
GRÖBNER BASIS ATTACK ON STARK-FRIENDLY SYMMETRIC-KEY
PRIMITIVES: JARVIS, MiMC AND GMiMCerf

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GİZEM KARA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

FEBRUARY 2021

Approval of the thesis:

GRÖBNER BASIS ATTACK ON STARK-FRIENDLY SYMMETRIC-KEY
PRIMITIVES: JARVIS, MiMC AND GMiMCerf

submitted by GİZEM KARA in partial fulfillment of the requirements for the degree
of Master of Science in Cryptography Department, Middle East Technical Uni-
versity by,

Prof. Dr. Ayşe Sevtap Kestel-Selçuk
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Mathematics, METU

Assist. Prof. Dr. Oğuz Yayla
Co-supervisor, Cryptography, METU

Examining Committee Members:

Assoc. Prof. Dr. Murat Cenk
Cryptography Department, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Mathematics Department, METU

Assoc. Prof. Dr. Fatih Sulak
Mathematics Department, Atılım University

Assoc. Prof. Dr. Zülfükar Saygı
Mathematics Department, TOBB ETU

Assist. Prof. Dr. Ahmet Sınak
Mathematics and Computer Sciences Department,
Necmettin Erbakan University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: GİZEM KARA

Signature :

v

vi

ABSTRACT

GRÖBNER BASIS ATTACK ON STARK-FRIENDLY SYMMETRIC-KEY
PRIMITIVES: JARVIS, MiMC AND GMiMCerf

Kara, Gizem
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Assist. Prof. Dr. Oğuz Yayla

February 2021, 63 pages

A number of arithmetization-oriented ciphers emerge for use in advanced crypto-
graphic protocols such as secure multi-party computation (MPC), fully homomorphic
encryption (FHE) and zero-knowledge proofs (ZK) in recent years. The standard
block ciphers like AES and the hash functions SHA2/SHA3 are proved to be efficient
in software and hardware but not optimal to use in this field, for this reason, new
kind of cryptographic primitives proposed. However, unlike traditional ones, there
is no standard approach to design and analyze such block ciphers and the hash func-
tions, therefore their security analysis needs to be done carefully. In 2018, StarkWare
launched a public STARK-Friendly Hash (SFH) Challenge to select an efficient and
secure hash function to be used within ZK-STARKs, transparent and post-quantum
secure proof systems. The block cipher JARVIS is one of the first ciphers designed
for STARK applications but, shortly after its publication, the cipher has been shown
vulnerable to Gröbner basis attack. This master thesis aims to describe a Gröbner
basis attack on new block ciphers, MiMC, GMiMCerf (SFH candidates) and the vari-
ants of JARVIS. We present the complexity of Gröbner basis attack on JARVIS-like
ciphers, results from our experiments for the attack on reduced-round MiMC and a
structure we found in the Gröbner basis for GMiMCerf.

vii

Keywords: Gröbner Basis, Jarvis, MiMC, GMiMC, Secure Multi-party Computation
(MPC), ZK-STARKs

viii

ÖZ

STARK DOSTU SİMETRİK ANAHTAR İLKELLERİNE KARŞI GRÖBNER BAZ
SALDIRISI: JARVİS, MiMC VE GMiMCerf

Kara, Gizem
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Oğuz Yayla

Şubat 2021, 63 sayfa

Son yıllarda güvenli çok partili hesaplama (MPC), tamamen homomorfik şifreleme
(FHE) ve sıfır bilgi kanıtları (ZK) gibi gelişmiş kriptografik protokollerde kulla-
nılmak üzere bir dizi aritmetizasyon odaklı şifreleme ortaya çıkmıştır. AES veya
SHA2/SHA3 gibi standart blok şifreler ve özet fonksiyonlarının yazılım ve dona-
nımda verimli olduğu ancak bu yeni alanda kullanım için uygun olmadığı kanıtlan-
mıştır bu nedenle, yeni türde kriptografik ilkeller önerilmektedir. Ancak, geleneksel
olanların aksine bu tür aritmetizasyon odaklı blok şifreleri veya özet fonksiyonlarını
tasarlamak ve analiz etmek için standart bir yaklaşım yoktur, dolayısıyla güvenlik
analizlerinin dikkatlice yapılması gerekmektedir. 2018’de StarkWare, şeffaf ve ku-
antum sonrası güvenli kanıt sistemleri ZK-STARK’larda kullanılacak verimli ve gü-
venli bir özet fonksiyonu seçmek üzere halka açık bir STARK Dostu Özet (SFH)
Mücadelesi başlatmıştır. JARVİS blok şifresi STARK uygulamaları için tasarlanmış
ilk şifrelerden biridir, ancak yayınlanmasından kısa bir süre sonra şifrenin Gröbner
baz saldırısına karşı savunmasız olduğu görülmüştür. Bu yüksek lisans tezi, yeni blok
şifreler MiMC, GMiMCerf (SFH adayları) ve JARVİS varyantlarına karşı Gröbner baz
saldırısını tanımlamayı hedeflemektedir. JARVİS benzeri şifrelere Gröbner baz saldı-
rısının karmaşıklığı, azaltılmış tur sayılı MiMC’ye yönelik Gröbner baz saldırısının
deneysel sonuçları ve GMiMCerf ye ait Gröbner bazda bulunan yapı sunulmaktadır.

ix

Anahtar Kelimeler: Gröbner Baz, Jarvis, MiMC, GMiMC, Güvenli Çok Partili He-
saplama (MPC), ZK-STARKlar

x

To my family...

xi

xii

ACKNOWLEDGMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Ali Doğanaksoy not only for
the supervision of this master thesis but also for his support on my whole study in
cryptography.

I would also thank to my co-supervisor Assist. Prof. Dr. Oğuz Yayla for his guidance,
support and motivation throughout this thesis. I owe much to him.

I am very grateful to Prof. Dr. Vincent Rijmen for giving me an opportunity to carry
out a research visit at COSIC in Leuven, Belgium. I would like to thank Siemen
Dhooghe for his supervision and kindness throughout my study in Leuven. It was a
pleasure to work with him.

Furthermore, I would like to thank my family and my friends for listening to my
concerns, believing in me and their supports.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xix

LIST OF FIGURES . xx

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Our motivation . 3

1.2 Structure of the master thesis 3

2 MATHEMATICAL BACKGROUND 5

2.1 Monomial Orders and Monomial Ideals 5

3 GRÖBNER BASES AND GRÖBNER BASIS ATTACKS 9

3.1 Gröbner Bases . 9

3.2 Gröbner Basis Attacks . 12

xv

3.2.1 Complexity of Gröbner Basis Computation 15

3.2.2 Complexity of Change of Term Ordering 16

3.2.3 Complexity of Factorization 16

4 THE BLOCK CIPHER JARVIS . 17

4.1 Description of JARVIS . 17

4.2 Gröbner basis attack . 19

4.2.1 Gröbner basis attack on Reduced Round JARVIS . 19

4.2.2 Improved attack: A more efficient description of
JARVIS . 21

4.3 Complexity Estimates of Gröbner Basis Computation for the
variants of JARVIS . 23

4.3.1 Comparison with the S-box of the AES and De-
composing AES S-box 25

4.3.2 Gröbner basis attack on JARVIS with AES S-box . 29

5 THE BLOCK CIPHER MiMC . 33

5.1 MiMC-n/n . 33

5.2 Gröbner Basis Attack . 34

6 THE BLOCK CIPHER GMiMC . 37

6.1 Description of GMiMCerf 37

6.2 Gröbner Basis Attack . 38

6.2.1 Our attack strategy 39

6.2.2 Observation . 42

7 CONCLUSION . 45

xvi

7.1 Discussion and Future Work 46

REFERENCES . 49

APPENDICES

A SAGE CODE LISTING . 53

A.1 Solving Multivariate Polynomial Equations from Section 4.3.1 53

A.2 Attacks . 54

A.2.1 MiMC . 54

A.2.2 GMiMCerf . 56

xvii

xviii

LIST OF TABLES

Table 4.1 Instances of JARVIS . 18

Table 4.2 Experimental results of the improved attack on JARVIS using Sage
[3] . 22

Table 4.3 Complexity estimates for B,C are of degree 4 and corresponding
D,E are of degree 8 polynomials. 24

Table 4.4 Complexity estimates for degree-8 polynomials B and C 24

Table 4.5 Complexity estimates of the improved attack on JARVIS with S-boxAES(z)
and the same key schedule described as in 4.10. 31

Table 4.6 Complexity estimates of the improved attack on JARVIS with S-boxAES(z)
and AES key schedule in the case of all subkeys are captured by the at-
tacker, but not the master key. 31

Table 5.1 The number of rounds and the degree of the univariate equation after
applying r rounds MiMC denoted as r and du respectively. FGLM and
FACT times represents the time, in seconds, needed to compute FGLM
and Factorization algorithms for the corresponding number of rounds. . . . 35

Table 6.1 The minimum number of rounds r to provide the security of GMiMCerf

against the corresponding attacks over Fp for the univariate case (κ = n),
where t > 2 is the number of branches and 2 · log3(2) = 1.262. 39

xix

LIST OF FIGURES

Figure 4.1 One round of the JARVIS block cipher 18

Figure 4.2 One round of the key schedule used in JARVIS block cipher 18

Figure 4.3 Introducing new intermediate variable xi for the one round of the
JARVIS block cipher . 19

Figure 5.1 r rounds of the MiMC-n/n block cipher 34

Figure 5.2 Introducing new intermediate variable xi for r rounds of MiMC-n/n 35

Figure 6.1 One round of an unbalanced Feistel Network GMiMC with an ex-
panding round function . 38

Figure 6.2 Introducing new intermediate variables x4(i−1), x4(i−1)+1, x4(i−1)+2,
x4(i−1)+3 for r rounds of GMiMCerf where 1 ≤ i ≤ r with branch number
t = 4. 40

xx

LIST OF ABBREVIATIONS

F The base field of the polynomial ring F[x1, · · · , xk] in k vari-
ables xi

Fp The finite field or Galois field (GF) of characteristic p where p
is prime

Z The set of integers, {· · · ,−2,−1, 0, 1, 2, · · · }
Z≥0 The set of nonpositive integers, {0, 1, 2, · · · }
Zk k-tuple of integers

Q The set of rational numbers,

I an ideal in a polynomial ring

LT (f) The leading term of the polynomial f

xxi

xxii

CHAPTER 1

INTRODUCTION

Block ciphers are the fundamental tools of modern cryptography. They are pseudo-

random permutations operating on fixed-size blocks and used to secure different types

of data. Their design and security considerations are well understood in the literature.

However, the design of symmetric-key primitives for use in advanced cryptographic

protocols such as secure multi-party computation (MPC), fully homomorphic encryp-

tion (FHE) or new proof systems like SNARKs, STARKs, Bulletproofs studied in the

past few years because of the recent progress in practical applications of this field.

Secure multi-party computation (MPC) is a cryptographic protocol that enables to

parties securely evaluate output of a function without knowing anything about their

private inputs. In MPC systems, the arithmetic operations on secret sharing values are

often performed over a finite field with large prime characteristic Fp. The problem

of using traditional block ciphers like AES in MPC setting is the hardness of repre-

senting such block ciphers using arithmetic over finite fields. Their design strategy

aims to provide mostly good performance in hardware or software implementations.

Therefore, we have a new area of designing efficient symmetric primitives for use in

MPC or ZK-proof systems. We refer reader to [6] that gives detailed information for

the design of such primitives.

We know that the first paper which explicitly designs pseudo-random functions (PRFs)

for MPC applications is [5] from Eurocrypt 2015. The designers propose a blockci-

pher LowMC with low multiplicative depth and low multiplicative complexity which

operates over GF(2). After that, several bit-oriented primitives have appeared like

Kreyvium [13] or FLIP [24] considering the same design strategy as LowMC. Be-

1

cause most of the advanced cryptographic protocols support operations over large

prime fields, MiMC family designs [2], include a block cipher and a cryptographic

hash function, were presented by offering multiplications over large fields GF(2n)

and GF(p) at the Asiacrypt 2016. The block cipher MiMC was designed mainly for

SNARK applications like Zerocash [26] but it is also competitive for use in STARKs

and MPC applications. The designers of MiMC improved cipher to Generalized

MiMC (GMiMC) [4] in order to provide efficient performance also in the area of PQ-

secure signature schemes where MiMC was not so competitive in this area. MAR-

VELlous family cryptographic primitives [7], the block cipher JARVIS and the hash

function FRIDAY are the first designs to propose efficiency in STARK applications

but after its publication, it has been shown that these designs do not provide adequate

security as claimed [3]. The paper [6] calls these new primitives as arithmetization-

oriented algorithms.

The design strategies of standard block ciphers like AES (Advanced Encryption Stan-

dard) [25] or 3DES (Triple DES, Data Encryption Standard) [23] and the arithmeti-

zation–oriented ciphers are different. Therefore, their security analysis and the cor-

responding attack techniques are also different. Statistical attacks such as differential

and linear cryptanalysis are widely used for the cryptanalysis of block ciphers. Al-

gebraic attacks are a different type of cryptanalysis which aims to exploit algebraic

structure of the cipher. These kinds of attacks try to represent the cipher as a system of

polynomial equations and then solve to recover the key using a suitable method like

SAT solvers, Gröbner basis methods, Mixed -Integer Linear Programming (MILP)

Solvers or Algebraic higher-order differentials. A common belief is that the statistical

attacks are generally faster than the algebraic attacks because of the high complex-

ity of algebraic attacks. “Not a single proper block cipher has been broken using

pure algebraic techniques faster than with other techniques.” (Albrecht). Algebraic

techniques were mostly considered against some public-key schemes and stream ci-

phers because they proved success against them. However, the target applications like

MPC/FHE/ZK-STARKs are algebraic systems, and therefore algebraic attacks gain

attention again from the cryptographers.

The design of arithmetization-oriented algorithms which are both efficient and se-

cure still in progress. Two design strategies, e.g. Marvellous [6] and Hades [21, 22]

2

provide a generic way for the demand in design space relative to these target applica-

tions. After JARVIS shown to be insecure againsts Gröbner basis attack, the designers

of MARVELlous together with Ben-Sasson, co-founder and president of StarkWare,

propose Marvellous family design strategy which includes two ciphers Vision for bi-

nary fields and Rescue for prime fields. These ciphers were candidates for STARK-

Friendly Hash (SFH) Challenge [1]. The HADES design strategy proposed by Grassi

et al. [22] at Eurocrypt 2020 and the HadesMiMC family of algorithms, the hash

functions Starkad and Poseidon [21], were also candidate in SFH challenge. In this

public competition, the security of four families of algorithms – MiMC, GMiMC,

HadesMiMC and MARVELlous, was analyzed by the cryptanalysts. At the end of

the selection process of STARK-Friendly hash function, the hash function Rescue is

recommended by Ben-Sasson et al in. eprint.iacr.org/2020/948.

1.1 Our motivation

The new arithmetic-oriented primitives designed for applications of advanced cryp-

tographic protocols may vulnerable to algebraic attacks, particularly Gröbner basis

attacks. The security of these ciphers was examined against various algebraic attacks

but not focus directly on Gröbner basis attacks. However as said in [6], it is the

common question for these new designs

“Consequently, the question of security against Gröbner basis attacks seems to be the

crucial concern raised by arithmetization-oriented ciphers, and no such proposal is

complete without explicitly addressing it”.

The success of the attack strategy on JARVIS and FRIDAY motivated us to study

Gröbner basis attack against variants of JARVIS and the other proposed ciphers,

MiMC and GMiMCerf.

1.2 Structure of the master thesis

Chapter 2-3 will present mathematical background for Gröbner bases and Gröbner

basis attacks. In Chapter 4, we will briefly describe the block cipher JARVIS and in

3

Section 4.2, we will mention successful Gröbner basis attack on JARVIS by Albrecht

et al. [3], then we generalize the attack strategy on JARVIS-like ciphers. We will

give a formula to estimate the complexity of the attack and using this formula we will

show JARVIS with degree 8 polynomials is still vulnerable to Gröbner basis attack in

Section 4.3. Furthermore, we will compare S-boxes of JARVIS and AES in Section

4.3.1 and estimate the complexity of the attack on JARVIS with AES S-box in Section

4.3.2. If we replace the S-box of JARVIS with AES S-box, we see that the complexity

of the attack with 8-bits input is around ≈ 97 bits for 10 rounds.

Chapter 5 will express our other target cipher MiMC and present results from our

experiments for the Gröbner basis attack on reduced round MiMC. We see that MiMC

with 82 rounds is resistant against Gröbner basis attack. The following chapter will

give a brief description of the block cipher GMiMCerf and describe our findings for

the Gröbner basis attack against the primitive. We will say that GMiMCerf is secure

against Gröbner basis attack not because of the high complexity of basis computation

but for a different reason. Chapter 7 will conclude our results in this thesis and end

up with discussion and future work section.

