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ABSTRACT

UTILIZING VIDEO COLORIZATION AS A SELF-SUPERVISED
AUXILIARY TASK FOR OBJECT TRACKING

Fırat, Engin

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

February 2021, 78 pages

In this thesis work, we studied combining an object tracker, which uses siamese

networks, with another model that is trained by using the self-supervised learning

paradigm. We define grayscale video colorization as a pretext task for self-supervised

learning and we select the similarity based object tracking as a downstream task.

Both the siamese network based object tracker and the colorization network model

use the similarity between subsequent video frames. The spatio-temporal coherence

between the frames of a video enables the network to learn this similarity.

We study different ways of combining the two networks. Since colorization frame-

work uses similarity learning as its basis, we cross correlate output features of col-

orization network as in siamese network based tracker. Then, we combine two dif-

ferent methods by taking the weighted average of their score maps in order to obtain

a combined score map. We search for the optimal value of this weight by conduct-

ing several experiments. In addition, we conducted experiments with different neural

network architectures for the colorization framework.

Our experimental results show that utilizing the self-supervised pretext task improves
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the overall success rate when the combined network is further trained in a supervised

manner. In addition, we also show that self-supervised video colorization network

offers an alternative way for using modern and deeper networks in siamese architec-

tures by alleviating the strict translational invariance restriction needed by siamese

architectures.

Keywords: object tracking, siamese architectures, self-supervised learning
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ÖZ

ÖZ-GÖZETİMLİ VİDEO RENKLENDİRMENİN YARDIMCI BİR SİSTEM
OLARAK NESNE TAKİBİNDE KULLANIMI

Fırat, Engin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Şubat 2021 , 78 sayfa

Bu tez çalışmasında, siyam ağlarını kullanan bir obje takipçisi ile öz-gözetimli öğ-

renme ile eğitilen başka bir modelin birleştirilmesi üzerinde çalıştık. Bahsi geçen öz-

gözetimli eğitimde, siyah beyaz videoların renklendirilmesi yolu ile benzerlik ölçümü

tabanlı bir obje takipçisi elde edilmeye çalışıldı.

Hem siyam ağları temelli obje takipçisi hem de renklendirme modeli ardışık video ka-

releri arasındaki benzerliği kullanır. Video kareleri arasındaki uzay-zamansal uyum-

luluk her iki metodun da bahsi geçen benzerliği öğrenmesini mümkün kılar.

Bu çalışmada, bahsi geçen iki yöntemin birleştirilmesi için farklı yöntemler üzerinde

çalıştık. Renklendirme metodu da temelinde benzerlik öğrenimi kullandığından, çıktı

olarak elde edilen öznitelikler, siyam ağları temelli obje takipçisinde olduğu gibi

çapraz-korelasyon operasyonuna girdi olarak verilmiştir. Sonrasında her iki yöntem-

den çıkan skor haritalarının ağırlıklı ortalamaları alınarak, birleştirilmiş skor haritası

elde edilmiştir. Bir takım deneyler ile en uygun ağırlık aranmıştır. Buna ek olarak,

renklendirme metodu için farklı yapay sinir ağları kullanılarak da bir takım deneyler
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gerçekleştirilmiştir.

Yaptığımız deneyler, öz-gözetimli video renklendirmenin yardımcı bir sistem ola-

rak obje takipçisinde kullanımının, birleştirilmiş yapay sinir ağının gözetimli olarak

eğitilmesiyle birlikte genel performans değerlerini arttırdığını göstermiştir. Buna ek

olarak, yapılan deneyler, öz-gözetimli video renklendirmenin modern ve daha derin

yapay sinir ağlarının siyam ağlarda kullanımı ile ilgili olarak alternatif bir çözüm

sunduğunu göstermiştir.

Anahtar Kelimeler: obje takibi, siyam mimariler, öz-gözetimli öğrenme
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Object tracking is defined as a system which tracks the objects among the consecutive

frames in computer vision domain. It is one of the fundamental problems in computer

vision and machine learning. An object tracker is named as supervised if it needs to

be initialized with a bounding box of an object to be tracked. On the other hand,

an object tracker is named as unsupervised if it does not need explicit initialization.

Instead, this kind of trackers use a mechanism, eg. an object detector, in order to

determine the object to be tracked. The naming convention used here follows the

VOT Challenge [5]. The object detection problem is a challenging problem due to a

number of factors, such as change in object pose, change in lighting conditions, scene

changes, and motion blur.

Object trackers are needed in various domains including, but not limited to, au-

tonomous vehicles, civilian and military surveillance systems, and demographic anal-

ysis systems. These use cases will be detailed in following paragraphs.

Autonomous vehicles use some sensors in order to understand the outer world in

which these vehicles are moving. Conventional RGB cameras, RADARs and LIDARs

are the sensors that are frequently deployed in current autonomous cars. For example

the self-driving car developed by Waymo consists of all of the mentioned sensors

[6]. An autonomous vehicle’s perception subsystem detects and tracks nearby objects

using the sensory data in order to provide important data for the subsequent decision

and control subsystems. This is why the important datasets in the field of autonomous

driving domain such as Waymo Open Dataset [7], NuScenes Dataset [8], Argoverse
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Dataset [9] include training and test data as well as benchmarks related to object

tracking.

Surveillance systems are used in commercial, law enforcement, and military applica-

tions. Placing the video cameras to appropriate places is a cheap operation; however,

finding human labor for processing the output footage is hard. Besides, processing

the footage and extracting useful information from it are error prone tasks for humans.

A surveillance system without any automation becomes an after the fact forensic tool

and loses its primary benefit as an active, real-time medium as it is mentioned in

the work done by Collins et al.[10]. Because of this fact some companies and star-

tups, such as Dahua [11], Briefcam [12], Shield.ai [13] have been working hard on

adopting some modules to surveillance systems. These modules bring not only object

tracking but also object detection, human motion analysis, and activity analysis to the

surveillance systems [10].

Demographic analysis systems also make use of such object trackers heavily. For ex-

ample, demographic analysis system developed by Quividi [14] tracks human bodies

and generate a heat map of human traffic in a retail store. In addition to this function-

ality, the specified system also tracks human faces in order to calculate total interest

time, and gender, age, and mood of a person.

There exists other examples for domains in which object tracking algorithms are

needed. The demand to robust object tracking algorithms will be increased as the

automation and security issues find more place in daily life.

1.2 Proposed Methods and Models

In this thesis, we studied combining a siamese network based object tracker with

another model that is trained by using self-supervised learning paradigm using video

colorization as a pretext task.

Siamese networks learn a similarity metric by calculating cross correlation between

the outputs of two heads of a siamese network [15]. An object is tracked among the

consecutive frames by using the similarity measure calculated from the two heads of
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the siamese architecture. We choose the method Fully-Convolutional Siamese Net-

works for Object Tracking proposed by Bertinetto et al. [3] as the baseline method.

Self-supervised learning paradigm offers a method for automatically extracting the

ground truth labels from the data without needing any explicit annotation. Works

done by Fernando et al. [16], Misra et al. [17], and Vondrick et al. [4] use this

paradigm in which the ground truth labels are extracted from the data itself.

Video colorization is one of the problem areas that both computer vision and machine

learning communities try to solve. Vondrick et al. [4] proposed a method that learns

how to colorize grayscale videos by using the self-supervision learning paradigm.

Conversion of a colored video to grayscale is an easy process and grayscale frames

can be used as training data whereas the color information used as ground truth labels.

This way the labels required for training is obtained from the raw data itself. No

explicit labeling process is required. This is an important advantage offered by self-

supervised learning paradigm.

We choose the work titled as Tracking Emerges by Colorizing Videos which is pro-

posed by Vondrick et al. [4] to combine with the baseline object tracker. The method

aims to solve the colorization problem in a self-supervised manner. An artificial neu-

ral network is trained in order to learn a similarity metric between the consecutive

frames of a video. Learning such a similarity metric is possible because of the ex-

istence of spatio-temporal coherency between the frames of a video. A similarity

metric can then be used for propagating the color information from reference frame

to target frames. Solving the video colorization problem using self-supervision brings

the opportunity to use any video as training data without any data labeling effort.

Figure 1.1: A simplified diagram illustrating the pipeline of our proposed method.
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Our main motivation for this work is to bring the advantages of self-supervised learn-

ing to the object tracking domain. Hence, we combined the specified siamese network

based object tracker [3] and the self-supervised learning based video colorization

method [4]. This way distinct advantages of both approaches are unified in one com-

bined system. Figure 1.1 shows the combined method from a higher level. Fully con-

volutional siamese networks have the advantage of similarity metric learning which

brings the object agnostic object tracking whereas the self-supervised learning based

video colorization method has the advantage of avoiding the need for explicit data

labeling which is a labor intensive process especially for object tracking domain.

We systematically experiment with and study different ways of combining two net-

works. Specifically, we experimented with different α values which determines the

weight of the combination. Additionally, we further trained the combined network in

two ways: 1) By using the weights that are obtained by self-supervised training, 2)

By using the randomly initialized weights. We aimed to see the effect of the knowl-

edge obtained by the self-supervised colorization method with these experiments. Fi-

nally, we experimented with different backbones, ResNet-18 [18] and AlexNet [19],

in order to gain insight for translational invariance restriction introduced by siamese

architectures [15].

Our experiments show that knowledge obtained from colorization framework in-

creases the overall tracking performance when the combined network is further trained

in a supervised manner regardless of the backbone architecture used in colorization

method. In addition, the negative effect of usage of a deeper network, for exam-

ple ResNet-18 [18], which does not satisfy the translational invariance requirement

needed for siamese architectures [3] is reduced. In other words, self-supervised learn-

ing opens a new way for using deeper networks that do not satisfy the translational

invariance restriction.

1.3 Contributions and Novelties

Although self-supervised learning is relatively a new paradigm it has been receiving

increasing interest. There has been some effort to leverage self-supervised learning
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in object tracking problem. For example, Yuan et al. [20] integrated self-supervised

learning to method named as SiamMask which is proposed by Wang et al. [21]. Self-

supervised learning method alleviates the problems that emerge due to the massive

data labeling requirements.

In this thesis, we utilize video colorization as a pretext task, and integrate it to siamese

based object tracking network as a downstream task.

The novelty of this work is that it is one of the promising works that focuses on using

self-supervised learning method in object tracking problem.

Our contributions in this thesis work can be summarized as follows:

• We combined two similarity metrics for object tracking. One similarity metric

is learnt as a result of a supervised learning process whereas the other one is

learnt through a self-supervised process using the video colorization task as a

pretext task.

• We systematically analyzed different ways for combining two methods and

evaluated the performance on benchmarks.

• We offer an alternative way for using modern and deeper networks in siamese

architectures by alleviating the strict translational invariance restriction needed

by siamese architectures.

1.4 The Outline of the Thesis

In Chapter 2, we provide a detailed literature review on object tracking. Different

types of methods that become a milestone in object tracking literature is explained.

From legacy methods to modern methods that make use of artificial neural networks

are included.

In Chapter 3, we provide a detailed explanation on siamese network based object

tracker proposed by Bertinetto et al. [3] and video colorization method proposed by

Vondrick et al. [4].
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In Chapter 4, we describe our proposed method in detail.

