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ABSTRACT

SEMI-SUPERVISED ITERATIVE TEACHER-STUDENT LEARNING FOR
MONOCULAR DEPTH ESTIMATION

SÜVARİ, Cemal Barışkan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Uğur Halıcı

February 2021, 87 pages

Advances in robotics area and autonomous vehicles have increased the need for accu-

rate depth measurements. Depth estimation is one of the oldest problems of computer

vision area. While the depth can be estimated by using many methods, finding a cheap

and efficient way of doing it was studied for many years. Although, depth measure-

ments using Lidar sensors or RGB-D cameras provides accurate results, due to cost

and narrow applicability they are not very effective. On the other hand, using deep

learning architectures to estimate depth seems to provide a more efficient, cheaper

and robust solution compared to other methods. With the progress in deep learning,

monocular depth estimation problem has gained a lot of attention. Recently, represen-

tation learning methods showed very promising accuracy results in depth estimation

from single images. In this thesis, a deep learning based network architecture is pro-

posed for monocular depth estimation problem. Furthermore, the network is trained

with an iterative teacher-student learning framework in a semi-supervised manner. To

make student networks generalize better than the teacher network, noise is injected

during training of student networks. According to evaluation results our proposed

model achieves state-of-the-art accuracy in monocular depth estimation.
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ÖZ

MONOKÜLER DERİNLİK TAHMİNİ İÇİN YARI DENETİMLİ
YİNELEMELİ ÖĞRETMEN-ÖĞRENCİ ÖĞRENİMİ

SÜVARİ, Cemal Barışkan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Uğur Halıcı

Şubat 2021 , 87 sayfa

Robotik alanındaki gelişmeler ve otonom araçlar, doğru derinlik ölçümlerine olan ih-

tiyacı artırmıştır. Derinlik tahmini, bilgisayar görüşü alanındaki en eski sorunlardan

biridir. Derinlik birçok yöntem kullanılarak tahmin edilebilirken, bunu ucuz ve ve-

rimli bir şekilde yapmanın yolu uzun yıllar çalışılmıştır. Lidar sensörleri veya RGB-

D kameralar kullanılarak yapılan derinlik ölçümleri doğru sonuçlar verse de, maliyet

ve dar uygulanabilirlik nedeniyle çok etkili değildir. Öte yandan, derinliği tahmin et-

mek için derin öğrenme mimarilerinin kullanılması, diğer yöntemlere kıyasla daha

verimli, daha ucuz ve sağlam bir çözüm sağlıyor gibi görünmektedir. Derin öğrenme-

deki ilerlemeyle birlikte, monoküler derinlik tahmini problemi büyük ilgi gördü. Son

zamanlarda, temsil öğrenme yöntemleri, tek görüntülerden derinlik tahmininde çok

umut verici doğrulukta sonuçlar göstermektedir. Bu tezde, monoküler derinlik tah-

mini problemi için derin öğrenme tabanlı bir ağ mimarisi önerilmiştir. Ayrıca ağ, yarı

denetimli bir şekilde yinelemeli bir öğretmen-öğrenci öğrenme yapısı ile eğitilmekte-

dir. Öğrenci ağlarını öğretmen ağından daha iyi genelleştirmek için öğrenci ağlarının

eğitimi sırasında gürültü enjekte edilmektedir. Değerlendirme sonuçlarına göre, öne-
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rilen modelimiz monoküler derinlik tahmininde son teknoloji doğruluğa ulaşmakta-

dır.

Anahtar Kelimeler: Derin Öğrenme, Tekil Gözlem Derin Tahmini, EfficientNet, Yi-

nelemeli Öğretmen-Öğrenci Öğrenimi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

Depth estimation with a computer based system has been studied by researchers for

a long time. In recent years, developments in robotics area and autonomous vehicles

have increased the need for accurate and real-time depth measurements. There are

also some applications that do not need exact metric depth and a real-time system.

For example, 2D-3D converting systems need depth information for a good modeling

but relative depth map of the scene would be enough for them to create a model of

the scene.

Although early studies of estimating depth through disparity using stereo images

yielded satisfactory results, the need for two cameras has led researchers to tackle

this problem from different angles. Apart from requiring two cameras to estimate

depth, stereo matching is another big challenge in stereo vision systems. After left

and right images are rectified it is required to find corresponding edge points and

match them in both images to make an accurate depth estimation. Lidar (Laser Imag-

ing Detection and Ranging) on the other hand is undoubtedly one of the most reliable

way of measuring depth. It provides enough depth information about the environment

but it also has disadvantages as expected. When using a Lidar sensor, misalignment

of emitted laser light due to reflective or absorbing surfaces may lead to wrong mea-

surements. Aside from that, sparsity in a depth map captured by a Lidar may become

very high. Density in the depth map depends on the number of sensors used in Lidar

and the rotational speed in horizontal direction. Density can be increased by increas-

ing the number of Lidar sensors but in return the cost will increase heavily. For the
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time being, their prices are high to use widely but they may become cheaper with the

developing technologies. Due to the demands of the industry and thanks to the latest

advances in deep learning, monocular depth estimation by deep learning systems has

become a topic of interest among researchers. Wide applicability is one of the many

advantages of a monocular depth predictor.