Note that all the experiments in this thesis are performed in Sage 9.0. "Sage: Software

for Algebra and Geometry Experimentation " is a free and open source computational

algebra system [28]. The full source codes of the attacks are provided in Appendix

A.

4

CHAPTER 2

MATHEMATICAL BACKGROUND

In this chapter, we will give some main theorems and definitions to understand the

concept of Gröbner basis and Gröbner basis attacks. For more detailed information

we refer to see "Ideals and Varieties" by Cox et al. [15].

2.1 Monomial Orders and Monomial Ideals

Definition 2.1.1. A multivarite polynomial f in k variables x0, · · · , xk−1 with

coefficients c0, · · · , ck−1 over a field F can be expressed as

f =
∑
i∈Zk
≥0

cix
i

where xi = xi00 ·xi11 · · ·x
ik−1

k−1 is a monomial with total degree i0+ i1+ · · ·+ ik−1. The

degree of f is defined as the maximum value of the total degrees of the monomials.

Example 2.1.1. The polynomial f = 4x1x2x4 +
1
2
x1x3x4 + x4 ∈ Q[x1, x2, x3, x4]

has three terms and has degree 3. Two monomials have the maximum degree 3.

For multivariate polynomials, the order of terms monomial ordering is not just im-

portant to write and read terms but also to decide the leading term of the polynomial

and how to store and operate the polynomials in a computer since they affect the

complexity.

For example, while using division algorithm on univariate polynomials, a polyno-

mial depends only one variable, over F[x], we write terms in decreasing order on

5

degrees of the terms, · · · > xt+2 > xt+1 > xt > · · · > x2 > x1 > x > 1. Also,

in row-reduction algorithm for the matrices, we deal with the linear equations in k

variables x1, · · · , xk in decreasing order, written as x1 > · · · > xk.

Now, we may define ordering in monomials.

Definition 2.1.2 (Monomial ordering). A monomial ordering on F[x1, · · · , xk] is a

relation > on Zk≥0 (i.e, exponents of monomials) or a relation on monomials xa, a ∈
Zk≥0, such that:

1. The relation> is a total ordering on Zk≥0. That means for any pairs of xa and xb

exactly one of the three statements, xa > xb, xa = xb, xa < xb should be

satisfied.

2. If a > b and c ∈ Zk≥0, then a+ c > b+ c.

3. The relation > has well-ordering which means every non-empty subset has a

smallest element under >.

For example, the numerical order t + 1 > t > · · · > 2 > 1 > 0 on N, satisfies the

above conditions, hence the degree ordering on monomials over F[x] is a monomial

ordering.

In computational algebra, the following three term orderings are mostly used

Definition 2.1.3 (Lexicografic Order). We say a >lex b if the left most non zero

entry in a− b ∈ Zk is positive.

Definition 2.1.4 (Graded Lexicografic Order). We say a >grlex b if the total degrees

|a| > |b| or if |a| = |b| and a >lex b.

Definition 2.1.5 (Graded Reverse Lexicografic Order). We say a >grevlex b if the

total degrees |a| > |b| or if |a| = |b| and the rightmost non zero enrty of vector

difference a− b ∈ Zk is negative.

For example,

• a = (1, 0, 0) >lex (0, 3, 4) = b since the left most non zero entry of a − b =

(1,−3,−4) is positive.

6

• (1, 1, 2) >grlex (1, 0, 3) since |(1, 1, 2)| = |(1, 0, 3)| and (1, 1, 2) >lex (1, 0, 3).

• Consider the monomials a = x3y5z2 and b = x2y7z, if we have x > y > z

a >lex b, a >grlex b and a <grevlex b.

Before giving the definition of Gröbner basis, let’s first define the monomial ideals.

Definition 2.1.6. An ideal I ⊆ F[x1, · · · , xk] is called a monomial ideal if it can be

generated by monomials.

For example, I =
〈
x2y, xy3

〉
⊆ F[x, y] is a monomial ideal generated by the mono-

mials x2y and xy3.

Theorem 2.1.1 (Dickson’s Lemma). Every monomial ideal I is finitely generated,

i.e I has a finite basis.

Proof. See [15, Chapter 2, Section 4, Theorem 5].

Definition 2.1.7. Consider an ideal I ⊆ F [x1, · · · , xk] different than zero and fix a

monomial ordering. The set LT (I) is the set of leading terms of the polynomials in I

LT (I) = {LT (f)| f ∈ I}.

The ideal generated by the elements of LT (I) is denoted by
〈
LT (I)

〉
.

Note that for the ideal I say, I =
〈
g1, · · · , gt

〉
, the ideals

〈
LT (g1), · · · , LT (gt)

〉
and〈

LT (I)
〉

may be different. Let’s observe the following example.

Example 2.1.2. Consider I =
〈
x3 + 2xy, x2y + 2y2 − 1

〉
and fix a lex ordering on

Q[x, y].

Note that

y · (x3 + 2xy)− x · (x2y + 2y2 − 1) = x,

therefore LT (x) = x ∈
〈
LT (I)

〉
. However, x /∈

〈
LT (f), LT (g)

〉
since x is not

divisible by x3 = LT (f) = LT (x3 + 2xy) or x2y = LT (g) = LT (x2y + 2y2 − 1).

Hence,
〈
LT (f), LT (g)

〉
6=
〈
LT (I)

〉
.

7

8

CHAPTER 3

GRÖBNER BASES AND GRÖBNER BASIS ATTACKS

3.1 Gröbner Bases

The concept of Gröbner basis and the algorithm to construct it introduced by Buch-

berger [11] in 1965. Gröbner bases have many applications in computational algebra

such as, ideal membership problem, ideal description problem and the problem of

solving polynomial equations. We will mainly focus on the solving polynomial equa-

tions.

Definition 3.1.1 (Polynomial Systems Solving (PoSSo) Problem). Given a set of

polynomial equations P = {f1, f2, · · · , fm} ∈ F[x1, · · · , xk]. Find -if any- common

solutions of the polynomial system such that:

f1(x1, · · · , xk) = f2(x1, · · · , xk) = · · · = fm(x1, · · · , xk) = 0.

When the number of variables is high, this problem is hard to solve.

Definition 3.1.2 (Gröbner Basis). Fix a monomial ordering on F[x1, · · · , xk] and an

ideal I . A finite subset G = {g1, · · · , gt} of an ideal I is a Gröbner basis of I if the

ideal generated by the leading term of every element of I is generated by the leading

terms of the gi, i.e. 〈
LT (I)

〉
=
〈
LT (g1), · · · , LT (gt)

〉
or informally, if any element of I is divisible by one of LT (gi).

Consider I =
〈
x3 + 2xy, x2y + 2y2 − 1

〉
from our previous Example 2.1.2. The set

F = {f, g} = {x3 + 2xy, x2y + 2y2 − 1} is not a Gröbner basis for ideal I =
〈
F
〉

9

with respect to lex order since x ∈
〈
LT (I)

〉
but x /∈

〈
LT (f), LT (g)

〉
.

Example 3.1.1. Let P be the set of polynomials in Q[x, y, z] where P = {x3y −
z, x2 + z, x + y + z}. The following SAGE code may be used to compute Gröbner

basis:

sage: P.<x,y,z>=PolynomialRing(QQ)

sage: I = P.ideal([x^3*y-z,x^2+z,x+y+z])

sage: gb=I.groebner_basis()

[y*z^2 + y*z + z^2, z^3 - y*z + z, y^2 + 2*y*z + z^2 + z, x + y + z]

sage: Ideal(gb).basis_is_groebner()

True

Theorem 3.1.1. Every ideal I has a Gröbner basis G = {g1, · · · , gt} for a fixed

monomial order. Furthermore, any Gröbner basis for the ideal I is a basis of I .

Proof. See [15, Chapter 2, Section 5, Corollary 6].

Buchberger formulated an algorithm, known as Burchberger’s algorithm, for com-

puting Gröbner basis. This algorithm comes from the idea behind Buchberger’s cri-

terion and used to determine if a given basis for an ideal is Gröbner or not.

Definition 3.1.3 (S-polynomial). Let f, g ∈ F[x1, · · · , xk] be two non zero polyno-

mials. The S-polynomial of f and g is defined as the combination

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g,

where xγ is the least common multiple of the leading monomials of f and g, written

as xγ = lcm(LM(f), LM(g)).

Example 3.1.2. Consider f = x3y − xy2 and g = 2x2y2 + y in R[x, y] with respect

to the lex order. Then xγ = lcm(x3y, x2y2) = x3y2 and

S(f, g) =
x3y2

x3y
· f − x3y2

2x2y2
· g

= y · f − x

2
· g

= −xy3 − 1

2
xy.

Observe that the leading terms of the polynomials f and g are cancel each other.

10

S-polynomial is constructed in such a way that the leading terms of two polynomials

cancelled.

Theorem 3.1.2 (Buchberger’s Criterion). Let I be an ideal. A basisG = {g1, · · · , gt}
is a Gröbner basis of I if and only if for any pairs i 6= j, the remainder on the divison

of S(gi, gj) by G, listed in some order, is zero, written as

S(gi, gj)
G
= 0.

Proof. See [15, Chapter 2, Section 7, Theorem 2].

This criterion leads the Buchberger’s algorithm to construct a Gröbner basis for a

given ideal, see Algorithm 1.

Algorithm 1 Buchberger’s Algorithm
Input: F = (f1, · · · , ft) . F ⊆ F[x1, · · · , xk]
Output: A gröbner basis G = (g1, · · · , gs) for the ideal I =

〈
F
〉

G = F

G
′
= set()

while G′ 6= G do

G
′
= G

for each pair {p, q}, p 6= q in G′ do

r := S(p, q)
G
′

if r 6= 0 then

G.add(r)

end if

end for

end while

return G

This algorithm terminates since the Buchberger’s criterion, ifG′ = G then S(p, q)
G
′

=

0 for any p, q ∈ G′ and for r 6= 0, G
′
= G in finitely many steps due to the Ascending

Chain Condition which stabilizes the ascending chain of ideals, a nested increasing

sequence. The runtime of the algorithm is affected by the choice of monomial order-

ing, the order of which p, q are selected and the unnecessary reductions to 0.

11

To understand how we construct Gröbner basis using Buchberger’s algorithm, let’s

look at the following example.

Example 3.1.3. We have already seen that F = {f1, f2} = {x3+2xy, x2y+2y2−1}
in Example 2.1.2 is not a Gröbner basis for I =

〈
F
〉
. We compute S-polynomial of

f1 and f2

S(f1, f2) = x ∈ I,

and its remainder on the division by F is x which is non-zero. Then, we add the

remainder x = f3 to the set F and check if this new extended set F = {f1, f2, f3} is

a Gröbner basis for I or not. Notice that S(f1, f2)
F
= 0 and compute

S(f1, f3) = (x3 + 2xy)− (x2)(x) = 2xy = 2yf3, so

S(f1, f3)
F
= 0,

S(f2, f3) = (x2y + 2y2 − 1)− (xy)(x) = 2y2 − 1, and

S(f2, f3)
F
= 2y2 − 1 6= 0,

therefore we need to add the remainder f4 = 2y2 − 1 to the generating set F . Now,

we have F = {x3 + 2xy, x2y + 2y2 − 1, x, 2y2 − 1}.

S(f1, f4) = (1/2)x3 + 2xy3 = (1/2)f1 + (2y3 − y)f3, so

S(f1, f4)
F
= 0.

Similary, one can easily check that S(fi, fj)
F
= 0 for any pairs i 6= j ∈ {1, 2, 3, 4}.

Hence {x3 + 2xy, x2y + 2y2 − 1, x, 2y2 − 1} is a lex ordered Gröbner basis for I .

One may view Buchberger’s algorithm as a generalization of Euclidean algorithm for

computing greatest common divisor of polynomials and Gaussian elimination to solve

linear equations. There are other algorithms such as F4 and F5 to compute Gröbner

basis effectively using some linear algebra techniques [17, 18].

3.2 Gröbner Basis Attacks

Algebraic attack is a type of cryptographic attack that exploits the algebraic structure

of the cipher to recover the secrets. This class of attacks deduce the secret key by

12

solving multivariate polynomial system of equations which consists of key, plaintext

and ciphertext bits. Gröbner basis attack is an example for algebraic attacks.

The first step of the attack is to represent the cipher as a system of polynomial equa-

tions. Then, the attacker computes the Gröbner basis for the ideal generated by cor-

responding equations and finally solve the system for unknown variables. The phases

of Gröbner basis attack are detailed below.

1. Set up a multivariate polynomial system of equations that describe the cipher.

Note that, one can always find a polynomial representation of a function over

finite fields, but the crucial point is to find the simplest description due to the

complexity of algebraic attacks.

2. Compute a Gröbner basis for the polynomial system, which forms an ideal, in

degree reverse lexicografic order (mostly preferred for performance reasons)

using Gröbner basis algorithms such as Buchberger’s, F4, F5 or Macaulay ma-

trices. In general, this is the most expensive step.

3. Change the ordering in Gröbner basis from degrevlex order to the lex order via

Gröbner basis conversion algorithms like FGLM [19], which works only for

zero dimensional ideals, or Gröbner Walk algorithm [14]. Lex ordered coeffi-

cient matrix of Gröbner basis is in triangular shape and the last row gives the

solution for univariate equation, that’s why the lex order is used to eliminate

variables.

4. Factorize the last element in lexicographic Gröbner basis (lex ordered Gröbner

basis guarantees there is at least one univariate polynomial) using polynomial

factorization algorithms such as Berlekamp algorithm [20]. Finally, compute

the full solution of the system by back substituting roots of the univariate poly-

nomial.

A general algorithm for key recovery using Gröbner bases [12] is provided below:

13

Algorithm 2 Gröbner basis attack [12]

1. Set up a polynomial system of equations P = {pi = 0} for the cipher in

question which consists of both cipher and key schedule equations.

2. Request a plaintext/ciphertext pair ((P0, · · · , Pt−1), (C0, · · · , Ct−1)). This

gives rise to the following additional system of linear equations G = {gi = 0}:

x
(0)
0 + P0 = 0 . . . x

(r)
0 + C0 = 0

x
(0)
1 + P1 = 0 . . . x

(r)
1 + C1 = 0

...
...

x
(0)
t−1 + Pt−1 = 0 . . . x

(r)
t−1 + Ct−1 = 0

Let I be the ideal generated by the set of polynomials J = (
⋃
i{pi})∪(

⋃
i{gi}).

We call this ideal as key recovery ideal.

3. Compute a degree reverse lexicographic ordered Gröbner basis G′degrevlex of I .

For ciphers using a multiplicative inverse as S-box function, the system may be

inconsistent, resulting in G′degrevlex = 1.

4. If G′degrevlex = 1 go to step 2, otherwise continue.

5. Use a Gröbner basis order conversion algorithm to obtain a lexicographical

Gröbner basis Glex from G
′

degrevlex. The variable ordering should be such that

the key variables of the first round are the least elements.

6. Compute the variety Z of I using the Gröbner basis Glex.

7. Request another plaintext/ciphertext pair (P,C).

8. Try all elements k ∈ Z as key candidates to encrypt P . If k does not encrypt P

to C, remove k from Z, otherwise retain.

9. If Z contains more than one element, go to step 7.

10. Terminate

Note that the above algorithm is very general, many changes are possible such as

computing Gröbner basis with a different monomial ordering rather than degrevlex

14

or lex. Observe that in step 6, to compute variety Z of I , variety of an ideal is the

set of all common solutions of the elements in ideal, one needs to factor univariate

polynomials and substitute the roots into other equations to check if that root is a

solution for whole system.

In the following sections, we will discuss the complexity of each step.

3.2.1 Complexity of Gröbner Basis Computation

For a generic system of m equations in k variables

f1(x1, · · · , xk) = · · · = fm(x1, · · · , xk) = 0

the complexity of computing Gröbner basis [10] is

O
((

k + dreg
dreg

)ω)
, (3.1)

operations over the field F, where 2 ≤ ω < 3 is the exponent for the complexity of

matrix multiplication and dreg is the degree of regularity [9]. The degree of regularity

is informally the highest degree reached during Gröbner basis computation and there-

fore is the key concept to analyze the complexity of polynomial solving algorithms.

There is a common belief that this degree determines when the solving algorithm will

terminate, that’s why it is used to parametrize the complexity [27]. In general, com-

puting degree of regularity for the overdetermined systems (m > k) is a hard problem

and still an active research area [3]. Notice that the complexity does not contain the

number of equations m explicitly but, the degree of regularity depends on the number

of equations.

