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ABSTRACT

AN EVOLUTIONARY ALGORITHM TO THE TWO-ECHELON
LOCATION ROUTING PROBLEMS WITH HARD TIME WINDOWS

MÜSLİM, MELİSSA
M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Haldun Süral

Co-Supervisor: Prof. Dr. Cem İyigün

February 2021, 82 pages

Rapid growth in freight distribution networks due to increasing demand created the

necessity for effective and efficient methods for freight vehicle movements. Moti-

vated by the effective distribution network design problems, a two-echelon location

routing problem with hard time windows (2E-LRPTW) is studied. This problem com-

bines two NP-Hard problems, including strategic and tactical decisions: the facility

location problem (FLP) and the vehicle routing problem (VRP). In this study, the first

echelon consists of city distribution centers (CDC) and satellites; the second echelon

is constituted of interaction between satellites and customers. The network is con-

nected through two types of vehicle fleets with different characteristics. Each type

of vehicle leaves the corresponding facility during working hours and returns to it.

Imposing capacity restrictions to both facilities and vehicles and adding hard time

window constraints to customers, the problem complexity increases. Consequently,

an evolutionary algorithm (EA) inspired by a genetic algorithm is proposed to solve

large-size instances with good quality within a reasonable time. The EA decides

which facilities to open, allocations, and resulting routes originated from each facil-
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ity at both echelons. Computational experiments and results indicate the proposed

EA capable of finding optimal solutions and improving the best-known solutions for

some instances.

Keywords: Location-routing problem with time windows, Vehicle routing, Genetic

algorithm, Evolutionary algorithm
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ÖZ

ZOR ZAMAN PENCERELERİNE SAHİP İKİ KADEMELİ YER
SEÇİMİ–ROTALAMA PROBLEMLERİNE EVRİMSEL BİR ALGORİTMA

MÜSLİM, MELİSSA
Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Haldun Süral

Ortak Tez Yöneticisi: Prof. Dr. Cem İyigün

Şubat 2021 , 82 sayfa

Artan talep nedeniyle yük dağıtım ağlarında yaşanan hızlı büyüme, yük aracı hare-

ketleri için etkin ve verimli yöntemlerin gerekliliğini ortaya çıkartmıştır. Dağıtım ağı

etkili tasarım problemlerinden hareketle, zaman pencereli iki kademeli yer seçimi-

rotalama problemi incelenmiştir. Bu problem, stratejik ve taktik kararlar dahil ol-

mak üzere iki NP-Zor problemi birleştirir: tesis konum problemi ve araç yönlendirme

problemi. Bu çalışmada, birinci kademe şehir dağıtım merkezleri ve uydular; ikinci

kademe uydular ve müşteriler arasındaki etkileşimden oluşur. Ağ, farklı özelliklere

sahip iki araç filosu aracılığıyla birbirine bağlıdır. Her araç türü mesai saatleri içinde

ilgili tesisten ayrılır ve geri döner. Hem tesislere hem de araçlara kapasite kısıtlama-

ları getirerek ve müşterilere zor zaman aralığı ekleyerek problem karmaşıklığı artar.

Sonuç olarak, büyük boyutlu örnekleri makul bir süre içinde iyi kalitede çözmek için

genetik bir algoritmadan esinlenen evrimsel bir algoritma geliştirilmiştir. Algoritma,

her iki kademede hangi tesislerin açılacağına, atamalara ve her tesisten çıkan rotalara

karar verir. Yapılan deneyler ve elde edilen sonuçlar, bazı örnekler için en iyi çö-
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zümleri bulabilen ve en iyi bilinen çözümleri geliştirebilen bir algoritma yaratıldığını

işaret eder.

Anahtar Kelimeler: Zaman pencereleriyle yer seçimi-rotalama problemi, Araç rota-

lama, Genetik algoritma, Evrimsel algoritma
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

In today’s world, transportation enables economic activities and transactions essential

for human life, especially considering the increasing demand resulting from urban-

ization’s rapid pace (United Nations, 2012 in [39]). Transportation networks have a

complex structure since these networks bring different stakeholders at several deci-

sion levels. Although various stakeholders exist, the network’s leading players are

the producers, carriers, customers and government. Besides, while designing a chain,

various objectives and outputs should be considered at strategic and operational levels

for each player, which may be conflicting. Moreover, this structure, which requires

long-term investment, can be affected by political, economic, and social changes at

every level. Therefore, there is a need for systems that can quickly adapt to these

changes and tools that can assist and develop the decision-making stages. A general

perception for designing and planning a network in the freight transportation industry

to improve economic efficiency and service quality is required [10].

Later, the needs of the actors in the system and their conflicting objectives have cre-

ated adverse outcomes both economically and environmentally when there are no

coordination and collaboration [15]. City logistics concept emerged to reduce the

adverse effects of seeking individual interests. Here, the aim is to plan distribution

effectively and efficiently, but it is necessary to design it by minimizing the undesir-

able effects on safety, the environment, and congestion. Although the freight distri-

bution network allows companies to make profits, the negative effects, especially for

people living in urban areas increase. For instance, using large trucks to satisfy the
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increasing demand or extending the fleet size causes congestion and environmental

problems. Besides, the time interval of distribution is as important as the type and

number of vehicles used. In this context, governments may force companies to make

such plans by introducing specific regulations to distribute the freight accordingly.

Consequently, city logistics aims to ensure that the increasing freight movement does

not lower the quality of life in urban areas by designing and operating activities [33].

Advancements in e-commerce lead replacement of traditional shopping behavior with

an online purchasing routine. Thus, convenience in online shopping increased the

daily freight amount to be managed. In the conventional system, products are de-

livered to stores in large quantities, but now the relationship between the customer

and the retailer increased the product’s movement. A direct consumer-producer rela-

tionship may seem like a development, but considering the excessive purchasing urge

becomes a challenge. As one can realize from growth in demand, a deficiency in the

literature studies is not realistic to seek a solution assuming that physical facilities are

not capacitated. Since the facility’s size is a factor that increases operational and con-

struction costs, modeling these networks under the assumption of without capacity is

missing the essential constraints in the decision-making process.

Adding to these, online shopping and the adoption of just-in-time delivery from the

manufacturers have put customer expectations first, and as a result, service quality

has become a crucial performance indicator. Now a customer has more power in the

system by organizing how and when to receive the product. Consequently, service

reliability becomes a key indicator, and customers demanding to get service within

the appropriate time interval causes the emergence of the hard time window struc-

ture. According to Crainic [10], a company should invest in points that will increase

customer satisfaction and meet their service expectations while maximizing profits.

Considering the ability to adapt to continuous growth in demand and satisfy the ex-

pectations, we grasped the necessity of designing an adequate transportation chain.

In line with this objective, logistics models exist to plan strategic, tactical, and op-

erational levels in the literature. These models can have a single or multi-echelon

structure. The city logistics concept underlines the necessity of using multi-layered

logistic models to reduce congestion in urban areas. Unlike conventional approaches,
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these models build large facilities far from the city, open dynamic facilities to city

centers, and distribute freight to customers with environmentally-friendly vehicles.

By considering all challenges and developments in the freight distribution networks,

we propose a two-echelon LRP with hard time windows (2E-LRPTW) that combine

strategic and tactical decisions to open facilities, assign customers, and create routes

simultaneously. 2E-LRPTW is an NP-Hard problem that consists of FLP and VRP

with hard time windows (VRPTW). Our model’s primary facilities called City Dis-

tribution Centers (CDC), secondary facilities satellites, and customers are connected

through a two-layered system. Freight comes to the CDC, then transportation to the

satellites is performed by primary vehicles. After the consolidation processes are

completed in satellites, the freight is transported to the customers with secondary ve-

hicles. Each secondary vehicle leaves the satellite travels customers having hard time

windows and returns to the satellite within working hours.

The complexity of the 2E-LRP increases by adding the facility capacities and impos-

ing hard time window constraints to encounter customer needs. A few exact solu-

tions approaches for 2E-LRP exists because of the computational complexity, and the

problem sizes those exact procedures can solve within a reasonable time frame are

small. Additionally, metaheuristic approaches exist to solve the problem, but none is

a population-based algorithm. In order to fill the existing gap in the literature, we pro-

pose an EA with problem-specific operators that solves relatively large problem sets

in a reasonable time with effective results. This proposed EA aims to generate off-

springs by recombining the individuals selected randomly from the initial population

and ensure evolution throughout generations.

1.2 Contributions and Novelties

This thesis aims to create an algorithm that produces solutions of good quality within

a reasonable time motivated by the problems mentioned above. Moreover, a 2E-

LRPTW is modeled and explained by emphasizing the constraints and complexities,

considering it is a newly introduced problem. In this sense, our contributions can be

listed as follows.

3



• This research is the second study with a distribution network model with facility

and vehicle capacities at both echelons and customer hard time windows.

• To our knowledge, this thesis is the first study that proposing a population-

based evolutionary algorithm inspired by the genetic algorithm for 2E-LRPTW,

which gives solutions with high quality within a reasonable time limit for the

large-size instances.

• Our operators are constructed to prevent infeasible solutions and solve prob-

lems simultaneously rather than decomposing problems at each echelon as the

literature studies practiced.

A thesis carried out in line with these motivations and goals is structured as follows.

In Chapter 2 we demonstrate the existing 2E-LRP studies with their structural prop-

erties and create a link between related problems such as 2E-VRP and LRP literature.

The literature gap is emphasized by discussing the strengths and weaknesses of the

models with constructed solution approaches. In Chapter 3 the constituted mathemat-

ical model is introduced with the necessary assumptions, sets, and decision variables.

Additionally, by explaining the constraints, the necessity of metaheuristic approaches

with difficulties are highlighted. The proposed solution methodology for a model

with one CDC at the first echelon is explained in detail with evolutionary operators,

charts, and pseudo-codes in Chapter 4. Later in Chapter 5, we reveal the necessary

modifications to make the proposed algorithm suitable for solving two-echelon struc-

tures that decide both CDC and satellite locations with resulting routes. Chapter 6

presents benchmark instances and analysis and the EA results for both modified and

original sets. The last chapter contains a summary of the completed study and the

motivation behind it. The strengths and improvable aspects of the results obtained

from the algorithm and the future research areas have been discussed.
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CHAPTER 2

LITERATURE REVIEW

With the rapid growth in consumption of goods and services, economic and environ-

mental concerns arose and, designing a proper distribution network gained impor-

tance. For these reasons, while designing logistic supply chains, environmental, hu-

manitarian, and commercial activities are taken into account, and mathematical mod-

els are constructed accordingly. Our model 2E-LRPTW has directly intertwined these

activities such as changing the objective, the purpose of the model can be changed,

but the structure stays the same. Therefore, considering that all the areas and models

are varied, we have considered the structural similarity of the literature models while

reviewing.

Distribution network models are mainly classified as single or multi-echelon systems

throughout the literature review. Single echelon systems consist of the facility lo-

cation problem (FLP), vehicle routing problem (VRP), and location routing problem

(LRP). First one, FLP deals with a strategic problem to determine where candidate fa-

cilities should be located to minimize the customers’ total cost and assignment to the

opened facilities. Secondly, VRPs work with the currently open facilities and deter-

mine customers’ assignments then the resulting routes rather than constructing direct

trips between facilities and customers as in FLPs. Lastly, LRPs combines strategic

and tactical decisions to open facilities, assign customers, and create routes simultane-

ously. If we take these models one step further, we get multi-echelon versions, namely

2E-FLP, 2E-VRP, and 2E-LRP. These two-echelon systems are obtained by adding an

intermediate level facility called satellites between the CDCs and customers. Now,

the distribution in the first echelon is performed by huge trucks, while in the second

echelon, environment-friendly smaller vehicles are used. Adding capacity restric-
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tions to the facilities and time windows to customers will also increase the model’s

diversity and complexity. In this study, the studied 2E-LRPTW model is classified as

a multi-echelon system consisting of two LRPs at both echelons. According to one

other definition, 2E-LRP combines a 2E-FLP and a 2E-VRP in terms of the decisions

and constraints.

All the mentioned distribution network models have variations in data definitions,

timings, capacity definitions, and data uncertainty. Our model is constructed con-

sidering the complete literature of 2E-LRPs and presented the limitations and the

structures of the existing models. We propose an evolutionary algorithm (EA) to

solve 2E-LRPTW; therefore, we narrowed down the reviews of VRPs and LRPs stud-

ies having the (meta)heuristic solution approaches. Before going into the details of

the 2E-LRP, the reader will see the (meta)heuristic algorithm studies in the VRP and

LRP literature in Sections 2.1 and 2.2, respectively and then the complete literature

of 2E-LRP (2.2.1).

2.1 Vehicle Routing Problem

This section focuses mainly on (meta)heuristic studies for models having multi-depot

and time windows in VRPs, excluding exact solution methods. Cordeua et al. [8]

constructed a tabu search (TS) algorithm to solve multi-depot VRP with time win-

dows (MDVRPTW). Having simple neighborhood definitions, customers exchanged

between one route to another, and penalty costs are added to the objective because

of infeasible solutions allowed throughout the algorithm. A hybrid genetic algorithm

(GA) for the VRPTW is studied by Berger and Barkaoui [4]. They tried to solve two

GAs simultaneously having different objectives, namely minimizing total distance

and constraint violation. Polacek et al. [29] proposed a variable neighborhood search

(VNS) for MDVRPTW. In this study, the algorithm enhanced with exchange opera-

tors and a 3-opt algorithm as a local search operator. Then Ombuki and Berger [27]

constructed a GA restricting capacity and route-length on individuals. They adapted

the best cost route crossover (BCRC) as in their former research with some improve-

ments. As mutation operators, inter and intra route improvement algorithms are used,

and offsprings always replaced parents. Then, Karakatic et al. [19] demonstrated the
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genetic algorithm-based solutions to solve MDVRP. The work of the authors men-

tioned the limitations and advantages of solution representations of studies in the

literature. Moreover, this study compared the algorithms according to their selection,

crossover, and mutation operators and tested them. They pointed out that ordered

crossover, tournament selection should be used in future GA studies. The reader may

refer to the study to gain an understanding of GAs for MDVRP.

Hemmelmayr et al. [16] proposed an adaptive large neighborhood search heuristic

(ALNS) for 2E-VRP and LRP. They allowed vehicle capacity, the number of available

vehicles, and satellite capacity violations and managed to control them using penalty

costs for such solutions to widen the search space. Solutions are first destroyed, then

repaired, and the final solutions proceed into the local search phase. Wang et al.

[37] introduced a 2E-VRP model having stochastic demands and proposed a genetic-

based algorithm to solve it. Rather than using the objective function as a fitness

score, a penalty coefficient and expected total excess quantity of vehicles are added

to the objective function since authors allow infeasible solutions to relax the capacity

constraints.

2.2 Location Routing Problem

FLPs are the models for strategic level decisions because they require considerable

investments to locate a physical facility, so they are considered a long-term plan. On

the contrary, VRPs are considered (mid) short-term plans and built at a tactical level.

According to the literature studies, the distribution networks built up not conceiving

these two problems together probably have a high total cost. Therefore, the need

for LRPs arises, which integrates strategic and tactical decision levels by combining

facility locating and routing decisions simultaneously.

Derbel et al. [14] proposed a GA, which includes their former iterative local search

(ILS) as a local search procedure in the algorithm. In the algorithm, chromosomes

consist of two vectors. One of them is an allocation vector, and the other one keeps

the routes of depots. Apart from the classical one-point crossover, mutation operators

aim to improve solutions by changing allocation and routes. They achieved to obtain
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improved results with a higher run time, but their vehicles are uncapacitated. Jar-

boui et al. [18] solve LRP with capacitated depots but uncapacitated vehicles using

variable neighborhood search (VNS). Routes are represented with an array starting

and ending with open depots. Neighborhood structures aiming to diversify route and

location decisions. Lopes et al. [21] studied a GA with a variable chromosome length

representing vehicle routes starting with the assigned facility. New offsprings replace

the two worst individuals obtained by route copy crossover. Solutions are improved

with local search procedures by changing facility configurations and routes. For more

solution procedures in this area, please refer to surveys of [32] and [34].

2.2.1 The Two-Echelon Location-Routing Problem

As mentioned earlier, 2E-LRP requires a decision of facility opening, allocation, and

routing at both echelons simultaneously. Considering the complexity of the problem,

some of the studies focused on models having 1 CDC at first echelon having direct

trips to open satellites and only location decision for satellites at the intermediate level

and routing decisions at the second echelon although having models of 2E-LRP. The

reader may realize that these models do not have a classical 2E-LRP structure, but

these are the classical models’ variants having fewer decision variables.

Jacobsen and Madsen [17] are the ones who first considered the multiple echelons in

a location routing problem. They proposed three heuristic procedures for a newspa-

per distribution system in Denmark. Computational results demonstrated that these

heuristics generate total costs above the current system. Following Madsen [22], tried

to improve the heuristics and archived to have significant improvements in the current

system. However, in both research pieces, only one real instance is tested, and results

are only comparable with the current system.

Boccia et al. [5] proposed TS, which is introduced as an "iterative-nested approach"

for a two-echelon capacitated LRP (2E-CLRP). Consequently, the problem decom-

posed into two separate LRPs, each consisting of a capacitated FLP (CFLP) and

a MDVRP. Although some of the solutions cannot outperform the decomposition

method, overall TS can be considered as an effective algorithm. After that, Crainic et

al. [9] proposed three mixed-integer programming models for 2E-LRP and compared
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each model’s flexibility.

Nguyen et al. [25] introduced three constructive greedy randomized heuristics as

well as a hybrid metaheuristic called greedy randomized adaptive search procedure

(GRASP) reinforced with the learning process (LP) and path relinking (PR). Each

construction heuristic first constitutes a second-echelon solution then constructs first

level routes accordingly. The developed GRASP is composed of one diversification

and one intensification phase at each iteration. There existed no publicly available

2E-LRP instances up to that time; two new sets generated, containing only 1 CDC

in the first echelon, so there is no location decision for the CDCs exist. Results indi-

cated that GRASP-LP outperforms constructive heuristics in both instances. Nguyen

et al. [24] proposed a multi-start iterated local search additionally having a tabu list

and PR. Moreover, in this research, they introduced new instances constructed by

Sterle having multiple candidate CDCs at the first echelon. Findings revealed that the

algorithms in the new study outperform their former approach.

Contardo et al. [7] research consist of two major parts, proposing an exact and meta-

heuristic method by decomposing 2E-CLRP into two separate CLRPs. A new two-

index vehicle flow formulation, which is strengthened by new valid inequalities, is

solved using Branch and Cut (BC) method. They are the ones who first attempted

to solve this class of problems exactly. Secondly, an ALNS procedure is created for

2E-CLRP, modifying the previous work of [16] for 2E-VRP and CLRP. Numerical

results demonstrate that ALNS outperforms both [25] and [24] on each of the sets.

However, only the best solutions were reported regardless of the parameter setting.

Schewengener et al. [35] proposed a VNS algorithm modifying their previous work

for a location-routing problem. The developed VNS algorithm ensures diversification

by shaking with seven neighborhood structures also, intensification by applying 2-

opt* and 3-opt algorithms. Computational experiments revealed that although VNS

can both outperform [25] and [24]. On the contrary, work of [7] outperforms VNS on

the sets having multi-platforms.

Winkenbach et al. [39] introduced a two-stage iterative optimization model, which

first solves the facility location subproblem and then the VRP and compares it with

single-stage optimization 2E-CLRP. Rather than obtaining routing cost from the ob-
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jective, they constructed a closed-form approximation for optimal routing cost that

considers service time constraint and other economic measures.

Then, Breunig et al. [6] presented a hybrid metaheuristic consisting of local search

with destroy and repair operators for a 2E-LRP. The metaheuristic indeed developed

for a 2E-VRP. The procedure first destroys the partial solutions of second-level routes,

then the second level solution is repaired and improved using a local search algorithm,

and finally, the first level solution is regenerated. The robustness of the heuristic

is tested using 2E-LRP having instances with 1 CDC. Computational experiments

pointed out that their algorithm at least competitive as the VNS [35] method.

Wang et al. [38] demonstrated an approach combining customer clustering and mod-

ification of Non-dominated Sorting Genetic Algorithm- II [13] to solve a 2E-LRP

having soft time windows. The model is constructed to minimize costs and maximize

customer satisfaction, which is evaluated by vehicle punctuality. The proposed ap-

proach first estimates demand using exponential smoothing and segments customers

using the k-means algorithm. This step followed by a distribution centers’ location

problem, and finally, M-NSGA-II generates routes on both echelons. Since none of

the literature is suitable for comparison, the authors compared the algorithm’s capa-

bility with Multi-Objective Genetic Algorithm (MOGA) and Multi-Objective Particle

Swarm Optimization (MOPSO), and mostly the developed algorithm performs better

than the other two.

Different than previous researchers, Pichka et al. [28] introduced three mixed-integer

linear programs (MILPs) and a two-stage heuristic for a two-echelon open LRP (2E-

OLRP). Both echelons’ vehicle routes do not need to end at a satellite or a depot in

this context. The hybrid heuristic is capable of finding optimal solutions for small-

size and reasonable solutions for medium-sized instances. Nonetheless, [24] and [7]

models outperform the hybrid heuristic. Although each of the authors studied 2E-

LRP, the problem structure was not identical.

Amiri et al. [1] constructed a supply vessel planning model to a two-echelon fleet

composition mix periodic LRP having time windows for onshore bases and offshore

units. These time windows are only working hours. Using a Lagrangean decompo-

sition method, the number and type of vehicles, routes, schedules, and allocations
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are decided at each echelon. However, only the results of a case study having small

size instances are demonstrated. Darvish et al. [12] considered the flexibility in ser-

vice time of customers and distribution network design by constructing a two-echelon

network over a planning horizon. Each day, the supplier has to decide on open inter-

mediate facilities, allocations, and routing using the enhanced parallel exact method

(EPEM), a branch-and-bound method (BB). Another study comes from Mirhedaya-

tian et al. [23], which includes synchronization into the 2E-LRP because, in trans-

shipment points like satellites, there is limited storage and waiting times. In their

mathematical model, customers have time windows as well as secondary facilities.

Three stages as opening facilities, allocation, and routing are used to solve the prob-

lem. Measures like farness and closeness are introduced to narrow down the solution

space. The best-known solutions were obtained for 26 out of 112 instances, and no

feasible solution was obtained using the MILP formulation for large-sized instances.

Mohamed et al. [3] study designs a two-echelon distribution network (2E-DDP) un-

der uncertain and time-varying demand and opening costs. 2E-DDP formulated as

a multi-stage stochastic program, and the solution methodology relies on a benders

decomposition and sample average approximation methods (SAA).

The last study that we need to take into account is Farham’s [15] doctoral thesis. His

model is constructed as a classical 2E-LRP by adding capacity constraints at each

echelon, also defining hard time windows to customers in the network. Up to this

time, none of the studies considered opening, allocation, and routing decisions at both

echelons having hard time windows. The author developed a branch-and-price (BP)

algorithm with enhanced column generation techniques, which take all three deci-

sions simultaneously. Considering the computational complexity, two math-heuristic

approaches developed, namely top-to-bottom and bottom-to-top. The top-to-bottom

approach is integrated with BP, while the bottom-to-top uses clustering algorithms.