In Chapter 5, we present the experiments performed. Additionally, we provide infor-

mation about the datasets, benchmarks and performance metrics used in this work.

In Chapter 6, we discuss the results of experiments and conclude the thesis work.
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CHAPTER 2

RELATED WORK

Object tracking is a challenging problem as mentioned before. There are many meth-

ods in the literature that tries to attack to the problem from different perspectives.

Before digging into the artificial neural network based approaches, we give a short

summary of legacy approaches to provide some context. Section 2.1 gives a short

summary on legacy methods whereas Section 2.2 summarizes modern methods that

mainly based on deep neural networks.

2.1 Legacy Methods

One such approach uses optical flow as a basis. This family of algorithms [22] [23]

extract features from the bounding box of the object being tracked and tries to track

these features within consecutive frames. Extracted features are generally scale and

transformation invariant, hence it is expected that features are extracted from similar

regions of an object for consecutive frames although the pose of camera or object is

changed. Object tracking is done by matching extracted features. A mathematical

descriptor is calculated for extracted features and this descriptor is used for feature

matching. An object is tracked by tracking the matching features that are extracted

from ROI of an object. SIFT [24], SURF [25], ORB [26] are some examples for

feature extracting algorithms that are used in this family object tracking algorithms.

A best known method in the literature is named as KLT Feature Tracker [22] [23].

This algorithm is known as a sparse optical flow algorithm that tracks the extracted

feature points for a given ROI.
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Another approach to object tracking problem uses color information. A well known

method in the literature is named as Meanshift algorithm which was first proposed

in the work of Fukunaga et al. [27]. This algorithm locates the maxima of a density

function in given data. For object tracking, a color histogram calculated from ROI

of an object could be the density function and be used for locating the object in con-

secutive frames. Another well known algorithm is named as Camshift proposed by

Bradski [28] and it uses Meanshift algorithm as a basis. In this method, the color

histogram for the object being tracked is updated in consecutive frames.

Another approach to object tracking use Kalman filters [29]. A typical Kalman filter

mainly consists of two phases named as prediction and update. These two phases

run consecutively in each iteration. In prediction phase the filter tries to estimate

the position of the object for the next frame. In case of object tracking a motion

model is used in order to predict the object’s position. After the prediction phase,

update phase runs. Filter uses sensory data in order to measure the position of the

object in the space. For example, the output of an object detector may be used as

a sensor measurement within the filter. Both prediction and update phase report the

results within some certainty. Filter outputs a more certain result on the position of

the object being tracked, by using the results of both prediction and update phases.

2.2 Deep Neural Network Based Methods

Modern object trackers are studied in two main branches. These two branches use

deep neural networks as a primitive building block. The first branch is based on

correlation filters. A correlation filter is used in order to locate the position of object

being tracked. Online tracking is available by updating the weights of the filters while

tracking the object. The ancestor of this kind of methods are first proposed in the work

named Visual Object Tracking using Adaptive Correlation Filters [30]. In this work

a correlation filter named as MOSSE is proposed. This method does not make use of

neural networks, however successor methods use neural networks for learning filters

online. The second branch makes use of siamese neural networks. The ancestor of

this kind of trackers is the work named as Fully-Convolutional Siamese Networks for

Object Tracking [3]. A siamese network consists of two heads and learns a similarity
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metric by cross correlating the outputs from its two heads. The learnt similarity metric

is used for tracking the object in consecutive frames.

Correlation filter based methods learns a discriminative filter online. The initialization

frame is used in order to learn the filters online. Online learning needs more and more

computation power as deeper features are used in correlation filters. Hence, recently

proposed methods mainly focus on solving the online learning problem. On the other

hand, siamese network based object trackers learn offline. Hence, these kind of object

trackers are computationally efficient than the correlation filter based methods.

The work of Bolme et al. [30] is the first attempt that applies correlation filters to

object tracking problem. Filters model the appearance of the object to be tracked.

Tracking is performed by correlating a filter in the consecutive search regions. The

location of the object in the next frame is determined by the location where the max-

imum output is obtained from correlation filter. However, localizing the object and

estimating the scale conducted on the same feature space requires multi-scale feature

maps during the tracking process as stated in the work done by Dai et al. [31]. This

increases the computational load of correlation filter based methods especially when

tracker uses the features obtained by deep neural networks. Both of the works done

by Danelljan et al. named as ECO: Efficient Convolution Operators for Tracking[32]

and Valmadre et al. named as End-to-end representation learning for correlation fil-

ter based tracking [33] can be shown as examples to variations in which deep features

are used.

The work of Bertinetto et al. named as Fully-Convolutional Siamese Networks for

Object Tracking [3] is the first attempt to use siamese neural networks in object track-

ing problem. This method uses two heads that use the same neural network as a

feature extractor. A similarity metric is learnt by using a score map which is obtained

by cross correlating two resultant feature maps from the heads. An object can be

tracked among the consecutive frames by using this similarity metric. Siamese net-

works have superior running time efficiency among other family of algorithms. This

situation makes development of real time object trackers possible.

There are other methods that use siamese networks. One of these methods is named

as High Performance Visual Tracking with Siamese Region Proposal Network [34].
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This method, inspired by the SiamFC method, implements object detection in search

region. Method extracts features from search and exemplar regions by using the same

neural network in the heads of siamese network. A modified version of AlexNet [19]

is used as backbone for feature extraction. Modification is performed by removing

the paddings in order to satisfy the translational invariance restriction introduced by

SiamFC method [3]. These extracted features are fed to a Region Proposal Network,

as used in Faster R-CNN [35], in order to generate object proposals in search region.

Hence, this method can be classified as a two-staged object detector that detects the

object defined in search region. Similar to Faster R-CNN, k anchors are used. Clas-

sification subnetwork in RPN classifies each proposal as foreground or background,

hence outputs 2k channels. Regression subnetwork in RPN regress region proposals

by calculating four coordinates (x, y, w, h) with respect to the ground truth anchors,

hence outputs 4k channels. Binary cross entropy loss is used in classification subnet-

work and L1 loss is used in regressor subnetwork. Region proposals are eliminated by

composition of three strategies. The first strategy is to discard proposals that are far

away from the center of the score map. This strategy is derived from the assumption

that an object does not move rapidly between consecutive frames of a video. Second

strategy is to rescoring the proposals by using cosine window and scale change penal-

ties. This way rapid motions and rapid scale changes are discarded. The third strategy

is to apply NMS in order to select the best proposal. The final proposal represents the

object in search region.

The work named as SiamRPN++: Evolution of Siamese Visual Tracking with Very

Deep Networks [36] is an attempt to improve the performance of the SiamRPN [34]

method. Authors attempt to use a deeper network like ResNet-50 [18] as a feature

extractor instead of using AlexNet [19]. However, experiments show that using a

deeper network does not increase the tracking performance to an expected level. It

is specified that the main cause of this result is breaking the translational invariance

restriction introduced by the siamese architecture [15] itself. ResNet-50 [18] with

its paddings in convolutional and residual layers breaks the translational invariance

restriction. Authors hypothesize that such a violation introduces a spatial bias to the

tracking system. In order to alleviate this bias, a sampling method in training phase

is proposed. This method shifts the ground truth objects in a dataset within a range of
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64 pixels from the center when augmenting the training data. By shifting the center

of the objects it is shown that the bias of the network to find the target object in the

center of search region is removed. Authors indicate that removing such a bias alle-

viates the negative effect of breaking the translational invariance restriction. Another

experiment shows that removing the bias results in a increase in the performance

of a siamese tracker implemented with ResNet-50 [18] backbone. EAO is reported

as nearly 0.15 in VOT2018 [37] test dataset when there is no shift however EAO in-

creased to nearly 0.35 when the ground truth objects are shifted 64 pixels from center.

A similar method is named as Fast Online Object Tracking and Segmentation: A

Unifying Approach. This method extends the work of SiamFC [3] and SiamRPN

[34]. Three objectives are implemented in a joint multi-task loss function in this

work. First one is the similarity metric as introduced in method SiamFC [3]. The

second one is the bounding box regression using Region Proposal Networks [35]

as in SiamRPN [34]. Bounding box regression is used to estimate the location of

the object that is being tracked in consecutive frames. Anchors are used in order

to regress the bounding boxes in the given search region. The third one is a class

agnostic segmentation that segments pixels as background and foreground. Hence,

the overall loss function is implemented by using the following formula: L3B =

λ1xLmask + λ2xLscore + λ3xLbox, where λ1, λ2, λ3 are weights for different losses

and λ1+λ2+λ3 = 1. It is shown that tracking the object by using segmentation masks

results in more robust track scores. Authors claim that segmentation masks avoid the

problems related to wrong initializations in the first frame. A wrong initialization is

caused by an ROI that does not perfectly encapsulate the object that is intended to be

tracked. As an example, such a case occurs when a semi-supervised object tracker

is initialized by an object detector and used object detector generates bad bounding

boxes for an object.
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CHAPTER 3

BACKGROUND

3.1 Object Tracking by Fully Convolutional Siamese Networks

3.1.1 Introduction

Siamese Neural Networks [15] are used in order to learn a similarity metric between

two input signals. Same non-linear function, a neural network, is used to calculate

logits from these signals then a similarity measurement between these logits is per-

formed in order to obtain the loss signal.

These kind of networks are used in many applications. The first definition of it ap-

peared at a signature verification application developed by LeCun et al. [15]. A

signature recording device is used to capture signatures. At most 80 bytes features

are obtained from the device and recorded on a magnetic strip of a bank card. Simi-

larity between recorded features and features belonging to a signature that is intended

to be validated is calculated by using siamese networks in this work.

Another application of mentioned networks appeared in a facial recognition and ver-

ification application in the work performed by Taigman et al. [38]. The overall net-

work is trained to learn from Social Face Classification dataset [38] which includes

4.4 million faces belonging to 4030 subjects. After learning face classification task,

network weights are used for calculating the embeddings of two face images. Ab-

solute difference of these embeddings fed to a fully connected layer which outputs

a single logistic unit that determines whether the given two faces belonging to same

person or not.
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Another application domain of siamese networks is object tracking. A similarity

metric is learnt offline and then this metric is used in order to track the object in

successive frames. Siamese networks based trackers does not learn anything online

as opposed to correlation filter based trackers which explained in Chapter 2. Hence,

siamese networks based trackers can meet real time requirements in object tracking

applications. For example, the first and second places in real time evaluation of Video

Object Tracking Challenge 2019 [39] are hold by siamese network based trackers as

reported in result paper. This result supports the fact of fast execution of specified

networks.

The method named as Fully-Convolutional Siamese Networks for Object Tracking

proposed by Bertinetto et al. [3] is selected as baseline method in this thesis work.

This method is selected due to its simplicity and easiness of extension. In the follow-

ing, we refer to this tracker as “SiamFC”.

A detailed information on SiamFC tracker will be given in Section 3.1.2. Con-

cepts like the network architecture, training procedure and tracking with the specified

tracker will be detailed.

3.1.2 Fully Convolutional Siamese Networks Based Tracker - SiamFC

SiamFC is, to the best to my knowledge, the first object tracker using siamese net-

works. We reimplemented the MATLAB based original implementation using the

PyTorch framework in the scope of this thesis work and we trained a model.