For the regular systems, where the number of equations is equal to the number of

variables, m = k, we can calculate this degree by using the formula:

dreg = 1 +
m∑
i=1

(di − 1), (3.2)

where di is the degree of fi, see [8]. In general, for the semi-regular (random) systems

with the number of equations greater than the number of variables, over-determined

systems (m > k), the degree of regularity can be computed using Hilbert series

15

expansion of the ideal generated by the polynomials f1, · · · , fm. In this case, dreg is

defined [8] as the first non-positive coefficient in

H(t) =
1

(1− t)k
×

m∏
i=1

(1− t)di .

3.2.2 Complexity of Change of Term Ordering

The input of the FGLM algorithm is the Gröbner basis (degrevlex ordered in our

case) of a zero-dimensional ideal I , having finitely many solutions, and it returns the

Gröbner basis with respect to the lex order.

The complexity of the FGLM algorithm [19] is

O(k ·D3), (3.3)

where k is the number of variables and D is the degree of the ideal I which is the

vector space dimension of the quotient ring F[x1, · · · , xk]/I. In general, we know

that FGLM algorithm is faster than the Gröbner Walk algorithm [12].

3.2.3 Complexity of Factorization

Finally, we need to factorize the last univariate polynomial and find its roots in lex

ordered Gröbner basis we discovered. A polynomial of degree d over a finite field

F2n can be factorized using the improved version of Berklekamp algorithm [20]. The

complexity of the algorithm is

O(d3n2 + dn3). (3.4)

In the following chapters, we will describe three block ciphers, JARVIS, MiMC and

GMiMCerf . We will present Gröbner basis attacks for each cipher, analyze the com-

plexity of the attack for variants of JARVIS, our experimental results for key recovery

attack on MiMC and our attack strategy on GMiMCerf .

16

CHAPTER 4

THE BLOCK CIPHER JARVIS

Dhooghe and Ashur proposed JARVIS as a STARK-friendly block cipher in 2018 [7].

Its design inspired by the design of the AES with the aim to gain resistance against

differential and linear cryptanalysis. They instantiate JARVIS to offer 128, 160, 192

and 256-bit security levels.

4.1 Description of JARVIS

JARVIS is a family of SPN block ciphers designed for STARK-applications. It uses

wide-trail strategy as in the case AES which allows to be secure againsts differential

and linear cryptanalysis. JARVIS works on an entire n-bit state and an n-bit key over

the finite field F2n . The non-linear layer in JARVIS uses a single S-box over F2n and

defined as a multiplicative inverse function

S : F2n −→ F2n

x −→ x2
n−2,

or in rational form

S(x) :=

{ 1

x
, x 6= 0

0, x = 0.

The linear part in JARVIS is defined as the composition of two affine polynomials.

These affine polynomials are created by adding a constant value to a linearized poly-

nomial. Remember that an F2 linearized permutation polynomial is defined as

L(x) =
n−1∑
i=0

lix
2i ∈ F2n [x].

17

And the affine polynomial obtained from L(x) is

A(x) = l−1 +
n−1∑
i=0

lix
2i ∈ F2n [x].

In JARVIS, two monic affine polynomialsB and C of degree 4 are chosen in the form

B(x) = x4 + b2x
2 + b1x+ b0 and C(x) = x4 + c2x

2 + c1x+ c0,

so that the linear layerA(x) is splitted asA(x) = C ◦B−1(x) , whereB−1 is the com-
positional inverse satisfying B−1(B(x)) = x. Note that the compositional inverse of
B is still an affine polynomial but it has much more high degree. The round function
of JARVIS is depicted below in Figure 4.1.

⊕Si
B

−1(x)x
−1 C(x)

Ki

Si+1

Figure 4.1: One round of the JARVIS block cipher

Key Schedule The key schedule in JARVIS is similar to the round function. It uses
the same S-box as in the round function whereas the affine part omitted. The first key
k0 is the master key and the round keys are generated by adding a round constant ci to
the output of the S-box in the key schedule. One round of the key schedule is shown
in Figure 4.2.

Ki Ki+1⊕

Ci

x
−1

Figure 4.2: One round of the key schedule used in JARVIS block cipher

The designers of JARVIS propose the security levels for four different block sizes and
different number of rounds r = 10, 11, 12, 14 for a chosen polynomials B and C with
fix round constants, see in Table 4.1 [7].

Table 4.1: Instances of JARVIS

Instances n number of rounds r

JARVIS-128 128 10
JARVIS-160 160 11
JARVIS-192 192 12
JARVIS-256 256 14

18

However, it has been shown that the specified number of rounds for JARVIS does

not provide above security levels as claimed. In the following section, we will give

successful Gröbner basis attack on JARVIS by Albrecht et al. [3].

4.2 Gröbner basis attack

The authors of [3] showed that the JARVIS is not secure as claimed since the cer-

tain characteristics of JARVIS makes the cipher vulnerable to Gröbner basis attacks.

The one is that the S-box of JARVIS, S(x) = x2
n−2, can be written as a degree-2

polynomial

S(x) = x−1 = y,

where x · y = 1 for any non zero element x ∈ F2n . For a sufficiently large n, it is

claimed that x is not equal to zero with a high probability. The other is that whereas

the affine polynomial A has high degree, it is a decomposition of two low degree

polynomials, see (4.1), and setting up equations by avoiding the inverse computation

of high degree B−1 makes the system vulnerable to the attack.

4.2.1 Gröbner basis attack on Reduced Round JARVIS

In the original proposal, the authors of [3] first present the Gröbner basis attack ap-

proach on reduced round JARVIS and then they improve the attack to apply the full

round of JARVIS.

They describe the primitive by introducing an intermediate variable xi for the i-th
round where 1 ≤ i ≤ r, see in Figure 4.3.

⊕Si
B

−1(x)x
−1 C(x)

Ki

Si+1

xi

Figure 4.3: Introducing new intermediate variable xi for the one round of the JARVIS
block cipher

19

The two consecutive rounds of JARVIS is expressed by the equation

(C(xi) + ki) ·B(xi+1) = 1 (4.1)

for 1 ≤ i ≤ r−1, where r is the number of rounds and the equations for the plaintext

p and the ciphertext c described as

(p+ k0) ·B(x1) = 1, (4.2)

C(xr) + kr = c. (4.3)

The two consecutive round keys in JARVIS are defined by the equation

ki+1 =
1

k i
+ ci

which can be written as

(ki+1 + ci) · ki = 1, 0 ≤ i ≤ r − 1. (4.4)

Since B and C are both degree 4 polynomials, the equations in (4.1), (4.2), (4.3),

(4.4) respectively result in:

• (r−1) equations of degree 8 with (2·r−1) variables, x1 · · ·xr and k1, · · · kr−1,

• one equation of degree 5 in two variables k0 and x1,

• one degree-4 equation with two variables xr and kr,

• r equations having degree 2.

Overall, the above polynomial system of equations that describes the primitive has

2 · r + 1 equations in 2 · r + 1 variables x1, · · · , xr and k0, · · · , kr. Since the number

of equations and the number of variables are equal and assuming system behaves like

regular sequences, one may calculate the degree of regularity using (3.2) and estimate

the complexity of computing Gröbner basis (3.1). Even for the number of rounds r =

6, this complexity is almost 120 bits and 85 bits for ω = 2.8 and ω = 2, respectively.

However, it is shown in [3] that these theoretical estimations are too pessimistic. In

practice, the authors compute the Gröbner basis for the above polynomial system and

apply the attack to full-round of JARVIS by improving the attack.

20

4.2.2 Improved attack: A more efficient description of JARVIS

The authors of [3] improved the attack described in previous section by reducing the

number of equations and the number of variables. In order to reduce the number of

variables for round equations, they fix the intermediate variables xi for the even num-

ber of rounds and express them using previous xi−1 and next following intermediate

variables xi+1. For each intermediate variable xi

B(xi) =
1

C(xi−1) + ki−1
, and C(xi) =

1

B(xi+1)
+ ki (4.5)

where 2 ≤ i ≤ r − 1. In order to skip intermediate variables xi, they define monic

degree 4 affine polynomials D and E of the form

D(x) = x4 + d2x
2 + d1x+ d0, and E(x) = x4 + e2x

2 + e1x+ e0

satisfying the equation

D(B) = E(C). (4.6)

It has been shown that the above equation (4.6) can be solved by equalizing the co-

efficients of polynomials, see [3]. After finding such suitable polynomials D and E,

they apply these polynomials to B and C as expressed in (4.5) which yields the poly-

nomial system:

D

(
1

C(xi−1) + ki−1

)
= E

(
1

B(xi+1)
+ ki

)
for 2 ≤ i ≤ r − 1, (4.7)

D

(
1

p+ k0

)
= E

(
1

B(x2)
+ k1

)
, (4.8)

C(xr) + kr = c. (4.9)

The degrees of each equations are as follows

• For the intermediate round equations in (4.7), the left hand side is of degree 16,

since D and C are degree 4 polynomials, and the right hand side is of degree

20, after equalizing denominators degree 36 polynomials obtained.

• The degree of Equation (4.8) is 24, degree 4 from left and degree 20 from the

right hand side.

• Equation (4.9) is of degree 4.

21

Assuming the number of rounds r to be even, above polynomial system gives:

• r
2
− 1 equations of degree 36,

• one equation of degree 24,

• one equation of degree 4.

In total, above system expressed in r
2
+ 1 equations with variables x2, x4, · · · , xr and

k0, · · · , kr. They also reduce the number of key variables by connecting each round

key to the master key k0

ki+1 =
αi · k0 + βi
γi · k0 + δi

(4.10)

where αi, βi, γi and δi are constants and can be found explicitly by solving recursive

relation. Final improvement results in:

• r
2
− 1 equations of degree 40,

• one equation of degree 24,

• one equation of degree 5.

Overall, the improved attack strategy on JARVIS halves the number of equations and
variables needed to describe cipher. Hence, it yields a polynomial system with r

2
+ 1

equations in r
2
+ 1 variables x2, · · · , xr and k0.

Table 4.2: Experimental results of the improved attack on JARVIS using Sage [3]

r k dreg 2 log2

(
k+dreg
dreg

)
d 2 log2

(
k+d
d

)
du Time

3 2 47 20 26 17 256 0.3s
4 3 67 31 40 27 1280 9.4s
5 3 86 34 40 27 6144 891.4s
6 4 106 45 41 34 28672 99989.0s

In Table 4.2, r denotes the number of rounds, k is the number of variables and dreg

is the degree of regularity calculated assuming the system behaves like regular (3.2).

The estimated complexity in bits is 2 log2

(
k+dreg
dreg

)
, for ω = 2, d is the highest degree

reached during the basis computation and the expected security based on the exper-

iment in [3] is 2 log2

(
k+d
d

)
. The degree of the univariate polynomial obtained in the

last step to solve the system is denoted by du.

22

4.3 Complexity Estimates of Gröbner Basis Computation for the variants of

JARVIS

The improved attack given in [3], as described in Section 4.2.2, motivated us to for-

mulate the attack for the block ciphers having affine polynomial like JARVIS. Since

the affine layer of JARVIS is the composition of two low degree (degree-4) polynomi-

alsB and C, we mentioned that one can find two low degree polynomialsD,E which

makes cipher vulnerable to Gröbner basis attack. The question is what if one replaces

B and C with higher degree polynomials. In order to determine whether the higher

degree polynomials choice makes the cipher resistant against Gröbner basis attacks

or not, in this section, we try to generalize the complexity of the improved attack on

JARVIS. We show that JARVIS with degree 8 affine polynomials is still vulnerable to

Gröbner basis attack.

Proposition 4.3.1. Let B and C be arbitrary affine polynomials used in JARVIS. Let
D and E be the monic affine polynomials satisfying the equation D(B) = E(C).
Let db, dc, dd, de be the degrees of B,C,D,E respectively. Then the complexity of
computing Gröbner basis with the improved attack on r rounds JARVIS in bits is

ω log2

(
((r2 − 1)(dd(dc + 1) + de(db + 1)− 1) + (dd + de(db + 1) + dc)) +

r
2 + 1

(r2 − 1)(dd(dc + 1) + de(db + 1)− 1) + dd + de(db + 1) + dc

)
(4.11)

where (r
2
− 1)(dd(dc + 1) + de(db + 1)− 1) + (dd + de(db + 1) + dc) is the degree

of regularity.

Proof. Assume that the degrees of the monic affine polynomialsB,C,D,E be db, dc, dd

and de respectively. The improved attack strategy yields the below equations

• r
2
− 1 equations of degree dd(dc + 1) + de(db + 1) (from (4.7)),

• one equation of degree dd + de(db + 1) (from (4.8)),

• one equation of degree dc + 1 (from (4.9)).

We know that the complexity of the Gröbner basis computation in bits is ω log2

(
k+dreg
dreg

)
,

see (3.1). Since the number of equations and the number of variables are the same

(m = k = r
2
+ 1), assuming the system behaves like a regular system, we can esti-

mate the degree of regularity using the closed formula (3.2). The result follows from

putting the values we obtained from above system.

23

Example 4.3.1. Let’s chooseB andC as degree-4 polynomials as in original JARVIS.

Consider the polynomials D and E have degree 8. The improved attack results in:

• r
2
− 1 equations of degree 80,

• one equation of degree 48,

• one equation of degree 5.

By using the general formula we found in Proposition 4.3.1, we can estimate the

complexity for a different number of rounds r. In Table 4.3, complexities estimated

by setting ω = 2.8 and for ω = 2 in parenthesis as in [3], where k is the number of

variables and dreg is the estimated degree of regularity (3.2).

Table 4.3: Complexity estimates forB,C are of degree 4 and correspondingD,E are
of degree 8 polynomials.

r k dreg Complexity in bits

6 4 210 74 (53)
8 5 299 96 (69)

10 6 368 117(83)
12 7 447 138 (99)
14 8 526 160 (114)

We estimate the complexity of computing Gröbner basis for the affine polynomials
B and C of degree 8 and corresponding polynomials D and E of degrees 2, 4 and 8
using (4.11), without regarding if there is a solution for the system (D(B) = E(C))
or not. The results can be seen below in Table 4.4.

Table 4.4: Complexity estimates for degree-8 polynomials B and C

D,E are degree-2 D,E are degree-4 D,E are degree-8
r k dreg CGB dreg CGB dreg CGB

6 4 98 62 (44) 190 72 (52) 316 80 (57)
8 5 133 80 (57) 261 93 (67) 430 103 (74)

10 6 168 98 (70) 332 114 (82) 544 126 (90)
12 7 203 116 (83) 403 135 (97) 658 149(107)
14 8 238 135 (96) 474 157 (112) 772 172 (123)

24

In the table, expected bit security and the degree of regularity denoted by CGB and

dreg respectively.

Remark 4.3.1. The complexity of the improved attack on JARVIS increases when the

degrees of the polynomials increase. For example, when the number of rounds r = 6

estimated complexity is ≈ 45 bits (see (4.2)) for the polynomials B,C,D,E are all

degree 4 (in original JARVIS), and complexity is ≈ 57 bits (see (4.4)) for degree-8

polynomials.

4.3.1 Comparison with the S-box of the AES and Decomposing AES S-box

The non-linear part in JARVIS applies the same idea with the S-box of the AES,

S-boxAES(z). In this section, we try to decompose S-boxAES(z) for different degree

affine polynomials. We provide some lemmas to decide appropriate degrees of the

decomposition polynomials of AES S-box.

We know that AES S-box is the composition of an affine function AAES(z) over F2

and the multiplicative inverse of the input over F28 . In particular

S-boxAES(z) = AAES(z
254).

The multiplicative inverse is defined by the function F over F28

F : F28 −→ F28

x −→ x254,

where zero is mapped to zero. The affine function in AES can be expressed as a

degree 128 polynomial over F28:

AAES(z) = 0x8F · z128 + 0xB5 · z64 + 0x01 · z32 + 0xF4 · z16 + 0x25 · z8+

0xF9 · z4 + 0x09 · z2 + 0x05 · z + 0x63.

Then, the S-box of AES is represented as

S-boxAES(z) = 0x05 · z254 + 0x09 · z253 + 0xF9 · z251 + 0x25 · z247 + 0xF4 · z239+

0x01 · z223 + 0xB5 · z191 + 0x8F · z127 + 0x63.

25

Since JARVIS is also composition of the inverse multiplication and the affine func-

tion, S-box of JARVIS S(z) can be written as

S(z) = A(z254),

and the affine function A(z) is

A(z) = (C ◦B−1)(z),

where B and C are both monic permutation polynomials of degree 4. In the original

paper [3], it is shown that the AAES(z) can not be viewed as a decomposition of the

polynomials such that

AAES(z) = (Ĉ ◦ B̂−1)(z),

both B̂ and Ĉ have degree 4. The above equation implies

A−1AES(z) = (B̂ ◦ Ĉ−1)(z),

A−1AES(Ĉ(z)) = B̂(z),

where

A−1AES(z) = 0x6E · z128 + 0xDB · z64 + 0x59 · z32 + 0x78 · z16 + 0x5A · z8+

0x7F · z4 + 0xFE · z2 + 0x5 · z + 0x5

is the compositional inverse polynomial of AAES which satisfies A−1AES(AAES(z)) =

z for every z ∈ F28 .