Table 2.1 lists the solution methodologies with corresponding largest instances solved.

The problem size in the Table 2.1 refers to the instance size in the order of the num-

ber of candidate CDC, candidate satellite, and customers. The reported values are

the largest instance sizes that can be sold using the corresponding solution algorithm.

Then, a comprehensive summary of the discussed 2E-LRP models regarding their

structure is demonstrated in Table 2.2.
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Table 2.1: Solution methods for the two-echelon location routing problems

Reference Solution Algorithm Problem Size

Jacobsen Madsen [17] Problem specific heuristics 1-42-4510

Madsen [22] Problem specific heuristics 1-42-4510

Boccia et al. [5] TS 5-20-200

Nguyen et al. [25] GRASP with learning process (LP) and path relinking (PR) 1-10-200

Nguyen et al. [24] Multi-start ILS with PR and tabu list 5-20-200

Contardo et al. [7] Branch-and-cut 1-10-50, 4-10-25

Contardo et al. [7] ALNS 5-20-200

Schwengerer et al. [35] VNS 5-20-200

Breunig et al. [6] LNS-2E 1-10-200

Wang et al. [38] M-NSGA-II 1-16-100

Pichka et al. [28] Hybrid heuristic 1-10-200

Amiri et al. [1] A lagrangean decomposition method 2-3-4

Darvish et al. [12] Pure branch-and-bound, EPEM 1-3-60

Mirhedayatian et al. [23] Decomposition based heuristic 1-5-70

Mohamed et al. [3] Benders decomposition, SAA 4-8-100

Farham [15] BP, bottom-to-top, top-to-bottom 3-5-100, 6-4-100

According to the Table 2.1 we can say that the largest instances solved using and exact

method belongs to [7]; however, the size is still considerably small for the real-life

cases, especially for the number of customers.

2E-LRP is known to be an NP-Hard problem that leads to exact solution methods only

capable of giving results for the small to medium size instances. Having a model with

two echelons increases the problem complexity. Because trying to take the opening,

allocation, and routing decisions for two echelons simultaneously is hard to deal with.

Therefore, researchers mainly focused on solving 2E-LRPs using heuristic solution

approaches for large-size instances.

In Table 2.2, decisions at each echelon with facility capacity properties and whether

a customer has a time window or not is demonstrated. Considering the Table 2.2, we

can see that some of the studies have CDCs or satellites without capacities. Even for

the capacitated models, since there is 1 CDC at the first echelon, the capacity is set to

customers’ total demand. As one can imagine, this is a strong assumption because fa-

cilities are physical constructions that have boundaries. In addition to the capacities,

time windows can be considered one of the crucial components in today’s distribution
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Table 2.2: Model structures of the reviewed papers

Reference

Time Window Second Echelon First Echelon

Soft Hard Routing
Capacity

(Satellite)

Location

(Satellite)
Routing

Capacity

(CDC)

Location

(CDC)

Jacobsen Madsen [17] X X X X

Madsen [22] X X X X

Boccia et al. [5] X X X X X X

Nguyen et al. [25] X X X X

Nguyen et al. [24] X X X X X X

Contardo et al. [7] X X X X X X

Schwengerer et al. [35] X X X X X X

Breunig et al. [6] X X X

Wang et al. [38] X X X X X X

Pichka et al. [28] X X X X

Amiri et al. [1] X X X X X X

Darvish et al. [12] X X X

Mirhedayatian et al. [23] X X X X

Farham [15] X X X X X X

systems. Although there exist dozens of state-of-art articles on 2E-LRP, the problem

of 2E-LRPTW is only mentioned in three studies. These studies cannot be compared

with each other because of the other properties of their models. For instance, soft

time window models are easier to deal with than hard time window models. Because,

outside the time interval for the soft time window case, the solution is not infeasible

such that by giving a penalty to solutions situation can be handled. However, it is

impossible to provide service before and after the time interval in models with hard

time windows. In that case, constraints are violated; thus, the solution is considered

infeasible. Although [23] has hard time windows in the proposed model, there is no

location decision in the first echelon, which reduces the problem complexity com-

pared to the model of [15].

From the tables, we can conclude that there exists a gap for the models having

hard time windows with facility capacities. Moreover, there needs to be a solution

methodology that gives solutions with high quality within a reasonable time limit for

the large-size instances. Although there exist heuristic procedures in the literature,

none of these methods have benefited from the performance of population-based ap-

proaches for 2E-LRPTW. For all the reasons pointed out so far, we are proposing a

model with hard time windows and an EA inspired by a GA for solving 2E-LRPTW.
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CHAPTER 3

MATHEMATICAL MODEL

In this chapter, we provided the general setting of the 2E-LRPTW with the detailed

description of the proposed formulation. Using a mathematical model generally is not

the priority in algorithms consisting of heuristic or metaheuristic solution methods;

introducing a model for the problem we have is crucial to understanding the solution

method’s challenges and constraints. Since all constraints shown in the mathematical

model must be checked at every stage of the solution algorithm, we have to develop

a solution methodology that overcomes the complexity of creating feasible solutions.

In our logistics framework CDCs, satellites, and customers are connected through a

two-echelon system using two types of vehicle fleets having different characteristics.

Two- echelon systems are introduced to solve pollution, congestion, and logistics

problems, especially in large cities [15]. In these systems, customers’ deliveries go

through a two-step process rather than a direct one-step process, and there is no direct

access from a CDC to a customer. Freight first comes to the CDC, a primary facility;

after the consolidation processes are completed, it is transported to the satellites with

first echelon vehicles. Every freight that reaches a satellite is then transported to

the customers with second-echelon vehicles. Each vehicle leaves the satellite during

working hours, travels customers on its route with hard-time windows, and returns to

the corresponding satellite. An illustration of the system can be seen in Figure 3.1.

The provided mathematical model for the 2E-LRPTW is derived from the formula-

tions proposed by Farham [15]. In 2E-LRPTW, the complete transportation network

is assumed to be comprised of three sets of nodes. The network is linked with di-

rectional arcs among CDC nodes i ∈ I and satellite nodes j ∈ J , and customer

locations k ∈ K. Transportation between the same type of facilities and two-way
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flows among CDCs and customers are not permitted.

The complete node-set is divided into two sets to represent each echelon separately.

The first set comprises candidate CDC and satellite locations m ∈ M where M =

I ∪ J , and the second one consists of satellite and customer nodes n ∈ N where

N = J ∪K. Also, first echelon arcs represented by E ′ while E ′′ demonstrates second

echelon arcs.

Figure 3.1: Two-echelon location routing model representation

Each customer k has a demand Dk, distinct time windows [Ak, Bk] and a non-

negative service time which supplied from satellite j. In the models having customers

with hard time windows, it is assumed that if the vehicle reaches the customers earlier

than Ak orders are accepted, but the vehicle must wait until the customer’s ready time

is reached. However, orders are strictly rejected if the vehicle reaches the customers

later than Bk, resulting in infeasibility in the system.

Primary and secondary facilities have an opening fixed cost Fm and capacity Qm.

Locating a primary facility is a long-term decision since large structures’ construc-

tion requires huge investments and has no replacement flexibility. On the other hand,

satellites are remote locations, like parking lots, in cities where no inventory oper-

ations are possible. Also, each satellite j is available during working hours [0, Bj]

while no time window is defined for the CDCs.
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The two types of homogeneous fleet of vehicles sustain transportation between the

locations on both echelons. CDCs are favored to be constructed in the outer skirt of

the urban areas due to requiring broad grounds. So, we can benefit from huge trucks

called primary vehicles to serve satellites. Since it is challenging to use huge vehicles

in city centers, small secondary vehicles serve customers in the second echelon. Each

primary vehicle has a fixed usage cost F ′ and capacity Q′ while each secondary vehi-

cle has a fixed usage cost F ′′ and capacity Q′′. Fixed costs are maintenance costs that

must be paid to keep the vehicle ready for use and emerge for each route. We define

time Tmn by including service time at location m and the time required to travel from

m to n which costs Cmn units where (m,n) ∈ E ′ ∪ E ′′. Lastly as a parameter, we

have Bmn is a constant equal to the max{Bm + Tmn − An, 0}.

Table 3.1: Mathematical model parameters

Notation Description

I Set candidate CDC nodes

J Set of candidate satellite nodes

K Set of customer nodes

M Set of first echelon nodes, m ∈ I ∪ J
N Set of second echelon nodes, n ∈ J ∪ K
E ′,E ′′ Set of first and second echelon arcs

Fm Fixed cost of opening facility m ∈M
Qm Capacity of m ∈M
F ′,F ′′ Fixed usage cost of primary and secondary vehicles

Q′,Q′′ Capacities of first and second echelon vehicles

Dk Demand of customer k ∈ K
[An, Bn] Time window of node n ∈ N
Cmn Travelling cost of edge (m,n) ∈ E ′ ∪ E ′′

Tmn Travelling time between of edge (m,n) ∈ E ′ ∪ E ′′ including the

setup/service time at node m
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3.1 Decision Variables

The decision variables required to construct the mathematical model should also be

considered the decisions we have to make during each step of the proposed solution

method. In order to take facility opening decisions, zm be the binary decision variable

indicating that facilitym is opened or not. The binary decision variable rjk represents

the allocations in the second echelon by indicating if customer k is assigned to satel-

lite j or not. The variable xjk takes value 1 if a secondary vehicle travels on arc

(j, k) ∈ E ′′, 0 otherwise.

In the second echelon, a customer can only be served by one vehicle that originated

its route from a single satellite. Nonetheless, in the first echelon, multi-sourcing is

allowed implying that a satellite can be served more than one vehicle and multiple

CDCs. Therefore, a vehicle index for primary vehicles v ∈ V is introduced to keep

track of each primary vehicle’s flows.

Table 3.2: Decision variables

Notation Description

zm Facility m ∈M is opened or not

rjk Whether customer k ∈ K is assigned to satellite j ∈ J or not

xjk Whether a secondary vehicle is traveled on arc (j, k) ∈ E ′′ or not

yvmn Whether a primary vehicle v ∈ V is traveled on arc (m,n) ∈ E ′ or not

wv
ij The weight of flow sent from CDC i ∈ I to satellite j ∈ J on vehicle v ∈ V

qvj Load on vehicle v ∈ V upon arriving at satellite j ∈ J
qk Load on secondary vehicle upon arriving at customer k ∈ K
tn The arrival time to node n ∈ N

Let decision variable yvmn indicates whether a primary vehicle v traverses on arc

(m,n) ∈ E ′. To be able to calculate the flow from CDC i to satellite j on primary ve-

hicle v, variable wv
ij is defined. Let a non-negative decision variable qvj demonstrates

the load on the vehicle v upon arriving at satellite j while the load on the vehicle upon

arriving at customer k is controlled by qk. Lastly, a non-negative variable tn indicates

the arrival time to node n ∈ N in the second echelon.
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3.2 The Two-Echelon Location-Routing Problem with Time Windows

The mathematical formulation for a two-echelon distribution network model, which

we wish to reflect on real-life problems, is created under some assumptions. In the

2E-LRPTW model, it is assumed that the model’s static behavior is homogeneous

throughout the planning horizon. One of the essential features of the model is that

customers have hard time windows. In other words, it is not possible to provide

service to the customer outside the specified intervals, and it is not possible to obtain

feasible solutions by adding penalty costs to the objective in case of a violation, as in

problems with soft time windows. If service is not provided to the customer within the

specified time window, that solution is infeasible. While creating the mathematical

formulation of 2E-LRPTW, the following assumptions are also considered:

1. In the formulation, there is a single commodity, and the flow of that commodity

starts and ends at corresponding facilities.

2. Both CDCs and satellites are capacitated, and it is not possible to violate the

capacities.

3. The customer demands cannot be split in the second echelon; however, multiple

vehicles can serve from multiple CDCs to satellites.

4. The loading/unloading duration of vehicles at facilities are not included.

5. The number of vehicles is not restricted in both echelons. Also, secondary

vehicles’ capacity is lower than the primary vehicles’ capacity since primary

vehicles generally serve the outskirts of the urban zones.

6. The cost of opening primary facilities is the strategic decisions requiring long-

term investment, but the routing decisions are taken on the tactical level. In the

objective function, we combine both long-term and short-term costs to obtain

solutions giving minimum costs. Because studies demonstrated that strategic

decisions influence tactical and operational levels that indicate a facility’s loca-

tion affects routings and transportation costs [9]. Therefore, we are focusing on

the dependency between location and routing decisions simultaneously.
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Under the mentioned assumptions and decision variables, the 2E-LRPTW is formu-

lated as the mixed-integer linear programming (MIP).

minimize
∑
m∈M

Fmzm +
∑
v∈V

∑
i∈I

∑
j∈J

F ′yvij +
∑
j∈J

∑
k∈K

F ′′xjk

+
∑
v∈V

∑
(m,n)∈E ′

Cmny
v
mn +

∑
(m,n)∈E ′′

Cmnxmn

(3.1)

subject to
∑
j∈J

rjk = 1 ∀k ∈ K (3.2)

∑
n∈N

xnk = 1 ∀k ∈ K (3.3)

∑
m∈N

xnm −
∑
m∈N

xmn = 0 ∀n ∈ N (3.4)

xjk ≤ rjk ∀j ∈ J , k ∈ K (3.5)

rjk + xkl ≤ 1 + rjl ∀j ∈ J , k, l ∈ K (3.6)

qk +Dk − ql ≤ Q′′ (1− xkl) ∀k, l ∈ K (3.7)

Dk ≤ qk ≤ Q′′ ∀k ∈ K (3.8)∑
k∈K

Dkrjk ≤
∑
v∈V

∑
i∈I

wv
ij ∀j ∈ J (3.9)

∑
v∈V

∑
i∈I

wv
ij ≤ Qjzj ∀j ∈ J (3.10)

Tjk − tk ≤ Bjk (1− xjk) ∀j ∈ J , k ∈ K (3.11)

tk + Tkn − tn ≤ Bkn (1− xkn) ∀k ∈ K, n ∈ N (3.12)

An ≤ tn ≤ Bn ∀n ∈ N (3.13)∑
i∈I

∑
j∈J

yvij ≤ 1 ∀v ∈ V (3.14)

∑
v∈V

∑
j∈J

wv
ij ≤ Qizi ∀i ∈ I (3.15)

∑
n∈M

yvmn −
∑
n∈M

yvnm = 0 ∀m ∈M, v ∈ V (3.16)

∑
i∈I

wv
ij ≤ qvj ≤ Q′ ∀j ∈ J , v ∈ V (3.17)

qvj +
∑
i∈I

wv
ij − qvl ≤ Q′ (1− yvjl) ∀v ∈ V , j, l ∈ J (3.18)

0 ≤ wv
ij ≤ Q′ ∀i ∈ I, j ∈ J , v ∈ V (3.19)

zm ∈ {0, 1} ∀m ∈M (3.20)
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xnm ∈ {0, 1} ∀(n,m) ∈ ε′′ (3.21)

rjk ∈ {0, 1} ∀j ∈ J , k ∈ K (3.22)

yvij ∈ {0, 1} ∀i ∈ I, j ∈ J , v ∈ V (3.23)

The objective function (3.1) consists of three main components: total facility open-

ing costs, vehicle usage costs, and routing costs in both echelons. Vehicle usage cost

arises for each route, and the routing cost indicates the total distance traversed. Con-

straint (3.2) imposes that each customer can only be assigned to a single satellite and

(3.3) does not allow split deliveries in the second echelon, ensuring that the freight

is supplied to a customer by precisely one vehicle. Constraint (3.4) balances the in-

coming and outgoing flow to each second echelon node. According to constraints

(3.5) and (3.6) an arc (j, k) can be traversed if a customer k is assigned to satellite

j. Miller-Tucker-Zemlin constraint (3.7) is introduced to eliminate subtours and con-

trol the load of a secondary vehicle on its route. Constraint (3.8) forces secondary

vehicle load to be greater than customer demands and at most equals to its capacity

upon arriving at the customer. While (3.9) controls the flow coming into a satellite

by ensuring the quantity should be at least the total customer demand it serves, con-

straint (3.10) makes sure that the flow cannot exceed an available satellite’s capacity.

Constraints (3.11) to (3.13) are hard time window constraints imposing that arrival

time to each customer should be within pre-determined time limits.

Constraints (3.14)- (3.19) are responsible for maintaining feasibility in the first ech-

elon. Constraint (3.14) ensures that each primary vehicle can be used at most once.

Constraint (3.15) provides that the outgoing flow from an open CDC to an available

satellite can be at most equals to CDC capacity. By (3.16), flow balance on the first

echelon nodes is met. Constraint (3.17) prevents primary vehicle capacity violations

and makes sure that flow on primary vehicles should be non-negative. Constraint

(3.18) eliminates sub-tours as well as providing feasible loads on primary vehicles.

Constraint (3.19) enables that the amount carried in the first echelon does not exceed

the primary vehicle’s capacity and is non-negative. Finally, (3.20) to (3.23) declare

the domains of the decision variables.

This mathematical model is constructed as a three-index formulation since routing

variables are controlled using three-indexed decision variables. This formulation is
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miscellaneous but more complicated compared to the mathematical models having

one or two-index. Realize that the 2E-LRPTW is NP-Hard and reduces to a two-

echelon FLP when there is a direct link between CDCs and customers. If the facility

locations are given, the problem is transformed into a two-echelon VRPTW [9]. Ad-

ditionally, the hard time window added complexity to the problem compared to the

models with soft time windows. In models having a soft time window, solutions are

not considered infeasible if service is not performed between customer time intervals.

The violation is only reflected as a cost component in the objective, while in a hard

time window setting, the solution is infeasible when the constraints are not satisfied.

The complexity leads to exact methods to solve only small-sized instances. Meta-

heuristic approaches can solve large size instances providing good solutions but, they

are not different from the exact approaches when sustaining feasibility. Because

the reader may realize that to construct a feasible solution, all constraints should

be checked during each construction and evolution phase throughout the algorithm.

To better understand adopting a solution procedure to a mathematical model with ca-

pacities and hard time windows, the following summary will be helpful. Note that

our model decomposed into three stages, namely locating facilities, allocation, and

routing phases.

1. When the number and locations of the facilities are determined, customers’

allocations should be done checking the following: the facility capacity, cus-

tomer’s latest time window, and distance between the customer and the latest

time window of the facility.

2. After the allocation process is completed, it is necessary to check the vehicle

capacity, the time window feasibility to create routes for each satellite, and

ensure that all customers are visited once.

It is difficult for a metaheuristic approach to produce many different solutions while

checking so many constraints at each stage. The solution diversity of the algorithm is

limited with each constraint checked. Beasley [2] reported that even when the exist-

ing solution methods perform well, improvements can be achieved by hybridizing the

GA. That is why, in this study, we are hybridizing the GA with well-known construc-

tion and improvement heuristics to obtain an EA that combines both exploration and
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exploitation. To manage the complexity, we first proposed a solution framework to

solve problems with given CDC locations by making them parameters and reducing

two types of facility location decisions to one. Then we are extending the proposed

algorithm by also deciding the locations for CDCs along with allocation and routing

problems simultaneously without decomposing the decisions at each echelon.
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CHAPTER 4

SOLUTION APPROACH FOR LRP WITH HARD TIME WINDOW

PROBLEMS

The solution framework we propose can solve the 2E-LRPTW problem. In cases

where open CDC locations are known, the problem is reduced to a single echelon,

implying a location decision for only satellites, but allocation and routing decisions

exist for both echelons. To keep narration comprehensible in Chapter 4, we describe

our algorithm to solve single echelon structures. In the next chapter, the necessary

modifications to simultaneously solve the two-echelon structures having location, al-

location, and routing decisions are described in detail.

In this study, the proposed evolutionary algorithm (EA) follows GA’s basic principles,

which were first introduced by Holland (Holland 1975 in [2]). GA is a population-

based metaheuristic which mimics the genetic processes of individuals. GA is also

classified as a stochastic search algorithm since the algorithm’s structure highly de-

pends on the randomization and probabilistic parameters. In the basic GA, the pop-

ulation of individuals competes with each other in each generation to survive, and as

Charles Darwin indicated that the fittest ones could survive to bring more offsprings.

To represent the real nature, GA uses a population of individuals; each individual

represents a complete solution to the problem at hand. Each individual has a fit-

ness score, which indicates the desired performance of the solution. As first comes

to mind, the fitness score may be the objective function, but this is not always the

case. Considering the nature of the problem or the constructed algorithm, the fitness

function can be constructed to measure the required performance metric or combi-

nation [2]. Then fitted individuals can reproduce to create new offsprings that have

taken some biological information from each parent. In reproduction, the goal is to

25



pass on the right features to the next generation to evolve solutions.

Although there exist (meta) heuristic approaches that perform well in the literature

[6, 35] GA can be considered one of the most robust metaheuristic techniques that

can deal with large-sized instances within a reasonable time for even NP-Hard prob-

lems. According to [2], by hybridizing GA with other methods, improvements can be

achieved even where the existing solution methods perform well.

Considering the nature of the 2E-LRPTW into account, the constructed EA deals with

three problems in each operator: the facility opening problem, customer allocation,

and routing decisions. In this section, the evolutionary algorithm is used to find a

complete solution to the second echelon, given the optimal CDCs and considering

direct transportation among CDC-satellite pairs.

Initial solutions are generated both randomly and using well-known construction

heuristics to increase diversity and prevent slow-finishing. In these techniques, only

the priority of customers in the allocation phase is differing. However, the route con-

struction is done using the Push-Forward Insertion heuristic proposed by Solomon

[36] in each of them. Each generated individual consists of a complete solution, and

while calculating the fitness score, the corresponding first echelon cost is added. After

creating the initial population, a mating pool is constructed using a binary tournament

selection to select individuals participating in the reproduction phase. Individuals in

the mating pool can reproduce and generate two offsprings or be directly copied as

new offsprings for the next generation. Rather than using classical mutation opera-

tors, GA is hybridized with several local search techniques to exploit the solutions that

have been obtained after the reproduction phase. Before going into the next genera-

tion, all of the individuals sorted in ascending order of their fitness score, and the first

ω1 can construct the next generation. This elitist approach enables to keep population

size constant and expects to obtain good solutions from fitted individuals.

In this chapter proposed EA is designed to solve the second stage; therefore, the

optimal CDCs at the first echelon is considered as given in the preliminary studies.

At this stage, as location decisions, there is a decision to open and close satellites only.

However, in both echelons, allocation and routing problems exist. In the following

sub-sections, all the EA operators’ details and used heuristics are explained. The
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reader can follow the main steps of solution algorithm from Figure 4.1.

Start

Construct ω1 many individuals

to create the initial population.

Select ω3 individuals from pop-

ulation using binary tournament.