We used fully convolutional neural networks in this work. A fully convolutional

neural network is same with a convolutional neural network except it does not have

any dense layers. More formally, a function is fully convolutional if it commutes

with translation. Defining a translation operator Lτ which translates the input signal

as (Lτx)[u] = x[u − τ ], the following formula should be satisfied if function h() is

commutative with translation:

h(Lkτx) = Lτh(x) (3.1)

where k is total network stride.
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An exemplar image and a search image is fed to a fully convolutional embedding

function in order to obtain image features. The cross-correlation of these features

produces a score map in which higher score points to higher similarity.

High level architecture of the original work can be seen in Figure 3.1. Input images

denoted with z and x are named as exemplar image and search image respectively.

Embedding function is shown with ϕ. The function ϕ is implemented using a fully

convolutional neural network as specified before. ? denotes the cross-correlation op-

eration and it is implemented as a convolutional operator.

Cross-correlation operation outputs a score map which holds similarity between ex-

emplar and search images by convolving exemplar embeddings on search embed-

dings. In other words, similarity map between two embeddings are calculated by

sliding iteratively the exemplar embeddings over the search embeddings in a sliding

window manner. Similarity map holds similarity scores for every spatial location.

Location of the highest score points to the spatial location where the maximum sim-

ilarity is occurred. The center of the search region is updated to this location in the

next frame. Object tracking is performed by updating the center of the object to the

spatial location where the maximum similarity is obtained in every iteration.

Figure 3.1: Neural Network Architecture of SiamFC (image taken from original work

[3])
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3.1.3 Network Type

AlexNet [19] is used as neural network with some modifications. Firstly, all paddings

are removed from the network in order to provide fully convolutional property as ex-

plained in Section 3.1.2. Secondly, the latest max pooling layer is removed. Thirdly,

strides for some convolutional layers are changed. The original architecture and the

modified one is given in Table 3.1. One can see the specific changes in detail on the

table. Input size to the original architecture is 227 × 227 × 3 and the sizes of search

image and exemplar image are 255× 255× 3 and 127× 127× 3 respectively. Fully

connected layers in original architecture are not shown in the table for the sake of

simplicity.

Table 3.1: Comparison of Original and Modifed AlexNet NN Architectures

Original AlexNet Architecture Modified AlexNet Architecture

Type Kernel Size s p Output Type Kernel Size s p Search Output Exemplar Output

CONV 11× 11 4 0 55× 55× 96 CONV 11× 11 2 0 59× 59× 96 123× 123× 96

MPOOL 3× 3 2 0 27× 27× 96 MPOOL 3× 3 2 0 29× 29× 96 61× 61× 96

CONV 5× 5 1 2 27× 27× 256 CONV 5× 5 1 0 25× 25× 256 57× 57× 256

MPOOL 3× 3 2 0 13× 13× 256 MPOOL 3× 3 2 0 12× 12× 256 28× 28× 256

CONV 3× 3 1 1 13× 13× 384 CONV 3× 3 1 0 10× 10× 192 26× 26× 192

CONV 3× 3 1 1 13× 13× 384 CONV 3× 3 1 0 8× 8× 192 24× 24× 192

CONV 3× 3 1 1 13× 13× 384 CONV 3× 3 1 0 6× 6× 128 22× 22× 128

MPOOL 3× 3 2 0 6× 6× 256 This layer is removed.

3.1.4 Training

Method needs annotated video data for training. Exemplar and search images are

extracted by using the ground truth bounding box information in dataset. A pair is

constructed by extracting an exemplar patch from (n− 1)th frame and a search patch

from nth frame. Ground truth objects are centered on the patches. Ground-truth score
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map belonging to a specific pair is labeled according to the following formula:

f(x) =

+1, if k|u− c| ≤ R

−1, otherwise
(3.2)

Here R is defined as radius from object centre and k is defined as total stride of fully

convolutional network. A generated ground truth score map by using this formula

can be seen in Figure 3.2

Figure 3.2: An Example for Ground Truth Score Map with R = 16, k = 8

Loss for a single value in score map is simply defined by binary cross entropy loss:

`(y, v) = log(1 + e−yv) (3.3)

where y is the ground truth taking values of {-1, 1} indicating whether the given pairs

are positive or negative and v is the single value of the score map. The loss function

is defined as mean of the individual losses for a score map:

L(y, v) =
1

|D|
∑
u∈D

`(y[u], v[u]) (3.4)

Note that score map is a grid of real valued numbers defined as v : D → R. Hence,

y[u] and v[u] corresponds to single ground truth and score map values in binary cross

entropy formula. Stochastic gradient descent is used as optimizer in order to deter-

mine the weights θ that minimizes the loss function L for the neural network used:

argmin
θ

E
(z,x,y)

L(y, f(x, z; θ)) (3.5)
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The initial values for θ is initialized with Gaussian noise and scaled by using the

Xavier method [40]. Neural network sees 50.000 samples for each epoch and training

lasts for 50 epochs in total. Mini batches consists of 8 samples and learning rate

starting from 10−2 to 10−5 decreasing gradually in each epoch.

Positive training samples are extracted from annotated video dataset as exemplar and

search patches. Every pair is at least T apart from each other. Video frames are

preprocessed offline before training. Patches are extracted by using the following

constraint:

s(w + p) s(h+ p) = A (3.6)

whereA is area constant, p is context margin, (w, h) is the tight bounding box defined

in dataset. A = 1272 for exemplar patch and A = 2552 for search patch. Context

margin is defined as p = w+h
4

. Image patches that do not obey the specified width

and height are filled by RGB mean color. 2015 edition of ImageNet Large Scale

Visual Recognition Challenge - ImageNetVID [41] dataset is used to train the neural

network in original work. This dataset contains 4500 train and validation video in

total. Authors are used all the 4417 training videos to train the network. Nearly

2M search and exemplar pairs are extracted from these 4417 videos. EAO metric,

measured using VOT-15 test dataset [42], improves from 0.168 to 0.274 as increasing

the used percentage of the ImageNetVID. This situation points to the fact that a larger

dataset could increase the performance. In addition to this, although 2M train samples

seems larger, reader should note that these samples are fetched from 4417 videos in

total which is very small comparing to amount of data ImageNet has. ImageNet

contains 14M images, that is used to train image classification networks. Hence, this

fact gives a clue about the importance of amount of data to train a neural network

based tracker.

3.1.5 Explanation of tracking

In this section how tracking is performed within the SiamFC framework will be ex-

plained in detail. Overall tracking architecture can be seen in Figure 3.3. Tracking is

performed in two main steps. The first one is the Initialization step which executes

only once during the lifetime of the tracker. The second one is the Tracking step
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which executes iteratively for all of the frames in video.

Figure 3.3: Overall architecture used in SiamFC framework (Determine Target Posi-

tion is detailed in Section 3.1.5.2)

3.1.5.1 Initialization

Tracker is initialized by taking the ROI of the area that is intended to be tracked. In

a supervised tracker ROI is fetched from the dataset itself, the ground truth bounding

box for the first frame.

Exemplar patch is cropped and extracted from the 1st image. Extraction is performed

by obeying the restriction defined as s(w + p) s(h + p) = A, where A = 127 for

exemplar patch. This patch is then fed to the neural network defined by function ϕ.
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The output embedding for exemplar patch has dimensions 6 × 6 × 128. Extracted

embedding act as an filter for convolution operator ?. This embedding is kind of

a template for the object being tracked and is updated during the tracking phase in

order to handle the changing poses and scales for the object. This phenomenon will

be detailed in Tracking phase.

3.1.5.2 Tracking

In tracking phase, tracker simply calculates the similarity between exemplar and

search patches. The spatial position of the score map that has the highest similar-

ity is chosen as the updated center position of the object that is being tracked in

the search patch. First of all, search patch is extracted by using the object’s latest

center position. The ROI is determined again by obeying the following restriction:

s(w + p) s(h + p) = A, where A = 255. Extracted search patch is then scaled by

using three different scale factors. Scaling is performed in order to handle changing

poses and scales of the object being tracked. Following scale factors are being used:

{1.0375−1, 1.03750, 1.03751}. An example for exemplar and search patches can be

seen in Figure 3.4. Every scaled search patch is fed to neural network defined by

function ϕ. Three embeddings for three different scales has the same dimensions:

22 × 22 × 128. Cross correlation of exemplar and three search embeddings are

Figure 3.4: An example for exemplar and 3 different search patches that

has different scale ratios. Leftmost to rightmost search patches has scale of

{1.03751, 1.03750, 1.0375−1} respectively.

calculated and three different score maps are obtained for specified scales. Every

score map has dimensions 17× 17× 1. Score maps are then upscaled to dimensions
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255×255×1 by using bicubic scaling method. Two score maps for scale ratios other

than 1 are penalized by a constant equals to 0.9745. Penalization is used because of

the fact that object scale does not tend to change rapidly in general. After penalization

the best scale ratio is selected by determining the best similarity value among three

different score maps for different scale ratios. Scale ratio of the score map which

contains the best similarity value is chosen as the best scale ratio. Displacement is

calculated after selection of the best scale ratio. Displacement equals to the spatial

distance between the most similar region in the score map to the center point of the

score map. Displacement vector is scaled multiple times in order to obtain displace-

ment in original frame space since displacement is measured originally in score map

space. The overall process is detailed in Figure 3.5. Displacement vector is first

Figure 3.5: Scaling of displacement vector (a) Displacement in score map space (b)

Displacement in search patch space (c) Displacement in original frame space

scaled by total_stride
response_up in order to transform displacement vector to search patch space.

Here total_stride equals to total stride of the neural network and response_up equals

to the scale difference between original and scaled sizes of score maps, 17 × 17 × 1

and 255× 255× 1 respectively. After that, displacement vector is scaled by x_sz
search_sz

in order to transform displacement vector to original frame space. Here search_sz

equals to search patch size which equals to 255 and x_sz is the size of the image patch

in original frame space. After scaling the displacement vector, one finally obtains

displacement in original frame space.

Object width and height is scaled by using selected best scale. Weighted average of
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original size and scaled size is used in order to obtain object size in search image.

W = (1− α)W + αWS∗ (3.7)

H = (1− α)H + αHS∗ (3.8)

where W denotes width, H is for height and S∗ is the best scale.

Here α is named as scale learning rate and equals to 0.59 in original implementation.

Object being tracked is located in search image at this point. Exemplar embeddings

that represents a template for tracking object is updated as a last step. Initialization

step in Figure 3.3 is executed again in order to calculate exemplar embedding for

object. Updated embedding is calculated by using weighted average of older and

newly calculated embedding:

E
′
= (1− β)E + βE∗ (3.9)

whereE ′ is updated embedding,E is the older embedding,E∗ is the newly calculated

embedding, and β is the weight for averaging also named as template learning rate.

Tracker becomes more robust by updating the template embedding. Any pose, scale

and texture changes in object or light changes in scene is captured and saved in exem-

plar embedding by updating it in every iteration. Template learning rate is selected

as 0.01 in original implementation. This value points to a slow update in embedding.

Effects of changing values of β is not stated in paper [3].

