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ABSTRACT 

 

 

 
THE CAPACITATED VEHICLE ROUTING PROBLEM WITH 

SIMULTANEOUS PICKUP-DELIVERY AND TIME WINDOWS IN THE 

SUSTAINABLE FOOD SUPPLY CHAINS 
 

 

 

 

Farshchi, Mahdi 

Doctor of Philosophy, Industrial Engineering 

Supervisor : Assoc. Prof. Dr. Sedef Meral 

Co- Supervisor : Prof. Dr. Ferda Can Çetinkaya 
 

 

 

January 2021, 159 pages 
 

 

 

The aim of our study is transportation planning in perishable food supply chains. We 

model this problem as the vehicle routing problem with simultaneous pickup and 

delivery, and soft time windows for perishable products (VRPSPD-STW-P).  

 

The objective is to minimize the total costs, consisting of variable transportation costs, 

vehicle-related fixed costs, food quality degradation costs, and time-window violation 

costs. We formulate the problem as a mixed-integer linear programming model. 

Moreover, we propose heuristic and metaheuristic algorithms in the methodology to 

solve the VRPSPD-STW-P.  

 

Our methodology comprises two phases: obtaining initial solutions in the first phase and 

improving these solutions by a genetic algorithm in the second phase. In these phases, 

we first employ a method based on the clustering of nodes for the vehicles and different 

routing heuristics to generate the best routes for the vehicles; that is, solving the problem 

as an m-traveling salesperson problem with simultaneous pickup and delivery (m-

TSPSPD). Then the solution of the problem m-TSPSPD is checked for feasibility taking 

http://ie.cankaya.edu.tr/faculty_fccetinkaya_en.html
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into account the vehicle capacities and tour lengths; the feasible routes are then the 

solutions for the vehicle routing problem with simultaneous pickup and delivery 

(VRPSPD). Finally, the VRPSPD solution is evaluated considering the time window and 

quality constraints (VRPSPD-STW-P). Our solution methodology yields promising 

solutions in much less computational time than the solutions generated by the exact 

solution procedures. 

 

Keywords : Sustainable food supply chain, Vehicle routing problem, Simultaneous 

pickup and delivery, Soft time windows, Mixed integer linear programming, Genetic 

algorithm. 
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ÖZ 

 

 

 

SÜRDÜRÜLEBİLİR GIDA TEDARİK ZİNCİRLERİNDE ZAMAN PENCERELİ 

VE EŞZAMANLI TOPLAMA-TESLİMATLI KAPASİTE KISITLI BİR ARAÇ 

ROTALAMA PROBLEMİ 
 

 

 

 

Farshchi, Mahdi 

Doktora, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Sedef Meral 

Eş Tez Yöneticisi: Prof. Dr. Ferda Can Çetinkaya 
 

 

 

Ocak 2021, 159 sayfa 
 

 

 

Çalışmamızın amacı, bozulabilir gıda tedarik zincirlerinde ulaştırma planlamasıdır. Bu 

problem, bozulabilir ürünler için eşzamanlı toplama-teslimat yapan esnek zaman 

pencereli araç rotalama problemi (VRPSPD-STW-P) olarak modellenir. 

 

Amaç, değişken ulaşım maliyetleri, araçla ilgili sabit maliyetler, gıda kalitesi bozulma 

maliyetleri ve zaman penceresi ihlâli maliyetlerinden oluşan toplam maliyetin en aza 

indirilmesidir. Problem karışık tamsayılı doğrusal programlama modeli olarak formüle 

edilir. Ayrıca VRPSPD-STW-P problemini çözmek için geliştirilen metodolojide 

sezgisel ve metaheuristik algoritmalar önerilir. 

 

Geliştirilen metodoloji iki aşamadan oluşur: birinci aşamada olurlu başlangıç çözümleri 

elde edilir ve ikinci aşamada genetik bir algoritma ile bu çözümler geliştirilir. Bu 

aşamalarda, ilk önce araçlar için talep noktalarının kümelenmesine ve en iyi rotaların 

belirlenmesi için farklı rota belirleme algoritmalarına dayanan bir yöntem kullanılır; bu 

yöntem aslında ana problemi, eşzamanlı toplama-teslimat yapma amacı ile talep 
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noktalarını ziyaret eden birden-fazla-gezgin-satıcılı problem olarak (m-TSPSPD) 

çözmeye denk gelir. Daha sonra m-TSPSPD'nin çözümü, araç kapasiteleri ve rota 

uzunlukları dikkate alınarak olurluğu açısından kontrol edilir; olurlu bulunan bu 

uygulanabilir araç rotaları, eşzamanlı toplama-teslimatlı (VRPSPD) araç rotalama 

probleminin çözümünü oluşturur. Son olarak, VRPSPD çözümü, talep noktalarının 

zaman penceresi ve kalite kısıtlamaları dikkate alınarak değerlendirilir (VRPSPD-STW-

P). Çözüm metodolojimiz, kesin-çözüm yaklaşımları ile elde edilen çözümler ile 

karşılaştırıldığında çok daha az hesaplama süresi içinde umut verici çözümler sunar. 

 

Anahtar Kelimeler: Sürdürülebilir gıda tedarik zinciri, Araç rotalama problemi, 

Eşzamanlı toplama-teslimat, Esnek zaman pencereleri, Karışık tam sayılı doğrusal 

programlama, Genetik algoritma. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

Supply Chain Management (SCM) is defined as the management of information, 

material flows, and cooperation among organizations. Traditional SCM comprises 

planning, sourcing, production, and distribution logistics and focuses on economic and 

financial business performance.  

 

Global warming and depletion of natural, non-renewable resources and increasing 

industrial activities force industries to focus on Sustainable Supply Chain Management 

(SSCM). SSCM is an integration of environmental, social, and economic aspects as 

well. Companies are using different sustainable operations that improve some 

combination of environmental, social, and economic outcomes in different phases of the 

product life cycle, such as forward channel, reverse channel, pickup and delivery 

policies, production planning, and remanufacturing or product recovery. 

 

Forward and reverse logistics play the primary role in environmental issues such as 

carbon emission and footprints, and food miles of a sustainable supply chain. Today’s 

customers want to purchase sustainable products, and they are willing to have 

information about procurement processes, production and distribution methods. SSCM 

focuses on the forward supply chain, reverse logistics, remanufacturing, and product 

recovery.  

 

Over the past years, sustainability has gained ever-increasing importance in the food 

industry. Making customers have environmentally responsible choices in their 

consumption, identifying the critical areas for environmental improvements, and 
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exploring the status of information systems to support sustainability play a significant 

role in SSCM. 

 

Besides the commonly used cost-based performance measures related to safety and 

quality, sustainability includes environmental and social dimensions. The environmental 

dimension of sustainability has probably received the most attention. Life cycle 

assessment (LCA) is one of the best-known examples, which is an analytical tool that 

helps in assessing a product’s environmental impact from product development to 

consumption, i.e., the wasted product is an important performance measure in 

sustainability. 

 

Because of the perishability characteristic of food in a supply chain when moving from 

upstream to downstream stages and the quantity of food waste, managers of food 

industries should consider the sustainability of their manufacturing processes and 

products. Reduction of the amount of waste produced and energy consumed in 

distribution serve the economic and environmental aspects of sustainability.  

 

Food products decay rapidly during the delivery process; hence, companies should 

choose strategies that reduce the loss of products and thus their profit caused by the 

deterioration of food products. Furthermore, it is essential that perishable goods must be 

delivered within their allowable delivery time windows; otherwise, there may be a 

penalty for early or late arrivals.  

 

Waste food, air pollution, and greenhouse gas emissions affect human health and 

contribute to global warming. However, appropriate transportation planning helps 

decrease them. Food Supply Chain (FSC) network design enables an organization to 

maximize its long-term economic profit and performance. Therefore, sustainability is an 

essential problem in the perishable food SCM design phase. 

 

 

Perishable food involves two different concepts of deterioration: 
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1. Items with a fixed shelf life such as blood, ready-mix concrete, several foods like 

milk, yogurt with a recommended expiry date. 

 

2.  Items with continuous decay such as food, vegetables, flowers, and live animals. In 

general, quality degradation of food products depends on storage time, storage 

temperature, humidity, and various factors. 

 

Keeping fresh quality during the transportation of foods is a challenge for food 

distributors. This issue is addressed based on the assumption that the planning horizon is 

shorter than the shelf life of the products and the minimization of transportation time 

and/or distance.  

 

The food distribution is somehow different from the distribution of other products since 

food products show a gradual quality degradation throughout the supply chain, all the 

way until final consumption. Hence, in food distribution, quality and safety requirements 

are more severe. The main difference of food distribution from other products is the 

continuous process of degradation of food quality; and the dependence of quality and 

safety on changes in the food product.  

 

Food distribution management is a challenging area that has begun to receive much 

more attention in the operations management literature than before, due to the following 

reasons: 

 

 Limited shelf lives of food products 

 Environmental requirements, especially about temperature and humidity 

 Possible interaction effects among products 

 Allowable delivery time for delivering the products 

 High customer expectations about the quality (freshness) of products delivered 

 Increasing business volume due to the increasing number of end-users as the 

delivery points 



4 

 

 Low-profit margins  

 

In general, all over the world, food products that are not ending up their life cycles by 

being consumed have had a significant environmental impact without adding value. This 

is partly due to food products deteriorating through the supply chain and having to be 

thrown away. Therefore, sustainability is a prominent issue in the perishable food supply 

chains.  

 

Decision-making in distribution management is commonly carried out at different 

decision levels, mainly relating to the time horizon for these decisions. This usually 

leads to the distinction between long-term, mid-term and short-term planning, or 

between strategic, tactical, and operational planning. The aim of our study is 

transportation planning that is concerned with short-term planning of distribution of 

fresh food and mostly dealing with the planning of deliveries to several customers and 

routing of vehicles as well as picking up the waste or packaging material back. Typical 

decisions at this decision level are the details of the delivery routes starting at the depots: 

at what exact times, by which vehicle, and in which sequence customers will get their 

products delivered within their allowable delivery times (time windows) without any 

food waste, and also how much to pick up simultaneously at the customer sites. 

 

In this study, we model the quality degradation as a (continuous) decrease in the 

product's value (selling price) during its trip that often starts at its highest quality level; 

however, this might not be the kind of quality decay observed in all food products. A 

product would be considered wholly perished at a certain quality level long before its 

shelf life is over because initial quality status may not be easily detectable. It can be hard 

to estimate the remaining shelf life in such cases.  

 

As one extension of the basic Vehicle Routing Problem (VRP), we study the vehicle 

routing problem with simultaneous pickup and delivery and soft time window 

(VRPSPD-STW) for perishable food supply chains (VRPSPD-STW-P). We provide a 

brief background on sustainable supply chains, food supply chains, vehicle routing 
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problem for perishable food, vehicle routing problem with pickup and delivery, and also 

simultaneous pickup and delivery.  

 

The remainder of this thesis is organized as follows: 

 

In Chapter 2, the literature review is presented. We focus on different distribution and 

vehicle routing problems with perishable products. We give a review of studies related 

to the vehicle routing problem and its extensions, including vehicle routing problem with 

time windows (VRPTW), vehicle routing problem with simultaneous pickup and 

delivery (VRPSPD), and vehicle routing problem for perishable products.  

 

The problem definition and mathematical formulation of VRPSPD, including soft time 

windows for perishable products (VRPSPD-STW-P), are proposed in Chapter 3. We 

present a mathematical model to obtain optimal or near-optimal vehicle routes for a 

supplier to deliver food products to demand points, mostly retailers.  

 

In Chapter 4, we propose the exact solution approach and heuristic algorithms to solve 

the VRPSPD-STW-P. Since this problem is NP-hard in nature, algorithms based on 

various metaheuristics have been widely used in solving the simpler variants of VRP. 

Hence, we present heuristic and metaheuristic solution methods for solving our problem 

and improving solutions. We describe three heuristic methods and a genetic algorithm 

for finding the minimum cost solution for VRPSPD-STW-P.  

 

Chapter 5 presents the experimental studies with the proposed methods. The results of 

heuristics are compared with the results obtained from the exact solution method. 

Finally, concluding remarks are given in Chapter 6 that resumes the main findings of our 

study and point further research issues. 
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7 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW  

 

 

 

 

The term supply chain management has been defined by Mentzer et al. (2001) as ―the 

systemic, strategic coordination of the traditional business functions and the tactics 

across these business functions within a particular company and across businesses within 

the supply chain, for the purposes of improving the long-term performance of the 

individual companies and the supply chain as a whole‖.  

 

We define sustainable supply chain management as, the strategic, transparent integration 

and achievement of an organization’s social, environmental, and economic goals in the 

systemic coordination of key inter-organizational business processes to improve the 

long-term economic performance of the individual and its supply chain. This shows the 

importance of environmental performance in supply chain partners and that 

sustainability of any organization is impossible without considering the environmental 

aspects in the supply chain. 

 

Sustainable supply chain management (SSCM) is the integration of environmental, 

social, and economic aspects, known as the triple-bottom-line (TBL) dimensions as 

defined by Elkington (1998). Impacts of supply chain operations on both environment 

and society force companies to consider TBL effects when designing a sustainable 

supply chain. Pagell and Wu (2009) deal with strategic trade-offs between the three 

dimensions of TBL (Figure 2.1). 
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Figure 2.1. Sustainable supply chain management dimensions (TBL) 

 

Seuring and Muller (2008) review 191 papers about the economic and environmental 

dimensions of the supply chain. Carter and Rogers (2008) provide a comprehensive 

review of the conceptual aspects of SSCM. Greening supply chains is an important 

strategy to manage materials flow along value chains to reduce global warming, carbon 

footprint (Elhedhli and Merrick, 2012). Other environmental issues include waste 

reduction, transportation costs, reverse logistics, and remanufacturing. A comprehensive 

discussion for sustainability practices in various industries is presented by Gold et al. 

(2010) and Wittstruck and Teuteberg (2012). 

 

The goal of a sustainable supply chain is to minimize impacts on the environment while 

improving environmental performance and maximizing its long-term economic 

profitability or value (Linton et al., 2007).  Hassini et al. (2012) analyze the literature 

from different perspectives and then provide frameworks and relevant functions for 

sustainable supply chain management and performance measures. They also provide a 

case study to illustrate the experience of a utility supply chain in setting performance 

indicators. Ageron et al. (2012) prepare a systematic review and study the quantitative 

models of SSCM in several industries. They present a model for sustainable supply 

management, as seen in (Figure 2.2). 
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Figure 2.2. A model for sustainable supply management 

 

Fast transportation and low energy consumption are parts of green logistics and SSCM. 

Srivastava (2007) presents a review that emphasizes green and reverse logistics. 

Gopalakrishnan et al. (2012) present ten essentialities for deploying sustainability in 

supply chains (Figure 2.3). 

 

 

Figure 2.3. Essentialities of sustainable supply chain 

 

Chaabane et al. (2012) propose a Life Cycle Assessment (LCA) methodology for 

reducing the negative environmental impact of the supply chains. LCA is a process for 

evaluating the environmental impacts of a product, process, or activity, and an analytical 

tool that helps assess a product’s environmental impact from product development to 
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consumption. It aggregates the results of different aspects of environmental studies, 

including greenhouse gases (GHG) emissions that are recognized as the most harmful 

elements to the environment and responsible for climate change. Environmental 

conditions of storage and transportation facilities have vital importance for the 

performance of the food supply chain. 

 

Food processing and distribution need different types of chains that are characterized by 

shorter product lives. This shows the importance of transportation and logistics in the 

food supply chains (Van der Vorst et al., 2000, Van der Vorst et al., 2009, and Mohan et 

al., 2013).  

 

Consideration of perishability in the supply chains has received increased attention in 

both practice and academia (Ahumada and Villalobos, 2009). Food products and 

production processes have several specific characteristics that influence product quality 

and quality assurance in the production process (Ziggers and Trienekens, 1997, Van der 

Vorst et al., 1999, Van Donk et al., 2008, Rong et al., 2011, and Manzizi and Accorsi, 

2013). The main target of proposed integrated approaches for supply chain design and 

management is the simultaneous control of quality, safety, sustainability, and logistics 

efficiency of food products and processes along the whole food supply chain. 

 

Akkerman et al. (2010) present a comprehensive review of quantitative models on food 

distribution management. Their focus in food distribution is on food quality, food safety, 

and sustainability at three decision levels: strategic network design, tactical network 

planning, and operational transportation planning. 

 

Quality and safety standards in food industries are developed in the last decade (Vellema 

and Boselie, 2003, and Trienekens and Zuurbier, 2008). Due to the importance of 

product quality in the food industry, quality assurance in the food industry has become a 

reality. Based on the requirements of the public sector, private safety and quality 

standards are being implemented. Trienekens and Zuurbier (2008) discuss public and 

private standards for the production and distribution of food. 
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The first comprehensive review for perishable products is given in Nahmias (1982). He 

reviews the relevant literature on determining suitable ordering policies for both fixed 

life perishable inventory and inventory subject to continuous exponential decay. Also a 

brief review of the application of these models to blood bank management is included. 

An updated review of planning models in the agri-food supply chain can be found in 

Ahumada and Villalobos (2009).  

 

Goyal and Giri (2001) propose an excellent review of the classification of perishable 

products and the necessary policies for optimizing the chain. Their study presents a 

review of the advances of deteriorating inventory literature since the early 1990s. They 

provide an up-to-date review of deteriorating inventory literature after Raafat’s survey 

(1991).  They classify deterioration into ten categories;  two main categories of which 

are as follows:  

  

1. Inventory with fixed lifetime / Inventory with random lifetime 

 

2. Stochastic demand / Deterministic demand 

 

Different transportation and distribution models can be implemented in food supply 

chains; however, the most effort that has been presented by researchers deals with the 

critical aspects of the food supply chain. These aspects include procurement, inventory 

management, order processing, transportation and distribution, sales, demand 

management, and customer service.  

 

A hierarchical approach is presented by Akkerman et al. (2010). They distinguish three 

distinct planning levels in distribution management:  

 

1. Distribution network design, concerned with long-term decisions on the physical 

distribution structure. This includes warehouses and the fleet of vehicles, as well as 

the related transportation links. 
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2. Distribution network planning, concerned with mid-term distribution planning 

decisions related to fulfilling demand at an aggregate level. This includes mainly 

aggregate product flows and delivery frequencies. 

 

3. Transportation planning, concerned with short-term planning of the distribution of 

actual customer orders. This includes mainly loading/unloading and routing of 

vehicles. 

 

There are two studies worth mentioning here for modeling routing for perishable 

products. Van der Vorst et al. (2009) present a simulation tool for the design of food 

chains, and Vlajic et al. (2012) define the concept of robustness and study principles and 

strategies to achieve a robust food supply chain. Robustness is considered as an essential 

property of supply chains or as a strategy that can be used to improve supply chain 

resilience. Robustness is related mainly to supply chain vulnerability and uncertainty in 

general. 

 

To reduce losses of quality, Montanari (2008), Wognum et al. (2011), and Donselaar and 

Broekmeulen (2012) present advanced inventory and distribution management systems.  

Donselaar and Broekmeulen (2012) derive approximations for the expected amount of 

waste in an inventory system with perishable products; thus, they enable retailers to 

make trade-offs between the relative outdating and the customer service level when 

making strategic or tactical decisions on the redesign of the perishable inventory system. 

 

Most approaches in short-term planning distribution such as food distribution are based 

on the well-known vehicle routing problem (VRP), often including delivery time 

windows. The objective of VRP is to find the minimum distance traveled and/or the 

minimum number of vehicles. In VRP, vehicle routes should start and end at the same 

depot; each customer should be visited only once, and the total demand of customers 

should not exceed the capacity of vehicles. Lin et al. (2014) provide a more recent 

review for the VRP variants, and the philosophy of their review work is in Figure 2.4.  
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Note. CVRP, capacitated VRP; TDVRP, Time dependent VRP; VRPPD, VRP with pickup and delivery; MDVRP, 

Multi depot VRP; SVRP, Stochastic VRP; LRP, Location Routing Problem; PVRP, periodic VRP; DVRP, Dynamic 

VRP; VRPTW, VRP with time window; IRP, Inventory Routing Problem; FSMVRP, Fleet Size and Mix Vehicle 

Routing Problem; G-VRP, Generalized VRP; MCVRP, Multi-compartment VRP; Site-DVRP, Site dependent VRP; 

SDVRP, Split-delivery VRP; FVRP, Fuzzy VRP; OVRP, Open VRP; VRPLC, VRP with Loading Constraints; MEVRP, 

Multi-echelon VRP; GVRP, Green VRP; PRP, Pollution Routing Problem; VRPRL, VRP in Reverse Logistics. 

 

Figure 2.4. The variants of VRP 
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Some nodes in the distribution networks need to be visited within a particular time range 

called time windows (TW). Solomon (1987) adds time-window constraints to the 

classical VRP. Two types of time windows are extensively studied in the literature:  

 

1. Hard Time Windows (HTW), where a vehicle must arrive and start service at the 

customer site within the specified time interval.  

 

2. Soft Time Window (STW), where the time window violation constraint is acceptable 

but with some penalty. 

 

In the case of soft time-windows, constraints can be violated, but with a penalty cost. 

When a vehicle arrives with an acceptable delay, the food can still be delivered with a 

penalty cost. Assume [     ] represents the time window of customer  ; if the vehicle 

arrives at the customer site before time   , then it must wait up to time    before starting 

its service. On the other hand, if it arrives after   , a lateness penalty is incurred; in this 

case, a lateness penalty is considered because of the customer’s loss and short remaining 

shelf life. 

 

Therefore, if perishable goods are not delivered within the allowable delivery time or 

time windows in the soft case, penalty costs result for late arrivals. The time window is 

considered since some part of the revenue is lost due to late delivery. The probability 

that perishable food can be sold depends on the time that remains between purchasing 

time and expiration date. This probability decreases at an increasing rate as the time of 

purchasing becomes closer to the expiration date. Thus, revenue from customers reduces 

due to late deliveries. 