Reproduction

Apply allocation mutation

to newly created offsprings.

Apply route mutation to

newly created offsprings.

Termination

criteria satisfied?

Sort individuals in ascending order of

their fitness score and take the first ω1.

Return best

individual

yes

no

Figure 4.1: The main steps of the proposed evolutionary algorithm

4.1 Solution Representation

A solution to the problem includes many defining components: opened facilities at

both echelons, allocation information of customers and satellites, and constructed

routes of each satellite. However, in the classical GA approach, chromosomes are

enough to hold the necessary information, and a set of chromosomes create an indi-

vidual, which is also called a complete solution.

Remember from Chapter 2 that an LRP can be reduced to an MDVRP after deter-

mining which satellites to open if decisions are taken sequentially. Therefore, the
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related literature of MDVRP solved by GAs is informative about the approaches of

our study. The survey of Karakatic and Podgoreleck [19] demonstrated the variations

of genotype representations used in GA to solve the MDVRP. According to their

study, classical approaches in routing problems without time windows, some of the

studies tried to construct the individual with one chromosome filled with index num-

bers of the customers by including the facility indexes in an array [20, 26]. However,

this approach is debatable since it is not clear that it is solved the operator handling

problems throughout the algorithm. A straightforward approach is used in studies

rather than representing the solution using one array, using multiple arrays (chromo-

somes), representing a corresponding facility tour [4, 31]. The crossover operation is

a combination of routes, but this representation may visit some customers more than

once.

Considering all the related representations and their drawbacks, similar chromosome

representation is inspired by the literature, but the complete individual cannot be rep-

resented using a set of route arrays. Additional arrays are added to prevent infeasible

solutions. Because in our algorithm, infeasible solutions are not accepted at the end of

an operator. We aim to create feasible solutions throughout the EA since our problem

has hard time windows and capacity restrictions in each echelon.

4.1.1 Chromosome

Chromosomes represent only feasible routes. A feasible route consists of stops, indi-

cates no violation of time windows of facilities and customers, and vehicles’ capacity.

Chromosomes or namely routes indexed by r, and each route originated from a satel-

lite j denoted by jr.

1 7 11 20 12 8 9 1

1 10 13 17 18 1

3 23 21 24 3

3 14 16 19 15 3

Figure 4.2: Chromosome array
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The representation of a chromosome can be seen in Figure 4.2. Each chromosome

starts and ends with an open satellite j. Nodes between the satellites represent the

visited customers in the given route. For each route, the travel time, total waiting

time, and route cost is kept. Route cost is represented by cjr for each route r originated

from satellite j. Each of the routes can only be performed by one related vehicle, and

a customer can be precisely in one tour. Vehicle load and time window constraints

are always checked whenever a new route is constructed.

4.1.2 Individual

An individual represents a complete solution to the given problem, including all the

necessary information about the open facilities, assignments, and resulting routes.

One can say that an individual consists of a vector of chromosomes as well as the

following information.

1. Each individual has a facility array with the length of open CDC and candidate

satellites to demonstrate which facilities are open. Indexes start from 0 tom−1

and represent the corresponding facility, and 0/1 in the arrays indicates whether

the facility open or not. Index zero represents the open CDC.

1 1 0 1 0

0 1 2 3 4

Figure 4.3: Facility array

2. Each individual has an allocation array that holds customer assignments. Each

index demonstrates the corresponding customer starting from m to l, and each

value in the cell is satellites to which they are assigned. For instance, Figure

4.4 shows that customer 8 is assigned to satellite 3.

Satellite 1 3 3 1 1 3 1 3 1 3 3 3 1

Index 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 4.4: Allocation array
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4.2 Initial Solutions

One of the essential elements to start the EA algorithm is to create initial solutions

as large as the population size. These solutions may increase diversity on the way to

the best solution or result in hitting a solution far from the optimal solution. In the

literature, many techniques are followed to create initial solutions. The most common

of these are to create the whole population randomly or some portion randomly while

producing the remaining portion with heuristics that give good results and giving

them to the population as seed.

Start

Allocate customers using Random Order.

Construct routes using PFIH.

Improve routes using Modified 2-opt.

Allocate customers using Demand Order.

Construct routes using PFIH.

Improve routes using Modified 2-opt.

Stop

Figure 4.5: Initialization procedure

Due to the complexity of our problem, some solutions were randomly produced, while

the rest were created with well-known construction heuristics. In a complex problem,

results are generated to increase the variety, but seed solutions are added to sustain

evolution throughout EA. The goal is to increase diversity and prevent slow finishing,

which is a pervasive problem in EAs.

When generating a solution, keep in mind that there are three stages in this problem.
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The creation process consists of opening satellites, assigning customers to the opened

satellites considering time windows and facility capacities, and creating routes con-

sidering vehicle capacities and time windows. A hierarchical order is followed during

the solution generation, or we can say that we tried to solve the problem by decom-

posing it into three stages.The complete initial solution generation algorithm can be

followed by Figure 4.5.

4.2.1 Opening Satellites

The generation process always starts with the phase in which satellites are to be

opened. In both creation techniques, namely Create Random Order and Create De-

mand Order, satellites opened randomly. Using a heuristic method may end up

with a fixed satellite configuration, which is considered an undesired situation in a

population-based metaheuristic. For this reason, satellites are opened randomly to

represent a variety of satellite combinations in the solutions. The most crucial point

here is that if the correct satellites are not opened, allocations and routes will be far

from optimal. In other words, it is vital to generate solutions having open satellites in

the optimal solution to reach correct allocations.

While making location decisions, another issue that needs to be decided is how many

satellites should be opened to satisfy feasibility. As there are those in the literature

who simultaneously [5], [35] solved this problem, it is possible to decide on the num-

ber and then which satellites to open.

In this evolutionary algorithm’s initialization phase, the number of satellites to be

opened, Ns, is also decided randomly. Although the aim is to obtain minimum cost

by opening a minimum number of facilities on both echelons, the number can be

higher than the required for exploration purposes. To provide feasibility, we calcu-

lated a lower bound (LBs) to the number of satellites to satisfy the total customer

demand. LBs can be calculated by dividing the total customer demand by average

satellite capacity and rounding up the obtained value. So, the number of satellites to

be opened is a random number between the lower bound and the candidate satellites
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in the corresponding instance.

LBs =

⌈ ∑
kDk∑

m∈J Qm

|J |

⌉
(4.1)

LBs ≤ Ns ≤ |J | (4.2)

After obtaining the corresponding value, Ns many satellites opened randomly. The

second echelon problem is reduced to MDVRPTW, which indicates that we need to

deal with allocation and routing problems.

4.2.2 Allocation Phase

The two initial solution generation techniques differ from the allocation phases only.

One of the essential stages in the algorithm is how customers are assigned to facilities

because the primary source of diversity comes from the allocation phase. The allo-

cation phase aims to create different allocation combinations even for the solutions

having the same open satellites. Therefore, ω2 many solutions are generated using

Create Random Order while the remaining solutions generated by Create Demand

Order.

• Random Order: Customers are selected randomly and assigned to the near-

est satellite with sufficient available capacity and considering the distances be-

tween customers and the satellites to satisfy both parties’ time window con-

straints.

• Demand Order: This allocation method is inspired by [5] and [35]. The method

sorts customer demands in descending order, and starting from the customer

having the highest demand, assigns the customer to the nearest satellite, pre-

venting constraint violation. This method prioritizes customers with demands

to efficiently use satellite capacities.

The reader may refer to the Algorithms 1 and 2 for the details of the allocation tech-

niques. In order to be consistent while creating pseudo-codes, joint sets, parameters

and indexes are referenced in the same way. The definition of sets that will facilitate

tracking is as follows.
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Algorithm 1: Random Order
Result: Allocations of an individual

Calculate LBs and determine Ns randomly.

Shuffle customer orders.

for k ← 1 : ∀k ∈ φ1 to |K| do

while k /∈ θj do

for j ← 1 : ∀j ∈ τ to Ns do

Search for k the nearest open j having sufficient capacity.

Add customer k to the allocation set of θj .

if k /∈ θj and j = Ns and Ns ≤ |J | then

Ns ← Ns + 1

else

Initialize θj and Ns.

k ← 1

j ← 1

break

The set θj contains the customers which allocated the satellite j while set τ holds

random order of the candidate satellite locations. φ1 and φ2 represent the sets for the

customers’ random order and the customers according to their descending order of

demands, respectively.

Let LBs indicates the minimum number of satellites that needs to be open and Ns

represents the number of satellites opened randomly. Sizerj be the length of route r

originated from satellite j. rBest
1 introduce the minimum cost route r1 obtained so far

and rNew
1 indicates that route r1 is updated. CN1 is the routing cost of new r1 and

CBest represents the minimum total routing cost at hand. IndBest demonstrates the

individual having the minimum fitness score and IndOrig is the original individual we

start the algorithm initially.

In Random Order, starting from the first customer from the shuffled order, we search

the nearest open available satellite and then assign the customer to the corresponding

satellite. If none of the open satellites are feasible and there can be another close satel-
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lite to be open, open it and try to assign the customer. However, none of the satellites

are available for that particular customer, shuffle customer orders and initialize the

parameters and start from the beginning. The difference is in Demand Order, we start

from the customer having the highest demand for allocation and follow the demand

order rather than randomization. In this algorithm, the condition to start over is not

encountered since the capacities of the satellites are used efficiently.

Algorithm 2: Demand Order
Result: Allocations of an individual

Calculate LBs and determine Ns randomly.

for k ← 1 : ∀k ∈ φ2 to |K| do

while k /∈ θj do

for j ← 1 : ∀k ∈ τ to Ns do

Search for k the nearest open j having sufficient capacity.

Add customer k to the allocation set of θj .

if k /∈ θj and j = Ns and Ns ≤ |J | then

Ns ← Ns + 1

4.2.3 Routing Phase

In the last phase of the initial solution construction, there exists a routing phase. This

phase is applied after both allocation techniques. Our goal is to construct a set of

minimum-cost vehicle routes that start and ends at an originating facility, satisfying

customer demands and time windows.

• Push Forward Insertion Heuristic: Routes are generated using a fast and straight-

forward construction heuristic named Push Forward Insertion Heuristic (PFIH)

proposed by Solomon [36]. This sequential route construction heuristic is ef-

fective and efficient in incorporating the time window constraints in the solution

process. The first selected customer, seed, has the minimum latest time win-

dowBk. The sequential customers are chosen one by one, considering insertion

costs to minimize the total distance and time. The subsequent customers are lo-
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cated by investigating all feasible customer positioning. A new route is created

if only if no more customer feasible insertions are possible.

• Modified 2-opt: Whenever a new route is constructed, the 2-opt heuristic which

introduced by [11] is applied with modification. The nature of classical ex-

change heuristics like 2-opt is not desirable for the problems having time win-

dows since they do not keep the orientation. On the contrary, the modified 2-opt

takes customer orientation into account and selects the route with the highest

waiting time between the two, having the same route cost. We chose the route

with more waiting times to obtain a route suitable for modification in the future

improvement stages. This heuristic provides inter route improvement until we

hit a locally optimal solution.

4.3 Fitness Function

EA needs a performance measure to compare individuals in the current pool to sustain

evolution for the following generations. Depending on the nature of the problems, a

variety of fitness score definitions can be constituted. In our problem, the fitness

function calculates the total cost of 2E-LRPTW. Currently, the algorithm only finds

the second echelon solution and the first echelon solution assumed to be given in

this stage. In order to sustain integrity, we considered not only the total cost of the

second stage but also the total cost of the original problem as a fitness score. For each

individual, the corresponding fitness score is represented by π.

Before calculating the fitness score, the algorithm has already been decided the al-

located demand to each open satellite and the resulting trips from these allocations

with corresponding route costs. When the CDCs are taken as given, the opening cost

in the objective function and the total cost of the trips have become parameters. We

are reducing the problem size and work with a slightly straightforward model. Using

the allocated demands to satellites, direct trip costs from CDC to open satellites are

calculated by finding the number of vehicles needed. We have facility opening costs

and routing costs for both echelons, consisting of vehicle operating costs and the cost
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of trips. The fitness score is then calculated as the sum of these costs from these two

echelons, which result in comparable solutions with [15].

4.4 Reproduction Phase

In GAs, the generation stage of new offsprings is named with the crossover operator

because it is possible to obtain two new offsprings after the classical crossover pro-

cess. Considering the complexity of our problem, it is not possible to obtain feasible

offspring with classical crossover methods in the literature. Therefore, in this study,

the crossover operator is used as a step of the reproduction procedure to increase the

diversity of satellite configuration.

Start

Apply one-point crossover to facility arrays

of p1, p2 and obtain offsprings o2 and o2.

Retreive allocation infor-

mation from ‘Best Parent’.

Create a set for the unallocated cus-

tomers (UC) for each offspring.

Can all cus-

tomers in UC

be assigned to

open satellites?

Call Greedy Allocation 1

Assign customers in UC to

the nearest open satellites.

Construct the routes of each offspring.

Stop

yes

no

Figure 4.6: The main steps of the reproduction phase
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The reproduction phase consists of three steps: a one-point crossover, allocation, and

routing steps. In this phase we aim to achieve evolution by creating better individu-

als from two parents’ genetic heritage who come together randomly from the mating

pool. In this study, the reproduction phase determines individuals’ recombination to

produce new individuals called offsprings, o ∈ O. In this phase, parents p ∈ P are

selected randomly from a mating pool to reproduce. If reproduction is not applied,

parents are duplicated as new offsprings. Unlike classical crossover approaches in the

literature, this study combines classical one-point crossover with new techniques to

generate a feasible offspring. Because well-known crossover operators for TSPs do

not keep track of feasibility through each step. The authors who used these operators

either accept an infeasible solution or try to repair them after crossover. This algo-

rithm aims to produce feasible solutions at each step without using a repair operator

because hard time windows increase complexity. As a result, the classical operators

need to be adapted to the nature of the problem at hand.

4.4.1 One-point Crossover

One-point crossover is applied to the facility arrays of selected two parents to obtain

two new facility arrays of offsprings. At this stage, the only thing expected is to create

a new satellite configuration using both parents’ information.

Figure 4.7: One-point Crossover

This stage is sufficiently straightforward. It cuts the parents’ array from a random po-

sition to get two ’head’ and two ’tail’ segments. The tails are then swapped to obtain

a full-length facility array, indicating which satellites are open for each offspring. The

only important point here is that although the facility array retains CDC information,

the cut point is selected randomly from a point after CDC end.
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4.4.2 Allocation Phase for Offsprings

After the one-point crossover of facility arrays, we know which satellites are open

for each offspring, and we can track satellite information that comes from which par-

ent. Using the information in each parent’s allocation array, customers assigned to

open satellites are also known. If we try to copy open satellites’ assignment informa-

tion directly from both parents simultaneously, we will probably obtain an offspring

having unassigned customers or customers assigned more than one satellite. To not

repair such solutions, we must do the assignment step by step to get information from

parents. After all, one of our aims in reproduction is to transfer the good information

to the next generation.

The allocation stage consists of three parts. In the first stage, as we receive satellite

information from the parents, we check which parent’s allocation information along

with the corresponding satellite information portion should be copied directly as in

classical approaches. It is then checked whether remaining customers in the set UC

can be allocated to the available satellites. If all UC customers cannot be assigned,

we search for well-constructed allocations using Greedy Allocation 1 and Greedy

Allocation 2 algorithms.

It has been already mentioned that retrieving allocation information from both par-

ents directly probably ends up getting allocation duplication. Therefore, we need to

perform the retrieving process sequentially. At the beginning, rather than deciding

whether to get information directly from the ’head’ or ’tail’ parent, retrieve alloca-

tions of ‘Best’ parent for the corresponding satellites. Since we are trying to minimize

the total cost using the algorithm, only the ‘Best’ parent’s allocation information is

retrieved at first considering the performance measure, AvgDistp.

In other words, we know that each offspring has a ‘head’ and a ‘tail’ parent. In the

one-point crossover stage, we separate each parent’s facility arrays from the cut off

point we randomly obtained. The left part from cut-off point p1 and the right part

from p2 merge, and a facility array is formed for the first offspring. Accordingly,

p1 is the ‘head’ parent and p2 ‘tail’ parent as it can be seen from Figure 4.7. By

this means, the transferred satellite information is available with the allocations along
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Algorithm 4: Select Best Parent
Input: p1,p2, cut-off point

Result: Best parent

Initialize Cp1 , Cp2 , N1
c and N2

c .

for first parent’s open satellites before cut-off point do

Sum route costs and vehicle usage costs, Costp1 .

Sum all of the visited customers in these routes, N1
c .

AvgDist1 = Cp1 \ N1
c .

for second parent’s open satellites after cut-off point do

Sum route costs and vehicle usage costs, Cp2 .

Sum all of the visited customers in these routes, N2
c .

AvgDist2 = Cp2 \ N2
c

Return the parent having minimum cost as ’Best’.

with the constructed routes. To understand which parent we can get direct information

from, we compared the ’head’ and ‘tail’ parents for each child. The one with the

lowest cost per customer is selected as the ‘Best’ parent, and allocations of the ‘Best’

parent are directly copied to the corresponding offspring. Emphasizing that not all

of the ‘Best’ parent allocation information is copied; only the transferred satellites’

allocation information to offspring are given priority.

It should be noticed that the ‘Best’ parent can be different for each child because

they take different information regions of the parents. This performance criterion

considers the allocation of information coming from each parent one by one, for

each parent, summation of costs of the routes owned by each parent’s open satellites

divided by the total number of customers visited.

The remaining customers are copied to a set called unallocated customers UC and

proceed into the steps in the following order.

• Check: Applying control using this function, we aim to eliminate unneces-

sary steps to assign remaining customers to the open satellites. This function

checks if all of the customers in set UC can be assigned to the nearest avail-

able satellites. If all of them can be assigned, assignments are completed, and
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UC becomes empty, which ends the allocation phase. Otherwise, leave UC as

original and go to Greedy Allocation 1.

Algorithm 5: Greedy Allocation 1
Result: Allocations of an offspring

for k ← 1 : ∀k ∈ ω2 do

Let FBest = −1 be the closest satellite to customer j in UC.

Let CBest =∞
for all open satellite j do

if satellite j is available and dist(j,k) ≤CBest then

FBest = j

CBest = dist(j,k)

if FBest 6= −1 then

Add customer k to θj .

Delete customer k from UC.

if UC 6= ∅ then
Call Greedy Allocation 2

• Greedy Allocation 1: This algorithm applies Demand Order for allocation as

in the initialization phase. The UC set’s customers are sorted according to

demand and assigned to the nearest satellite having sufficient capacity. If UC

is not empty after allocations, proceed to Greedy Allocation 2; otherwise, stop.

• Greedy Allocation 2: If allocation processes did not complete in Greedy Al-

location 1, this implies whether open satellites have no available capacity for

the remaining customers or assignment cannot be done because of the hard time

window constraints. In this case, a new satellite should be opened, but the prob-

lem arises of which one to open. For each closed satellite, the total distance of

customers in the UC set is kept. The satellite having the minimum total dis-

tance to the unallocated customers is opened. This process continues until all

customers in UC is assigned to an open satellite.
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Algorithm 6: Greedy Allocation 2
Result: Allocations of an offspring

for all close satellite j do

Sum the direct trips between satellite j and customers in UC.

Sort the total cost of trips in a descending order, TC.

while UC 6= ∅ do

for each close satellite j ∈ TC do

Open the satellite j and assign customers until the capacity is full.

Delete allocated customers from UC.

4.4.3 Routing Phase for Offsprings

After the assignments are complete, the last step is to generate routes for each satel-

lite. Since we get the allocation information directly from the ’Best’ parent, we can

directly copy its routes to the offspring. The ’Best’ parent selection has already taken

into account the routes to transfer good information to the next generations.

After copying the ’Best’ parent routes, we navigate the customers who do not route

using the Create Route as in the initialization stage with a little modification. Orig-

inally, seed customers are selected according to the earliest time window, but seed

customers were randomly selected to increase diversity in this step.

4.5 Mutation Operators

An offspring obtained through the reproduction then proceed into the mutation phase.

Also, an offspring can remain in the population without mutation according to the de-

termined probability. As mutation operators, a set of improvement techniques have

been applied to enhance the current solution. In the literature, there exist many algo-

rithms combining classical improvement techniques with each other. The algorithms

that are generally created for the problems in this structure consider two points: one

is the routes, and the other is the allocation changes.

Solutions to our problem can be improved by providing a variety of route and allo-
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cation moves. While a move used to improve routes does not affect the satellite’s

allocated capacity, it is very likely that a move created for allocation will affect the

total satellite demand, thus changing the first echelon solution. At this stage, we try

to balance the density between exploration and exploitation. By changing the alloca-

tions, we aim to obtain a much different solution from the current solution we have,

and we are trying to rearrange our routes to a less costly point with route improve-

ments.

For this purpose, two mutation algorithms have been proposed. The proposed neigh-

borhood structures in the EA are examined in two parts, namely allocation and route

improvements. The first one selects customers belonging to different satellites for

relocation; in other words, it takes a customer from a route and inserts a route be-

longing to a different satellite. In comparison, the second one tries to improve routes

belonging to the same satellite by changing the customer locations across routes. The

flow charts of these algorithms can be followed by Figure 4.8 and Figure 4.9 respec-

tively. The detailed explanations will be in the following subsections along with the

the pseudo-codes.

4.5.1 Improve Allocations

Allocation information in the solution is changed by taking a customer from a route

and inserting it into another satellite route. Using this neighborhood structure, the

demand assigned to each satellite is changed, so does the first echelon solution. The

primary point in the problem can be considered as the allocation change. Therefore,

we expect the new solutions obtained from this operator to be different from the in-

cumbent solution. Existing operators in the literature make customer swaps between

satellites or switch satellites on and off to modify allocation structure. Because the

capacity constraints are relaxed in the algorithms, infeasible solutions progress over

generations either with a penalty or repair.

In the experiments conducted, we have seen that it is impossible to perform classical

inter-satellites swap operations with tight capacity facilities. In this case, even if two

swapped customers provide feasibility, it is impossible to achieve either improvement

or feasibility due to hard time windows. Since there is no hard time window struc-
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ture in the existing studies, they can obtain different solutions by relaxing capacity

constraints. However, since we are working not to create infeasible solutions and

not allow such solutions, we modify the existing swap mutations according to the

problem structure.

Start

Search for customer relo-

cation from route j11 to j12 .

Update the routes, allocations and satellite

capacities according to best solution.

Search for customer relo-

cation from route j12 to j11 .

Are

capacities

and routes

feasible?

Update the best solution, routes, al-

locations and satellite capacities.

Stop

yes

no

Figure 4.8: The main steps of Improve Allocation

In order for a solution to be feasible, a satellite capacity cannot be exceeded. However,

sets having tight satellite capacities do not leave room for relocating a customer to a

different satellite route. The Improve Allocation allows keeping an infeasible solution

in the first stage.