Lemma 4.3.1. There are no two affine polynomials B̂ and Ĉ of degree-4

B̂(z) := b̂4z
4 + b̂2z

2 + b̂1z + b̂0, Ĉ(z) := ĉ4z
4 + ĉ2z

2 + ĉ1z + ĉ0. (4.12)

such that A−1AES(Ĉ(z)) is equal to B̂(z).

Proof. Assume the equality holds for the polynomials of both degree 4, then we must

have zero coefficients in resulting polynomialA−1AES(Ĉ(z)) for the degrees 8, 16, 32, 64, 128.

That means, we need to solve the following multivariate polynomial system with 5

26

equations in 3 variables ĉ4, ĉ2, ĉ1:

0xFE · ĉ24 + 0x7F · ĉ42 + 0x5A · ĉ81 = 0,

0x7F · ĉ44 + 0x5A · ĉ82 + 0x78 · ĉ161 = 0,

0x5A · ĉ84 + 0x78 · ĉ162 + 0x59 · ĉ321 = 0,

0x78 · ĉ164 + 0x59 · ĉ322 + 0xDB · ĉ641 = 0,

0x59 · ĉ324 + 0xDB · ĉ642 + 0x6E · ĉ1281 = 0.

In practice, we have obtained that the only solution satisfies the above system is the

trivial solution, ĉ4 = ĉ2 = ĉ1 = 0 as shown in [3]. Therefore, affine function of AES

can not be decomposed by two degree 4 polynomials.

Example 4.3.2. Assume Ĉ as degree 4 affine polynomial. Now, we want to determine

if there is an affine polynomial B̂ of degree 8 which satisfies A−1AES(Ĉ(z)) = B̂(z).

Since we want B̂ to be a polynomial of degree 8, we equalize the coefficients of the

resulting polynomial A−1AES(Ĉ(z)) for the degrees 16, 32, 64, 128 to zero and hence,

we obtain 4 have equations in 3 unknowns ĉ1, ĉ2, ĉ4:

0x7F · ĉ44 + 0x5A · ĉ82 + 0x78 · ĉ161 = 0,

0x5A · ĉ84 + 0x78 · ĉ162 + 0x59 · ĉ321 = 0,

0x78 · ĉ164 + 0x59 · ĉ322 + 0xDB · ĉ641 = 0,

0x59 · ĉ324 + 0xDB · ĉ642 + 0x6E · ĉ1281 = 0.

We tried to solve this system and observe that there is no solution different than 0.

In the following Lemma 4.3.2, we will show that AAES(z) can be decomposed as

AAES(z) = (Ĉ ◦ B̂−1)(z) if the degree of the product of the polynomials B̂ and Ĉ is

at least 128.

Lemma 4.3.2. Let B̂ and Ĉ be two affine polynomials of degree 2b and 2c, respec-

tively such that

B̂(z) = b̂2bz
2b + b̂2(b−1)z2

(b−1) · · ·+ b̂2z
2 + b̂1z + b̂0

and

Ĉ(z) = ĉ2cz
2c + ĉ2(c−1)z2

(c−1) · · ·+ ĉ2z
2 + ĉ1z + ĉ0, b, c ∈ {0, · · · , 7}.

Then, AAES(z) results in Ĉ(B̂−1(z)) provided that 6 < (b+ c) ≤ 14.

27

Proof. Assume that the degree of Ĉ is 2c and the polynomial A−1AES(Ĉ(z)) is equal to

B̂ having degree 2b, which implies we need to have zero coefficients for the degrees

2(b+1), 2(b+2), · · · , 27. This results in a polynomial system of (7 − b) equations with

(c+1) variables ĉ2c , · · · , ĉ4, ĉ2, ĉ1. In order to find a non-zero solution for this system,

we need to have more unknowns than the equations. Therefore, b and c must satisfy,

6 < (b+ c) ≤ 14.

We have used the above lemma and decomposed the affine function of AES in practice

for the following pairs of the degrees of B̂ and Ĉ :

• degree of Ĉ = 4, B̂ = 32,

• degree of Ĉ = 8, B̂ = 16, 32,

• degree of Ĉ = 16, B̂ = 8, 16, 32,

• degree of Ĉ = 32, B̂ = 4, 8, 16, 32.

Example 4.3.3. Let B̂ and Ĉ be two affine polynomials of degree 16 and 8 respec-

tively. Then, we must have zero coefficients in the resulting polynomial A−1AES(Ĉ(z))

for the degrees 32, 64, 128 which yields a multivariate polynomial system with 3

equations in 4 unknowns ĉ8, ĉ4, ĉ2, ĉ1 :

0x7F · ĉ48 + 0x5A · ĉ84 + 0x78 · ĉ162 + 0x59 · ĉ321 = 0,

0x5A · ĉ88 + 0x78 · ĉ164 + 0x59 · ĉ322 + 0xDB · ĉ641 = 0,

0x78 · ĉ168 + 0x59 · ĉ324 + 0xDB · ĉ642 + 0x6E · ĉ1281 = 0.

Observe that the dimension of the ideal corresponding to above equations is 1 (4-

3=1). We assign a random value to the free variable ĉ1 ∈ F28 to make the ideal to be

zero-dimensional and then solve the system. For example, one can easily check that

the following polynomials B̂ and Ĉ satisfy the equality A−1AES(Ĉ(z)) = B̂(z)

B̂(z) = 0xE4 · z16 + 0xA0 · z8 + 0x9A · z4 + 0x2D · z2 + 0xDA · z + 0x83, (4.13)

Ĉ(z) = 0xAF · z8 + 0x37 · z4 + 0xD8 · z2 + 0xE7 · z + 0x48. (4.14)

Sage code is provided in Appendix A.1 to illustrate how we solve such a system using

Gröbner basis method. After finding such decomposing polynomials of the AES S-

box, we may apply the appropriate affine polynomials D and E to the S-box of AES

28

as in the improved JARVIS attack and estimate the complexity of Gröbner basis attack

on the JARVIS with AES S-box.

4.3.2 Gröbner basis attack on JARVIS with AES S-box

In the previous section, we show that how the S-boxes of AES and JARVIS are similar

and decompose the S-box of AES. In this section, we will replace the non-linear

operation in JARVIS with S-boxAES(z) and estimate the complexity of improved

attack strategy given in [3]. Assume we have

S-boxAES(z) = (C ◦B−1)(z254), z ∈ F28 (4.15)

for a known affine polynomials B and C

B(z) = b2bz
2b + b2(b−1)z2

(b−1)

+ · · ·+ b2z
2 + b1z + b0,

C(z) = c2cz
2c + c2(c−1)z2

(c−1)

+ · · ·+ c2z
2 + c1z + c0, b, c ∈ {0, · · · , 7}

where (b+c) > 6 (see Lemma 4.3.2). The polynomial equations defining the JARVIS

with AES S-box can be viewed as a system of equations such that the equality

D(B) = E(C) (4.16)

is satisfied for the affine polynomials D and E of the form

D(z) = d2dz
2d + d2(d−1)z2

(d−1) · · ·+ d2z
2 + d1z + d0, and

E(z) = e2ez
2e + e2(e−1)z2

(e−1) · · ·+ e2z
2 + e1z + e0, d, e ∈ {0, · · · , 7}.

We will consider two cases to estimate the complexity of the improved attack on

JARVIS with S-boxAES(z):

1. The key schedule is the same as in (4.2).

2. The key schedule in AES is used and all subkeys are captured by the attacker,

but not the master key.

Before moving on we first need to find suitable D and E such that the system (4.16)

has a solution. Let’s see the following lemma to decide degrees of the polynomials D

and E.

29

Lemma 4.3.3. Let B and C be given decomposition polynomials of the AES S-box

as in (4.15) having degree db and dc respectively where (b+ c) > 6 and dedc ≥ dddb.

Then, one can find two non-zero affine polynomials D and E of degrees dd and de

respectively satisfying the system (4.16) provided that d+ 2 ≥ c.

Proof. Write the polynomial system forD(B) = E(C) by comparing the coefficients

of D(B) and E(C) and assume that dedc ≥ dddb. This system results in e + c + 2

equations, since the number of equations determined by the highest degree, with d+

e + 4 variables d2d , d2(d−1) , · · · , d2, d1, d0 and e2e , e2(e−1) , · · · , e2, e1, e0. In order to

find non-zero solutions to recover the polynomials D and E, we must have at least as

many variables as the number of equations, which implies d+ e+4 ≥ e+ c+2.

Example 4.3.4. Given two affine polynomials B degree-16 and C degree-8 of the

forms:

B(x) = b16 · x16 + b8 · x8 + b4 · x4 + b2 · x2 + b1 · x+ b0, and

C(x) = c8 · x8 + c4 · x4 + c2 · x2 + c1 · x+ c0.

Our aim is to find affine polynomials D and E such that the equality D(B) = E(C)

is holds. Consider D and E as degree 4 and degree 8 polynomials respectively where

D(x) = d4 · x4 + d2 · x2 + d1 · x+ d0, and

E(x) = e8 · x8 + e4 · x4 + e2 · x2 + e1 · x+ e0.

We obtain a linear polynomial system of 8 equations in 9 variables d4, d2, d1, d0, e8,

e4, e2, e1, e0 by comparing coefficients of D(B) and E(C):

d4 · b416 + e8 · c88 = 0,

d4 · b48 + d2 · b216 + e8 · c84 + e4 · c48 = 0,

d4 · b44 + d2 · b28 + d1 · b16 + e8 · c82 + e4 · c44 + e2 · c28 = 0,

d4 · b42 + d2 · b24 + d1 · b8 + e8 · c81 + e4 · c42 + e2 · c24 + e1 · c8 = 0,

d4 · b41 + d2 · b22 + d1 · b4 + e4 · c41 + e2 · c22 + e1 · c4 = 0,

d2 · b21 + d1 · b2 + e2 · c21 + e1 · c2 = 0,

d1 · b1 + e1 · c1 = 0,

d4 · b40 + d2 · b20 + d1 · b0 + d0 + e8 · c80 + e4 · c40 + e2 · c20 + e1 · c0 + e0 = 0.

30

We solve this system for given polynomials B and C in (4.13) using Gröbner basis

method and get one of the following solutions:

D(x) = 0xB4 · x4 + 0x3B · x2 + 0x56 · x+ 0x30

and

E(x) = 0xC5 · x8 + 0xE2 · x4 + 0x73 · x2 + 0x98 · x+ 0xCC.

We apply suitable polynomials D and E which satisfy the above Lemma 4.3.3 and
estimate the complexity of improved attack for both two cases, see in Tables 4.5 and
4.6, respectively.

Table 4.5: Complexity estimates of the improved attack on JARVIS with
S-boxAES(z) and the same key schedule described as in 4.10.

r k db dc dd de dreg Complexity in bits

6 4 16 8 4 8 490 62
8 5 16 8 4 8 661 80

10 6 16 8 4 8 832 97
12 7 16 8 4 8 1003 115

In the table, r denotes the number of rounds and k is the number of variables. The
degrees of the decomposition polynomials B and C of S-boxAES(z) and the degrees
of the corresponding polynomials D and C are denoted by db, dc, dd, de respectively.
The expected degree of regularity dreg and complexity estimation in bits are com-
puted, assuming the system behaves like regular sequences, via the formula we give
in 4.3.1 for ω = 2.

Table 4.6: Complexity estimates of the improved attack on JARVIS with
S-boxAES(z) and AES key schedule in the case of all subkeys are captured by the
attacker, but not the master key.

r k db dc dd de dreg Complexity in bits 2 log2

(
k+dreg
dreg

)
6 4 16 8 4 8 457 62
8 5 16 8 4 8 616 79

10 6 16 8 4 8 775 96
12 7 16 8 4 8 934 114

In Table 4.6, for the number of rounds r, the attacker obtain all the key variables

k1, · · · , kr. The improved attack for the polynomialsB,C,D,E having degree 16, 8, 4, 8

31

denoted as db, dc, dd, de yields, r
2
−1 equations of degrees 160 (from (4.7)), one equa-

tion having degree 132 (from (4.8)), one equation having degree 8 (from (4.9)). Since

the number of equations is same as the number of variables we estimate dreg using

(3.2), and the expected the bit security computed for ω = 2.

Remark 4.3.2. We note that while the estimated complexity for JARVIS is ≈ 45

bits, for the number of rounds r = 6, this complexity becomes ≈ 62 bits, see Table

4.5, when JARVIS using the S-box of AES, with an input 8 bits. If we use AES

key schedule and S-box of AES in JARVIS and assume the attacker captures all the

subkeys, except the master key, the improved attack complexity is ≈ 96 bits for 10

rounds, see Table 4.6.

32

CHAPTER 5

THE BLOCK CIPHER MiMC

The block cipher MiMC "Efficient Encryption and Cryptographic Hashing with Min-

imal Multiplicative Complexity" [2], with its variants, published in 2016 and designed

to provide high performance for the applications of secure multi-party computation

(MPC), fully homomorphic encryption (FHE), zero knowledge proofs (ZK) and the

other popular proof systems like SNARKs, STARKs. It minimizes multiplicative

complexity to be efficient over larger fields. In this chapter, we will describe the block

cipher MiMC-n/n and present our experimental results from running the Gröbner ba-

sis attack on reduced rounds of MiMC. We will discuss why cipher is secure against

the attack.

5.1 MiMC-n/n

MiMC is an arithmetic-oriented block cipher works over a finite field Fq, where q is

either a prime number or a power of 2. We will mainly consider MiMC over F2n ,

same description of the cipher is used for prime fields. The round function of MiMC-

n/n is described by a non-linear cubic function x 7−→ x3 where x ∈ F2n . At each

round, the same key k and the randomly chosen round constants ci ∈ F2n are added

to the output of the function. The round function of MiMC can be found in Figure

5.1. Note that the cube function is a permutation in F2n only if n is an odd number

or if gcd(3, p− 1) = 1 when operate over prime field Fp. The decryption in MiMC is

done using the round constants in reverse order and inverting the non-linear function

x3 (S−1(x) := xs where s = (2n+1−1)/3) for odd n [2]. Because of the high degree

33

⊕ ⊕ ⊕· · · ⊕x

k k ⊕ c1 k ⊕ cr−1 k

yX3 X3 X3

Figure 5.1: r rounds of the MiMC-n/n block cipher

of inverse cubing function, decryption part is more computationally expensive than

the encryption however, the target applications of MiMC, like cryptographic hash

functions, not usually require to perform decryption. The designers give the security

analysis for various algebraic attacks and the number of rounds r for MiMC-n/n is

decided by the interpolation attack as r =
⌈

n
log23

⌉
. It is claimed that 82 rounds is

enough for MiMC-129/129 to be secure against GCD, interpolation and the other

attacks.

5.2 Gröbner Basis Attack

Gröbner basis attacks, as detailed in Chapter 3, have mainly three steps:

1. Compute a Gröbner basis in degrevlex order for the polynomial system describ-

ing the primitive

2. Perform a change of term ordering from the degrevlex order to the lex order

3. Factorize the univariate polynomial for the last variable and solve the system

by substituting back its roots

Since the MiMC- n/n has a simple algebraic expression, several algebraic attacks

performed in literature [16, 3]. The authors of [3] state that the equations describing

MiMC are already form a Gröbner basis, therefore the first step of the attack (com-

puting basis) is free but the recovered univariate polynomial has degree ≈ 3r for r

rounds. Because of the cost of the factorization algorithm, they conclude that Gröbner

basis attack has no thread on the security of MiMC.

The graphical representation of introducing new variables for MiMC-n/n is given in
5.2.

34

⊕ ⊕ ⊕· · · ⊕x

k k ⊕ c1 k ⊕ cr−1 k

yX3 X3 X3

x0 x1 xr−1
xr

Figure 5.2: Introducing new intermediate variable xi for r rounds of MiMC-n/n

As stated in [3], we express the intermediate rounds of MiMC as follows:

x3i−1 + xi + ci + k0 = 0, (5.1)

x3r−1 + xr + k0 = 0, (5.2)

for 1 ≤ i ≤ r where k0 is the key variable. In order to make the polynomial system

dependent on plaintext p and ciphertext c, we write

p+ k0 + x0 = 0, (5.3)

c+ xr = 0. (5.4)

Since the above system already forms a Gröbner basis, we skip the first step of the
attack and try to recover the key for the reduced rounds of MiMC-129/129 in practice,
see Table 5.1.