 

As mentioned before, the increasing environmental and social aspects are forcing 

companies to consider sustainability in the supply chain. The reverse product flow is 

also an important relevant contribution to the sustainability of distribution systems. The 

environmental impact of distribution continues even after a product is delivered to the 

customer. There is often a reverse flow, ranging from empty recycle containers or boxes 

in the retail industry to bowls and plates, perished food in the food service industry. 
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Thus, waste management is the process of protecting the environment and conserving 

resources. Today’s operations research methods and related mathematical models are 

effectively applied in both forward and reverse logistics. VRP with pickup and delivery 

(VRPPD) is an extension of the classical VRP. VRPPD is classified into different types; 

hence we have a brief explanation of them and their underlying assumptions.  

 

In VRPPD, the set of customers is divided into three subsets: the first subset is the 

linehaul customers with delivery demand only, each requiring delivery of goods from 

the depot, whereas the second subset of customers is the backhaul customers with 

pickup demand only, each requiring a pickup of decayed or recycle goods. In the third 

subset, customers have both linehaul and backhaul demands. In this subset, customers 

want to receive both delivery and pickup services.  

 

Pickup and delivery problems (VRPPD) can be categorized in four problem types. In the 

first two problem types, customers have either linehaul demands (delivery) or backhaul 

demands (pickup) but not both, while in the last two, each customer can have both 

delivery and pickup demands: 

 

1. Vehicle routing problem with clustered Backhauls (VRPCB): All linehaul demands 

must be satisfied before backhaul demands. The primary assumption of the VRPCB 

is that all deliveries must be made before any pickups.  

 

2. Vehicle routing problem with mixed linehauls and backhauls (VRPMB): VRP with 

mixed backhauls is the problem in which deliveries and pickups may occur in any 

sequence on a vehicle route.  

 

3. Vehicle routing problem with simultaneous pickup and delivery (VRPSPD): 

Customers can receive both delivery and pickup services simultaneously in the same 

vehicle, then each customer must be visited exactly once. 

 

4. Vehicle routing problem with divisible (split) pickup and delivery (VRPDPD): 

Customers demanding delivery and pickup service can be visited more than once; the 
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class is named as divisible pickup and delivery problems. It is not allowed for the 

vehicle to simultaneously deliver and pick up goods at the same customer location. If 

a customer needs both a delivery and pickup service, this customer is to be visited 

twice in the VRPDPD case resulting in inconvenience and higher transportation costs. 

 

In the next sections, we present a literature review on the main parts of our research. We 

have a brief overview of the vehicle routing problem (VRP), vehicle routing problem 

with time window (VRPTW), vehicle routing problem with simultaneous pickup and 

delivery (VRPSPD), vehicle routing problem with simultaneous pickup and delivery and 

time window (VRPSPD-TW), and vehicle routing problem for perishable products 

(VRP-P). 

 

2.1. Vehicle routing problem (VRP) 

 

The mTSP (Multi traveling salesman problem) or TSP problem with m salesmen reduces 

to the TSP when there is a single salesman (Bektas, 2006). The mTSP is generally 

treated as a relaxed VRP where there is no vehicle capacity (Matai et al., 2010). Hence, 

the formulations and solution methods for the mTSP are also equally valid for the VRP 

if a capacity is assigned to the salesmen or vehicles.  

 

The paper by Dantzig et al. (1954), the first record in the VRP literature, studies a 

relatively large-scale TSP and proposes an approximate solution method. Several other 

TSP articles follow that study. The objective of VRP is to find the minimum distance 

traveled and/or the number of vehicles. VRP is first introduced by Dantzig and Ramser 

(1959).  

 

Clarke and Wright (1964) first incorporate more than one vehicle in the problem 

formulation. Consequently, this study is the first in VRP literature. Other versions of 

VRP emerge in the early 1970, e.g., routing of public service vehicles (Stricker, 1970), 

transportation network design (O’Connor and De Wald, 1970), fleet routing (Levin, 

1971).   
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One of the surveys of solution techniques for the VRP can be found in Mole and 

Jameson (1976). They originally propose the insertion method for solving a traditional 

VRP. This method incorporates concepts of the nearest neighbor and the sweeping 

algorithms.  

 

Gavish and Graves (1978) present new formulations for the traveling salesman problem 

and investigate their relationship to previous formulations. The new formulations are 

extended to include a variety of transportation scheduling problems, such as the multi-

traveling salesman problem and the delivery problem.  

 

Exact algorithms for solving the VRP, based on spanning tree and shortest path 

relaxations, are discussed in Christofides et al. (1981). The problem of routing a fixed 

number of trucks, each with a limited capacity from a central warehouse or depot to 

customers with known demand, is addressed in Golden et al. (1984). They relax the 

homogeneous fleet assumption. The objective is to determine optimal fleet size by 

minimizing a total cost function including fixed cost and variable cost components.  

 

VRP related to goods delivery has been extensively examined in Daganzo (1987a, 

1987b). Daganzo (1987a) shows how distribution problems with delivery time 

constraints can be modeled approximately with just a few variables. He suggests that 

more attention should be paid to the clustering part of algorithm construction. Daganzo 

(1987b) extends the results of the previous studies concerning the distribution with time 

windows. This paper discusses different ways of routing vehicles for problems where a 

significant number of customers do not have time windows. It is shown that a strategy in 

which all vehicle routes are similar, but customers with time windows and without time 

windows are differently treated, yields the lowest local distance traveled per point.  

 

VRP research for solution methods accelerates during the 1990s. Primarily due to 

microcomputer capability and availability, researchers could develop and implement 

more sophisticated search algorithms. During this era, the term metaheuristics is 

introduced to name several search algorithms for solving these VRPs as well as other 
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combinatorial optimization problems. Laporte and Nobert (1987), and Laporte (1992) 

survey the main exact and approximate algorithms developed for the VRP. Approximate 

methods based on simulated annealing and tabu search heuristic for the vehicle routing 

problem are proposed by Osman (1993). Gendreau et al. (1994), Renaud et al. (1996), 

Cordeau et al. (1997) describe tabu search heuristics for the VRP. For a further inquiry 

into major problem types, formulations, and solution methods of this era, one may refer 

to the works of Laporte and Nobert (1987) and Laporte (1992).  

 

Fisher (1995) presents some variants of vehicle routing problems and various practical 

issues that arise in the use of vehicle routing models and the most important algorithms 

that have been developed for the VRP. Golden et al. (1998) present the impact of 

metaheuristics on solving the vehicle routing problem and algorithms. They investigate 

the vehicle routing problem and its latest advances. 

 

Bullnheimer et al. (1999) use the ant system to solve the VRP in its basic form. Laporte 

et al. (2000) study classical and modern heuristics for the vehicle routing problem. The 

survey is divided into two parts: classical and modern heuristics. The first part contains 

well-known schemes such as the savings method, the sweep algorithm, and various two-

phase approaches. The second part is devoted to tabu search heuristics, which have 

proved to be the most successful metaheuristic approach.  

 

Toth and Vigo (2003) propose a tabu search algorithm for the VRP. A generalized 

clustering method based on a genetic algorithm (GA) is developed by Thangiah and 

Salhi (2001). Baker and Ayechew (2003) describe a genetic algorithm to solve the basic 

VRP. Prins (2004) presents a genetic algorithm for the VRP, and his proposed algorithm 

can compete with powerful tabu search algorithms in terms of average solution cost. 

Prins (2004) algorithm performs better than most published tabu search heuristics on the 

classical instances of Christofides et al. (1981).  

 

http://pubsonline.informs.org/doi/abs/10.1287/mnsc.40.10.1276
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.40.10.1276
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.40.10.1276
http://scholar.google.com.tr/citations?user=CilK624AAAAJ&hl=tr&oi=sra
http://scholar.google.com.tr/citations?user=eajoh7kAAAAJ&hl=tr&oi=sra
http://link.springer.com/chapter/10.1007/978-1-4615-5755-5_2
http://link.springer.com/chapter/10.1007/978-1-4615-5755-5_2
http://www.google.com/books?hl=tr&lr=&id=-3ta5ne3-owC&oi=fnd&pg=PA2&dq=+vehicle+routing+problem&ots=O6OJUduWXJ&sig=Z4f5fipQ5ID7p4N7pu0uDe8uMKs
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Bell and McMullen (2004) and Reimann et al. (2004) apply ant colony optimization 

(ACO) to solve VRP. Chu and Prins (2005) develop two insertion heuristics, and a two-

phase heuristic called the lower bound heuristic for solving VRP.  

 

Cordeau et al. (2005) review some of the best metaheuristics proposed in recent years 

for the vehicle routing problem. Eskioglu et al. (2009) propose a taxonomy of the VRP 

literature, and they have made an effort to classify the literature reviews of the VRP. A 

review on dynamic VRP can be found in Pillac et al. (2013). The dynamic vehicle 

routing problem (DVRP) is one of the most important problems in the area of enterprise 

logistics. DVRP involves these dynamics: the appearance of customers, travel times, 

service times, or vehicle availability. One of the most often considered aspects of the 

DVRP is the availability of customers, in which a part or all of the customers are 

revealed dynamically during the design of the routes. Toth and Vigo (2014) and Lin et 

al. (2014) provide a new reference study and literature review for vehicle routing 

problem variants, methods, and applications. 

 

2.2. Vehicle routing problem with time windows (VRPTW) 

 

Companies should make both strategic and operational decisions to optimize and 

manage their logistics system processes efficiently. Studies now focus on more variants 

of VRP in industries and try to consider different conditions depending on their 

objectives. Heuristic approaches for VRP do not consider service time intervals or due 

dates as constraints of the model until Russell (1977), who presents an effective heuristic 

for the M-tour traveling salesman problem and accommodates the time window 

restrictions in his model.  

 

During the 1980s, surveys generate different static configurations of the original 

problem of VRP. Some researchers consider vehicle routing problems with time window 

constraints and construct penalty costs to reflect a violation of these time windows. 

Schrage (1981) proposes vehicle routing and scheduling problem with time window 

constraints as an essential area for progress in handling realistic complications and 

http://scholar.google.com.tr/citations?user=K9vwAvYAAAAJ&hl=tr&oi=sra
http://scholar.google.com.tr/citations?user=Ff7J_ToAAAAJ&hl=tr&oi=sra
http://www.google.com/books?hl=tr&lr=&id=AoTTBQAAQBAJ&oi=fnd&pg=PR1&dq=+vehicle+routing+problem&ots=-P4ccduiSm&sig=-o-c9eqv593ZARZJwlegxslMXD0
http://www.google.com/books?hl=tr&lr=&id=AoTTBQAAQBAJ&oi=fnd&pg=PR1&dq=+vehicle+routing+problem&ots=-P4ccduiSm&sig=-o-c9eqv593ZARZJwlegxslMXD0
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generalizations of the basic routing model. Solomon (1987) adds time window 

constraints to the classical VRP. He considers the design and analysis of algorithms for 

vehicle routing and scheduling problems with time window constraints.  

 

Since the VRPTW is an NP-hard problem (Savelsbergh, 1985), exact approaches to 

solving this type of problem are inefficient in general (Desrochers et al. 1992). The 

VRPTW has been the subject of intensive research efforts for both exact optimization 

and heuristic approaches. Early surveys of solution techniques for the VRPTW can be 

found in Golden and Assad (1986), Desrochers, Kolen et al. (1987), and Soumis (1988). 

Kolen et al. (1987) use the branch and bound technique to solve VRPTW. 

 

Over the last few years, many authors propose traditional heuristic approaches, for route 

construction and route improvement (local search). Solomon (1987) develops a few 

heuristics for solving VRPTW, including savings method, nearest neighbor, insertion, 

and sweeping. These heuristic algorithms are generally modified from their original 

versions for solving the traditional VRP. Thus, when applying these algorithms to 

VRPTW, the feasibility of inserting a retailer node into the route must be checked 

against the time window constraints. Among the heuristic algorithms developed by 

Solomon (1987), the insertion method consistently gives excellent results. 

 

One of the methods described by Solomon (1987) is an extension to the savings heuristic 

of Clarke and Wright (1964). The savings method, which is initially developed for the 

classical VRP, is probably the best-known route construction heuristic. It begins with a 

solution in which every customer is supplied individually by a separate route.  

 

Solomon and Desrosiers (1988) survey the significant advances made for the routing 

problems with time windows, highlighting the significant breakthroughs in solution 

methodology and their analysis. Koskosidis et al. (1992) focus on determining optimal 

routes by minimizing total routing costs, including total distance and time costs and cost 

of waiting due to a vehicle’s early arrival in soft time windows. They heuristically 
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decompose the problem into a clustering component and a series of routing and 

scheduling components.  

 

Many researchers have made a great effort in solving the VRPTW in recent years by 

widely used methods based on various metaheuristics. Desrosiers et al. (1995) provide 

an extensive overview of the models and algorithms for VRPTW, focusing on 

optimization methods. They show that heuristics remain a viable tool for very large-

scale complex problems. Potvin et al. (1996a) and Taillard et al. (1997) use a tabu search 

for solving VRPTW.  

 

In recent years, metaheuristics like the genetic algorithm (GA) have been widely applied 

for solving hard combinatorial problems. A genetic algorithm is first proposed by 

Holland (1975). Since then, GA has been popular due to its contribution to obtaining 

good solutions for complicated optimization problems in a reasonable amount of time.  

 

In particular, heuristic search strategies based on GA are explored in recent years to 

improve the solutions in VRPTW. Potvin et al. (1996b), Thangiah (1993), and Thangiah 

and Petrovic (1998) develop genetic algorithms for the application of new search 

techniques.  

 

A cutting-plane algorithm is studied in Cook and Rich (1999), and a column-generation-

based VRPTW algorithm is presented by Larsen (1999). Cordeau et al. (2001a) present a 

unified tabu search heuristic for the vehicle routing problem with time windows and for 

two important generalizations: the periodic and the multi-depot vehicle routing problems 

with time windows. The significant benefits of the approach are its speed, simplicity, 

and flexibility. Tan et al. (2001), and Berger and Barkaoui (2003) present heuristic 

search strategies based on GA to solve VRPTW.  

 

Berger and Barkaoui (2004) provide an improved genetic algorithm for the vehicle 

routing problem with time windows. They present a parallel version of a new hybrid 

genetic algorithm for the vehicle routing problem with time windows. The route-directed 
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hybrid genetic approach is based upon the simultaneous evolution of two populations of 

solutions focusing on separate objectives subject to time constraint relaxation. While the 

first population evolves the individuals to minimize total traveled distance, the second 

aims at minimizing time constraint violation to generate a feasible solution. 

 

Kallehauge et al. (2005) focus on the VRPTW as one of the important applications of 

column generation in integer programming. They discuss the VRPTW in terms of its 

mathematical modeling, its structure, and decomposition alternatives. They present the 

master problem and the subproblem for the column generation approach.  

 

Extensive literature reviews on VRPTW and the use of metaheuristics for solving 

VRPTW up to 2005 can be found in Bräysy and Gendreau (2005a, 2005b). Bräysy and 

Gendreau (2005a, 2005b) study both hard and soft time windows to solve VRPTW. In 

Bräysy and Gendreau (2005a) both traditional heuristic route construction methods and 

recent local search algorithms are examined. The basic features of each method are 

described, and experimental results are presented and analyzed. The metaheuristic 

methods are described in Bräysy and Gendreau (2005b).  In the case of time windows 

violation, two typical significant costs are considered:  

 

1. Vehicle costs include fixed costs such as vehicle depreciation and variable costs 

such as fuel consumption for early arrivals.  

 

2. Delay cost is a penalty that occurs when the vehicle arrives at the customer site 

later than the time window’s end.  

 

Lin et al. (2006) apply the simulated annealing (SA) combined with local search for 

solving the VRPTW. They show SA as a developed approach to escape from the local 

optimal traps, and also that the use of exchange and insertion local search can find near-

optimal solution efficiently.  

 

Alvarenga et al. (2007) formulate VRPTW as a set partitioning problem and use the 

Dantzig-Wolfe decomposition method to divide the problem into a master problem and a 



23 

 

secondary problem. Their work proposes a heuristic approach for the VRPTW using 

travel distance as the primary objective through an efficient genetic algorithm and a set 

partitioning formulation. 

 

Kallehauge (2008) reviews the exact algorithms proposed in the last decades for the 

solution of VRPTW. They give a detailed analysis of the formulations of the VRPTW 

and a review of the literature related to the different formulations. He concludes with 

two main lines of development in relation to the exact algorithms for the VRPTW. One 

is concerned with the general decomposition approach and the solution to some dual 

problems associated with the VRPTW. Another more recent direction is concerned with 

the analysis of the polyhedral structure of the VRPTW. 

 

The hard time window constraint seems to be entirely appropriate to describe the real-

world situation. However, sometimes no feasible or executable solution can be obtained 

if all time window constraints need to be satisfied. Relaxing this strict restriction might 

result in a better solution concerning the total distance or the total number of vehicles. 

Furthermore, Montanari (2008) and Tang et al. (2009) show that a tiny deviation from 

the customer specified time window is acceptable in real life. Adopting soft time 

window constraints dealing with this possible tiny violation receives close attention in 

many practical scenarios.  

 

Jiang et al. (2009) propose a particle swarm optimization (PSO) algorithm with 

crossover for VRPTW. They conclude the PSO algorithm combined with the crossover 

operation of GA can avoid being trapped in local optimum.  

 

Cheng and Wang (2009) consider different conditions for the VRPTW problem, and 

they define waiting and delay costs for deviations from the time window in both 

directions. They investigate time window constraints for VRP in which constraints 

belong to the soft time windows, and they present GA to solve the problem.  

 



24 

 

Figliozzi (2009) studies how time window constraints and customer demand levels 

influence the average distance of VRP. The paper reflects how time window constraints 

and customer demand levels influence the average distance in VRP, which is an 

important indicator associated with the decisions in network design, facility location, 

and fleet sizing, especially for delivering sensitive products. Instead of using traditional 

heuristics, the study develops a probabilistic modeling approach to approximate the 

average length of the routes traveled. Figliozzi (2010) proposes to relax hard time 

windows, leading to lower costs without significantly hurting customer satisfaction.  

 

Qureshi et al. (2009) and Qureshi et al. (2010) study soft time windows where early 

arrival is allowed at no cost while late arrival incurs a penalty cost. De Oliveira and 

Vasconcelos (2010) implement a hybrid search method by using an efficient simulated 

annealing algorithm. Zhen (2011) studies the multi-period vehicle routing problem with 

recurring dynamic time windows as an extension of VRPTW and proposes a time 

window partitioning method for the problem. Qureshi et al. (2012) propose a model for 

dynamic VRP with soft time windows to help freight carriers avoid extra cost as well as 

lateness of goods delivery.   

 

2.3. Vehicle routing problem with simultaneous pickup and delivery (VRPSPD) 

 

In the VRP literature, there is a mass of studies in VRP with pickup and delivery, such 

as VRP with simultaneous pickup and delivery. Many applications of the classical VRP 

involve pickup and delivery services between the depot and some peripheral locations as 

warehouses, stores, and stations. The extension models of VRP, such as VRPCB and 

VRPMB, release the capacity and number-of-visits constraints of the traditional VRP 

that customers’ total demands cannot exceed a known quantity due to vehicle capacity, 

and each customer should be visited only once. The mathematical formulation for 

VRPSPD is first introduced by Min (1989). The work is concerned with a library 

situation where delivery and pickup of books are required.  
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Mosheiov (1998) studies a different version of the vehicle routing problem with pickup 

and delivery that was not surveyed before. Delivery, in his case, refers to the 

transportation of goods from the depot to customers, and pickup refers to shipment from 

customers to the depot. He develops an alternative solution method, which is an 

extension of the well-known tour-partitioning heuristic. Tour partitioning heuristics for 

solving the capacitated vehicle routing problem are based on breaking a basic tour into 

disjoint segments served by different vehicles.  

 

Salhi and Nagy (1999) propose four insertion-based heuristics for generating solutions to 

VRPSPD. Dethloff (2001) proposes a mathematical formulation for VRPSPD and an 

insertion-based heuristic algorithm to solve the problem. Dethloff (2002) compares the 

insertion-based algorithm with the other algorithms that are originally developed to 

solve VRPSPD. 

 

Nagy and Salhi (2005) also propose a local search heuristic with four phases to solve 

VRPSPD. They show that the VRPSPD is a generalization of the mixed linehauls and 

backhauls problem. They also extend their method for the multi depot case.  

 

Dell'Amico et al. (2006) present an optimization algorithm based on column generation, 

dynamic programming, and branch and price method for solving VRPSPD. Montané and 

Galvão (2006) present an extension of the formulation by Mosheiov (1994), and Gavish 

and Graves (1978) formulations. For obtaining lower bounds for these problems, 

Montané and Galvão (2006) develop a second formulation that includes maximum 

distance constraint, and they present a tabu algorithm to solve VRPSPD. Their algorithm 

uses three types of movements to obtain inter-route adjacent solutions: the relocation, 

interchange, and crossover movements. 

 

Parragh et al. (2008a) and Parragh et al. (2008b) present two comprehensive surveys and 

classification schemes for pickup and delivery problems. Parragh et al. (2008a) refer to 

all those problems where goods are transported between pickup and delivery locations. 

Parragh et al. (2008b) discuss the transportation of goods from the depot to linehaul 



26 

 

customers and from backhaul customers to the depot. Chen and Wu (2006) propose a 

heuristic method based on tabu search and route improvement procedures for VRPSPD. 

Cao and Lai (2007a) use an improved evolution algorithm to solve VRPSPD. An 

improved genetic algorithm is proposed based on the crossover operator to solve the 

problem. 

 

Alshamrani et al. (2007) examine a real-world problem of blood distribution and 

collection of blood containers. They generate a penalty cost if the containers are not 

picked up.  Bianchessi and Righini (2007) use Dethloff (2001) VRPSPD formulation 

and develop heuristic algorithms for solving VRPSPD. Their work comprises of 

different constructive algorithms, local search algorithms with various neighborhood 

structures, and tabu search algorithms. 