The critical point here is that we only do this at one stage. At the end of this algorithm,

it is not possible to allow or repair an infeasible solution. Since the operation is

performed between two routes belonging to different satellites, let us say j11 and j12 ,

only the routes’ feasibility is checked when adding the customer from j11 to j12 in the

first iteration. The incumbent solution is updated with the best feasible route found
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with the satellite capacities, but satellite capacities’ feasibility is not checked.

Algorithm 7: Improve Allocation
Input: Offspring

Output: Mutated Offspring

Initialize IndOrig and IndBest with the current offspring.

for each r1, r2 pair belonging different satellites do

Initialize rBest
1 , rBest

2 , and CBest.

for p1 ← 1 : p1 ≤ Sizer1j − 1 do

for p2 ← 1 : p2 ≤ Sizer2j do

Erase customer from position r1 and insert position in r2.

if new routes are feasible and better than the current ones then

Update CBest = CN1 + CN2

Update rBest
1 = rNew

1

Update rBest
2 = rNew

2

Initialize rBest
1 , rBest

2 , and CBest.

for p2 ← 1 : p2 ≤ Sizer2j − 1 do

for p1 ← 1 : p1 ≤ Sizer1j do

Erase customer from position r2 and insert position in r1.

if satellite capacities are feasible then
if new routes are feasible and better than the current ones

then

Update CBest = CN1 + CN2

Update rBest
1 = rNew

1

Update rBest
2 = rNew

2

NodeBest = customer

if NodeBest 6= −1 then

Return rBest
1 and rBest

2

Update the allocations of the offspring.

Update the satellite capacities of the offspring.

Update first echelon solution of IndBest.

Calculate fitness score of IndBest.

if IndBest better than IndOrig then

Return IndBest

else
Return IndOrig

In the second stage, customer relocation from new j12 to j11 is searched. The expec-

tation here is that the relocation from j12 to j11 should balance the capacities resulting

in relocation from the first stage. While searching, the best solution is updated if and

only if the generated solution is feasible. This move is different from exchanging two

customers belonging to different satellite routes; this is an iterative approach. After
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finding the best feasible route resulting from the second relocation, the incumbent is

updated and accepted if feasible otherwise, original routes are returned.

Improve Allocation is mainly targeting the instances having tight facility capacities.

Although it is possible to obtain different satellite configurations with various alloca-

tion schemes, it is impossible to create diversified solutions when capacities are tight.

Therefore, we take two routes of offspring originated from different satellites and try

to change the allocations of two customers. In the first best insertion, the satellite

capacities are updated but the feasibility is not checked. However, in the second in-

sertion best routes are only updated if the resulting allocation gives feasible capacities

with feasible routes. After completing the changes among all of the routes of different

satellites, a new individual is obtained and the resulting first echelon solution is com-

puted with the corresponding fitness score. If the new individual is better, continue

with the new one; otherwise, return the original individual.

4.5.2 Improve Route

Improve Route algorithm consists of five well-known iterative route improvement

heuristics. These heuristics are mainly in the class of exchange heuristics but with

some modified versions. Since most classical k-exchange heuristics do not preserve

the routes’ orientation, they are not suitable for the problems with hard time windows.

The Improve Route takes two routes belonging to the same satellite and performs 2-

opt* [30], Exchange-Edges, and Relocate Customer heuristics.

• 2-opt*: The 2-opt* exchange heuristic is proposed by Potvin [30] to deal with

problems having time windows. [30] study demonstrates that 2-opt* perform

well to obtain inter-routes improvements. 2-opt* generates new solutions that

are very different from the incumbent solution. In the classical 2-opt approach,

the sequence is not affected by changing orientation, but when the customers

have time windows, reversing some portion of a route is likely to produce an in-

feasible solution. This heuristic can be considered as a link exchange heuristic

between two routes of an individual. The algorithm considers all possible fea-

sible results between two routes and returns only the best solution decreasing
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Start

Call Exchange-edges

Call Relocate customer

Call 2-opt*

Is improved? Call Modified 2-opt

Call Or-opt

Update Fitness Score.Stop

no

yes

Figure 4.9: The main steps of Improve Route

the total route cost of the incumbent solution.

• Exchange-edges: Exchange two variable-length edges between two routes of

the same satellite. There exists no selection of satellites or routes; exchange-

edges is applied to all generated routes of each open satellite. The algorithm

searches all pairs of feasible exchanges among two routes and applies only the

best solution obtained.

• Relocate customer: One customer is selected from a route and inserted into a

new position in another route connected to the same satellite. All customers

in the routes and possible positions giving feasible solutions are taking into

account, and only the move giving the least cost from the incumbent solution is

applied.

If one of the heuristics above succeeds at finding a new best solution, then modified

2-opt and Or-opt algorithms are applied to the corresponding new routes.

• Or-opt: Or-opt exchange is a well-known node exchange heuristic proposed by

Or (Or 1976 in [30]). This heuristic tries to improve the incumbent solution
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Algorithm 8: Exchange-edges
Input: r1,r2

Output: rBest
1 ,rBest

2

Take routes r1, r2 and initialize CBest as their total cost.

for n1 ← 1 : n1 ≤ Sizer1j − 1 do

for p1 ← 1 : p1 ≤ Sizer1j − n1 do

for n2 ← 1 : n2 ≤ Sizer2j − 1 do

for p2 ← 1 : p2 ≤ Sizer2j − n2 do

edge1 = (n1, n1 + p1)

edge2 = (n2, n2 + p2)

Exchange edge1 and edge2 between r1 and r2.

if new routes are feasible and better than the current ones

then

Update CBest = CN1 + CN2

Update rBest
1 = rNew

1

Update rBest
2 = rNew

2

Return rBest
1 and rBest

2

by changing the customer’s position in the current tour. In Or-opt, not only

one customer is a candidate; also, the sequences of more than one customer is

taking into account. This algorithm slightly modifies the incumbent solutions

with finer refinements.

After explaining all the operators used in the algorithm in detail, we can follow the

main stages of the Algorithm 10. αmax indicates the maximum number of generations

this algorithm can proceed, and ∆ represents the convergence criteria value.

Initialize the parameters and construct the initial population as described in Section

4.2 before proceeding into the main loop. In the main loop, select ω3 many indi-

viduals from the initial population using Binary Tournament. Binary Tournament

selection randomly selects two individuals and compares their fitness scores. The

fittest individual is added to the mating pool set (MP) and the other one returns to the

47



Algorithm 9: Relocate customer
Input: r1,r2
Output: rBest

1 ,rBest
2

Take routes r1, r2 and initialize rBest
1 ,rBest

2 , CBest as their total cost.

for p1 ← 1 : p1 ≤ Sizer1j − 1 do

for p2 ← 1 : p2 ≤ Sizer2j do

Erase customer from position r1 and insert position in r2.

if new routes are feasible and better than the current ones then

Update CBest = CN1 + CN2

Update rBest
1 = rNew

1

Update rBest
2 = rNew

2

for p2 ← 1 : p2 ≤ Sizer2j − 1 do

for p1 ← 1 : p1 ≤ Sizer1j do

Erase customer from position r2 and insert position in r1.

if new routes are feasible and better than the current ones then

Update CBest = CN1 + CN2

Update rBest
1 = rNew

1

Update rBest
2 = rNew

2

Return rBest
1 and rBest

2

initial set. After completing creating a mating pool, selected individuals will proceed

into the reproduction phase. If a randomly generated value random between 0-1, is

smaller than the predetermined ω4, selected two parents from MP generate two off-

springs by recombination described in Section 4.4; otherwise, parents directly copied

as offsprings into the set o. When each pair of parents in MP produced offsprings,

the mutation will be applied if random is smaller than the mutation probability ω5.

In this phase, mutated offsprings are only accepted if they are better than the origi-

nal ones. Otherwise, we keep the original offspring. Then we merge the offsprings

with parents and obtain one population set, P. Sort all individuals in P according to

their fitness score and keep the best ω1 for the next generations initial population.

Here, achieve to keep population size constant by using an elitist approach. Then
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Algorithm 10: The proposed evolutionary algorithm
Input: Problem parameters

Output: Best Individual

Generate initial population P.

Initialize α = 0, ∆ =∞
while α ≤ αmax and ∆ ≥ 0.01 do

Insert ω3 individual using Binary Tournament to mating pool (MP).

for each consecutive pair of parents in MP do

if random ≤ ω4 then

Call Reproduction (p1,p2) and obtain o1,o2

else
Copy p1 and p2 directly offspring set O.

for each offspring in O do

if random ≤ ω5 then

Call Improve Allocation (o1,o2).

Call Improve Route (o1,o2).

Insert set O to set P.

Sort the individuals in P in descending order Fitness Score.

Calculate ∆ = (FitnessWorst − FitnessBest)/F itnessWorst

Resize P to ω1.

α = α + 1

check whether our population is convergence by calculating the distance between the

worst customer and the best customer. Update ∆ and α. If the best individual de-

viates smaller than 0.01 percent from the worst individual or the algorithm reached

the maximum number of generations, the EA stops. Otherwise, take the ω1 many

individuals as current population and start over.
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CHAPTER 5

REVISITING THE EVOLUTIONARY ALGORITHM FOR 2E-LRPTW

This chapter explains how the constructed EA for a single-echelon problem can be

adapted to the two-echelon structure step by step. Since the proposed algorithm is

constructed with a holistic perspective, we can obtain an algorithm that determines the

locations of the facilities at both echelons, allocations and solves the routing problems

by adding small modifications. The proposed evolutionary algorithm’s pseudo-code

is introduced in the previous chapter; the necessary modifications need to be applied

to initialization and reproduction phases. There are no structures that need to change

in other steps. A few properties should be added to individuals’ characteristics to

represent the complete solution. Note that there is a routing decision on both echelons

since we have a classical 2E-LRPTW structure.

The essential point to be emphasized in this chapter is that the CDC and satellite

opening decisions are taken simultaneously. As the reader may remember from the

literature studies, the 2E-LRP is generally solved by decomposition approaches due

to its complexity. In other words, the second echelon is solved first, then accepted

as parameters to solve the first echelon or the other way around. However, the pro-

posed EA decides locations of facilities simultaneously in the reproduction phase by

transferring the facility information over the ‘Best’ parent to the offspring.

5.1 Individual

Since an individual demonstrates a complete solution to the problem, some properties

should be modified while solving the two-echelon problem. Chromosomes have the

same structure and now represent the routes that originated from each open facility,
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not only satellites. After the allocation of open satellites to CDCs is completed, routes

can be created, and chromosomes represent the resulting first echelon routes. Conse-

quently, by checking each individual’s chromosomes, we can obtain which facilities

are open and the routes with their costs.

The facility array of an individual is precisely the same. In the former example,

only node 0 represents the open CDC, but now we have an array with the length

of total candidate CDCs and satellites, and 0/1 in the arrays indicates whether the

corresponding facility open or not.

In the previous chapter, the allocation array holds the customer assignments; now,

the allocation array holds both customer and satellite assignments. So, the alloca-

tion array has the length of the total number of candidate satellites and customers. In

the corresponding satellite section, the indexes represent the satellites and the values

indicate the CDCs they assigned. Since not all satellites will be opened, the corre-

sponding assignment value is -1 for the close satellites.

Let us consider an example where we have 2 candidate CDCs 3 satellites and 10

customers. Assume that the second CDC and satellites 1 and 3 are open. Realize

that since indexes start from 0, CDC 1 indicates the second CDC. From the Figure

5.1, open satellites are assigned to the open CDC and customers are assigned to open

satellites.

Allocation 1 -1 1 2 2 4 2 4 4 4 2 4 2

Index 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 5.1: Allocation array

5.2 Initialization Phase

Recall that we have two initialization procedures, namely Create Random Order and

Create Demand Order and at the beginning of each construction, there was a satellite

opening phase. The satellite opening phase turned into the facility opening phase to

obtain a complete solution.
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5.2.1 Opening Facilities

The satellite opening phase is identical for both construction techniques. Keep every-

thing the same while opening satellites and add a step for CDC location decisions to

convert this phase as a whole facility location decision before proceeding into Ran-

dom Order and Demand Order. Since the CDCs are extensive facilities and designed

as a long-term investment, the number of CDCs are less in number than satellites in

the benchmark sets. Thus, the decision to open which CDC is taken randomly to

increase diversity.

Start

Allocate customers using Random Order.

Open CDCs randomly and

assign the open satellites.

Construct routes using PFIH.

Improve routes using Modified 2-opt.

Allocate customers using Demand Order.

Open CDCs randomly and

assign the open satellites.

Construct routes using PFIH.

Improve routes using Modified 2-opt.

Stop

Figure 5.2: Initialization procedure

When opening satellites, we decide on the number first and then the satellites to be

opened sequentially. However, the cost of opening a CDC is relatively high, so the

number of open CDCs will be determined as a result of the assignments, as [5] and

[35] approached in their studies. In other words, when a CDC is opened, assign the
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open satellites randomly until the CDC capacity is full. If the satellite used capacities

are not met, continue by opening a new CDC randomly; otherwise, stop. After the

assignments of satellites complete, we can obtain the number and the locations of

open CDCs.

The allocation and routing phases in the initialization procedure for customers remain

unchanged for the second echelon. The CDC assignments and the cost of routes are

not incorporated into these two phases. CDC location decision and assignments of

satellites performed after the allocation phase for customers end before the routing

phase, followed by the Figure 5.2. There is a sequential approach in the initialization

phase; two-echelon decisions are not taken simultaneously.

As a fitness function, we have already added the cost of opening the CDCs and direct

trips in the first echelon to the cost we obtained from the second echelon to make

our solutions comparable with the original work. As shown in Figure 5.2, the as-

signments stage is followed by the route construction and improvements phases. In

route construction, we used to generate routes only for the second echelon, but now

we generate routes for the first echelon. The heuristic works with the corresponding

facility’s allocation information, and we obtain each route’s cost as well. Therefore,

there is no difference between constructing a route for the second or first echelon. As

a result, the fitness score is the summation of first and second echelon routing, facility

opening, and vehicle usage costs.

5.3 Reproduction Phase

The initial population is created in the initialization phase, and then ω3 many individ-

uals are selected for MP. The parents in the MP will proceed into the reproduction

phase. The reproduction phase consists of one point crossover, allocation and rout-

ing phases. There is no modification in the routing phase since the routing phase

constructs routes originated from open facilities.
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5.3.1 One-point Crossover

By applying a one-point crossover to parents’ facility arrays, we aim to obtain dif-

ferent satellite configurations. The goal did not change while solving two-echelon

problems because the number of CDCs is relatively low compared to the satellites,

and it is possible to obtain different CDC configurations in the initialization phase by

randomly choosing the locations.

Figure 5.3: One-point crossover

The classical one-point crossover is applied to facility arrays and obtain a full-length

facility array for each offspring indicating which satellites are open as in Figure 5.3

for an instance having 2 candidate CDC and 3 satellite locations. The cut-off point

is again decided randomly from a point after satellite indexes start. We are not con-

sidering the entire facility array because we might have cut points useful for CDC

configuration changes but stuck with the same open satellites. Therefore, we only

change open/close satellites by applying one-point crossover and CDCs transferred

as closed to offsprings. The open CDCs are determined in the allocation phase when

the ‘Best’ parent is procured.

5.3.2 Allocation Phase for Offsprings

In the first stage of the allocation phase, the ‘Best’ parent’s allocation information is

favored for each offspring. For the details and reasoning behind it, please refer to

Chapter 4. The CDC location decision follows the same approach. In other words,

CDCs assigned to satellites in the transferred section are transferred to offspring by

the ‘Best’ parent. However, realize that open satellite information comes from both
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parents. After taking satellite allocation information from the ‘Best’ parent, the re-

maining open satellites are also assigned to the open CDCs, and the used capacity of

these facilities should be updated along with the allocation information of satellites.

In the second echelon, the unallocated customers after the ‘Best’ parent stage are

copied to UC and proceed into the steps Check, Greedy Allocation 1 and Greedy Al-

location 2. The problem does not necessarily go into Greedy Allocation 2 because

if it goes, we can conclude that there exist customers in UC after Greedy Alloca-

tion 1 and the existing satellites cannot satisfy the allocation constraints. For the

two-echelon structure, after completing allocations of the customers, the CDC used

capacities should be updated. Since in Greedy Allocation 1 we deal with the open

satellites, there is no need for an allocation step for satellites. Again update the CDC

used capacities when the satellite used capacities are changed. Unfortunately, if we

need to open a new satellite in the Greedy Allocation 2, we first try to assign the new

satellite to existing CDCs; if we cannot assign the satellite because of the capacity

restrictions, open a new CDC randomly.

In the reproduction stage, the routing phase, Create Route, creates routes using the

customer allocation information to the satellites and taking the hard time windows

into account. Also, the routing phase creates routes using satellite allocation infor-

mation to the CDCs and primary vehicle capacities. The mutation algorithms are not

changed because of shifting the two-echelon structure. There are no mutation algo-

rithms for targeting CDC changes in the modified version. The main structure of the

Algorithm 10 will be followed after adding the alterations.
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CHAPTER 6

COMPUTATIONAL STUDY

In this chapter, we provide an extensive study of the numerical results and our infer-

ences. We apply the proposed EA to two types of 2E-LRPTW instances, namely Set

1 and Set 2, generated in the doctoral thesis of Farham [15]. The details and the struc-

ture of the used test instances are introduced in Section 6.1. Lastly, in Section 6.2 we

present the computational results of the EA for both modified sets and the original

sets along with necessary performance measures.

6.1 The Benchmark Problem Sets

The 2E-LRP benchmark instances in the literature are generally generated by placing

a CDC in the first echelon of the 2E-VRP benchmark sets. In this case, there is no

facility opening decision in the first echelon; thus, the target distribution network

structure cannot be obtained using the existing benchmark sets. Even the existing

sets having more than one candidate CDC, either primary facilities have no capacity

restrictions, or vehicles have capacities. The sets with hard time windows, facility

and vehicle capacities first emerged in Farham’s doctoral thesis [15] by appropriately

modifying existing benchmark instances. In this study, we performed computational

experiments on these two sets.

Set 1 is generated by modifying Solomon’s (1987) benchmark sets to include candi-

date locations for CDC and satellite nodes. The instances vary in many features such

as fleet size, vehicle capacity, and customers’ spatial and temporal distribution. The

test instances are named after the customer distributions with three categories. The

instances starting with C refer to the clustered type of customers, while in randomly
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generated sets (R), all customers are located randomly on the plane. RC is a category

of instances having a mixture of random and clustered customers. The instances are

also categorized according to the time window properties. In the first category, we

observe tight time windows with low vehicle capacity; however, we have longer time

intervals and vehicles with more capacities in the second category. In the instances,

the candidate CDC locations’ size equal to 2, candidate satellite nodes vary between

2 to 4 and containing 15 to 30 customer nodes.

The second group of instances, Set 2, are again obtained by modifying existing bench-

mark instances originally generated for 2E-VRPTW. Initially, instances have candi-

date locations for CDC and satellite points, but they cannot represent physical bound-

aries such as capacities and economic issues as opening costs. Consequently, to rep-

resent our logistics model properties, capacity and opening costs to facilities at both

echelons are assigned. The instances are grouped namely a,b,c and d considering

customer time windows and demands. Although Group-a and Group-b have similar

tight time windows, Group-b has more diversity in demand distributions. The same

demand distributions appear in Group-c and Group-d, but Group-d has tighter time

windows than Group-c. The main features of each group are: i ∈ {2, 3, 6} candi-

date CDC points, j ∈ {3, 4, 5} candidate satellite locations and k ∈ {15, 30, 50, 100}
customers.

6.2 Evaluation of the Results

The proposed evolutionary algorithm for both single and two-echelon models is coded

in C++ compiled with Visual Studio 19 on a computer with Intelr Core™ i7 3.10

GHz processors 16GB memory under the 64-bit Microsoft Windows 10 operating

system.

Recall the Algorithm 10 in Chapter 4 that the proposed method requires parame-

ters. While developing the algorithm, a parameter set used to see the results or check

whether there were errors. Rather than working on small representative sets, we tested

the heuristics on all sets, namely Set 1 and Set 2. In this way, we found the param-

eter set that results in the best overall performance in all instances, not in a created
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Table 6.1: Parameters for the proposed algorithm

Parameter Description Value

ω1 Population size 100

ω2 Number of individuals created by Random Create 70

ω3 Mating pool size 90

ω4 Probability of crossover 0.9

ω5 Probability of mutation 0.9

ω6 Number of generations that EA evolves 500

ω7 Number of replications 20

test environment. Since we have been working with all instances from the beginning,

no additional tuning was required. The parameters we have obtained in preliminary

experiments are shown in Table 6.1. Our performance criterion was an average devi-

ation from the optimal (best-known) solution while determining the parameter set.

6.2.1 Single-echelon Results

In this section, we represent the computational results of the proposed algorithm to

solve the 2E-LRPTW problem with given open CDC locations; in other words, so-

lutions for the single echelon structure. While evaluating the performance of the

algorithm, the following measures are considered: Total Cost indicates the total cost

of the best solution that our algorithm in 20 replications, Gap demonstrates the per-

cent deviation of the best solution we have from the optimal (best-known) solution.

SEA and SBKS indicate the satellites open in our algorithm’s best solution and the

satellites open in the optimal (best-known) solution because preliminary experiments

showed us that the primary source of the deviation comes from the incorrect facility

configurations. CPU time in seconds is reported as Ts.

In each result table, the instances are grouped into three columns according to the

number of candidate satellites, |J |, to distinguish the proposed EA’s performance de-

pending on complexity. According to the number of customers, we consider instances

having 15-30 customers as small-sized, 50 customers as medium-sized, and 100 as

large-sized. All Set 1 instances are small-sized so, we created three separate tables
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considering the customer distributions namely C, R, and RC. However, tables are

reported for each customer size, |K|, for Set 2 instances since variety exists. The

average CPU times for BP solutions proposed by Farham [15] are reported in paren-

thesis near Ts in each group average to state that the proposed EA outperforms the

BP results in computational time.