Table 5.1: The number of rounds and the degree of the univariate equation after ap-
plying r rounds MiMC denoted as r and du respectively. FGLM and FACT times
represents the time, in seconds, needed to compute FGLM and Factorization algo-
rithms for the corresponding number of rounds.

r FGLM time FACT time du

3 0.4s 0.2s 27
4 8.8s 2.2s 81
5 266.0s 31.6s 243
6 11462.0s 248.0s 729

Although the equations for MiMC-n/n form a Gröbner basis, times needed to com-

pute FGLM and Factorization algorithms increase exponentially when the number of

rounds increase. Therefore, we conclude that Gröbner basis attack has no threat on

MiMC with 82 rounds.

35

36

CHAPTER 6

THE BLOCK CIPHER GMiMC

The block cipher GMiMC "Generalized Feistel MiMC", proposed in 2019, with its

variants is the more efficient generalized version of MiMC and designed to benefit

MPC, SNARK applications and PQ-secure signature schemes [4]. In this chapter, we

will briefly describe GMiMCerf, a variant of GMiMC using expanding round function,

and then give our Gröbner basis attack strategy. In the original proposal [4], the

security analysis of the cipher against Gröbner basis attack is based on the difficulty

of computing Gröbner basis. However, we discover a recursion in Gröbner basis

of GMiMCerf with four branches for the univariate case and that enables us to skip

the first step of the attack, see 5.2 to remember the steps of the attack. We will

show that cipher secure against Gröbner basis attack not because of the complexity

of computing Gröbner basis but for a different reason.

6.1 Description of GMiMCerf

GMiMC-with an expanding round function (erf) is an unbalanced Feistel cipher. One

round of an unbalanced Feistel Network with an expanding round function can be

written as [4]:

(Xt−1, Xt−2, · · · , X0)← (Xt−2 ⊕ F (Xt−1), · · · , X0 ⊕ F (Xt−1), Xt−1)

where Xj ∈ F2n is an input to the jth branch, 1 ≤ j ≤ t − 1, of the Feistel network

and F is the round function similar to MiMC defined as

F (x) := (x⊕ ki ⊕ Ci)3,

37

where ki is the round key and Ci is the randomly chosen and fixed round constant for
the ith round, 1 ≤ i ≤ r. The graphical representation of the cipher can be found
below in Figure 6.1.

⊕

⊕

⊕
· · ·

F

Figure 6.1: One round of an unbalanced Feistel Network GMiMC with an expanding
round function

The description of the cipher over the prime finite field Fp with order p is obtained

by replacing XOR operation with the sum in modulo p. Throughout this paper, we

consider the univariate case κ = n (or equivalently for the Fp case, 2κ ' p) where the

key size, denoted by κ, is equal to the branch size n = dlog2|F|e in bits. Key schedule

for the univarite case in GMiMCerf, also for the other variants, is linear, ki = k for

any i.

6.2 Gröbner Basis Attack

The authors of [4] give a detailed security analysis of GMiMC over Fp and discuss

the minimum number of rounds that guarantees the security of the cipher for several

attacks. They state that most of the attack techniques over Fp can be performed sim-

ilarly in F2n . The minimum number of rounds required to prevent the corresponding

possible attacks towards GMiMCerf can be found below in Table 6.1 [4]. They

propose the minimum number of rounds r to protect the cipher against Gröbner basis

attacks only for the multivariate case (when the key size κ is equal to the block size

N,N = n·t or equivalently, 2κ ' 2N ' pt for the Fp case). They claim that the attack

is the same as GCD attack for the univariate case. The minimum required number of

38

Table 6.1: The minimum number of rounds r to provide the security of GMiMCerf

against the corresponding attacks over Fp for the univariate case (κ = n), where
t > 2 is the number of branches and 2 · log3(2) = 1.262.

Number of rounds r

GCD d1.262 · log2(p)− 4 · log3(log2(p))e+ 2t− 2

Interpolation d1.262 · log2(p)e+ 2t

Higher Order 2 + 2t+ d2log3(t)e
Truncated Differential 2 +

⌈
(t2 + t) · log2(p)

2(log2(p)−1)

⌉
Impossible Differential 2t

rounds to be resistant against Gröbner basis attacks is given as

r = d0.631 · log2(p) + 2log3(t)e+ 4t− 5.

They obtain this value by first observing the degrees of the polynomial equations

describing cipher after r rounds, and then estimating the complexity of computing

Gröbner basis for this degree. It is claimed that introducing new intermediate vari-

ables does not decrease the complexity of the attack since it causes to increase in

number of variables.

6.2.1 Our attack strategy

In contrast to the block cipher MiMC-n/n, our polynomial equations describing

GMiMCerf do not form a Gröbner basis. Therefore, to perform the attack, one first

needs to compute the Gröbner basis which is the most expensive step of the attack.

Our idea was to find -if any- a recursion or a path in basis in order to skip basis compu-

tation. We discovered the recursion in degrevlex ordered Gröbner basis of GMiMCerf

with four branches for the univariate case (2κ ' p) over arbitrary prime fields Fp and

so able to write a general recursive formula of the basis for r rounds of the cipher.

We describe the primitive by setting four intermediate variables x4(i−1), x4(i−1)+1,
x4(i−1)+2, x4(i−1)+3 for each round from leftmost to the rightmost branch where 1 ≤
i ≤ r as depicted below in Figure 6.2.

39

⊕

⊕

⊕

F

p0 p1 p2 p3

⊕

⊕

⊕

.

.

.

.

.

.

.

.

.

.

.

.

c0 c1 c2 c3

F

x0 x1 x2 x3

x4 x5 x6 x7

Figure 6.2: Introducing new intermediate variables x4(i−1), x4(i−1)+1, x4(i−1)+2,
x4(i−1)+3 for r rounds of GMiMCerf where 1 ≤ i ≤ r with branch number t = 4.

Two consecutive rounds of GMiMCerf with 4 branches can be related as follows

x4i − x4(i−1)+1 = 0, (6.1)

x4i+1 − x4(i−1)+2 − F (x4(i−1)+1, k0, Ci) = 0, (6.2)

x4i+2 − x4(i−1)+3 − F (x4(i−1)+1, k0, Ci) = 0, (6.3)

x4i+3 − x4(i−1) − F (x4(i−1)+1, k0, Ci) = 0, (6.4)

for 1 ≤ i ≤ r − 1 where k0 and Ci’s are key and constant variables respectively. To

make the system dependent on the plaintext p and the ciphertext c ∈ (Fp)t where,

p = (p0, p1, p2, p3) and c = (c0, c1, c2, c3), we add 4 plaintext equations

x0 − p0 = 0, (6.5)

x1 − F (p0, k0, C0)− p1 = 0, (6.6)

x2 − F (p0, k0, C0)− p2 = 0, (6.7)

x3 − F (p0, k0, C0)− p3 = 0, (6.8)

40

and the 4 ciphertext equations

x4(r−1) − c3 = 0, (6.9)

x4(r−1)+1 − c0 = 0, (6.10)

x4(r−1)+2 − c1 = 0, (6.11)

x4(r−1)+3 − c2 = 0. (6.12)

Notice that the above system has six polynomial equations of degree 3 and two equa-

tions of degree 1 for the intermediate and the plaintext equations, and has four linear

ciphertext equations. In practice, we observe that this system do not form a Gröbner

basis for the primitive unlike to MiMC-n/n.

In order to recover a recursion or a structure in Gröbner basis, for the above poly-

nomial equations describing the cipher, we compute the basis for reduced rounds of

GMiMCerf over prime fields Fp having different prime orders p > 11 and see that the

basis is independent from the order choice. We were able to compute the Gröbner ba-

sis in degrevlex order until 13 rounds using SageMath, which was enough to discover

the pattern in the basis. The below Sage code block illustrates how we compute the

basis for 2 rounds equations and fixed same round constants C0.

sage: P.<x7,x6,x5,x4,x3,x2,x1,x0,p3,p2,p1,p0,k0,C0>=

PolynomialRing(GF(307))

sage: eqn1=p1+(p0+k0+C0)^3-x4

sage: eqn2=p2+(p0+k0+C0)^3+(x4+k0+C0)^3-x5

sage: eqn3=p3+(p0+k0+C0)^3+(x4+k0+C0)^3+-x6

sage: eqn4=p0+(x4+k0+C0)^3-x7

sage: I=Ideal([eqn1,eqn2,eqn3,eqn4])

sage: I.basis_is_groebner()

False

sage: gb =I.groebner_basis()

sage: gb

[x4^3+3*x4^2*k0+3*x4*k0^2+k0^3+3*x4^2*C0+6*x4*k0*C0+3*k0^2*C0+

3*x4*C0^2+3*k0*C0^2+C0^3-x5+x4+p2-p1,

p0^3+3*p0^2*k0+3*p0*k0^2+k0^3+ 3*p0^2*C0+6*p0*k0*C0+3*k0^2*C0+

3*p0*C0^2+3*k0*C0^2+C0^3-x4+p1,

x7-x5+x4+p2-p1-p0,x6-x5-p3+p2]

41

6.2.2 Observation

Gröbner basis G for GMiMCerf with 4 branches over arbitrary prime field Fp, with

respect to the degrevlex order, has the following forms:

when the number of rounds r = 5 + 3k, k ∈ N

G = {(x4(r−1) + k0 + C0)
3 − x4(r−1)+1 + x4(r−1) − x4(r−3) + 2x4(r−4) − x4(r−5) −

x4(r−6) + 2x4(r−7) − x4(r−8) − x4(r−9) + · · ·+ 2x4 + p2 − p1 − p0,
(x4(r−2) + k0 + C0)

3 − x4(r−1) + x4(r−2) − x4(r−4) + 2x4(r−5) − x4(r−6) − x4(r−7) +
· · ·+ 2x12 − x8 − x4 − p3 + p1 + p0,

(x4(r−3) + k0 + C0)
3 − x4(r−2) + x4(r−3) − x4(r−5) + 2x4(r−6) − x4(r−7) − x4(r−8) +

· · ·+ 2x8 − x4 + p3 − p2,
(x4(r−4) + k0 + C0)

3 − x4(r−3) + x4(r−4) − x4(r−6) + 2x4(r−7) − x4(r−8) − x4(r−9) +
· · ·+ 2x4 + p2 − p1 − p0,
...

(x12 + k0 + C0)
3 − x16 + x12 − x4 − p3 + p1 + p0,

(x8 + k0 + C0)
3 − x12 + x8 + p3 − p2,

(x4 + k0 + C0)
3 − x8 + x4 + p2 − p1,

(p0 + k0 + C0)
3 − x4 + p1,

x4(r−1)+3 − x4(r−1)+1 + x4(r−1) − x4(r−2) − x4(r−3) + 2x4(r−4) − x4(r−5) − x4(r−6) +
2x4(r−7) − · · ·+ 2x4 + p2 − p1 − p0,
x4(r−1)+2− x4(r−1)+1 + x4(r−2)− 2x4(r−3) + x4(r−4) + x4(r−5)− 2x4(r−6) + · · ·+ x4−
p3 + p2},

when the number of rounds r = 6 + 3k, k ∈ N

G = {(x4(r−1) + k0 + C0)
3 − x4(r−1)+1 + x4(r−1) − x4(r−3) + 2x4(r−4) − x4(r−5) −

x4(r−6) + 2x4(r−7) − x4(r−8) − x4(r−9) + · · · − x4 + p3 − p2,
(x4(r−2) + k0 + C0)

3 − x4(r−1) + x4(r−2) − x4(r−4) + 2x4(r−5) − x4(r−6) − x4(r−7) +
· · ·+ 2x4 + p2 − p1 − p0,
(x4(r−3) + k0 + C0)

3 − x4(r−2) + x4(r−3) − x4(r−5) + 2x4(r−6) − x4(r−7) − x4(r−8) +
· · · − x4 − p3 + p1 + p0,

(x4(r−4) + k0 + C0)
3 − x4(r−3) + x4(r−4) − x4(r−6) + 2x4(r−7) − x4(r−8) − x4(r−9) +

· · · − x4 + p3 − p2,

42

...

(x12 + k0 + C0)
3 − x16 + x12 − x4 − p3 + p1 + p0,

(x8 + k0 + C0)
3 − x12 + x8 + p3 − p2,

(x4 + k0 + C0)
3 − x8 + x4 + p2 − p1,

(p0 + k0 + C0)
3 − x4 + p1,

x4(r−1)+3 − x4(r−1)+1 + x4(r−1) − x4(r−2) − x4(r−3) + 2x4(r−4) − x4(r−5) − x4(r−6) +
2x4(r−7) − · · ·+ 2x8 − x4 + p3 − p2,
x4(r−1)+2− x4(r−1)+1 + x4(r−2)− 2x4(r−3) + x4(r−4) + x4(r−5)− 2x4(r−6) + · · ·+ x4 +

p3 − p1 − p0},

when the number of rounds r = 7 + 3k, k ∈ N

G = {(x4(r−1) + k0 + C0)
3 − x4(r−1)+1 + x4(r−1) − x4(r−3) + 2x4(r−4) − x4(r−5) −

x4(r−6) + 2x4(r−7) − x4(r−8) − x4(r−9) + · · · − x8 − x4 − p3 + p1 + p0,

(x4(r−2) + k0 + C0)
3 − x4(r−1) + x4(r−2) − x4(r−4) + 2x4(r−5) − x4(r−6) − x4(r−7) +

· · ·+ 2x8 − x4 + p3 − p2,
(x4(r−3) + k0 + C0)

3 − x4(r−2) + x4(r−3) − x4(r−5) + 2x4(r−6) − x4(r−7) − x4(r−8) +
· · ·+ 2x4 + p2 − p1 − p0,
(x4(r−4) + k0 + C0)

3 − x4(r−3) + x4(r−4) − x4(r−6) + 2x4(r−7) − x4(r−8) − x4(r−9) +
· · · − x4 − p3 + p1 + p0,
...

(x12 + k0 + C0)
3 − x16 + x12 − x4 − p3 + p1 + p0,

(x8 + k0 + C0)
3 − x12 + x8 + p3 − p2,

(x4 + k0 + C0)
3 − x8 + x4 + p2 − p1,

(p0 + k0 + C0)
3 − x4 + p1,

x4(r−1)+3 − x4(r−1)+1 + x4(r−1) − x4(r−2) − x4(r−3) + 2x4(r−4) − x4(r−5) − x4(r−6) +
2x4(r−7) − · · · − x4 − p3 + p1 + p0,

x4(r−1)+2−x4(r−1)+1+x4(r−2)−2x4(r−3)+x4(r−4)+x4(r−5)−2x4(r−6)+ · · ·−2x4−
p2 + p1 + p0},

where p = (p0, p1, p2, p3) is the plaintext and C0 is the round constant variable.

We note that we only consider the case where the same key and round constant are

used in each round and the number of branches is four. We conclude that the Gröbner

basis of GMiMCerf has the above structures which makes the first step of the Gröbner

43

basis attack for free. That means, one can always compute the Gröbner basis for any

number of rounds and therefore there is no complexity of computing Gröbner basis

for GMiMCerf. In order to recover the key, we used the above Gröbner basis elements

as our polynomial equations, with a single known p/c pair, and tried to change the

term ordering in basis from degrevlex order to lex order via the FGLM algorithm

(second step of the attack). We observed that the ideal generated by those equations

is not zero-dimensional, so used the Gröbner Walk algorithm and recovered the key

until 13 rounds by solving the last univariate basis equation. However, the Gröbner

Walk algorithm was slower than the FGLM algorithm and hence, our attack strategy

did not speed up the Gröbner basis attack on GMiMCerf. We give the attack code in

Appendix A.2. The natural question is to ask what happens if one makes the ideal

zero-dimensional.

44

CHAPTER 7

CONCLUSION

In this master thesis we focus on the Gröbner basis attack on three different symmetric-

key primitives JARVIS-like ciphers, MiMC and GMiMCerf which are designed to of-

fer efficient solution in applications of advanced cryptographic protocols. We give

some mathematical background required to understand the concept of Gröbner basis

attacks in Chapter 2 and describe the Gröbner basis and the phases of the Gröbner

basis attacks in Chapter 3.

We study the successful Gröbner basis attack against JARVIS by Albrecht et al. [3]

and later present our general formula to estimate the complexity of the attack on

variants of JARVIS in Section 4.3. We use this formula to analyze the security of

JARVIS-like ciphers with higher degree polynomials. We choose the affine polyno-

mials in JARVIS-128 as degree 8 polynomials rather than 4 and observe that although

the expected bit security increases (≈ 90 bits for 10 rounds), the cipher still does not

provide the claimed security level in the original proposal [7]. Since the block cipher

JARVIS is very similar to the AES S-box, we write the S-box of AES as a decompo-

sition of two affine polynomials in Section 4.3.1. We decompose the S-box of AES

for different degree of polynomials satisfying Lemma 4.3.2.

