress of this field can be realized clearly. Moreover, the performance scores of

these methods are just as important as the mechanisms of them since they point out

whether the sub-problem solved by the method causes significant improvement or

not. Therefore, we mention the performance scores in Section 2.2, what they mea-

sure, and the evaluation formulas. Moreover, one of the most important factors during

a fair evaluation of the algorithms of deep metric learning is to select the dataset on

which they are trained. This constraint is due to the fact that the performance scores

cannot be meaningful when the discriminability of the dataset increases. On the other

hand, when the model is trained on an extremely difficult dataset to discriminate, the

scores might again be pointless. Thus, we investigate the benchmark datasets utilized

for sorting these algorithms in Section 2.3.

2.1 State-of-the-Art Methods of Deep Metric Learning

The aim of deep metric learning is to separate the semantically irrelevant patterns

apart from each other and map similar images into the near locations in the embed-

ding space. For image data, it is utilized in many different tasks, such as image

classification and image retrieval problems.

Such a sample-by-sample comparison process is intuitive; however, there are two

main disadvantages, as well as four major advantages of these methods. The disad-
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vantages can be stated as follows:

• The training process requires more resources than the standard loss functions,

such as cross-entropy loss. Any training items are used more than once in each

epoch in order to compare the coordinates in the embedding space. For exam-

ple, although the cross-entropy loss function calculates the loss value from only

one sample and its ground truth label, the triplet-based losses use embeddings

of the three samples for the construction of a triplet. Hence, the batch size of

the metric learning losses is smaller than the others due to this reason.

• The training duration might increase due to the smaller batch size. The memory

allocation limits the size of each batch and the time of each epoch. Moreover,

the metric learning algorithms might need a mining stage before each epoch in

order to select the most valuable samples from the dataset. Then, it also leads

to a loss of time.

Apart from these disadvantages, the methods have been still utilized due to their ad-

vantages itemized below:

• The models trained with the metric learning methods can learn the feature space

rather than learning only the class in the datasets. Hence, they might be more

robust for variation of the classes and the changes of the style of images, since

metric learning losses avoid the models to overfit the data, but the features,

inherently. These losses force the model to learn the features of the data by

comparing the other data in the dataset.

• Unlike the generic loss functions that utilize only the predicted probability dis-

tribution on a single sample once, the metric learning loss functions utilize the

information of the relationship between the samples. For instance, the triplet

loss function takes account of both the anchor, positive, and negative samples’

features in each update of the gradients.

• The metric learning losses are more robust for overfitting the data; they can

deal with the outliers with the help of mining methods. Moreover, it is possible

to remove the effect of an outlier by comparing it with the other inlier samples.
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• Metric learning methods can be exploited for the zero-shot learning scenario,

i.e., learning without any representative sample for a particular class. This

scenario is quite frequently encountered in real-world applications. Moreover,

these methods have the power of generalization rather than the standard meth-

ods due to the fact that they utilized the information of the relationship between

the samples in addition to themselves and their ground truth labels.

The state-of-the-art methods for deep metric learning are explained in the subsequent

subsections. The critical paradigms for deep metric learning can be divided into the

following cases:

• Loss functions,

• Mining techniques,

• Advanced methods.

2.1.1 Loss Functions in Metric Learning

There are different types of loss functions in metric learning that are utilized for var-

ious purposes. In the classification and retrieval tasks, the most popular losses can be

examined in the following categories:

• Classification loss,

• Tuplet-based loss,

• Batch-based loss.

The first type of loss is the standardized loss function for the classification tasks.

However, classification loss cannot reach the performance scores of the others due

to the fact that these types of losses only utilize the class information of a single

image for a single update, and they miss the information between the samples. The

second type of loss uses only the tuplets rather than all the samples in the batch.

Nevertheless, the tuplet-based losses should be analyzed in order to understand the
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batch-based losses because the basic properties of the losses can be realized easier

in the tuplet-based losses compared to the batch-based ones. Moreover, any tuplet-

based loss can be generalized for constructing a batch-based loss. In other words, the

tuplet-based losses can be thought of as the core of the batch-based ones.

2.1.1.1 Classification Losses

Classification is one of the most popular tasks in machine learning, as mentioned in

Chapter 1. From the deep learning perspective, there are several network architectures

that are proposed for solving this popular problem with higher accuracy. The well-

known cross-entropy loss with softmax probability function is the most frequently

utilized loss function in this task [8]. Frequent utilization of cross-entropy loss is due

to two reasons: Cross-entropy is a quite efficient way to compute losses since the loss

function needs only the probability mass vector of a given image (named as logits)

and its ground truth label. The second reason is due to the fact that this loss can reach

the highest scores without any other auxiliary information from the samples.

It should be noted that the cross-entropy loss function simply evaluates the Kull-

back–Leibler divergence (KL-divergence) between predicted and the true labels. If

the distance between them is large, the loss function gives more penalty to the model

for updating the parameters. The relation for the cross-entropy loss is given in (2.1),

Lx−entropy(ξ, y) = − log
eξy∑N
i=1 e

ξi
, (2.1)

where N is the number of unique labels, y is the true label, and the ξi is the value of

ith element of the logit ξ, which is equal to the predicted probability for the image

that is belonging to the ith class.

An extension to this loss function can be obtained by using a temperature parameter

while calculating the loss value [1]. This loss function is presented below:

Ltemperature(ξ, y) = − log
eξy/T∑N
i=1 e

ξi/T
, (2.2)

where T is the temperature value. It should be noted that Equation (2.1) is the special

case of T = 1 of Equation (2.2). The effect of the temperature parameter is to adjust

the confidence of the model for determining the labels of the samples. When the T
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value is high, the predicted distribution becomes flatter, the confidence reduces. On

the other hand, the smaller T value leads to the sharper predicted distribution. This

flexibility might increase the performance of the models in some of the cases.

2.1.1.2 Tuplet-based Losses

Prior research on deep metric learning suggests that there should be a feature extractor

model that can be trained by pairs selected from the training set. The feature extrac-

tor is expected to learn the features predefined on the dataset on which the model

performed, such as the nose and eye regions in a face image dataset. However, defin-

ing these features takes time and is not efficient for huge datasets due to the labeling

of the enormous number of samples as mentioned in Section 2.3.2. Then, the main

idea of deep metric learning becomes training the model for learning the abstract

features by the help of comparing the samples in the dataset.

Taking these ideas into account, the Siamese nets [2] were proposed in the 1990s with

a novel contrastive loss shown below:

Lcontrast = δ[yi − yj] · ‖gθ(xi)− gθ(xj)‖2
2

+ (1− δ[yi − yj]) ·max
(
0, α− ‖gθ(xi)− gθ(xj)‖2

2

)
.

(2.3)

The term α and max(0, ·) function are utilized for preventing the model from fluctu-

ation. That is, if there was no such hyper-parameter, all the negative pairs generate

the gradients even if they are at distant locations to each other. With the help of these

terms, the negative pairs, whose labels are not the same, are not penalized if the dis-

tance between them is greater than α. On the other hand, the model may still suffer

from the collapsing issue since all the samples in the same class force to be mapped

into a single location in the embedding space. It causes the model to ignore the in-

formation of intra-class features; hence, the samples from the unseen classes would

not be distinguished. The model would not be robust for over-fitting into the train set,

which will be discussed after introducing the triplet loss.

As the name suggests, there are two (twin) networks sharing their parameters with

each other as shown in Figure 2.1. The difference between the embedding values of

pairs is calculated from the last layer of the models.
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Figure 2.1: The Siamese networks [2] are proposed for solving the problem of de-

termining whether the signatures in the given two images are the same or not. The

trainable parameters of the models in this figure are shared (i.e., they are equal) with

each other. They extract the features of the images in different time intervals; next,

embedding values for these images are compared to each other. The figure is taken

from the paper [2].

There are subsequent studies [14] that are inspired from the Siamese nets [2] extend-

ing this framework by utilizing triplets shown below:

Ltriplet =

(
e‖fa−fp‖2

e‖fa−fp‖2 + e‖fa−fn‖2

)2

, (2.4)

where fa, fp, and fn are represents the anchor, positive and negative items, typically

vectors. In a valid triplet, the inequality ya = yp 6= yn must hold.

The overall framework of the triplet-based models is shown in Figure 2.2. At this

point, it is important to note that there are only two pairwise distances, fa ↔ fp and

fa ↔ fn, utilized in this and subsequent losses by a triplet.
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Figure 2.2: Similar to the Siamese networks [2] shown in Figure 2.1, all the three

networks share their trainable parameters to each other (figure of the triplet network

is taken from [14]).

By using the same framework in Figure 2.2, a ranking loss is proposed in the study

[36]. In addition, the study in [42] has already suggested utilizing the same loss

function 3 years before the work in [36].

Lhingedranking = max (0,Lranking) ,

Lranking = ‖fa − fp‖2 − ‖fa − fn‖2 +m.
(2.5)

The aim of the proposed ranking loss is the same as the triplet loss in (2.4), which is

the Euclidean distance between fa and fp should be smaller than the one between fa

and fn.

Although the original triplet loss in (2.4) inspired from the cross-entropy loss with

softmax function, the ranking loss and the extensions of it utilize the hinge function

(or ramp function, denoted as max(0, ·)). Preference of this function is due to avoid-
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ing the model to collapse, i.e., if there is no such function, all the samples with the

same label will be mapped into the same location in the embedding space.

The hinge function and its hyper-parameter denoted as m inhibit the loss, if ‖fa −
fp‖2 + m < ‖fa − fn‖2; then, the samples with the same label are mapped into a

hyper-sphere whose radius is at leastm (since ‖·‖ : <m → <≥0. Moreover, the hinge

function has brought further benefits rather than avoiding it. A study [42] points out

the difference between pair-based losses and the triplet losses as follows: Although

there should be a predefined threshold, m in (2.3), in pair-based loss functions, the

triplet loss functions have more flexibility to adapt their thresholds, denoted as m +

‖fa − fp‖2 in (2.5), by using the intra-class variance of the different classes (the

second term in the latter expression).

At this point, the gradients of these loss functions should also be examined. The par-

tial derivative of the distilled form of the ranking loss function (Lranking in Equation

(2.5)) can be obtained as:

∂Lranking
∂fa

=
fa − fp
‖fa − fp‖2

− fa − fn
‖fa − fn‖2

,

∂Lranking
∂fp

=
fp − fa
‖fa − fp‖2

,

∂Lranking
∂fn

=
fa − fn
‖fa − fn‖2

.

(2.6)

By the chain rule, the derivatives of original loss can be simply obtained by the help

of
∂Lhinged

ranking

∂fi
=

∂Lhinged
ranking

∂Lranking
· ∂Lranking

∂fi
where

∂Lhinged
ranking

∂Lranking
is equal to Heaviside step function

(or unit step function). That is it gives 1 if Lranking > 0; otherwise 0.

Another proposed loss by using triplets , namely FaceNet [28], has a slight modifica-

tion, whose relation is shown below (please note the norm square, `2
2):

Lhingedfacenet = max (0,Lfacenet) ,

Lfacenet = ‖fa − fp‖2
2 − ‖fa − fn‖2

2 +m.
(2.7)

The equation in (2.7) also equals toLfacenet = 2·
(
fTa · fn − fTa · fp

)
+‖fp‖2

2−‖fn‖2
2+

m. Note that if the embedding vectors, fi’s, are `2 normalized, i.e. ‖fi‖2 = 1,∀i, then

the expression becomes Lfacenet = 2 ·
(
fTa · fn − fTa · fp

)
+m. At that point, the term

of fTi · fj resembles the inner product (non-normalized cosine similarity function).
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The authors [28] claim that although there is a small difference between the cost re-

lations, the results are significantly improved when this loss function is used with

semi-hard miner, to be explained in Section 2.1.2. Another study [42] argues that

the FaceNet loss function might suffer from the collapsing issue when the hard-

negative miner is used; thus, the performance of the ranking loss should surpass that

of FaceNet loss. All in all, the results of FaceNet [28] show the effectiveness of its

loss function, which cannot be outperformed by other methods.

Although it is similar to the ranking loss in (2.6), the partial derivatives of the FaceNet

loss function below is quite different from (2.6):

∂Lfacenet
∂fa

= fn − fp,

∂Lfacenet
∂fp

= fp − fa,

∂Lfacenet
∂fn

= fa − fn.

(2.8)

Later, the ratio loss [41] is proposed as well, whose distilled form is given below:

Lratio = 1− ‖fa − fn‖2

‖fa − fp‖2 +m
. (2.9)

The hinge function can also be exploited while calculating the overall loss value, since

the value of the distilled form may be negative when ‖fa − fp‖ + m < ‖fa − fn‖,
similar to (2.5). The equation in (2.9) uses the distance between fa ↔ fp in the

denominator, similar to the original triplet loss in (2.4). Taking the derivatives of the

loss function gives the following equality relations:

∂Lratio
∂fa

=
1

‖fa − fp‖2 +m
·
(
‖fa − fn‖2 · (fa − fp)

‖fa − fp‖2

− ‖fa − fp‖2 · (fa − fn)

‖fa − fn‖2

)
,

∂Lratio
∂fp

=
1

‖fa − fp‖2 +m
·
(
‖fp − fn‖2 · (fp − fa)

‖fa − fp‖2

)
,

∂Lratio
∂fn

=
1

‖fa − fp‖2 +m
·
(

fa − fn
‖fa − fn‖2

)
.

(2.10)

It should be noted that the original triplet loss’ derivatives in (2.11) is significantly
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different from Equation (2.10).

∂Ltriplet
∂fa

=
2 · e2‖fa−fp‖2+‖fa−fn‖2

(e‖fa−fp‖2 + e‖fa−fn‖2)2
·
(

fa − fp
‖fa − fp‖2

− fa − fn
‖fa − fn‖2

)
,

∂Ltriplet
∂fp

=
2 · e2‖fa−fp‖2+‖fa−fn‖2

(e‖fa−fp‖2 + e‖fa−fn‖2)2
· fp − fa
‖fa − fp‖2

,

∂Ltriplet
∂fn

=
2 · e2‖fa−fp‖2+‖fa−fn‖2

(e‖fa−fp‖2 + e‖fa−fn‖2)2
· fa − fn
‖fa − fn‖2

.

(2.11)

In fact, the directions of the gradients are quite similar to the ones of ranking loss in

(2.6), but it is important that the original triplet loss does not use the hinge function

like the ranking loss.

Noting the similarities between losses for unit magnitudes, some metric losses with

cosine similarity have also been developed. The initial study, namely angular loss

[37], tries to utilize the angular similarity between the tuplets, as given below:

Langular = ‖fa − fp‖2
2 − 4 tan2(ρ) ·

∥∥∥∥fn − fa + fp
2

∥∥∥∥2

2

. (2.12)

This loss function also uses the hinge function to avoid collapsing the model. The

partial derivatives are shown in (2.13).

∂Langular
∂fa

= 2 · (fa − fp)− 2 tan2(ρ) · (fa + fp − 2fn),

∂Langular
∂fp

= 2 · (fp − fa)− 4 tan2(ρ) · (fa + fp − 2fn),

∂Langular
∂fn

= 4 tan2(ρ) · (fa + fp − 2fn).

(2.13)

Some recent studies focus on adding a regularization constant to the metric loss in

order to get high performance from training. Later, moving loss [3] is proposed,

whose loss function without the hinge function is shown in Equation (2.14).

Lmoving = ‖fa − fp‖2
2 − ‖fa − fn‖2

2 − ρ ·
1− fTp fa

‖fa − fp‖2 − ‖fa − fn‖2

+m. (2.14)
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In addition, the gradients of the moving loss in (2.14) are given below for complete-

ness:

∂Lmoving
∂fa

= 2 · (fn − fp)− ρ ·
(

fa − fp
‖fa − fp‖2 · ‖fa − fn‖2

+
‖fa − fp‖2

‖fa − fn‖3
2

· (fn − fa)
)
,

∂Lmoving
∂fp

= 2 · (fp − fa)− ρ ·
fp + fa

‖fa − fp‖2 · ‖fa − fn‖2

,

∂Lmoving
∂fn

= 2 · (fa − fn)− ρ · fa + fn
‖fa − fp‖2 · ‖fa − fn‖3

2

.