3.2 Object Tracking via A Pretext Task: Video Colorization

3.2.1 Introduction

Training a neural network that aims to track objects needs labeled video frames in

a supervised learning framework. In order to label a video every frame needs to be

annotated by hand which takes quite long time and needs extensive amount of human

labor. Besides that labeling is an error prone process.

22



Table 3.2: Common Object Tracking Datasets in Literature

Dataset Name Number of Samples Number of Labels

ImageNet VID Dataset [41] 3862 866870

GOT-10k Dataset [43] 10000 1447200

OTB Dataset [1] 100 61977

VOT Dataset [5] 60 19935

Table 3.2 contains datasets that is used frequently in object tracking literature. Al-

though the largest dataset, named GOT-10k [43], has nearly 1.5M manually annotated

frames it only has 10.000 video samples only. On the other side ImageNET dataset

[41] which is extensively used in image classification literature has 14M samples.

The huge difference in total sample numbers that different datasets have points to the

fact that more accurate object trackers may be trained by increasing the total number

of samples. However, due to the difficulties explained before, developing such a

dataset is unfeasible. This causes the number of samples in a dataset still sets an

upper bound for more successful state-of-the-art object tracking models.

Self-supervised learning is seen as a solution for the problem defined and some dif-

ferent methods have proposed in literature. One example is using frame sequence

validation as a pretext task in order to learn a model for object tracking problem.

Studies performed by Misra et al. [17] and Fernando et al. [16] are examples to this

approach. A model is trained in order to validate whether the given sequence of im-

ages are in correct temporal order in method proposed by Misra et al. [17]. This way

the model learns to differentiate between small motion differences across frames. It

is shown that the specified model is successful in object tracking problem and used

as a pretext task. In addition, authors reported that the trained model improves the

success rate when used as a pretraining step. A similar pretext task is proposed in

work done by Fernando et al. [16]. The model is trained in order to select the video

sequence that is incorrectly sequenced among a set of video sequences.

Video colorization is another pretext task that is used in order to learn object tracking

problem as a downstream task. A typical video has temporal color coherency so that
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a model that is capable to colorize grayscale videos also has implicit knowledge to

solve both of the segment tracking and object tracking tasks.

Figure 3.6: Architecture of Method: Tracking Emerges by Colorizing Videos
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Methods that expose self-supervised learning framework may break the upper bound

threshold introduced by dataset size and new state-of-the-art models in object tracking

problem may be proposed. By using huge amount of videos that naturally exists on

the internet, new state-of-the-art object trackers can be developed that perform better

than methods that use supervised learning framework. Every day, 500 hours of video

is uploaded to YouTube by people as of May’19 [44]. A self-supervised learning

framework make usage of huge amount of videos possible by avoiding excessive

amount of annotation labor.

One example that exposes this phenomenon is worked by Vondrick et al in the work

named as Tracking Emerges by Colorizing Videos [4]. Video colorization is selected

as a pretext task and the work shows that the learnt model achieves acceptable perfor-

mance in video object segmentation problem as a downstream task. This method will

be explained in detail in following section.

3.2.2 Method

The proposed method calculates a similarity matrix between a set of reference frames

and a target frame. The matrix contains similarity information between different spa-

tial positions of input images. Using this similarity information, color of reference

frame can be copied to target frame. Figure 3.7 and Figure 3.6 explain the overall

idea.

Copying colors from reference frame to target frame is defined by following formula:

yj =
∑
i

Aijci (3.10)

where yj is copied (predicted) color labels for target frame,Aij is the similarity matrix

between reference frame and target frame, and ci is the color labels for reference

frame.

Similarity matrix is calculated by using inner product similarity normalized by soft-

max:

Aij =
exp(fTi fj)∑
k exp(fTk fj)

(3.11)
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Figure 3.7: Working Principle of Method: Tracking Emerges by Colorizing Videos

(taken from original work [4])

where fi, fj are embbeddings calculated by a neural network. Embeddings are learnt

in a way so that inner product of two embeddings for reference and target frames

outputs how much similarity exists for every possible spatial location. Figure 3.8

shows an example to the similarity matrix for a specific case in which there exists

three reference frames and one target frame. Every spatial location of the matrix

holds the similarity value between a specific reference frame and the target frame.

Figure 3.9 shows a real example of similarity matrix. In this example there exists one

reference frame and one target frame. When the given two frames are similar to each

other, one expects mostly a diagonal matrix as in this example. On the other hand,

when given two examples are not similar to each other, the similarity matrix will

not be a diagonal one. A diagonal matrix is expected because of the spatio-temporal

coherency in sequence of frames. Spatio-temporal coherency exists between frames

due to the fact that both color and scene is not change rapidly among the frames of a

video.

Applying the softmax function to inner similarity product enlarges the differences in

a specific row of similarity matrix. The highest column in a specific row points to the

spatial location where the highest similarity exists. This is the specific spatial location

where the color is copied from reference frame to target frame. This way gray scaled

target frames are colorized by using the color information from reference frame.
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Figure 3.8: Similarity matrix holds the similarity score for the spatial locations of

reference and target images.

Similarity matrix plays a key role in this method. Calculation of a robust similar-

ity matrix is possible with existence of robust embeddings. Robust embeddings are

calculated by a function ϕ which is implemented by a neural network.

The parameters θ of the function ϕ is obtained by the supervisory signal that is gener-

ated by multi-class cross entropy loss function between predicted labels and ground

truth labels. Loss function will be detailed in Section 3.2.5.
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Figure 3.9: An example of similarity matrix for 1 reference frame and 1 target frame

3.2.3 Network Architecture

A modified version of ResNet-18 [18] architecture is followed by a five layer 3D con-

volutional neural network. Additional features are concatenated between the ResNet-

18 and 3D convolutional neural network in order to encode the spatial information.

These features are between [-1, 1] and encodes the spatial location in both horizontal

and vertical directions. Figure 3.10 shows an example to spatial location encoding

features for [8x8] dimensions. The function ϕ specified in Section 3.2.2 is composi-

tion of modified ResNet-18 and 3D convolutional network.

Table 3.3 shows the neural network architecture used. The ResNet-18 architecture is
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Table 3.3: Neural Network Architecture

Filter Type
Filter

Size

Number of

Filters
Stride Dilation

Convolutional 7× 7 64 2 1× 1

MaxPool 3× 3 N/A 2 1× 1

Residual 3× 3 64 2 1× 1

Residual 3× 3 128 1 1× 1

Residual 3× 3 256 1 1× 1

ResNet-18 [18]

Residual 3× 3 256 1 1× 1

Convolutional 1× 3× 3 256 1 1× 1× 1

Convolutional 3× 1× 1 256 1 1× 1× 1

Convolutional 1× 3× 3 256 1 1× 1× 1

Convolutional 3× 1× 1 256 1 1× 2× 2

Convolutional 1× 3× 3 256 1 1× 1× 1

Convolutional 3× 1× 1 256 1 1× 4× 4

Convolutional 1× 3× 3 256 1 1× 1× 1

Convolutional 3× 1× 1 256 1 1× 8× 8

Convolutional 1× 3× 3 256 1 1× 1× 1

Convolutional 3× 1× 1 256 1 1× 16× 16

Convolutional 1× 3× 3 256 1 1× 1× 1

3D Convolutional

Network

Convolutional 3× 1× 1 64 1 1× 1× 1
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Figure 3.10: Encoding spatial information vertically and horizontally

modified by removing the global average pooling layer and softmax layer so that it

outputs features in dimensions 32× 32× 256.

3D convolutional layers are used in order to capture spatio-temporal relations between

frames of videos. This part of network causes the embeddings to capture similarities

across the frames.

Input frames to the network is in dimensions of 256×256×1 and the network outputs

embeddings in dimensions of 32×32×64. Reference and target frames are fed to the

neural network ϕ and two embeddings belonging to reference and target frames are

calculated. These embeddings are then used to calculate similarity matrix between

reference and target frames.

3.2.4 Casting Video Colorization Problem to Some Downstream Tasks

Colorization task is performed by using the similarity matrix. The following formula

defines the task mathematically as mentioned in Section 3.2.2:

yj =
∑
i

Aijci (3.12)

Color labels are fetched from the first frame and then this information is propagated
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over the video by copying the color information in a video colorization downstream

task. Every nth frame is used as reference frame relative to every (n+ 1)th frame.

Then the color label is copied by calculating the similarity matrix between frame pairs

nth and (n+ 1)th.

Some other downstream tasks are defined within the work. Feature tracking is one

of them. Binary reference labels, ci, are used in this case. The framework tries

to predict target labels whether the current pixel is the given feature point or not.

Another downstream task is human body pose tracking. Similar to feature tracking

task, human body pose tracking is performed by casting the labels to binary domain.

Last example is the segment tracking task. Initial ground truth segments are labeled

and prediction includes the information whether a spatial location in target frame

belongs to a segment or not.

The segment tracking pretext task, which is the main consideration for this thesis

work is evaluated on DAVIS [45] dataset in original work. This dataset contains

ground truth segmentations for videos. The trained model is fed by first frame’s

ground truth segmentation and then this segment mask is propagated to consecutive

frames by using the similarity matrix. Figure 3.11 explains how similarity matrix is

used in order to track the segments across the images.

Figure 3.11: Tracking Segments as a Downstream Task
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3.2.5 Training

Training is performed by using the unlabeled video data. Kinetics-700 [46] is a high

volume dataset that is originally used for human action recognition. Dataset contains

of 700 classes of human action and there are nearly 600 videos for each action class.

Every video is obtained from YouTube and nearly a 10 second part of each video is

used within the dataset. A video has only one label which holds the human action

class information. There are approximately 650k videos in the dataset. Videos are

25fps in average. This means there are approximately 162.5M images in the dataset.

Training is performed in a self-supervised manner. Color labels are obtained from

the dataset itself. Every pixel is labeled by using the k-means algorithm in the AB

color space. 16 clusters are used in the original work. Before obtaining the labels,

the specified 10-second-region is extracted from the original video. Extracted frames

are first resized to 256 pixels in width by keeping the original aspect ratio and then

cropped to obtain 256 × 256 images. Batch size of 32 is used. 400k iterations are

performed. For the first 60k iterations learning rate is set to 0.001. For the remaining

iterations learning rate is set to 0.0001. ADAM optimizer is used during the training.

The network is initialized randomly by gaussian noise. All of these preprocess steps

and hyperparameters are used in the original work. Differences in this thesis work

from the original work is explained later in Chapter 5.

Figure 3.12 shows an example for color labels. A unique color is assigned to each

label. Visualization is performed by using these color labels. Each group of figures

shows three reference images and one target image. Here 8 clusters are used in k-

means clustering. Figure shows not only the color labels but also an evidence for

color coherency among the sequence of images in a video.

Loss function is calculated by using multi-categorical cross entropy loss function

between predicted color labels, yj and ground truth color labels, cj:

argmin
θ

∑
j

L(yj, cj) (3.13)
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where loss function is defined by:

L(yj, cj) = −
N∑
c=1

cjlog(yj) (3.14)

Ground truth color labels, cj , is calculated by using k-means clustering algorithm.