Next, we replace the JARVIS round function with the AES S-box which operates on

inputs of 8-bits in Section 4.3.2. We estimate the complexity of the improved attack

in two cases, the first one is that we use the key schedule of JARVIS, and the other is

that we regard the AES key schedule but the attacker obtained all subkeys. For both

cases, we see that the improved attack complexity is around ≈ 97 bits when number

of rounds is 10, see in Tables 4.5, 4.6.

45

Also, we apply a Gröbner basis attack to MiMC block cipher, see in Section 5.2.

The first step of the attack is free because of the equations describing MiMC already

forms a Gröbner basis as emphasized in [3]. We recovered the secret key until 6

rounds using SageMath. Our equations for MiMC result in a univariate polynomial

of degree ≈ 3r. We conclude that our Gröbner basis attack strategy has no thread on

MiMC due to the complexities of FGLM and factorization algorithms.

The polynomial equations we construct for the other block cipher GMiMCerf do not

form a Gröbner basis unlike to MiMC. We consider the cipher with 4 branches and

compute degrevlex ordered Gröbner basis until 13 rounds. However, the specified

number of rounds for GMiMC is much higher. Therefore, our attack strategy is to

make the first step of the attack free. In order to avoid basis computation, we try to

find a structure in basis which leads us to obtain the Gröbner basis for any number

of rounds. We find Gröbner bases in degrevlex in the Section 6.2. However, we

couldn’t change order of the terms to lexicographic order via FGLM algorithm since

the dimension of the ideal was not zero. We use Gröbner Walk algorithm to recover

univariate equation with single plaintext/ciphertext pair and solve for the key until

13 rounds but attack is still not applicable to the full round of GMiMC due to the

performance reasons of Gröbner Walk algorithm.

7.1 Discussion and Future Work

The symmetric-key primitives become more algebraically simple to provide efficient

solution in applications of advanced cryptographic protocols in recent years. Security

of these designs usually assured by the number of rounds to avoid corresponding alge-

braic attacks. Gröbner basis is one of those attacks should be regarded especially due

to the recent success of the attack on primitives JARVIS and FRIDAY. However, there

is no generic systematic security argument for deciding resistance towards Gröbner

basis attacks without experimentally running the flavor of the attack we give in Chap-

ter 3. A systematic way to describe complexity of the attack should be a future work

to be investigated.

The paper [6] provides a novel framework to determine the security of the cipher

46

against Gröbner basis attack. For most of the new designs, it becomes a standard

that the cipher’s resistance against the Gröbner basis attack should based on infea-

sible complexity of computing Gröbner basis in degrevlex order. Note that, the first

step of the attack is free for the MiMC case. But, it turns out that the cipher secure

against the attack because of the following steps, complexity of order conversion and

factorization algorithms.

We provide a complexity estimation for the JARVIS-like ciphers according to the

attack strategy called bridging equations over two rounds in the original paper [3].

We apply this attack to AES S-box but that is not a comprehensive work due to the

lack of time. Bridging more than two equations to reduce number of variables or

generalization of the improved attack strategy on JARVIS and apply to AES or new

arithmetization-oriented ciphers such as GMiMC, Starkad/Poseidon is a subject for

the future wok.

47

48

REFERENCES

[1] Starkware industries: Stark-friendly hash challenge.

[2] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity,
in International Conference on the Theory and Application of Cryptology and
Information Security, pp. 191–219, Springer, 2016.

[3] M. R. Albrecht, C. Cid, L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rech-
berger, and M. Schofnegger, Algebraic cryptanalysis of stark-friendly designs:
application to marvellous and mimc, in International Conference on the Theory
and Application of Cryptology and Information Security, pp. 371–397, Springer,
2019.

[4] M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru,
A. Roy, and M. Schofnegger, Feistel structures for mpc, and more, in European
Symposium on Research in Computer Security, pp. 151–171, Springer, 2019.

[5] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner, Ci-
phers for mpc and fhe, in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 430–454, Springer, 2015.

[6] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec, Design of
symmetric-key primitives for advanced cryptographic protocols, IACR Trans-
actions on Symmetric Cryptology, pp. 1–45, 2020.

[7] T. Ashur and S. Dhooghe, Marvellous: a stark-friendly family of cryptographic
primitives., IACR Cryptol. ePrint Arch., 2018, p. 1098, 2018.

[8] M. Bardet, J. Faugere, B. Salvy, and B. Yang, Asymptotic behaviour of the index
of regularity of quadratic semi-regular polynomial systems, in 8th International
Symposium on Effective Methods in Algebraic Geometry, Citeseer, 2005.

[9] M. Bardet, J.-C. Faugere, and B. Salvy, Complexity of gröbner basis computa-
tion for semi-regular overdetermined sequences over f_2 with solutions in f_2,
2003.

[10] L. Bettale, J.-C. Faugère, and L. Perret, Solving polynomial systems over finite
fields: improved analysis of the hybrid approach, in Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation, pp. 67–74,
2012.

49

[11] B. Buchberger, Bruno buchberger’s phd thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial
ideal, Journal of symbolic computation, 41(3-4), pp. 475–511, 2006.

[12] J. Buchmann, A. Pyshkin, and R.-P. Weinmann, Block ciphers sensitive to gröb-
ner basis attacks, in Cryptographers’ Track at the RSA Conference, pp. 313–331,
Springer, 2006.

[13] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier,
and R. Sirdey, Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression, Journal of Cryptology, 31(3), pp. 885–916, 2018.

[14] S. Collart, M. Kalkbrener, and D. Mall, Converting bases with the gröbner walk,
Journal of Symbolic Computation, 24(3-4), pp. 465–469, 1997.

[15] D. Cox, J. Little, and D. OShea, Ideals, varieties, and algorithms: an introduc-
tion to computational algebraic geometry and commutative algebra, Springer
Science & Business Media, 2013.

[16] M. Eichlseder, L. Grassi, R. Lüftenegger, M. Øygarden, C. Rechberger,
M. Schofnegger, and Q. Wang, An algebraic attack on ciphers with low-degree
round functions: Application to full mimc., IACR Cryptol. ePrint Arch., 2020,
p. 182, 2020.

[17] J.-C. Faugere, A new efficient algorithm for computing gröbner bases (f4), Jour-
nal of pure and applied algebra, 139(1-3), pp. 61–88, 1999.

[18] J. C. Faugère, A new efficient algorithm for computing gröbner bases without
reduction to zero (f 5), in Proceedings of the 2002 international symposium on
Symbolic and algebraic computation, pp. 75–83, 2002.

[19] J.-C. Faugere, P. Gianni, D. Lazard, and T. Mora, Efficient computation of zero-
dimensional gröbner bases by change of ordering, Journal of Symbolic Compu-
tation, 16(4), pp. 329–344, 1993.

[20] G. Genovese, Improving the algorithms of berlekamp and niederreiter for fac-
toring polynomials over finite fields, Journal of Symbolic Computation, 42(1-2),
pp. 159–177, 2007.

[21] L. Grassi, D. Kales, D. Khovratovich, A. Roy, C. Rechberger, and M. Schofneg-
ger, Starkad and poseidon: New hash functions for zero knowledge proof sys-
tems, 2019.

[22] L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, and M. Schofnegger, On a
generalization of substitution-permutation networks: The hades design strategy,
in Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pp. 674–704, Springer, 2020.

50

[23] P. Karn, P. Metzger, and W. Simpson, The esp triple des transform, RFC1851,
1995.

[24] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet, Towards stream ciphers
for efficient fhe with low-noise ciphertexts, in Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pp. 311–343,
Springer, 2016.

[25] V. Rijmen and J. Daemen, Advanced encryption standard, Proceedings of Fed-
eral Information Processing Standards Publications, National Institute of Stan-
dards and Technology, pp. 19–22, 2001.

[26] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, Zerocash: Decentralized anonymous payments from bitcoin, in 2014
IEEE Symposium on Security and Privacy, pp. 459–474, IEEE, 2014.

[27] I. Semaev and A. Tenti, Probabilistic analysis on macaulay matrices over fi-
nite fields and complexity of constructing gröbner bases., IACR Cryptol. ePrint
Arch., 2019, p. 903, 2019.

[28] W. Stein and D. Joyner, Sage: System for algebra and geometry experimenta-
tion, Acm Sigsam Bulletin, 39(2), pp. 61–64, 2005.

51

52

APPENDIX A

SAGE CODE LISTING

This appendix will provide Sage code to decompose inverse affine function in AES,

A−1AES , with affine polynomials C and B of degrees 8 and 16 respectively in A.1.

In A.2, we will give Sage code for the Gröbner basis attack on the reduced rounds of

MiMC, GMiMCerf and implementation of the attack on GMiMCerf without computing

Gröbner basis.

A.1 Solving Multivariate Polynomial Equations from Section 4.3.1

1 #!/usr/bin/env python
2 # coding: utf-8
3
4
5 """
6 Solving the multivariate polynomial system satisfying the equation
7
8 A^-1_AES (C)= B^-1 using GB method.
9

10 AUTHOR: Gizem Kara <kara.gizem@metu.edu.tr>
11
12 """
13
14
15 from sage.rings.polynomial.multi_polynomial_ideal import MPolynomialIdeal
16 from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list
17
18 import sage.libs.singular.function_factory
19 eliminate = sage.libs.singular.function_factory.ff.eliminate
20
21
22 K.<a>= GF(2**8)
23
24 L.<c8,c4,c2>=PolynomialRing(K,order='lex')
25
26 """
27 Coefficients of degree 128 polynomial representation of
28 inverse affine function of AES
29 """
30 s128=K._cache.fetch_int(Integer(0x6E))
31 s64=K._cache.fetch_int(Integer(0xDB))
32 s32=K._cache.fetch_int(Integer(0x59))
33 s16=K._cache.fetch_int(Integer(0x78))
34 s8=K._cache.fetch_int(Integer(0x5A))
35 s4=K._cache.fetch_int(Integer(0x7F))
36 s2=K._cache.fetch_int(Integer(0xFE))
37 s=K._cache.fetch_int(Integer(0x5))
38
39 """The variables c1,c2,c4,c8 are coefficients of C where
40 c1 is free"""
41

53

42
43 c1=K.random_element()
44
45
46 eqn1=s4*(c8^4)+s8*(c4)^8+s16*(c2^16)+s32*(c1^32)
47 eqn2=s8*(c8^8)+s16*(c4)^16+s32*(c2^32)+s64*(c1^64)
48 eqn3=s16*(c8^16)+s32*(c4)^32+s64*(c2^64)+s128*(c1^128)
49
50
51 Id= ideal(eqn1,eqn2,eqn3) # ideal is zero-dimensional
52 Gb=Id.groebner_basis()
53
54
55 #print("C= degree 8, B= degree 16, dimension:", Id.dimension())
56
57 print(Id.variety(),"c1:", c1)

A.2 Attacks

A.2.1 MiMC

1 #!/usr/bin/env python
2 # coding: utf-8
3
4
5 """
6 GB Attack on reduced rounds of MiMC
7 AUTHOR: Gizem Kara <kara.gizem@metu.edu.tr>
8
9 NOTE: This code is based on the sage implementations of the

10 attacks on Jarvis and Friday by Albrecht et al.
11 at https://github.com/IAIK/marvellous-attacks
12 """
13
14
15 from sage.rings.polynomial.multi_polynomial_ideal import MPolynomialIdeal
16 from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list
17
18 import sage.libs.singular.function_factory
19
20
21 def define_constants():
22 array=[]
23 for i in range(0,num_rounds-1):
24 array.append(K.random_element())
25 return array
26
27
28 def mimc_encryption(plaintext,key,num_rounds,constants):
29 cipher=(plaintext+key)^3
30 for i in range(0,num_rounds-1):
31 cipher=(cipher+key+constants[i])^3
32 ciphertext=(cipher+key)
33 return ciphertext
34
35 def mimc_decryption(ciphertext,key,num_rounds,constants):
36 alpha_inverse = (2**(n+1)-1)/3
37 plain=(ciphertext-key)
38 for i in range(0,num_rounds-1):
39 y=num_rounds-2-i
40 plain = (plain^alpha_inverse - key - constants[y])
41 plaintext=(plain^alpha_inverse-key)
42 return plaintext
43
44
45 #decrypted_plaintext= mimc_decryption(ciphertext,key,num_rounds,constants)
46 #print "plaintext: ",decrypted_plaintext
47
48 def get_elimination_ideal(F, variables, deg_bound=None, algorithm="singular:slimgb", *args, **kwds):
49 P = PolynomialRing(K, variables, order="degrevlex")
50 F = Sequence([P(f) for f in F])
51 print("n_v: {n_v:3d}, n_e: {n_e:3d}, max_deg: {d:3d}".format(n_v=F.nvariables(), n_e=len(F),
52 d=F.maximal_degree()))
53

54

54 gb = None
55 if deg_bound:
56 ideal = Ideal(F)
57 print ("Dimension of R/I as vector space:", len(ideal.normal_basis()))
58 H = ideal.change_ring(P.change_ring(order="degrevlex")).gens()
59 print ("n: {n:3d}, m: {m:3d}, max(deg(f)): {d:3d},".format(n=F.nvariables(), m=len(F),
60 d=H.maximal_degree()))
61 if deg_bound is True:
62 deg_bound = 1 + sum(f.degree() - 1 for f in H)
63 if deg_bound < H.maximal_degree():
64 raise ValueError("Degree bound %d is smaller than input degrees %d."%(deg_bound,
65 H.maximal_degree()))
66 t = walltime()
67 gb = H.groebner_basis(deg_bound=deg_bound, algorithm=algorithm, *args, **kwds)
68 print ("GB time: {t:5.1f}s".format(t=walltime(t)))
69 print ("deg_bound: {deg_bound:3d}, is GB: {is_gb}".format(deg_bound=deg_bound,
70 is_gb=gb.is_groebner()))
71 if not gb.is_groebner():
72 raise ValueError("Degree bound %d too low, output is not a Gröbner basis."%deg_bound)
73
74 if gb == None:
75 ideal = Ideal(F)
76 print ("Dimension of R/I as vector space:", len(ideal.normal_basis()))
77 t = walltime()
78 gb = F.groebner_basis(algorithm=algorithm, *args, **kwds)
79 print ("GB time: {t:5.1f}s".format(t=walltime(t)))
80
81 t = walltime()
82 gb_lex = Ideal(gb).transformed_basis('fglm')
83 print ("FGLM time: {t:5.1f}s".format(t=walltime(t)))
84
85 univariate = Sequence([f for f in gb_lex if f.is_univariate()])
86 return univariate
87
88 def solve(eqns, vars, rem_var, deg_bound, *args, **kwds):
89
90 P = PolynomialRing(K, vars)
91
92 # Print degrees
93 if debug:
94 for eq in eqns:
95 print ("Degree:", P(eq).degree())
96
97 # Get elimination ideal
98 elGB = get_elimination_ideal(eqns, vars, deg_bound=deg_bound, *args, **kwds)
99 if debug:

100 print("Length of elimination ideal:", len(elGB))
101
102 # Solve univariate equation
103 Q = PolynomialRing(K, rem_var)
104 elim = Q(elGB[elGB.nvariables()-1])
105 t = walltime()
106 sols = [el[0] for el in set(elim.roots(ring=K))]
107 print ("FACT time: {t:5.1f}s".format(t=walltime(t)))
108 print ("Degree of univariate equation:", elim.degree())
109
110 return sols
111
112
113 def mimc_attack(plaintext,key,num_rounds, constants, deg_bound=None, *args, **kwds):
114
115 ciphertext = mimc_encryption(plaintext,key,num_rounds,constants)
116
117 variables = []
118 for i in range(0,num_rounds+1):
119 variables.append("x_"+str(i))
120 variables.append("k_0")
121 P = PolynomialRing(K, variables, order="degrevlex")
122 P.inject_variables()
123
124 variables = [P(v) for v in variables]
125 equations = []
126
127 for i in range(0,num_rounds+1):
128 if i==0:
129 equations.append(variables[i]-k_0-plaintext)
130 elif i<num_rounds:
131 equations.append(variables[i]-k_0-constants[i-1]-(variables[i-1])^3)
132 else:
133 equations.append(variables[i]-k_0-(variables[i-1])^3)
134 equations.append(ciphertext-variables[i])
135
136
137 remaining_variable = "k_0"
138 print ("Solutions:")
139 for s in solve(equations, variables, remaining_variable, deg_bound, *args, **kwds):
140 print ("K: ",s)
141
142 def run_mimc_attack(r=3, deg_bound=None, optimized=True, *args, **kwds):
143 k = K.random_element()
144 p = K.random_element()
145 constants = define_constants()
146 print ("key is :", k)
147 mimc_attack(p,k,r,constants,deg_bound=deg_bound, *args, **kwds)

55

148
149
150 n = 129
151 num_rounds=3
152 testing_polys = False
153 debug = False
154
155 K = GF(2**n,"a")
156 K.inject_variables()
157
158 run_mimc_attack(3,deg_bound=None)