(2.15)

2.1.1.3 Batch-based Losses

Batch-based losses are designed for utilizing all the samples in a batch while calculat-

ing the loss value. Therefore, they use more information and get the smarter updates

without an additional computation time. This situation is described in [33] as fol-

lows: "adding extra vertices to the graph is a lot more costly than adding extra edges

because adding vertices to the graph incurs extra I/O time and/or storage overhead."

This explanation indicates after calculating the embeddings of the images in a single

batch, there is almost no additional computational power needed for the operation of

the embeddings while calculating the loss function.

Although this statement is true for almost all the popular platforms, such as PyTorch

[27], the triplet losses do not have to suffer from this limitation as well. Indeed,

the study in [26] suggests that using a framework with all the valid triplets can be

obtained in a single batch that is exploited for training, whose number is roughly 106,

if the batch size is 32. Nevertheless, the progress in the literature for this type of loss

function will be explained next.

The pioneering work in batch-based loss approaches is lifted structure loss [33]. The

selection of the tuples in each batch is represented in Figure 2.3.
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Figure 2.3: Selection the tuplets for lifted structure loss (Figure from [33]).

The lifted structure loss function is presented below:

Lhingedlifted =
1

2|P |
∑

(i,j)∈P

max
(

0, J̃i,j

)2

,

J̃i,j = log

 ∑
(i,k)∈N

em−Di,k +
∑

(j,l)∈N

em−Dj,l

+Di,j,

D1,2 = ‖f1 − f2‖2,

(2.16)

where P = {(i, j)|yi = yj}, N = {(i, j)|yi 6= yj}, and | · | is the cardinality function,

which gives the number of element in a set.

These types of losses are not used tuple of anchor, positive and negatives, but one

can analyze them as if they take a triplet in a batch in order to compare them with

the triplet-based losses. Therefore, J̃i,j cost equals to J̃a,p (or Llifted similar to the

triplet-based losses), and N = {(a, n), (p, n)}. The triplet version of lifted structure

loss is given in Equation (2.17).

Lhingedlifted = max
(
0, log

(
em−Da,n + em−Dp,n

)
+Da,p

)
. (2.17)
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Then, the gradients of the lifted structure loss function are obtained as (2.18).

∂Llifted
∂fa

=
fn − fa
‖fa − fn‖2

· em−‖fa−fn‖2

em−‖fa−fn‖2 + em−‖fp−fn‖2
+

fa − fp
‖fa − fp‖2

,

∂Llifted
∂fp

=
fn − fp
‖fp − fn‖2

· em−‖fp−fn‖2

em−‖fa−fn‖2 + em−‖fp−fn‖2
+

fp − fa
‖fa − fp‖2

,

∂Llifted
∂fn

=

fa−fn
‖fa−fn‖2 ·

(
em−‖fa−fn‖2

)
+ fp−fn
‖fp−fn‖2 ·

(
em−‖fp−fn‖2

)
em−‖fa−fn‖2 + em−‖fp−fn‖2

.

(2.18)

Another loss inspired from [33] is N-pairs loss [31]. The sampling strategy of this

study is shown in Figure 2.4.

Figure 2.4: A mini-batch for N-Pairs loss function. (a), (b), and (c) show a batch for

triplet, (N+1)-tuplet and N-pairs losses, respectively (Figure from [31]).

Two different versions of N-pairs loss is also proposed in the same paper [31]. The

first one is multi-class version of the loss function (MC):

Lmcnpairs =
1

B

B∑
i=1

log

(
1 +

∑
j 6=i

ef
T
i f

+
j −f

T
i f

+
i

)
,

Lmcnpairs = − 1

B

B∑
i=1

log

(
ef

T
i f

+
j

ef
T
i f

+
i +

∑
j 6=i e

fTi f
+
j

)
,

(2.19)

where B is the batch size, fi, f+
i and f+

j represent the embeddings of anchor, positive

and the negatives (more than one negative item are included in a single evaluation of

the original form of N-pairs loss).

As the name implies, this loss function is quite similar to a multi-class logistic loss

function, i.e., the cross-entropy loss with softmax probabilities, mentioned in Section

2.1.1.1. It is the main difference between the N-pairs and lifted structure loss, which

is utilized the max-margin formulation [31].

21



The second version of N-pairs loss is slightly different from the first one. The pro-

posed one-vs-one (OVO) version of the loss function is also shown below:

Lovonpairs =
1

B

B∑
i=1

∑
j 6=i

log
(

1 + ef
T
i f

+
j −f

T
i f

+
i

)
, (2.20)

where B denotes the batch size.

Note that when N = 2, there is no difference between the equations in (2.19) and

(2.20). Indeed, a triplet version of this loss function can be written as below:

Ltripletnpairs = log
(
1 + efafn−fafp

)
. (2.21)

The gradients of this cost are given below:

∂Ltripletnpairs

∂fa
=

ef
T
a fn−fTa fp

1 + efTa fn−fTa fp
· (fn − fp),

∂Ltripletnpairs

∂fp
= − ef

T
a fn−fTa fp

1 + efTa fn−fTa fp
· fp,

∂Ltripletnpairs

∂fn
=

ef
T
a fn−fTa fp

1 + efTa fn−fTa fp
· fa.

(2.22)

2.1.2 Mining Techniques

Many researchers argue that the sampling strategies are quite important and signifi-

cantly enhance the performance scores of the trained models [42]. This result is due

to the fact that there are an enormous amount of samples can be generated from a

dataset. Moreover, these research efforts focus on selecting more significant samples

(pairs, triplets, etc.) from such datasets.

In fact, if the number of the items in a dataset is N , the number of valid triplets might

be the order of N3, which is infeasible for training [42]. For example, it is roughly

∼ 109 triplets that can be generated from the CUB-200-2011 dataset, which has∼ 104

images. Besides, the majority of these samples do not enhance the training, which is

denoted as easy samples in [6]. Therefore, some mining, i.e., data selection, methods

should be proposed for solving this problem and improve the performance scores.

The study in [29] asserts that using the hard negative samples (i.e., the most similar

samples to the anchor from other classes) improves the effectiveness of the training
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since the randomly selected samples typically make the training harder and slower.

Hence, this study proposes the hard negative mining which is shown below:

n̂hard = arg min
n
‖fa − fn‖2. (2.23)

Note that if this searching process is performed on the whole training set, it is denoted

as offline mining by [28].

Likewise, the hard positives can be defined as p̂hard = maxp ‖fa−fp‖2, which is used

in some studies, such as [29]. However, some researchers [42] argue that mining the

positive and negative samples in the whole set of training is quite infeasible. On the

other hand, a later study [28] shows selecting semi-hard samples makes the training

more robust to the outliers. An online mining method is proposed in [28], i.e. the

searching process is performed only on a mini-batch for each update. As mentioned

in [42], semi-hard negative mining can be proposed as follows:

n̂semihard = arg min
n
‖fa − fn‖2,

such that ‖fa − fn‖2 > ‖fa − fp‖2.
(2.24)

However, FaceNet algorithm [28] uses all negative samples which satisfy the inequal-

ity ‖fa − fn‖2 > ‖fa − fp‖2. Note that the same situation could have been created

for [28] by simply modifying its loss function without utilizing the mining process in

(2.24) as follows:

Lminedfacenet = min (max (0,Lfacenet) ,m) , (2.25)

even if it is not stated in the paper [28]. The more detail about this modification is

discussed in 3.2.3.

In this way, FaceNet loss in (2.7) becomes equal to (2.25) so that the loss intrinsically

mines the semi-hard negative samples.

All these mining methods are illustrated in Figure 2.5. There is an important point to

mention in this figure. When online mining is utilized, the method used for selecting

negative samples restricts the mining of positive samples. For instance, there is no

hard-negative-semi-easy-positive mining. If the negatives are selected in the hard

region, all the positives are in the hard region as well.
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(a) The regions for the negative samples. (b) The regions for the positive samples.

Figure 2.5: 2-D representation of the embedding space. The margin, m, is a hyper-

parameter of the miner. The coordinates of the samples A,P , and N represent the

feature vectors of fa, fp, and fn, which are embeddings of anchor, positive, and neg-

ative items of a triplet, respectively. Region #1 belongs to the easy samples, which

do not create any gradient for margin-based losses, such as ranking loss. Region #2

is used for semi-hard mining. Finally, the items in Region #3 and #4 are accepted as

hard samples.

Figure 2.5 shows there is still room for improvement for triplet mining methods. For

example, the negatives and the positives selecting in the regions of #2 and #3 can be

used for mining. It may prevent the new miner from being unable to find the samples

in the target region, as encountered in the semi-hard miner mentioned in [28, 42].

Moreover, the distance weighted sampling [42] is proposed for avoiding the noises in

the gradients of the updates caused by triplet loss. This study [42] shows when any

two samples are close to each other, the gradients are more sensitive to noise, which

is resulted from the small fluctuation in the pixel values. Hence, the model trained

with hard negative mining becomes more fragile due to this effect. The weight, w(·),

in Equation (2.26) are multiplied to the samples located in f1 and f2 in the embedding

space.

w(‖f1 − f2‖2) = ‖f1 − f2‖2−m
2

(
1− ‖f1 − f2‖2

2

4

)−1

. (2.26)

Another study [11] suggests utilizing an effective method for finding the nearest

neighbors in the embedding space and an adaptive controller for adjusting the hyper-
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parameters of the proposed miner. This method mainly focuses on reducing the com-

putational cost of the mining methods. Moreover, the effort explained in [46] tries to

control the hardness level of the triplets with a generator. The label-preserving syn-

thetic data is generated by this generator, which is trained in an adversarial manner.

The adversarial training might create additional issues that are out of the scope of this

thesis.

2.1.3 Advanced Methods

There is plenty of effort which are not included in the previous categories of the

literature. All these works focus on select the meaningful negative and positive items

in order to adjust the gradients acting on the anchor, which leads to having a higher

performance score. One example of these works is called hierarchical triplet loss [7].

It tries to establish a link between intra-class variance and the margin like the m in

(2.5). In this work, the classes are located in a tree structure in a hierarchical way,

and the margin in the loss function for the similar classes is less than the one for

the dissimilar ones. Another study [6] is to utilize the generator for generating some

synthetic hard negatives from the easy ones. In addition, the proxy-based models

[25, 16] also reach higher accuracy scores in recent years. They try to use the global

distribution of the dataset while calculating each mini-batch update. The embedding

vectors of the proxies provide this information about the distribution. To elaborate,

they are updated in order to represent the so-called means of the classes in the train

set. After that, the gradients of any anchor are evaluated with the help of these proxies.

Although the scores of these studies reach high values, their origins still depend on

the tuplet-based losses. It means, if the gradients of a triplet are adjusted optimally,

the proxy or generative based methods also improve their performances.

2.2 Metrics for Performance Analysis

There could be many performance scores that are exploited in different problems.

The scope of this thesis is limited to the scores of the following two problems: Image

classification and retrieval. The metrics related to these two problems are presented
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in Figure 2.6.

Figure 2.6: The tree for evaluation scores that are frequently used in fine-grained

image classification and retrieval.

In Figure 2.6, the class accuracy scores can be utilized for the supervised learning

problems. These scores need the class probabilities (called as logits in the literature)

that are predicted by the trained model and the ground truth labels of each sample in

the test set for calculating the values. It is generally used for evaluating classification

tasks.

On the other hand, the clustering and retrieval scores are used for both unsupervised

and supervised learning problems. The clustering scores measure the capability of

the trained model to separate the samples belonging to the different classes in the

dataset into the different coordinates in the embedding space. Generally, there is an

unsupervised clustering step such as K-Means before evaluating the scores. Some

studies [26] argue that this step may create unfair results due to the non-standardized

initialization of the clustering algorithms and gives non-reliable values due to this

reason. Then, these types of scores may give completely unreliable values for the

same configuration with different initialization.

Another type of score is called the retrieval scores that are generally used for informa-

tion retrieval tasks. The K Nearest Neighborhood (K-NN) algorithm is the first step

of the calculation of these scores. Rather than the clustering algorithms, the K-NN

algorithm always gives the same results for certain settings of the embedding vectors.

Thus, these score values are used in many studies in order to compare the methods in

the literature of deep metric learning in a fair manner [26]. In this study, we evaluate
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the performances of the models with this type of score due to the same reasons with

[26]. These scores are explained in the subsequent subsections.

2.2.1 Recall at K

Recall at K (R@K in short) is the most common metric that the researchers have uti-

lized for evaluating their metric learning algorithms’ effectiveness. This evaluation

metric does not need any clustering algorithm to assess the score of the embedding

space, as explained before. In the literature of information retrieval, this metric has

also been called Recall Rate at K [23] in order not to distinguish it with recall metric

(named as sensitivity as well) in the information retrieval area even if they are strictly

correlated with each other. The definition of recall for the information retrieval prob-

lems is as follows [23]: It is the rate of the intersection of relevant & retrieved items

and the relevant ones. In other words, it is calculated by true positive value divided

by the sum of true positive and false negative values, as shown in Equation (2.27),

where TP, FN stands for true positive and false negatives, respectively.

Recall =
|Relevant ∩Retrieved|

|Relevant|
=

TP

TP + FN
. (2.27)

On the other hand, recall rate at K has similar reasoning compared to Recall metrics

as mentioned in the study of [7]. First, the top K recommendations are determined in

the embedding space. For this purpose, K-NN items to the anchor sample are used

for which the distance is generally defined as `2 norm. If any of the recommended

items are in the same class with the anchor item, it accounts as 1; otherwise, it is 0.

The overall score is the mean of all items in the dataset, i.e., the score shows how

much item has the same label as at least one item in the top K recommended item list

of itself. The definition of R@K in mathematical notation is given below:

R@K =
1

N

N∑
n=1

rn(K),

where rn(K) =

1, if ∃i ∈ Z | (yn = yin) ∧ (0 < i ≤ K),

0, Otherwise,

(2.28)
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where y is the label of a certain item, yin is defined as the ith recommended item for

the nth item in the dataset, and N is the number of items in the dataset (or test set for

the test score).

In addition, there is more than one definition of the evaluation of R@K due to the

disagreement on the definition of relevant items. In the book [9], the definition of the

R@K is given as follows:

R2@K =
1

N

N∑
n=1

rn(K),

where rn(K) =
1

Ryn

K∑
i=1

δ[yin − yn],

(2.29)

where Rc is defined as number of item that is in the class c minus 1 (due to the fact

that the reference item should not be accounted), δ is the Kronecker delta function

(δ[α − β] := 1 if α = β; else 0). However, this usage is not common in the area of

metric learning.

The algorithms require getting higher scores of R@K in order to show they manipu-

late the embedding space to be well-clustered. When analyzing the evaluation metric

carefully, a drawback can be noticed: The score function does not take into account

of the number of false positives in the top K recommendation list. As a consequence,

some studies [26] argue that this evaluation score does not present the exact situation

of the embedding space.

2.2.2 Precision at K

The precision is the synonym of positive predictive value in the information retrieval

literature. It is the ratio of both relevant and retrieved items and the number of re-

trieved ones, as shown in Equation (2.30). In short, it measures the accuracy of pre-

dictions.

Precision =
|Relevant ∩Retrieved|

|Retrieved|
=

TP

TP + FP
. (2.30)

Similar to the Equation (2.27), the precision score is calculated by true positives di-

vided by the sum of true positive and false positives, shown in Equation (2.30) as
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well, where FP stands for false positives.

As before, Precision at K (or P@K in short) is similar to (2.30). The ranked list

(usually, this list contains the top-K retrieved items as mentioned in Section 2.2.1) are

utilized in the concept of P@K. The score is calculated as shown in Equation (2.31),

where pi(K) is the ratio of relevant item in the ith retrieved item list (the length of the

list is K).

P@K =
1

N

N∑
n=1

pn(K),

where pn(K) =
1

K

K∑
i=1

δ[yin − yn].

(2.31)

Similar to the R@K, the higher value of P@K implies the better-clustered embedding

space. Although the R@K does not reckon with the false positives, P@K considers

the effect of them. However, this time, it does not attach importance to the ranking

order of the false positives. Another deficiency of this evaluation metric is the lack of

consideration of the number of relevant items. It means, if theK value in the Equation

(2.31) is increased too much, the score cannot present the performance of clustering.

Moreover, in the cases where the numbers of relevant items vary depending on each

anchor item, the score may mislead.