Original RGB colored images are first converted to LAB color space and then, AB

channels are used in order to calculate the cluster centroids. Then, each pixel is

labeled by using the euclidean distance to the centroids. yj is the predicted color label

by using the similarity matrix. Multi-class cross entropy loss measures how similar

the predicted labels to the ground truth color labels. This loss function supervises

the network to learn a similarity metric between reference and target frames by using

video colorization as a pretext task.
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(a)

(b)

(c)

Figure 3.12: Visualization of color labels for k=8 (a) 0th sample taken from video (b)

6th sample taken from video (c) 14th sample taken from video
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CHAPTER 4

PROPOSED METHOD

4.1 Introduction

The aim of this thesis work is to systematically analyze the effect of a model that is

trained in the video colorization framework in a self-supervised manner. We com-

bined two methods, one uses siamese networks [15] for object tracking and other one

uses a self-supervised learning methodology in order to learn video colorization.

In Section 3.1.4 it was mentioned that the amount of data used for training is important

when training the deep neural networks for the purpose of object tracking task. How-

ever, object tracking community is lack of massive training datasets because preparing

such a dataset is error prone and a costly effort. Using self-supervision when learning

for object detection may alleviate the problems related to datasets since the usage of

labeled dataset is avoided within this framework. Instead, required data labels are

obtained from the dataset itself.

Different approaches to object tracking problem is argued in Chapter 2. The work

done by Bertinetto et al. named as Fully Convolutional Siamese Networks [3] is one

of them and to the best of my knowledge it is the first proposed method that uses the

siamese architecture for object tracking. This method is selected as baseline because

of its simplicity and easiness of extension with a self-supervised backbone. However,

as it is mentioned in Chapter 2 there are some other variants to SiamFC method which

extend the architecture in various ways. These methods can also be extended by a

self-supervised backbone. Nevertheless, extension effort is directly proportional to

the complexity of siamese architecture used. So that, using SiamFC is a better choice

for the scope of this thesis work.
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Proposed method integrates the self-supervised trained colorization model as a back-

bone to the baseline method. Figure 4.1 shows the architecture for proposed method.

ω represents the model that is trained within self-supervised colorization framework.

Training will be detailed in Section 3.2. ϕ represents the model that is trained by

using the baseline method in a supervised manner. Training is detailed in Section

5.2.2. α represents the averaging weight that is used when unifying the two score

maps calculated by two backbones. A weighted unification is implemented in order

to perform some experiments which are detailed in Chapter 5. When α = 0.0 only

the embeddings calculated by the siamfc backbone is used and when α = 1.0 only

the embeddings calculated by the colorization backbone is used. Two score maps are

calculated by using the cross correlation operator as before. The exemplar and search

embeddings calculated within siamfc and colorization backbones are the input to the

cross correlation operator.

4.2 Motivation

Main motivation of the proposed method is to cope with the enormous training data

requirements of supervised learning framework. So we combined a self-supervised

colorization method to a siamese tracker to analyze the effects of the self-supervision

to the problem. Annotated training data requirement is avoided by using self-supervision

and every video published on the internet becomes a training data candidate for an

object tracking learning problem. It is expected to train a robust object tracker using

unlabeled video and alleviate problems related with labeled data requirement in ob-

ject tracking. The largest dataset in object tracking literature is found to be Got-10K

[43] as specified before. This dataset has nearly 1.5M images; however, it has only

10k different samples. On the other hand, ImageNet [41] dataset which is being used

for image classification problem in the literature has nearly about 14M distinct images

for 1000 object classes. This comparison motivates us to search ways to make usage

of bigger datasets possible in object detection problem. Learning video colorization

problem in a self-supervised manner not only avoids data amount restriction but also

make usage of every video as a training data possible. Such a dataset serves rich

information for learning changes in object orientation, scale, and appearance.
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Figure 4.1: Proposed Architecture

Secondly, we believe that an object tracker should be object agnostic. An object

tracker system may need to handle cases in which any random object is being re-

quested to be tracked by a user of such system in real life. Nonetheless, many ap-

proaches in the literature exploits the objectness of an object that is intended to be

tracked. The orientation, scale, and appearance of an object changes rapidly in real

life examples. Even changes in scene light and motion blur due to the camera move-

ments affect the appearance of an object without any orientation changes in the object.

Trying to solve these real life problems with features that are robust for determining

objectness is not a solution. These features are better for object detection, exposing

the objectness, but they are not very good at handling changes to an object in a video.

Instead, features that are specialized to track objects without any objectness informa-
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tion are key to solve this problem. Features shall be strong for determining object

orientation, scale, and appearance changes.

Video colorization problem is related with object tracking problem because a candi-

date solution to video colorization problem needs to learn the color coherency and

how the color changes among the frames. This is implicitly similar to learn object

movements and scene movements among frames. This way a supervised object track-

ing may be implemented by using unlabeled training data.

4.3 Method

Two different backbones, the SiamFC and colorization, shown with different func-

tions ϕ and ω respectively produces two different embeddings and then two score

maps are calculated by using these embeddings. These two score maps, then, be

unified by using the parameter α.

AlexNet [19] is used with the same modifications made in original work done by

Bertinetto et al. [3] in backbone named as ϕ. Network details can be found in Table

3.1 in Modified AlexNet Architecture column. In addition, the same network is also

used as it is in original work done by Vondrick et al. [4] in backbone named as ω.

Network details can be found in Table 3.3.

Normalization of two score maps are needed because they have different scales in test

dataset. Because of this, a normalization function is run before unifying the two score

maps. Data normalization is done in a way so that both score maps has zero mean

and unit variance. The mathematical formula is as follows:

U = (1− α)Norm(S1, µ1, σ1) + αNorm(S2, µ2, σ2) (4.1)

where U denotes the unified score map, S1 and S2 denotes the score maps calculated

from SiamFC and colorization methods respectively, Norm() function performs the

data normalization and µ and σ is the mean and variance values calculated for two

score maps for a specific dataset respectively and α is the averaging constant as men-

tioned before. Score map unification will be detailed in Chapter 5. Only SiamFC
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network or only Colorization network is used in extreme cases where α = 0 and

α = 1 respectively.

SiamFC network is trained in a supervised manner and the colorization network is

trained in self-supervised manner without labeled data. The output embeddings which

are used to calculate similarity matrix holds similarity information. SiamFC frame-

work also learns a similarity metric between two input signals as specified in Section

3.1. Since both networks aim to learn a similarity metric between different inputs,

colorization network can be used within SiamFC framework.

Some downstream tasks were defined and segment tracking task is one of them as

mentioned in Section 3.2. So why is integration to SiamFC needed? Why colorization

pretext task alone is not sufficient for tracking problem? Because, SiamFC framework

provides a generic object tracking framework. It is able to handle light changes,

scene changes, and changes in object, ie. deformations or pose and size changes

itself by keeping a template belonging to object in each iteration. Segment tracking

with a similarity matrix is not able to solve these kind of problems. These abilities of

SiamFC framework makes it reasonable to integrate the colorization framework.
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CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Introduction

We performed some experiments in order to evaluate the proposed method and the

trained models within the original works of both Bertinetto et al. [3] and Vondrick et

al. [4]. Experiments will be detailed in the following sections.

First of all, we worked for determining a baseline metric. Then we implemented and

trained the SiamFC [3] architecture. We compared the performance of our model with

the original work[3]. At this point, a baseline metric is obtained and used through this

work. Second, we implemented and trained a self-supervised colorization network.

Again, we compared our model with the results obtained in original work [4]. Finally,

we implemented a combined network as detailed in 4. Various experiments are per-

formed in order to analyze the combined network. Details of these experiments are

given in Section 5.4.

5.2 Experiments with SiamFC Implementation

5.2.1 OTB Evaluation

OTB [1] is a benchmark that is first proposed in CVPR 2013. After first proposal,

named 2013 version of benchmark, new sequences are added to benchmark and

named as 2015 version. 2013 version has 50 sequences and 2015 version has 100

sequences. Some samples are inherited from 2013 version and some are completely

new samples in 2015 version. 2015 version has two distinct sequences named as
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Table 5.1: Table of 9 attributes to label sequences in OTB Benchmark [1]

Attribute Explanation

Illumination Variation (IV) The illumination in the target region is significantly changed.

Scale Variation (SV)
The ratio of the bounding boxes of the first frame and the current

frame is larger than some threshold scale (ts>1) (ts=2).

Occlusion (OCC) The target is partially or fully occluded.

Deformation (DEF) Non-rigid object deformation.

Motion Blur (MB) The target region is blurred due to the motion of target or camera.

Fast Motion (FM)
The motion of the ground truth is larger than some

threshold (tm) pixels (tm=20).

In-plane Rotation (IPR) The target rotates in the image plane.

Out-of-plane Rotation (OPR) The target rotates out of the image plane.

Out-of-view (OV) Some portion of the target leaves the view.

Background Clutters (BC)
The background near the target has the similar color or

texture as the target.

Low resolution (LR)
The number of pixels inside the ground-truth bounding box is

less than some threshold (tr) pixels (tr =400).

TB50 and TB100, TB100 has additional 50 sequences to TB50 sequence. 2015 ver-

sion consists of more challenging sequences than 2013 version from the perspective

of tracking algorithms.

OTB benchmark has 9 attributes for tagging the sequences. These attributes are ex-

plained in detail in Table 5.1.

Evaluation of a tracker in OTB benchmark is performed by plotting precision and suc-

cess curves and calculating AUC for a given tracker. Precision curve is constructed

by calculating the average euclidean distance between center of the object determined

by tracker and given in ground truth. This calculation is performed for every frame in

a sequence. Precision curve is plotted for some thresholds set as a threshold for eu-

clidean distance. Hence, the x axis holds the threshold values and the y axis holds the

percentage of frames in which the estimated center of object is within the threshold.

Once the plot is obtained AUC is calculated to get a quantitative result. In addition to

precision curve, success curve investigates the IoU between predicted bounding box

and ground truth bounding box. Success plot shows the ratio of successful frames
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to the total number of frames given in a sequence for a given threshold similar to

precision curve.

Three distinct evaluations are performed within the benchmark. The first one is

named as OPE. In OPE evaluation, tracker is run once on the test data set. The second

one is TRE. In this evaluation, tracker is initialized by using not the first frame but

with different frames in sequence. Trackers may behave differently for different ini-

tialization conditions so this evaluation evaluates the robustness of tracker to temporal

changes. The last one is SRE. In this evaluation, tracker is initialized with bounding

boxes that is slightly different from the ground truth. Ground truth bounding boxes

are perturbed by shifting and scaling the bounding box. Some trackers may affected

by different initialization routines. For example, an object detector is used in order to

initialize the tracker. Effects of different initialization schemes is measured by using

this evaluation.

A work performed by Kristan et al. [47] states that any evolution that is based on

object center measurement is highly brittle. It is also stated that overlap based mea-

sures should be preferred. Because of this, we use success curves, which are based

on overlap measure, calculated within OTB benchmark for performance comparison

between different trackers.

5.2.2 Experiments

We implemented the SiamFC architecture using python scripting language without

any changes to the original work done by Vondrick et al. [3]. PyTorch [48] is used to

code neural network and training routines.

We used a modified AlexNet [19] architecture. All the paddings are removed in order

to obtain translationally invariant convolutional networks. The network architecture

was given in Table 3.1 in column Modified AlexNet Structure.