 

Ganesh and Narendran (2008) develop a mathematical programming model and a two 

phase heuristic to solve the VRPSDP. In the first phase, they use a heuristic to find an 

initial solution. In the second phase, they develop an enhanced version of simulated 

annealing (SA) to search for the best solution. Wassan et al. (2008) develop a tabu 

search algorithm to solve VRPSPD.  

 

Ai and Kachitvichyanukul (2009) reformulate the VRPSPD as a direct extension of the 

basic VRP. As a result of their survey, the formulation of Min (1989), Dethloff (2001), 

and Montané and Galvão (2006) can be reduced to a special case of their reformulation. 

They present a solution method based on the particle swarm optimization algorithm for 

VRPSPD.  

 

Many researchers have put their efforts into seeking a solution to VRPSPD in recent 

years, and they use metaheuristics to solve VRPSPD. Gajpal and Abad (2009) solve the 

VRPSPD through an ant colony algorithm with a construction rule and two multi-route 

local search schemes. Çatay (2010) proposes an updated procedure for the VRPSPD, ant 

colony algorithm with a saving-based function. 
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Subramanian et al. (2010) present a parallel approach for solving VRPSPD. The parallel 

algorithm is embedded with a multi-start heuristic, which consists of a variable 

neighborhood descent procedure, with a random neighborhood ordering integrated into 

an iterated local search. Subramanian et al. (2011) propose a branch-and-cut with a lazy 

separation approach over the extended flow formulations that use the separation routines 

for the capacitated vehicle routing problem. They test the algorithm in a large-scale 

logistics network, and the results demonstrate that their approach can improve most of 

the previously known bounds.  

 

Zachariadis and Kiranoudis (2011) suggest a local search based metaheuristic. Their 

proposed VRPSPD heuristic is a local search algorithm which makes use of two 

algorithmic concepts, exploring solution neighborhoods, and avoiding search cycling. 

Tasan and Gen (2012) develop a GA for VRPSPD. In their study, the length of the 

chromosome is determined by the number of customer nodes which are served by the 

vehicles; routes are determined based on the capacities of vehicles. In the proposed 

methodology, initial population generation process is based on random permutation.  

Gan et al. (2012) apply multi cooperative particle swarm optimization algorithm to solve 

VRPSPD.  

 

Zhen et al. (2020) define a new variant of the vehicle routing problem by combining the 

consistent VRP and the VRP with simultaneous delivery and pickup. They  highlight the 

necessity of considering the service consistency in reverse logistics by considering the 

consistency of drivers and the arrival time, as well as the simultaneity of delivery and 

pickup. To solve this problem, three heuristics are proposed on the basis of the record-

to-record travel algorithm, the variable neighbourhood search, and the tabu search-based 

method. Koç et al. (2020) present a comprehensive review for the existing work on the 

VRPSPD. They survey mathematical formulations, algorithms, variants, case studies, 

and industrial applications. They also provide an overview of trends in the literature and 

identifies several interesting future research perspectives. 
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2.4. Vehicle routing problem with simultaneous pickup and delivery and time 

window (VRPSPD-TW) 

 

VRPSPD-TW is an extension of VRPTW, where customers require simultaneous pickup 

and delivery. The problem is a combination of the standard versions of VRPSPD and 

VRPTW and is denoted by VRPSPD-TW. The VRPSPD-TW considers simultaneous 

pickup and delivery at each customer such that a customer is visited only once within the 

specified time window without violating the vehicle capacity constraints. Research on 

VRPSPD-TW has been very recent and thus limited. 

  

Sexton and Choi (1986) is one of the first surveys of VRSPD-TW. They consider a 

problem called the single-vehicle routing and scheduling problem with soft time 

windows, partial loads, and dwell times (the amounts of time required to load and 

unload at each origin and destination). They apply Benders' decomposition procedure 

and construct a route improvement heuristic based on the master problem.  

 

Gelinas et al. (1995) study VRP with backhauls and time windows (VRPBTW). They 

present a new branching strategy for branch-and-bound approaches based on column 

generation for the vehicle routing problem with backhauls and time windows. This 

strategy involves branching on time or capacity variables rather than on network flow 

variables and also presents criteria for selecting network nodes for branching. 

 

Thangiah et al. (1996) describe a route construction heuristic for the VRPBTW, as well 

as different local search heuristics to improve the initial solution. They propose a 

heuristic based on the insertion procedure to obtain initial solutions to the VRPBTW. 

Then, the initial solutions are improved through the application of two points crossover 

procedure.  

 

Angelelli and Mansini (2002) provide two mathematical programming models to 

represent the VRPSPD-TW. They use a column generation method based on set 

covering formulation. Ropke et al. (2007) describe a branch-and-cut algorithm for the 
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pickup and delivery problem with time windows. They introduce several valid 

inequalities as cutting planes, and these inequalities are used within branch-and-cut 

algorithms which are tested on several instance sets.  

 

Cao and Lai (2007b) investigate VRPSPD-TW and propose a heuristic method based on 

a genetic algorithm to solve this NP-hard problem. Wang (2008) studies a tabu search 

algorithm, and Mingyong and Erbao (2010) propose a differential evolution algorithm to 

solve VRPSPD-TW with limited route distances. Differential evolution algorithm 

combines simple arithmetic operators with the classical operators of crossover, mutation, 

and selection to evolve from a randomly generated starting population to a final solution. 

The route length constraints reduce the search space in obtaining optimal or near-

optimal solutions.  

 

Gan et al. (2012) consider two additional factors of  VRPTW, which are the unknown 

number of vehicles and simultaneous pickup and delivery service. They apply an 

efficient multi-swarm cooperative particle swarm optimization algorithm, and propose a 

new encoding method.  

 

Kassem and Chen (2013) provide a formulation for VRPSPD-TW. They consider a 

connected network where at each node a customer requires a certain amount of new 

products to be delivered from a central depot in the network and a certain amount of 

end-of-life products to be collected from her site and returned to the central depot. They 

develop a heuristic solution methodology to solve VRPSPD-TW. The proposed solution 

methodology consists of a sequential route construction algorithm to solve VRPSPD-

TW. The algorithm begins by selecting a seed customer to build a route from the depot 

to that seed customer and back to the depot. Then, according to insertion criteria, another 

customer is chosen to be inserted into the route. The insertion process continues until 

either all customers are included in the route and an initial solution is generated, or it is 

not feasible to insert new customers into the current route. Then a simulated-annealing-

based search process is used to improve the initial solutions. 
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Shi et al. (2020) study the VRPSPDTW with two objectives: a primary objective for 

minimizing the number of vehicles and a secondary objective for reducing the 

transportation distance. They propose  an effective learning-based two-stage algorithm, 

in which a modified variable neighborhood search is proposed to minimize the primary 

objective in the first stage and a bi-structure based tabu search is designed to optimize 

the primary and secondary objectives further in its second stage. 

 

2.5. Vehicle routing problem for perishable products 

 

Perishable goods such as food products and vegetables deteriorate during the distribution 

process. Suppliers should adopt a well-designed strategy that reduces the loss of their 

profit due to the deterioration of perishable goods. Delivery planning is quite a critical 

issue in perishable food supply chains. The mathematical models developed so far for 

food distribution usually consider the perishable nature of food products. 

  

Tarantilis and Kiranoudis (2001) develop a heterogeneous fixed fleet vehicle routing 

problem and examine tour improvement procedures for solving the fresh milk 

distribution problem. These algorithms are also characterized as local search algorithms, 

which represents the solution of the problem, by performing changes-moves, taking a 

customer from its position in one route and moving it to another position in the same 

route or different routes. Tarantilis and Kiranoudis (2002), in a later study, propose a 

multi-depot vehicle routing problem for the distribution of fresh meat.  

 

Zhang et al. (2003) show that controlling product quality throughout the supply chain 

requires a focus on both time and temperature. They consider a three-level distribution 

system with fixed plant locations, and distribution warehouses as well as retailers. In 

their study, product quality is represented as a function of time and temperature for 

production, transportation, and storage. They discuss a tabu search procedure to 

optimize the structure of cold chains by minimizing storage and transportation costs.  
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Prindezis et al. (2003) present an application service provider that would offer logistics 

for central food markets by appropriately solving the fleet management problem. This 

system automatically generates vehicle routing plans such that all customer’s demands 

are met, no constraints are violated, and a combination of vehicle costs and distance 

traveled is minimized. Smith and Sparks (2004) consider product quality as one of the 

essential food product characteristics throughout the supply chain, which degrades 

depending on the environmental conditions of storage and transportation facilities. 

 

It is difficult to define the quality models for perishable foods since food degradation 

depends on various parameters, and there exist many criteria on how to measure it. 

Perishable food deteriorates because of bacteria, light, and air; higher temperature results 

in a higher rate of spoilage. Different transportation models can be implemented in food 

supply chains. Verbic (2004) and Bogataj et al. (2005) have studies on estimating the 

quality of the perishable products and maintaining foods in high quality. These methods 

are very sophisticated and require the estimation of many parameters that are not directly 

available in the distribution process.  

 

Meat is a highly perishable food product that, unless correctly stored, processed, 

packaged, and distributed, spoils quickly and becomes hazardous due to microbial 

growth. Belenguer et al. (2005) present a computer program that has been developed to 

design the dispatching routes of a medium-sized meat company in Spain. They 

formulate the real problem as a variant of the vehicle routing problem with time 

windows. 

 

In Lutke Entrup et al. (2005) and Eksioglu and Jin (2006), and Ahuja et al. (2007), 

product quality is implicitly considered by constraining the shelf life of the product. As 

with all fresh products, yogurt has a relatively short shelf life. The manufacturer usually 

determines the shelf life of a product. The attempt to deliver the yogurt products as 

freshly as possible to the retailer has significant effects on the supply chain.  
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Lutke Entrup et al. (2005) present mixed-integer linear programming models that 

integrate shelf-life issues into production planning and scheduling in yogurt production. 

Eksioglu and Jin (2006) address a production and distribution planning problem in a 

dynamic two-stage supply chain with a perishable final product, which has a limited 

shelf life. They discuss a planning model that integrates production, inventory, and 

transportation decisions in a two-stage supply chain for perishable products. Ahuja et al. 

(2007) study a two-stage logistic network similar to Eksioglu and Jin (2006) with 

additional production and inventory capacity constraints.  

 

Privé et al. (2006) solve a VRPSPD and mixed fleet VRP arising in soft-drink 

distribution and collection of recyclable containers in a company. They use the nearest-

neighbor heuristic to generate initial solutions set and an improvement phase with three 

steps,  three-point crossover, two interchange procedures, and route merge. Naso et al. 

(2007) consider the problem of scheduling the production and distribution activities of a 

network of plants that are supplying rapidly perishing materials. They develop a genetic 

algorithm for supply chain scheduling, and they study a case study in the distribution of 

ready-mixed concrete-like cement production. 

 

Van der Vorst et al. (2007) present one of the keys for an integrative view on logistics 

and product quality for the food industry, labeled 'quality-controlled logistics' in SCM. A 

vehicle routing problem with time window for perishable food is constructed in Hsu et 

al. (2007) by considering the randomness of the perishable food delivery process. They 

assume a decrease in the value for perishable food that has to be stored at chilled 

temperatures throughout their lifetime and that the rate of deterioration is dependent on 

the temperature at any moment. 

 

Zanoni and Zavanella (2007) develop a model by considering fixed shelf-life product 

quality and present heuristic algorithms to minimize storage and transportation costs. In 

their later study, Zanoni and Zavanella (2012) provide the strategic role of energy in 

different food supply chains. The study shows how the energy effort produced in cooling 

and maintaining products plays an essential role in the food supply chain’s effectiveness 
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and sustainability. The model allows understanding the relationships between quality, 

temperature, and energy, addressing a possible approach to chain optimization. 

  

Osvald and Stirn (2008) develop a heuristic algorithm for distributing fresh vegetables 

and similar perishable food in which perishability represents a critical factor. The 

problem is formulated as a VRPTW and with time-dependent travel times. The model 

considers the impact of perishability as a part of the overall distribution costs. To 

measure the decrease in the value of a load of fresh vegetables, they define the quality of 

the load by extending the simple linear model proposed by Pawsey (1995) to estimate 

the decrease of fresh vegetable quality. The quality is 100% when the load can be sold 

entirely at the current market price, and the quality is 0% when the load has lost its 

commercial value. 

 

Chen et al. (2009) propose a specific design for a chain for perishable goods and present 

a nonlinear model for production scheduling and vehicle routing problem with time 

windows in which penalty should be incurred for late arrivals. Demands at retailers are 

assumed stochastic; and the quality of products decreases throughout their lifetimes with 

a fixed rate of deterioration. They assume soft time windows and the vehicle that arrives 

late incurs a penalty. The problem is studied in two cases: deterministic vehicle travel 

time and stochastic vehicle travel time. Traveling costs depend on the distance traveled, 

and inventory costs depend on a time-dependent deterioration function for perishable 

food. 

 

Ahumada and Villalobos (2009), Akkerman et al. (2010), and Karaesmen et al. (2011) 

present comprehensive reviews of quantitative models on food distribution management. 

Akkerman et al. (2010) focus on three aspects of food distribution: food quality, food 

safety, and sustainability in three decision levels, including strategic network design, 

tactical network planning, and operational transportation planning.   

 

It is clear from the literature review that incorporating the perishability factor explicitly 

in the formulations seems to be of great advantage since the customers’ point of view in 
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terms of service is also taken into account. In many countries, around 30% of food 

products are wasted throughout the supply chain (Chapman, 2010), even though a large 

part of this waste occurs at the final consumer and retailers. The determination of shelf 

life as a function of variable environmental conditions has been the focus of many 

research activities in this field, and a considerable number of reliable models have been 

developed. These models consider the knowledge about microbial growth in decaying 

food products under different temperature and humidity conditions.  

 

Ahumada and Villalobos (2011) present an integrated planning model for the production 

and distribution of fresh products, and they consider the distribution of the crop. The 

model considers the perishability of the crops in two different ways, as a loss function in 

its objective function and as a constraint for the storage of products.  

 

Rong et al. (2011) develop linear and exponential product quality degradation models in 

single-product production and distribution planning models based on mixed-integer 

linear programming. They design a multi-period modeling approach for presenting the 

dynamics of the decay. Their distribution model uses the predictive microbiology 

knowledge in forecasting shelf-life based on the temperature of transportation and 

stocking.  

 

Yan et al. (2011) consider an integrated production-distribution model for a deteriorating 

item in a two-echelon supply chain. Their results indicate that when the deterioration 

rate goes up, the production lot size and the corresponding cycle time are reduced to 

benefit the entire supply chain. Their objective is to minimize the total system cost while 

some restrictions relating to perishability are imposed.  

 

Amorim et al. (2011) propose an integrated production and distribution planning model 

for perishable products. Amorim et al. (2012) propose an integrated production and 

distribution planning through a multi-objective framework. In the first objective total 

costs are minimized, namely: production costs, transportation costs, and spoilage costs. 

In the second objective, the mean fractional remaining shelf life of products to be 
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delivered is maximized. They formulate models for the case where perishable products 

have a fixed and a loose shelf life (i.e., with and without a best before date). Their results 

show that the economic benefits derived from using an integrated approach are 

dependent on the freshness level of products delivered.  

 

Amorim et al. (2013) provide a review that classifies production and distribution 

planning models dealing with products subject to physical deterioration. Throughout the 

review, they point out a specific approach that perishability may enforce in such models 

and how mathematical modeling techniques can address a wide range of different 

perishability forms.  

 

Amorim and Almada-Lobo (2014) study a multi-objective model that includes a 

distribution cost minimization function and freshness state of the delivered products as 

maximization objective function. As soon as the vehicle departs from the depot, all 

products that are carried are at their maximum freshness. Their formulation and notation 

are based on the VRPTW formulation proposed in Cordeau et al. (2001b). 
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CHAPTER 3 

 

 

 

 

PROBLEM DEFINITION AND MATHEMATICAL FORMULATION 

 

 

 

  

In this chapter, we define our problem for the distribution of perishable food and picking 

up the out-of-date (spoilt) food within the time windows of customers, then formulate it 

as a mixed-integer linear programming model. Specifically, we deal with a type of 

vehicle routing problem (VRP) with soft time windows to consider the perishable nature 

of the products delivered. We aim at finding an optimal set of vehicle routes for a 

particular fleet of vehicles that serve a given set of customers with known delivery and 

pickup demands so as to minimize total transportation, time window violation, and 

quality-related costs.  

 

Consider a fleet of identical vehicles, each with capacity Q. The classic vehicle routing 

problem (VRP) is a combinatorial optimization problem that results in proposing a set of 

routes, each of which includes a set of edges, several vehicles departing from the depot 

serving a series of customers at the vertices, and returning back to the same depot. 

 

Each customer should be visited only once in the route, and the demand of a customer 

should not exceed the vehicle capacity. Some formulations for VRP consider a start at 

depot 0 and end at depot    . If each vehicle should come back to the start depot, then  

     . Each customer has a demand that needs to be satisfied for a specific product. 

The VRP deals with satisfying a set of customers’ demands by a set of vehicles 

departing from the depot. The objective of the problem is to find a set of routes that 

satisfy all customers’ demands and minimize the total distance traveled or traveling cost.  
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Since the freshness of the food products is essential, retailers are very demanding for the 

on-time delivery of the food products. Moreover, each retailer has its desired time 

window for receiving the products according to operational requirements, traffic 

conditions, or government regulations. As we defined before, such time windows turn 

out to be additional constraints for VRP. The vehicle routing problem with time 

windows is an extension of the VRP. The VRP with time window constraints is referred 

to as the vehicle routing problem with time windows (VRPTW).  

 

The transportation of waste or spoilt products and end-of-life (EOL) products are part of 

Green Logistics. Many distribution planning problems, such as vehicle routing problems 

with pickup and delivery, consider these reverse logistics to avoid any damage to the 

environment through recycling, remanufacturing, reusing products and materials, and 

even upcycling.  

 

Collecting spoilt and end-of-life products from customers may be in different ways in 

vehicle routing. One of the applicable versions is the vehicle routing problem with 

simultaneous pickup and delivery (VRPSPD), in which a customer is visited only once, 

and deliveries and pickups are simultaneous. Researchers focus more on the 

applicability of VRPSPD in industries and society by considering time windows, 

multiple vehicles, and multiple depots since companies should make strategic and 

operational decisions to optimize and efficiently manage their logistics systems. 

However, we acknowledge that, for food products, supply chains are organized 

differently in such a way that they are likely to be shorter because of perishability, so the 

quality level of products upon arrival at the customer is crucial and should not be 

overlooked in the design of food supply chains. 

 

The general constraints for a classic VRPSPD are as follows: 

 Each route begins and terminates at a central depot. 

 Each customer is visited exactly once by one vehicle only. 

 Every vehicle in each route transports the delivery demands from the depot to the 

customers assigned. 
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 Every vehicle in each route transports the pickup demands from its assigned 

customers to the central depot. 

 The capacity of vehicles should not be exceeded. 

 

We study an extended formulation of the VRPSPD, which has soft time windows for the 

customers and is related to the distribution of perishable products (VRPSPD-STW-P). 

We have a brief overview of the VRPSPD-STW-P and its general formulation in the 

following sections.  

 

3.1. The VRPSPD-STW-P  

 

The mathematical formulation for the VRPSPD is first introduced by Min (1989). The 

goal of the VRPSPD is to find the number of vehicles needed to serve all customers, an 

optimal set of vehicle routes for the vehicles of the fleet, which need to serve a given set 

of customers so as to minimize total transportation and vehicle-related costs, penalty 

costs for late arrivals, and loss-of-quality cost during storage and transportation.  

 

Our VRPSPD-STW-P solution consists of routes such that: 

 

 Each route starts and terminates at a single central depot. 

 A route length should not exceed a specified length (either in distance or traveling 

time). 

 A single product or an aggregated product is delivered with a shelf life and therefore 

deteriorates as time passes by. 

 The number of vehicles allowed for use is sufficient to guarantee a feasible solution. 

 A vehicle completes only one route from the depot to its assigned customers and back 

to the depot. 

 The vehicles in the fleet are homogeneous. 

 Each customer is visited exactly once by one vehicle only for both pickup and 

delivery. 
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 Each customer should receive her ordered products within the appointed time 

window with its preferred quality level.  

 Both the demands to be delivered and the quantities to be picked up are known in 

advance. 

 Every vehicle in each route transports the delivery demands from the depot to the 

customers assigned to it as defined by its route. 

 Every vehicle in each route transports the pickup demands from its customers back to 

the central depot. 

 Each customer’s pickup quantity should be picked up immediately after its demand is 

delivered; hence delivery and pickup at a customer are simultaneous. 

 The vehicle spends a specific service time, including unloading of the product 

delivered and picking up the end-of-life product at each customer on its route. 

 The capacity of a vehicle should not be violated. 

 

In the remainder of this section, we give a brief background on time windows, linear 

quality degradation of food products and acceptable quality level for customers. 

 

3.1.1. Hard and soft time windows 

 

Every customer has a specified time zone for receiving the product due to her 

operational requirements, quality concerns, traffic conditions, and governmental rules 

and regulations. Such time zones are called time windows and form the additional 

constraints for any VRP.  

 

We study VRPSPD-TW with time windows by considering the characteristics of 

perishable food delivery. Since the freshness of food products is essential, customers are 

assumed to be very sensitive for the delivery time of the products. Delivery failure is 

defined as the condition when the customer does not receive the ordered products within 

the appointed time window with her preferred quality level.  
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In practice, the severity of time windows can vary depending on customer requirements. 

In the extreme case, the vehicle must arrive exactly within the time window, and 

vehicles that violate this requirement are rejected ('hard' time window constraints). On 

the other hand, in some cases, violation of the time window is acceptable to some extent, 

but a penalty is applied for violating the time window ('soft' time window constraints).  