2.2.3 R-Precision

R-precision (or P@R) is also a precision ratio at K, where K is the specific number

of each class, Rc which is the same as the one in (2.29). Then, the score function is

shown in Equation (2.32), where the pn(·) is the same as Equation (2.31).

P@R =
1

N

N∑
n=1

pn(Ryn). (2.32)

This metric overcomes one of the drawbacks in the P@K, in which theK value of any

item is fixed in order not to be faced with the problems resulting from choosing K,
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mentioned in Subsection 2.2.3. On the other hand, it still does not solve the problem

owing to the ranking order.

2.2.4 Mean Average Precision at K

Before defining the mean average precision, the average precision should be dis-

cussed. The Average precision score (or AveP) tries to combine both the recall and

precision scores for ranked retrieval lists. The formula for calculating the score at K

for nth item in the dataset is shown in the Equation (2.33). As it can be observed

in the formula, this score evaluation solves the ranking order problem faced in the

Precision@K.

AvePn@K =

(
1

K

K∑
i=1

δ[yin − yn]

)
· δ[yKn − yn]. (2.33)

The mean average precision (or MAP) is defined as the arithmetic mean of AveP over

all the items in the dataset as shown in Equation (2.34), where N is the number of

item in the dataset.

MAP@K =
1

N

N∑
n=1

AvePn@K. (2.34)

In the same vein with Section 2.2.3, MAP@R score can be evaluated by Equation

(2.35).

MAP@R =
1

N

N∑
n=1

(
1

Ryn

Ryn∑
i=1

δ[yin − yn]

)
· δ[yRyn

n − yn]. (2.35)

2.3 Benchmark Datasets

The datasets on which the models are trained have a quite important role in the area

of deep learning. It is because they directly determine whether the parameters in the

deep neural networks overfit onto the train set or not while training. In the early stages

30



of deep learning models such as LeNet [21] in the 1990s, overfitting was the most

important issue due to the number of samples in the datasets are too small, whereas

the models have too many parameters to train. The order of magnitudes of the number

of samples in these datasets is roughly 105 [22, 19]. Later on, the bigger datasets can

be collected from the Internet, such as ImageNet [5] in the 2010s. ImageNet is the

most well-known and one of the biggest datasets utilized for training the deep learning

based models. It has over 14 million images, which is significantly much more than

the previous datasets. As a matter of fact, this is the reason why AlexNet [20] won

the ImageNet image classification competition in 2012: When the number of samples

in the dataset increases, the classical models cannot rise their performance rather than

the performance increment of the deep learning models as shown in the ImageNet

image classification competition in 2012.

There are plenty of datasets utilized for different purposes. To illustrate, some imbal-

anced ones are used for assessing the robustness of the models against this property

of the training data. Another example is that the small datasets (there are only 3 or 5

samples in each class of train set) are exploited in the field of few-shot learning. In

the next section, we explain the fine-grained datasets in detail: Their difficulties, the

splitting techniques, the most utilized datasets in the literature of deep metric learning.

2.3.1 Definition of Fine-Grained Datasets

The definition of the fine-grained datasets can be defined by their property being only

distinguishable with a slight difference of the instances [39]. While standard datasets

include more than one meta-category (for example; automobiles, horses are included

in the CIFAR-10 [19]), the fine-grained ones consist of only one meta-category and

more than one sub-categories as shown in Figure 2.7.

The general task is to classify or cluster these sub-categories rather than the meta ones.

For example, the Stanford Cars-196 dataset [17], which is one of the fine-grained

datasets, contains only the car meta-category, but it has several models of the cars.

Apparently, the fine-grained datasets require more effort in order to get acceptable

performance with respect to their standard counterparts. To elaborate, the additional

challenges for these datasets to the coarse-grained datasets will be explained in the
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Meta Class Cat

Cat Plant Butterfly
Chantilly-

Tiffany
Bombay Scottish

Traditional mage Recognition 
(Coarse-Grained)

Fine-Grained Image Recognition

Figure 2.7: Difference between the fine and coarse-grained datasets (figure inspired

by [39]).

subsequent subheadings.

2.3.2 Challenges of Fine-Grained Datasets

The challenges for classifying or clustering the fine-grained datasets are divided into

3 main categories by merging the explanations of several surveys on fine-grained

datasets in [39, 44, 45, 38]:

2.3.2.1 Sub-Category Challenge

Figure 2.8: The images at the same column of the figure belong to the same types of

aircraft, but the visual similarity is smaller in each row. (Figure is inspired by [39]).

The first challenge can be named as sub-category problem. This problem comes from
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the fact that the classification task for a fine-grained dataset is to distinguish the sub-

categories of the single meta-category. It creates larger intra-class variance, whereas,

the smaller inter-class variance as shown in Figure 2.8. Although the images in the

row of Figure 2.8 are similar to each other, the images in the same column are in

the same class. Then, the task is to distinguish the images in the same column. This

situation reduces the retrieval performance scores since the clusters of the different

classes may be open to diffuse with each other.

2.3.2.2 Localization Problem

The second issue is that only a slight and subtle difference in the local regions of the

objects should be focused on. It means the background of the images may mislead

the model during the decision of its class. For instance, there are 200 types of birds

in the CUB-200-2011 dataset [40], and they can be distinguished by the help of beak,

wing, tail differences, only. However, the background of the images in the same class

may vary. For example, it can be a sky image if the image is taken when the birds are

flying or a sea image if the birds are settled. The fact that the photos of the same type

of birds can be taken at a different time creates deceptive backgrounds for the models.

On the other hand, in the CIFAR-10 dataset, although the background of the airplane

class images is usually air, the background of the ship class images are the sea. These

can be used as a hint while predicting the label of the images in the coarse-grained

datasets. It causes the rigorously-designed loss functions, and networks are needed to

reach the high performance scores.

2.3.2.3 Labeling Difficulties

The final problem causes by the relatively small size of the fine-grained datasets com-

pared to the standard ones such as ImageNet. The reason for this issue is due to the

fact that it is really difficult to label such datasets. Although anyone can distinguish

between a plane and a car from images, only the experts can do it between Artic

and Caspian Terns, which are bird types in the CUB-200-2011 [40]. Moreover, The

labeling takes more time as compared to the time needed for distinguishing the stan-
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dard datasets. Therefore, labeling the fine-grained dataset is costly from both time

consumption and the monetary point of view. Consequently, the smaller datasets are

usually obtained for fine-grained tasks. The order of magnitudes of these datasets is

given in Section 2.3.3, which includes roughly 105 samples.

2.3.3 Benchmark Datasets of Deep Metric Learning

Several surveys [26, 15] claim that there are mainly three datasets that are frequently

exploited in the deep metric learning studies, and almost all the performance scores

of the methods are calculated on these datasets: CUB200-2011 [40], Stanford Cars-

196 [17], and Stanford Online Products [33]. The first two of them are also exploited

as the part of the FG-comp 2013 challenge, whose website is https://sites.

google.com/site/fgcomp2013/, but the third one, the Stanford Online Prod-

ucts (SOP) [33], which has 22, 634 classes and 120, 000 images are in the dataset.

Even if SOP is a perfectly balanced dataset, there are only 5 images in each class.

Hence, it may create problems related to the few-shot learning topic, which is out

of the scope of this thesis. The FGVC Aircraft Dataset [24] can be chosen as the

third dataset for analysis of the performance of the models trained with various loss

functions. The properties of these datasets are shown in Table 2.1.

Table 2.1: The table of fine-grained benchmark datasets. The number of classes and

the total number of images that are included in each dataset are shown in this table,

as well as the meta-class of them.

Name Meta-Class # Classes # Images

CUB200-2011 [40] Birds 200 11, 788

Stanford Cars-196 [17] Cars 196 16, 185

FGVC Aircraft [24] Aircrafts 100 10, 000

2.3.4 Different Splitting Techniques of the Datasets

Generalization is one of the most important issues that should be considered while

determining how to split the dataset. It is due to the fact that most of the algorithms

in machine learning may overfit the training data during optimizing, as mentioned
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above. For analyzing the generalization power of the model that is trained on the train

set split from the dataset, the performance score of the model should be calculated

on the test set that is not seen by the model during the training phase. Therefore,

the standard way to split the dataset in machine learning forces that the samples in

the train and test sets are disjoint [10]. Moreover, the lecture notes in [10] suggests

splitting the train set into 2 parts: Train and validation sets. Their images are also

disjoint in order to adjust the hyper-parameters and the early stopping. This type of

splitting is called close-set settings as shown in Figure 2.9a.

(a) Close-set split (b) Open-set split

Figure 2.9: The train and test sets of different types of splits for the CUB-200-2011

[40] dataset as shown in Figure 2.8.

Another type of splitting is the open-set split, also called as zero-shot learning sce-

nario as in Figure 2.9b. In this scenario, in addition to the disjoint samples in the

train and test sets, the classes of these sets are also disjoint. This case means there

is no sample in the test set that is in the same class as any sample in the train set. In

this case, the model should also learn the features rather than learning only the class

probabilities. The model may be more robust to variation of the samples in the dataset

and overfitting the classes in the dataset. Indeed, although it gives lower scores on the

test set, it may be more useful in real-world applications. In other words, the trained

model will be not specific for the data but specific for the task.
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CHAPTER 3

DISTANCE SENSITIVE ENTANGLED LOSS FUNCTION

Deep metric learning studies in the literature focus on loss function design and mining

methods. The researchers, who studied in this field, usually explain their motivation

over how much penalty the loss function should evaluate for the situations they have

designed.

In this section, we focus on the loss functions in the literature and propose novel loss

functions. There are various loss functions that have already been proposed. In recent

years, some studies [26] argue that these loss functions might reach quite similar

performance scores; i.e., they do not differ from each other.

In this study, we analyze and try to explain the reason behind this observation. During

this analysis, we should reduce the multi-dimensional embedding space to <2 space

in order to visualize the results. At this point, we exploit some natural phenomena to

discover an optimal loss function.

Before starting the analysis, we would like to make a weak analogy between phys-

ical forces that determines the movement of particles and the feature vectors in the

embedding space in Section 3.1. After determining the distilled form of the loss

functions (ones without hinge function, which intrinsically leads mining the samples

in the embedding space as explained in Section 2.1.1), the hyper-parameters of these

loss functions, their effects, and the ideal hyper-parameters for the certain training

settings are discussed in Section 3.2.
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3.1 A Weak Analogy between Feature Vectors and Point Charges

One can argue that there is an interesting analogy between the feature vectors in the

embedding space and some point electrical charges in free space. Nevertheless, while

electrostatic force pushes objects with the same charges, the same force also attracts

those in the opposite charges, whose magnitude is given in the relation below, as

Coulomb’s Law:

‖F‖ =
q1 · q2

4πεrd2
. (3.1)

Being a weak analogy, this physical phenomena creates an opposite situation to our

objective in deep metric learning, which requires similar objects pulling each other

in the embedding space into the nearby locations, whereas the objects from different

class pushing themselves far away from each other. Nevertheless, once we re-examine

Coulomb’s law for electrostatic force in Equation 3.1, one can state that the scenarios,

in which the permitivity constant (εr) is negative (which might happen in real-life for

some certain frequencies in some meta-materials); hence, the well-known physical

phenomena still become analogous to our problem for some materials. At this point,

let us assume εr be equal to a negative constant in the static case.

Assume that there are two positive and one negative charged point charge in free

space, as shown in Figure 3.1. Under these conditions, the mathematical relation

for the motion of these point charges can be obtained by the governing equations of

classical mechanics. Indeed, the objects move according to the solution of Euler-

Lagrange equations of motion [34], as given in below:
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (3.2)

where qi’s are the generalized coordinates, t denotes the time, and L is the Lagrangian

depending on the generalized coordinates, their derivatives and time (L = L(q, q̇, t)).

However, the Lagrangian, in this case, contains several non-linear terms, which makes

Equation (3.2) hard to solve. Therefore, one can iteratively find out where the parti-

cles should be located in the next time step through the evaluation of force vectors by

Newtonian mechanics.

This process requires the calculation of the forces repeatedly at each time interval. In

these calculations, all of the point charges interact with each other. It is assumed that
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there is no extra external force, and all of the magnetic effects due to the motion of

these point charges are ignored for simplicity.

Every interaction affects both 2 point charges as a force. These forces are equal to

each other, but in opposite directions, according to the 3rd law of Newton. Moreover,

the total force affecting each object is the superposition (vector sum) of each force

affecting it. By using the equation of the Coulomb’s Law shown in (3.1) where εr < 0,

one can determine the directions of the forces as shown in Figure 3.1.

Figure 3.1: In this example illustration, it is assumed that all particles have the same

amount of electrical charge. While Objects #1 & #2 have the same sign, and Object

#3 has a reverse sign. Hence, the first two attract each other and repel the third one,

when εr < 0. The interaction between particles i and j is shown as the force denoted

by Fij . The resultant force exerted on particle i is calculated by the vector summation

(Fi =
∑
∀j Fij). Each particle moves in the direction of its resultant electrical force

vector. The location of the object #1, #2, and #3 are at (x1, y1), (x2, y2), and (x3, y3),

respectively.

Coulomb’s Law also gives information about the magnitudes of these vectors. The

magnitude of the electrostatic force between the two point charges changes propor-

tionally to the square of the reciprocal of the distance between these points, as dic-

tated by (3.1). Then, the particles move with the least displacement that will allow

the potential energy of the system to decrease. However, in deep metric learning, the
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performance score (which are explained in Section 2.2) might differ from the poten-

tial energy analogy, which typically changes with 1/d in contrast to the inverse-square

Law of attraction [4]. Hence, this change can also be considered as a design parameter

while proposing a loss function.

We conclude this section by defining the following two functions, gpull(·) and gpush(·).

To elaborate, we define ‖F12‖ = ‖F21‖ = gpull(D12), whereas ‖F13‖ = ‖F31‖ =

gpush(D13), for which D12 and D13 are the Euclidean distance between Objects #1

& #2, and #1 & #3, respectively, where Dij =
√

(xi − xj)2 + (yi − yj)2 for 2-

dimensional case. This situation is discussed in detail in Section 3.1.3.

A final point to emphasize is the optimizers in deep metric learning. Iterative opti-

mization methods are frequently used during the training of neural networks. For ex-

ample, one of the most primitive optimizers used to train a neural network is stochas-

tic gradient descent, and it basically uses the steepest decent formula for the optimiza-

tion problem x̂ = arg minx L(x), as shown below:

xn+1 = xn − η · ∇x (L(xn)) . (3.3)

The update rule in this formula varies in terms of both magnitude and direction de-

pending on the first derivative of the model, denoted as∇x(L(xn)).

At this point, there is an analogy between the loss function L of metric learning and

work (or potential energy). To elaborate, the derivative of work with respect to dis-

placement gives the force acting on the object. Similarly, when we use an optimizer

that only needs the 1st derivative of the loss to train the parameters of the model,

the new update will now depend on the first derivative of the loss with respect to the

embedding vectors, which can be thought as the coordinates of the samples in the

embedding space, similar to the location of the object in free space. Hence, one can

regard the term∇x(L(xn)) as a force. The time interval also changes with the size of

the learning rate, denoted as η.

Before defining a novel loss function, most of the loss functions available in the lit-

erature are examined from this perspective. Using our analogy, we calculated the so

called forces of these losses and showed them in Tables 3.1 and 3.2, which are the

same as the gradients of the loss functions explained in Section 2.1.1. Note that the

40



hinge loss (Lhinge(·) = max(0, ·), also named as ramp function) only eliminates some

of the triplets but does not affect the direction and the magnitude of the partial deriva-

tive of the losses (or so-called forces) in these tables. Thus, the partial derivatives are

calculated as if there are no hinge losses in the loss functions as also mentioned in

Section 2.1.1.2.

Mathematically speaking, the partial derivatives of the original loss functions are
∂L
∂fi

=
∂Lhinge(Lin)

∂Lin · ∂Lin
∂fi

, where the original loss is L = max(0,Lin), and fi is the

embedding vector of ith instance (Lin functions are given in these tables). The term
∂Lhinge(Lin)

∂Lin equals to Heaviside step function (also named as unit step function). That

is, it filters out the triplets when Lin < 0, and gives 1 when Lin > 0. Moreover, the

case where m � ‖fi − fj‖2 for any xi, xj ∈ D the Lin value cannot be negative;

therefore, the equality ∂Lhinge(Lin)

∂Lin = 1 always holds.