A.2.2 GMiMCerf

1 #!/usr/bin/env python
2 # coding: utf-8
3
4
5 """
6 GB Attack on GMiMCerf,t=4, prime field=307
7 AUTHOR: Gizem Kara <kara.gizem@metu.edu.tr>
8
9 NOTE: This code is based on the sage implementations of the

10 attacks on Jarvis and Friday by Albrecht et al.
11 at https://github.com/IAIK/marvellous-attacks
12 """
13
14 from sage.rings.polynomial.multi_polynomial_ideal import MPolynomialIdeal
15 from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list
16
17 import sage.libs.singular.function_factory
18 eliminate = sage.libs.singular.function_factory.ff.eliminate
19 import copy
20 import time
21
22 def define_constants():
23 array=[]
24 for i in range(0,num_rounds):
25 array.append(K.random_element())
26 return array
27
28 def F_func(x,k,c):
29 return (x+k+c)**3
30
31 def define_plaintext():
32 array=[0,0,0,0]
33 for i in range(4):
34 array[i]= K.random_element()
35 return array
36
37 def encr_gmimc_erf(plaintext,key,num_rounds,constants):
38 cipher=[0,0,0,0]
39 plaintext_copy=copy.deepcopy(plaintext)
40 for i in range(num_rounds):
41 F_i =F_func(plaintext_copy[0],key,constants[i])
42 cipher[0]=F_i+plaintext_copy[1]
43 cipher[1]=F_i+plaintext_copy[2]
44 cipher[2]=F_i+plaintext_copy[3]
45 cipher[3]=plaintext_copy[0]
46 for j in range(4):
47 plaintext_copy[j]=cipher[j]
48 return cipher
49
50 def decr_gmimc_erf(ciphertext,key,num_rounds,constants):
51 plain=[0,0,0,0]
52 ciphertext_copy=copy.deepcopy(ciphertext)
53 constants=constants[::-1]
54 for i in range(num_rounds):
55 plain[0]=ciphertext_copy[3]
56 plain[1]=ciphertext_copy[0]
57 plain[2]=ciphertext_copy[1]
58 plain[3]=ciphertext_copy[2]
59 F_i =F_func(plain[0],key,constants[i])
60 plain[1]-=F_i
61 plain[2]-=F_i
62 plain[3]-=F_i
63 for j in range(4):
64 ciphertext_copy[j]=plain[j]

56

65 return plain
66
67
68 def get_elimination_ideal(F, variables, deg_bound=None, algorithm="singular:slimgb", *args, **kwds):
69
70 P = PolynomialRing(K, variables, order="degrevlex")
71 F = Sequence([P(f) for f in F])
72 print("n_v: {n_v:3d}, n_e: {n_e:3d}, max_deg: {d:3d}".format(n_v=F.nvariables(), n_e=len(F),
73 d=F.maximal_degree()))
74
75 gb = None
76 if deg_bound:
77 ideal = Ideal(F)
78 print(ideal)
79 print("1 Dimension of R/I as vector space:", len(ideal.normal_basis()))
80 H = ideal.change_ring(P.change_ring(order="degrevlex")).gens()
81 print("n: {n:3d}, m: {m:3d}, max(deg(f)): {d:3d},".format(n=F.nvariables(), m=len(F),
82 d=H.maximal_degree()))
83 if deg_bound is True:
84 deg_bound = 1 + sum(f.degree() - 1 for f in H)
85 if deg_bound < H.maximal_degree():
86 raise ValueError("Degree bound %d is smaller than input degrees %d."%(deg_bound,
87 H.maximal_degree()))
88 t = walltime()
89 gb = H.groebner_basis(deg_bound=deg_bound, algorithm=algorithm, *args, **kwds)
90 print("GB time: {t:5.1f}s". format(t=walltime(t)))
91 print("deg_bound: {deg_bound:3d}, is GB: {is_gb}".format(deg_bound=deg_bound,
92 is_gb=gb.is_groebner()))
93 if not gb.is_groebner():
94 raise ValueError("Degree bound %d too low, output is not a Grobner basis."%deg_bound)
95
96 if gb == None:
97 ideal = Ideal(F)
98 print("2 Dimension of R/I as vector space:", len(ideal.normal_basis()))
99 t = walltime()

100 gb = F.groebner_basis(algorithm=algorithm, *args, **kwds)
101 print("GB time: {t:5.1f}s".format(t=walltime(t)))
102
103 t = walltime()
104 gb_lex = Ideal(gb).transformed_basis('fglm')
105 print("FGLM time: {t:5.1f}s".format(t=walltime(t)))
106 univariate = Sequence([f for f in gb_lex if f.is_univariate()])
107 return univariate
108
109 t = walltime()
110 print("FACT time: {t:5.1f}s".format(t=walltime(t)))
111
112 def solve(eqns, vars, rem_var, deg_bound, *args, **kwds):
113 P = PolynomialRing(K, vars)
114 if debug:
115 for eq in eqns:
116 print("Degree:", P(eq).degree())
117 #print("eqns",eqns)
118 elGB = get_elimination_ideal(eqns, vars, deg_bound=deg_bound, *args, **kwds)
119 if debug:
120 print("Length of elimination ideal:", len(elGB))
121 Q = PolynomialRing(K, rem_var)
122 print("elGB",elGB)
123 #print("elGB0",elGB[0])
124 #print("elGB-1",elGB[-1])
125
126 #print("elGB elements",[elt for elt in elGB])
127 elim = Q(elGB[-1])
128 sols = [el[0] for el in set(elim.roots(ring=K))]
129 print("Degree of univariate equation:", elim.degree())
130 print("roots",elim.roots(ring=K))
131 return sols
132
133 def gmimc_attack(plaintext,key,num_rounds, constants, deg_bound=None, *args, **kwds):
134 ciphertext=encr_gmimc_erf(plaintext,key,num_rounds,constants)
135 print("Ciphertext ", ciphertext)
136 variables = []
137 for i in range(0, num_rounds):
138 variables.append("x_"+str(4*i))
139 variables.append("x_"+str(4*i+1))
140 variables.append("x_"+str(4*i+2))
141 variables.append("x_"+str(4*i+3))
142 variables.append("k_0")
143 print(variables)
144 P = PolynomialRing(K, variables, order="degrevlex")
145 P.inject_variables()
146 variables = [P(v) for v in variables]
147 equations = []
148 elGB = None
149 for i in range(0,num_rounds+1):
150 if i==0:
151 equations.append(variables[4*i+1]-F_func(plaintext[0],k_0,constants[i])-plaintext[1])
152 equations.append(variables[4*i+2]-F_func(plaintext[0],k_0,constants[i])-plaintext[2])
153 equations.append(variables[4*i+3]-F_func(plaintext[0],k_0,constants[i])-plaintext[3])
154 equations.append(variables[4*i]-plaintext[0])
155
156 elif i<num_rounds:
157 equations.append(variables[4*i]-variables[4*(i-1)+1])
158 equations.append(variables[4*i+1]-(variables[4*(i-1)+2])-F_func(variables[4*(i-1)+1],k_0,

57

159 constants[i]))
160 equations.append(variables[4*i+2]-(variables[4*(i-1)+3])-F_func(variables[4*(i-1)+1],k_0,
161 constants[i]))
162 equations.append(variables[4*i+3]-(variables[4*(i-1)])-F_func(variables[4*(i-1)+1],k_0,
163 constants[i]))
164 else:
165 equations.append(variables[4*(i-1)]-ciphertext[3])
166 equations.append(variables[4*(i-1)+1]-ciphertext[0])
167 equations.append(variables[4*(i-1)+2]-ciphertext[1])
168 equations.append(variables[4*(i-1)+3]-ciphertext[2])
169
170 remaining_variable = "k_0"
171
172
173 print("Solutions:")
174 for s in solve(equations, variables, remaining_variable, deg_bound, *args, **kwds):
175 print("K: ",s)
176
177 def run_gmimc_attack(r, deg_bound=None, *args, **kwds):
178 K= GF(307)
179 k= K.random_element()
180 constants = define_constants()
181 print("key", k)
182 print("constants", constants)
183 p=define_plaintext()
184 print("Plaintext: ", p)
185 #ciphertext=encr_gmimc_erf(p,k,r,constants)
186 #print("Ciphertext:", ciphertext)
187 gmimc_attack(p,k,r,constants,deg_bound=deg_bound, *args, **kwds)
188
189 num_rounds=10
190 K= GF(307)
191 run_gmimc_attack(r=10, deg_bound=None)

1 #!/usr/bin/env python
2 # coding: utf-8
3
4
5 """
6 Implementing Gröbner basis elements as polynomial equations
7 until 12 rounds for GMiMCerf,t=4, field= GF(307)"
8
9 AUTHOR: Gizem Kara <kara.gizem@metu.edu.tr>

10
11 """
12
13 from sage.rings.polynomial.multi_polynomial_ideal import MPolynomialIdeal
14 from sage.rings.polynomial.polynomial_gf2x import GF2X_BuildIrred_list
15
16 import sage.libs.singular.function_factory
17 eliminate = sage.libs.singular.function_factory.ff.eliminate
18 import copy
19 import time
20
21 def define_constants():
22 array=[]
23 a=K.random_element()
24 for i in range(0,num_rounds):
25 array.append(a)
26 return array
27
28 def F_func(x,k,c):
29 return (x+k+c)**3
30
31 def define_plaintext():
32 array=[0,0,0,0]
33 for i in range(4):
34 array[i]= K.random_element()
35 return array
36
37 def encr_gmimc_erf(plaintext,key,num_rounds,constants):
38 cipher=[0,0,0,0]
39 plaintext_copy=copy.deepcopy(plaintext)
40 for i in range(num_rounds):
41 F_i =F_func(plaintext_copy[0],key,constants[i])
42 cipher[0]=F_i+plaintext_copy[1]
43 cipher[1]=F_i+plaintext_copy[2]
44 cipher[2]=F_i+plaintext_copy[3]
45 cipher[3]=plaintext_copy[0]
46 for j in range(4):
47 plaintext_copy[j]=cipher[j]
48 return cipher
49
50 def decr_gmimc_erf(ciphertext,key,num_rounds,constants):
51 plain=[0,0,0,0]
52 ciphertext_copy=copy.deepcopy(ciphertext)

58

53 constants=constants[::-1]
54 for i in range(num_rounds):
55 plain[0]=ciphertext_copy[3]
56 plain[1]=ciphertext_copy[0]
57 plain[2]=ciphertext_copy[1]
58 plain[3]=ciphertext_copy[2]
59 F_i =F_func(plain[0],key,constants[i])
60 plain[1]-=F_i
61 plain[2]-=F_i
62 plain[3]-=F_i
63 for j in range(4):
64 ciphertext_copy[j]=plain[j]
65 return plain
66
67
68 def get_elimination_ideal(F, variables, deg_bound=None, algorithm="singular:slimgb", *args, **kwds):
69 P = PolynomialRing(K, variables, order="degrevlex")
70 F = Sequence([P(f) for f in F])
71 print("n_v: {n_v:3d}, n_e: {n_e:3d}, max_deg: {d:3d}".format(n_v=F.nvariables(), n_e=len(F),
72 d=F.maximal_degree()))
73 gb = None
74 if deg_bound:
75 ideal = Ideal(F)
76 print("1 Dimension of R/I as vector space:", len(ideal.normal_basis()))
77 H = ideal.change_ring(P.change_ring(order="lex")).gens()
78 print("n: {n:3d}, m: {m:3d}, max(deg(f)): {d:3d},".format(n=F.nvariables(), m=len(F),
79 d=H.maximal_degree()))
80 if deg_bound is True:
81 deg_bound = 1 + sum(f.degree() - 1 for f in H)
82 if deg_bound < H.maximal_degree():
83 raise ValueError("Degree bound %d is smaller than input degrees %d."%(deg_bound,
84 H.maximal_degree()))
85 t = walltime()
86 gb = H.groebner_basis(deg_bound=deg_bound, algorithm=algorithm, *args, **kwds)
87
88
89 print("GB time: {t:5.1f}s". format(t=walltime(t)))
90 print("deg_bound: {deg_bound:3d}, is GB: {is_gb}".format(deg_bound=deg_bound,
91 is_gb=gb.is_groebner()))
92 if not gb.is_groebner():
93 raise ValueError("Degree bound %d too low, output is not a Grobner basis."%deg_bound)
94
95 if gb == None:
96 ideal = Ideal(F)
97 print("2 Dimension of R/I as vector space:", len(ideal.normal_basis()))
98 t = walltime()
99 gb = ideal

100 print("GB time: {t:5.1f}s".format(t=walltime(t)))
101
102 t = walltime()
103 gb_lex = Ideal(gb).transformed_basis('gwalk')
104 print("gwalk time: {t:5.1f}s".format(t=walltime(t)))
105 #print("gröbner basis: ",gb)
106 univariate = Sequence([f for f in gb_lex if f.is_univariate()])
107 return univariate
108
109 t = walltime()
110 print("FACT time: {t:5.1f}s".format(t=walltime(t)))
111
112 def solve(eqns, vars, rem_var, deg_bound, *args, **kwds):
113 P = PolynomialRing(K, vars)
114 if debug:
115 for eq in eqns:
116 print("Degree:", P(eq).degree())
117 print("eqns",eqns)
118 elGB = get_elimination_ideal(eqns, vars, deg_bound=deg_bound, *args, **kwds)
119 if debug:
120 print("Length of elimination ideal:", len(elGB))
121 Q = PolynomialRing(K, rem_var)
122 print("elGB",elGB)
123 print("elGB elements",[elt for elt in elGB])
124 elim = Q(elGB[-1])
125
126 sols = [el[0] for el in set(elim.roots(ring=K))]
127 print("Degree of univariate equation:", elim.degree())
128 print("roots",elim.roots(ring=K))
129 return sols
130
131 def gmimc_attack(plaintext,key,num_rounds, constants, deg_bound=None, *args, **kwds):
132 ciphertext=encr_gmimc_erf(plaintext,key,num_rounds,constants)
133 print("Ciphertext ", ciphertext)
134 variables = []
135
136 for i in range(0, num_rounds):
137 variables.append("x_"+str(4*i))
138 variables.append("x_"+str(4*i+1))
139 variables.append("x_"+str(4*i+2))
140 variables.append("x_"+str(4*i+3))
141
142 variables.append("k_0")
143 print("variables:",variables)
144 P = PolynomialRing(K, variables, order="degrevlex")
145 P.inject_variables()
146 variables = [P(v) for v in variables]