 

We study soft time windows in our problem. In this soft time window case, early arrival 

is allowed at no cost, while late arrival incurs a penalty cost. Assume [     ] represents 

the time window of customer  , and    and    are the beginning and the end of the 

specified delivery time imposed by the ith customer. If a vehicle arrives at the customer 

before time   , it must wait up to time    until starting its service,  which is allowed at 

no cost. On the other hand, if it arrives after   , a lateness penalty cost is incurred for 

each unit time of lateness. 

 

3.1.2. Quality loss for perishable products  

 

It is usually difficult to define the quality models for perishable foods since food 

degradation depends on various parameters, and there are several measures for quality 

assessment. The value or quality of perishable food products decreases rapidly once 

produced and keeps decaying while being delivered. The revenue of the food supplier 

depends on the condition of the products when the customers receive them. Thus, timely 

production and delivery of perishable foods significantly affect the supplier's revenue.  

 

We present a study of the parameters affecting the preservation of perishable products in 

order to keep them at the required level of quality and quantity for the final delivery. 

Most of the methods are very complex and require the estimation of many parameters, 

which may not be available in the distribution process. 

 

We assume that any perishable product has a limited shelf life under the defined 

conditions. We can use an absolute or a logarithmic quality measure so that the resulting 

quality level degrades linearly over time. It means that the quality degradation is 
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associated with the sum of storage and transportation times. Therefore, we use the 

simple linear model proposed by Pawsey (1995) to estimate the degradation in the 

quality of fresh food product. 

 

Perishability concerning time can be formulated as follows:  

 

The point t=0 represents the highest quality level (freshest) of the products.  In this case, 

we assume the perishability starts at t=0. The first stage is the time from t=0 until the 

departure time from the depot, that is the waiting time in the depot before departure. 

 

The second stage includes the transportation time from the depot to the customer. Time 

window constraints are said to be soft because the start and end times of the time 

window are somehow relaxed. The vehicle is allowed to wait in the case of early arrival 

at the customer node. Then, we have the third stage, which is the quality reduction from 

the arrival time at the customer node until the start time of the time window, ai. 

 

We define the variables for quality levels of products and denote them by q for the time 

interval from t=0 up to the starting time of service at the customer site to reflect the 

perishability effects over time. These q variables have a direct relationship with both the 

shelf life of product as a time parameter and the time at which service is started at the 

customer.  

 

Thus, by minimizing the loss of quality for the products delivered, it is tried to deliver 

products at their maximum possible quality. A loss of quality of 20% for example, can 

be related to either a vehicle load where 20% of transported products is entirely 

damaged, and 80% of them is in perfect condition, or all product transported were 

evenly damaged, so they could be sold only at 80% of their original price. In this study, 

we consider the latter assumption that the whole transported products are evenly 

damaged so that they could be sold only at q % of their original price. 
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We estimate the linear dependency of quality on time. The loss of quality represents an 

additional cost for the sellers (the complete chain from depot to customers in the 

distribution process) because some portion of the products cannot be sold in the market, 

or it can be sold but at a lower price due to loss of quality.  

 

The deterioration of quality over time depends on the storage conditions, type of 

products transported, traveling time, and service start time at the customer. Assuming 

proper storage conditions during travel time, we consider loss of quality by means of the 

reduced revenue in the objective function. 

 

The quality level function is assumed to vary between 0% and 100%, where 100% 

corresponds to the maximum possible quality, at  t=0. The quality level of the perishable 

products decreases as time goes on, no matter whether they are kept in storage or 

delivered to customers.  

 

Each customer i has her own minimum preferred quality level denoted by    , and the 

maximum preferred quality level denoted by    , which is actually 100%.      is based 

on the quality level imposed by customers based on the average of the maximum and 

minimum times for delivery of the product to customer i.  

 

It should also be noted that it is unnecessary to put any limit on the maximum preferred 

quality level because higher     gives more satisfaction to the customers. 

 

In the next section, we formulate this vehicle routing problem for simultaneous pickup 

and delivery of perishable products with soft time windows (VRPSPD-STW-P). We first 

discuss the assumptions underlying this variant of VRP from the basic VRPSPD-TW. 
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3.2. MILP model for VRPSPD-STW-P 

 

We develop a mixed-integer linear programming (MILP) model to formulate the 

VRPSPD-STW-P. We present our model, VRPSPD-STW-P, with mainly four 

extensions of the VRPSPD-TW formulation: 

 

1. Relaxation of the hard time window to the soft time window by enlarging the hard 

time window 

 

2. Restriction on the number of available vehicles in the depot and allowance for rented 

vehicles at the depot 

 

3. Perishability of the product starts from t=0, and goes on during storage time and 

travel time until starting service at the customer. In the case of early arrival, there is a 

waiting time until the beginning of the preferred delivery time (beginning of the time 

window). However, in the case of late arrival, the time at which the vehicle starts 

servicing the customer and arrival time at the customer is the same. All in all, we 

assume the perishability of food starts at t=0.  Then quality degrades in the depot 

before departure (unless the departure time from the depot is t=0) until the start of 

service at the customer. 

 

4. Range of the quality level  

 

Sets: 

Let G = ( ́, A) be a directed graph where  ́    * + is a vertex set with   

*       + and   {(   )      ́} is an arc set. K is a set of identical fixed capacity 

vehicles with K={1,2,…,m} that are initially located at the depot represented by the 

vertex 0, and all vehicles are available to deliver products through a set of routes (arcs) 

to a set of customers (vertices).  
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Indices: 
 

    vehicles,   *       + 

       vertices (nodes),  ́    * +  and    *       +,  | ́|               ́  

(   )   arcs 

 

Parameters: 
 

    vehicle capacity 

     service time at customer    

       travel distance from customer   to customer   

     travel time from customer   to customer   

      start of time window for arriving at customer     

    end of time window for arriving at customer    

      earliest acceptable time for early arrival at customer i    

      latest acceptable time for late arrival at customer i    

    demand quantity of customer   

    pickup quantity of customer   

   selling price of one-unit food product at the depot 

   transportation cost per unit distance travelled by an owned/rented vehicle  

    lateness penalty cost per vehicle per unit of time 

     shelf-life of perishable food product   

   maximum length of each route  

      lowest quality level acceptable by customer i 

     fixed cost for a vehicle available at the depot 

    fixed cost for a rented vehicle 

    number of vehicles owned and available at the depot 

    number of  rented vehicles at the depot 

 : minimal number of vehicles to ensure a feasible solution 

 : sufficiently large positive number 
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Decision Variables: 
 

      equals 1 if arc (   ) is traveled by vehicle k, 0 otherwise 

     time when vehicle k starts servicing customer   

      load of vehicle k when vehicle k departs from customer   toward customer j  

  : final quality level of the product when service starts at customer i 

  

3.2.1. Objective function 

 

The objective function consists of the following cost components: 

  

 Variable transportation cost  

 Fixed vehicle cost for both the owned and rented ones 

 Penalty cost for late arrivals at customers 

 Loss-of-quality cost during storage and transportation from t=0 until starting service 

at customers. 

 

In the following subsections, we describe each cost element of the objective function. 

 

 The variable transportation cost 

 

The total variable transportation cost,     , is formulated as 

 

      ∑∑∑         

      ́
   

   ́

 

 

 The fixed vehicle cost  

 

The number of vehicles required in the model is a parameter that is determined in 

advance by trial-and-error until the minimal number of vehicles to obtain a feasible 

solution is found out. The reduction in the number of vehicles may contribute to 

reducing the total costs, which is quite simple; but it may not meet the requirements of 
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time window, quality, and route length. Thus, we try to obtain the minimum number of 

vehicles that satisfy all constraints, hence yields a feasible solution.  

 

The variable   is the total number of vehicles required to guarantee a feasible solution: 

the sum of owned and rented vehicles. The minimum number of vehicles under this 

condition should satisfy the constraint below as follows: 

∑∑      ∑∑      

 

   

 

   

 

 

   

 

   

 

 

This constraint guarantees that the number of vehicles departing from the depot must be 

less than or equal to the total number of vehicles available (owned and rented) at the 

depot for attaining a feasible solution.    

  

The number of owned vehicles in the depot is known and denoted by   . If the number 

of vehicles required to obtain a feasible solution is more than   , then some additional 

vehicles,   , should be rented. Then         .  

  

The total fixed vehicle cost,    , with a condition on the available number of vehicles is 

formulated as: 

 

          *    ∑∑     

 

   

 

   

+     (∑∑        

 

   

 

   

)

 

 

where,  

 (∑∑        

 

   

 

   

)

 

     {   ∑∑        

 

   

 

   

}  

 

   and    are the fixed costs of using one vehicle available at the depot and renting one 

vehicle, respectively, such that      . The total fixed cost of vehicles vs the number of 

vehicles used can be seen in Figure 3.1. 
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Figure 3.1. The total fixed cost of vehicles vs the number of vehicles 

 

 Penalty cost of late arrivals at customers 

 

In the case of 'soft' time windows, time window constraints can be violated, that is, they 

can be enlarged, but with a penalty cost. We use a variant of soft time windows in our 

model, such that early arrival is allowed at no cost while late arrival is allowed incurring 

a penalty cost.  

 

In the early arrival of the vehicle, the vehicle must wait until the start time of the time 

window, and there is no penalty for the early arrival. When a vehicle arrives with an 

acceptable delay outside the time window, the product can still be delivered but with a 

penalty cost.  

 

We consider the lateness cost as a penalty, in case a vehicle arrives at the customer later 

than the requested time window, due to two main reasons: some customers may be lost 

because the product is not available in the market, and some customers may refuse to 

buy the product due to the reduced shelf life. Then, some part of the demand cannot be 

met (lost sales), or met but not at the best market price. 

 

Fixed cost of vehicles 

   

   

Number of vehicles 
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Let the time range [     ] represent the preferred time window of customer  , and    and 

   be the start and end of the preferred delivery time window as imposed by the ith 

customer. Furthermore, let    and    denote respectively the earliest acceptable time for 

early arrival and the latest acceptable time for late arrival at customer i such that        

and       . Therefore, the acceptable time ranges for early and late arrivals are within 

[      ] and [      ], respectively. A vehicle is allowed to arrive at customer i only after 

time    and before   , but allowed to start service after    and before   . The vehicle is 

rejected when it arrives earlier than    or later than   . When a vehicle arrives within the 

time ranges [      ] no penalty is incurred. When the vehicle arrives after    but before 

  , a penalty that is related to the lateness time is considered as the revenue loss. 

 

Let    be the lateness penalty per vehicle per unit time, and the relationship between 

penalty costs and arrival time be given by a cost function denoted by     . When 

vehicle k arrives at customer i in [     ] and [     ] ranges, the arrival time and starting 

service time (   ) are the same; when vehicle k arrives at customer i in the [     ] range, 

a penalty of lateness arises after   , that can be estimated as:    (      ). 

 

When vehicle k arrives at customer i in [      ], no penalty is incurred for earliness, but 

the arrival and starting service times are different, in which case,     is the beginning of 

time window as imposed by customer i (      ).  The relationship between penalty 

costs and     at customer i is illustrated in Figure 3.2. 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  The relationship between penalty costs and     at customer i 
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We consider the penalty cost for violating the time window specified by customer i as 

the revenue lost due to the late arrival time of the vehicle. The total cost for late arrival 

     can be written as: 

 

      ∑ ∑      (      )
  

   
       

   

 ∑∑∑     (          )
 

      ́
   

   

  

 

where  

(          )
       *        +  

 

       (      )
       *        +, 

 

 

         *      +           (      )                                  

                                                                                                     and 
 

 

  ∑    

 

   
    

         ∑         

 

   
    

                        

 

The time window constraint for     guarantees that when arrival time is outside the time 

range [      ], customer i refuses to receive the product. Thus, the formulation avoids an 

arrival time earlier than    or later than   . Besides, when vehicle k arrives within the 

time range [      ], the terms, (          )
  and (      )

 , guarantee that      

turns out to be zero. Also, when vehicle k arrives within the time range [      ], a very 

high cost   on (          )
  guarantees that     has value equaling   . 

  

 Loss-of-quality cost 

 

We assume t=0 represents the time of the best condition (freshest) of product quality that 

diminishes during three stages. The first stage lasts from time t=0 to departure time from 

the depot, while the second stage lasts from vehicle departure time until arrival time at 

customer. Time window constraints are soft; therefore, the third stage quality reduction 



51 

 

is from arrival time at the customer to the start of the time window in the early arrival of 

the vehicle. In the ―arrival after   ‖ case, the arrival time and starting service times are 

the same and customer does not experience the third stage. The quality loss in all three 

stages is defined as ―1 minus the ratio of remaining shelf life to the shelf life‖ as: 

  ( 
        *      + 

  
 )                    

 

where     is the time at which vehicle k starts servicing customer  , and    denotes the 

shelf life. As discussed before, in the case of early arrival, when the vehicle arrives 

before    but after   , the delivery (starting service) time and arrival time for customer i 

are different. The earliest acceptable delivery time for customer i is   ; so the vehicle 

must wait until time    and service starting time of customer i is   . The starting service 

time is      that should be equal to   . Hence,   (          )
  in the objective 

function guarantees that     equals   . In the case of late arrival, when the vehicle 

arrives after    but before   , the resulting lateness affects both quality level and revenue. 

In this case, the servicing time for customer i is     , because, in the interval later than    

and earlier than   , delivery is done as soon as the vehicle arrives at the customer. Figure 

3.3 illustrates the quality loss over time, starting at t=0 at the 100% quality level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Quality loss of the product over time 
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The loss of quality level corresponds to a loss of revenue. The probability that perishable 

food can be sold, which is defined by the quality level, depends on the time between 

service delivery time and expiration date (remaining lifetime of the product).  

 

Thus, the total quality loss cost,    ,  is expressed as: 

 

    ∑(  
        *      + 

  
)      

   

 

 

Defining  
        *      + 

  
  as a variable    that denotes the quality level upon delivery at 

customer i, the expression for     above can be revised as: 

 

    ∑(    )     

   

  

 

               
        *      + 

  
                          

 

 

Then, the objective function,   , can be stated as the sum of the four cost elements 

discussed above:  

 

                     

In the remainder of this chapter we present the mathematical formulations for the 

VRPSPD-STW-P. 

 

3.2.2. Nonlinear formulation for VRPSPD-STW-P 

 

We first discuss the non-linear formulation of the model for VRPSPD-STW-P and then 

linearize the model in section 3.2.3. 
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Subject to:                                      
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It should be noted that, in the model formulation (1)-(14) above, the nonlinearities are 

with the objective function (1) and the constraints (10) and (12). 

 

3.2.3. Linear formulation for VRPSPD-STW-P  

 

In this section, we introduce new decision variables in the VRPSPD-TW-P model and 

transform the nonlinear model to a linear one.  

 

Let, 

 

    number of owned vehicles that are used, 
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       {    ∑∑     

 

   

 

   

} 

 

    number of rented vehicles, 
 

   (∑∑        

 

   

 

   

)

 

 

 

      earliness, that is the waiting time of vehicle k until the start of time window,      
 

  

     (          )
   

 

      lateness of vehicle k at customer i, 

 

     (      )
  

 

 

      service starting time of vehicle k at customer i, 

 

 

         (      ) 
 

By using these new variables defined above, the quality level of the product at customer 

i can then be expressed as follows: 

 

   
        

  
    

 

Therefore, a linear model can be formulated, (1)-(21) as follows: 

 

                              ∑∑∑       
      ́

   
   ́

            

 

 ∑(    )         ∑∑       

      

     ∑∑       

      

                  ( )

   

  

 

Subject to:                                      
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     *   +                                                                  

                                                                                                  (14) 
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                                                                                                                                             (  ) 

 

∑∑      

 

   

 

   

                                                                                                                    (  ) 

 
                                                                (21) 

 

It is assumed that at t=0 all products are in their best quality level; that is     . The 

start and end times of the time window for the depot, and also the earliest and latest 

acceptable times for the depot are equal to zero; that is              . As a 

result, we have: 

                . 

 

The objective function (1) aims to minimize the total costs, consisting of five cost 

elements: transportation cost, fixed costs for the vehicles, penalty cost for late arrivals at 
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customers. The last term (6th term) in the objective function is a very large cost term just 

to urge the service starting times to be at the starting times of the time windows if the 

vehicles arrive earlier than the time window. The quality cost function includes the loss-

of-quality cost resulting from the storage time from t=0 until departure from the depot, 

travel time from the depot to the customer service time, and penalty cost for the lateness 

in late arrival cases.  

 

Constraint sets (2) and (3) guarantee that each customer is visited exactly once by only 

one vehicle. Constraint set (4) states that every vehicle that arrives at a customer must 

leave the customer, and thus conservation of flow is satisfied. Besides, constraint set (4) 

means that all the vehicles start from the depot and terminate at the depot. 

 

Constraint set (5) explains that each vehicle is used to serve at most one route and 

guarantees that the number of vehicles departing from the depot must be less than or 

equal to the total number of vehicles allowed. As a result, we have  

 

∑∑      ∑∑      

 

   

 

   

 

 

   

 

   

                 

 

Constraint set (6) guarantees that the total length of each route is limited by L. 

Constraint set (7) is the capacity constraint of each vehicle, enforcing that, if vehicle k is 

serving customer j after serving customer i (      ), the corresponding load (    ) 

must be less than or equal to the vehicle capacity (Q) after departing from customer i. 

Otherwise,        if       . A result of this constraint set is that the total of all 

customer deliveries from the depot by a vehicle is less than or equal to the specified 

capacity. It can be stated for each vehicle as follows: 

 

∑    

 

   

                                           

 

Constraint set (8) expresses that the total load of a vehicle at the departure from the 

depot must be equal to the sum of customer demands (deliveries) on its route. Constraint 
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set (9) keeps track of the load carried by a vehicle as it visits the customers on its route 

either for delivery or pickup or both. It calculates the load of the vehicle after it serves 

customer i, and departs for customer j. 

 

Constraint set (10) represents the precedence relation between two successive customers 

visited by a vehicle in terms of time. 

 

This constraint set defines the earliest service starting time of a customer after its 

immediate preceding customer on the route. If vehicle k serves customer j after customer 

i (      ), starting service time for customer j must be greater than or equal to the sum 

of the service starting time for customer i, that is,    (      ) in soft time window 

case, the service time at customer i, and transportation time from customer i to customer 

j. 

 

Otherwise, there is no relationship between the two service starting times of the two 

customers i and j  (      ), and the constraint turns out to be redundant. Also, this 

constraint set guarantees the elimination of sub tours for a vehicle  because it implies 

that the arrival time at a succeeding customer must be higher than the arrival time at the 

immediate past customer on the route that is not possible for all nodes in a sub tour.  

   

Customers want their products to be available within a soft time window, and they need 

a specific time to be served. Constraint set (11) specifies the time window for arrival 

time and guarantees that, for     beyond time range [      ], customer j refuses to receive 

the product, in which case it enforces       and customer j is not visited by vehicle k. 

 

A lower bound is assumed for the quality level of the product upon delivery to the 

customer. In practice, customers prefer to receive their products at their highest quality 

level as long as it is possible, and they refuse products with a quality level under a 

specified limit. Hence the minimum preferred quality level of the customer is the lower 

bound on quality. If     is the lower bound of quality level imposed by customer i, then 

customer i refuses to receive a product with a quality level in the range [     ].  
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Constraint set (12) is the quality level expression when a customer receives the product.  

 

Constraint set (13) presents lower bounds for the preferred quality levels specified by the 

customers. Constraint sets (14) express the domain of the decision.  

 

Constraint sets (15) and (16) enforce to select            *      +  Constraint set (17) 

forces the service starting time at customer i to be at the time window starting time   , if 

the vehicle arrives earlier. Constraint set (18) guarantees to select: 

 

        (          ). 

 

Constraint sets (19) and (20) guarantee that the model selects 

 

       {    ∑∑     

 

   

 

   

}             {   ∑∑        

 

   

 

   

}   

 

in the feasible solutions. In other words, when the fleet of owned vehicles turns out to be 

insufficient, some vehicles can be rented. 

 

Constraint sets (21) express the domain of the new decision variables for transforming 

the nonlinear model to a linear one. 

 

In this chapter, we had an overview of the construction of the MILP for the VRPSPD-

STW-P. We construct a type of routing problem to obtain optimal or near-optimal 

delivery routes, loads to be carried, and fleet dispatching and departure times from a 

central depot for delivering perishable food to customers at the highest possible quality. 

The proposed model is a MILP model representing a highly extended version of VRP, 

which is known to be NP-hard. 
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Since the VRPSPD-STW-P is an NP-hard problem that is to be solved at the operational 

level, we need to search for some heuristic approaches that provide the decision maker 

with optimal or near-optimal solutions in reasonable computational times. 

 

In the next chapter, we present the solution methodology for our problem. We provide 

an exact solution approach and three heuristic approaches with an embedded 

metaheuristic algorithm to solve the VRPSPD-STW-P. We introduce the use of CPLEX 

optimization software as an exact solution tool, and we look for the details of the 

heuristic algorithms to obtain satisfactory solutions for this problem.  
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CHAPTER 4 

 

 

 

 

SOLUTION METHODOLOGY 

 

 

 

 

 

It is apprehensible that obtaining an optimal or near-optimal solution for the distribution 

process of perishable food products, where time is the most important factor, 

recommends the use of algorithms that can find good solutions in reasonable 

computational time. 

 

In this chapter, we propose the exact solution approach and heuristic algorithms to solve 

the VRPSPD-STW-P. The VRPSPD-STW-P is a special case of the classical VRP. 

Since, in itself, the classical VRP is NP-hard and has high complexity (Lenstra and 

Rinnooy Kan, 1981), so that for practical purposes, heuristic approaches and the 

methods based on various metaheuristics have been widely used in solving VRP and its 

extensions.  