3.1.1 Derivation of the Novel Loss Function

At this point, we implement our loss function, inspired by the aforementioned elec-

trostatic forces. However, unlike most of the design patterns encountered in the lit-

erature, in our approach, we set the forces between samples first. The forces in our

analogy depend on the location of the objects. The location of an object in free space

is equivalent to the coordinate of a sample in the embedding space, i.e., the feature

vector extracted from its image.

Since there are three samples in the triplet, we consider that each of them interacted

with the other two; hence, we are able to write the equations for six forces. We have

set the magnitudes of these six forces as constants in the first stage. In this way, we

write the partial derivatives of the loss function as below:
∂Lgeneric
∂fa

= c1 · (fn − fa) + c2 · (fa − fp),

∂Lgeneric
∂fp

= c3 · (fn − fp) + c4 · (fp − fa),

∂Lgeneric
∂fn

= c5 · (fa − fn) + c6 · (fp − fn).

(3.4)

In the equation above, ci parameters are constants. For merging the ci’s in (3.4) and

the forces shown in Figure 3.1, the equalities in Equation (3.5) can be written when
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the anchor, positive, and negative instances in a triplet sample are corresponding to

the objects #1, #2, and #3, respectively.

c1 =
‖F13‖

‖fa − fn‖2

, c2 =
‖F12‖

‖fa − fp‖2

, c3 =
‖F23‖

‖fp − fn‖2

,

c4 =
‖F21‖

‖fa − fp‖2

, c5 =
‖F31‖

‖fa − fn‖2

, c6 =
‖F32‖

‖fp − fn‖2

.

(3.5)

Once we take the integrals of these equations, one finds the loss functions, which are

dependent on the hi(·, ·) functions, shown in Equation (3.6).

Lgeneric =fTa (c1fn − c2fp) +
c2 − c1

2
‖fa‖2

2 + h1(fp, fn),

=fTp (c3fn − c4fa) +
c4 − c3

2
‖fp‖2

2 + h2(fa, fn),

=fTn (c5fa + c6fp)−
c5 + c6

2
‖fn‖2

2 + h3(fa, fp).

(3.6)

It should be noted that it is easy to show the equivalence between (3.6) and (3.4) by

taking the partial derivatives of (3.6) with respect to fa, fp and fn.

In order to solve these three equations in a coupled way, three constraints c1 = c5,

c2 = c4, c3 = c6 must be provided. If these statements hold, we can combine the

expressions and get the general loss function as below:

Lgeneric(τ) =c1f
T
a fn − c2f

T
a fp + c3f

T
p fn +m

+
1

2

(
(c2 − c1)‖fa‖2

2 + (c2 − c3)‖fp‖2
2 − (c1 + c3)‖fn‖2

2

)
,

(3.7)

where m is a margin (constant) and τ = {fa, fp, fn} is a triplet sample.

In Equation (3.7), the distances are defined in `2 norm (similar results can be ob-

tained when the distance is defined as cosine similarity). In this way, a similarity is

established between the loss function in deep metric learning and electrostatic forces.

The loss functions will be examined for equilateral and non-equilateral triangle cases

in the following sections to understand their behavior better in these examples.
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3.1.2 Special Case #1: Equilateral Triangle

Figure 3.2: The 2-dimensional representation of embedding space in equilateral tri-

angle case. The equality Dan = Dap = Dpn = 1 is hold. The objects A and P are

belonging to the same class, whereas the classes of the object N is different from

them.

As seen in Figure 3.2, let the distances be the same between all the samples to each

other in the embedding space and equal to the unit distance. In this case, ρ can be

defined as a ratio between pull and push forces (ρ = gpush(d)/gpull(d),∀d ∈ <≥0). If

we choose ρ to be 1; then, c1 = c2 = c3 in Equation (3.7). For the sake of simplicity,

let the magnitudes of all the forces are equal to 1 (ρ · ‖Fap‖ = ‖Fan‖ = ‖Fpn‖ = 1);

hence, the ci’s are equal to 1. The loss function in Equation (3.8) can be obtained,

which we denoted it as entangle loss function.

Lentangle(τ) =fTa fn − fTa fp + fTp fn + ‖fn‖2
2 +m,

=
1

2
‖fa − fp‖2

2 −
1

2
‖fa − fn‖2

2 −
1

2
‖fp − fn‖2

2 +m.
(3.8)
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When we take the partial derivatives with respect to fa, fp, and fn to verify it, we get

the equalities in Equation (3.9).

∂Lentangle
∂fa

= (fn − fa) + (fa − fp),

∂Lentangle
∂fp

= (fn − fp) + (fp − fa),

∂Lentangle
∂fn

= (fa − fn) + (fp − fn).

(3.9)

In similar reasoning, another loss can be proposed, as location aware loss function,

that is inspired by the entangle loss. The partial derivatives of this loss function are

given in Equation (3.10). We simply add their feature vectors in the partial derivatives

of themselves.

∂Llocation
∂fa

= fa − fp + fn,

∂Llocation
∂fp

= fp − fa + fn,

∂Llocation
∂fn

= fn + fa + fp.

(3.10)

The integral of the terms in Equation (3.10) is shown in Equation (3.11).

Llocation =fTa (fn − fp) +
1

2
‖fa‖2

2 + h1(fp, fn),

=fTp (fn − fa) +
1

2
‖fp‖2

2 + h2(fa, fn),

=fTn (fa + fp)−
1

2
‖fn‖2

2 + h3(fa, fp).

(3.11)

By using this loss function, we try to analyze whether the performance score is in-

creased when the forces depend on the location of the instances. The loss function

obtained by the similar operations performed is shown in Equation (3.12).

Llocation =
1

2

(
‖fa − fp‖2

2 − ‖fa − fn‖2
2 + ‖fa‖2

2 + 2fTp fn + 2‖fn‖2
2

)
+m. (3.12)
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3.1.3 Special Case #2: Non-Equilateral Triangle

This situation is more challenging compared to the first one. In this case, we can

change the distances between the instances being not equal to the unit distance as

shown in Figure 3.3. Now, the gpull(·) and gpush(·) functions gain importance, since

the forces in the triplet samples vary depending on these functions.

Figure 3.3: The 2-dimensional representation of feature space in the non-equilateral

triangle case. Note that the inequalities Dap 6= Dan, Dap 6= Dpn, Dan 6= Dpn are

hold.

The first suggested loss is based on the entangle loss. As before, the pull and push

functions are taken as constants, i.e., gpush(d) = ρ · gpull(d) = ρ, ∀d ∈ <≥0. For this

case, let ci’s be 1/‖fj − fk‖2 for the same class instances, or ρ/‖fj − fk‖2 if they

are in the different classes for certain j and k, whose the partial derivatives are shown

below:

∂Lmodified
∂fa

= ρ · fn − fa
‖fa − fn‖2

+
fa − fp
‖fa − fp‖2

,

∂Lmodified
∂fp

= ρ · fn − fp
‖fp − fn‖2

+
fp − fa
‖fa − fp‖2

,

∂Lmodified
∂fn

= ρ ·
(

fa − fn
‖fa − fn‖2

+
fp − fn
‖fp − fn‖2

)
.

(3.13)

Closed form integrals of the relations in Equation (3.9) are taken. (Note that the

statement ∂
∂x
‖x‖n = n · x · ‖x‖n−2 holds.) The new loss function which covers
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more cases is obtained in Equation (3.14), which is named as modified entangle loss

function.

Lmodified(τ) = ‖fa − fp‖2 − ρ · (‖fa − fn‖2 + ‖fp − fn‖2) +m. (3.14)

Obviously, similar losses can be obtained by changing ρ. In fact, the ρ value should

be regarded as a hyper-parameter that is tuned during training with the help of the

feedback coming from the validation score.

3.1.4 Losses with Non-Constant Pull and Push Functions

Another loss function proposal could be based upon non-constant pull and push func-

tions. In order to design these functions, first, we should focus on the objective of

training the model.

The main aim is to increase the performance by using a fewer number of iterations

since the model parameters may be stuck in a local minimum or a saddle point during

these iterations, which might reduce the performance score. Moreover, the retrieval

scores are often used for evaluating the performance of the model.

The retrieval scores are basically calculated with the help of K nearest neighbors.

In other words, these scores are calculated based on the similarity between the la-

bels of the K instances closest to a selected reference instance. In order to increase

the retrieval scores, we should attach our importance to the K nearest instances by

incorporating distances into the loss function. Specifically, the task of the function

gpush is to disperse the instances in the different classes. This force is similar to the

electrostatic force; the magnitude of the force is smaller when the objects are far from

each other. The reason is due to the fact that the distant negatives are desired and

should not update the anchor’s location significantly. On the other hand, the close

negatives should be moved far apart, since they reduce the performance score signif-

icantly. Then, one can conclude that the gpush(·) function should be monotonically

decreasing, i.e. gpush(x) ≥ gpush(y) where x ≤ y,∀x, y ∈ <≥0.

Similarly, the samples of the same class that are close to each other do not reduce
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the performance. More importantly, the performance score is not related to the close-

ness of the samples. This score just concerns if these objects are the closest ones

or not. Conversely, the performance score decreases dramatically when any positive

and anchor instances are far from each other. Therefore, the penalty of this situa-

tion should be high in order to get them closer locations with a fewer number of

iterations. As a result, the gpull(·) function should be monotonically increasing, i.e.

gpull(x) ≤ gpull(y) where x ≤ y,∀x, y ∈ <≥0.

In order to propose a novel loss function that meets the above conditions, we revise the

partial derivatives in Equation (3.4) into Equation (3.15) by setting gpush(d) = ρ/dr

and gpull(d) = ds. In Equation (3.15), the values of r and s are positive integers.

It should be noted that the case, where r = −1, s = 1 and ρ = 1, is expressed as

entangle loss function in Equation (3.8), and the case, for which r = 0 and s = 0, is

named as modified entangle loss function in Equation (3.14).

∂Ldistance
∂fa

= ρ · fn − fa
‖fa − fn‖r+1

2

+ (fa − fp) · ‖fa − fp‖s−1
2 ,

∂Ldistance
∂fp

= ρ · fn − fp
‖fp − fn‖r+1

2

+ (fp − fa) · ‖fa − fp‖s−1
2 ,

∂Ldistance
∂fn

= ρ ·
(

fa − fn
‖fa − fn‖r+1

2

+
fp − fn

‖fp − fn‖r+1
2

)
.

(3.15)

When we take the integrals of the partial derivatives in Equation (3.15), we get Equa-

tion (3.16) where s 6= −1 and r 6= 1.

Ldistance =
‖fa − fp‖s+1

2

s+ 1
− ρ · ‖fa − fn‖

1−r
2

1− r
+ h1(fp, fn),

=
‖fa − fp‖s+1

2

s+ 1
− ρ · ‖fp − fn‖

1−r
2

1− r
+ h2(fa, fn),

=− ρ

1− r
·
(
‖fa − fn‖1−r

2 + ‖fp − fn‖1−r
2

)
+ h3(fa, fp).

(3.16)

Hence, we can write the distance sensitive loss function as below:

Ldistance =
‖fa − fp‖s+1

2

s+ 1
− ρ

1− r
·
(
‖fa − fn‖1−r

2 + ‖fp − fn‖1−r
2

)
+m. (3.17)
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There are four hyper-parameters that determine how the loss function affects the em-

bedding space in (3.17). These hyper-parameters are discussed in subsequent subsec-

tions.

Before discussing the hyper-parameters and the hinge loss added version of the pro-

posed loss, we try to show the significant difference between the distance sensitive

& location-aware loss functions and the losses in the literature briefly. First, all the

triplet-based losses are summarized in Tables 3.1, 3.2 as derived in Section 2.1.1.2.

One can observe that the update terms of the losses in the literature are quite similar to

each other. This similarity is possibly the reason for having similar evaluation scores

in the test sets, which are reported in the study [26]. After these tables, our proposed

losses and their gradients are tabulated in Table 3.3.
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Table 3.1: The table of the forces of all the triplet losses found in literature in chronological order (from 2014 to 2015).

Loss Name Loss Function(L) Derivatives of L (∂L/∂fi)

Original Triplet Loss [14]
(

e‖fa−fp‖2

e‖fa−fp‖2+e‖fa−fn‖2

)2

∂L
∂fa

= 2·e2‖fa−fp‖2+‖fa−fn‖2

(e‖fa−fp‖2+e‖fa−fn‖2 )2
·
(

(fa−fp)

‖fa−fp‖2 −
fa−fn
‖fa−fn‖2

)
∂L
∂fp

= 2·e2‖fa−fp‖2+‖fa−fn‖2

(e‖fa−fp‖2+e‖fa−fn‖2 )2
· (fp−fa)

‖fa−fp‖2

∂L
∂fn

= 2·e2‖fa−fp‖2+‖fa−fn‖2

(e‖fa−fp‖2+e‖fa−fn‖2 )2
· fa−fn
‖fa−fn‖2

Ranking Loss [36] ‖fa − fp‖2 − ‖fa − fn‖2 +m

∂L
∂fa

= fa−fp
‖fa−fp‖2 −

fa−fn
‖fa−fn‖2

∂L
∂fp

= fp−fa
‖fa−fp‖2

∂L
∂fn

= fa−fn
‖fa−fn‖2

Ratio Loss [41] 1− ‖fa−fn‖2
‖fa−fp‖2+m

∂L
∂fa

=
‖fa−fn‖·(fa−fp)

‖fa−fp‖2
− ‖fa−fp‖2·(fa−fn)

‖fa−fn‖2
‖fa−fp‖2+m

∂L
∂fp

= ‖fp−fn‖2·(fp−fa)

‖fa−fp‖2·(‖fa−fp‖2+m)

∂L
∂fn

= fa−fn
‖fa−fn‖2·(‖fa−fp‖2+m)

FaceNet Loss [28] ‖fa − fp‖2
2 − ‖fa − fn‖2

2 +m

∂L
∂fa

= fn − fp

∂L
∂fp

= fp − fa

∂L
∂fn

= fa − fn
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Table 3.2: The table of the forces of all the triplet losses found in literature in chronological order (from 2015 to 2020).

Loss Name Loss Function (L) Derivatives of L (∂L/∂fi)

N-Pairs [32] log(1 + efafn−fafp)

∂L
∂fa

= efafn−fafp

1+efafn−fafp · (fn − fp)

∂L
∂fp

= − efafn−fafp

1+efafn−fafp · fp

∂L
∂fn

= efafn−fafp

1+efafn−fafp · fa

Angular Loss [37] ‖fa − fp‖2
2 − 4 tan2(ρ) · ‖fn − fa+fp

2
‖2

2

∂L
∂fa

= 2 · (fa − fp)− 2 tan2(ρ) · (fa + fp − 2fn)

∂L
∂fp

= 2 · (fp − fa)− 4 tan2(ρ) · (fa + fp − 2fn)

∂L
∂fn

= 4 tan2(ρ) · (fa + fp − 2fn)

Moving Loss [3] ‖fa − fp‖2
2 − ‖fa − fn‖2

2 − ρ ·
1−fTp fa

‖fa−fp‖2−‖fa−fn‖2 +m

∂L
∂fa

= 2 · (fn − fp)− ρ ·
(

fa−fp
‖fa−fp‖2·‖fa−fn‖2 + ‖fa−fp‖2

‖fa−fn‖32
· (fn − fa)

)
∂L
∂fp

= 2 · (fp − fa)− ρ · fp+fa
‖fa−fp‖2·‖fa−fn‖2

∂L
∂fn

= 2 · (fa − fn)− ρ · fa+fn
‖fa−fp‖2·‖fa−fn‖32
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Table 3.3: The table of the forces of the proposed triplet losses.