59

147 equations = []
148 #comment
149 elGB = None
150
151 if num_rounds==5:
152 equations.append(F_func(plaintext[0],k_0,constants[0])-variables[4]+plaintext[1])
153 equations.append(F_func(variables[4],k_0,constants[0])-variables[8]+variables[4]
154 +plaintext[2]-plaintext[1])
155 equations.append(F_func(variables[8],k_0,constants[0])-variables[12]+variables[8]
156 +plaintext[3]-plaintext[2])
157 equations.append(F_func(variables[12],k_0,constants[0])-variables[16]+
158 variables[12]-variables[4]-plaintext[3]+plaintext[1]+plaintext[0])
159 equations.append(F_func(variables[16],k_0,constants[0])-variables[17]+variables[16]
160 -variables[8]+2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
161 equations.append(variables[19]-variables[17]+variables[16]-variables[12]-variables[8]
162 +2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
163 equations.append(variables[18]-variables[17]+variables[12]-2*variables[8]
164 +variables[4]-plaintext[3]+plaintext[2])
165 equations.append(variables[16]-ciphertext[3])
166 equations.append(variables[17]-ciphertext[0])
167 equations.append(variables[18]-ciphertext[1])
168 equations.append(variables[19]-ciphertext[2])
169
170 if num_rounds==6:
171 equations.append(variables[0]-plaintext[0])
172 equations.append(variables[1]-plaintext[1])
173 equations.append(variables[2]-plaintext[2])
174 equations.append(variables[3]-plaintext[3])
175 equations.append(F_func(variables[0],k_0,constants[0])-variables[4]+variables[1])
176 equations.append(F_func(variables[4],k_0,constants[0])-variables[8]+variables[4]
177 +variables[2]-variables[1])
178 equations.append(F_func(variables[8],k_0,constants[0])-variables[12]+variables[8]
179 +variables[3]-variables[2])
180 equations.append(F_func(variables[12],k_0,constants[0])-variables[16]+variables[12]
181 -variables[4]-variables[3]+variables[1]+variables[0])
182 equations.append(F_func(variables[16],k_0,constants[0])-variables[20]+variables[16]
183 -variables[8]+2*variables[4]+variables[2]-variables[1]-variables[0])
184 equations.append(F_func(variables[20],k_0,constants[0])-variables[21]+variables[20]
185 -variables[12]+2*variables[8]-variables[4]+variables[3]-variables[2])
186 equations.append(variables[23]-variables[21]+variables[20]-variables[16]-variables[12]
187 +2*variables[8]-variables[4]+variables[3]-variables[2])
188 equations.append(variables[22]-variables[21]+variables[16]-2*variables[12]
189 +variables[8]+variables[4]+variables[3]-variables[1]-variables[0])
190 equations.append(variables[20]-ciphertext[3])
191 equations.append(variables[21]-ciphertext[0])
192 equations.append(variables[22]-ciphertext[1])
193 equations.append(variables[23]-ciphertext[2])
194
195 if num_rounds==7:
196 equations.append(F_func(plaintext[0],k_0,constants[0])-variables[4]+plaintext[1])
197 equations.append(F_func(variables[4],k_0,constants[0])-variables[8]+variables[4]
198 +plaintext[2]-plaintext[1])
199 equations.append(F_func(variables[8],k_0,constants[0])-variables[12]+variables[8]
200 +plaintext[3]-plaintext[2])
201 equations.append(F_func(variables[12],k_0,constants[0])-variables[16]+variables[12]
202 -variables[4]-plaintext[3]+plaintext[1]+plaintext[0])
203 equations.append(F_func(variables[16],k_0,constants[0])-variables[20]+variables[16]
204 -variables[8]+2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
205 equations.append(F_func(variables[20],k_0,constants[0])-variables[24]+variables[20]
206 -variables[12]+2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
207 equations.append(F_func(variables[24],k_0,constants[0])-variables[25]+variables[24]
208 -variables[16]+2*variables[12]-variables[8]-variables[4]-plaintext[3]
209 +plaintext[1]+plaintext[0])
210 equations.append(variables[27]-variables[25]+variables[24]-variables[20]-variables[16]
211 +2*variables[12]-variables[8]-variables[4]-plaintext[3]+plaintext[1]
212 +plaintext[0])
213 equations.append(variables[26]-variables[25]+variables[20]-2*variables[16]+variables[12]
214 +variables[8]-2*variables[4]-plaintext[2]+plaintext[1]+plaintext[0])
215 equations.append(variables[24]-ciphertext[3])
216 equations.append(variables[25]-ciphertext[0])
217 equations.append(variables[26]-ciphertext[1])
218 equations.append(variables[27]-ciphertext[2])
219
220 if num_rounds==8:
221 equations.append(F_func(plaintext[0],k_0,constants[0])-variables[4]+plaintext[1])
222 equations.append(F_func(variables[4],k_0,constants[0])-variables[8]+variables[4]
223 +plaintext[2]-plaintext[1])
224 equations.append(F_func(variables[8],k_0,constants[0])-variables[12]+variables[8]
225 +plaintext[3]-plaintext[2])
226 equations.append(F_func(variables[12],k_0,constants[0])-variables[16]+variables[12]
227 -variables[4]-plaintext[3]+plaintext[1]+plaintext[0])
228 equations.append(F_func(variables[16],k_0,constants[0])-variables[20]+variables[16]
229 -variables[8]+2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
230 equations.append(F_func(variables[20],k_0,constants[0])-variables[24]+variables[20]
231 -variables[12]+2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
232 equations.append(F_func(variables[24],k_0,constants[0])-variables[28]+variables[24]
233 -variables[16]+2*variables[12]-variables[8]-variables[4]-plaintext[3]
234 +plaintext[1]+plaintext[0])
235 equations.append(F_func(variables[28],k_0,constants[0])-variables[29]+variables[28]
236 -variables[20]+2*variables[16]-variables[12]-variables[8]
237 +2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
238 equations.append(variables[31]-variables[29]+variables[28]-variables[24]
239 -variables[20]+2*variables[16]-variables[12]-variables[8]
240 +2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])

60

241 equations.append(variables[30]-variables[29]+variables[24]-2*variables[20]+
242 variables[16]+variables[12]-2*variables[8]+variables[4]
243 -plaintext[3]+plaintext[2])
244 equations.append(variables[28]-ciphertext[3])
245 equations.append(variables[29]-ciphertext[0])
246 equations.append(variables[30]-ciphertext[1])
247 equations.append(variables[31]-ciphertext[2])
248
249 if num_rounds==9:
250 equations.append(F_func(plaintext[0],k_0,constants[0])-variables[4]+plaintext[1])
251 equations.append(F_func(variables[4],k_0,constants[0])-variables[8]+variables[4]
252 +plaintext[2]-plaintext[1])
253 equations.append(F_func(variables[8],k_0,constants[0])-variables[12]+variables[8]
254 +plaintext[3]-plaintext[2])
255 equations.append(F_func(variables[12],k_0,constants[0])-variables[16]+variables[12]
256 -variables[4]-plaintext[3]+plaintext[1]+plaintext[0])
257 equations.append(F_func(variables[16],k_0,constants[0])-variables[20]+variables[16]
258 -variables[8]+2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
259 equations.append(F_func(variables[20],k_0,constants[0])-variables[24]+variables[20]
260 -variables[12]+2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
261 equations.append(F_func(variables[24],k_0,constants[0])-variables[28]+variables[24]
262 -variables[16]+2*variables[12]-variables[8]-variables[4]
263 -plaintext[3]+plaintext[1]+plaintext[0])
264 equations.append(F_func(variables[28],k_0,constants[0])-variables[32]+variables[28]
265 -variables[20]+2*variables[16]-variables[12]-variables[8]
266 +2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
267 equations.append(F_func(variables[32],k_0,constants[0])-variables[33]+variables[32]
268 -variables[24]+2*variables[20]-variables[16]-variables[12]
269 +2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
270 equations.append(variables[35]-variables[33]+variables[32]-variables[28]-variables[24]
271 +2*variables[20]-variables[16]-variables[12]+2*variables[8]
272 -variables[4]+plaintext[3]-plaintext[2])
273 equations.append(variables[34]-variables[33]+variables[28]-2*variables[24]+variables[20]
274 +variables[16]-2*variables[12]+variables[8]+variables[4]+plaintext[3]
275 -plaintext[1]-plaintext[0])
276 equations.append(variables[32]-ciphertext[3])
277 equations.append(variables[33]-ciphertext[0])
278 equations.append(variables[34]-ciphertext[1])
279 equations.append(variables[35]-ciphertext[2])
280
281 if num_rounds==10:
282 equations.append(F_func(plaintext[0],k_0,constants[0])-variables[4]+plaintext[1])
283 equations.append(F_func(variables[4],k_0,constants[0])-variables[8]+variables[4]
284 +plaintext[2]-plaintext[1])
285 equations.append(F_func(variables[8],k_0,constants[0])-variables[12]+variables[8]
286 +plaintext[3]-plaintext[2])
287 equations.append(F_func(variables[12],k_0,constants[0])-variables[16]+variables[12]
288 -variables[4]-plaintext[3]+plaintext[1]+plaintext[0])
289 equations.append(F_func(variables[16],k_0,constants[0])-variables[20]+variables[16]
290 -variables[8]+2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
291 equations.append(F_func(variables[20],k_0,constants[0])-variables[24]+variables[20]
292 -variables[12]+2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
293 equations.append(F_func(variables[24],k_0,constants[0])-variables[28]+variables[24]
294 -variables[16]+2*variables[12]-variables[8]-variables[4]
295 -plaintext[3]+plaintext[1]+plaintext[0])
296 equations.append(F_func(variables[28],k_0,constants[0])-variables[32]+variables[28]
297 -variables[20]+2*variables[16]-variables[12]-variables[8]
298 +2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
299 equations.append(F_func(variables[32],k_0,constants[0])-variables[36]+variables[32]
300 -variables[24]+2*variables[20]-variables[16]-variables[12]
301 +2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
302 equations.append(F_func(variables[36],k_0,constants[0])-variables[37]+variables[36]
303 -variables[28]+2*variables[24]-variables[20]-variables[16]
304 +2*variables[12]-variables[8]-variables[4]-plaintext[3]+plaintext[1]
305 +plaintext[0])
306 equations.append(variables[39]-variables[37]+variables[36]-variables[32]-variables[28]
307 +2*variables[24]-variables[20]-variables[16]+2*variables[12]
308 -variables[8]-variables[4]-plaintext[3]+plaintext[1]+plaintext[0])
309 equations.append(variables[38]-variables[37]+variables[32]-2*variables[28]+variables[24]
310 +variables[20]-2*variables[16]+variables[12]+variables[8]
311 -2*variables[4]-plaintext[2]+plaintext[1]+plaintext[0])
312 equations.append(variables[36]-ciphertext[3])
313 equations.append(variables[37]-ciphertext[0])
314 equations.append(variables[38]-ciphertext[1])
315 equations.append(variables[39]-ciphertext[2])
316
317 if num_rounds==11:
318 equations.append(F_func(plaintext[0],k_0,constants[0])-variables[4]+plaintext[1])
319 equations.append(F_func(variables[4],k_0,constants[0])-variables[8]+variables[4]
320 +plaintext[2]-plaintext[1])
321 equations.append(F_func(variables[8],k_0,constants[0])-variables[12]+variables[8]
322 +plaintext[3]-plaintext[2])
323 equations.append(F_func(variables[12],k_0,constants[0])-variables[16]+variables[12]
324 -variables[4]-plaintext[3]+plaintext[1]+plaintext[0])
325 equations.append(F_func(variables[16],k_0,constants[0])-variables[20]+variables[16]
326 -variables[8]+2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
327 equations.append(F_func(variables[20],k_0,constants[0])-variables[24]+variables[20]
328 -variables[12]+2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
329 equations.append(F_func(variables[24],k_0,constants[0])-variables[28]+variables[24]
330 -variables[16]+2*variables[12]-variables[8]-variables[4]-plaintext[3]
331 +plaintext[1]+plaintext[0])
332 equations.append(F_func(variables[28],k_0,constants[0])-variables[32]+variables[28]
333 -variables[20]+2*variables[16]-variables[12]-variables[8]+2*variables[4]
334 +plaintext[2]-plaintext[1]-plaintext[0])

61

335 equations.append(F_func(variables[32],k_0,constants[0])-variables[36]+variables[32]
336 -variables[24]+2*variables[20]-variables[16]-variables[12]
337 +2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
338 equations.append(F_func(variables[36],k_0,constants[0])-variables[40]+variables[36]
339 -variables[28]+2*variables[24]-variables[20]-variables[16]+2*variables[12]
340 -variables[8]-variables[4]-plaintext[3]+
341 plaintext[1]+plaintext[0])
342 equations.append(F_func(variables[40],k_0,constants[0])-variables[41]+variables[40]-
343 variables[32]+2*variables[28]-variables[24]-variables[20]+2*variables[16]
344 -variables[12]-variables[8]+2*variables[4]+
345 plaintext[2]-plaintext[1]-plaintext[0])
346 equations.append(variables[43]-variables[41]+variables[40]-variables[36]-variables[32]
347 +2*variables[28]-variables[24]-variables[20]+2*variables[16]-
348 variables[12]-variables[8]+2*variables[4]+plaintext[2]-plaintext[1]-
349 plaintext[0])
350 equations.append(variables[42]-variables[41]+variables[36]-2*variables[32]+variables[28]
351 +variables[24]-2*variables[20]+variables[16]+variables[12]
352 -2*variables[8]+variables[4]-plaintext[3]+plaintext[2])
353 equations.append(variables[40]-ciphertext[3])
354 equations.append(variables[41]-ciphertext[0])
355 equations.append(variables[42]-ciphertext[1])
356 equations.append(variables[43]-ciphertext[2])
357
358 if num_rounds==12:
359 equations.append(F_func(plaintext[0],k_0,constants[0])-variables[4]+plaintext[1])
360 equations.append(F_func(variables[4],k_0,constants[0])-variables[8]+variables[4]
361 +plaintext[2]-plaintext[1])
362 equations.append(F_func(variables[8],k_0,constants[0])-variables[12]+variables[8]
363 +plaintext[3]-plaintext[2])
364 equations.append(F_func(variables[12],k_0,constants[0])-variables[16]+variables[12]
365 -variables[4]-plaintext[3]+plaintext[1]+plaintext[0])
366 equations.append(F_func(variables[16],k_0,constants[0])-variables[20]+variables[16]
367 -variables[8]+2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
368 equations.append(F_func(variables[20],k_0,constants[0])-variables[24]+variables[20]
369 -variables[12]+2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
370 equations.append(F_func(variables[24],k_0,constants[0])-variables[28]+variables[24]
371 -variables[16]+2*variables[12]-variables[8]-variables[4]
372 -plaintext[3]+plaintext[1]+plaintext[0])
373 equations.append(F_func(variables[28],k_0,constants[0])-variables[32]+variables[28]
374 -variables[20]+2*variables[16]-variables[12]-variables[8]
375 +2*variables[4]+plaintext[2]-plaintext[1]-plaintext[0])
376 equations.append(F_func(variables[32],k_0,constants[0])-variables[36]+variables[32]
377 -variables[24]+2*variables[20]-variables[16]-variables[12]
378 +2*variables[8]-variables[4]+plaintext[3]-plaintext[2])
379 equations.append(F_func(variables[36],k_0,constants[0])-variables[40]+variables[36]
380 -variables[28]+2*variables[24]-variables[20]-variables[16]
381 +2*variables[12]-variables[8]-variables[4]-plaintext[3]+
382 plaintext[1]+plaintext[0])
383 equations.append(F_func(variables[40],k_0,constants[0])-variables[44]+variables[40]
384 -variables[32]+2*variables[28]-variables[24]-variables[20]
385 +2*variables[16]-variables[12]-variables[8]+2*variables[4]+
386 plaintext[2]-plaintext[1]-plaintext[0])
387
388 equations.append(F_func(variables[44],k_0,constants[0])-variables[45]+variables[44]
389 -variables[36]+2*variables[32]-variables[28]-variables[24]
390 +2*variables[20]-variables[16]-variables[12]+2*variables[8]
391 -variables[4]+plaintext[3]-plaintext[2])
392 equations.append(variables[47]-variables[45]+variables[44]-variables[40]-variables[36]
393 +2*variables[32]-variables[28]-variables[24]+2*variables[20]
394 -variables[16]-variables[12]+2*variables[8]-variables[4]
395 +plaintext[3]-plaintext[2])
396 equations.append(variables[46]-variables[45]+variables[40]-2*variables[36]+variables[32]
397 +variables[28]-2*variables[24]+variables[20]+variables[16]
398 -2*variables[12]+variables[8]+variables[4]+plaintext[3]-plaintext[1]
399 -plaintext[0])
400 equations.append(variables[44]-ciphertext[3])
401 equations.append(variables[45]-ciphertext[0])
402 equations.append(variables[46]-ciphertext[1])
403 equations.append(variables[47]-ciphertext[2])
404
405
406 remaining_variable = "k_0"
407
408 #print("equations: ")
409 #[show(eq) for eq in equations]
410 print("Solutions:")
411 for s in solve(equations, variables, remaining_variable, deg_bound, *args, **kwds):
412 print("K: ",s)
413
414 def run_gmimc_attack(r, deg_bound=None, *args, **kwds):
415 K= GF(307,modulus="primitive")
416 k=K.random_element()
417 constants = define_constants()
418 print("key", k)
419 print("constants", constants)
420 p= define_plaintext()
421 print("Plaintext: ", p)
422 ciphertext=encr_gmimc_erf(p,k,r,constants)
423 #print("Ciphertext:", ciphertext)
424 #print("key is :", key)
425 gmimc_attack(p,k,r,constants,deg_bound=deg_bound, *args, **kwds)
426
427
428 num_rounds=9

62

429 K= GF(307,modulus="primitive")
430 run_gmimc_attack(r=9, deg_bound=None)

63

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	 Our motivation
	Structure of the master thesis

	Mathematical Background
	Monomial Orders and Monomial Ideals

	Gröbner Bases and Gröbner Basis Attacks
	Gröbner Bases
	Gröbner Basis Attacks
	Complexity of Gröbner Basis Computation
	Complexity of Change of Term Ordering
	Complexity of Factorization

	The block cipher JARVIS
	Description of JARVIS
	Gröbner basis attack
	Gröbner basis attack on Reduced Round JARVIS
	Improved attack: A more efficient description of JARVIS

	Complexity Estimates of Gröbner Basis Computation for the variants of JARVIS
	Comparison with the S-box of the AES and Decomposing AES S-box
	Gröbner basis attack on JARVIS with AES S-box

	The block cipher MiMC
	MiMC- n/ n
	Gröbner Basis Attack

	The block cipher gmimc
	Description of GMiMCerf
	Gröbner Basis Attack
	Our attack strategy
	Observation

	Conclusion
	Discussion and Future Work

	REFERENCES
	APPENDICES
	SAGE CODE Listing
	Solving Multivariate Polynomial Equations from Section 4.3.1
	Attacks
	MiMC
	GMiMCerf