  

We employ a clustering approach for decomposing the VRPSPD-STW-P into m 

traveling salesman problem since solving these reduced-size problems is more 

straightforward than the main problem. Furthermore, we develop a genetic algorithm 

(GA) as a metaheuristic approach for improving the initial solution. We introduce three 

routing heuristics to generate solutions, obtain an initial solution for each cluster, and 

improve the initial solutions by the genetic algorithm. Our approach focuses on capacity 

and tour length constraints violation in the TSPSPD and time-window and quality 

constraints violation in the TSPSPD-STW-P for obtaining a solution to the original 

problem, VRPSPD-STW-P. 

 

 

 



64 

 

4.1. Exact solution approach 

 

We adopt the strategy of using version 12.7.0.0 of IBM ILOG CPLEX Optimization 

Studio to run each of the test problems corresponding to the VRPSPD-STW-P linear 

formulation discussed in Chapter 3. The proposed algorithm by CPLEX is a branch-and-

bound method.   

 

4.2. Heuristic solution approach 

 

In this section, we  present a method with mainly two phases in succession for obtaining 

initial solutions for the problem and then improving the initial solutions. Considering the 

VRPSPD-STW-P as an mTSPSPD-STW-P, we obtain a solution for each TSPSPD-

STW-P as follows: (i) randomly generating a giant tour of all nodes in the network,  

clustering the giant tour to m groups (routes) for generating m solutions of the 

mTSPSPD-STW-P, (ii) routing each cluster by three different routing heuristics and (iii) 

checking the feasibility of the m routes for obtaining the initial feasible solutions.  

 

Thus, in the first phase, we obtain initial feasible solutions that constitute the initial gene 

pool of the genetic algorithm of the second phase. In the second phase, we adopt a 

genetic algorithm (GA) for improving the initial feasible solutions and determining the 

best minimum solution. A basic GA starts with a population of candidate solutions that 

are generated in the first phase.  In both phases, the feasibility of the constructed routes 

is checked in three steps.  

 

The two phases of the solution approach to obtain a feasible solution for the VRPSPD-

STW-P are explained below. 

 

Phase 1: Initial solution algorithm 

 

The steps of generating  are detailed initial feasible solutions for the VRPSPD-STW-P

below. 
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(i) Clustering (grouping):  

 Randomly generate a giant tour of all demand nodes in the network starting from 

and ending at the depot.  

 Cluster the giant tour in m routes. Each cluster corresponds to a route, and each 

route is a generated solution (feasible or infeasible) for the TSPSPD-STW-P. 

 

(ii) Routing:  

 Form route sets for the m clusters by using one of the three routing heuristics. 

 

(iii) Checking feasibility for each route k , k={0,1,…,m-1}: 

 Feasibility of TSPSPD for each route k: Check the feasibility in terms of distance 

and vehicle capacity constraints for route k. If it is feasible, check the quality and 

time window constraints. 

 Feasibility of TSPSPD-STW-P for route k: Check the feasibility in terms of 

quality and time window constraints for route k. If it is feasible, then it a solution 

for TSPSPD-STW-P.  

 Thus, the initial solution for the VRPSPD-STW-P is obtained by combining m 

feasible routes of mTSPSPD-STW-P.  

 

Phase 2: Improvement algorithm: Genetic algorithm (GA) 

 

 The steps of the genetic algorithm to improve the initial solution for VRPSPD-STW-P

are summarized below. 

 

(i) Clustering (grouping):  

 Generate new chromosomes by crossover and  mutation operators. Decoding 

each chromosome presents the clusters directly. 

 Each cluster corresponds to a route, and each route is a candidate solution for 

TSPSPD-STW-P. 

 

(ii) Routing:  
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 Form route sets for m clusters of the decoded chromosome, using one of the three 

routing heuristics. 

 

(iii) Checking feasibility for each route k, k={0,1,…,m-1}: 

 Feasibility of TSPSPD for each route k: Check the feasibility in terms of distance 

and vehicle capacity constraints for route k. If it is feasible, check the quality and 

time-window constraints. 

 

 Feasibility of TSPSPD-STW-P for route k: Check the feasibility in terms of 

quality and time window constraints for route k. If it is feasible, then it is a 

solution for TSPSPD-STW-P. 

  

 Thus, the GA solution for the VRPSPD-STW-P is obtained by combining m 

feasible routes of mTSPSPD-STW-P.  

 

For Step (iii), see Figure 4.1. below. 

 

It should be noted that Steps (ii) and (iii) of Phase 1 and Phase 2, namely ―routing‖ and 

―checking feasibility‖, are common for both phases of our solution methodology.  

 

In the following subsections, we discuss the steps of the two phases. Firstly, the first step 

of Phase 1, clustering, is explained. Next, the second and third steps, ―routing‖ and 

―checking feasibility‖ steps of both Phase 1 and Phase 2, are discussed. Finally, the 

genetic algorithm of Phase 2 is explained, which corresponds to the first step of Phase 2. 
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Step (iii): Feasibility checkingFigure 4.1.  
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?? 

k= k +1 

 

Route is not feasible 

 

Stop 

 

   k= m? 

Check satisfaction of time-window and quality constraints for route k 

 

 
Route 

feasible?

?? 

Route is not feasible 

 

    (first route)  

The solution for the VRPSPD-STW-P is obtained by combining m feasible routes of 

                                                mTSPSPD-STW-P 

 
  Generated solution with m 

       routes is not feasible 

 

It is a solution for TSPSPD-STW-P 

It is a solution for TSPSPD 
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4.2.1. Step 1 of Phase 1: Clustering (grouping) 

 

In the first step of the solution methodology and hence of Phase 1, to obtain initial 

feasible solutions, all nodes of the network are considered a giant tour. The initial giant 

tour is generated as a TSP tour without considering vehicle capacity, tour distance, and 

time window constraints. 

 

Then, we partition them into m clusters such that each cluster  corresponds to a route for 

a vehicle and each route to a solution (feasible/infeasible) for TSPSPD-STW-P. If all 

routes are found to be feasible, these m solutions turn out to be a feasible solution for 

VRPSPD-STW-P. This clustering approach reduces the problem to the mTSPSPD-

STW-P, i.e., forms m many smaller-sized TSPs, thus enabling the use of more 

straightforward solution procedures and obtaining a feasible solution in reasonable 

computing time for VRPSPD-STW-P. 

 

In this step, a set of randomly generated giant tours is obtained, each tour representing a 

random routing of nodes. We consider the pool size to be g; therefore, g many giant 

tours are generated, i.e., g many solutions some of which may turn out to be infeasible 

for the original problem VRPSPD-STW-P.  

 

Suppose NODES = […] is a randomly generated matrix. It is an array with n elements 

and represents the random routing sequence of nodes in the initial giant tour. The 

number of nodes in each route k, k={0,1,…,m-1}, is shown by the array ar = […], 

which has m positions, ar[0],  ar[1],…, ar[m-1], where ar[i] shows the number of nodes 

assigned to route i and are served by vehicle i.  

 

The Routek is the route k set and presents the nodes that are in route k and served by 

vehicle k in the order as stated in the set. Set Nk (k={0,1,…,m-1}) denotes the nodes in 

Routek or cluster k and | Nk | the cardinality of route k.  The vehicles, which serve the 
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corresponding nodes in the same position in the NODES set, are expressed by the 

vehicle set vehicle. 

 

Example: Suppose NODES shows the order of nodes in a giant tour that is randomly 

generated for a problem instance with n=10 nodes and m=3 vehicles (or routes).  

 

NODES={5,8,7,2,6,10,1,4,3,9} 

 

The result of dividing this giant tour into three routes (clusters) is the number of nodes in 

each route. Say, for example, ar[0]=2, ar[1]=4, and ar[2]=4 are the number of nodes 

assigned to routes 0, 1 and 2. Therefore, the number of nodes that should be visited by 

vehicles 0, 1, and 2 are 2, 4, and 4, respectively. Then, the vehicle set of the problem can 

be expressed as follows: 

 

vehicle={ 0 0 1 1 1 1 2 2 2 2 } 

 

This set presents that nodes 5 and 8 are served by vehicle 0; and nodes 7, 2, 6, and 10 by 

vehicle 1; and nodes 1, 4, 3, and 9 by vehicle 2. Then, route sets are: 

 

Route0=[ 5 8 ] 

Route1=[ 7 2 6 10 ] 

Route2=[ 1 4 3 9 ] 

 

Therefore, N0 ={5,8}, N1 ={7,2,6,10}, and N2 ={1,4,3,9 }, including the depot in each 

route,     ́       * +. As discussed above, in the route that is served by vehicle k, the 

traveling sequence of the customer nodes is determined based on the order of nodes in 

each route set. For example, the node in position 0, which is node 7, in Route1 is served 

before node in position 1, which is node 2; node in position 1, which is node 2, is served 

before node in position 2, which is node 6; node in position 2, which is node 6, is served 

before node in position 3, which is node 10. Therefore, the traveling sequence is based 

on the order of customers in Routek set.   
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The pseudocode of clustering for a generated giant tour is given in the following 

algorithm. 

 

Algorithm: Clustering 

1: Begin 

2: Generate a routing sequence of all nodes randomly, and call it as a giant tour. 

3: Divide the giant tour randomly into m routes. 

4: Set Nk  and | Nk | . 

5: End 

 

4.2.2. Step 2 of Phases 1 and 2: Routing 

 

The routing sequence of the customer nodes in route k (k={0,1,…,m-1}) that are served 

by vehicle k is defined by their order in Routek set. Routing for nodes in each cluster is 

used in both solution phases, Phase 1 and Phase 2; that is, the initial solution generation 

and the improvement phase, genetic algorithm, respectively. Once the clusters of nodes 

are formed, we use three heuristic methods for routing in each cluster. Figure 4.2 shows 

these three heuristics for routing in each cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Routing methods 

 

Random  

clustering and routing - 

Random routing 

 (RCR) 

Independent  

clustering and routing - 

Routing with closest 

neighbor (ICR-CN) 

Independent  

clustering and routing - 

Routing with time 

window (ICR-TW)  

Heuristic methods for routing Figure 4.2. 
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4.2.2.1. Random clustering and routing (RCR)  

 

In this method, the routing of nodes is the same as the randomly generated nodes set 

NODES (giant tour). Routek set represents the random routing sequence of nodes in route 

k with the same sequence as in NODES. Therefore, the clustering and routing are 

obtained by means of a random strategy. The pseudocode of this method, RCR, is 

illustrated in the following algorithm.  

 

Algorithm: Random clustering and routing (RCR) 

1: Begin 

2: Generate a routing sequence of all nodes randomly, and call it as a giant tour. 

3: Divide the giant tour randomly into m routes. 

4: Keep routing in each cluster  as the same as the order of nodes in the giant tour. 

5: Set Nk  and | Nk | . 

6: End 

  

4.2.2.2. Independent clustering and routing with the closest neighbor heuristic  

 (ICR-CN)  

 

In this method, we apply the strategy of group-first, route-second. After grouping the 

nodes in clusters, we implement the closest neighbor heuristic to obtain routing in each 

cluster. The pseudocode of the ICR-CN heuristic is given below. The     in the 

algorithm means travel distance from customer   to customer  . 

 

Algorithm: Independent clustering and routing with closest neighbor heuristic (ICR-CN)  

1:  Begin 

2: Generate a routing sequence of all nodes randomly, and call it as a giant tour. 

3: Divide the giant tour randomly into m clusters (routes). 

4: Let Nk = set of nodes in route k,  and | Nk | the cardinality of route k. 

5:  for routes k=1 to m do 
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6: Consider the depot as the beginning of route k. 

7: for nodes in positions i=1 to | Nk |  do 

8:   Find      , -. 

9: end for 

10:  Sort all nodes in cluster k in ascending order of     , -  

11:  Assign node with minimum      , - to Nk [1]. 

12: for nodes in positions i=1 to | Nk |-1  do 

13:  for nodes in positions  j=i+1 to | Nk |  do 

14:    Find      , -. 

15:  end for 

16:  Assign node with minimum      , - to Nk [i+1]. 

17:  end for 

18: Return to the depot. 

19: end for 

20: End 

 

Lines 1-3 initialize the algorithm by generating the giant tour and clustering. In line 4, 

the algorithm starts routing nodes in all m clusters based on the ICR-CN heuristic. Line 

5 enumerates the routes of the generated giant tour. In lines 6-9, the depot is denoted as 

the starting point for route k, and the distances between the depot and each node in route 

k are determined, and then in lines 10 and 11, the closest node to the depot is 

determined, which turns out to be the first traveling point from the depot. In lines 12-17, 

the nearest unvisited node to the last node added to the route is found, and the routing 

sequence of nodes in the route is determined by the closest neighbor heuristic. When all 

nodes are routed, and there remains no unvisited node in the route k, the vehicle returns 

to the depot from the last node of the route in line 18. The algorithm is repeated until all 

clusters of the giant tour are routed. 
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4.2.2.3. Independent clustering and routing with time window heuristic (ICR-TW) 

 

In this method, we apply the strategy of group-first, route-second as in ICR-CN. After 

grouping the nodes in clusters, we implement a time window heuristic to determine the 

routing of each cluster. The pseudocode of the ICR-TW heuristic is given in the 

following algorithm. Again, it should be noted here that    and    are the earliest and 

latest acceptable arrival times at node i. 

 

Algorithm: Independent clustering and routing with time window heuristic (ICR-TW) 

1: Begin 

2: Generate a routing sequence of all nodes randomly, and call it as a giant tour. 

3: Divide the giant tour randomly into m clusters (routes). 

4: Let Nk = set of nodes in route k,  and | Nk | the cardinality of route k. 

5: for routes k=1 to m do 

6: Consider the depot as the beginning of route k. 

7:  Find the latest acceptable arrival times (     , - ) for all nodes in route k.. 

8: Sort all nodes in route k in ascending order of their      , - . 

9: for nodes in positions i=1 to | Nk |-1  do  

10:  for nodes in positions  j=i+1 to | Nk |  do 

11:   if      , - <     , -  then  

12:    Assign node in position i to Nk [i].  

13:   else if      , - =     , - and     , - -     , - <     , - -     , - then 

14:    Assign node in position i to Nk [i]. 

15: else 

16: Assign node in position j to Nk [i]. 

17: end if   

18:  end for 

19: end for 

20: Return to the depot. 

21: end for 

22: End 
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Lines 1-3 initialize the algorithm by generating the giant tour and clustering. In line 4, 

the algorithm starts routing nodes in all m clusters based on the ICR-TW heuristic. Line 

5 enumerates the routes of the generated giant tour. In lines 6-8, the depot is denoted as 

the starting point for route k, and nodes in route k are sorted by the ascending order of 

their latest acceptable arrival times. Lines 9-19 correspond to the main part of the 

heuristic method since the routing sequence of nodes in a route is determined. This main 

part of the algorithm consists of two steps: for all nodes in    , position the node in 

position i before j if    <   ; otherwise, if    =    and   –   <   –  , then position the node 

in position i before j; otherwise, position the node in position j before i. When all nodes 

are routed, and there remains no unvisited node in route k, the vehicle returns to the 

depot from the last node of the route in line 20. The algorithm is repeated until routing 

of all clusters is completed.  

 

4.2.3. Step 3 of Phases 1 and 2: Checking for feasibility  

 

After clustering, routing the clusters, and thus forming m routes, we should check for the 

feasibility of m routes under the constraints of simultaneous pickup and delivery with 

time window and quality requirements.  

 

First, the route k, k={0,1,…,m-1}, is checked for simultaneous pickup and delivery 

requirements only. So for route k, we end up with a TSPSPD. In other words, route k is a 

candidate feasible solution for TSPSPD. 

 

In the case of feasibility for route k under pickup and delivery requirements, then, it is 

checked for feasibility in terms of the time windows of the customers on the route and 

the quality requirements of the customers on the route. In this step of feasibility checks, 

we are addressing the TSPSPD-STW-P for route k. 
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If each route k of m routes turns out to be feasible, considering all m feasible routes, the 

problem addressed, then, is mTSPSPD-STW-P, the solution of which becomes a 

solution for the original problem VRPSPD-STW-P. 

 

If any one of m routes becomes infeasible, then these m routes (of the giant tour) are all 

discarded. 

 

The details of Step 3 are given in the following subsections. 

 

4.2.3.1. Obtaining solutions for TSPSPD 

 

To find out whether route k, k={0,1,…,m-1}, is a feasible solution for TSPSPD, we 

proceed as follows: 

  

Let      for k={0,1,…,m-1} denote the cost of route k, consisting of the transportation 

costs and fixed costs of the vehicle used. The TSPSPD below is solved given route k, 

considering the delivery and pickup quantities of all customers on route k. If the solution 

for TSPSPD for route k turns out to be feasible, we keep the objective function value, 

    , and go on with route k for checking feasibility in terms of the time windows and 

quality requirements of the customers on the route. 

 

As a result, for the nodes that are served by vehicle k in the kth cluster (Routek), the cost 

of each route can be obtained by the corresponding problem of each cluster. 

 

 TSPSPD model 

 

TSPSPD formulation is presented below. It should be noted here that      decision 

variables are fixed based on the order of customers served in route k. 

 

Parameters and decision variables are defined for the mathematical model of TSPSPD 

for each route as follows: 
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Parameters: 

 

    vehicle capacity 

       travel distance from customer   to customer   

    demand quantity of customer   

    pickup quantity of customer   

   transportation cost per unit distance traveled by an owned/rented vehicle  

   Maximum length of each route  

     fixed cost for a vehicle available at the depot 

    fixed cost for a rented vehicle 

    number of vehicles owned and available at the depot 

    number of  rented vehicles at the depot 

 : minimal number of vehicles for a feasible solution 

      equals 1 if arc (   ) is traveled by vehicle k, 0 otherwise 

 

Decision Variables: 

 

      load of vehicle k when vehicle k departs from customer   toward customer j  

  

The TSPSPD model is formulated below: 
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      ́

  ) 

 

                                                      ((       )
   )                                                  ( )  

                                               

Subject to:   

                                  

∑     
      ́

   

                                                                                                                            ( ) 
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The results of the feasible TSPSPD solutions (i.e., feasible routes) and summation of the 

objective function values of all m routes are returned to the main problem as a 

performance criterion for evaluating the current clustering result.  

 

Let us define the cost terms in (1) above as: 
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                                                         ∑ ∑        
      ́

   
      ́

 

 

 

 

Vehicle cost:                       ((     )
   )           ((       )

   ) 
 

 

Then, the objective function value for Routek (TSPSPD solution with route k) is defined 

as:        

     =         

 

It should be noted again here that VRPSPD is formed by mTSPSPD, and the objective 

function value of the problem for all m routes becomes: 

 

           ∑      
    

              *         +  

 

The solution for the TSPSPD formulation (1)-(10) displays whether Routek is a feasible 

route considering the simultaneous pickup and delivery requirements of the nodes on the 

route without exceeding the vehicle k capacity and route length limitation. The 

pseudocode and the steps of the solution algorithm for each route k, k={0,1,…,m-1}, are 

illustrated below. 

 

Algorithm: Solution approach for route k (TSPSPD) 

1: Begin  

2: Set     = 0,    = 0,     = 0,  = 0,  = 0, consider Nk[0] as depot. 

3: Set      , -  , -      ,     -   , - 

4: for nodes in positions i=1 to | Nk |-1  do 

5: Determine the distance between two sequential nodes (    , -   ,   -). 

6: Set           , -   ,   - 

7: end for  

8: if    ≤ L  then 

9:  for i=1 to | Nk |  do 
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10:  Determine delivery demands of all nodes (    , -). 

11:  Set          , -  

12:  end for 

13: Set      , -   , -    

14:  for  nodes in positions i=1 to | Nk |-1  do 

15:  Find load of the vehicle between two successive nodes (    , -   ,   -). 

16:  Set      , -   ,   -       ,   -   , -       , -       , - 

17:  if      , -   ,   - ≤ Q  then  

18:    Set               , -   ,   - 

19:  else 

20:   ―Route is infeasible‖, and go to 38 

21:  end if 

22:  end for 

23: Set     ,      -  , -      ,       -   ,      -      ,      -      ,      - 

24:  if    ≤ Q  and     ,      -  , - ≤ Q  then  

25:   Set            (    , -  , -     ,      -  , - ) 

26:  if  k ≤ ma  then  

27:   Set         

28:  else 

29:    Set         

30:   end if  

31:   Set                

32: else 

33:   ―Route is infeasible‖ 

34: end if 

35: else 

36:  ―Route is infeasible‖ 
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37: end if 

38: End 

 

In the pseudocode, lines 1-2 initialize the algorithm with the starting values of cost 

parameters and sets. In line 3, the sum of the distances from the depot to the first node 

and from the last node to the depot in route k is obtained. Line 4 enumerates the demand 

nodes in route k. In lines 5-7, the total distance traveled by the vehicle in route k is 

calculated. The distance traveled limitation is checked in line 8. If it is satisfied, then the 

algorithm goes on checking the feasibility of vehicle capacity in lines 9-24. Otherwise, 

the route is infeasible, and the algorithm is terminated by reporting ―Route is infeasible‖. 

Lines 9-24 find the total of all customer deliveries from the depot by vehicle k, the load 

of vehicle k in the traversed arcs on route k, and check the feasibility of capacity for the 

vehicle load on each arc. Lines 17 and 24 determine if the load of the vehicle in the 

traversed arcs of route k is less than or equal to the vehicle capacity Q, then route k is 

said to be feasible and a solution for the TSPSPD. Otherwise, the route is infeasible, and 

the algorithm is terminated by reporting ―Route is infeasible‖ and goes to line 38. The 

traveling route cost is determined in lines 18 and 25,  and the fixed vehicle cost is 

calculated in lines 26-30, and the total cost of the TSPSPD is reported in line 31. It is to 

be noted here that each feasible route k of any giant tour at this point is to be checked 

whether it is feasible in terms of soft time windows and quality restrictions, which 

means that TSPSPD-STW-P is now has to be formulated as illustrated in the following 

section.  