Many studies have been made by researchers in medical area to investigate the dif-

ference in depth perception with a human binocular and monocular vision system.

While many researchers have observed that the advantage of a binocular system can

be up to hundreds of meters [25], [26], [27], most researchers are agreed on that most

efficient distance for the binocular vision system is limited up to around 10 meters.

Beyond 10 meters, human vision is essentially monocular. Based on this information,

it can be assumed that a monocular depth estimation network can be trained well-

enough to make close or even better depth predictions than a human. Surely, there

will be some problems to be solved like the need for massive amount of training data,

domain adaptation issues, speed of inference etc. If outdoor utilization is planned,

there will be environment related problems like bad weather, reduced field of vision

etc. Some of these problems can be solved in a monocular depth estimation network

easily, while others may raise difficulties. Main goal of our study is to reduce the

need for labeled ground truth data with the help of iterative teacher-student learning

method while training a monocular depth estimation network.

Different kinds of methodology can be used to train a monocular depth estimation

network. Most of the strategies depend on three main learning methods, supervised,

self-supervised and semi-supervised learning. Supervised learning methods need to

use ground truth depth maps to train the network. If a large enough dataset with

ground truth data is available, it would be advantageous to train network in a super-

vised fashion since it would be able to solve many difficult regions (e.g. textureless

regions) with the help of supervision proxy. However, ground truth depth maps are

mostly obtained by RGB-D or Lidar cameras and obtaining this kind of data would

be costly and challenging. As an alternative, self-supervised methods annihilate the

need for ground truth data, but in return the accuracy decreases and the results become

less reliable. Semi-supervised methods on the other hand, take advantages of the both

sides and present good solutions. Teacher-student learning method presented in this
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work is also a semi-supervised method since both labeled and unlabeled datasets are

used in training. By using this methodology, the need for massive amount of labeled

data can be decreased.

Monocular depth estimation networks perform a kind of representation learning and

that’s why extracting features from input images successfully is important. For a

representation learning problem network architectures consist of two structures in

general, an encoder and a decoder. While encoder part extracts features and delivers

them to the decoder part, in decoder part these extracted features are processed to

represent desired output. Size of the network may determine how good it can extract

the features or how much it can learn from a dataset. However, in order to construct

a good feature extractor or encoder, solely increasing the size of the model by adding

more layers or increasing the channel sizes are not effective ways. On the other

hand, compound scaling applied in EfficientNet [17] increases the performance of

the encoder while keeping the model size still manageable. Compound scaling is a

method applied to the network in order to change its depth, width and resolution in a

controlled way. At the time we were working on our study, EfficientNet encoder had

not yet been used in any monocular depth estimation network. We wanted to evaluate

its performance in a monocular depth estimation network and if satisfactory results

were obtained we decided to use it in our model.

1.2 Contributions

There have been many monocular depth estimation networks that are employed in

deep learning. As expected in representation learning problems, previous studies

have proposed different architectures to adapt their model to the datasets used. Some

of these works have also drawn attention to importance of feature extraction. At this

point, encoder plays an important role in extracting features in the best manner.

EfficientNet proposed by Tan et al. [17] is a convolutional neural network architec-

ture. It is designed and optimized using neural architecture search. Tan et al. [17]

have used a compound scaling methodology while they design Efficient so its width,

depth and resolution can be scaled to different sizes. Due to its structure compact Effi-

3



cientNet can be used as an encoder in any neural network in order to extract features.

Extracted features by EfficientNet can be used in a decoder architecture to solve a

representation problem. EfficientNet has achieved a remarkable performance in the

studies that it had been used. Tan et al. [17]’s proposed architecture outperformed

most of the well-known encoder structures in classification and regression related

problems.

In this thesis, EfficientNet [17] encoder structure is used in our network architecture.

To the best of our knowledge, it had not been used in a monocular depth estimation

network previously. We first evaluated its performance by using it in a well-known

depth estimation network (Monodepth [10]). We have replaced the encoder structure

used in Monodepth with EfficientNet. Then, we have trained this modified network

and evaluated its performance. We have observed a performance increase in evalu-

ation results due to used EfficientNet architecture. After obtaining these results we

decided to use EfficientNet in our network architecture. For our decoder structure we

have investigated the Atrous Spatial Pyramid Pooling (ASPP) method proposed in

[28]. It is a structure that is used to capture contextual information at multiple scales

in a decoder. We have integrated ASPP structure too into our modified Monodepth

network and evaluated its performance. After observing the accuracy increase with

the help of ASPP as well, we decided to use it in our decoder structure.