Loss Name Loss Function (L) Derivatives of L (∂L/∂fi)

Entangle fTa fn − fTa fp + fTp fn + ‖fn‖2
2 +m

∂L
∂fa

= (fn − fa) + (fa − fp)

∂L
∂fp

= (fn − fp) + (fp − fa)

∂L
∂fn

= (fa − fn) + (fp − fn)

Location Aware 1
2

(
‖fa − fp‖2

2 − ‖fa − fn‖2
2 + ‖fa‖2

2 + 2fTp fn + 2‖fn‖2
2

)
+m

∂L
∂fa

= fa − fp + fn

∂L
∂fp

= fp − fa + fn

∂L
∂fn

= fn + fa + fp

Modified Entangle ‖fa − fp‖2 − ρ · (‖fa − fn‖2 + ‖fp − fn‖2) +m

∂L
∂fa

= ρ · fn−fa
‖fa−fn‖2 + fa−fp

‖fa−fp‖2

∂L
∂fp

= ρ · fn−fp
‖fp−fn‖2 + fp−fa

‖fa−fp‖2

∂L
∂fn

= ρ ·
(

fa−fn
‖fa−fn‖2 + fp−fn

‖fp−fn‖2

)

Distance Sensitive ‖fa−fp‖s+1
2

s+1
− ρ

1−r ·
(
‖fa − fn‖1−r

2 + ‖fp − fn‖1−r
2

)
+m

∂L
∂fa

= ρ · fn−fa
‖fa−fn‖r+1

2

+ (fa − fp) · ‖fa − fp‖s−1
2

∂L
∂fp

= ρ · fn−fp
‖fp−fn‖r+1

2

+ (fp − fa) · ‖fa − fp‖s−1
2

∂L
∂fn

= ρ ·
(

fa−fn
‖fa−fn‖r+1

2

+ fp−fn
‖fp−fn‖r+1

2

)
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3.2 Hyper-Parameters of the Proposed Loss Function

After deriving the distance sensitive loss function, we can add an in-loss-miner to this

function by including a hinge function, similar to the proposed losses in the literature

of metric learning. To define the concept in-loss-miner, it has the same functionality

as an online miner. That is, let us select an anchor and a positive instance of the triplet,

which are located in fixed points in the embedding space. Possibly there are plenty

of negative instances that can form a valid triplet, and what the in-loss-miner does is

that it selects only the particular negatives that are located in the region determined by

the loss function as explained in Section 2.1.2 for online miners. In order to provide

the functionality of in-loss-miner, the hinge function is utilized for filtering out some

of the negatives which are located outside of the region, which was determined by

the loss function itself. The aim of the utilization of the in-loss-miner is to make our

model more robust for the outliers. The generic form of our loss function becomes as

follows:

Lhingeddistance = min (m2,max (0,Ldistance +m1)) ,

Ldistance =
‖fa − fp‖s+1

2

s+ 1
− ρ

1− r
·
(
‖fa − fn‖1−r

2 + ‖fp − fn‖1−r
2

)
.

(3.18)

The loss value is clamped from upper and lower bounds by the constants denoted

as m1 and m2. To visualize, the relationship between Lhingeddistance and Ldistance is sim-

ilar to the transfer characteristics of an op-amp. Then, the loss function in Equation

(3.18) generates non-zero gradients when its value is in between these boundaries, i.e.
∂Lhinged

distance

∂Ldistance
= 1 when −m1 < Ldistance < m2 −m1 holds; otherwise the loss returns 0

value. The analogy with op-amps can be regarded as the generated non-zero gradient

region corresponds to the linear region of the op-amp. Note that the constraintm2 > 0

should be provided so that the region of non-zero gradients becomes non-trivial.

The aim for using m1 is to determine the hyper-volume of the upper bound of the

mined region. The larger m1 causes the larger region for negative samples. On the

other hand, the m2 affects the size (hyper-volume) of the inner region that is not

utilized by the model due to the zero gradients generated from the loss function for

preventing the model from the large noise in the gradients explained in [42].

Obviously, the values of m1 and m2 depend on the hyper-parameters denoted as ρ, s,
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and r. Hence, we discuss how to select these parameters according to the settings of

the training procedure.

3.2.1 Discussion on the Ratio between Pull and Push Forces

In this subsection, we try to find the most effective ratio between pull and push forces,

which denoted as ρ in Equation 3.18. This ratio highly depends on the number of in-

stances in the dataset or in a batch when the mini-batch based optimization algorithm

is utilized. Hence, first, we should draw the picture for a batch update. Let the

batch size be 2x, and 2y different classes are contained in a batch, where x, y ∈ Z+

and x > y > 0. (Note that choosing the batch size as the power of 2 is quite effi-

cient for the popular platforms such as PyTorch [27] in practice.) Therefore, there

are 2x−y instances for each class in a batch. It is quite apparent that we can find

22x−y · (2x−y − 1) · (2y − 1) valid triplets in each batch.

For further analysis, there are 2x − 2x−y valid triplets containing certain anchor and

positive instances in the batch. A similar calculation can be done when we fix the

anchor and the negative instance; thus, we can find 2x−y − 1 valid triplets. Likewise,

2x−y − 1 valid triplets contain the fixed positive and negative instances. Now, let

us consider the number of forces used in a batch update that is caused by any two

instances in the batch. We first consider the case where these two instances belong

to the same class. They should attract each other with the force whose magnitude is

equal to ‖Fattract‖. The link between these instances is established 2x−y+1 · (2y − 1)

times in any batch if all the valid triplets are utilized; thus, the force affecting on the

first instance is proportional to 2x−y+1 · (2y − 1) · ‖Fattract‖ because of the forces

denoted by (fa − fp), and (fp − fa) in the partial derivatives of the loss functions.

On the other hand, when these two instances are from different classes, they repel

each other with a force whose magnitude is ‖Frepel‖. The triplet loss functions in the

literature, utilize the forces due to only the terms (fa−fn), and (fn−fa) for repelling,

whereas there are 4 terms that are being exploited in our proposed loss function for

the same purpose, which are ρ · (fa− fn), ρ · (fn− fa), ρ · (fp− fn), and ρ · (fn− fp)
with their weights. Hence, the repelling force between these instances affecting on

the first instance is proportional to 2·(2x−y−1)·‖Frepel‖ and 22 ·(2x−y−1)·ρ·‖Frepel‖
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for the losses in the literature and our proposed loss, respectively.

At this point, we assume that the ideal condition happens when the effect of positive

and negative force is equal to each other. It means 2 · (2x−y − 1) should be equal

to 2x−y+1 · (2y − 1) when ‖Fattract‖ = ‖Frepel‖ in the losses in the literature. Then

x = log2( 2y

2−2y
) but there is no such y > 0 integer value that satisfies this equality. In

our loss, the condition 2x−y+1 · (2y − 1) = 22 · (2x−y − 1) · ρ can be satisfied if ρ is

chosen as in Equation (3.19).

ρ = 2x−y−1 · 2y − 1

2x−y − 1
. (3.19)

For instance, when the x = 5 and y = 2, the ideal ρ = 12/7, which is the setting we

used in the experiments. However, 0.5, 1, and 2 values were also tried in the experi-

ments to show the effect of this hyper-parameter. More detail about these experiments

is given in Chapter 4. After choosing the ρ value, we should find the ideal r and s

values, that is explained in the next subsection, but before that, the equilateral triangle

case for the gradients are plotted for these ρ values in Figure 3.4. The motivation be-

hind plotting the different values of ρ in the equilateral triangle case is that this case

eliminates the effect of r and s since all the items in a triplet are affected by each

other from the same distance.

3.2.2 Discussion on the Power of the Forces

In this subsection, we discuss the effects of the values of r and s on the region that is

determined by the in-loss-miner (due to the hinge loss and the margin). The surface

of this region can be found by the boundary conditions which are shown in Equation

(3.20).

1− r
(s+ 1) · ρ

· ‖fa − fp‖s+1
2 +

1− r
ρ
·m1 = ‖fa − fn‖1−r

2 + ‖fp − fn‖1−r
2 ,

1− r
(s+ 1) · ρ

· ‖fa − fp‖s+1
2 +

1− r
ρ
· (m1 −m2) = ‖fa − fn‖1−r

2 + ‖fp − fn‖1−r
2 .

(3.20)

54



(a) (s, r) = (0,−1) (b) (s, r) = (0, 0)

(c) (s, r) = (0, 2) (d) (s, r) = (1, 2)

Figure 3.4: The 2-dimensional representation of the embedding space when the an-

chor instance (denoted as A) is at (−1, 0), the positive one (P) is at (1, 0), and the

negative (N) is at (0,
√

3). The sub-figures show the different ρ values.

Consider the case of the left hand side of (3.20) is fixed, i.e. the locations of the anchor

and the positive instances are fixed, ‖fa − fp‖2 = 0.5, s = 0, and ρ = 12/7. Now,

we can analyze the effects of the power r on the region of the negative instances

that are able to cause non-zero loss value. First, we should find the search space

(feasible region) for r. It is a non-negative integer number because of the motivation

of our loss function, that is explained in Subsection 3.1.3, and also shown in Equation

(3.15). Moreover, r 6= 1 from Equation (3.17). Then, we should check the cases,

r = 0, and r > 1 where r ∈ Z+. The 2-dimensional plots of the filtered regions by

in-loss-miner when r = −1, r = 0, r = 2, and r = 3 are shown in Figure 3.5.
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(a) r = −1, m1 = 2.5, m2 = 2.0 (b) r = 0, m1 = 2.5, m2 = 2.0

(c) r = 2, m1 = −3.5, m2 = 20.0 (d) r = 3, m1 = −3.5, m2 = 20.0

Figure 3.5: The 2-dimensional representation of the mined regions by in-loss-miner

for the negative items when the anchor instance (denoted as A) is at (0, 0), the positive

one (P) is at (0.5, 0). The sub-figures show the different r values. The other hyper-

parameters are as follows: s = 0, ρ = 12/7. The negative items in the yellow region

are being affected by force caused by both anchor and positive instances.

As shown in Figure 3.5, the larger r value causes the smaller area of the filtered re-

gion, which means the in-loss-miner filters out almost all the triplets and restrains the

training. In order to prevent this situation m1 and m2 parameters should be adjusted

which are discussed in Section B. Moreover, the gradients should also be considered.

The case that the anchor, positive and negative items are at (0, 0), (1, 0), and (0, 0.5)

is shown in Figure 3.6.
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(a) r = −1 (b) r = 0

(c) r = 2 (d) r = 3

Figure 3.6: The 2-dimensional representation of the embedding space when the an-

chor instance (denoted as A) is at (0, 0), the positive one (P) is at (1, 0), and the

negative (N) is at (0, 0.5). The sub-figures show the different r values. The other

hyper-parameters are as follows: s = 0, ρ = 12/7.

Figure 3.6 shows the effect of r value when the other parameters are fixed. Obviously,

the increase of r leads to the rise of magnitude of repelling forces between fa ↔ fn

and fp ↔ fn. Since the negative item is closer to the anchor than the positive one,

the direction of the overall gradient acting on the anchor rotates clockwise when r

increases. Another observation is that the direction of the negative item also rotates

clockwise since the ratio of forces between fa ↔ fn and fa ↔ fn increases when r

rises, which is desired as mentioned in Section 3.1.3.

In contrast, another information utilized while determining the r value is that the

study [42] claims that the embeddings which are close to each other have high noise

in the gradients. If the r value increases, this noise may be amplified, which makes

the model collapse as mentioned in [42]. Although the m2 parameter prevents these
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noises, we take into consideration this situation while adjusting r. Therefore, in the

experiments, we use −1, 0, 2 values for r.

The value of s is also a positive integer due to the same reason. In order to determine

its value, we should consider the latter epochs of the training process. The objective

of the loss function is to repel the objects in different classes and attract the samples

belonging to the same class. Hence, in the latter epochs, the distance of ‖fa − fp‖2

will get smaller. Let us test two cases, that are s = k and s = l where k, l ∈ Z≥0 and

k < l. When the condition ‖fa − fp‖2 < 1 is satisfied (it will be satisfied because

of the normalization layer on top of our neural network, explained in Chapter 4),

‖fa − fp‖l2 < ‖fa − fp‖k2. The smaller value of ‖fa − fp‖l2 may cause the smaller

region for selecting negatives and eliminates the more number of negative items when

comparing with the case of s = k.

On the other hand, the s value should be large enough for holding the motivation

mentioned in Section 3.1.3. This hypothesis is tested by plotting the gradients for

various points of negative items in 2-dimensional space shown the case that the an-

chor, positive and negative items are at (0, 0), (0.5, 0), and (0, 1) is shown in Figure

3.7.
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(a) (s, r) = (0,−1) (b) (s, r) = (0, 0)

(c) (s, r) = (0, 2) (d) (s, r) = (1,−1)

(e) (s, r) = (1, 0) (f) (s, r) = (1, 2)

Figure 3.7: The 2-dimensional representation of the embedding space when the an-

chor instance (denoted as A) is at (0, 0), the positive one (P) is at (0.5, 0), and the

negative (N) is at (0, 1). The sub-figures show the different (s, r) values. The hyper-

parameter ρ is equal to 12/7.

All in all, we choose s as 0, 1 and r as −1, 0, 2 in the experiments with various ρ

values selected in Section 3.2.1. Note that (s, r, ρ) = (1,−1, 1), (s, r) = (0, 0) and

(s, r) = (1, 2) are the settings of entangle, modified entangle and metric learning with
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entangled triplet unified (METU) loss respectively.

3.2.3 Discussion on the m1 and m2 for various (s, r, ρ)’s

In the same vein of Section B, we adjust the m1 and m2 parameters empirically. It

means we adjust these values for the case where ‖fa − fp‖2 = 0.5. We take the

ranking loss’ in-loss-miner as a baseline. After finding the region for ranking loss,

the m1 is determined so that the region for the proposed loss encapsulates this region.

However, we have not found an analytically reasonable way to determine the value of

m2. Actually, we use this parameter to avoid the model from the gradients with high

noise. Hence, we train the models with several different m2 parameters for showing

the difference due to its effects. We have not noticed a good value yet.

There are 5 hyper-parameters to determine. We adjust 5 experiments whose param-

eters are shown in Table 3.4 because of the same reasoning mentioned in B, that is

the region of the in-loss-miner includes the region for the ranking loss. The region

generated by in-loss-miner with the chosen hyper-parameters is similar to the figure

in B.1.

Table 3.4: The table for the hyper-parameters of the experiments we designed.

Experiment # s r ρ m1 m2

1 1 2 1.0 −2.0 5.0

2 1 2 1.0 −2.0 10.0

3 1 2 1.0 −2.25 5.0

4 1 2 1.0 −2.25 10.0

3 1 2 1.0 −2.5 5.0

4 1 2 1.0 −2.5 10.0

5 1 2 1.0 −3.0 5.0

6 1 2 1.0 −3.0 10.0
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CHAPTER 4

EXPERIMENTS AND DISCUSSIONS

This chapter is about the experiments that are performed to test our predictions men-

tioned in Chapter 3. Within the scope of this study, we implement a framework in

order to compare the methods mentioned in Chapter 2 with our proposed loss func-

tion and the mining methods in Chapter 3. We utilize a dataset that is widely used

in this field as discussed in Section 2.3; therefore, there are several tables of the re-

sults that are related to this dataset and one more table for the toy dataset generated by

Gaussian distribution. Moreover, this dataset is split into two, namely, train-validation

and test sets with an open set scenario in order to re-create the conditions of the image

retrieval problem. In order to design these experiments in a fair way, the architectures

of the models, trained with various methods in the literature, are fixed. Furthermore,

the stopping conditions and optimizers are chosen the same in all of the experiments

in order to avoid the effects on the performance scores of the methods. Therefore, the

improvements are directly caused by the design of the loss function, and the mining

methods are shown in the quantitative results of the experiments.

This chapter is divided into three parts. First, the experimental setup and configura-

tions of them are explained in Section 4.1. Next, the results of the experiments are

shown in Section 4.2. Finally, the discussions on the results are in Section 4.3.

4.1 Experimental Setup

The experiments are designed in a way such that a fair comparison can be made.

Therefore, several properties were fixed during training, such as optimizer, batch size,
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etc. A framework was implemented to have full control over the experiments. The

implementations of this framework are explained in Appendix A. Also, the testing

platform and toy dataset generation procedure are explained in detail below.

4.1.1 Testing Platform

In the testing platform, a tester class was designed which calculates all of the retrieval

scores mentioned in Section 2.2. Moreover, the test score of the best model among the

4 fold leave-one-out cross-validation is reported in the tables of the results. The exper-

iments were performed on a commonly used dataset: CUB-200-2011 [40]. Moreover,

the methods were tested on a toy example dataset that all of the samples are generated

from a Gaussian distribution which will be described in the next subsection.