 

4.2.3.2. Obtaining solutions for TSPSPD-STW-P and the main problem 

 

The solution of the TSPSPD for route k, i.e., decision variables’ values, route 

information, and the objective function value (traveling and vehicle costs), are passed to 

the TSPSPD-STW-P formulation and evaluated for feasibility for the time window and 

quality limitations. 
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 TSPSPD-STW-P model 

 

Parameters and decision variables are defined for the mathematical model of the 

TSPSPD-STW-P for each route k as follows. 

 

Parameters: 

 

     service time at customer    

     travel time from customer   and customer   

      start of time window for arriving at customer     

    end of time window for arriving at customer    

      earliest acceptable time for arrival at customer i    

      latest acceptable time for arrival at customer i    

   selling price of one-unit food product at the depot 

    lateness penalty cost per vehicle per unit of time 

     shelf-life of perishable food product   

      lowest quality level acceptable by customer i 

      equals 1 if arc (   ) is traveled by vehicle k, 0 otherwise 

 

Decision Variables: 

 

     time when vehicle k starts servicing customer   

  : final quality level of the product when service starts at customer i 

 

   denotes the total cost for Routek , and it is the summation of objective function values 

resulting from TSPSPD and TSPSPD-STW-P, consisting of the transportation costs and 

fixed costs of the vehicle used in TSPSPD, and quality and time window related costs in 

TSPSPD-STW-P. 

 

The TSPSPD-STW-P for Routek is formulated as follows: 
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Let us define: 

Loss-of-quality cost as  

     ∑ (    )     

       

 

and penalty cost for time window violation (lateness) as   

 

     ∑    (      )
 

       . 

 

Then the total cost for Routek  is  

 

                   . 

 

If all m routes of the giant tour are found to be feasible at this point, then the summation 

of the objective function values obtained by all m feasible solutions in the current giant 

tour generation is the objective function value of the main problem, VRPSPD-STW-P, 

and calculated as:  
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   ∑    
    

                   *         + 

This feasible solution is stored as a satisfactory solution for the main problem and the 

algorithm then goes on with another new generation.  

 

The pseudocode of the solution algorithm for the problem for route k (TSPSPD-STW-P) 

is given below: 

 

Algorithm: Solution approach for route k (TSPSPD-STW-P)  

1: Begin  

2: Set    ,    ,   = 0,    = 0,    = 0, consider Nk[0] as depot. 

3: Set             

4: for nodes in positions i=1 to | Nk |  do 

5: Determine the service starting time (   , -). 

6:  if     , - ≤     , -  and     , -      , -  then  

7:  Determine      *    , -    , -+ 

8:  Obtain         *    , -    , -+ 

9:  Set     , -  
       *   , -

    , -
+ 

  
 

10:   if     , -       , -  then 

11:    Determine (     , -)      , - 

12:   Set           (     , -)      , - 

13:    if      , -     , -       then 

14:               (    , -     , -) 

15:   end if 

16:   Set                  

17:  else 

18:   ―Route is infeasible―, and go to 24 

19:  end if 

20: else 
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21:  ―Route is infeasible―, and go to 24 

22:  end if 

23: end for     

24: End 

 

In the pseudocode above, it should be noted that lines 1-3 initialize the algorithm with 

the starting values of cost parameters and sets. Lines 4 and 5 determine the service 

starting time for the nodes in route k. The time window constraints are checked in line 6. 

If the time window constraint is satisfied for the route under consideration, then the 

algorithm proceeds to the next step for checking the feasibility of the route for the 

minimum preferred quality level imposed by the customer at that node in lines 7-10. 

Otherwise, the route is infeasible, and the algorithm is terminated at line 24. If the route 

is found to be feasible under both time window and quality constraints, then it is a 

feasible route and a feasible solution for TSPSPD-STW-P as well. The loss-of-quality 

cost and penalty cost for late arrival are calculated in lines 11-16. The total cost of route 

k is reported in line 17 by summing the four cost elements: traveling and vehicle costs 

that were already obtained by the solution of TSPSPD, and the loss-of-quality and late 

arrival penalty costs found here in this algorithm. 

 

The pseudocode of the overall solution approach for obtaining a feasible solution for the 

main problem VRPSPD-STW-P from m subtours of a giant tour is given in the 

following algorithm. 

 

Algorithm: The overall solution approach for obtaining a feasible solution for the main 

problem  VRPSPD-STW-P 

1:Begin 

2: Apply the clustering algorithm to a generated giant tour. 

3: for routes k=1 to m do 

4: Set     = 0,    = 0,    = 0,    = 0,   = 0,   = 0, and Nk[0] as the single depot. 

5:  Perform one of the routing heuristic algorithms for route k. 

6: for nodes in positions i=1 to | Nk | do 
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7:  Implement the algorithm for the TSPSPD for route k. 

8:  if route is a feasible solution for the TSPSPD  then 

9:    Set              

10:   Implement the algorithm for the TSPSPD-STW-P for route k. 

11:    if route is a feasible solution for the TSPSPD-STW-P then 

12:     Set                  

13:    Set    =   +     

14:   else 

15:     ―Route is infeasible―. 

16:   ― The generated solution with m routes is not a feasible 

solution for the main problem, VRPSPD-STW-P‖. 

17:  go to 27 

18: end if      

19:  else 

20:    ―Route is infeasible―. 

21:  ―The generated solution with m routes is not a feasible solution for 

the main problem, VRPSPD-STW-P‖.  

22: go to 27 

23: end if 

24: end for 

25:end for 

26: ―The generated solution with m routes is a feasible solution for VRPSPD-STW-P‖ 

27: End 

 

Lines 1 and 2 perform the clustering algorithm for a generated giant tour. Line 3 

enumerates m routes in the clustered giant tour. Line 4 initializes the algorithm with 

some starting parameters and sets. The routing algorithm is performed in line 5. The 

implementation of the algorithms starts in line 6 and ends in line 27. The feasibility of 

each route of the giant tour is checked independently. In lines 7-9, each route k is 

checked to see whether it is a feasible solution for the TSPSPD. If it is found to be 
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feasible, then the route k is checked to see whether it is a feasible solution for the 

TSPSPD-STW-P in lines 10-13. If any route is infeasible, the generated solution, which 

includes m routes of the giant tour, is infeasible, and the overall algorithm is terminated; 

otherwise, the generated solution is a feasible solution for the main problem VRPSPD-

STW-P.  

 

In the next sections, we first discuss the approach for obtaining the pool of initial 

feasible solutions. Then we generate several improved solutions for the main problem 

VRPSPD-STW-P by using the solution approach discussed above in section 4.2.3 and 

the genetic algorithm discussed in section 4.4 below. 

 

4.3. Phase 1: Initial feasible solutions pool 

 

As mentioned in the solution approach section, all nodes of the problem are considered a 

giant route, which is then partitioned tour into m routes (clusters) such that each route is 

a candidate solution (feasible/infeasible) for the TSPSPD-STW-P. We check the 

feasibility of each route independently of others. The solution results of all routes 

(clusters), if each route is feasible, turn out to be the VRPSPD-STW-P solution, and the 

summation of objective functions of routes is VRPSPD-STW-P objective function value.  

 

To summarize, for checking the feasibility of the solution, each generated route is tested 

for TSPSPD solution separately; if all routes are found to be feasible, they are checked 

then for soft time window and quality constraints by the TSPSPD-STW-P algorithm. 

This feasibility check procedure is employed for all m routes separately. If all routes are 

feasible, then we obtain a feasible solution for the main problem, VRPSPD-STW-P. 

Therefore, a feasible solution of VRPSPD-STW-P is composed of m feasible solutions 

such that each of them is a feasible solution for a TSPSPD-STW-P. The feasible 

solutions, thus obtained, are kept in the pool of feasible solutions for the main problem 

VRPSPD-STW-P.  

 

Therefore, the initial population is generated based on random clustering of the giant 

tour and sequencing of customer nodes in each route using one of the routing heuristics 
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as discussed in the previous sections. The pseudocode for Phase 1 of the solution 

approach is given in the following algorithm. Letting the total number of generated 

solutions be g, then g many solutions are generated and the total number of feasible 

solutions required in Phase 1 be denoted by sample, then we need to generate initial 

feasible solutions as many as the sample. 

 

Algorithm: Phase 1: Initial feasible solutions pool 

1: Begin 

2: Set g, sample, sa= 1,  feasible= 1. 

3: while initial generation counter sa ≤ g or  feasible ≤ sample  do 

4:  Generate a routing sequence of all nodes randomly, and call it a giant tour. 

5:  Perform the clustering algorithm for the generated giant tour. 

6:  for routes k=1 to m do 

7:  Set    = 0,    = 0,    = 0,    = 0,   = 0,   = 0, consider Nk[0] as depot. 

8:   Perform one of the routing heuristic algorithms for route k. 

9:  for nodes in positions i=1 to | Nk | do 

10:   Implement the algorithm for TSPSPD of route k. 

11:   if the route is feasible then 

12:     Set              

13:  Implement the algorithm for TSPSPD-STW-P of route k. 

14:     if the route is feasible then 

15:      Set                  

16:     Set    =   +     

17:     else 

18:       ―Route is infeasible―. 

19:   ― The generated solution with m routes is 

not feasible solution for VRPSPD-STW-P‖. 

20:    go to 36. 

21:   end if      

22:    else 
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23:       ―Route is infeasible―. 

24:   ―The generated solution with m routes is not 

feasible solution for VRPSPD-STW-P‖. 

25:    go to 36. 

26:   end if 

27:  end for 

28: end for 

29: ―The generated solution with m routes is a feasible solution for the main 

problem, VRPSPD-STW-P‖. 

30: Add this solution to the initial solutions pool. 

31:  feasible=  feasible + 1. 

32:  if   feasible = sample  then 

33:  ― Required number of initial feasible solutions are in the pool‖ 

34:  go to 39.  

35: end if  

36:  sa= sa +1 

37: end while 

38: ―No feasible solutions for the required sample‖ 

39: End  

 

Lines 1 and 2 initialize the algorithm to obtain initial feasible solutions with some 

starting parameters and sets. feasible is the feasible solution counter, sample is the total 

number of initial feasible solutions requested, sa is the initial phase generation counter, 

and the maximum limit for sa is g. Line 3 indicates two stopping conditions for the 

algorithm and checks the number of generations and the number of feasible solutions 

against the required numbers of those. Generating a giant tour and clustering it as m 

routes are performed in lines 4 and 5. Line 6 enumerates the m routes in the clustered 

giant tour for checking the feasibility of each independently. Line 7 initializes the 

algorithm with the cost parameters and the nodes set. The routing algorithm is 

performed in line 8 for the route under consideration. The overall algorithm proceeds 
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from line 9-28, as it was discussed in the solution approach for obtaining a feasible 

solution of VRPSPD-STW-P. In lines 9-12, the solution for route k  is obtained for the 

problem TSPSPD, and if it is found to be feasible, the solution for route k  is obtained 

for  TSPSPD-STW-P in lines 13-16. 

 

If the generated solution is found to be feasible at the end, it is added to the initial 

solutions pool, and the algorithm checks the stopping conditions. If the generated 

solution is infeasible, it is discarded from the process, and again the algorithm checks 

the stopping conditions. The algorithm is terminated when sa=g+1 or 

feasible=sample+1. The maximum number of generations, g, is one of the stopping 

conditions for the algorithm. The other stopping criterion is the number of initial feasible 

solutions required, sample, for forming the initial pool of GA in Phase 2. When the 

algorithm cannot obtain the required number of feasible solutions among the generations 

as many as the specified number, it is reported ―No feasible solutions for the required 

sample‖. When the required number of initial feasible solutions in the pool reaches the 

sample, it is reported ―the required number of initial feasible solutions is in the pool‖ 

and the algorithm is terminated. Then the solution methodology proceeds with Phase 2 

where we develop a GA algorithm to improve the feasible solutions in the initial pool.  

 

4.4. Phase 2: Solution improvement-Genetic Algorithm 

 

The initial solutions obtained in Phase 1 of the methodology above form a pool of initial 

feasible solutions that can be improved using different approaches. In Phase 2, we 

develop a genetic algorithm (GA) for improving the initial solutions. After generating 

new solutions in chromosome forms in the pool of the GA, we employ the same 

algorithm as we do in Phase 1 in order to check whether the solution generated is a 

feasible one. The best results are compared with each other for obtaining the best 

solutions in terms of cost. 
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4.4.1. Chromosome definition 

 

In general, GA searches for better solutions by starting with the randomly generated set 

of initial feasible solutions encoded to chromosomes. The total number of feasible 

chromosomes in the genetic pool is the required number of initial feasible solutions as 

denoted by sample. In this algorithm, each chromosome has a length that is equal to the 

number of customers, and each gene in the chromosome represents a vehicle. A newly 

generated chromosome in each generation of the GA is an encoded set that represents a 

new solution for VRPSPD-STW-P when decoded.  

 

We define that Nodes is a sorted set (array) of customer nodes in the ascending order of 

their numbers, where the position of node 1 is Nodes [0], node 2 position is Nodes [1], 

and similarly the other nodes positioned, and end with node n position in Nodes [n-1]. 

Each node in Nodes set in position i is served by its corresponding vehicle in the 

chromosome set in position i. Therefore, in our encoding, every chromosome is a string 

of vehicle numbers, in which each gene contains a vehicle number and the gene position 

indicates its customer in Nodes set. 

 

To decode the chromosome set, we need to define NODES set and the vehicle set. 

NODES set includes the clustered routes, starting the sequence with the nodes of the first 

vehicle (vehicle 0), and then the second vehicle (vehicle 1), and goes on with the other 

vehicles. This NODES set alone is not sufficient to decode unless the vehicle set is 

defined with the vehicle numbers it contains. On the other hand, the vehicle set includes 

the vehicle numbers in sequence starting with 0, and going on with 1, 2, etc. Each 

vehicle number is repeated as many as the number of nodes it is serving. 

 

The vehicle set contains the vehicles that are serving their corresponding nodes in the 

NODES set. For example, the following NODES set and vehicle set are encoded as in the 

following Nodes and chromosome sets. 

NODES = {5 8 2 6 7 10 1 3 4 9} 

vehicle   = {0 0 1 1 1  1  2 2 2 2} 
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Its corresponding chromosome set is: 

Nodes           = {1 2 3 4 5 6 7 8 9 10} 

chromosome = {2 1 2 2 0 1 1 0 2  1} 

 

So, it is seen that three vehicles are to serve ten customer nodes as follows: node 1 by 

vehicle 2, node 2 by vehicle 1, node 3 by vehicle 2, and so on. 

 

4.4.2. Genetic operators 

 

As the evolution process, two genetic operators are derived to generate new 

chromosomes in each generation. This evolutionary process contains operations of 

crossover and mutation. The crossover and mutation operations are carried out by 

picking chromosomes from the pool based on their objective function costs. Some 

candidates are then mated to produce offspring by crossover, and some go through a 

mutating process. 

 

Crossover is implemented by selecting one, two or multiple random points on the 

chromosome where the parents’ gene exchange occurs. The mutation applies the 

changes randomly to one or more genes to produce a new offspring, thus generating new 

adaptive solutions to avoid local optima. Normally, the mutation operation takes place 

after the crossover; that is a matter of preference. 

 

The fitness function in the genetic algorithm is used to evaluate the performance of a 

chromosome. If the chromosome is feasible, we can evaluate its fitness by the cost 

obtained from the objective function. Hence, we define the fitness function of the GA by 

the objective function value. Fitness value for a solution with m routes is: 

FV
*
 =  * ∑        +, k={0,1,…,m-1} 

where    is the total cost of route k. 

 

In the first step for implementing genetic operators in each generation, in order to avoid 

losing the highest fitness valued chromosomes, elitism has been implemented. Elitism 
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stores some highest-scoring chromosomes of the current generation for generating the 

next generation without allowing that chromosome to be crossed over and mutated. A 

certain number of parents with the lowest costs is chosen and left in the pool with no 

change. After that, a certain number of parents with the lowest cost are picked for 

performing the well-known two-point crossover and mutation operators to generate new 

chromosomes.  

 

Crossover is applied by exchanging the genes of a pair of chromosomes. The mutation 

method is based on randomly picking some genes in the chromosome and alter gene 

values from their initial values. The order-based mutation is also adopted to produce 

heterogeneous chromosomes in the pool in order to avoid the early convergence of the 

algorithm. In the first step of using GA operators, the crossover is performed, and then 

mutation is made on the child chromosomes. 

 

In GA, mutation operators are mostly used to provide exploration, whereas crossover 

operators are mostly used to provide exploitation and converge on a good solution. 

Consequently, while crossover tries to converge to a specific point in solution space, the 

mutation does its best to avoid convergence and explore more areas.   

 

Using the crossover operator alone to produce an offspring makes the GA stuck in the 

local optima. The mutation operator is designed to help the search escape from local 

optima; that is, the mutation operator is used to generate new offspring different from 

the parents, and thus encouraging diversity in the population. We prefer to explore much 

more at the beginning of the search process to ensure population coverage and 

diversity. On the other hand, we prefer more exploitations at the search process to ensure 

the convergence of the population to the global optimum.  

 

During evolution, the crossover and mutation operations occur according to the specified  

probabilities, named as crossover probability (pc) and mutation probability (pm). The 

crossover probability gives the fraction of chromosomes actually crossed in one 

generation, i.e., the probability indicates a ratio of how many chromosomes in one 
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population are picked for mating by the crossover operation. The probability of mutation 

determines the probability that a gene is mutated in one generation. Typically mutation 

happens with a very low probability, such as 0.001 to 0.05. 

 

The probability of 100% crossover means that the newly generated population is made 

by crossover. If the probability is 0%, then the completely new generation of 

chromosomes is exactly copied from the older population. On the other hand, the 

probability of 10% mutation means that 10 randomly picked genes of all 100 genes in a 

population are changed. 

 

Consider an example of crossover, for instance, with 10 customers to be visited by three 

vehicles. Figure 4.3 shows crossover and mutation operators for this example. In this 

example, two points, say 5 and 7, are selected for crossover cut points, and the genes in 

the left-hand side of point 5 and the right-hand side of point 7 of opposite parents are 

exchanged. The mutation operation can be seen in parents 1 and 2, the 5
th

 gene of parent 

1, and the 10
th

 gene of parent 2,  which is shown in bold in Figure 4.3. The decoding of 

child chromosomes is shown in Figure 4.4. 

  

Assume pc = 0.5 and pm = 0.05; hence we expect to implement a crossover operator for 

50% of chromosomes, and approximately 5% of genes are inverted by mutation operator 

in the population. Suppose the population size is 20. The whole population is sorted 

according to the chromosome costs.  

 

For creating a new population, the elitist selection strategy is used, and we keep 10 

parents with the highest fitness value (lowest cost) with no change in the pool. These 10 

parents with minimum cost are paired up for implementing crossover, and then 10 genes 

on the child chromosomes, which are generated by crossover, are mutated randomly for 

generating a new population. Therefore, there are 200 genes in the population, and 10 

genes out of 200 are mutated. 
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Parent 1      

 

       
 

 

 

Parent 2 

 

            Child 1 

 

Child  2 

  

 

 

Nodes 1 

     

NODES for child 1         

 

Nodes 2 

 

NODES for child 2 

 

 

 

Results of crossover and mutation on two chromosomes are as follows: 

 

Parent 1:     Parent 2: 

N0 =Route0=[2 4 5]     N0 =Route0=[ 2 9 10 ] 

N1 =Route1=[ 1 7 8 9]    N1 =Route1=[ 3 4 5 7 8 ] 

N2 =Route2=[ 3 6 10]    N2 =Route2=[ 1 6 ] 

 

Child 1:     Child 2: 

N0 =Route0=[ 2 9 10 ]    N0 =Route0=[ 2 4 ] 

N1=Route1=[ 3 4 7 8 ]    N1 =Route1=[ 1 5 7 8 9 10 ] 

N2 =Route2=[ 1 5 6 ]    N2 =Route2=[ 3 6 ] 

1 0 2 0 0 2 1 1 1 2 

2 0 1 1 1 2 1 1 0 0 

2 0 1 1 2 2 1 1 0 0 

1 0 2 0 1 2 1 1 1 1 

1 2 3 4 5 6 7 8 9 10 

2 9 10 3 4 7 8 1 5 6 

1 2 3 4 5 6 7 8 9 10 

2 4 1 5 7 8 9 10 3 6 

crossover and mutation Figure 4.3. An example for 

operators 

decoding of child chromosomes Figure 4.4. An example for 
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After decoding the chromosome and determining Routek sets, the algorithms for 

checking the chromosome’s feasibility are implemented, starting with the routing of 

nodes in each route. 

  

The objective function value of each chromosome (solution) is obtained using the 

solution approach discussed in section 4.2.3 and used to obtain initial solutions. Among 

the feasible chromosomes, the one with the minimum objective function value is saved 

as the solution of the current generation. After that, the generation counter (generation) 

is increased by one unit. If the generation counter is equal to gen+1, the algorithm 

terminates; otherwise, a new pool of chromosomes is generated through a guided 

evolution. 

  

The pseudocode and detailed steps of the GA to solve the main problem (with the 

maximum number of genetic generation gen, generation counter generation, 

generation={1,…, gen}, and chromosome counter sa, sa={1,…, sample}) are illustrated 

in the following algorithm. 

 

Algorithm: Phase 2: Solution improvement-Genetic algorithm 

1: Begin 

2: Set gen, sample, pc, pm and generation =1, sa= 1, zmin = minimum objective function 

value in the pool. 

3: while genetic generation counter generation ≤ gen  do 

4:  Sort all feasible solutions in the pool in the ascending order of their objective 

function values. 

5:  Generate a chromosomes pool of solutions (encoding). 

6: Keep a certain number of chromosomes with the minimum objective function 

values without any change in the pool. 

7: Implement two-point crossover operation for a certain number of chromosomes 

which have the minimum objective values in the pool. 

8: Implement mutation operation for a certain number of genes that are randomly 

picked in child chromosomes generated in step 7 and change their values.  
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9: while chromosomes sa =1 to sample do 

10:  Decode the chromosome numbered sa. 

11:  Set Nk  and  | Nk | .  