We used GOT-10k [43] dataset for training different from the original work. Original

work uses ImageNet VID [41] dataset. GOT-10k dataset has 9335 samples in training

set. This nearly equals to 1403359 labeled bounding boxes. We chose GOT-10k

because it is relatively a newer dataset and got more usage day to day by object tracker

43



community. A new model is trained with the same hyperparameters and configuration

specified in original work. The network is trained for 50 epochs, batch size is 8,

learning rate is 10−2 and decreased gradually to at least 10−5. Figure 5.1 shows the

learning curve for training.

Figure 5.1: Learning Curve for SiamFC Model

We used OTB version 2013 dataset [1] in order to evaluate the model as in original

work. Precision and success curves in Figure 5.2 and 5.3 are obtained respectively.

Only success curve and related AUC value is reported in original work. Hence, we

compared our model with the original work by using only the success curve. Original

model get success curve AUC score as 0.612 whereas our model get the same metric

as 0.601. SRE and TRE evaluations are not performed because OPE evaluation is

enough to make a decision for using the trained model. We decided to use this model

as a baseline in the scope of this thesis work since our model shows similar perfor-

mance with the reported model. The same evaluation is performed on OTB version

2015. Precision and success curves are plotted. AUC is calculated as 0.782 and 0.584

for precision and success curves respectively. Since OTB version 2015 contains more

challenging sequences such a drop in performance is normal. We use OTB version

2015 benchmark in experiments since it has more challenging sequences.
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(a) OTB version 2013 [1] (b) OTB version 2015 [1]

Figure 5.2: Precision Curves for Trained SiamFC Model

5.3 Experiments for the Colorization Framework Implementation

We implemented and trained a model for video colorization [4] by using python

scripting language. PyTorch [48] is used for neural network and loss function im-

plementations.

5.3.1 Preparing data for training

We used Kinetics-700 [46] dataset for self-supervised training. We trained a new

model since no open-source pretrained model is found online. The Kinetics-700 [46]

is delivered with a JSON file. This file consists of 544886 YouTube video links with

additional action class information and a video interval definition consisting of start

and end time points. A 10− seconds interval is defined for every video. Every video

is clipped according to start and end time points in order to obtain the correct interval

in the preprocessing step. Dataset is very huge and only 280859 videos in total can

be downloaded and preprocessed in this thesis work.

K-means clustering algorithm is used to calculate the centroids. We used a GPU

implementation of k-means clustering algorithm in order to make processing faster.
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(a) OTB version 2013 [1] (b) OTB version 2015 [1]

Figure 5.3: Success Curves for Trained SiamFC Model

Every RGB video frame is first converted to LAB colorspace and then A and B chan-

nels are used for clustering. Every video is clustered in its own, in other words every

video has its centroids and labels accordingly. This method is used because every

video has its unique color distribution. Each pixel is labeled by calculating the dis-

tance to the nearest centroid. Euclidean distance is used, no limit is set for maximum

number of iterations but a threshold for tolerance is set to 10−4 in order to stop at the

convergence. We set k = 8, however k = 16 is used in the original work [4]. Effects

of number of total clusters will be explained later in this section.

Data is preprocessed before calculating the clusters. Firstly, histogram equalization

is applied to frames. This is different from original work. Histogram equalization is

performed in order to obtain well separated centroids. Separation of centroids is im-

portant because close centroids cause problems in learning phase. This statement will

also be detailed later in this section. Secondly, every frame is resized so that width

of the image becomes 256 pixels. This operation is performed without changing the

aspect ratio. Thirdly, images are center cropped so that every image is 256 pixels

in width and height. Mean and variance values for all of the channels of LAB col-

orspace are calculated for the overall dataset. Mean values are calculated as 0.4388,

0.5171, 0.5242 and standard deviance values are calculated as 0.2242, 0.0312, 0.0416

46



respectively for L,A,B channels. Finally, normalization is performed on the dataset

by using specified mean and standard deviance values.

(a) Video sample -0MLLn0Zg1M (b) Video sample -9RiCLmXfWc

(c) Video sample -2-KjcZEmrM (d) Video sample -3pjDfx73Aw

(e) Video sample -5FM8mMJeYc (f) Video sample -8DvZ48b23E

Figure 5.4: Examples of close centroids k = 16

47



(a) Video sample -0MLLn0Zg1M (b) Video sample -9RiCLmXfWc

(c) Video sample -2-KjcZEmrM (d) Video sample -3pjDfx73Aw

(e) Video sample -5FM8mMJeYc (f) Video sample -8DvZ48b23E

Figure 5.5: Centroids used in training k = 8
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5.3.2 Analysis for number of clusters

Spatial locations of clusters are very important. Clusters that are close to each other

cause wrong signals to be backpropogated over the network. Even the trained model

points to the correct spatial location from reference frame to target frame, incon-

sistencies between the ground truths of reference and target frames cause a wrong

supervisory signal to be backpropagated. Calculated ground truths belonging to ref-

erence and target frames shall be consistent. We determined close centroids create

the inconsistency. A wrong signal is backpropagated in case two matched spatial lo-

cations are correct but having different ground truth labels from each other. Figure

5.4 shows some examples to close centroids.

By performing histogram equalization on dataset and input data normalization with

specified mean and standard deviation values, clusters are separated to some degree.

By setting k = 8 centroids are much more separated. Figure 5.5 shows the effect of

total cluster numbers and additional preprocessing.

(a) Clusters for sequence -2gnGuakDzI k = 8 (b) Clusters for sequence -2gnGuakDzI k = 16

Figure 5.6: Centroids for single sequence training test
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(a)

(b)

(c)

(d)

(e)

Figure 5.7: Visualization of learning for a single video (a) 0th step (b) 10th step (c)

30th step (d) 490th step (e) Difference of 490th step to ground truth

5.3.3 Checking the implementation

We trained the network by using a single video as training data in order to check

the network implementation for any possible bugs. We suspected from the imple-

mentation of the network because loss value always saturated on a specific value

approximately 1.4. Loss value is calculated by using the cross entropy loss as speci-
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fied in Section 3.2.5. A typical loss value expected for this experiment is between 0.2

- 0.4 since a classification network trained with cross entropy loss has values near this

range. A test is devised that aims to let the network to memorize for the single video

input. The test passes if network memorizes and loss value drops rapidly. Such a test

is performed on sequence identified with ID -2gnGuakDzI. Clusters for this video is

shown in Figure 5.6. Note that clusters are separated well and does not have close

centroids problem.

We observed that loss function again saturates on a specific value when the test is

performed for two settings of clusters, k = 8 and k = 16. We visualized the learn-

ing progress of the network by comparing the predictions of the network against

the ground truth in order to investigate the problem. Figure 5.7 shows the learning

progress for k = 8. The first row of the figure shows the network’s prediction when

all the layers are initialized with Xavier initialization strategy [40]. The following

rows from b to d show the predictions of the network when learning from data. As

the learning process continues, network begins to learn semantic shapes and finally it

memorizes nearly all the color labels. The last row shows the difference between pre-

diction and the ground truth. According to the calculations performed directly on the

image shows that 1103 color labels in total and 103/14 = 78.79 color labels (there are

14 images in the experiment) per image are predicted wrong. This result convinces

us to believe that the network is learning and there is no problem. It is understood

from the experiment that relatively big loss value is not a problem because network

predicts color labels for 256 × 256 = 65536 pixels and seeing such a big loss value

seems normal.

The learning process also saturates when k = 16 however to a bigger value approxi-

mately 2.1. The learning curve shows that the network learns, but using more clusters

causes the wrong assignments to be increased supporting the analysis given in Section

5.3.2. The two learning curves belonging to k = 8 and k = 16 are given in Figure

5.8.
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(a) Learning curve when k = 8 (b) Learning curve when k = 16

Figure 5.8: Learning curves for different number of clusters

5.3.4 Checking for the learning capacity of the network

Another test is to check the loss value by changing the learning capability of the

network. Learning capability of the network is changed by changing the network

used. In addition to the ResNet-18 architecture [18], the architecture used in original

work, we trained by using ResNet-34 architecture [18] in order to see the changes.

When a bigger network is used, it is expected to see that the loss value decreases in

case a smaller network can not generalize training dataset. However, loss value is not

decreased but learning is saturated earlier than the smaller network, ResNet-18. Early

saturation is normal because ResNet-34 has more learning capacity than ResNet-18.

This experiment shows that ResNet-18 architecture is an appropriate one for learning

colorization problem.

5.3.5 Training by using the overall dataset

Two different models are trained by using the colorization framework. One is trained

by using the ResNet-18 architecture [18] as it is in the original work done by Von-

drick et al. [4] and the other one is trained by using AlexNet architecture [19] which

is modified as detailed in Section 3.1.3. We tried the AlexNet architecture [19] in

order to see the effect of the translational invariance property needed by the siamese

architecture, detailed in Section 5.4. Both models are trained for 140k samples in
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total. Every sample consists of 32 reference and target frames (8x3 reference frames

and 8x1 target frames). This means that network saw 4.48M reference and target

pairs in total. All the training parameters are the same, except the total samples seen

in the original work, 400k samples are seen in the original work. Learning curve can

be seen in Figure 5.9.

Training is done on two NVidia RTX2080 GPUs. Multiple GPUs are used when train-

ing. Data parallelism is used, meaning that 16/32 batches are processed in one GPU

and remaining is processed in other GPU. Losses are averaged across the two GPUs

and then same signal backpropogated to the networks in two GPUs simultaneously.

(a) ResNet-18 [18] is used as backbone (b) AlexNet [19] is used as backbone

Figure 5.9: Learning curves for two different variations

5.3.6 DAVIS Evaluation

DAVIS dataset [45] provides 50 high-definition sequences with segmented objects at

pixel level accuracy which aims to be a development tool for video object segmenta-

tion community. Additionally, this dataset also provides a benchmark in order to be

used in comparing state-of-the-art algorithms fairly.

Different algorithms are ranked by using the mean of two performance metrics called

region(J) and boundary(F ). The region metric measures the number of pixels in the

intersection of two masks divided by the pixel size of intersection over the union.

The boundary metric measures the accuracy of the boundaries by using the bipartite

53



matching between the boundary pixels of resulting and ground truth masks. The

following formula, which is used to rank the algorithms, defines how to average these

two measures:

(S) =
1

2
[m(J, S) +m(F, S)] (5.1)

where S is defined as set of sequences exist in dataset. m() is used as a mean function

and the mean for a metric in a given sequence is defined as follows:

m(M,S) =
1

|Os|
∑
o∈Os

1

|Fs(o)|
∑

f∈Fs(o)

M(mf
o , g

f
o ) (5.2)

where mf
o and gfo is defined as masks of the result and ground truth objects, S is

defined as set of sequences in the given dataset, Os is set of annotated objects in

given set. Given an object o ∈ Os, s(o) ∈ S is the sequence where the given object

appears. Fs is the set of frames in sequence s ∈ S.

5.3.7 Experiments on DAVIS dataset

We implemented a simple segmentation tracker by using the trained model. We ini-

tialized the segmentation tracker by ground truth segments and then these segments

are tracked by calculating the similarity matrix among the frames. Similarity matrix

points from reference frame to target frame and this way moves the segmentation

area from reference frame to target frame. Iterating over all frames in a sequence,

segments are tracked from first frame to last frame. In order to point from reference

frame to target frame correctly, similarity matrix shall be calculated correctly between

the frames. Due to the spatio-temporal coherence between consecutive frames, one

expects the similarity matrix a diagonal one.