Table 6.2: Results for Clustered (C) instances

|J| = 2 |J| = 3 |J| = 4

|K| Instance Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts

15

C101 1454.60 0.00 1 2 1 2 0.05 1400.50 0.00 1 2 1 2 0.10 1399.80 0.00 1 2 1 2 0.06

C102 1485.07 2.27 1 2 1 2 4.75 1397.92 0.12 1 2 1 2 0.21 1400.64 0.46 1 2 1 2 0.18

C103 1455.11 0.21 1 2 1 2 0.04 1397.92 0.12 1 2 1 2 0.15 1400.64 0.46 1 2 1 2 7.58

C104 1455.11 0.35 1 2 1 2 0.09 1391.10 0.00 1 2 1 2 0.36 1393.88 0.14 1 2 1 2 0.18

C105 1454.60 0.00 1 2 1 2 0.03 1400.50 0.00 1 2 1 2 0.09 1399.80 0.00 1 2 1 2 0.05

C106 1454.60 0.00 1 2 1 2 0.05 1400.50 0.00 1 2 1 2 0.10 1399.80 0.00 1 2 1 2 0.05

C107 1455.11 0.16 1 2 1 2 0.03 1401.26 0.24 1 2 1 2 0.07 1400.64 0.25 1 2 1 2 7.52

C108 1455.11 0.21 1 2 1 2 0.03 1401.26 0.38 1 2 1 2 0.07 1400.64 0.39 1 2 1 2 0.03

C109 1455.11 0.30 1 2 1 2 0.03 1401.26 0.38 1 2 1 2 15.06 1397.47 0.35 1 2 1 2 0.08

Average 0.39 0.63 (29.20) 0.14 2.01 (101.60) 0.23 1.96 (197.30)

20

C101 1541.40 0.00 1 2 1 2 0.74 1479.02 0.38 1 2 1 2 0.40 1462.26 0.51 1 2 1 2 0.55

C102 1509.10 0.00 1 2 1 2 1.05 1453.87 0.91 1 2 1 2 0.53 1457.37 0.99 1 2 1 2 15.74

C103 1515.00 0.39 1 2 1 2 0.57 1439.00 0.00 1 2 1 2 15.45 1445.57 0.01 1 2 1 2 0.57

C104 1508.16 -0.29 1 2 1 2 0.56 1433.20 0.00 1 2 1 2 0.42 1442.28 -0.08 1 2 1 2 0.53

C105 1527.63 0.55 1 2 1 2 0.73 1455.00 0.00 1 2 1 2 0.48 1458.84 0.47 1 2 1 2 0.49

C106 1541.40 0.00 1 2 1 2 0.18 1474.05 0.36 1 2 1 2 0.65 1462.26 0.71 1 2 1 2 0.48

C107 1533.12 0.91 1 2 1 2 0.60 1455.00 0.00 1 2 1 2 0.40 1457.62 0.39 1 2 1 2 0.71

C108 1527.29 0.53 1 2 1 2 1.04 1455.76 0.70 1 2 1 2 0.37 1447.40 0.00 1 2 1 2 0.54

C109 1518.14 1.06 1 2 1 2 0.81 1435.20 0.00 1 2 1 2 0.37 1448.80 0.10 1 2 1 2 0.42

Average 0.35 0.69 (3331.30) 0.26 2.33 (3436.10) 0.34 2.43 (4501.90)

25

C101 1599.84 1.20 1 2 1 2 1.05 1486.96 2.42 1 2 1 2 1.16 1456.22 0.26 1 2 1 2 2.21

C102 1599.84 1.23 1 2 1 2 1.43 1489.92 2.70 1 2 1 2 0.83 1452.45 0.21 1 2 1 2 3.17

C103 1601.89 1.33 1 2 1 2 2.99 1481.03 1.41 1 2 1 2 0.87 1457.27 0.54 1 2 1 2 1.76

C104 1596.45 1.42 1 2 1 2 2.26 1481.03 2.31 1 2 1 2 1.06 1449.40 0.00 1 2 1 2 1.94

C105 1610.11 2.28 1 2 1 2 1.81 1487.39 2.45 1 2 1 2 0.31 1459.38 0.47 1 2 1 2 1.19

C106 1599.84 1.20 1 2 1 2 0.36 1490.99 2.70 1 2 1 2 0.31 1492.14 2.73 1 2 1 2 1.02

C107 1590.70 1.05 1 2 1 2 1.89 1487.39 2.72 1 2 1 2 0.32 1455.67 0.22 1 2 1 2 1.35

C108 1592.25 1.15 1 2 1 2 2.71 1485.99 2.62 1 2 1 2 0.35 1455.57 0.30 1 2 1 2 1.39

C109 1605.60 1.99 1 2 1 2 4.85 1481.76 2.33 1 2 1 2 0.65 1452.74 0.22 1 2 1 2 1.56

Average 1.43 2.29 (3815.00) 2.41 0.59 (5231.70) 0.55 1.67 (4892.5)

30

C101 1632.25 2.13 1 2 1 2 2.71 1505.68 2.66 1 2 1 2 23.61 1468.30 0.00 1 2 1 2 4.88

C102 1615.09 1.08 1 2 1 2 5.57 1500.27 2.36 1 2 1 2 18.35 1466.20 0.00 1 2 1 2 3.81

C103 1612.69 0.61 1 2 1 2 7.36 1494.71 0.46 1 2 1 2 3.58 1468.12 -1.49 1 2 1 2 4.38

C104 1606.38 0.13 1 2 1 2 28.32 1488.77 0.23 1 2 1 2 2.28 1466.57 -0.06 1 2 1 2 5.60

C105 1610.85 1.27 1 2 1 2 4.88 1505.68 2.66 1 2 1 2 8.55 1468.30 0.00 1 2 1 2 2.25

C106 1639.01 2.55 1 2 1 2 4.06 1506.28 2.70 1 2 1 2 8.54 1471.24 0.20 1 2 1 2 2.20

C107 1608.94 1.15 1 2 1 2 3.44 1502.61 2.49 1 2 1 2 16.08 1468.30 0.00 1 2 1 2 2.33

C108 1628.38 2.37 1 2 1 2 3.24 1502.61 2.50 1 2 1 2 39.03 1470.69 0.22 1 2 1 2 2.37

C109 1608.94 1.15 1 2 1 2 5.63 1494.98 1.81 1 2 1 2 47.33 1471.24 0.26 1 2 1 2 4.11

Average 1.38 7.81 (6067.30) 1.99 17.97 (6658.30) -0.10 3.38 (7376.10)

Grand Average 0.89 2.68 1.20 5.78 0.26 2.32

From Table 6.2, as expected, when the number of customers is increased the deviation

from the optimal solution increases. We were able to obtain a total of 24 optimal

results in instances with clustered structure. Besides, we reported improvements on

the upper bounds of 4 best-know solutions. The maximum average deviation is below

2.5% and the maximum deviation among all of the clustered sets is 2.73%, which is
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considerably reasonable.

Table 6.3: Results for Random (R) instances

|J| = 2 |J| = 3 |J| = 4

|K| Instance Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts

15

R101 1347.50 0.00 1 2 1 2 2.29 1347.50 0.00 1 3 1 3 3.09 1326.39 0.06 3 4 3 4 1.38

R102 1313.90 0.00 1 2 1 2 2.75 1291.93 0.63 1 2 1 2 3.34 1282.71 0.06 2 3 2 3 2.42

R103 1311.51 0.06 1 2 1 2 5.23 1291.93 0.63 1 2 1 2 1.90 1282.71 0.06 2 3 2 3 25.73

R104 1282.20 0.00 1 2 1 2 4.21 1276.12 0.06 1 2 1 2 2.42 1273.80 0.00 2 3 2 3 9.94

R105 1336.10 0.00 1 2 1 2 2.36 1326.90 0.07 1 2 1 2 10.19 1326.39 0.06 3 4 3 4 2.15

R106 1297.23 0.44 1 2 1 2 0.05 1299.99 1.56 1 2 1 2 2.48 1278.23 0.06 2 3 2 3 3.21

R107 1297.23 0.44 1 2 1 2 5.37 1299.99 1.56 1 2 1 2 2.34 1278.23 0.06 2 3 2 3 3.51

R108 1252.20 0.00 1 2 1 2 2.30 1252.20 0.00 1 3 1 3 2.43 1252.20 0.00 1 4 1 4 2.29

R109 1299.65 0.06 1 2 1 2 3.15 1309.89 0.85 1 2 1 2 3.75 1291.10 0.00 3 4 3 4 2.98

R110 1285.36 0.96 1 2 1 2 2.10 1273.84 0.06 1 3 1 3 33.49 1277.44 0.34 3 4 1 4 1.75

R111 1287.40 0.00 1 2 1 2 3.29 1299.97 1.56 1 2 1 2 3.08 1274.72 0.06 2 3 2 3 2.09

R112 1268.85 0.18 1 2 1 2 1.67 1268.85 0.18 1 3 1 3 1.93 1267.44 0.07 3 4 1 4 9.27

Average 0.18 2.54 (19.10) 0.60 7.46 (35.50) 0.07 3.40 (70.90)

20

R101 1464.11 0.07 1 2 1 2 27.04 1446.33 0.29 1 2 2 3 3.12 1432.67 0.10 3 4 3 4 2.97

R102 1416.55 0.06 1 2 1 2 10.79 1373.19 0.09 1 2 1 2 3.06 1376.01 0.10 2 3 2 3 4.68

R103 1353.64 0.06 1 2 1 2 254.86 1336.04 0.09 1 2 1 2 4.66 1318.99 0.08 2 3 2 3 6.22

R104 1337.00 0.00 1 2 1 2 4.85 1336.04 1.89 1 2 1 2 6.27 1310.82 0.09 2 3 2 3 4.40

R105 1399.69 0.06 1 2 1 2 4.58 1393.55 0.51 1 2 1 2 4.78 1383.13 0.07 3 4 3 4 10.43

R106 1384.15 0.27 1 2 1 2 0.18 1360.02 1.04 1 2 1 2 6.43 1354.60 0.43 2 3 2 3 11.67

R107 1340.65 0.06 1 2 1 2 8.00 1329.19 0.48 1 2 1 2 4.25 1312.62 0.25 2 3 2 3 13.01

R108 1331.84 0.65 1 2 1 2 3.67 1323.61 1.68 1 2 1 2 4.37 1297.52 0.08 2 3 2 3 4.12

R109 1361.91 0.23 1 2 1 2 5.24 1355.38 0.24 1 2 1 2 3.97 1354.46 0.11 2 3 2 3 3.78

R110 1331.76 0.06 1 2 1 2 2.94 1324.12 0.08 1 2 1 2 3.65 1329.22 0.08 3 4 3 4 2.29

R111 1337.13 0.06 1 2 1 2 5.74 1336.04 0.70 1 2 1 2 4.03 1318.99 0.08 2 3 2 3 4.40

R112 1309.60 0.06 1 2 1 2 4.21 1320.56 1.24 2 3 1 2 3.39 1308.24 0.07 3 4 3 4 2.28

Average 0.14 4.32 (859.60) 0.70 4.36 (1682.40) 0.13 6.50 (600.10)

25

R101 1587.69 0.07 1 2 1 2 20.70 1590.97 1.53 2 3 1 2 0.92 1568.82 0.18 3 4 3 4 5.60

R102 1517.24 0.09 1 2 1 2 11.36 1503.14 1.13 1 2 1 2 27.50 1496.14 0.09 2 3 2 3 12.87

R103 1462.33 0.77 1 2 1 2 11.13 1441.86 0.85 1 2 1 2 1.93 1445.79 -0.38 3 4 1 4 16.82

R104 1430.97 1.17 1 2 1 2 13.33 1431.24 1.88 2 3 1 2 2.35 1419.93 -0.23 2 4 3 4 8.58

R105 1508.60 0.57 1 2 1 2 7.89 1497.72 0.30 1 2 1 2 6.35 1485.03 0.09 3 4 3 4 8.37

R106 1445.41 0.07 1 2 1 2 0.36 1444.68 0.10 1 2 1 2 8.60 1445.41 0.07 1 4 1 4 10.15

R107 1399.60 0.07 1 2 1 2 6.84 1427.63 1.71 1 2 1 2 7.38 1403.03 -0.79 3 4 3 4 8.04

R108 1389.86 0.29 1 2 1 2 482.81 1390.41 -0.06 1 3 1 3 38.41 1386.71 0.06 1 4 1 4 8.35

R109 1439.88 0.08 1 2 1 2 19.69 1465.47 3.28 1 2 1 2 7.92 1431.39 0.11 2 3 2 3 13.48

R110 1425.44 0.24 1 2 1 2 8.67 1454.09 2.26 1 3 1 3 13.38 1421.43 0.09 2 3 2 3 14.74

R111 1414.40 0.06 1 2 1 2 8.55 1420.19 1.27 1 2 1 2 6.57 1417.69 0.29 3 4 1 4 19.14

R112 1376.46 0.12 1 2 1 2 6.80 1375.46 -0.31 1 3 1 3 9.78 1388.26 0.98 3 4 1 4 44.75

Average 0.30 67.70 (7899.00) 1.16 12.30 (9496.10) 0.05 15.88 (8554.90)

30

R101 1619.59 0.10 1 2 1 2 76.42 1611.18 0.50 2 3 1 2 16.89 1610.93 0.12 3 4 3 4 12.01

R102 1544.65 0.60 1 2 1 2 867.63 1528.81 0.94 2 3 1 2 1.62 1535.17 0.11 3 4 3 4 18.48

R103 1459.73 0.67 1 2 1 2 9.54 1472.23 1.81 2 3 1 2 3.77 1451.51 0.10 1 4 1 4 308.06

R104 1408.49 0.10 1 2 1 2 531.76 1410.73 -0.76 1 2 1 2 4.77 1408.49 -1.01 1 4 3 4 536.06

R105 1550.48 0.26 1 2 1 2 167.81 1550.48 0.26 1 3 1 3 129.66 1540.96 0.11 3 4 3 4 15.67

R106 1497.85 1.17 1 2 1 2 125.80 1504.68 1.66 1 2 1 2 13.01 1495.29 1.16 1 3 2 3 30.88

R107 1430.33 0.39 1 2 1 2 25.65 1430.33 0.39 1 3 1 3 22.70 1427.66 -0.08 1 4 1 4 411.18

R108 1392.12 -1.02 1 2 1 2 37.23 1385.20 -0.37 1 3 1 3 25.56 1392.12 -1.25 1 4 1 4 50.82

R109 1462.19 0.38 1 2 1 2 36.99 1458.36 0.12 1 3 1 3 50.08 1458.36 0.12 1 4 1 4 42.61

R110 1451.36 0.45 1 2 1 2 25.19 1446.15 0.09 1 3 1 3 13.81 1449.10 0.30 1 4 1 4 65.84

R111 1437.10 0.23 1 2 1 2 8.78 1435.33 -0.01 1 3 1 3 22.45 1435.33 0.10 1 4 1 4 43.01

R112 1386.56 0.10 1 2 1 2 13.48 1433.33 3.47 2 3 1 3 10.33 1386.56 0.10 1 4 1 4 16.15

Average 0.29 55.12 (3703.30) 0.68 35.95 (6820.60) -0.01 84.52 (7386.10)

Grand Average 0.22 58.10 0.78 12.08 0.06 37.86

Instance properties are highly influential on the solutions obtained. For the exact solu-

tion approaches or heuristics, it is easier to solve the clustered instances since results

are less sensitive to the small distances among customers. However, our algorithm
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has no diversity problem while creating routes or opening facilities; thus, randomly

generated instances can be solved contentedly. We can verify this inference from the

Table 6.3. If we compare the average deviations obtained when the number of candi-

date satellites is two in clustered and random instances, it is clear that the proposed

EA gives overall better results in random sets. Especially in the initialization and the

reproduction phases, randomness enabled us to capture aspects that heuristics could

not capture.

Table 6.4: Results for Random-Clustered (RC) instances

|J| = 2 |J| = 3 |J| = 4

|K| Instance Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts

15

RC101 1720.25 0.73 1 2 1 2 0.25 1524.53 0.06 1 2 1 2 0.19 1553.80 0.00 1 2 1 2 15.23

RC102 1605.50 0.00 1 2 1 2 0.23 1501.48 0.44 1 2 1 2 15.23 1534.86 0.32 1 2 1 2 7.79

RC103 1641.61 2.25 1 2 1 2 0.32 1501.48 0.44 1 2 1 2 15.31 1530.74 0.05 1 2 1 2 15.29

RC104 1627.04 1.75 1 2 1 2 0.72 1493.50 0.32 1 2 1 2 0.18 1524.28 0.04 1 2 1 2 7.77

RC105 1649.81 0.19 1 2 1 2 0.41 1533.31 0.19 1 2 1 2 0.18 1578.03 0.17 1 2 1 2 7.85

RC106 1639.63 2.02 1 2 1 2 0.05 1502.50 0.00 1 2 1 2 0.29 1538.55 0.07 1 2 1 2 7.67

RC107 1594.90 0.00 1 2 1 2 8.23 1484.10 0.04 1 2 1 2 0.18 1518.40 0.00 1 2 1 2 0.16

RC108 1588.20 0.00 1 2 1 2 0.34 1483.81 0.12 1 2 1 2 7.74 1514.70 0.00 1 2 1 2 0.18

Average 0.87 1.32 (56.50) 0.20 4.91 (419.60) 0.08 7.74 (237.00)

20

RC101 1822.19 5.06 1 2 1 2 29.67 1615.48 0.38 1 2 1 2 0.72 1609.40 0.00 2 3 2 3 0.24

RC102 1716.91 0.40 1 2 1 2 24.51 1580.10 0.00 1 2 1 2 0.92 1586.30 0.00 2 3 2 3 0.74

RC103 1714.90 0.88 1 2 1 2 37.10 1577.00 0.00 1 2 1 2 0.77 1587.71 0.09 2 3 2 3 0.25

RC104 1696.79 0.35 1 2 1 2 41.76 1572.29 0.09 1 2 1 2 0.59 1579.97 0.23 2 3 2 3 0.33

RC105 1808.70 4.49 1 2 1 2 0.55 1607.66 0.38 1 2 1 2 1.24 1610.09 0.07 2 3 2 3 1.01

RC106 1778.78 4.24 1 2 1 2 0.18 1595.97 0.52 1 2 1 2 0.65 1592.06 0.07 2 3 2 3 0.19

RC107 1723.23 2.58 1 2 1 2 0.60 1567.30 0.00 1 2 1 2 0.70 1570.10 0.00 2 3 2 3 0.78

RC108 1701.90 1.59 1 2 1 2 36.43 1566.77 0.09 1 2 1 2 0.74 1566.90 0.00 2 3 2 3 0.82

Average 2.45 21.35 (340.60) 0.18 0.79 (3835.50) 0.06 0.55 (3073.80)

25

RC101 1939.95 5.97 1 2 1 2 0.93 1726.97 3.37 1 2 1 2 0.75 1650.98 0.07 2 3 2 3 1.29

RC102 1830.76 4.96 1 2 1 2 0.78 1623.20 0.52 1 2 1 2 1.30 1621.49 0.07 2 3 2 3 1.33

RC103 1744.03 0.68 1 2 1 2 1.55 1622.73 1.13 1 2 1 2 1.62 1609.28 0.09 2 3 2 3 8.88

RC104 1725.15 1.10 1 2 1 2 63.98 1602.50 1.62 1 2 1 2 2.10 1581.00 0.17 2 3 2 3 1.95

RC105 1867.52 6.27 1 2 1 2 1.37 1683.60 3.53 1 2 1 2 1.05 1630.03 0.08 2 3 2 3 9.17

RC106 1819.86 4.65 1 2 1 2 0.36 1661.75 3.21 1 2 1 2 0.88 1612.60 0.00 2 3 2 3 15.97

RC107 1778.05 4.54 1 2 1 2 1.13 1628.16 3.23 1 2 1 2 8.55 1581.50 0.00 2 3 2 3 31.42

RC108 1756.86 3.46 1 2 1 2 1.77 1622.72 3.02 1 2 1 2 9.02 1576.80 0.00 2 3 2 3 16.02

Average 3.95 8.98 (4735.10) 2.45 3.16 (3522.70) 0.06 10.75 (4875.10)

30

RC101 1979.77 1.91 1 2 1 2 0.97 1947.89 2.59 1 2 1 2 2.00 1885.88 0.07 2 3 2 3 10.76

RC102 1933.80 4.21 1 2 1 2 2.25 1848.26 0.11 1 2 1 2 2.38 1829.86 0.44 3 4 3 4 3.34

RC103 1859.47 3.70 1 2 1 2 4.64 1741.50 0.68 1 2 1 2 2.55 1731.26 0.07 2 3 2 3 3.37

RC104 1853.14 4.74 1 2 1 2 2.19 1683.49 0.49 1 2 1 2 2.57 1705.54 0.22 2 3 2 3 5.43

RC105 1925.96 4.71 1 2 1 2 2.06 1799.41 2.13 1 2 1 2 2.30 1764.90 0.07 2 3 2 3 79.01

RC106 1872.23 3.71 1 2 1 2 1.47 1769.14 1.78 1 2 1 2 2.11 1743.86 0.23 2 3 2 3 17.02

RC107 1833.35 3.83 1 2 1 2 2.33 1699.90 0.00 1 2 1 2 3.98 1699.40 0.00 2 3 2 3 16.97

RC108 1763.00 0.00 1 2 1 2 1.84 1723.19 2.32 1 2 1 2 2.22 1694.70 0.00 2 3 2 3 17.65

Average 3.35 2.22 (7752.30) 1.26 2.51 (5470.60) 0.14 19.19 (8403.60)

Grand Average 2.65 8.47 1.02 2.84 0.08 9.56

In R sets, we can only report 12 optimal solutions in sets having 15 and 20 customers,

but average deviations are low. We are also reporting new best-known solutions by

improving 7 upper bounds in sets with 25 customers, 5 in sets with 30 customers. The

maximum deviation is 3.47%, although the reported gap greater than the maximum of
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clustered sets; overall, we obtain smaller percentage deviations in random instances.

One of the limitations comes from the capacities of the satellites. Considering both

hard time windows and satellite capacities while allocating, allocations might differ

from the optimal solution resulting in higher deviations. Therefore, when the number

of candidate satellites is small, and the satellites have tight capacities, the average

deviation increases. According to Table 6.4, we can produce 21 optimal solutions as

we can in clustered sets, but in sets with 2 candidate satellites, the deviation is signifi-

cantly higher than in other instances. While there are 2 satellites in RC sets, deviation

from best-known is more, but deviation decreases noticeably as the number of satel-

lites increases. This is because the proposed algorithm has substantial exploration

property in non-tight environments.