12:   for routes k=1 to m do 

13:  Set     = 0,    = 0,    = 0,    = 0,   = 0,   = 0, consider Nk[0] as 

depot. 

14:  Perform one of the routing heuristic algorithms for route k. 

15:  for nodes in positions i=1 to | Nk |  do 

16:  Perform solution approach algorithm for the TSPSPD 

problem of route k.  

17:    if the route is feasible then 

18:      Set              

19: Perform the solution approach algorithm for  the 

TSPSPD-STW-P of route k.  

20:      if the route is feasible then 

21:      Set                 

22:      Set   =   +     

23:     else 

24:       ―Route is infeasible‖. 

25:  ―The generated solution with m routes is 

infeasible solution for VRPSPD-STW-P, 

and then chromosome is infeasible‖. 

26: go to 39. 

27:   end if      

28:    else 

29:      ―Route is infeasible‖. 

30:  ―The generated solution with m routes is infeasible 

for VRPSPD-STW-P and then chromosome is 

infeasible‖. 

31: go to 39. 

32:  end if 



97 

 

33:   end for 

34:  end for 

35:  ―The generated solution with m routes is feasible‖. 

36:  if  z  <  zmin  then 

37:   Set zmin  =  z 

38:  end if  

39: sa= sa +1  

40: end while 

41: generation = generation +1 

42: end while 

43: Set  FV 
**

= zmin  as the minimum objective function value. 

44: End 

 

Line 1 and 2 initialize the algorithm for some starting parameters and counters. The total 

number of chromosomes in the pool is the population size, which equals the number of 

feasible solutions (sample). sample denotes the total number of initial feasible solutions 

required in the pool, generation is the generation counter in the GA with gen as the 

maximum limit, while sa is the chromosome counter in the pool.  

 

Line 3 indicates a stopping condition for the GA algorithm and tallies the generations. In 

lines 4 and 5 the gene pool is formed, solutions are expressed by chromosomes, and the 

encoding of solutions is performed. Lines 6-8 represent the evolutionary process for 

generating new chromosomes in the pool, which contains both crossover and mutation 

operations for forming a new gene pool. Checking the feasibility of the generated 

chromosomes starts with line 9; this line tallies the newly generated chromosomes as 

solutions of the problem. In lines 10 and 11, chromosomes are decoded, and the solution 

approach algorithm is started by the parameters and sets. 

 

The decoded chromosome gives a clustered tour directly. Line 12 tallies m routes in the 

clustered giant tour for checking the feasibility of each route independently. Line 13 
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initializes the algorithm with the starting values of cost parameters and sets.  The routing 

algorithm is performed in line 14.  The overall algorithm starts from line 12-35 as it is 

discussed in the solution approach for obtaining a feasible solution for the main 

problem, VRPSPD-STW-P.  In lines 16-18, the TSPSPD solution for route k is obtained, 

and if it is feasible, then the TSPSPD-STW-P solution for route k  is found in lines 19-

22. 

 

When a generated solution is feasible, its objective function value is compared with the 

minimum solution found so far until the current generation. If the new value is less, its 

value replaces the previous best value. After checking the feasibility of all chromosomes 

in the gene pool, the algorithm checks the stopping criterion. The maximum number of 

genetic generation (gen) is the stopping condition for the problem, and the algorithm is 

terminated when generation=gen+1. The solution with the minimum objective value of 

all generations is the best solution obtained by our solution methodology, and FV 
**

= 

zmin .  

 

In the following chapter, we present and analyze the results of our computational study. 

We generate several problem instances, differing in terms of vehicle capacities, 

distances between nodes, time windows of customers, and quality levels required by 

customers. Thus, we solve the problem instances thus generated for VRPSPD-STW-P by 

the exact solution approach, MILP using CPLEX and the proposed methodology. 
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CHAPTER 5 

 

 

 

 

COMPUTATIONAL STUDY  

 

 

 

 

We conduct computational experiments with several problem instances to test the 

performance of our solution methodology. Firstly, the designed instances with their 

parameter settings are described. Then, computational results and the sensitivity 

analyses are reported in the following sections.  

 

5.1. Problem instances 

 

The problem instances in the literature are mostly for VRP and some of its extensions 

like VRPTW, which are not exactly suitable for the problem VRPSPD-STW-P we 

address. In this problem, we also need pickup and delivery requirements, time window 

limitations, product quality requirements of the demand nodes, route length limitation, 

and vehicle capacity.  

 

As a result, there is not any benchmark study in the literature that exactly matches the 

VRPSPD-STW-P addressed in this study. For evaluating our proposed approach, several 

instances are generated randomly for the problem VRPSPD-STW-P.  

 

Hence, we generate the necessary parameters of the problem randomly in the specified 

ranges to obtain several problem instances. All problem instances are generated in C# 

language using Microsoft Visual Studio.12.0 on a personal computer with an Intel Core  

i7 CPU and 12 GB RAM. 

 

For generating the parameters, the uniform distribution is used in different ranges. To 

bring the problem instances as close as possible to real life, we consider both small-to-
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medium size retailers and large retailers in generating the problem instances. Therefore, 

in defining the ranges for small-to-medium size retailers, we use tighter ranges for travel 

distances and times on the network, time window ranges, pickup and delivery demands, 

and other parameters accordingly; on the other hand, we use wider ranges for these 

parameters for large retailers.  

 

After generating the parameters, they are checked for their validity in describing a 

problem setting. For this validity checking, each generated instance is solved by any one 

of the proposed solution approaches in only a limited number of iterations; if the 

problem instance tested for validity leads to a reasonable solution, we include it in the 

computational study as a problem instance.  

 

Large-retailer instances: Consider an instance with n=50 demand points designed for 

large size retailers. The uniform distributions for the parameters are set as follows: 

distance between any two demand points (wij) range of [10, 200], travel time between 

any two demand points (tij)  range of [20,50], delivery demand for a demand point (di) 

range of [100,500] and pickup demand for a demand point (zi) range of [20,100].  

Considering these ranges, we define capacity (Q) and travel distance (L) limitations in 

the ranges within [3000,3500] and [2000,2500] respectively. In the next step we 

generate ranges for time windows: start of time window for arriving at customer   (  ) 

range of [150,250], end of time window for arriving at customer   (  ) range of 

[250,600], earliest acceptable time for arrival at customer i (  ) range of [10,150], and 

latest acceptable time for arrival at customer i (  )  range of [600,700].   

 

Small-to-medium-retailer instances: Consider an instance with n=20 demand points 

designed for small-to-medium size retailers. The uniform distributions for the 

parameters are set as follows: distance between any two demand points (wij) range of 

[1,10], travel time between any two demand points (tij)  range of [1,10], delivery demand 

for a demand point (di) range of [15,25] and pickup demand for a demand point (zi)  

range of [1,5].  Considering these ranges, we define capacity (Q) and travel distance (L) 

limitations in the ranges within [150,200] and [100,150] respectively. In the next step we 

https://www.cagdasmarketler.com/
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generate ranges for time windows: start of time window for arriving at customer   (  ) 

range of [25,40], end of time window for arriving at customer   (  ) range of [50,70], 

earliest acceptable time for arrival at customer i (  ) range of [1,20], and latest 

acceptable time for arrival at customer i (  )  range of [100,210].   

 

As for the price and cost parameters, we choose to use the following scenarios for all 

problem instances: high price-high cost, low price-low cost, high price-low cost, and low 

price-high cost. 

 

For the lowest acceptable quality level by customer i (qi), we consider a fixed value, 

qi=%30, for all customers in all problem instances. The effects of changes in the lowest 

acceptable quality, qi, are discussed in sensitivity analysis section where it is changed 

from %10 to %90.    

 

5.2. Exact method 

 

To compare the performance of our solution methodology against the optimal solutions, 

we use the solver CPLEX, version 12.7.0.0 of IBM ILOG CPLEX Optimization Studio. 

The MILP model of the main problem VRPSPD-STW-P is implemented using CPLEX, 

and the problem instances with sizes of 9 and 11 demand nodes (customers) are solved. 

Attaining optimal solution for small size problems is possible by CPLEX for the MILP 

model. However, it is observed that solution times for the MILP model increase 

exponentially for the problems with the number of nodes higher than 10. 

 

Here we present and discuss the optimal solutions for the test problems with the number 

of nodes being n=9 and n=11 (Appendix A). 

 

Tables 5.1, 5.2, 5.3, and 5.4 show computing times and objective values for different 

numbers of vehicles allowed (m) followed by the solution details for the two test 

problems with the number of nodes 9 and 11, respectively. Figures 5.1, 5.2, 5.3, and 5.4 

present the quality levels vs starting service times for the four routes in the test problem 

with n=9 nodes.  
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Table 5.1. Optimal solution for the problem with n=9 nodes 

m Computing time (s) Objective value Va  Vr 

8 4.64 387.04 2  2 

7 3.63 387.04 2  2 

6 2.96 387.04 2  2 

5 2.08 387.04 2  2 

4 1.47 387.04 2  2 

3 1.17 418.39 2  1 

2 - infeasible - - 

 

Optimal Routes with Va =2 owned vehicles and Vr =2 rented vehicles: 

 

Route 1 (vehicle 1):  0--2--1--8--0 

Route 2 (vehicle 2):  0--3--6--5--0 

Route 3 (vehicle 3):  0--4--9--0 

Route 4 (vehicle 4):  0--7--0 

 

Table 5.2. Solution details for the problem with n=9 nodes 

Nodes Route vehicle T0k Tik (Tik -bi)
+
 qi zi di Yijk 

0 0--2 1 2 0 0 1 0 0 87 

2 2--1 1 0 5 0 0.9 7 30 64 

1 1--8 1 0 9 0 0.82 3 20 47 

8 8--0 1 0 12 0 0.76 6 37 16 

0 0--3 2 1 0 0 1 0 0 75 

3 3--6 2 0 6 0 0.88 8 20 63 

6 6--5 2 0 14 0 0.72 20 40 43 

5 5--0 2 0 17 5 0.66 6 15 34 

0 0--4 3 0 0 0 1 0 0 65 

4 4--9 3 0 7 0 0.86 2 25 42 

9 9--0 3 0 18 0 0.64 21 40 23 

0 0--7 4 2 0 0 1 0 0 20 

7 7--0 4 0 9 0 0.82 9 20 9 
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Figure 5.1. Quality levels vs starting service times for route 1 for the problem with n=9 nodes 
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Figure 5.2. Quality levels vs starting service times for route 2 for the problem with n=9nodes 
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Figure 5.3. Quality levels vs starting service times for route 3 for the problem with n=9 nodes 
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Figure 5.4. Quality levels vs starting service times for route 4 for the problem with n=9 nodes 
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Table 5.3. Optimal solution for the problem with  n=11 nodes 

m Computing time (s)  Objective value Va Vr 

9 33.33 495.08 2  3 

8 27.62 495.08 2  3 

7 5.09 495.08 2  3 

6 4.06 495.08 2  3 

5 2.57 495.08 2  3 

4 2.95 588.78 2  2 

3 - infeasible - - 

 

 

 

Table 5.4. Solution details for the problem with n=11 nodes 

Node Route vehicle T0k Tik (Tik -bi)
+
 qi zi di Yijk 

0 0--2 1 2 0 0 1 0 0 87 

2 2--1 1 0 5 0 0.9 7 30 64 

1 1--8 1 0 9 0 0.82 3 20 47 

8 8--0 1 0 12 0 0.76 6 37 16 

0 0--3 2 1 0 0 1 0 0 75 

3 3--6 2 0 6 0 0.88 8 20 63 

6 6--5 2 0 14 0 0.72 20 40 43 

5 5--0 2 0 17 0 0.66 6 15 34 

0 0--4 3 0 0 0 1 0 0 65 

4 4--9 3 0 7 0 0.86 2 25 42 

9 9--0 3 0 18 0 0.64 21 40 23 

0 0--7 4 1 0 0 1 0 0 71 

7 7--10 4 0 9 0 0.82 9 20 60 

10 10--0 4 0 18 0 0.64 8 51 17 

0 0--11 5 7 0 0 1 0 0 24 

11 11--0 5 0 9 0 0.82 2 24 2 
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The vehicle routes of the two test problems are depicted in Figures 5.5 and 5.6. Each 

route in the solutions of test problems corresponds to a solution of TSPSPD-STW-P with 

the nodes covered on that route. The solution of VRPSPD-STW-P is then composed of 

m many solutions of mTSPSPD-STW-P for that problem instance. 
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Figure 5.5. Vehicle routes for the problem with n=9 nodes 
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Figure 5.6. Vehicle routes for the problem with n=11 nodes 
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By considering the alternative feasible values for m, CPLEX provides either an optimal 

solution or a feasible solution as an upper bound for the optimal solution. However, we 

should note that we aim to obtain the minimum cost solution to satisfy the demands and 

quality requirements of the customers by using the least number of vehicles within a 

reasonable computing time. 

 

The computational results show that optimal or near-optimal solutions for large-size 

problems can only be obtained using approximate methods rather than the exact method; 

for example, the problem with 15 nodes could not be solved by CPLEX in reasonable 

computing time. It is well known from the literature that the exact algorithms are limited 

for solving instances of large size even when the problem is the basic VRP ignoring the 

additional characteristics of our problem as simultaneous pick-ups and deliveries, time 

windows, and quality levels required upon delivery at the customer site.  

 

5.3. Proposed solution approaches 

 

In our proposed solution methodology, we use any one of the three different clustering 

and routing heuristics in Phase 1 and then use the routing heuristics plus GA in Phase 2. 

Hence we end up with three different solution approaches only differentiated by the type 

of clustering and routing heuristic as follows: 

 

 Random clustering and routing (RCR) & GA  

 Independent clustering and routing with the closest neighbor (ICR-CN) & GA 

 Independent clustering and routing with the time window (ICR-TW) & GA 

 

Phase 2 of the methodology is an improvement phase in which the GA is utilized. 

Considering the pool size, which is the number of initial feasible solutions in the pool, 

the algorithm tries to obtain the feasible solutions required in the specified number of 

replications. In our computational study, we first show the improvement gained by using 

the proposed GA in the second phase over the initial feasible solutions. 

 



108 

 

The algorithms in the solution methodology are implemented in C# language using 

Microsoft Visual Studio.12.0 on a personal computer with an Intel Core i7 CPU and 12 

GB RAM.  

 

5.3.1. Improvement by the Genetic Algorithm in Phase 2 

 

In this part of the computational study, for testing the validity of the solution 

approaches, we solve 12 test problems totally with the number of customers (nodes), n, 

as 30, 50, 75, and 100 (Appendix B). For each n, we generate three problem instances 

through varying distances and times on the network, time window range, pickup and 

delivery demands, and other parameters. Each of the 12 test problems is solved without 

the improvement phase, that is, by only using the three clustering and routing heuristics.  

Thus, the solutions obtained are called the initial feasible solutions, which are then 

improved by GA in Phase 2. 

 

Considering 20 initial feasible solutions in the pool (pool size), to generate these 20 

initial feasible solutions for each problem instance, we generate 100 giant tours from 

which we intend to obtain 20 feasible solutions for the VRPSPD-STW-P. If we cannot 

obtain 20 initial feasible solutions among the 100 giant tours, we generate another 100 

giant tours to obtain 20 initial feasible solutions. So we carry on this process for as many 

as 100 replications.  

 

For each of the three clustering and routing heuristics (RCR, ICR-CN, ICR-TW), we 

record the minimum objective function value together with m (number of vehicles used) 

in these tables among the 20 initial feasible solutions as the best initial solution (Tables 

5.5, 5.6, and 5.7). The initial feasible solutions are then improved by using the GA in 

Phase 2. For improving the 20 initial feasible solutions, GA runs for 100 iterations in 

each of which 100 new populations are generated, and the best result is reported. The 

best solution thus obtained is recorded in Tables 5.5, 5.6, and 5.7, together with the 

improvements (%) obtained by using GA in Phase 2. The  improvement (%) is defined 

as: 
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[(best initial solution – best solution-GA) / best initial solution] *100%   

 

We code each test problem as VTPn-i (n being the number of customer nodes on the 

network and i being the problem number), e.g., VTP30-1 indicates problem instance 1 of 

the three instances of the problem with 30 nodes. These problems are generated and 

tested using C# language of Microsoft Visual Studio.12.0. 

 

In Tables 5.5, 5.6, and 5.7, the number of vehicles, m, used in the GA improved solution 

is also recorded for each problem instance.  

 

The computational experiments indicate that the initial feasible solutions are improved 

by employing the proposed GA in Phase 2 of the methodology. The average percent 

improvements (API) in the best initial solutions are observed to be 8.9%, 8.2%, and 

9.1%, respectively, for RCR, ICR-CN, ICR-TW heuristics. 

 

Table 5.5. Improvements by the RCR&GA approach over the best initial solution by the 

RCR  
 

 

problem 
No. of 

nodes 

RCR RCR&GA m 

(vehicles 

used) 

%  

Improvement 

with RCR&GA 

Best initial 

solution 

Best 

solution 

VTP30-1 30 767,855 656,579 12 14.4 

VTP30-2 30 411,195 398,837 10 3.0 

VTP30-3 30 42,914 41,147 7 4.1 

VTP50-4 50 1,689,210 1,380,349 19 18.2 

VTP50-5 50 616,889 565,534 14 8.3 

VTP50-6 50 82,303 69,807 13 15.1 

VTP75-7 75 149,419 129,428 25 13.3 

VTP75-8 75 1,337,294 1,208,681 38 9.6 

VTP75-9 75 140,380 126,233 31 10.0 

VTP100-10 100 4,380,079 4,277,627 68 2.3 

VTP100-11 100 2,181,923 2,003,339 55 8.1 

VTP100-12 100 187,966 187,039 57 0.4 

API  8.9 

  

Table 5.6. Improvements by the ICR-CN&GA approach over the best initial solution by 

the ICR-CN 
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problem 
No. of 

nodes 

ICR-CN ICR-CN&GA m 

(vehicles 

used) 

% Improvement 

with ICR-CN&GA 
Best initial 

solution 
Best solution 

VTP30-1 30 757,653 631,066 12 16.7 

VTP30-2 30 408,615 391,474 10 4.1 

VTP30-3 30 42,571 39,965 7 6.1 

VTP50-4 50 1,590,709 1,348,985 19 15.1 

VTP50-5 50 609,081 545,677 14 10.4 

VTP50-6 50 78,930 68,229 12 13.5 

VTP75-7 75 132,552 127,448 25 3.8 

VTP75-8 75 1,299,299 1,192,163 38 8.2 

VTP75-9 75 132,364 122,851 30 7.1 

VTP100-10 100 4,239,618 4,201,081 62 0.9 

VTP100-11 100 2,146,395 1,986,449 55 7.4 

VTP100-12 100 191,959 181,791 56 5.2 

API     8.2 

   

 

 

Table 5.7. Improvements by the ICR-TW&GA approach over the best initial solution by 

the ICR-TW 
 

problem 
No. of 

nodes 

ICR-TW ICR-TW&GA m 

(vehicles 

used) 

% Improvement 

with ICR-TW&GA 
Best initial 

solution 
Best solution 

VTP30-1 30 840,256 634,686 12 24.4 

VTP30-2 30 412,533 378,596 9 8.2 

VTP30-3 30 42,494 40,366 7 5.0 

VTP50-4 50 1,626,310 1,366,388 20 15.9 

VTP50-5 50 607,780 557,870 14 8.2 

VTP50-6 50 80,982 69,726 13 13.8 

VTP75-7 75 137,053 129,369 26 5.6 

VTP75-8 75 1,226,691 1,082,348 30 11.7 

VTP75-9 75 132,364 123,878 30 6.4 

VTP100-10 100 4,203,918 4,203,918 62 0 

VTP100-11 100 1,991,728 1,947,152 57 2.2 

VTP100-12 100 202,725 185,019 57 8.7 

API  9.1 
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5.3.2. Comparison of the solution approaches 

 

The final appraisal of the solution approaches rests on how close the solutions obtained 

by the proposed approaches get to the optimal solutions for the test problems under 

consideration. It is not always possible to obtain optimal solutions to challenging 

combinatorial problems. For this reason, comparisons are often made with the 

corresponding best integer solutions for the problems obtained by the exact solution 

methods within a specified computing time.  

 

In this part of the computational study, we generate test problems with nodes, n, between 

5 and 75 (Appendix C). For each n, we generate 10 instances completely randomly with 

different parameters. First, we obtain the best integer solution for VRPSPD-STW-P by 

CPLEX. We adopt the strategy of using CPLEX to run each test problem for a specified 

computing time, depending on the problem size, n.  

 

The average deviation in the objective value is found between the best solution obtained 

by the proposed solution approaches and the corresponding best integer solution found 

by CPLEX. For more confident and stronger comparisons for the larger size problems, 

we implement CPLEX Optimization Studio in a computer with Intel Zeon 1260 Quad-

Core CPU, 2.9 GHz, and 128 GB RAM. We attempt to solve the test problems by 

CPLEX in the allowed time ranges of 5 or 10 hours. 

 

The corresponding computational results are shown in Tables 5.8 to 5.15. Each table 

includes the solutions and comparisons for a single size, n, for the problem. Tables 5.8 to 

5.15 demonstrate the best solutions obtained by the three solution approaches for each 

problem. Furthermore, we compare the best solutions obtained by the three solution 

approaches against the best or optimal CPLEX solution. When we do not get an optimal 

solution for a problem by CPLEX due to the computer’s limited storage capacity and 

unreasonable computing time, we limit the computing time by a specified time and 

interrupt the run at the end of this specified computing time, and then report both the 

optimality gap and the best integer solution obtained so far as an upper bound for the 

optimal solution of the problem.  
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The percent deviation between the best solution obtained by the solution approaches and 

the best or optimal solution obtained by CPLEX, is recorded as ―%dev‖ in the tables, 

which is defined as: 

 

% deviation = [(Solution approach’s solution−CPLEX solution)/CPLEX solution]∗100 

 

The average percent gap (APG), the average percent deviation (APD) and the number of 

vehicles used, m, are also shown in Tables 5.8 to 5.15. It is observed in these tables that 

APD and the %dev over all test problems except 50- and 75-node problems are less than 

5.5 %. 
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For all problems of n=5 nodes and most of the problems of n=8 nodes, the solution 

approach, RCR&GA, provides optimal solutions. These results can be a good test for the 

reliability of our solution methodology, and the solution times are quite comparable with 

the solution times required for the optimal solutions by CPLEX.  