Some experiments are performed in DAVIS dataset. These experiments are not quan-

titative because pointing from reference to target frames are performed on 32 × 32

dimensional frames. One needs to upscale these results. Bicubic upscaling works but

upscaled segments are not as good as with a trained deconvolutional network. One

obtains detailed segments by deconvolving, when upscaling the 32 × 32 sized seg-

ments to 256 × 256. Because of this, method used for upscaling directly affects the

evaluation the model on DAVIS dataset.
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Table 5.2: Comparison of different algorithms in DAVIS 2017 [2] benchmark (higher

Average score means better performance)

Method Backbone J Score F Score Average

OSVOS [49] VGG [50] 45.60 52.50 49.00

Original work [4] ResNet-18[18] + 5 layer 3D Conv 34.60 32.70 33.65

Our implementation - 1 ResNet-18 [18] + 5 layer 3D Conv 29.48 22.93 26.21

Our implementation - 2 AlexNet [19] + 5 layer 3D Conv 26.95 20.90 23.93

Table 5.2 involves the performance metrics evaluated by using the method given in

5.3.6. Here the work done by Caelles et al. [49] is used as baseline, and it is given in

the table in order to compare the performances of different algortihms. Reader shall

note that OSVOS [49] is a fully supervised method.

There is a performance drop when comparing obtained metrics to the original work.

Three factors may cause the specified performance drop. The first one is not all

the data from Kinetics-700 dataset [46] can be used in this thesis work since the

dataset is very huge and and big storage areas are needed in order to keep data. The

second one is models cannot be trained for number of iterations as in original work.

Because training over this huge dataset consumes so much time and requires powerful

hardware. The third one is related to the upscaling method used. We used bicubic

scaling when upscaling the segments from 32 × 32 to 256 × 256. This procedure

generates segments with rough boundaries. This explains more performance drop

obtained for boundary (F) metric comparing to the region (J) metric.

5.4 Integration of Colorization Framework to SiamFC Framework

We performed various experiments by using the proposed combined framework. These

experiments are detailed and the results are shared within the following sections.

We use the SiamFC implementation, detailed in Section 3.2, as a baseline for the

specified experiments. All the experiments in following sections are done by using

OTB 2015 [1] benchmark. Baseline method obtained AUC score as 0.584 for success

curve as stated in Section 5.2.2.
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5.4.1 Experiment 1 - Test Proposed Method for Different α Values, ResNet ar-

chitecture as Colorization Backbone

In this experiment, the baseline model and colorization model trained by using modi-

fied Resnet-18 [18] architecture is combined. The combined method is tested on OTB

2015 benchmark [1] for different α values, set from 0.0 to 1.0 increased by 0.1 steps.

Figure 5.10 shows the detailed results for the Experiment 1.

Mean and standard deviation values are obtained for score maps that are calculated

by baseline method and colorization method. Mean and standard deviation values are

calculated as−3.13 and 3.58 respectively for score map that is calculated by baseline

method. On the other side, mean and standard deviation values are calculated as

422.22 and 34.37 respectively for score map that is calculated by colorization method.

Two score maps are combined after normalization is performed.

Figure 5.10: Success curves for Experiment 1 and related AUC values
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The AUC scores for success curve is obtained as 0.579 and 0.326 for α = 0.0 and

α = 1.0 respectively. The evaluation score generally drops from its best value to its

worst value as the α increases.

5.4.2 Experiment 2 - Train Proposed Method for Different α Values

In this experiment, the combined method is trained supervised. GOT-10k [43] dataset

is used fro training. α values set 0.0 to 1.0 increased by 0.1 steps. Training is per-

formed for 50 epochs. The purpose of this experiment is to see whether the col-

orization method increase the performance when working with the baseline method

together.

Evaluation is performed by using OTB 2015 [1] benchmark. Success curves are pilot

in Figure 5.11.

Figure 5.11: Success curves for Experiment 2 and related AUC values

Trained models, for α = 0.6, α = 0.3, α = 0.5, α = 0.4 outperforms the baseline
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Table 5.3: Performance comparison for models in Experiment 2 that outperforms the

baseline method

Obtained AUC value Performance change

α = 0.6 0.604 3.42% improvement

α = 0.3 0.590 1.02% improvement

α = 0.5 0.587 0.51% improvement

α = 0.4 0.585 0.17% improvement

method which has AUC value for success curve as 0.584. Details are given in Table

5.3.

5.4.3 Experiment 3 - Train Proposed Method by Using Random Initialized Col-

orization Network Weights

In this experiment, the combined method is trained with GOT-10k [43] dataset for

different α values starting from 0.0 to 1.0. But this time ResNet-18 [18] architecture

used in colorization method is initialized by using the random weights. The purpose

of this experiment is to see whether the weights coming from self-supervised learning

helps the combined network learn better or not.

The resulting success curves are pilot in Figure 5.12.

Some models outperform the the baseline method which are given in the Table 5.5.

Comparisons are given relative to the baseline method which obtained AUC score

for success curve as 0.584. Results of two experiments close to each other; however,

results obtained by using self-supervised colorization weights are better than random

initialized weights.
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Figure 5.12: Success curves for Experiment 3 and related AUC values

5.4.4 Experiment 4 - Test Proposed Method for Different α Values, AlexNet

architecture as Colorization Backbone

In this experiment, the baseline method and colorization model trained by using

AlexNet [19] is combined. The combined method is tested on OTB 2015 benchmark

[1] for different α values, set from 0.0 to 1.0 increased by 0.1 steps. The purpose of

this experiment is to see the performance of the modified AlexNet architecture [19]

which does not have any paddings and hence satisfies the translational invariance

propoerty required by siamese networks [15].

Mean and standard deviation values are obtained for score maps that are calculated

by baseline method and colorization method. Mean and standard deviation values are

calculated as−3.13 and 3.58 respectively for score map that is calculated by baseline

method. On the other side, mean and standard deviation values are calculated as

1122.44 and 3481.73 respectively for score map that is calculated by colorization

method. Two score maps are combined after normalization is performed.
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Table 5.4: Performance comparison for models in Experiment 3 that outperforms the

baseline method

Obtained AUC value Performance change

α = 0.4 0.597 2.22% improvement

α = 0.6 0.596 2.05% improvement

The resulting success curves are plot in Figure 5.13.

Figure 5.13: Success curves for Experiment 4 and related AUC values

The combined method outperforms the baseline method when α = 0.1. Baseline

method got AUC score for success curve as 0.584 as it is specified before. Table 5.5

shows the details.

A comparison for performance values at α = 1.0 is required in order to see the effect

of the network used in colorization method. In Experiment 1 0.326 AUC score is

obtained when α = 1.0. On the other side, 0.464 AUC score is obtained when α =

60



Table 5.5: Performance comparison for models in Experiment 4 that outperforms the

baseline method

Obtained AUC value Performance change

α = 0.1 0.591 %1.19 improvement

1.0. The result of this experiment supports that violence of translational invariance

results in a performance drop.

5.4.5 Experiment 5 - Traing Proposed Method for Different α Values, AlexNet

architecture as Colorization Backbone

In this experiment, the combination of baseline and colorization framework trained

with AlexNet architecture [19] is further trained by using GOT-10k [43] dataset as

training dataset. Training is performed for different α values, set from 0.0 to 1.0

increased by 0.1 st

The combined network outperforms the baseline model when α = 0.6, α = 0.4,

α = 0.7, α = 0.5, and α = 0.3. Table 5.6 shows the details.

Table 5.6: Performance comparison for models in Experiment 5 that outperform base-

line model for Experiment 5

Obtained AUC value Performance change

α = 0.6 0.610 4.45% improvement

α = 0.4 0.600 2.73% improvement

α = 0.7 0.597 2.22% improvement

α = 0.5 0.588 0.34% improvement

α = 0.3 0.586 0.34% improvement

The success curves are plot in Figure 5.14.
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Figure 5.14: Success curves for Experiment 5 and related AUC values

5.4.6 Summary for Experiments

Some implications are obtained from the results of the experiments. We try to sum-

marize these implications in this section.

Firstly, the violation of the translational invariance restriction required by siamese

architecture reduces the performance of the system. We obtained such a result by

comparing the results of experiment 1 and experiment 4. The obtained AUC values of

the success curves are 0.326 and 0.464 in experiment 1 and experiment 4 respectively

when α = 1.0. The performance drop using ResNet-18 architecture [18] instead of

AlexNet [19] is calculated as %29.74. ResNet-18 [18] architecture used in experiment

1 must have paddings because of the residual connections. Nonetheless, paddings

break the restriction of translational invariance required for siamese architecture [15].

On the other hand, AlexNet architecture [19] used in experiment 4 has no paddings,

so that translation invariance restriction is not broken. Method proposed by Li et al.

[36] proposes a data sampling method in training phase which reduces the violation
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of translational invariance requirement. ResNet-50 [18] is used in this work. More

detailed discussion was given in Section 2.2.

Secondly, a self-supervised framework reduces the effect of violation of translational

invariance property. By comparing the AUC scores of success curves for experiments

1, 2, and 3 when α = 1.0, it is shown that the effect of violating the translational

invariance property is avoided to a some degree. Following AUC values for success

curves are obtained 0.326, 0.318, 0.233 for experiment 1, 2, and 3 respectively. The

worst result is obtained for experiment 3 in which random weights for ResNet-18 [18]

backbone is used. Yet, better results are obtained when weights from self-supervised

colorization framework is used for ResNet-18 [18] backbone. This result shows that,

using massive data relative to GOT-10k [43] in a self-supervised framework avoids

the effect of strict requirement of translational invariance. This fact makes usage of

deeper networks possible in siamese architectures [15].

Lastly, usage of massive data relative to GOT-10k [43] in self-supervised framework

increases the tracking performance to a some degree in training of the combined net-

work. In all of the experiments 1, 2, 4, and 5 the baseline method is outperformed. It

was pointed out in Section 4.2 that the size of labeled dataset for tracking problem are

small compared to size of dataset used for classification or detection problems. Self-

supervised learning framework makes using massive amount of training data without

labels possible.

5.4.7 Attribute Based Performance Analysis

OTB [1] benchmark has 9 attributes that are used for defining a sequence. These

attributes are defined in Table 5.1. Multiple attributes may be used for defining a

sequence. We calculated the performance of baseline model and the models which

performed best in experiments 1 to 5 in order to see the performance changes for

different attributes.

Table 5.7 shows the calculated performance values for different attributes.

We obtained close results to the results obtained for OTB [1] benchmark for all at-

tributes except for OV(out-of-view) and LR(low resolution) attributes. All the mod-
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Table 5.7: Calculated Performances for 9 Different Attributes. Attributes are defined

in OTB [1] Benchmark. B corresponds to the baseline and 1 - 5 corresponds to the

Experiment 1 to Experiment 5. Table 5.1 shows the attributes in detail.