Furthermore, the configuration file for the experiments is fixed in the experiment

objects. In order to compare the effectiveness of the methods, the optimizer was

fixed as RMSprop with the learning rate as 10−6 for both feature extractor and the

embedding layer of the network. The batch size is 32 in the training phase. When the

online sampler is utilized, the number of iterations is selected as 1000, and the number

of classes in a batch is 4 (hence, there are 32/4 = 8 samples that are in the same class

in a batch). The network architecture for the feature extraction is chosen as ResNet-

18 (which is one of the light-weight network architecture) that is pre-trained on the

ImageNet dataset [5] due to memory concerns. The embedding layer is a linear layer

with an input size of 1000 and an output size of 128 (which is equal to the dimension

of the embedding space) and is initialized with the method mentioned in the study

[12]. The open-set splitter with a test ratio of 0.5 and 4 fold leave-one-out cross-

validation was used. In other words, the train, validation, and the test sets include 3n,

n, and 4n samples, respectively, when the dataset size is 8n. The stopping condition is

two-fold: The experiment is stopped when the epoch number exceeds the maximum

epoch number (chosen as 500). The second condition is the patient epoch. It means

when the model has not found the parameters whose validation score exceeds the last

best score for 100 epochs, then the experiment is stopped. At that point, there are

plenty of scores evaluated on the validation set. We use the MAP@R score for the

patient epoch condition, like the study [26].
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4.1.2 Data Generation and Network Architecture for the Toy Dataset

In order to show the effectiveness of this loss function, we design several experiments

with a toy dataset. The items in this dataset are generated with the help of Gaussian

distribution. First, the means of each class are determined with the uniform distribu-

tion between 0 and 1. After that, the 3-dimensional vectors of each item are sampled

from a multivariate normal distribution whose covariance matrix’s off-diagonal en-

tries are 0. The diagonal entries of them are equal to 2 · 10−2. There are 32 classes in

total, and each class has 200 samples.

The network architecture consists of two linear layers. There is a leaky ReLU activa-

tion function in-between the layers in order to make the model a non-linear transform.

The dimension of the hidden layer is 32.

4.2 Experimental Results

In this section, the experimental results of several loss functions are tabulated in the

tables. All of these experiments are performed using the settings described in Section

4.1. They are designed to test the hypothesis claimed in Chapter 3 without any exter-

nal effect such as mining methods, network architecture, etc. Also, we try to indicate

the effect of the hyper-parameters of both the losses in the literature and the pro-

posed losses. First, the experiments on the toy dataset are performed in order to show

the effectiveness of the idea behind the proposed losses in Section 4.2.1. Then, the

experiments for the losses found in the literature are performed with various hyper-

parameters, whose results are shown in Section 4.2.2. Finally, in order to analyze the

proposed loss function and its hyper-parameters, several experiments were conducted

with different values of the hyper-parameters in Section 4.2.3, which is discussed in

Section 3.2.

4.2.1 Experiments on the Toy Dataset

The experiments described in Section 4.1.2 are performed. The results are tabulated

in Table 4.1.
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Table 4.1: The train results of the triplet loss function methods in the literature trained

and tested in our framework on the toy dataset with various hyper-parameters (de-

noted as HP).

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Scores on the Input Space

- 70.25 84.42 92.58 96.96 69.50 68.72 67.89 54.76 31.77

Initial Scores on the Feature Space

- 59.17 74.17 85.21 92.71 58.00 56.89 54.91 35.94 21.07

Ranking Loss [36]

m = 0.01 67.79 82.67 91.25 96.17 67.52 67.01 66.44 53.88 37.32

m = 0.1 70.04 83.67 92.75 96.38 69.35 69.35 68.65 56.90 40.75

m = 2.5 69.54 83.54 92.67 96.58 68.62 67.39 66.28 48.67 32.00

m = 40.0 69.54 83.33 92.71 96.46 68.52 67.33 66.18 48.30 31.62

Distance Sensitive Loss with (s, r, ρ,m1) = (1, 2, 1.0,−2.25)

m2 = 5.0 70.21 84.62 92.54 96.79 69.44 68.82 68.00 55.35 38.88

m2 = 10.0 70.29 84.58 92.58 96.67 69.44 68.91 67.95 55.36 38.90

Distance Sensitive Loss with (s, r, ρ,m1) = (1, 2, 1.0,−2.5)

m2 = 5.0 70.08 84.42 92.46 96.88 69.42 68.83 68.03 55.28 38.81

m2 = 10.0 70.17 84.38 92.46 96.79 69.35 68.91 67.97 55.28 38.81

Distance Sensitive Loss with (s, r, ρ,m1) = (1, 2, 1.0,−2.75)

m2 = 5.0 69.96 84.58 92.46 96.79 69.50 68.76 67.98 55.22 38.74

m2 = 10.0 69.79 84.50 92.46 96.75 69.42 68.78 67.95 55.23 38.76

The results in Table 4.1 show the idea behind the design of the distance sensitive loss

is quite consistent. Both the train, validation and test scores surpass the scores of the

vanilla loss function (ranking loss). However, only the train results are meaningful

since the experiments are performed with the open-set scenario. Hence, the results in

Table 4.1 show only the scores on train set. In addition, the ranking loss function does

not reach the level of the input space at the end of the training, whereas our proposed

loss achieves with certain hyper-parameters.
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4.2.2 Experiments for the Loss Functions in the Literature

The experiments on the CUB-200-2011 dataset [40] for the prominent triplet based

losses from the literature are shown in Tables 4.2 and 4.3. The experiments are ex-

ecuted with various hyper-parameters, in which the parameter set includes the best

values mentioned in the studies of the methods.

Table 4.2: The test results of the triplet loss function methods in the literature trained

and tested in our framework on CUB200-2011 dataset [40] with various hyper-

parameters (denoted as HP). (Part-1)

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Original Triplet [14]

- 35.79 47.89 60.40 71.84 33.50 30.78 27.27 16.32 7.98

Ranking [36]

m = −0.2 33.15 45.71 59.05 72.60 30.78 27.94 25.12 15.07 6.50

m = −0.1 36.46 49.61 62.32 75.42 34.25 31.32 28.33 17.25 8.00

m = 0.0 50.71 65.02 77.28 86.16 48.72 45.76 41.75 25.77 14.77

m = 0.01 52.80 65.61 77.04 85.96 50.51 47.61 43.86 27.73 16.65

m = 0.1 50.49 63.12 74.48 84.18 48.22 45.27 42.00 26.84 16.03

m = 0.2 47.45 60.33 72.06 82.07 45.54 42.76 39.75 25.70 15.09

m = 0.3 43.18 56.28 68.38 79.14 41.46 39.23 36.13 23.77 13.46

m = 2.5 34.45 46.74 59.32 70.91 32.20 28.84 25.29 14.71 6.69

m = 40.0 34.69 46.62 58.91 70.80 32.20 28.77 25.12 14.69 6.70

FaceNet [28]

m = 0.01 49.97 63.13 75.44 84.98 47.96 45.58 42.38 26.96 16.04

m = 0.1 50.73 64.23 74.76 84.42 48.81 45.65 42.41 27.30 16.36

m = 0.2 49.17 62.61 74.12 84.23 47.36 44.78 41.71 26.62 15.83

m = 0.3 49.61 62.00 74.00 83.42 47.35 44.61 41.22 26.41 15.70

m = 2.5 35.65 47.65 59.59 70.88 33.25 30.19 26.81 16.18 7.84

m = 40.0 34.54 46.29 59.20 71.44 32.10 28.92 25.73 14.84 6.84

N-Pairs [31]

- 36.56 48.36 60.99 72.65 34.21 31.46 28.02 16.83 8.34
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As seen in Table 4.2, some of the well-known loss functions have not any hyper-

parameter to optimize such as Original Triplet [14], and N-Pairs [31]. Hence, they

are trained with a single experiment. On the other hand, several experiments are

performed with these losses and various values of their hyper-parameters. The results

of these experiments show that the ranking [36], and FaceNet [28] losses are quite

sensitive to the variations of the hyper-parameters. Moreover, the experiments with

several negative and positive values of the m, are also performed in order to check if

the best hyper-parameters given in the previous studies are valid or not. As expected,

we got results that are consistent with these studies.

Table 4.3: The table for the test results of the triplet loss function methods in the

literature trained and tested in our framework on CUB200-2011 dataset [40] with

various hyper-parameters (denoted as HP). (Part-2)

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Ratio [41]

m = 0.01 52.31 65.67 76.37 85.28 50.42 47.41 43.67 27.33 16.53

m = 0.1 49.29 62.34 74.05 84.00 47.57 45.10 41.87 26.63 15.89

m = 0.2 47.25 60.01 72.10 82.01 45.31 42.74 39.81 25.56 14.97

m = 0.3 43.55 57.44 69.11 79.15 42.71 40.02 36.86 23.97 13.74

m = 40.0 39.21 51.00 62.53 73.94 37.16 34.32 31.15 19.68 10.52

Angular [37]

ρ = 0.2 27.55 39.08 52.40 65.55 25.08 22.33 19.72 11.77 4.43

ρ = 0.3 30.11 42.20 55.72 69.14 28.06 25.41 22.58 13.79 5.60

ρ = 0.4 40.04 52.68 65.60 77.63 37.48 35.01 31.85 19.66 9.84

ρ = 0.5 45.66 58.64 72.18 82.53 43.40 40.87 37.40 23.07 12.6

ρ = 0.6 46.56 60.65 73.43 83.34 44.71 41.62 37.96 23.19 12.70

ρ = 0.63 41.75 54.90 68.16 79.46 39.15 36.20 32.75 19.81 10.05

ρ = 0.8 28.49 40.78 53.78 67.17 26.51 23.89 21.34 12.68 5.07

ρ = 0.96 26.38 38.12 51.67 65.21 24.37 22.28 19.62 11.44 4.36

ρ = 2.0 26.52 38.44 51.86 65.41 24.61 22.51 19.77 11.47 4.35

Moreover, we conduct the experiment with angular loss function without hinge loss

shown in Equation (2.12). The results are shown in Table 4.4.
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Table 4.4: The table for the test results of the angular triplet loss function without

hinge function trained and tested in our framework on CUB200-2011 dataset [40]

with various hyper-parameters (denoted as HP).

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Angular without hinge function in (2.12)

ρ = 0.2 27.36 38.99 52.16 65.51 25.16 22.48 19.96 11.84 4.54

ρ = 0.3 30.05 42.45 55.98 69.04 28.12 25.67 22.32 12.11 4.85

ρ = 0.4 33.19 45.27 57.95 70.16 30.49 27.63 24.34 14.05 6.20

ρ = 0.5 33.69 45.97 58.29 70.04 31.50 28.45 25.16 14.52 6.64

ρ = 0.6 34.67 47.35 59.42 71.37 32.59 29.35 26.07 15.12 7.03

ρ = 0.63 34.49 45.91 58.73 70.73 31.71 28.85 25.49 14.76 6.78

ρ = 0.79 34.08 45.66 58.34 70.73 31.68 28.89 25.68 14.86 6.88

ρ = 0.8 33.81 46.15 58.69 70.48 31.61 28.73 25.70 14.71 6.80

ρ = 0.96 34.47 46.29 58.14 70.07 32.00 28.87 25.51 14.93 6.95

The difference between the scores of the angular loss in Tables 4.3 and 4.4 denotes the

advantage of usage of hinge function. It means the in-loss-mining process progresses

the model since it causes eliminating the redundant triplets while calculating the loss

value.

In addition, the experiments for one of the state-of-the-art methods in deep metric

learning named as moving loss, in Equation (2.14), are also performed, whose results

are shown in Tables 4.5, 4.6 and 4.7.
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Table 4.5: The table for the test results of the moving triplet loss function methods

in the literature trained and tested in our framework on CUB200-2011 dataset with

various hyper-parameters (denoted as HP). (Part-1)

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Moving with ρ = 0.1

m = 0.01 35.74 48.75 61.95 74.92 33.38 30.77 27.94 17.04 7.88

m = 0.1 50.20 63.50 75.07 84.91 48.48 45.43 42.32 27.03 16.13

m = 0.2 49.38 62.44 74.38 84.54 47.54 45.25 42.14 26.89 15.99

m = 0.3 49.32 62.34 74.02 83.88 47.30 44.89 41.81 26.68 15.91

m = 2.5 35.26 47.57 59.42 70.48 33.04 30.00 26.57 16.28 7.89

m = 5.0 34.45 46.46 59.27 70.73 31.82 28.73 25.54 14.74 6.77

m = 10.0 34.22 45.85 58.25 69.77 31.36 28.38 25.00 14.61 6.70

m = 20.0 33.73 45.63 58.44 70.14 31.59 28.51 25.05 14.48 6.61

m = 40.0 33.91 45.93 58.34 70.54 31.74 28.40 25.09 14.55 6.61

Moving with ρ = 0.2

m = 0.01 33.58 46.25 60.04 72.81 31.33 28.84 25.88 15.74 6.97

m = 0.1 45.17 59.44 72.69 83.71 42.94 40.06 36.57 22.30 11.66

m = 0.2 50.35 63.67 75.00 84.64 48.55 45.73 42.31 27.16 16.21

m = 0.3 49.56 62.74 74.97 84.62 47.90 45.45 42.05 26.86 16.08

m = 2.5 36.34 48.28 60.53 71.66 33.85 30.75 27.45 16.48 8.07

m = 5.0 34.49 46.61 58.56 70.32 32.03 28.60 25.14 14.69 6.72

m = 10.0 34.42 45.75 58.09 70.12 31.57 28.65 25.20 14.62 6.73

m = 20.0 34.28 45.95 58.58 71.00 31.47 28.53 25.35 14.66 6.68

m = 40.0 33.64 45.29 58.47 69.99 31.16 28.37 25.16 14.60 6.69
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Table 4.6: The table for the test results of the moving triplet loss function methods

in the literature trained and tested in our framework on CUB200-2011 dataset with

various hyper-parameters (denoted as HP). (Part-2)

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Moving with ρ = 0.3

m = 0.01 32.68 45.31 58.47 71.57 30.57 27.68 24.72 15.06 6.52

m = 0.1 34.91 47.54 60.90 73.77 32.68 29.87 27.04 16.60 7.56

m = 0.2 50.52 63.98 74.97 84.66 48.93 46.19 42.41 27.21 16.32

m = 0.3 49.66 62.76 74.54 84.59 47.99 45.19 42.20 26.93 16.06

m = 2.5 34.77 46.32 59.13 70.88 32.53 30.02 26.66 16.36 7.98

m = 5.0 33.88 45.86 58.17 70.36 31.36 28.27 25.06 14.31 6.45

m = 10.0 33.44 45.90 57.87 69.21 31.09 28.05 24.73 14.23 6.46

m = 20.0 33.61 45.80 58.36 70.32 31.21 28.37 25.13 14.43 6.56

m = 40.0 34.49 46.62 59.33 71.84 31.9 29.07 25.78 14.89 6.83

Moving with ρ = 0.4

m = 0.01 31.26 44.02 57.38 71.51 29.33 26.81 24.00 14.37 6.03

m = 0.1 33.12 45.88 58.91 71.89 30.82 27.82 25.07 15.18 6.59

m = 0.2 45.09 59.27 72.27 83.58 43.10 40.19 36.50 22.39 11.74

m = 0.3 50.51 63.05 74.92 84.52 48.13 45.46 42.40 27.09 16.20

m = 2.5 35.13 47.10 59.15 71.22 33.04 30.05 26.77 16.23 7.88

m = 5.0 34.01 45.93 58.46 70.63 31.50 28.25 25.26 14.50 6.58

m = 10.0 34.64 46.42 58.22 70.58 31.56 28.40 25.35 14.41 6.57

m = 20.0 34.23 46.34 58.78 70.63 31.83 28.88 25.35 14.53 6.65

m = 40.0 34.33 45.93 58.59 70.48 31.52 28.47 25.19 14.46 6.55
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Table 4.7: The table for the test results of the moving triplet loss function methods

in the literature trained and tested in our framework on CUB200-2011 dataset with

various hyper-parameters (denoted as HP). (Part-3)

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Moving with ρ = 0.5

m = 0.01 30.91 43.35 56.74 70.12 28.60 25.97 23.15 13.89 5.77

m = 0.1 32.12 44.43 58.25 71.03 29.51 27.17 24.16 14.62 6.18

m = 0.2 34.81 47.50 60.50 73.63 32.26 29.45 26.60 16.14 7.23

m = 0.3 50.88 64.06 75.56 84.62 48.78 45.83 42.41 27.13 16.22

m = 2.5 35.42 47.23 59.37 70.21 33.39 30.38 26.81 16.27 7.96

m = 5.0 33.17 45.26 57.83 69.65 30.76 27.80 24.53 14.09 6.30

m = 10.0 33.98 45.81 58.74 70.00 31.48 28.37 25.04 14.30 6.49

m = 20.0 33.68 45.80 57.56 69.77 31.39 28.17 24.90 14.01 6.36

m = 40.0 34.37 46.37 58.95 71.08 31.74 28.71 25.43 14.48 6.61

The results of the moving loss are also consistent with the paper [3]. The gap between

the score values may be due to the difference in the architecture of the bone network

used in the experiments.