Table 6.5: Set 2 results for instances having 15 customers

|J| = 3 |J| = 4 |J| = 5

Instance Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts

15 a1 1652.27 0.05 1 2 1 2 6.25 1639.51 0.00 2 3 2 3 7.02 1648.70 0.00 1 3 1 3 20.14

15 a2 1641.38 0.00 2 3 2 3 0.29 1658.03 0.00 1 4 1 4 0.88 1690.83 0.00 3 4 3 4 0.45

15 a3 1615.53 0.00 1 2 1 2 0.37 1605.91 0.13 1 2 1 2 13.82 1585.63 0.00 4 5 4 5 13.52

15 a4 1673.19 0.75 1 3 1 3 0.34 1531.44 0.00 2 3 2 3 33.53 1598.90 0.00 1 4 1 4 25.01

15 a5 1654.34 0.00 1 2 1 2 0.45 1526.17 0.00 1 2 1 2 20.30 1551.18 0.00 3 5 3 5 24.65

Average 0.16 1.54 (3.06) 0.03 15.11 (9.37) 0.00 16.75 (11.24)

15 b1 1660.36 0.00 1 2 1 2 6.87 1643.16 0.00 2 3 2 3 20.21 1619.59 0.00 3 4 3 4 26.87

15 b2 1660.24 0.00 2 3 2 3 20.16 1684.67 0.00 2 3 2 3 0.64 1672.19 0.00 1 4 1 4 7.14

15 b3 1675.17 0.00 1 2 1 2 0.46 1663.94 0.99 3 4 3 4 7.14 1587.83 0.00 3 4 3 4 20.32

15 b4 1646.91 0.00 2 3 2 3 0.31 1592.01 0.00 2 3 2 3 7.38 1520.49 0.01 3 4 3 4 66.47

15 b5 1638.46 0.77 1 2 2 3 0.58 1548.37 0.00 1 2 1 2 0.43 1617.81 0.00 3 5 3 5 40.21

Average 0.15 5.68 (8.19) 0.20 7.16 (9.33) 0.00 32.30 (24.64)

15 c1 1639.04 0.00 1 2 1 2 6.89 1645.20 0.00 2 3 2 3 6.96 1550.92 0.00 1 3 1 3 20.38

15 c2 1619.16 0.00 2 3 2 3 0.47 1626.22 0.00 1 4 1 4 0.31 1587.90 0.00 1 4 1 4 23.07

15 c3 1639.39 0.00 1 2 1 2 0.74 1637.67 0.20 1 2 1 2 0.51 1581.68 0.06 3 4 4 5 19.75

15 c4 1636.43 0.00 2 3 2 3 0.28 1583.55 0.00 2 3 2 3 77.00 1590.89 0.04 3 4 3 4 65.63

15 c5 1552.93 0.00 2 3 2 3 8.23 1520.02 0.00 1 2 1 2 0.42 1598.56 0.00 3 5 3 5 19.68

Average 0.00 3.32 (6.27) 0.04 17.04 (12.19) 0.02 29.70 (20.65)

15 d1 1649.17 0.00 1 2 1 2 13.57 1633.29 0.00 2 3 2 3 6.96 1641.84 0.00 1 3 1 3 66.21

15 d2 1588.20 0.00 2 3 2 3 33.30 1631.59 0.00 1 4 1 4 6.93 1609.51 0.00 4 5 4 5 39.94

15 d3 1622.36 0.00 1 2 1 2 0.38 1654.34 0.00 3 4 3 4 7.09 1592.27 0.00 4 5 4 5 66.08

15 d4 1649.35 0.00 1 3 1 3 0.57 1598.46 0.00 2 3 2 3 92.52 1588.45 0.00 3 4 3 4 20.40

15 d5 1636.30 0.00 1 2 1 2 20.07 1520.02 0.00 1 2 1 2 6.95 1603.16 0.00 3 5 3 5 33.22

Average 0.00 13.58 (2.50) 0.00 24.09 (8.25) 0.00 45.17 (10.14)

Grand Average 0.08 6.03 0.07 15.85 0.01 30.96

For the Set 2 instances having 15 customers, the proposed EA can able to find the

optimal solutions for 51 instances among 60. Only in two instances, the location

decisions for candidate satellites are incorrect, and even if the location decisions are

accurate, there exist small gaps from the optimal. Table 6.5 shows that the maximum

deviation is 0.99%, and the averages for each group of candidate satellites are below
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0.1%.

Table 6.6 demonstrates that when the number of customers increased, the time does

not necessarily increase. It is expected that the solution time will increase when the

size increases; however, each generation can be solved within a reasonable time, but

the number of the generation that the algorithm evolves determines the total time.

Because when solutions do not converge, the algorithm proceeds until the maximum

number of generations. We reported 27 optimal solutions and the solutions deviate a

maximum of 0.92% from the optimal.

Table 6.6: Set 2 results for instances having 30 customers

|J| = 3 |J| = 4 |J| = 5

Instance Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts

30 a1 2122.91 0.03 1 3 1 3 54.76 2171.02 0.14 1 2 1 2 3.64 2184.14 0.21 3 4 3 4 5.93

30 a2 2128.50 0.00 2 3 2 3 2.48 2155.14 0.00 2 3 2 3 4.41 2170.85 0.00 2 3 2 3 3.42

30 a3 2207.19 0.25 1 3 1 3 8.22 2128.92 0.92 3 4 3 4 3.50 2116.41 0.00 2 3 2 3 16.36

30 a4 2136.08 0.00 1 2 1 2 3.07 2114.73 0.02 2 3 2 3 10.15 2140.17 0.49 4 5 4 5 4.75

30 a5 2215.68 0.10 2 3 2 3 4.31 2131.11 0.00 1 2 1 2 3.72 2076.96 0.04 4 5 4 5 9.45

Average 0.08 14.57 (22.76) 0.22 5.08 (49.68) 0.15 7.98 (56.07)

30 b1 2122.20 0.15 1 3 1 3 8.69 2200.55 0.08 1 2 1 2 2.74 2189.02 0.00 3 4 3 4 4.45

30 b2 2018.18 0.69 2 3 2 3 3.14 2180.56 0.00 3 4 3 4 4.59 2191.32 0.00 3 4 3 4 4.93

30 b3 2206.22 0.06 1 3 1 3 24.23 2161.27 0.11 2 3 2 3 2.00 2120.01 0.00 2 3 2 3 11.06

30 b4 2166.90 0.36 1 2 1 2 3.23 2131.86 0.48 2 3 2 3 4.47 2142.20 0.74 4 5 4 5 9.33

30 b5 1909.84 0.81 2 3 2 3 3.23 2168.05 0.24 1 2 1 2 4.00 2151.00 0.00 4 5 4 5 3.44

Average 0.41 8.50 (88.62) 0.18 3.56 (110.28) 0.15 6.64 (63.36)

30 c1 1802.38 0.16 1 3 1 3 4.90 2125.79 0.24 1 2 1 2 3.70 2209.80 0.00 3 4 3 4 3.58

30 c2 2098.61 0.00 2 3 2 3 2.83 2137.77 0.00 3 4 3 4 2.39 2117.71 0.06 3 4 3 4 3.00

30 c3 2149.85 0.00 1 3 1 3 10.98 2114.25 0.00 2 3 2 3 2.56 2154.62 0.00 2 3 2 3 3.65

30 c4 2128.25 0.00 1 2 1 2 2.07 2087.60 0.12 2 3 2 3 3.25 2111.80 0.91 4 5 4 5 10.44

30 c5 2179.26 0.00 2 3 2 3 3.19 1926.64 0.02 2 4 2 4 59.38 1800.27 0.26 4 5 4 5 15.41

Average 0.03 4.79 (51.47) 0.08 14.25 (114.05) 0.25 7.22 (128.59)

30 d1 1809.62 0.13 1 3 1 3 9.94 2175.11 0.44 1 2 1 2 4.17 2227.50 0.00 3 4 3 4 2.89

30 d2 2108.97 0.00 2 3 2 3 4.22 2148.66 0.02 3 4 3 4 2.13 2186.27 0.00 3 4 3 4 4.32

30 d3 2166.99 0.19 1 3 1 3 17.72 2144.36 0.70 3 4 3 4 2.92 2117.07 0.00 2 3 2 3 3.01

30 d4 2137.98 0.00 1 2 1 2 3.64 2105.15 0.00 2 3 2 3 2.22 2119.03 0.16 4 5 4 5 2.11

30 d5 2197.54 0.00 2 3 2 3 3.15 2197.54 0.00 1 2 1 2 3.31 2105.16 0.12 4 5 4 5 4.30

Average 0.06 7.73 (10.08) 0.23 2.95 (47.97) 0.06 3.33 (46.77)

Grand Average 0.15 8.90 0.18 6.46 0.15 6.29

According to Table 6.7, the algorithm finds only optimal solutions for four instances.

Nevertheless, the EA can improve the existing upper bounds for two instances that

are not reported as optimally by [15]. Although the instances’ size increases more

than three times considering the 15 customer instances, the average deviations are

still below 0.5%, and the maximum deviation equal to 1.61%. Only one satellite

configuration is not accurate among 60 instances. Therefore, the reader may realize

that the source of the variation comes from the allocations.
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Table 6.7: Set 2 results for instances having 50 customers

|J| = 3 |J| = 4 |J| = 5

Instance Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts

50 a1 2661.61 0.83 1 2 1 2 14.06 2588.05 0.26 2 4 2 4 17.06 2592.44 0.17 1 4 1 4 17.09

50 a2 2701.87 0.32 1 3 1 3 162.42 2596.65 0.00 1 3 1 3 13.92 2610.74 0.30 1 4 1 4 21.02

50 a3 2609.07 0.35 2 3 2 3 13.49 2594.07 0.57 1 2 1 2 15.03 2400.81 0.05 2 3 2 3 11.77

50 a4 2564.75 0.16 1 2 1 2 15.91 2490.97 0.00 1 4 1 4 168.46 2498.22 0.06 4 5 4 5 9.69

50 a5 2549.61 0.05 1 3 1 3 166.72 2590.28 0.27 1 4 1 4 166.58 2512.72 0.07 3 4 3 4 9.56

Average 0.34 74.52 (284.37) 0.22 76.21 (656.99) 0.13 13.83 (274.09)

50 b1 2624.49 0.51 1 2 1 2 12.04 2575.33 0.30 1 4 1 4 158.16 2575.08 -0.11 1 4 1 4 24.97

50 b2 2590.38 0.44 1 3 1 3 170.87 2693.02 1.32 1 3 1 3 17.96 2642.45 0.66 1 4 1 4 21.94

50 b3 2648.41 0.70 2 3 2 3 15.47 2611.27 0.56 1 2 1 2 17.73 2529.24 0.67 2 4 2 4 17.41

50 b4 2588.46 0.30 1 2 1 2 10.68 2515.60 0.07 1 4 1 4 161.05 2523.95 0.14 4 5 4 5 12.21

50 b5 2635.04 1.61 1 3 1 3 165.37 2633.17 0.61 2 4 2 4 28.66 2540.52 0.43 3 4 3 4 9.34

Average 0.71 74.88 (524.78) 0.57 76.71 (1047.52) 0.36 17.17 (3279.02)

50 c1 2556.81 0.45 1 2 1 2 13.35 2524.71 0.49 1 4 1 4 172.32 2522.13 0.17 2 3 2 3 11.81

50c2 2606.22 0.64 1 2 1 2 21.00 2518.44 0.01 1 3 1 3 16.80 2569.54 0.17 1 4 1 4 40.97

50 c3 2530.33 0.26 2 3 2 3 14.20 2581.67 0.08 3 4 3 4 16.19 2477.87 -0.02 2 4 2 4 29.20

50 c4 2521.33 0.20 1 2 1 2 12.03 2416.15 0.13 1 4 1 4 179.80 2572.21 0.40 4 5 4 5 11.93

50 c5 2562.63 0.45 1 3 1 3 181.18 2742.51 0.00 1 2 1 2 148.89 2573.91 0.27 1 5 1 5 172.06

Average 0.40 48.35 (1870.09) 0.14 106.80 (2397.18) 0.20 53.19 (5792.74)

50 d1 2595.19 0.20 2 3 2 3 12.51 2530.31 0.29 1 4 1 4 170.54 2559.37 0.12 1 4 1 4 18.50

50 d2 2703.74 0.88 1 2 1 2 15.67 2570.48 0.09 1 3 1 3 39.39 2593.44 0.26 1 4 1 4 14.05

50 d3 2596.77 0.18 2 3 2 3 15.53 2648.46 0.41 3 4 3 4 12.45 2492.33 0.01 2 3 2 3 14.31

50 d4 2564.49 0.04 1 2 1 2 21.72 2499.08 0.32 1 4 1 4 171.29 2525.75 0.38 4 5 4 5 7.23

50 d5 2629.76 0.00 1 3 1 3 158.28 2603.56 0.41 3 4 2 3 20.14 2572.57 0.48 3 4 3 4 17.08

Average 0.26 44.74 (210.69) 0.31 82.76 (359.94) 0.25 14.23 (872.32)

Grand Average 0.43 60.62 0.31 85.62 0.23 24.61

Table 6.8: Set 2 results for instances having 100 customers

|J|= 3 |J|= 4 |J|= 5

Instance Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts Total Cost Gap SEA SBKS Ts

100 a1 4130.59 0.98 2 3 2 3 42.56 4015.59 0.59 1 3 3 4 41.54 4141.82 -1.11 2 5 2 5 102.91

100 a2 4267.73 1.25 1 3 1 3 886.40 3919.25 -1.06 1 4 1 4 1014.65 3940.96 1.25 1 4 1 4 48.31

100 a3 3981.38 1.55 1 3 1 3 934.45 4232.14 1.11 3 4 3 4 69.49 3925.86 1.20 3 5 3 5 57.98

100 a4 4265.02 1.13 1 2 1 2 57.69 3911.45 -0.06 2 4 1 4 69.68 4057.67 2.14 1 2 1 2 32.42

100 a5 4107.38 1.98 2 3 1 2 33.23 4129.08 1.22 1 4 1 4 916.85 3978.31 0.25 2 3 2 3 24.80

Average 1.38 390.87 (210.69) 0.31 82.76 (359.94) 0.25 14.23 (872.32)

100 b1 3944.25 -0.29 2 3 2 3 61.50 3928.35 -0.15 1 3 1 2 4 53.39 4174.13 0.45 3 5 3 5 46.50

100 b2 4174.42 1.53 1 3 1 3 954.85 4098.18 2.87 1 4 1 4 934.10 3949.42 0.97 1 4 1 4 58.67

100 b3 4079.13 3.43 1 3 1 3 966.89 4239.75 0.04 2 3 1 3 24.31 3977.95 -3.67 3 5 1 2 34.72

100 b4 4203.46 1.20 1 2 1 2 3 40.40 4249.57 2.28 2 4 1 4 55.36 4165.89 3.46 1 2 2 3 32.43

100 b5 4146.44 2.51 2 3 1 2 38.45 4203.50 1.52 2 4 1 4 78.63 4176.06 -2.34 2 3 1 3 20.06

Average 1.68 412.42 (12114.35) 1.31 229.16 (14273.36) -0.23 38.48 (14256.46)

100 c1 4101.25 -2.17 2 3 2 3 30.43 3970.29 -0.84 1 3 1 3 50.76 4120.17 -0.95 2 5 1 4 55.27

100 c2 4065.40 1.07 1 3 1 3 541.78 4093.30 -0.23 2 4 1 4 48.11 3897.77 -1.47 1 4 1 3 70.58

100 c3 3991.68 1.77 1 3 1 3 510.96 3930.79 -2.03 3 4 1 2 4 31.89 4018.17 -0.74 1 3 1 2 34.91

100 c4 4131.19 -1.24 1 2 1 3 28.55 3998.54 -2.59 2 4 2 4 66.01 4004.91 1.19 1 2 2 3 39.53

100 c5 4085.72 1.39 1 2 1 2 64.87 4005.64 -1.37 1 4 1 4 524.98 3991.51 -1.81 2 3 3 5 39.63

Average 0.16 235.32 (14352.24) -1.41 144.35 (14361.00) -0.75 47.98 (14322.84)

100 d1 4131.48 1.92 2 3 1 3 37.32 4067.60 0.85 1 3 3 4 43.08 4138.45 0.81 3 5 3 5 39.26

100 d2 4265.87 1.60 1 3 1 3 470.85 4040.12 2.03 2 4 1 4 59.33 3922.86 0.93 1 4 1 4 56.78

100 d3 3961.86 2.59 1 3 1 3 528.13 3990.15 1.74 1 3 1 3 4 60.42 3962.59 -1.41 3 5 3 5 30.79

100 d4 4182.26 1.85 1 2 1 3 28.59 4138.97 1.09 2 4 1 4 52.55 3989.65 1.99 1 2 1 2 19.49

100 d5 4134.11 2.32 2 3 1 2 39.95 4128.84 1.21 1 4 1 4 491.36 4032.26 0.55 2 3 2 3 25.28

Average 2.06 220.97 (8626.84) 1.38 141.35 (10600.14) 0.58 34.32 (13357.63)

Grand Average 1.32 314.89 0.41 234.32 0.09 43.51

When the number of customers increases, wrong assignments of customers result in
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greater deviations from the optimal solution. Because wrong allocations also directly

affect the routes and the routes might end up completely different from optimal solu-

tions.

Table 6.8 demonstrates that the average gap is 1.32%, 0.41%, and 0.09% for instances

with 3,4 and 5 candidate satellites respectively. The average deviation from the best-

known solution decreases when the number of satellites increases. In order to obtain

optimal (best-known) solutions, the algorithm should generate a diversified popula-

tion. Nonetheless, it seems the EA cannot escape the trap for small environments

having multiple local optimums. However, with the larger sets having more alter-

natives, using randomization EA reaches better solution space points. Although we

cannot report an optimal solution for these sets, the total costs of 18 instances are

improved by a maximum of 3.67%.

6.2.2 Two-echelon Results

In this section, the computational results of the modified EA to solve the 2E-LRPTW

original instances are demonstrated. In order to make our results comparable, in the

first echelon cost of direct trips considered rather than creating routes because there

are no reported results in the literature for the models having routes at both echelons.

Recall that the original Set 1 instances only have 2 candidate CDC locations in each

of the sets. However, Set 2 instances have number of CDC points i ∈ {2, 3, 6}
and satellite points vary between 3 to 5 having k ∈ {15, 30, 50, 100} customers. The

tables’ structure is the same as the previous section for Set 1 results, but we introduced

the CDC points, |I|, and the candidate satellite points on the tables for Set 2 results.

Also, SEA and SBKS are replaced with FEA and FBKS indicating which facilities

are opened in the metaheuristic solution and the best-known solution, respectively, to

represent not only satellites but also the open CDCs.

Since there are always 2 candidate CDC points in these sets, we can evaluate how

the performance changes as the number of satellites increases from Table 6.9. The

optimal solutions for 10 sets are reported and the average gap is a maximum 2.83%,

and the maximum deviation in these sets is 3.64%. When the number of customers
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increases and the number of candidate satellites equal to two, deviation increases

more than other scenarios. Also, as the number of satellites increases, the gap is

expected to grow, while EA reports lower average deviations.

Table 6.9: Results for original Clustered (C) instances

|J| = 2 |J| = 3 |J| = 4

|K| Instance Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts

15

C101 1454.60 0.00 0 2 3 0 2 3 3.85 1400.50 0.00 1 2 3 1 2 3 7.20 1400.64 0.06 1 2 3 1 2 3 3.80

C102 1484.09 2.20 0 2 3 0 2 3 79.25 1401.92 0.40 1 2 3 1 2 3 9.80 1395.00 0.06 1 2 3 1 2 3 11.50

C103 1455.11 0.21 0 2 3 0 2 3 3.65 1397.92 0.12 1 2 3 1 2 3 9.90 1395.45 0.09 1 2 3 1 2 3 6.90

C104 1458.95 0.61 0 2 3 0 2 3 4.15 1391.74 0.05 1 2 3 1 2 3 14.90 1393.88 0.14 1 2 3 1 2 3 8.00

C105 1454.60 0.00 0 2 3 0 2 3 3.80 1400.50 0.00 1 2 3 1 2 3 7.55 1400.64 0.06 1 2 3 1 2 3 3.80

C106 1454.60 0.00 0 2 3 0 2 3 3.60 1400.50 0.00 1 2 3 1 2 3 8.10 1400.64 0.06 1 2 3 1 2 3 4.10

C107 1455.11 0.16 0 2 3 0 2 3 3.70 1401.26 0.24 1 2 3 1 2 3 6.90 1400.64 0.25 1 2 3 1 2 3 3.90

C108 1455.11 0.21 0 2 3 0 2 3 3.60 1401.26 0.38 1 2 3 1 2 3 7.70 1400.64 0.39 1 2 3 1 2 3 3.90

C109 1455.11 0.30 0 2 3 0 2 3 3.20 1401.26 0.38 1 2 3 1 2 3 7.30 1395.23 0.19 1 2 3 1 2 3 4.50

Average 0.41 12.09 (29.20) 0.17 8.82 (101.60) 0.14 5.60 (197.30)

20

C101 1541.40 0.00 0 2 3 0 2 3 8.50 1479.02 0.38 1 2 3 1 2 3 6.75 1472.44 1.21 1 2 3 1 2 3 9.05

C102 1509.61 0.03 0 2 3 0 2 3 87.85 1452.94 0.85 1 2 3 1 2 3 9.60 1459.43 1.13 1 2 3 1 2 3 10.70

C103 1512.27 0.21 0 2 3 0 2 3 65.65 1440.27 0.09 1 2 3 1 2 3 11.65 1445.57 0.01 1 2 3 1 2 3 9.80

C104 1521.01 0.56 0 2 3 0 2 3 13.30 1434.17 0.07 1 2 3 1 2 3 11.15 1442.28 -0.08 1 2 3 1 2 3 9.80

C105 1527.63 0.55 0 2 3 0 2 3 7.80 1455.00 0.00 1 2 3 1 2 3 7.85 1461.10 0.63 1 2 3 1 2 3 10.20

C106 1541.40 0.00 0 2 3 0 2 3 8.40 1479.02 0.70 1 2 3 1 2 3 8.60 1473.32 1.47 1 2 3 1 2 3 9.20

C107 1541.30 1.45 0 2 3 0 2 3 8.40 1462.04 0.48 1 2 3 1 2 3 6.60 1456.59 0.32 1 2 3 1 2 3 9.10

C108 1543.95 1.62 0 2 3 0 2 3 8.00 1459.67 0.97 1 2 3 1 2 3 8.60 1461.86 1.00 1 2 3 1 2 3 9.80

C109 1518.14 1.06 0 2 3 0 2 3 15.70 1435.90 0.05 1 2 3 1 2 3 8.80 1448.80 0.10 1 2 3 1 2 3 10.00

Average 0.61 24.84 (3331.30) 0.40 8.84 (3436.10) 0.64 9.74 (4501.90)

25

C101 1628.47 3.02 0 2 3 0 2 3 60.45 1490.99 2.70 1 2 3 1 2 3 2.00 1479.28 1.84 1 2 3 1 2 3 9.80

C102 1615.40 2.21 0 2 3 0 2 3 16.10 1489.92 2.70 1 2 3 1 2 3 5.10 1475.34 1.79 1 2 3 1 2 3 11.70

C103 1618.41 2.38 0 2 3 0 2 3 13.15 1481.03 1.41 1 2 3 1 2 3 8.40 1481.94 2.25 1 2 3 1 2 3 11.90

C104 1609.61 2.26 0 2 3 0 2 3 22.60 1481.03 2.31 1 2 3 1 2 3 8.20 1471.13 1.50 1 2 3 1 2 3 11.60

C105 1626.81 3.34 0 2 3 0 2 3 11.05 1487.39 2.45 1 2 3 1 2 3 2.10 1462.41 0.68 1 2 3 1 2 3 10.30

C106 1635.41 3.45 0 2 3 0 2 3 9.50 1490.99 2.70 1 2 3 1 2 3 2.00 1475.54 1.59 1 2 3 1 2 3 8.90

C107 1625.88 3.28 0 2 3 0 2 3 13.10 1487.39 2.72 1 2 3 1 2 3 2.00 1473.62 1.45 1 2 3 1 2 3 10.00

C108 1631.44 3.64 0 2 3 0 2 3 14.80 1485.99 2.62 1 2 3 1 2 3 2.30 1456.22 0.35 1 2 3 1 2 3 11.80

C109 1603.49 1.86 0 2 3 0 2 3 13.40 1481.76 2.33 1 2 3 1 2 3 3.80 1479.94 2.10 1 2 3 1 2 3 10.90

Average 2.83 19.35 (3815.00) 2.44 3.99 (5231.70) 1.51 10.77 (4892.50)

30

C101 1632.25 2.13 0 2 3 0 2 3 15.95 1505.68 2.66 1 2 3 1 2 3 5.75 1474.37 0.41 1 2 3 1 2 3 10.45

C102 1615.09 1.08 0 2 3 0 2 3 20.45 1504.60 2.65 1 2 3 1 2 3 9.35 1468.70 0.17 1 2 3 1 2 3 11.70

C103 1606.49 0.22 0 2 3 0 2 3 71.00 1494.71 0.46 1 2 3 1 2 3 13.20 1468.70 -1.46 1 2 3 1 2 3 15.70

C104 1611.77 0.47 0 2 3 0 2 3 116.20 1488.77 0.23 1 2 3 1 2 3 8.25 1467.40 0.00 1 2 3 1 2 3 18.65

C105 1615.88 1.58 0 2 3 0 2 3 133.30 1505.68 2.66 1 2 3 1 2 3 6.20 1489.55 1.45 1 2 3 1 2 3 11.85

C106 1640.50 2.65 0 2 3 0 2 3 13.80 1506.28 2.70 1 2 3 1 2 3 5.40 1474.37 0.41 1 2 3 1 2 3 10.10

C107 1619.09 1.78 0 2 3 0 2 3 13.20 1502.61 2.49 1 2 3 1 2 3 6.00 1474.37 0.41 1 2 3 1 2 3 9.60

C108 1626.89 2.28 0 2 3 0 2 3 14.10 1502.61 2.50 1 2 3 1 2 3 6.30 1472.34 0.34 1 2 3 1 2 3 14.50

C109 1610.98 1.27 0 2 3 0 2 3 13.50 1494.98 1.81 1 2 3 1 2 3 6.70 1473.37 0.41 1 2 3 1 2 3 11.40

Average 1.50 45.72 (6067.30) 2.02 7.46 (6658.30) 0.24 12.66 (7376.10)

Grand Average 1.34 25.50 1.26 7.28 0.63 9.69

According to Table 6.10, we get better results in R sets than C sets when the number of

candidate satellites is equal to 2. Especially in instances with 25 and 30 customers, the

performance is better in randomized sets. Even though random sets are challenging to

solve, EA can overcome the complexities of the instances successfully. As the number

of customers in the C set increases, the average deviation from the best increases

rapidly, while the number of customers in R sets doubles, the gap does not increase

twice. Although the facilities are opened incorrectly in 24 sets, deviations are low
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indicating that the routes and allocations are well built. In addition to 15 optimal

solutions are reported, and the total cost of 10 best-known solutions is improved.