α tb100 IV SV OCC DEF MB FM IPR OPR OV BC LR

B 0.0 0.589 0.559 0.555 0.549 0.542 0.593 0.583 0.590 0.575 0.491 0.503 0.523

1 0.1 0.589 0.555 0.553 0.551 0.552 0.578 0.581 0.566 0.564 0.491 0.531 0.466

2 0.6 0.604 0.577 0.576 0.567 0.558 0.605 0.588 0.588 0.584 0.524 0.555 0.569

3 0.4 0.597 0.574 0.571 0.553 0.567 0.608 0.585 0.589 0.580 0.496 0.558 0.540

4 0.1 0.591 0.571 0.557 0.544 0.545 0.587 0.584 0.568 0.558 0.474 0.522 0.482

5 0.6 0.610 0.593 0.588 0.571 0.567 0.622 0.593 0.591 0.589 0.527 0.560 0.606

els from experiments and baseline model have poor performance for these attributes.

This result shows that models are not robust for low resolution and out-of-view cases.

Only for the model obtained from Experiment 5, we obtained close results to the

results obtained for OTB [1] benchmark. This shows that AlexNet based colorization

backbone affects the tracking performance positively for low resolution objects.

5.5 Comparison with other trackers

5.5.1 VOT Evaluation

VOT [5] is another benchmark that is proposed in order to evaluate and benchmark

object trackers. The benchmark was first shown on 2013 in a workshop of ICCV2013.

The benchmark consists of a dataset and a evaluation method.

The evaluation method is defined by Kristen et al. in the work named as A Novel

Performance Evaluation Methodology for Single-Target Trackers [5]. Two weakly-

correlated evaluation metrics are defined in this work: Accuracy and Robustness.

Accuracy at a specific time measures the IoU of two bounding boxes, one is calculated

by the tracker and the other one is defined by the ground truth. The mathematical

definition is as follows:

φt =
AGt ∩ ATt
AGt ∪ ATt
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where AGt is ground truth bounding box at time t and ATt is bounding box that is

calculated by the tracker.

A tracker is run over each sequence for Nrep times. This way a potential variance of a

tracker can be handled. Per frame accuracy can be calculated by using the following

formula:

Φt =
1

Nrep

Nrep∑
k=1

φt(k)

where Φt(k) denotes the per frame accuracy of tracker at time t averaged over repeti-

tions.

A re-initialization is triggered whenever the IoU drops to zero. A tracker may again

failed immediately after the re-initialization. This is because IoU drops to zero be-

cause of an occlusion and it will likely be zero again for the consecutive frame. In

order to prevent this bias in performance evaluation Nskip = 5 is used in order to

skip Nskip much frames after the re-initialization. After the re-initialization a tracker

shows superior performances. In other words, IoU is biased towards to higher val-

ues for several frames after the re-initialization process. These frames are labeled as

invalid in the performance evaluation in order to avoid the effect of this high bias.

The number of frames that will be labeled as invalid is determined by the parameter

Nburnin and set to 10.

Accuracy metric is defined after all:

ρA =
1

Nvalid

Nvalid∑
j=1

Φj

Robustness measures the number of times where the tracker is re-initialized. The re-

initialization procedure was given in the beginning of this section. The robustness is

defined as follows:

ρR =
1

Nrep

Nrep∑
k=1

F (k)

where F (k) is the number of times the tracker is failed, ie. IoU drops to zero.

The overall performance of a tracker is then determined by calculating the average of

ρA and ρR. Hence, a tracker becomes a high rank tracker with increasing values of

average of ρA and ρR.
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Table 5.8: Neural Network Architectures Used in Different Methods

Method Backbone

SiamFC [3] AlexNet [19]

SiamMask [21] ResNet-50 [18]

SiamRPN [34] AlexNet [19]

SiamRPN++ [36] ResNet-50 [18]

CycleSiam [20] ResNet-50 [18]

CycleSiam+ [20] ResNet-50 [18]

Combined Method (Ours) AlexNet[19] + ResNet-18 [18] & 5 Layer 3DConv

Combined Method (Ours) AlexNet[19] + Modified AlexNet & 5 Layer 3DConv

5.5.2 Results of comparison

In this section, performance comparison of self-supervised and trained trackers with

some other siamese network based and supervised trackers is given.

Overlap measurement based performance metrics are evaluated and compared. This

decision is given due to the fact that overlap based measurements are more robust

than center distance based measurements as it is stated in Section 5.2.1.

Comparing two performance metrics belonging to a supervised and self-supervised

method is not fair; however, such a comparison is important in order to see whether a

self-supervised method catches the performance of a supervised method or not.

SiamRPN [34], SiamRPN++ [36], SiamMask [21] are selected as state of the art

examples of trackers that inherit most of their base features from the SiamFC [3]

method. In addition to these supervised methods self-supervised methods CycleSiam

and CycleSiam+ [20] are included as self-supervised methods. Table 5.8 shows the

architectures used in different methods. The backbone architectures are considered in

order to make a fair comparison between different methods.

Table 5.9 gives the OTB2015 [1] benchmark results for different trackers. The best

performed trackers from each experiment is added to the table. Table shows that su-

pervised methods achieve better results; but, there is not a huge performance between
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Table 5.9: Comparison of trackers, OTB2015 [1] benchmark

Method Training Dataset
Success

Curve AUC

SiamFC [3] ILSVRC15 [41] 0.584

SiamRPN [34] ILSVRC15 [41], YouTube BB [51] 0.636

SiamRPN++ [36] ILSVRC15 [41], COCO [52], YouTube BB [51] 0.696

Experiment - 1 (α = 0.1) Kinetics-700 [46] 0.589

Experiment - 2 (α = 0.6) Kinetics-700 [46], GOT-10k [43] 0.604

Experiment - 3 (α = 0.4) GOT-10k [43] 0.597

Experiment - 4 (α = 0.1) Kinetics-700 [46] 0.591

Experiment - 5 (α = 0.6) Kinetics-700 [46], GOT-10k [43] 0.61

supervised and self-supervised ones.

Table 5.10 gives the VOT2016 benchmark results for different trackers. The best

performed trackers from each experiment is added to the table. In this comparison,

two methods which are proposed lately in the work performed by Yuan et al. [20]

are included in the performance comparison. These methods are important because a

siamese architecture is trained in self-supervised manner. It is shown that, CycleSiam

[20] shows a performance that is too close to a supervised alternative SiamMask [21]

which is one of the best performing supervised trackers in the literature.

Table 5.11 gives the VOT2018 [37] benchmark results for different trackers. The best

performed trackers for our combined method from each experiment is added to the

table. For experiments in which combined network is not trained further, results for

α = 0.0 and α = 1.0 is shared. Close results to SiamRPN [34] method is obtained.

On the other hand, a performance gap is shown to SiamMask [21].
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Table 5.10: Comparison of trackers, VOT2016 benchmark

Method Training Dataset Accuracy

SiamFC [3] ILSVRC15 [41] 0.535

SiamRPN [34] ILSVRC15 [41], YouTube BB [51] 0.560

SiamMask [21] ILSVRC15[41], COCO [52], YouTube-VOS[53] 0.609

CycleSiam [20] ILSVRC15 [41] 0.603

CycleSiam+ [20] ILSVRC15 [41] 0.601

Experiment - 1 (α = 0.0) Kinetics-700 [46] 0.504

Experiment - 1 (α = 1.0) Kinetics-700 [46] 0.471

Experiment - 2 (α = 0.6) Kinetics-700 [46], GOT-10k [43] 0.543

Experiment - 3 (α = 0.7) GOT-10k [43] 0.539

Experiment - 4 (α = 0.0) Kinetics-700 [46] 0.502

Experiment - 4 (α = 1.0) Kinetics-700 [46] 0.510

Experiment - 5 (α = 0.7) Kinetics-700 [46], GOT-10k [43] 0.541

Table 5.11: Comparison of trackers, VOT2018 benchmark

Method Training Dataset Accuracy

SiamFC [3] ILSVRC15 [41] 0.498

SiamRPN [34] ILSVRC15 [41], YouTube BB [51] 0.49

SiamMask [21] ILSVRC15[41], COCO [52], YouTube-VOS[53] 0.609

CycleSiam [20] ILSVRC15 [41] 0.562

CycleSiam+ [20] ILSVRC15 [41] 0.549

Experiment - 1 (α = 0.0) Kinetics-700 [46] 0.4913

Experiment - 1 (α = 1.0) Kinetics-700 [46] 0.4264

Experiment - 2 (α = 0.2) Kinetics-700 [46], GOT-10k [43] 0.5029

Experiment - 3 (α = 0.6) GOT-10k [43] 0.5106

Experiment - 4 (α = 0.0) Kinetics-700 [46] 0.4906

Experiment - 4 (α = 1.0) Kinetics-700 [46] 0.4667

Experiment - 5 (α = 0.3) Kinetics-700 [46], GOT-10k [43] 0.5062
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CHAPTER 6

CONCLUSION

In this chapter we conclude this thesis work and make a discussion on the results.

The strict translational invariance restriction needed by siamese networks [15] blocks

the usage of deeper networks within siamese networks. This statement is validated

within the experiments performed in this work. The same statement is also stated

in proposed method SiamRPN++ [36]. ResNet-18 [18] based colorization model

performs worse than AlexNet [19] based colorization model. Nevertheless, our ex-

periments show that, self-supervised learning provides a way for coping with the

strict translational invariance violation and make usage of deeper networks possible

in siamese networks [15].

Self-supervision makes usage of massive data relative to labeled datasets for object

tracking problem. Experiments show that the knowledge obtained by colorization

framework by seeing massive amount of data boosts the performance when the com-

bined network trained further in supervised manner. As we specified before labeled

datasets for object tracking is really small comparing to the ImageNet [41] dataset

that is used for image classification domain.

The combined method in the scope of this thesis work seems promising; yet, it is

believed that additional work should be performed in order to increase the tracking

performance. First of all, the colorization network is not performing well, as shown in

Section 5.3.7. So, further work in order to increase the performance of the coloriza-

tion network needs to be performed. Different loss functions for colorization task are

discussed; however, applying and evaluating these loss functions are not in the scope

of this thesis work. In addition, other self-supervised methods which are discussed in
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Section 3.2 can be tried for integrating to the siamese architecture.

Second, methods like SiamRPN [34], SiamRPN++ [36], and SiamMask [21] made

extensions to SiamFC [3]. It would be nice if colorization model were integrated to

such methods. SiamFC [3] is a relatively older method and there are too much pro-

posed work that tries to extend SiamFC [3] in different ways in the literature. For

example, CycleSiam and CycleSiam+ [20] integrates self-supervision to SiamMask

[21] as base method. SiamMask [21] uses a joint loss function which acts as a su-

pervisory signal for multiple tasks, so increasing the overall tracking performance.

However, we see that process required for integrating the colorization framework to

SiamMask [21] is more complex than for SiamFC [3]. This work will be considered

as a future work.

Self-supervision methodology have some disadvantages that needs to be pointed out.

Self-supervision makes usage of massive data possible, however pre-processing, keep-

ing, maintaining massive data requires a lot of engineering. Training takes a lot of

time and needs high-performance hardware. This situation avoids to perform hyper-

parameter tuning or at least such a work takes too much time. Besides these disadvan-

tages; however, self-supervised methodology have much more advantages that were

pointed out several times throughout this work.
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