4.2.3 Experiments for the Proposed Loss Function

Several experiments were designed for analyzing the distance sensitive entangled

triplet loss function in (3.18). It has 5 hyper-parameters, which can be optimized

with grid search, random search, or Bayesian optimization. However, in order to

find the logical reasons, we rigorously focus on a different parameter in each ex-

periment. At that point, we assume a presumption that the dependence between the

hyper-parameters is weak due to the evidence of the empirical observations. First, we

try to eliminate the effect of the margins m1, m2, and the hinge function. Hence, the

experiments in Table 4.8 are performed by selecting m1 = 40 and m2 = 1000, which

leads to a case that the in-loss-miner does not filter out any triplet.
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Table 4.8: The table for the test results of our distance sensitive triplet loss function

methods without the effect of the hinge function (which means we selected m1 = 40

and m2 = 1000) trained and tested in our framework on CUB200-2011 dataset with

various hyper-parameters (denoted as HP).

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Distance Sensitive Loss with (s, r) = (1,−1) and without hinge function

ρ = 0.5 33.90 45.68 58.32 70.46 31.17 28.34 25.18 14.60 6.62

ρ = 1.0 34.94 47.05 59.12 70.73 32.29 29.11 25.70 14.86 6.88

ρ = 12/7 34.37 46.35 58.96 71.13 31.91 28.86 25.53 14.85 6.82

ρ = 2.0 34.01 45.93 58.37 70.80 31.67 28.64 25.47 14.77 6.77

Distance Sensitive Loss with (s, r) = (0, 0) and without hinge function

ρ = 0.5 34.71 46.32 58.91 70.61 31.64 28.59 25.06 14.72 6.67

ρ = 1.0 33.79 45.95 58.37 70.44 31.39 28.31 24.91 14.41 6.50

ρ = 12/7 34.40 46.20 58.44 70.90 31.83 28.63 25.36 14.56 6.60

ρ = 2.0 34.22 46.30 58.86 70.80 31.77 28.75 25.38 14.67 6.64

Distance Sensitive Loss with (s, r) = (1, 0) and without hinge function

ρ = 0.5 34.59 46.69 59.98 71.64 32.22 29.57 26.35 15.47 7.27

ρ = 1.0 34.89 46.67 59.82 71.61 32.33 29.57 26.36 15.45 7.29

ρ = 12/7 35.62 47.82 60.47 71.76 33.26 30.30 26.68 15.73 7.43

ρ = 2.0 35.21 47.18 59.88 71.81 32.67 29.59 26.36 15.62 7.33

Distance Sensitive Loss with (s, r) = (0, 2) and without hinge function

ρ = 0.5 36.85 48.80 60.96 72.77 34.44 31.66 28.17 16.73 8.17

ρ = 1.0 37.37 49.11 61.28 73.68 34.86 31.77 28.66 17.07 8.38

ρ = 12/7 36.85 49.07 61.29 73.08 34.41 31.62 28.20 16.89 8.31

ρ = 2.0 36.24 48.68 61.04 72.20 34.28 31.33 27.76 16.69 8.22

Distance Sensitive Loss with (s, r) = (1, 2) and without hinge function

ρ = 0.5 37.59 49.39 61.87 72.86 35.29 32.30 29.03 18.02 9.21

ρ = 1.0 38.34 49.63 62.85 73.84 35.55 32.71 29.61 18.10 9.24

ρ = 12/7 37.46 49.21 61.93 72.70 35.07 32.43 29.13 17.91 9.13

ρ = 2.0 38.07 49.59 62.20 73.13 35.52 32.74 29.17 18.06 9.26
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Table 4.8 shows that the variation in the ρ value does not effect the scores significantly,

in contrast to our expectations. It may be due to the fact that there are just a few

experiments with changed ρ values, which is because of the limited time budget. On

the other hand, the r value is quite a crucial parameter for optimizing the model, and

the s value also improves the model when its value increases.

In addition, the scores of the location-aware loss can be seen in Table 4.9. The perfor-

mance of this loss cannot reach the performance of the distance sensitive loss func-

tion. However, it gives comparable results with the state-of-the-art losses in the case

without the in-loss-miner.

Table 4.9: The table for the test results of the location-aware triplet loss function

methods in the literature trained and tested in our framework on CUB200-2011 dataset

with various hyper-parameters (denoted as HP).

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Location Aware

m = 0.01 35.25 47.11 59.40 70.95 32.76 29.31 26.22 15.36 7.24

m = 0.1 34.39 46.46 58.85 70.48 32.10 29.05 25.81 15.11 7.10

m = 0.2 34.91 46.76 59.15 70.66 32.38 29.46 25.96 15.13 7.13

m = 0.3 34.10 46.08 58.37 70.88 31.68 28.92 25.75 15.01 6.98

m = 2.5 34.77 46.56 59.37 70.51 31.87 29.11 25.49 14.67 6.75

m = 40.0 34.44 46.10 58.74 70.49 31.85 29.06 25.82 14.85 6.90

It proves the hypothesis that the effectiveness of the metric learning methods strongly

depends on how to use the distance between the instances in a tuplet (or batch) in the

gradients of the loss function, which is the core hypothesis of this study.

Moreover, the results of distance sensitive loss with various values of m1 and m2 are

shown in Tables 4.10, 4.11 and 4.12. The experiments are performed with the set

of variables are given in Section 3.2.3. At that point, fixing (s, r) = (1, 2) while

performing the experiments added the effect of the hinge function. First, we set the

m1 = −2.5 which is proposed with the logical reasons mentioned in Section 3.2. The

conducted experiments can be seen in Table 4.10.
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Table 4.10: The table for the test results of our distance sensitive triplet loss function

methods with hinge loss and m1 = −2.5, trained and tested in our framework on

CUB200-2011 dataset with various hyper-parameters (denoted as HP).

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Distance with (s, r, ρ) = (1, 2, 0.5)

m2 = 5.0 49.12 62.47 75.27 84.71 47.17 44.39 40.64 25.17 14.51

m2 = 10.0 49.78 63.35 75.30 84.82 48.05 45.09 41.13 25.44 14.73

Distance with (s, r, ρ) = (1, 2, 1.0)

m2 = 5.0 49.76 63.30 74.95 84.39 47.84 44.71 40.67 25.17 14.49

m2 = 10.0 49.76 63.28 75.51 84.42 47.48 44.59 40.65 25.11 14.42

Distance with (s, r, ρ) = (1, 2, 12/7)

m2 = 5.0 49.43 62.54 74.83 84.76 47.21 44.53 40.71 25.13 14.43

m2 = 10.0 49.58 63.45 75.49 84.77 47.80 44.77 40.98 25.47 14.73

Distance with (s, r, ρ) = (1, 2, 2.0)

m2 = 5.0 48.77 62.69 74.46 84.82 46.89 44.11 40.69 25.24 14.52

m2 = 10.0 49.70 62.95 74.95 84.32 47.38 44.57 40.80 25.20 14.48
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Table 4.11: The table for the test results of our distance sensitive triplet loss func-

tion methods with hinge loss, trained and tested in our framework on CUB200-2011

dataset with various hyper-parameters (denoted as HP). (Part-1)

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Distance with (s, r, ρ,m1) = (1, 2, 1,−2.0)

m2 = 5.0 44.33 57.70 69.58 79.37 42.97 40.30 37.25 24.36 13.91

m2 = 10.0 44.13 57.17 68.99 79.74 42.66 40.15 37.33 24.42 13.98

m2 = 15.0 45.00 57.16 69.41 79.56 42.83 40.18 37.28 24.35 13.97

Distance with (s, r, ρ,m1) = (1, 2, 1,−2.25)

m2 = 5.0 50.41 62.93 74.97 84.44 48.36 45.62 42.41 26.83 16.04

m2 = 10.0 50.25 62.95 74.95 84.01 48.26 45.74 42.21 27.02 16.24

m2 = 15.0 50.14 63.20 74.61 84.00 48.42 45.56 42.41 26.98 16.20

Distance with (s, r, ρ,m1) = (1, 2, 1,−2.5)

m2 = 5.0 49.78 62.78 74.48 85.13 47.31 44.57 41.14 25.41 14.65

m2 = 10.0 49.38 62.88 74.54 84.12 47.19 44.35 40.44 25.08 14.40

m2 = 15.0 50.03 63.89 75.89 84.96 47.96 45.12 41.01 25.24 14.54

Distance with (s, r, ρ,m1) = (1, 2, 1,−3.0)

m2 = 5.0 28.53 40.40 54.44 67.25 26.36 24.08 21.29 12.61 5.01

m2 = 10.0 28.41 40.21 52.73 66.17 26.22 23.45 20.75 12.39 4.87

m2 = 15.0 27.72 39.18 52.82 66.26 25.41 23.35 20.62 12.24 4.79

Distance with (s, r, ρ,m1) = (1, 2, 1,−3.5)

m2 = 5.0 26.42 38.12 51.55 65.43 24.49 22.15 19.67 11.42 4.34

m2 = 10.0 26.10 38.12 51.74 65.09 24.41 22.31 19.59 11.35 4.29

m2 = 15.0 26.45 38.66 51.47 64.84 24.56 22.19 19.41 11.23 4.25

74



Table 4.12: The table for the test results of our distance sensitive triplet loss func-

tion methods with hinge loss, trained and tested in our framework on CUB200-2011

dataset with various hyper-parameters (denoted as HP). (Part-2)

HP R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Distance with (s, r, ρ,m1) = (1, 2, 1,−2.30)

m2 = 5.0 50.56 63.50 75.59 85.20 48.73 46.40 43.01 27.22 16.41

m2 = 10.0 50.37 63.50 75.24 84.50 48.60 46.23 42.98 27.24 16.40

m2 = 15.0 50.84 64.01 75.74 84.66 49.21 46.48 43.19 27.17 16.42

Distance with (s, r, ρ,m1) = (1, 2, 1,−2.325)

m2 = 5.0 51.76 65.02 76.45 85.40 49.94 47.16 43.82 27.66 16.75

m2 = 10.0 51.08 64.16 76.15 85.30 49.25 46.53 43.32 27.13 16.34

m2 = 15.0 51.67 64.30 75.88 85.08 49.51 46.94 43.61 27.53 16.66

Distance with (s, r, ρ,m1) = (1, 2, 1,−2.35)

m2 = 5.0 51.37 63.69 75.79 85.20 49.00 46.74 43.31 27.19 16.34

m2 = 10.0 51.60 64.50 76.32 85.60 49.36 46.81 43.39 27.24 16.39

m2 = 15.0 51.42 64.79 76.55 85.55 49.70 47.16 43.53 27.27 16.43

Distance with (s, r, ρ,m1) = (1, 2, 1,−2.375)

m2 = 5.0 51.70 64.62 76.23 85.47 49.64 47.10 43.42 27.18 16.35

m2 = 10.0 51.86 64.38 76.20 85.84 49.59 47.11 43.53 27.19 16.34

m2 = 15.0 51.74 64.47 76.18 85.55 49.56 47.08 43.54 27.30 16.41

Distance with (s, r, ρ,m1) = (1, 2, 1,−2.40)

m2 = 5.0 51.50 64.96 76.25 85.80 49.59 46.78 43.30 26.97 16.09

m2 = 10.0 51.84 64.92 76.40 85.75 49.69 46.86 43.06 26.98 16.08

m2 = 15.0 51.50 65.16 76.74 85.65 49.86 47.05 43.17 26.98 16.13

4.3 Discussions on Experimental Results

In light of the experimental findings above, we test our hypotheses in two stages.

The first stage determines whether the directions and the magnitudes of the gradients

we designed to enhance the performance or not. Therefore, we aim to eliminate the

effect of in-loss-miners in all the losses in the literature and the proposed losses to
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compare. The experiments with m = 40 yield the desired scenario; hence, the results

of several methods with this configuration are discussed in Section 4.3.1. After this

first stage, the best models trained with several loss functions are compared with each

other and with the losses proposed in Chapter 3. The discussion about these scores

are in Section 4.3.2.

4.3.1 The Effects of the Losses without any Mining

The results from the methods in the literature are taken from the tables in Section

4.2.2. We tabulate the results with the hyper-parameter m = 40. However, some

loss functions have more than one hyper-parameters, such as moving loss. Then, we

use the best score among the test results in Tables 4.5, 4.6, and 4.7. Another issue to

mention is that a new m parameter should be added in the ratio and angular losses in

order to eliminate the advantage gained from the hinge function. Hence, the scores in

Table 4.4 are utilized for the comparison of the gradients without the in-loss-miner.

As it can be observed from Table 4.13, the distance sensitive loss with (s, r) = (1, 2)

significantly outperforms all the losses proposed in the literature. These observations

prove our hypothesis mentioned in Section 3.1.
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Table 4.13: The table for the test results of all the triplet loss functions without hinge

loss trained and tested in our framework on CUB200-2011 dataset.

Methods R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Losses in the Literature with m = 40

Original 35.79 47.89 60.40 71.84 33.50 30.78 27.27 16.32 7.98

Ranking 34.69 46.62 58.91 70.80 32.20 28.77 25.12 14.69 6.70

FaceNet 34.54 46.29 59.20 71.44 32.10 28.92 25.73 14.84 6.84

Ratio 39.21 51.00 62.53 73.94 37.16 34.32 31.15 19.68 10.52

N-Pairs 36.56 48.36 60.99 72.65 34.21 31.46 28.02 16.83 8.34

Angular 34.67 47.35 59.42 71.37 32.59 29.35 26.07 15.12 7.03

Moving 34.49 46.62 59.33 71.84 31.9 29.07 25.78 14.89 6.83

Proposed Losses without Hinge Function

Distance 38.34 49.63 62.85 73.84 35.55 32.71 29.61 18.10 9.24

Location 34.44 46.10 58.74 70.49 31.85 29.06 25.82 14.85 6.90

Entangle 34.94 47.05 59.12 70.73 32.29 29.11 25.70 14.86 6.88

Modified 34.71 46.32 58.91 70.61 31.64 28.59 25.06 14.72 6.67

The first notable finding is about the relation between ranking loss and the distance

sensitive loss with (s, r, ρ) = (1,−1, 1). These two cases create similar gradients,

which leads to similar performance scores. It causes by the fact that when the in-loss-

miner’s effect is ignored (all the valid triplets are utilized in a batch) for calculation of

the loss function. In other words, these experiments do not show the effect of utilizing

the link between fp ↔ fn in the partial derivative of the loss function. In other

words, if a valid triplet (x, y, z) exists with as anchor, positive and negative instances,

respectively, then there is also a valid triplet used in the same batch update that is

selected as (y, x, z). Therefore, the ranking and proposed loss with the certain hyper-

parameters generate gradients whose directions are the same, and the magnitude of

the ranking loss is equal to half of the magnitude of the proposed loss. This difference

resembles the change in the learning rate. Indeed, one can conclude that the learning

rate does not affect the final performance score of the model.

All the experiments discussed in this subsection suffer from the noisy gradients of the
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near instances of the triplets mentioned in [42]. Indeed, the distance sensitive loss

function amplifies the noises from the hard-negative samples because of the terms

powered by r in (3.17). In spite of its disadvantages, the performance of the distance

sensitive loss surpasses the others with a significant gap. This performance might

be due to the fact that most of the negatives are located at the distant position to the

anchor and positive instances, especially in the later epochs.