Table 6.10: Results for original Random (R) instances

|J| = 2 |J| = 3 |J| = 4

|K| Instance Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts

15

R101 1347.50 0.00 0 2 3 0 2 3 0.31 1347.50 0.00 0 2 4 0 2 4 0.29 1326.39 0.06 0 4 5 0 4 5 0.29

R102 1313.90 0.00 0 2 3 0 2 3 0.28 1291.93 0.63 1 2 3 1 2 3 0.46 1282.71 0.06 1 3 4 1 3 4 12.79

R103 1312.27 0.12 0 2 3 0 2 3 0.29 1291.93 0.63 1 2 3 1 2 3 0.43 1282.71 0.06 1 3 4 1 3 4 0.64

R104 1282.20 0.00 0 2 3 0 2 3 0.38 1276.12 0.06 1 2 3 1 2 3 0.51 1273.80 0.00 1 3 4 1 3 4 6.75

R105 1336.10 0.00 0 2 3 0 2 3 20.47 1326.90 0.07 1 2 3 1 2 3 0.48 1325.60 0.00 0 4 5 0 4 5 0.31

R106 1297.23 0.44 0 2 3 0 2 3 0.05 1292.26 0.96 0 2 4 1 2 3 0.78 1277.50 0.00 1 3 4 1 3 4 0.72

R107 1297.23 0.44 0 2 3 0 2 3 0.36 1289.88 0.77 1 2 3 1 2 3 0.40 1278.23 0.06 1 3 4 1 3 4 0.62

R108 1252.20 0.00 0 2 3 0 2 3 0.34 1252.20 0.00 0 2 4 0 2 4 0.33 1252.20 0.00 0 2 5 0 2 5 0.58

R109 1299.65 0.06 0 2 3 0 2 3 0.26 1299.65 0.07 0 2 4 1 2 3 0.63 1291.10 0.00 0 4 5 0 4 5 0.41

R110 1285.36 0.96 0 2 3 0 2 3 0.16 1279.72 0.52 1 2 3 0 2 4 40.55 1273.84 0.06 0 2 5 0 2 5 0.53

R111 1287.40 0.00 0 2 3 0 2 3 0.34 1290.48 0.82 0 2 4 1 2 3 0.36 1274.72 0.06 1 3 4 1 3 4 0.41

R112 1268.85 0.18 0 2 3 0 2 3 0.23 1268.85 0.18 0 2 4 0 2 4 0.27 1266.60 0.00 0 2 5 0 2 5 0.43

Average 0.18 1.96 (19.10) 0.39 3.79 (35.50) 0.03 2.04 (70.90)

20

R101 1464.11 0.07 0 2 3 0 2 3 3.04 1443.32 0.08 1 3 4 1 3 4 1.46 1432.67 0.10 0 4 5 0 4 5 1.26

R102 1416.55 0.06 0 2 3 0 2 3 1.10 1373.19 0.09 1 2 3 1 2 3 0.61 1376.01 0.10 1 3 4 1 3 4 13.01

R103 1353.64 0.06 0 2 3 0 2 3 36.66 1336.04 0.09 1 2 3 1 2 3 0.92 1318.99 0.08 1 3 4 1 3 4 1.30

R104 1337.00 0.00 0 2 3 0 2 3 1.39 1334.27 1.76 1 2 3 1 2 3 1.34 1310.82 0.09 1 3 4 1 3 4 1.38

R105 1399.69 0.06 0 2 3 0 2 3 0.54 1393.55 0.51 1 2 3 1 2 3 0.88 1383.13 0.07 0 4 5 0 4 5 0.82

R106 1384.15 0.27 0 2 3 0 2 3 0.18 1347.11 0.08 1 2 3 1 2 3 0.73 1354.60 0.43 1 3 4 1 3 4 1.11

R107 1340.65 0.06 0 2 3 0 2 3 43.25 1344.80 1.66 1 2 3 1 2 3 1.01 1310.49 0.08 1 3 4 1 3 4 1.62

R108 1331.84 0.65 0 2 3 0 2 3 0.62 1323.61 1.68 1 2 3 1 2 3 0.93 1297.52 0.08 1 3 4 1 3 4 1.44

R109 1361.63 0.21 0 2 3 0 2 3 1.10 1355.38 0.24 1 2 3 1 2 3 0.93 1354.12 0.08 0 4 5 1 3 4 0.99

R110 1331.76 0.06 0 2 3 0 2 3 0.61 1324.12 0.08 1 2 3 1 2 3 0.78 1329.22 0.08 0 4 5 0 4 5 0.66

R111 1337.13 0.06 0 2 3 0 2 3 1.08 1337.13 0.79 0 2 4 1 2 3 1.30 1318.99 0.08 1 3 4 1 3 4 1.20

R112 1309.60 0.06 0 2 3 0 2 3 0.71 1309.60 0.40 0 2 4 1 2 3 0.88 1308.24 0.07 0 4 5 0 4 5 1.29

Average 0.13 7.52 (859.60) 0.62 0.98 (1682.40) 0.11 2.17 (600.10)

25

R101 1587.69 0.07 0 2 3 0 2 3 2.09 1590.97 1.53 0 3 4 1 2 3 0.86 1585.53 1.25 1 3 4 0 4 5 1.14

R102 1517.24 0.09 0 2 3 0 2 3 1.28 1524.99 2.60 0 3 4 1 2 3 1.58 1496.14 0.09 1 3 4 1 3 4 2.06

R103 1466.24 1.04 0 2 3 0 2 3 1.23 1450.76 1.47 0 2 4 1 2 3 2.72 1429.62 -1.49 1 3 4 0 2 5 8.20

R104 1415.43 0.07 0 2 3 0 2 3 2.95 1417.15 0.88 0 2 4 1 2 3 83.12 1420.02 -0.22 0 4 5 0 4 5 8.22

R105 1508.60 0.57 0 2 3 0 2 3 0.89 1516.25 1.54 1 2 3 1 2 3 1.47 1485.03 0.09 0 4 5 0 4 5 7.60

R106 1445.41 0.07 0 2 3 0 2 3 0.36 1468.40 1.74 1 2 3 1 2 3 2.87 1467.14 1.57 0 4 5 0 2 5 10.38

R107 1399.60 0.07 0 2 3 0 2 3 1.20 1404.78 0.08 1 2 3 1 2 3 7.96 1409.07 -0.36 1 3 4 0 4 5 3.28

R108 1389.86 0.29 0 2 3 0 2 3 7.02 1390.41 -0.06 0 2 4 0 2 4 89.29 1390.57 0.34 1 3 4 0 2 5 1.92

R109 1446.27 0.53 0 2 3 0 2 3 66.03 1451.38 2.29 1 3 4 1 2 3 1.84 1431.39 0.11 1 3 4 1 3 4 7.39

R110 1425.44 0.24 0 2 3 0 2 3 1.09 1423.94 0.14 0 2 4 0 2 4 2.14 1421.40 0.09 0 4 5 1 3 4 8.01

R111 1414.40 0.06 0 2 3 0 2 3 1.98 1416.22 0.99 0 2 4 1 2 3 70.54 1414.40 0.06 1 3 4 0 2 5 1.47

R112 1381.53 0.49 0 2 3 0 2 3 0.89 1407.22 1.99 0 2 4 0 2 4 3.98 1388.26 0.98 0 4 5 0 2 5 33.35

Average 0.30 7.25 (7899.00) 1.27 22.36 (9496.10) 0.21 7.75 (8554.90)

30

R101 1619.59 0.10 0 2 3 0 2 3 10.05 1608.79 0.35 0 3 4 1 2 3 21.93 1610.93 0.12 0 4 5 0 4 5 3.52

R102 1544.65 0.60 0 2 3 0 2 3 13.06 1528.81 0.94 0 3 4 1 2 3 9.61 1535.17 0.11 0 4 5 0 4 5 3.56

R103 1459.73 0.67 0 2 3 0 2 3 3.31 1451.51 0.38 0 2 4 1 2 3 11.25 1451.51 0.10 0 2 5 0 2 5 4.77

R104 1408.49 0.10 0 2 3 0 2 3 167.56 1408.49 -0.92 0 2 4 1 2 3 164.31 1408.49 -1.01 0 2 5 0 4 5 194.34

R105 1579.96 2.17 0 2 3 0 2 3 4.26 1550.48 0.26 0 2 4 0 2 4 16.16 1540.96 0.11 0 4 5 0 4 5 8.36

R106 1497.85 1.17 0 2 3 0 2 3 29.90 1497.85 1.20 0 2 4 1 2 3 27.93 1480.42 0.15 0 4 5 1 3 4 4.34

R107 1430.33 0.39 0 2 3 0 2 3 4.16 1430.33 0.39 0 2 4 0 2 4 11.97 1430.33 0.11 0 2 5 0 2 5 29.98

R108 1392.12 -1.02 0 2 3 0 2 3 170.22 1385.70 -0.33 0 2 4 0 2 4 15.00 1392.12 -1.25 0 2 5 0 2 5 187.04

R109 1462.19 0.38 0 2 3 0 2 3 11.86 1458.36 0.12 0 2 4 0 2 4 10.13 1458.36 0.12 0 2 5 0 2 5 12.67

R110 1452.68 0.55 0 2 3 0 2 3 130.20 1446.15 0.09 0 2 4 0 2 4 5.64 1452.68 0.55 0 2 5 0 2 5 175.47

R111 1437.10 0.23 0 2 3 0 2 3 3.22 1435.33 -0.01 0 2 4 0 2 4 5.95 1437.10 0.22 0 2 5 0 2 5 10.64

R112 1386.56 0.10 0 2 3 0 2 3 2.74 1386.56 0.10 0 2 4 0 2 4 6.03 1386.56 0.10 0 2 5 0 2 5 13.48

Average 0.45 45.88 (3703.30) 0.21 25.49 (6820.60) -0.05 54.01 (7386.10)

Grand Average 0.27 15.65 0.62 13.16 0.07 16.49

When the number of candidate satellites is two, RC instances can be called the in-

stances where EA shows the lowest performance from the Table 6.11. While the

number of customers was 25 and 30, solutions deviate a maximum of 9.38 percent
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from the best-known solution. Apart from that, as the number of candidate satellites

increased, the average gap decreased, and the algorithm obtained the optimal solu-

tions for 13 instances. We could not get the correct facility configuration in 6 sets, but

the satellites opened are correct; only the CDCs are faulty. The fact that opening the

wrong CDC when there are two candidate locations may indicate that the EA cannot

obtain enough diversified solutions in tight sets.

Table 6.11: Results for original Random-Clustered (RC) instances

|J| = 2 |J| = 3 |J| = 4

|K| Instance Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts

15

RC101 1720.53 0.75 0 2 3 0 2 3 0.30 1524.53 0.06 1 2 3 1 2 3 0.15 1554.79 0.06 1 2 3 1 2 3 0.17

RC102 1606.42 0.06 0 2 3 0 2 3 0.28 1501.48 0.44 1 2 3 1 2 3 0.13 1534.86 0.32 1 2 3 1 2 3 6.29

RC103 1606.42 0.06 0 2 3 0 2 3 0.29 1501.48 0.44 1 2 3 1 2 3 0.17 1534.86 0.32 1 2 3 1 2 3 18.55

RC104 1627.04 1.75 0 2 3 0 2 3 0.63 1493.50 0.32 1 2 3 1 2 3 6.33 1523.60 0.00 1 2 3 1 2 3 0.24

RC105 1649.81 0.19 0 2 3 0 2 3 0.47 1533.31 0.19 1 2 3 1 2 3 0.15 1577.81 0.16 1 2 3 1 2 3 6.32

RC106 1639.63 2.02 0 2 3 0 2 3 0.05 1503.42 0.06 1 2 3 1 2 3 6.33 1538.55 0.07 1 2 3 1 2 3 0.14

RC107 1594.90 0.00 0 2 3 0 2 3 7.05 1483.50 0.00 1 2 3 1 2 3 0.17 1518.40 0.00 1 2 3 1 2 3 12.34

RC108 1588.20 0.00 0 2 3 0 2 3 0.28 1483.81 0.12 1 2 3 1 2 3 0.16 1518.62 0.26 1 2 3 1 2 3 0.25

Average 0.60 1.17 (56.50) 0.20 1.70 (419.60) 0.15 5.54 (237.00)

20

RC101 1822.19 5.06 0 2 3 0 2 3 25.75 1622.66 0.82 1 2 3 1 2 3 0.81 1610.44 0.06 1 3 4 1 3 4 0.35

RC102 1754.63 2.60 0 2 3 0 2 3 2.10 1581.05 0.06 1 2 3 1 2 3 0.89 1587.27 0.06 1 3 4 1 3 4 0.65

RC103 1736.16 2.13 0 2 3 0 2 3 0.76 1577.99 0.06 1 2 3 1 2 3 1.04 1587.41 0.07 1 3 4 1 3 4 0.74

RC104 1710.88 1.18 0 2 3 0 2 3 41.82 1572.29 0.09 1 2 3 1 2 3 0.78 1579.97 0.23 1 3 4 1 3 4 0.35

RC105 1808.70 4.49 0 2 3 0 2 3 0.67 1613.02 0.71 1 2 3 1 2 3 0.74 1610.09 0.07 1 3 4 1 3 4 1.09

RC106 1713.71 0.43 0 2 3 0 2 3 0.18 1596.86 0.58 1 2 3 1 2 3 0.58 1592.06 0.07 1 3 4 1 3 4 0.24

RC107 1722.49 2.54 0 2 3 0 2 3 0.67 1567.30 0.00 1 2 3 1 2 3 0.51 1571.04 0.06 1 3 4 1 3 4 0.81

RC108 1720.78 2.71 0 2 3 0 2 3 0.68 1565.30 0.00 1 2 3 1 2 3 0.78 1566.90 0.00 1 3 4 1 3 4 0.65

Average 2.64 9.08 (340.60) 0.29 0.77 (3835.50) 0.08 0.61 (3073.80)

25

RC101 1946.38 6.32 0 2 3 0 2 3 1.76 1726.97 3.37 1 2 3 1 2 3 6.70 1650.98 0.07 1 3 4 1 3 4 7.21

RC102 1865.02 6.93 0 2 3 0 2 3 1.18 1635.37 1.27 1 2 3 1 2 3 1.12 1621.49 0.07 1 3 4 1 3 4 7.48

RC103 1795.48 3.65 1 2 3 0 2 3 1.83 1609.84 0.33 1 2 3 1 2 3 1.66 1609.28 0.09 1 3 4 1 3 4 1.66

RC104 1773.50 3.93 1 2 3 0 2 3 60.36 1593.23 1.04 1 2 3 1 2 3 1.34 1582.07 0.24 1 3 4 1 3 4 1.72

RC105 1922.24 9.38 1 2 3 0 2 3 1.43 1715.12 5.47 1 2 3 1 2 3 1.54 1630.03 0.08 1 3 4 1 3 4 7.76

RC106 1868.21 7.43 1 2 3 0 2 3 0.36 1680.09 4.35 1 2 3 1 2 3 1.61 1613.62 0.06 1 3 4 1 3 4 7.04

RC107 1826.40 7.38 1 2 3 0 2 3 1.62 1628.16 3.23 1 2 3 1 2 3 1.08 1581.50 0.00 1 3 4 1 3 4 13.41

RC108 1756.86 3.46 0 2 3 0 2 3 1.71 1577.98 0.18 1 2 3 1 2 3 14.26 1576.80 0.00 1 3 4 1 3 4 31.57

Average 6.06 8.78 (4735.10) 2.40 3.66 (3522.70) 0.08 9.73 (4875.10)

30

RC101 1981.99 2.03 0 2 3 0 2 3 1.07 1952.66 2.84 1 2 3 1 2 3 1.89 1885.88 0.07 1 3 4 1 3 4 9.06

RC102 1934.00 4.23 0 2 3 0 2 3 2.32 1857.15 0.59 1 2 3 1 2 3 2.58 1829.66 0.43 0 4 5 0 4 5 3.07

RC103 1877.07 4.68 0 2 3 0 2 3 98.36 1746.42 0.96 1 2 3 1 2 3 2.91 1731.26 0.07 1 3 4 1 3 4 8.83

RC104 1822.65 3.02 0 2 3 0 2 3 3.72 1686.38 0.66 1 2 3 1 2 3 14.98 1701.80 0.00 1 2 4 1 2 4 3.05

RC105 1925.96 4.71 0 2 3 0 2 3 2.15 1799.41 2.13 1 2 3 1 2 3 3.26 1764.90 0.07 1 3 4 1 3 4 3.50

RC106 1872.23 3.71 0 2 3 0 2 3 1.14 1739.98 0.10 1 2 3 1 2 3 2.45 1743.86 0.23 1 3 4 1 3 4 2.00

RC107 1833.35 3.83 0 2 3 0 2 3 1.53 1720.60 1.22 1 2 3 1 2 3 2.29 1699.40 0.00 1 3 4 1 3 4 2.55

RC108 1812.10 2.79 1 2 3 0 2 3 1.79 1684.92 0.04 1 2 3 1 2 3 2.89 1694.70 0.00 1 3 4 1 3 4 7.86

Average 3.62 14.01 (7752.30) 1.07 4.16 (5470.60) 0.11 4.99 (8403.60)

Grand Average 3.23 8.26 0.99 2.57 0.10 5.22

Unfortunately, we cannot directly compare the number of facilities in the tables cre-

ated for each customer size for Set 2 instances because candidate CDC and satellite

pairs are 2-3, 6-4, and 3-5. Nevertheless, we can directly see the increase in com-

plexity due to combinations of these facilities. In 60 sets having 15 customers (Table

6.12), facility configuration of only 7 sets is found wrong, which caused deviation to

be high for those sets. While we can obtain the optimal solutions for 46 instances, we
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have obtained the least average deviation when candidate satellite points are 5.