 

For the problems of n=10 nodes, the % deviation is in the range of 0% to 3.7%, 1.81% 

being the APD over 10 instances. The CPU time of the proposed solution approach 

providing the best solution is observed to be less than 1 minute for all problem instances, 

while it even rises to more than 1 hour for some problem instances by the CPLEX 

solver.  

 

For the problems of n=12 nodes, the % deviation is in the range of 0% to 4.5%, 2.03% 

being the APD over 10 instances. The CPU time of the proposed solution approach 

(ICR-CN&GA) that provided the best solution for all instances with n=12 nodes is less 

than 5 minutes, while it changes in the range of 47 seconds to more than 4 hours with the 

CPLEX solver. 

 

For the problems of n=20, the % deviation is in the range of 0.1% to 4.7%, 3.64% being 

the APD over 10 instances. The CPU time of the proposed solution approaches that 

provided the best solution is less than 10 minutes. The solutions by the CPLEX solver 

are the best feasible solutions obtained in the allowed 5 hours of computing time. 

 

For the problems of n=30, the % deviation is in the range of 0.4% to 5.5%, 3.10% being 

the APD over 10 instances. As in the problems of n=20, again the solution approach 

(ICR-CN&GA) provided the best solution for the majority of the instances. The CPU 

time of the proposed solution approaches that provided the best solution is less than 10 

minutes. The CPLEX solutions are the best feasible solutions obtained in the allowed 5 

hours of computing time. 

 

In problems of n=20 and n=30 nodes, the CPLEX solver cannot provide the optimal 

solution. The %gap between the best integer solution and best bound (relaxation 
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problem solution) found by the CPLEX solver within 5 hours of computing time is less 

than 5%. This amount of gap indicates that the CPLEX best solution is close to the 

optimal solution.  

 

For problem sets with n=50 and n=75 nodes, the results show that the solutions of the 

proposed (ICR-CN&GA) approach are better than the solutions found by the CPLEX 

solver. CPLEX returns inferior solutions for all problem instances in the allowed 

computing time of 10 hours. The proposed solution approach, ICR-CN&GA, gives 

better solutions with APDs of 19.5% and 23.9%, respectively, for  n=50 and n=75. 

 

The CPLEX solver takes hours to find the given feasible solutions in most of the cases. 

From the above test results, we find that the solution approaches in our proposed 

methodology can solve VRPSPD-STW-P efficiently and returns a satisfactory solution. 

The efficiency of our methodology makes it suitable for solving a real case, which is 

usually large in terms of the number of nodes.  

 

Finally, we compare the three solution approaches among themselves. We use the same 

test problems in Section 5.2.2 with the number of nodes n=20, 30, 50, and 75 (Appendix 

D). In Tables 5.16, 5.17, 5.18, and 5.19, we show the best solution and the percent 

deviations among the solutions of the three proposed approaches. The percent deviation 

of a solution with a solution approach from the best solution is given by: 

 

% deviation = [(Solution − Best solution) /Best solution] ∗100 

 

The average percent deviations (APD) is presented at the bottom of the tables. Table 

5.20, as a summary table, presents the APD values of the three solution approaches for 

the problem sets.  
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Table 5.16. Best solution and % deviation of the solution approaches from the best - n=20 
 

Problem 
Best 

solution 

% deviation from the best solution 
 

RCR&GA 
 

ICR-CN&GA ICR-TW&GA 

VTP20-1 160,179 5.9 0 13.4 

VTP20-2 90,653 0 5.2 7.0 

VTP20-3 109,177 1.0 1.7 0 

VTP20-4 59,908 4.8 0 6.9 

VTP20-5 95,420 1.5 0 1.5 

VTP20-6 121,219 3.5 0 3.4 

VTP20-7 132,608 5.7 7.8 0 

VTP20-8 167,948 5.4 0 9.6 

VTP20-9 35,402 6.3 0 3.7 

VTP20-10 88,379 0 1.9 2.5 

Number of best 

solutions found 
 2 6 2 

APD   3.41 1.66 4.80 

Min APD ICR-CN&GA with 1.66%  

Max APD ICR-TW&GA with 4.80%  

 

 

Table 5.17. Best solution and % deviation of the solution approaches from the best - n=30 
 

Problem 
Best 

solution 

% deviation from the best solution 
 

RCR&GA 
 

ICR-CN&GA ICR-TW&GA 

VTP30-1 293,731 0.67 0 0.19 

VTP30-2 176,428 7.6 0 7.7 

VTP30-3 194,583 1.1 0 3.4 

VTP30-4 55,153 2.1 0 3.5 

VTP30-5 226,177 0 1.6 4.2 

VTP30-6 144,221 4.0 5.0 0 

VTP30-7 91,272 4.0 0 4.0 

VTP30-8 325,093 4.3 0 10.5 

VTP30-9 59,233 4.8 0 3.3 

VTP30-10 109,864 0.21 0 3.2 

Number of best 

solutions found 
 1 8 1 

APD  2.87 0.66 3.99 

Min APD ICR-CN&GA with 0.66%  

Max APD ICR-TW&GA with 3.99%  
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Table 5.18. Best solution and % deviation of the solution approaches from the best - n=50 
 

Problem 
Best 

solution 

% deviation from the best solution 
 

RCR&GA 
 

ICR-CN&GA ICR-TW&GA 

VTP50-1 156,505 4.7 0 4.8 

VTP50-2 339,539 4.1 0 2.0 

VTP50-3 402,571 8.3 0 5.1 

VTP50-4 149,484 3.1 0 2.6 

VTP50-5 236,459 1.4 0 5.5 

VTP50-6 293,181 4.6 0 1.0 

VTP50-7 317,860 8.1 0 9.4 

VTP50-8 47,678 7.0 0 4.7 

VTP50-9 147,352 1.7 0 4.5 

VTP50-10 200,775 4.0 0 2.9 

Number of best 

solutions found 
 0 10 0 

APD  4.70 0 4.25 

Min APD ICR-CN&GA with 0%  

Max APD RCR&GA with 4.70% 
 

 

Table 5.19. Best solution and % deviation of the solution approaches from the best - n=75 
 

 

Problem 
Best 

solution 

% deviation from the best solution 
 

RCR&GA 
 

ICR-CN&GA ICR-TW&GA 

VTP75-1 239,950 7.3 0 5.6 

VTP75-2 484,458 0.32 0 0.31 

VTP75-3 605,678 5.7 0 2.7 

VTP75-4 254,599 4.6 0 2.9 

VTP75-5 226,060 9.2 0 11.4 

VTP75-6 415,718 5.9 0 4.3 

VTP75-7 82,223 6.3 0 7.7 

VTP75-8 70,911 7.1 0 7.5 

VTP75-9 98,144 8.0 0 6.8 

VTP75-10 162,691 7.2 0 4.7 

Number of best 

solutions found 
 0 10 0 

APD  6.16 0 5.39 

Min APD ICR-CN&GA with 0% 

Max APD RCR&GA with 6.16% 
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Table 5.20. Summary of the APD values (%) 
 

Nodes, n 
 

RCR&GA 
 

ICR-CN&GA ICR-TW&GA 

20 3.41 1.66 4.80 

30 2.87 0.66 3.99 

50 4.70 0 4.25 

75 6.16 0 5.39 

Average of APD 4.28 0.58 4.60 

 

 

The computational results show that our proposed solution approach, ICR-CN&GA 

provides better solutions in most of the test problems compared to RCR&GA and ICR-

TW&GA. In comparing the other two solution approaches with each other, it is seen that 

RCR&GA approach outperforms ICR-TW&GA for problems with n=20 and n=30 

problems. However, the reverse is observed for problems of larger sizes with n=50 and 

n=75 nodes. 

 

5.3.3. Sensitivity analysis 

 

In the first analysis, we run a series of test problems with n=30, 50, and 75 nodes 

(Appendix E), in which the minimum preferred quality levels (freshness) are changed. 

Table 5.21 presents the results of the test problems by implementing the best approach 

ICR-CN&GA. The objective values and the number of vehicles, under the minimum 

preferred quality levels, are also given in Figures 5.7 and 5.8. 

 

Table 5.21. Solutions under different quality levels  
 

Problem q  m 
Objective 

value 
Problem m 

Objective 

value 
Problem m 

Objective 

value 

VTP30 0.1 4 209,962 VTP50 8 327,934 VTP75 11 467,930 

VTP30 0.3 4 210,968 VTP50 8 332,516 VTP75 11 469,917 

VTP30 0.5 4 214,884 VTP50 10 349,155 VTP75 14 502,508 

VTP30 0.7 4 217,132 VTP50 27 640,208 VTP75 37 875,665 

VTP30 0.9 - - VTP50 - - VTP75 - - 

m: (number of vehicles used) 
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The results show that the objective value and the total number of vehicles needed for 

finding a feasible solution increase when the minimum preferred quality level increases. 

Also, for low-quality levels, the number of vehicles does not change, but with the 

increase in the quality levels, q ≥ 0.50, the number of vehicles increases sharply. In 

Table 5.21 on the last row with q=0.9, it should also be noted that considering travel 

times and also start of time window at customers, delivering products to customers with 

the preferred quality level of q=0.9 turns out to be impossible and hence problems are 

infeasible for this level of preferred quality. 

 

 

 

 

 

Figure 5.7. Objective values under different quality levels 
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Figure 5.8. Number of vehicles under different quality levels 

 

In the second analysis, we consider problems with n=30 and 50 nodes (Appendix F) to 

observe the effect of the percentage of customers with time window requirements, 

including TW(0%), TW(20%), TW(40%), TW(60%), TW(80%), and TW(100%). For 

example, TW(0%) refers to no customers with time window requirement, while 

TW(40%) refers to 40% of customers having time window requirements. The effect of 

these changes on the objective values is summarized in Table 5.22. Figures 5.9 and 5.10 

show that the objective value increases when the percentage of customers with time 

window requirements increases, so does the number of vehicles after a threshold 

%value. 

 

Table 5.22. Objective values under different % of customers with time windows  
 

Problem TW (%) m 
Objective 

value 
Problem TW (%)  m 

Objective 

value 

VTP30 0 2 123,518 VTP50 0 5 50,785 

VTP30 20 2 124,852 VTP50 20 5 52,838 

VTP30 40 2 147,439 VTP50 40 5 56,495 

VTP30 60 2 166,863 VTP50 60 6 65,853 

VTP30 80 3 202,639 VTP50 80 6 69,217 

VTP30 100 3 216,255 VTP50 100 6 71,433 
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Figure 5.9. Objective values vs % of customers with time windows 

 

 

Figure 5.10. Number of vehicles vs % of customers with time windows 
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In the third analysis, problems with n=30 and 50 nodes (Appendix G) are considered for 

conducting sensitivity analysis in terms of the tightness of time window ranges. Assume 

different %’s between lower and upper bounds of time window ranges, including 

ab(20%), ab(50%), ab(100%), ab(150%), and ab(200%); e.g., ab(20%) refers to   =    

+ 0.2   for all nodes, then the range is said to be narrow (tight); and ab(150%) refers to 

  =    + 1.5  , then the range is said to be wide (loose). The impact of these changes on 

the objective value is displayed in Figures 5.11 and 5.12, and summarized in Table 5.23. 

Figures 5.11 and 5.12 show that the objective value decreases when the range of time 

windows increases, that is, the range of time window is loose.  

 

Table 5.23. Objective values under time window ranges 

Problem ab% m 
Objective 

value 
Problem ab%  m 

Objective 

value 

VTP30 20 7 199,412 VTP50 20 16 252,594 

VTP30 50 7 192,224 VTP50 50 15 234,410 

VTP30 100 7 186,642 VTP50 100 17 229,218 

VTP30 150 7 185,353 VTP50 150 15 228,905 

VTP30 200 7 183,220 VTP50 200 15 226,355 
 

 

 

Figure 5.11. Objective values vs time window ranges- 30 nodes 
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Figure 5.12. Objective values vs time window ranges- 50 nodes 

 

Having compared the efficiency of our approach on different problem sizes, we observe 

that, in particular, for a large-size problem instance, i.e., 50 nodes, the computational 

time for obtaining a satisfactory solution with our approach is within 30 minutes, and 

that the solutions are much better than CPLEX solutions obtained within 10 hours 

running time. 

 

One of our solution approaches, ICR-CN&GA, outperforms the other two solution 

approaches, RCR&GA and ICR-TW&GA, for most of the generated problem instances. 

Observing the details of the solutions which are the best solutions among the solutions 

provided by the three solution approaches proposed, it is seen that the best solutions end 

up with a less number of vehicles in the fleet and a larger number of customers served 

by each vehicle. 

 

All in all, the results show that the methods for generating initial solutions in Phase 1 

and the GA approach for solution improvement in Phase 2 are effective, and provide 

optimal or near-optimal solutions for the problems tested in a reasonable amount of 

time. 
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CHAPTER 6 

 

 

 

 

CONCLUSIONS AND FURTHER RESEARCH ISSUES 

 

 

 

 

In this study, we consider a sustainable supply chain for food products and attempt to 

minimize the distribution costs and impacts of supply chain operations on the 

environment and society. Sustainability is an essential issue in the perishable food 

supply chain. We take the sustainability of the transportation system into account 

through minimizing energy consumption in distribution and waste management as well, 

including collecting end-of-life (EOL) products, waste materials from customers by 

reverse flow for remanufacturing, reusing, and recycling.  

 

Reverse product flow is a relevant contribution to the sustainability of distribution 

systems. One of the approaches towards sustainability and green manufacturing and 

logistics is to collect end-of-life products from customers for either reuse or proper 

disposal. We study the process of collecting end-of-life products as reverse logistics 

networks and satisfying the pickup demands of customers. The reduction of the amount 

of waste produced and energy consumed in distribution serves the economic and 

environmental aspects of sustainability. 

 

Our study is concerned with the short-term planning of distribution and mostly dealing 

with deliveries/pickups to/from several customers. Considering sustainability in the food 

supply chains, therefore, we focus on the betterment of both economic and 

environmental aspects in a perishable food supply chain. 

  

Vehicle routing and scheduling for perishable goods is integrated into a unified 

framework applicable to fields like food, vegetables, flowers, and even livestock. The 

problem aims to deliver food products with high quality as much as possible, at least as 
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required by customers, and collect end-of-life products from customers with both 

delivery and pickup demand. 

 

In our approach to this problem, we investigate an extension of the well-known vehicle 

routing problem (VRP) with the food-specific additional characteristics that include 

scheduling and routing of vehicles for perishable food products. We present a mixed-

integer linear programming model for this vehicle routing problem with simultaneous 

pickup and delivery and soft time windows for perishable food supply chains (VRPSPD-

STW-P).  

 

The VRPSPD-STW-P is a combinatorial optimization problem, and it is NP-hard. 

Therefore, exact approaches to solve this problem become inefficient in general; and can 

only solve relatively small-size problems. Even for the small size problems with only a 

few nodes, solving the VRPSPD-STW-P using optimization software CPLEX takes a 

very long time and remains to be challenging, and as for the larger size real-life 

problems, the exact methods employed by CPLEX cannot provide even a feasible 

solution in a reasonable time.  

 

We obtain CPLEX solutions for comparison purposes and end up with the best integer 

solution (best bound) within the pre-defined computational time. Several initial runs 

validate our MILP model, and the computational results indicate that our model is 

effective and efficient. 

 

In our methodology we propose some solution approaches that are based on heuristic 

algorithms to solve our problem that we call VRPSPD-STW-P. Our proposed 

methodology mainly includes clustering of nodes, routing, genetic algorithm, and 

feasibility checking techniques to obtain near-optimal or optimal solutions for the 

VRPSPD-STW-P in two phases, obtaining initial feasible solutions in the first phase and 

improving them in the second phase. In the second phase, we adopt a genetic algorithm 

(GA) to improve the initial feasible solutions and determine the best solution that has the 

minimum cost at the end of the GA. 
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The basic idea in the methodology is decomposing the original problem with a great 

number of nodes in its network into a required number of smaller networks, which 

corresponds to generating a giant tour of all nodes and then obtaining m smaller routes 

as a result of clustering. After obtaining m many clusters (sub-networks), the 

methodology goes on with routing heuristics by relaxing all constraints of the problem to 

obtain the routes within these smaller networks (sub-networks). We develop three 

procedures for the routing of each cluster. Three different solution approaches only 

differentiated by the type of clustering and routing heuristic are as follows: 

 

 Random clustering and routing (RCR)  

 Independent clustering and routing with the closest neighbor (ICR-CN)  

 Independent clustering and routing with the time window (ICR-TW)  

 

At this point of the methodology, the solution obtained is just a solution for the mTSP 

problem. Then each route of mTSP is checked individually for feasibility incorporating 

the distance traveled by the vehicle in its tour and vehicle capacity limitation. If the 

solution is found to be feasible, then the solution is a feasible solution for TSPSPD, 

which is then passed to the feasibility check for the soft time windows and also quality 

level restrictions of customers of the route. If the solution is found to be feasible, then it 

turns out to be a feasible solution for the TSPSPD-STW-P. If, at the end of these 

feasibility checks, all m routes are found to be feasible, then generated the m routes are 

solutions for mTSPSPD-STW-P which is a feasible solution for the original problem 

VRPSPD-STW-P. Otherwise, the solution the mTSP solution is infeasible for the 

original problem VRPSPD-STW-P.  

 

Therefore, the initial feasible solution for the VRPSPD-STW-P is obtained by 

combining the m feasible routes of mTSPSPD-STW-P. Thus, the feasible solutions are 

improved by generating improved routes through the GA in the second phase of the 

methodology. Using three different vehicle routing heuristics in the clusters of nodes, we 

end up with three solution approaches in our methodology as follows: 
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 RCR&GA  

 ICR-CN&GA  

 ICR-TW&GA  

 

We conduct several computational experiments to evaluate the performance of the 

proposed approaches with several problem instances generated for VRPSPD-STW-P. 

The results of the three proposed approaches are compared with each other and against 

the result provided by CPLEX. Our solution methodology yields very promising 

solutions in a much less computational time than optimal or feasible solutions generated 

by the exact solution procedure. Computational results show that our proposed heuristic 

methods for generating the initial solutions and the GA for solution improvement are 

effective and can obtain near-optimal or optimal solutions for the problems tested in 

polynomial computational times.  

 

In summary, this study shows how the crucial characteristics as perishability in the safe 

delivery of food can appropriately be considered in formulating vehicle routing 

problems with pickup and delivery, and time-window constraints. The proposed 

methodology provides useful tools that may enable operators to make effective delivery 

and pickup decisions under the specified quality levels and late arrival penalties by 

assessing the impact of delivery times, food spoilage, and time windows on vehicle 

routing and the resultant operating costs.  

 

If the quality of the products delivered is required to be higher, consequently higher 

distribution costs are incurred. So the number of vehicles turns out to be a critical factor 

in VRPSPD-STW-P in meeting the product’s required quality levels when delivered to 

the customers. In addition to using the owned vehicles, the planners may use more 

vehicles by renting additional vehicles to transport the perishable product.  

 

When we compare our study against the similar studies in the literature, in terms of 

modeling characteristics, that is, the variant of VRP addressed, the proposed solution 



135 

 

approaches including the problem instances tested, our work seems to be the first study 

that considers perishable food products distribution in a VRPSPD framework with soft 

time windows.  

 

Further research could focus on applying the proposed approaches to real-world 

instances in a wide range of food industries. Next to practical outcomes in terms of 

decision support, this application may allow us further to study the performance of the 

model in different settings.  

 

In the future study, different kinds of deterioration and more advanced quality decay 

models, such as nonlinear or exponential nature, may be considered in the VRPSPD-

STW-P.  

 

A further improvement in the study can also include the consideration of factors like 

time-dependent travel-times, and time-varying temperatures during the day. The 

temperature changes can affect the energy consumed by vehicles (for keeping the 

internal temperature of vehicles cool), so as an extension of the study, we can add cost 

of energy consumed by vehicles for time-varying temperatures.  

 

There can be exploratory research into the freshness objective function that evaluates 

other indicators. In order to understand the ―total cost-freshness‖ trade-off, a multi-

objective model can be proposed to minimize the total distribution cost and maximize 

the freshness.  

 

In this research, we consider a single product or a single family of products with a single 

depot in the distribution network. Future work could also include multiple products and 

multiple depots. This, however, has to consider different quality degradation models for 

the products. Furthermore, interactions among the products might have to be taken into 

account, as it is, for instance, in fruits and vegetables. 

Aggregation of heuristics and simplification techniques in our solution methods may be 

developed. Thus the next step of research can include further development of our 
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solution methodology to incorporate other metaheuristics. Different metaheuristics such 

as tabu search and simulated annealing can be used for generating initial solutions and 

solution improvements. 
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A. Test problems section 5.2 

 

https://drive.google.com/file/d/1BAhJxDLDIdYOVh-

VSTpmfVl1dvwsMA6T/view?usp=sharing 

 

B. Test problems section 5.3.1  

 

https://drive.google.com/file/d/1KlWCxi5TNSfVIiiOPlZaglPPn-

WL2HUe/view?usp=sharing  

    

C. Test problems section 5.3.2 

  

https://drive.google.com/file/d/1uso44kZfd8qOrpMaQRoft4zXQWaFMyTB/view?usp=

sharing 

 

D. Test problems section 5.3.3 

 

https://drive.google.com/file/d/1uLbpK8syOWdB-

mUBhdes0FfNMr9RmpZf/view?usp=sharing 

 

E. Table 5.21- Sensitivity q% 
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F. Table 5.22- Sensitivity TW% 
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