In summary, all of the score values are as good as the scores of the losses with the in-

loss-miner. When there is no mining, the gradients act on all the positive and negative

items wherever they are located in the embedding space, which is 128-dimensional

`2 norm space in our framework. Then, it creates fluctuation, which limits the per-

formance scores of the model. In addition, the normalization of the embeddings may

also enhance this effect because it maps all the embeddings into a hyper-sphere or

simply maps into a 127-dimensional space. These empirical observations may show

the limits that are governed by a theoretical upper-bound for the performance score

of a certain loss function. However, finding this limit is out of the scope of this thesis.

It is mentioned in Section 5.3 as a future direction of the research.

4.3.2 Comparing Best Results for the Methods

Table 4.14: The table for the best test results of all the triplet loss functions trained

and tested in our framework on CUB200-2011 dataset.

Methods R@1 R@2 R@4 R@8 P@2 P@4 P@8 P@R MAP@R

Best Scores for Losses in the Literature

Original 35.79 47.89 60.40 71.84 33.50 30.78 27.27 16.32 7.98

Ranking 52.80 65.61 77.04 85.96 50.51 47.61 43.86 27.73 16.65

FaceNet 50.73 64.23 74.76 84.42 48.81 45.65 42.41 27.30 16.36

Ratio 52.31 65.67 76.37 85.28 50.42 47.41 43.67 27.33 16.53

N-Pairs 36.56 48.36 60.99 72.65 34.21 31.46 28.02 16.83 8.34

Angular 46.56 60.65 73.43 83.34 44.71 41.62 37.96 23.19 12.70

Moving 50.52 63.98 74.97 84.66 48.93 46.19 42.41 27.21 16.32

Best Scores for Proposed Losses without Hinge Function

Distance 51.86 64.38 76.20 85.84 49.59 47.11 43.53 27.19 16.34
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As it can be observed from Table 4.14, the ranking loss reaches the best performance

score among the examined losses from the literature. Although the methods in this

table are trained and tested in their networks designed for favoring themselves (as

mentioned in [26]), the results in this table are obtained by our framework. Similar

to the study in [26], all the valid triplets generated from the batch samples are uti-

lized in the training phase. Therefore, the scores may be different from the values

announced in the original papers of the method. Nevertheless, since all of the effects

other than loss function are fixed, such as network architecture, the results can be

fairly comparable with the other scores in the table.

Table 4.14 shows that the distance sensitive loss function has some promising results,

which may surpass the scores of the ranking loss with some certain hyper-parameters.

However, the scores of the ranking loss outperform all the others with a roughly 2%

gap in Recall@1, except the ratio loss. It can be concluded that the proposed loss

functions are quite fragile to the variation of the hyper-parameters. Hence, the entire

feasible region for this hyper-parameter space should be searched to find the best set.
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CHAPTER 5

CONCLUSIONS

5.1 Summary

In this study, the limitations in deep metric learning are investigated deeply by focus-

ing on the gradients of the loss functions as a starting point. An analogy between the

electrostatic forces acting on the point charged particles in free space and these gradi-

ents of the loss function is established for analyzing the cases in the main problem of

deep metric learning. From the classical mechanics’ point of view, all the particles in

any physical system (does not matter if it is a charged body or a sub-atomic particle)

move with the forces corresponding to the principle of minimum action. Roughly

speaking, the vector of the force acting on a certain particle is able to be calculated

by finding the gradients of the potential energy with respect to its position. The other

domain, deep metric learning, is quite similar if the concepts in physics named as

the location of a particle, force, potential energy, and movement are converted to the

embedding vector, partial gradients of the loss function, loss value, and update, re-

spectively. Hence, one may assume that designing the loss function by considering

this analogy can enhance the performance of a model that is trained with the mini-

mum number of updates, which prevents the model from stacking in a local minimum

or a saddle point.

To elaborate, the embedding space in deep metric learning is transferred to a medium

as if its permittivity constant is negative for zero frequency. In this medium, the

electrostatic forces hold the charged particles with the same sign together, whereas

they push the charged particles with the reverse sign. We notice it resembles the
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main objective of the deep metric learning and build a hypothesis that a new loss

designed with the help of this analogy may improve the performance. Hence, three

novel loss functions are proposed: Entangle, location-aware, and distance sensitive

triplet losses.

5.2 Conclusions

The experiments on three datasets are performed in order to test our hypothesis and

show the effectiveness of the methods in the literature and one of the proposed losses.

The models are trained and tested by the framework that is implemented by us to

fully control the experiments in a fair manner. All the methods are examined within

the fixed environment in order to compare the effect of the loss function solely. The

results do not reject our aforementioned hypothesis (the alternative hypothesis) if all

the losses are utilized without in-loss-miner. Moreover, the proposed losses with

the in-loss-miner reach competitive results with the certain hyper-parameters. This

promising study shows that the new loss functions are fragile against the variation of

the hyper-parameters.

In a nutshell, our conclusions are 2-fold. The first one is as follows: In-loss-miner

is quite effective on the performance scores. It means selecting the instances in the

tuplets in a smart way prevents the fluctuations of the location of the samples in

the embedding space due to the unnecessary updates. Hence, it may enhance the

performance of the system.

The second conclusion indicates quite a close relationship between online mining

techniques and the loss function designs. Indeed, any online mining method can be

assembled inside the loss function with a rigorous design of the partial gradients.

However, there is no way of modifying the loss function for adding an offline miner.

Therefore, designing the offline miner for constructing the batches is still an open

question.
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5.3 Future Work

Further studies may be about designing an offline miner (which corresponds to the

batch sampler in the PyTorch platform) in this framework. Moreover, the effects

of these mining methods on these loss functions could be analyzed. Additionally,

the fully entangled form, such as the study [31], can be designed in order to improve

the effectiveness of the proposed loss functions. These loss functions might be able to

utilize the information in all of the batches and find a smarter update for optimization.

Finally, the hyper-parameters for in-loss-miner may be investigated to reach the state-

of-the-art performance scores on the benchmark datasets.
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APPENDIX A

CLASS STRUCTURE OF OUR FRAMEWORK

We implement our framework with the help of PyTorch library [27] on Python. The

generic classes of the framework and their interactions are shown in Figure A.1 as a

class diagram.

A.1 General Structure

Figure A.1: The figure about the relationship between the class objects in the imple-

mented framework.

We coded the framework with the help of the inheritance property of the object-

oriented programming paradigm. To illustrate, the generic dataset class inherits CUB200-

2011 class, and the generic score class inherits the Recall@K, and Precision@R score
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classes. Thus, we show the public methods and variables of these classes in order to

provide a comprehensive explanation of our framework.

A.2 Public Functions and Properties of the Classes

A.2.1 Dataset Class

Figure A.2: The public methods and variables of dataset class objects.

This class is inherited from the original Dataset class in PyTorch. The functions

and the public variables in this class is shown in Figure A.2 The standard functions

__getitem__() and __len__() are used for the data-loader object in the train-

ing and testing phases. The split() function is implemented so that the splitter

splits dataset into 3 parts: Train, validation and test sets. The public variables are

labels and label_names. By using these variables, we test the dataset objects

if they are implemented correctly or not. Moreover, the labels variable is utilized

in the sampler objects to set all the batch of training.

A.2.2 Transform Class

This class returns the list of transformation methods in the compose() function of

PyTorch. By using this class, we can set the data augmentation methods utilized in

the experiment we performed.
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A.2.3 Splitter Class

Figure A.3: The public methods and variables of splitter class objects.

This class is exploited for separated the dataset objects into the train, validation, and

test sets. There are mainly two types of splitter: The first one is for the close-set. It

separates the test and train+validation sets at first. After that, the train and validation

sets are split. The classes in these sets are not disjoint, whereas the samples in them

are. On the other hand, the second one is called the open set splitter. It imitates

the zero-shot scenario. Therefore, both the classes and samples are disjoint in these

sets. Note that when the open set splitter is used, the classes of train and validation

set are also disjoint. The public functions and variables are shown in Figure A.3.

The purpose of usage of this class is to get the dataset objects by using the variables

train_set, validation_set, and test_set. Also, the different folds of the

cross-validation can be obtained by changing fold_no.

A.2.4 Sampler Class

Figure A.4: The public methods and variables of sampler class objects.
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A sampler object is exploited for adjusting the batch during the training phase. There

are mainly two types of samplers: Online and offline. The online sampler does not

consider the distances of the samples in the embedding space; therefore, there is

no need for extraction of embeddings. It only considers the labels variable of

the dataset object. After constructing the batch, the tuplets are selecting with the

help of the miner object. On the other hand, the offline sampler takes the distance

matrix of the embeddings in the account. Thus, the extraction of the embeddings is

needed before constructing the batches. Clearly, the online sampler is faster than the

offline one. The public methods and the properties of the sampler object are shown

in Figure A.4. The set() function is used before the training phase, while the

mapper() function is utilized in the training method in order to select the tuplets

from the embeddings extracted by the network.

A.2.5 Miner Class

Figure A.5: The public methods and variables of miner class objects.

The usage of a miner object is to select the most desirable tuplets from the batch

embeddings. It may also use for mining all the samples in the dataset; however,

this calculation needs extremely high resources and computational time. The generic

methods and the variables are shown in the Figure A.5.
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A.2.6 Network Class

Figure A.6: The public methods and variables of network class objects.

The network class is inherited from the nn.Module class of PyTorch. There are

some more properties named name, output_dim, input_dim, and batch_size

as shown in Figure A.6. The forward method extracts the batch of the embeddings of

the images while calculating the gradients of backpropagation.

A.2.7 Loss Class

Figure A.7: The public methods and variables of loss class objects.

The loss class is inherited from the nn.Module class of PyTorch as well, like the

network class; hence, the forward() function is used for calculating the loss value

of the current batch in the training phase. Also, the update() function is utilized

for changing the hyper-parameter of the loss function. The class diagram is shown in

Figure A.7
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A.2.8 Trainer Class

Figure A.8: The public methods and variables of trainer class objects.

The trainer objects are created from a glue class that trains the network using cer-

tain objects. First, the objects needed for the experiment are created. These objects

are set by using the set() function in Figure A.8. After that, the hyper-parameters

are determined; otherwise, the trainer object trains the network with the default val-

ues. Finally, the run() method is called for training the network with the train set.

The data in the validation set is also given to this object in order to determine if the

experiment should be stopped or not.

A.2.9 Log Writer Class

The logger is frequently utilized objects during training in order to debug the codes.

We implement a standard logger with the help of the logging, tqdm and tensorboard

libraries. It is used as an input for almost all of the classes. This logger class is also

able to show the results on the plots in tensorboard format.

96



A.2.10 Score Class

Figure A.9: The public methods and variables of score class objects.

The score classes are implemented as seen in Figure A.9. There is only one public

method called calculate(). This function takes the features as the dictionary

format and returns the score values from them.

A.2.11 Tester Class

Figure A.10: The public methods and variables of tester class objects.

Like the trainer class, the tester class is another glue class that is used for calculating

the validation or test scores of the given network. Any tester object has fixed score

objects created in itself; therefore, the score object is not taken by a tester object.

However, the phase name, epoch number, and the logger objects should be given as

seen in Figure A.10.
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A.2.12 Experiment Class

The experiment class is used for performing the experiments with different hyper-

parameters. There are several children class of it. The first one is named as SingleExperiment.

It is run with the specified hyper-parameters given before the experiment. Secondly,

the CrossValidation uses the specified hyper-parameters, again; but it trains the

network for all the folds of the validation sets and calculates the test score of the best

network.

Moreover, hyper-parameter optimization is also needed for comparing the methods in

the literature in a fair manner. Therefore, we implement the GridSearch, RandomSearch,

BayesianSearch child classes for this purpose as mentioned in Section 1.4.
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APPENDIX B

DISCUSSION ON THE FIRST MARGIN AND THE HINGE

FUNCTION FOR R = 0 CASE

When r = 0, the boundary condition becomes as Equation (B.1),

‖fa − fn‖2 + ‖fp − fn‖2 = 2 · rmajor, (B.1)

which is the equation of a hyper-ellipsoid, rmajor is the semi-major axis (that is de-

pend on the values of s, m & ρ), and fa & fp are the foci of this hyper-ellipsoid.

The distance between the center and one of the foci (named as linear eccentric-

ity) of this manifold is ‖fa − fp‖2/2. The semi-minor axis are equal to rminor =√
r2
major − ‖fa − fp‖2

2/4.

In this section, starting from Equation (3.20), we aim to find the optimal m1 that

produces a hyper-ellipsoid that is large enough. Obviously, the next question arises

about the size limits of such a hyper-ellipsoid. At this point, we consider a filtered

region of the ranking loss function. This region can be drawn as follows: It is a

hyper-sphere whose center is at the location of anchor, fa. A positive (which is at fp)

instance is at the surface of this manifold (hyper-sphere) if the margin is neglected.

It means the radius of this hyper-sphere holds r = ‖fa − fp‖2 if mranking = 0. If

the margin mranking is also taken into consideration, the radius of this hyper-sphere

is changed from r to r +mranking.

Let us consider the case in which our ellipsoid contains the two hyper-spheres; the

center of one hyper-sphere is at the location of the anchor, and that of the other is

at the location of the positive instance. To find this ellipsoid whose hyper-volume is

the smallest, we should solve a convex optimization problem. Basically, we reduce

the dimension to 2 and find the ellipse that has a minimum area (its area is equal
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to π · rmajor · rminor), and that contains the two circles in Equation (B.2) when the

distance between the anchor and the positive instance is equal to d.

min
a,b

π ·
√
a · b such that

(x− d

2
)2 + y2 = (d+mranking)

2 and

x2

a
+
y2

b
= 1 have only

two intersection points at the same x = x0.

(B.2)

For solving this problem, first, we find the x-axis of the intersection points. It becomes

a quadratic equation shown in Equation (B.3) with the discriminant for x, which

should be 0 because the roots should be x0 and not be distinct.

(1− b

a
) · x2 − d · x+ b− (d+mranking)

2 +
d2

4
= 0

∆ = d2 − 4 · (1− b

a
) · (b− (d+mranking)

2 +
d2

4
) = 0.

(B.3)

Then, we can find a relationship between a and b shown in Equation (B.4), by defining

the two functions of b; η1(·), and η2(·).

â = b̂ · (1 +
d2/4

b̂− (d+mranking)2
) =

η1(b̂)

η2(b̂)
. (B.4)

Note that the optimization problem is convex; hence, we can minimize the
√
a · b by

using the condition η1(b) · ∂η2(b)
∂b

= η2(b) · ∂η1(b)
∂b

. The solution of this equality is shown

in Equation (B.5).

b̂ = (d+mranking)
2 +

d ·
√
d2 + 32 · (d+mranking)2 − d2

16
. (B.5)

We cannot adjust b without changing the a since the equation b2 + d2

4
= a2 always

holds. Hence, the semi-major axis should be satisfied the conditions r2
major ≥ â

4
and

r2
major ≥ b̂

4
+ d2

16
. Moreover, from Equation (B.1) and (3.20), we can determine the
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Figure B.1: The 2-dimensional representation of the loss function values when the

anchor is located in (0.0, 0.0) and the positive is at (1.0, 0.0). The plot (A) shows the

circle due to the first object, which is selected as the anchor of the triplet. Similarly,

plot (B) represents the region when the object at (1.0, 0.0) is selected as the anchor

point. The plot (C), on the other hand, shows the loss function values for the our loss

function when r = 0, s = 0, d = 1, ρ = 12/7,m1 = 4.6381. Finally, the plot (D)

shows the overlapping area of the previous three plots.

mproposed value as in Equation (B.6), where the d = ‖fa − fp‖2 value can be taken as

the mean value of intra-class distance.

rmajor =
1− r

2 · (s+ 1) · ρ
· ds+1 +

1− r
2 · ρ

·mproposed. (B.6)

To give an example, when the case is r = 0, s = 0, d = 1, ρ = 12/7,mranking = 0.1,

the inequality m1 ≥ 4.6381 should be satisfied for non-trivial training process. The 2

dimensional plot of the filtered regions for ellipse and the circles are shown in Figure

B.1 when m1 = 4.6381.
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