Table 6.12: Set 2 results for original instances having 15 customers

|I| = 2, |J| = 3 |I| = 6, |J| = 4 |I| = 3, |J| = 5

Instance Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts

15 a1 1652.27 0.05 0 2 3 0 2 3 165.75 1639.51 0.00 3 7 8 3 7 8 0.64 1648.70 0.00 1 3 5 1 3 5 0.46

15 a2 1641.38 0.00 0 3 4 0 3 4 0.37 1661.83 0.23 3 7 8 5 6 9 0.54 1690.83 0.00 1 5 6 1 5 6 0.64

15 a3 1615.53 0.00 0 2 3 0 2 3 0.33 1613.59 0.61 3 8 9 1 6 7 12.71 1585.63 0.00 2 6 7 2 6 7 262.89

15 a4 1660.76 0.00 0 2 4 0 2 4 1.08 1531.44 0.00 3 7 8 3 7 8 0.57 1598.90 0.00 1 3 6 1 3 6 233.13

15 a5 1654.34 0.00 1 2 3 1 2 3 0.33 1526.17 0.00 1 6 7 1 6 7 18.76 1551.18 0.00 2 5 7 2 5 7 6.76

Average 0.01 33.57 (3.06) 0.17 6.64 (9.37) 0.00 100.68 (11.24)

15 b1 1660.36 0.00 0 2 3 0 2 3 183.33 1660.98 1.08 3 7 8 3 7 8 18.81 1619.59 0.00 1 5 6 1 5 6 7.18

15 b2 1660.82 0.03 1 3 4 0 3 4 0.45 1684.67 0.00 3 7 8 3 7 8 6.60 1672.19 0.00 2 3 6 2 3 6 43.08

15 b3 1675.17 0.00 0 2 3 0 2 3 0.37 1659.04 0.69 4 7 9 3 8 9 0.61 1587.83 0.00 2 5 6 2 5 6 49.31

15 b4 1646.91 0.00 1 3 4 1 3 4 0.37 1592.01 0.00 3 7 8 3 7 8 1.00 1520.98 0.04 1 5 6 1 5 6 37.30

15 b5 1638.46 0.77 1 2 3 1 3 4 0.41 1548.37 0.00 1 6 7 1 6 7 0.38 1617.81 0.00 2 5 7 2 5 7 0.72

Average 0.16 36.99 (8.19) 0.36 5.48 (9.33) 0.01 27.52 (24.64)

15 c1 1639.04 0.00 0 2 3 0 2 3 0.32 1645.20 0.00 3 7 8 3 7 8 0.56 1550.92 0.00 1 3 5 1 3 5 18.87

15 c2 1619.16 0.00 0 3 4 0 3 4 0.37 1626.22 0.00 5 6 9 5 6 9 16.89 1591.30 0.21 2 3 7 2 3 6 49.33

15 c3 1647.18 0.48 0 2 3 0 2 3 0.27 1640.59 0.38 2 7 8 1 6 7 0.81 1580.80 0.00 2 6 7 2 6 7 153.74

15 c4 1636.43 0.00 1 3 4 1 3 4 0.39 1583.55 0.00 3 7 8 3 7 8 0.54 1590.89 0.04 1 5 6 1 5 6 13.00

15 c5 1552.93 0.00 1 3 4 1 3 4 937.40 1520.02 0.00 1 6 7 1 6 7 12.60 1598.56 0.00 2 5 7 2 5 7 18.88

Average 0.10 187.75 (6.27) 0.08 6.28 (12.19) 0.05 50.77 (20.65)

15 d1 1649.17 0.00 0 2 3 0 2 3 12.80 1633.29 0.00 3 7 8 3 7 8 0.47 1641.84 0.00 1 3 5 1 3 5 202.90

15 d2 1588.20 0.00 0 3 4 0 3 4 0.93 1631.59 0.00 5 6 9 5 6 9 6.72 1615.98 0.40 2 6 7 2 6 7 19.02

15 d3 1622.36 0.00 0 2 3 0 2 3 0.35 1654.34 0.00 3 8 9 3 8 9 0.54 1592.27 0.00 2 6 7 2 6 7 96.08

15 d4 1649.35 0.00 0 2 4 0 2 4 1.15 1598.46 0.00 3 7 8 3 7 8 0.50 1593.36 0.31 1 5 6 1 5 6 6.67

15 d5 1636.30 0.00 1 2 3 1 2 3 258.07 1520.02 0.00 1 6 7 1 6 7 18.70 1603.16 0.00 2 5 7 2 5 7 6.65

Average 0.00 54.66 (2.50) 0.00 5.39 (8.25) 0.14 66.26 (10.14)

Grand Average 0.07 78.24 0.15 5.95 0.05 61.33

Table 6.13 shows that sets with 30 customers, the EA achieved 19 times the optimal

solution and the worst gap achieved for a set is 1.48%. Increasing or decreasing

the problem size in terms of facilities has not significantly increased the gap since

the averages are close to each other. The facility configuration of 8 sets are found

incorrectly, which caused the increase in deviation, and we obtained the maximum

deviation because we opened the facilities incorrectly.

One of this study’s main objectives is to obtain optimal or near-optimal results in a

reasonable time limit for large sets. Because successful exact solution methods for

small sets are already available in the literature, these methods cannot obtain an opti-

mal solution for large-sized instances. Usually, the exact methods terminate because

the time limit is reached. It would be more reasonable to comment on the success of

the algorithm for the sets having 50 or 100 customers.
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Table 6.13: Set 2 results for original instances having 30 customers

|I| = 2, |J| = 3 |I| = 6, |J| = 4 |I| = 3, |J| = 5

Instance Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts

30 a1 2122.91 0.03 1 2 4 1 2 4 76.30 2179.31 0.52 1 6 7 1 6 7 3.86 2182.52 0.14 0 3 7 1 5 6 5.04

30 a2 2131.49 0.14 1 3 4 1 3 4 3.15 2156.95 0.08 2 7 8 2 7 8 6.67 2170.85 0.00 0 4 5 0 4 5 3.28

30 a3 2224.39 1.03 1 2 4 1 2 4 20.78 2123.42 0.66 2 7 8 4 8 9 4.72 2116.41 0.00 1 4 5 1 4 5 44.11

30 a4 2142.20 0.29 0 2 3 0 2 3 3.22 2115.38 0.05 2 7 8 2 7 8 6.66 2132.19 0.11 1 5 6 2 6 7 3.09

30 a5 2213.37 0.00 1 3 4 1 3 4 3.09 2131.11 0.00 1 6 7 1 6 7 2.57 2076.96 0.04 2 6 7 2 6 7 4.26

Average 0.30 21.31 (22.76) 0.26 4.89 (49.68) 0.06 11.95 (56.07)

30 b1 2122.20 0.15 1 2 4 1 2 4 9.23 2207.84 0.41 1 6 7 1 6 7 4.02 2216.22 1.24 1 5 6 1 5 6 2.68

30 b2 2018.18 0.69 1 3 4 1 3 4 3.27 2190.98 0.48 2 7 8 4 8 9 3.31 2194.01 0.12 1 5 6 1 5 6 5.03

30 b3 2214.19 0.42 1 2 4 1 2 4 6.29 2161.29 0.11 2 7 8 2 7 8 3.61 2120.01 0.00 1 4 5 1 4 5 21.20

30 b4 2179.95 0.96 0 2 3 0 2 3 1.90 2131.86 0.48 2 7 8 2 7 8 10.82 2157.80 1.48 1 5 6 2 6 7 36.34

30 b5 1910.46 0.85 0 3 4 1 3 4 6.33 2168.05 0.24 1 6 7 1 6 7 4.51 2155.34 0.20 2 6 7 2 6 7 4.18

Average 0.61 5.40 (88.62) 0.35 5.25 (110.28) 0.61 13.88 (63.36)

30 c1 1799.56 0.00 1 2 4 1 2 4 9.86 2128.65 0.38 1 6 7 1 6 7 4.46 2209.80 0.00 1 5 6 1 5 6 3.55

30 c2 2098.61 0.00 1 3 4 1 3 4 3.85 2137.77 0.00 4 8 9 4 8 9 3.85 2117.71 0.06 1 5 6 1 5 6 4.67

30 c3 2149.85 0.00 1 2 4 1 2 4 8.36 2114.25 0.00 2 7 8 2 7 8 4.99 2154.62 0.00 1 4 5 1 4 5 2.44

30 c4 2128.30 0.00 0 2 3 0 2 3 2.15 2087.60 0.12 2 7 8 2 7 8 2.65 2110.28 0.84 2 6 7 2 6 7 14.63

30 c5 2179.26 0.00 1 3 4 1 3 4 2.82 1926.64 0.02 5 7 9 5 7 9 4.78 1797.05 0.08 2 6 7 2 6 7 6.39

Average 0.00 5.41 (51.47) 0.10 4.15 (114.05) 0.19 6.34 (128.59)

30 d1 1809.62 0.13 1 2 4 1 2 4 7.53 2175.58 0.46 1 6 7 1 6 7 5.42 2227.50 0.00 1 5 6 1 5 6 2.67

30 d2 2108.97 0.00 1 3 4 1 3 4 3.27 2155.12 0.33 4 8 9 4 8 9 80.66 2193.80 0.35 1 5 6 1 5 6 7.00

30 d3 2174.01 0.52 1 2 4 1 2 4 10.55 2138.62 0.43 2 7 8 4 8 9 3.00 2121.40 0.20 1 4 5 1 4 5 8.99

30 d4 2137.98 0.00 0 2 3 0 2 3 1.78 2105.15 0.00 2 7 8 2 7 8 5.46 2126.29 0.50 2 6 7 2 6 7 8.68

30 d5 2199.51 0.09 0 3 4 1 3 4 2.74 2197.54 0.00 1 6 7 1 6 7 40.81 2102.72 0.00 2 6 7 2 6 7 5.21

Average 0.15 5.17 (10.08) 0.24 27.07 (47.97) 0.21 6.51 (46.77)

Grand Average 0.26 9.32 0.24 10.34 0.27 9.67

Table 6.14: Set 2 results for original instances having 50 customers

|I| = 2, |J| = 3 |I| = 6, |J| = 4 |I| = 3, |J| = 5

Instance Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts

50 a1 2641.49 0.07 0 2 3 0 2 3 23.84 2588.62 0.28 5 7 9 5 7 9 20.36 2597.86 0.38 2 3 6 2 3 6 14.49

50 a2 2708.80 0.58 0 2 4 0 2 4 225.12 2596.65 0.00 5 6 8 5 6 8 12.96 2610.86 0.31 1 3 6 1 3 6 16.76

50 a3 2611.83 0.46 1 3 4 1 3 4 8.04 2591.65 0.48 2 6 7 2 6 7 10.77 2401.34 0.07 1 4 5 1 4 5 16.07

50 a4 2565.10 0.18 0 2 3 0 2 3 10.47 2496.21 0.21 5 6 9 5 6 9 256.90 2497.90 0.04 2 6 7 2 6 7 26.90

50 a5 2572.68 0.95 0 2 3 1 2 4 10.30 2591.48 0.32 2 6 7 5 6 9 241.84 2521.81 0.43 1 5 6 1 5 6 17.83

Average 0.45 55.56 (284.37) 0.26 108.26 (656.99) 0.25 18.41 (274.09)

50 b1 2641.58 1.17 0 2 3 0 2 3 10.01 2582.60 0.59 5 6 9 5 6 9 224.57 2577.31 -0.02 2 3 6 2 3 6 24.91

50 b2 2590.38 0.44 0 2 4 0 2 4 239.78 2686.55 1.08 5 6 8 5 6 8 19.31 2668.50 1.65 0 3 6 1 3 6 25.62

50 b3 2651.36 0.82 1 3 4 1 3 4 12.80 2611.27 0.56 2 6 7 2 6 7 10.71 2528.28 0.63 1 4 6 1 4 6 22.19

50 b4 2589.53 0.34 0 2 3 0 2 3 8.98 2517.19 0.14 5 6 9 5 6 9 77.22 2523.95 0.14 2 6 7 2 6 7 11.60

50 b5 2631.93 1.49 0 2 3 1 2 4 10.23 2625.55 0.32 2 6 7 3 7 9 47.83 2569.06 1.55 1 5 7 1 5 6 18.74

Average 0.85 56.36 (524.78) 0.54 75.93 (1047.52) 0.79 20.61 (3279.02)

50 c1 2560.79 0.60 0 2 3 0 2 3 9.32 2526.86 0.58 5 6 9 5 6 9 240.75 2522.93 0.20 1 4 5 1 4 5 12.58

50c2 2611.15 0.83 0 2 4 1 2 3 251.42 2518.44 0.01 5 6 8 5 6 8 11.76 2579.28 0.55 0 3 6 1 3 6 22.90

50 c3 2530.33 0.26 1 3 4 1 3 4 11.03 2588.34 0.34 1 6 8 5 8 9 12.95 2480.69 0.09 1 4 6 1 4 6 19.56

50 c4 2521.91 0.22 0 2 3 0 2 3 9.02 2424.16 0.46 5 6 9 5 6 9 267.52 2592.14 1.18 2 6 7 2 6 7 21.07

50 c5 2560.52 0.36 1 2 4 1 2 4 273.47 2751.60 0.33 0 6 8 2 6 7 396.66 2587.51 0.80 1 5 7 2 3 7 11.68

Average 0.45 110.85 (1870.09) 0.34 185.93 (2397.18) 0.56 17.56 (5792.74)

50 d1 2623.18 1.28 1 3 4 1 3 4 31.89 2532.33 0.37 5 6 9 5 6 9 243.20 2562.80 0.25 2 3 6 2 3 6 21.33

50 d2 2699.18 0.71 0 2 4 1 2 3 223.59 2570.20 0.08 5 6 8 5 6 8 27.71 2593.96 0.28 1 3 6 1 3 6 13.06

50 d3 2595.95 0.14 1 3 4 1 3 4 14.84 2656.33 0.71 1 6 8 5 8 9 14.94 2497.37 0.21 1 4 5 1 4 5 11.89

50 d4 2573.86 0.41 0 2 3 0 2 3 7.44 2499.68 0.35 5 6 9 5 6 9 241.40 2530.86 0.58 2 6 7 2 6 7 13.82

50 d5 2648.20 0.70 1 2 4 1 2 4 221.07 2615.29 0.86 3 7 8 3 7 8 34.70 2577.90 0.68 1 5 7 1 5 6 11.55

Average 0.65 99.76 (210.68) 0.48 112.39 (359.94) 0.40 14.33 (872.32)

Grand Average 0.60 80.63 0.40 120.70 0.50 17.73

We report a better total cost for a set for which optimal results cannot be achieved
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even though we only obtain an optimal result once for mid-sized instances in Table

6.14. Besides, the average gaps are below 1%, and even the maximum deviation is

less than 2%. Considering the first three tables, one can see that percent deviations

have increased. The important thing here is how much it has increased since the gap

we reported for mid-sized instances indicates good performance.

Table 6.15: Set 2 results for original instances having 100 customers

|I| = 2, |J| = 3 |I| = 6, |J| = 4 |I| = 3, |J| = 5

Instance Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts Total Cost Gap FEA FBKS Ts

100 a1 4119.06 0.70 1 3 4 1 3 4 56.72 4009.87 0.45 4 6 8 4 8 9 48.80 4129.46 -1.40 0 4 7 0 4 7 102.008

100 a2 4252.81 0.90 0 2 4 0 2 4 940.36 3920.73 -1.03 5 6 9 5 6 9 1008.28 3947.19 1.41 0 3 6 0 3 6 66.392

100 a3 3969.28 1.25 1 2 4 1 2 4 953.43 4236.65 1.22 3 6 8 3 8 9 112.05 3932.29 1.37 0 3 5 2 5 7 57.194

100 a4 4265.79 1.15 1 2 3 1 2 3 50.83 3891.47 -0.57 0 7 9 0 6 9 85.26 4068.29 2.41 0 3 4 0 3 4 42.753

100 a5 4104.63 1.91 0 3 4 0 2 3 51.19 4133.07 1.31 5 6 9 5 6 9 977.95 3968.88 0.01 1 4 5 1 4 5 35.012

Average 1.18 410.51 (7213.22) 0.28 446.47 (13093.50) 0.76 60.67 (11510.37)

100 b1 3937.78 -0.45 1 3 4 1 3 4 45.93 3932.28 -0.05 4 6 8 4 6 7 9 51.01 4199.37 1.06 2 5 7 2 5 7 38.885

100 b2 4257.19 3.54 1 2 3 4 0 2 4 514.00 4010.54 0.67 5 6 9 5 6 9 1001.83 3966.02 1.39 2 3 6 0 3 6 107.609

100 b3 4062.12 3.00 1 2 4 1 2 4 957.31 4207.36 -0.72 3 6 8 2 6 8 83.82 3996.05 -3.24 2 5 7 2 5 7 46.798

100 b4 4185.41 0.76 1 2 3 1 2 3 4 51.03 4262.56 2.59 5 7 9 0 6 9 48.69 4166.72 3.48 0 3 4 0 3 4 33.243

100 b5 4096.86 1.29 0 2 3 0 2 3 102.27 4201.07 1.46 3 7 8 5 6 9 56.37 4147.47 -3.01 1 4 5 1 4 5 61.202

Average 1.61 334.11 (12114.35) 0.79 248.34 (14273.36) -0.06 57.55 (14256.46)

100 c1 4095.42 -2.31 1 3 4 1 3 4 37.99 3957.32 -1.16 4 6 8 4 6 8 68.13 4117.89 -1.00 0 4 7 0 3 5 98.38

100 c2 4063.48 1.02 0 2 4 0 2 4 1028.80 4077.44 -0.62 5 6 9 5 6 9 1008.90 3897.82 -1.47 0 3 6 0 3 6 101.425

100 c3 3985.15 1.60 1 2 4 1 2 4 974.28 3931.27 -2.02 3 8 9 3 6 8 9 41.46 4006.82 -1.02 2 5 7 0 3 5 34.123

100 c4 4131.61 -1.23 1 2 3 1 3 4 42.85 4013.79 -2.22 5 7 9 5 7 9 70.94 4024.78 1.69 0 3 4 0 3 4 40.941

100 c5 4064.80 0.87 0 2 3 0 2 3 61.89 4016.47 -1.10 3 7 8 5 6 9 59.76 3988.20 -1.89 1 4 5 1 4 5 47.298

Average -0.01 429.16 (14352.24) -1.42 249.84 (14361.00) -0.74 64.43 (14322.84)

100 d1 4007.87 -1.13 1 3 4 0 2 4 43.42 4081.35 1.19 4 6 8 4 8 9 66.32 4136.54 0.76 1 5 7 1 5 7 58.993

100 d2 4270.99 1.72 0 2 4 0 2 4 946.55 4004.21 1.13 5 6 9 5 6 9 968.87 3917.35 0.79 0 3 6 0 3 6 91.952

100 d3 3938.98 1.99 1 2 4 1 2 4 996.82 4005.73 2.13 3 6 8 3 6 8 9 82.16 3964.47 -1.36 2 5 7 2 5 7 56.332

100 d4 4152.06 1.11 1 2 3 1 2 4 36.22 4134.62 0.99 5 7 9 0 6 9 52.88 3978.57 1.71 1 4 6 0 3 4 61.088

100 d5 4120.58 1.98 0 3 4 0 2 3 40.92 4131.44 1.27 5 6 9 5 6 9 950.47 4043.00 0.82 1 4 5 1 4 5 40.744

Average 1.14 412.79 (8626.84) 1.34 424.14 (10600.14) 0.54 61.82 (13357.63)

Grand Average 0.98 396.64 0.25 342.20 0.13 61.1186

In this EA, which works fast enough, the solution time is mostly affected by whether

the population converges or not. The nature of the data in the set as well as the

size, affects convergence. For instance, a shorter time window indicates that many

candidate solutions can become infeasible, resulting in less diversity in the population

due to the tight constraint. In contrast, a larger time window means that more feasible

solutions are possible, and a variety of possibilities increase the number of different

solutions that prolong the duration of convergence. Therefore, some of the instances

in Table 6.15 duration is too long because the population does not achieve stopping

criteria; the algorithm is continued until the maximum number of generations.

For the 17 instances specified as optimal with 100 customers, the maximum gap 3%

given by EA and the facility configuration of 7 instances are wrong. It is not conve-

nient to compare the facilities for the sets specified as best known because different
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facilities may have been opened in optimal answers. According to Table 6.15, we

updated the best-known ones by obtaining lower total costs for 21 instances. Addi-

tionally, we observed that as instance size increased, the average deviation decreased.

This EA, which is more successful in Set 2 instances, produces very fast results and

can obtain the optimal solution. Although the EA cannot achieve the optimal solution

for larger sets, it can improve the best-known solution and shows that differences

between the best-known and our solutions are too small. One reason to obtain lower

success in Set 1 is that those sets are not created by considering the 2E-LRP structure.

Nonetheless, Set 2 instances are generated to represent the unique structure of the

introduced problem.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

The rapid growth of the population resulted in more demands for products and more

freight movement. In order to overcome the adverse consequences of the increased

freight movements, an effective and efficient design of logistics network models is

required. Therefore, the two-echelon location routing problem with hard time win-

dows is studied in this thesis. The 2E-LRPTW is a problem that deals with strategic

and tactical level decisions that concern stakeholders with different objectives of the

system.

The 2E-LRPTW problem decides which facilities to open at both echelons, namely

CDC and satellite location decisions and resulting routes from each open facility.

In our distribution network design CDCs, satellites, and customers are connected

through a two-layered system using two types of vehicle fleets. Customers in the sys-

tem have hard time windows indicating that the service must be completed within the

given time intervals, or the system is not feasible. Capacity restrictions are imposed

on facilities and vehicles at both echelons.

The two-layered network modeled as a three-index MIP inspired the work of [15]

and we proposed an evolutionary algorithm based on a genetic algorithm consider-

ing complexities while adopting a solution procedure to a mathematical model with

capacities and hard time windows. The proposed EA does not allow infeasible solu-

tions and tries to achieve results with good quality by evolving over generations with

problem-specific operators. While designing the algorithm, we first worked on mod-

els with a 2E-LRPTW structure having open CDCs in the first echelon. Consequently,

there are only satellite location decisions in the second echelon. Fewer decision vari-

ables reduce the complexity of the problem but still have hard time windows and
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facility capacities.

The EA generates the initial population combining randomness and heuristics, ob-

taining better offsprings from the selected individuals applying reproduction over

generations. In order to sustain diversity and intensity, two mutations are proposed to

improve the routes and reach different points in the solution space by changing the

customers’ assignments. Later, we modified this algorithm to solve the original prob-

lem having a two-echelon structure. After the arrangements made in the initialization

and reproduction stages for locating CDCs and satellite allocations, the algorithm can

now solve the original problem.

We solve the introduced Set 1 and Set 2 instances for both one-echelon and two-

echelon versions separately. The results of Set 1 instances demonstrate that the in-

stance properties are highly effective on the solution performance. For instance, if

time windows are tight, then the percent deviation from the optimal (best-known) so-

lution gets higher. As expected, customer spatial dispersion affects the performance

since constructing routes for clustered sets considered easier. However, we can report

fewer percent gaps for randomly distributed customers so the algorithm can capture

points in the diverse space. The average deviation reported for Set 1 instances is 0.8%

which can be considered a good indication for a metaheuristic performance.

The reason for sometimes not achieving optimal is that the instances have too many

tight constraints and hard time windows. It is difficult for an exact method to handle

such constraints and the metaheuristic method. The smallest feature or facility capac-

ity structure or time windows change affects both the algorithm duration and solution

quality. In this case, constructing a robust metaheuristic has its complexities.

Considering all these results, we can say that the proposed EA successfully finds the

correct satellite configurations. Because different configurations are created due to

randomness while opening satellites and the facility array crossover phase also con-

tributes to this success. Even when the satellites are opened incorrectly, deviations are

low since the algorithms to establish and improve routes are well-known successful

heuristics. The power of allocation decisions is decisive, and the ‘Best’ parent se-

lection and assignment processes are successful, but it is difficult to achieve success

in every set. As far as we know, we are the second study addressing 2E-LRPTW in
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the literature, and we are the first study to propose a population-based metaheuristic

in terms of the solution method. The proposed EA can handle time windows and

capacity constraints in a promising way.

In order to advance our work, metaheuristic studies that experiment with new ini-

tialization or crossover techniques can be constructed. During our experiments, it is

highly noticed that the allocation stage is the main factor of the deviations, and in

literature, allocations are mostly done either random or favoring demand order to as-

sign the closest facility. However, in these problems, there are no hard time windows,

which significantly affects the assignments. Solution methods that focus the alloca-

tion stage for the problems having hard time windows and facility capacities can be

considered. Metaheuristics embedded with optimization techniques can be a future

research area to improve both solution quality and time.

Another future research direction can take factors of uncertainty into account. While

constructing the mathematical model, we are assuming that the customer demands

and travel times are constant. To improve the distribution network systems’ capability

to represent real-life constraints, customers’ demand uncertainty can be considered.

Another research can reflect the travel time uncertainty since not only distance but

congestion and unexpected events affect the arrival time to customers.
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