Teacher-student learning methods have been proposed and used in monocular depth

estimation networks previously. While, most of the previous methods concentrated

on decreasing the size of student network in order to fit it into a smaller area, some

others focused on increasing the performance of teacher network with the help of

a student network. In deep learning, transferring knowledge from one network to

another is called as knowledge distillation. The network that transfers knowledge is

named as teacher network and the network that newly trained is named as student net-

work. In our thesis, we used the teacher-student learning methodology proposed in

[1]. Proposed method trains a student network iteratively while all student networks

and the main teacher network have the same size. To the best of our knowledge, iter-

ative student-teacher learning had not been used in any monocular depth estimation

network before. During iterative learning, performance of each student network is

expected to outperform previous teacher network. Another important contribution of
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this method is that it reduces the size of labeled dataset needed. Acquiring a labeled

dataset with ground truth depth maps for a monocular depth estimation network is

costly and difficult. Moreover, the noise injected to the system during training in pre-

vious methods is data augmentation in general. In fact there are two types of noise

used in deep learning applications. One of them is input noise also known as data

augmentation methods. Other type of noise is called as model noise also known as

regularization methods. In the proposed method, in addition to data augmentation,

model noise is also used and injected as dropout and stochastic depth. This kind of

aggressive noise injection during training of student networks is expected to increase

generalization of trained network and adaption to dataset. With these contributions,

effectiveness of iterative student-teacher learning in a monocular depth estimation

network is showed. The performance of student networks outperformed the main

teacher network and the state-of-the-art accuracy is achieved.

1.3 Thesis Outline

In chapter 1, introduction to monocular depth estimation, possible problems and our

solution is given briefly. Motivation of this thesis, outline and the contributions are

also presented in this chapter.

In chapter 2, literature on depth estimation problem is reviewed and previous works

on monocular depth estimation problem are summarized. These novel works are an-

alyzed in three main titles according to their learning strategies, supervised, unsuper-

vised and semi-supervised. Then, EfficientNet [17] related background information

is provided and previous works that incorporate EfficientNet are reviewed. Then,

the literature on teacher-student learning is revised. The progress achieved by other

researchers in time and studies of student-teacher learning method and the their pro-

posed novel strategies are analyzed. Finally, background information about the KITTI

dataset [22] used in training of our models is provided.

In chapter 3, proposed network architecture is described in detail. In Encoder Ar-

chitecture and Decoder Architecture sections, methods applied in our network are

described in detail. Then, in Training Loss section the loss function used in training
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is explained. In last, details of the teacher-student learning strategy applied in training

is given, along with the followed procedure and the key aspects.

In chapter 4, first, evaluation metrics that are used in determining the performance of

a monocular depth estimation network are described. Then, networks that are trained

and evaluated are explained. Evaluated performance of our models and the compar-

ison with previous works are given. Deductions made according to our evaluation

results are explained. Performance of EfficientNet when used in a monocular depth

estimation network is also provided in this chapter.

In chapter 5, a summary of our thesis and the discussion are provided.
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CHAPTER 2

RELATED WORK AND BACKGROUND

In this chapter, we review the literature on depth estimation, EfficientNet architec-

ture and teacher-student learning method. We first investigate depth estimation prob-

lem and the proposed solutions. Deep learning based previous studies are analyzed

according to their learning methods and basic knowledge is provided about these

studies. Later, EfficientNet related previous works and the studies that incorporate

Teacher-Student Learning Method will be given. Finally, background information

about the KITTI dataset [22] used in training and testing will be provided.

2.1 Depth Estimation

Depth of objects in a scene can be estimated or calculated by using passive and active

techniques. Passively, depth information can be obtained by 2 methodologies, depth

from stereo images and depth from monocular images. On the other hand, active

techniques include usage of sensors, RGB-D cameras, structured-light scanners etc.

and the depth information is obtained instantaneously. Aim of all these techniques is

to help constructing spatial structure of the environment that gives three-dimensional

view of the scene. After obtaining depth information, position of the viewer can also

be known relative to the surrounding objects.

In computer vision area one of the most used depth calculation method is stereo vi-

sion. This computer based passive method date back to 90s [29], [30], [31]. In this

approach, stereo cameras/images are used to extract depth information. First, view-

ing positions of the cameras need to be determined using epipolar geometry. It is a

geometrical relation between two views and is used for representing each pixel with

7



respect to the camera positions as seen on Figure 2.1. In order to calculate depth from

disparity, focal lengths and baseline distance between two cameras should be known.

Depths in the scene can also be extracted from sequence images of a video. Be-

tween consecutive frames of a video, in order to calculate depth of an object, bound-

aries/edges of it and the camera motion should be detected correctly. However, esti-

mating motion of the camera is a difficult task and the frame rate of the video should

be high enough to prevent objects becoming blurry while camera moves. Therefore,

this approach does not have a wide-applicability.

Figure 2.1: Epipolar Geometry [3].

In order to calculate disparity, correspondence (pixel) matching should be done be-

tween pixels of both images. For a point in first image, corresponding point in the

second image need to be found. Thus, in order to make a good correspondence match-

ing both images should be rectified. Rectification is a process of transforming images

such that epipolar lines of the original images match horizontally. Sample images

before and after rectification process can be seen on Figure 2.2. Then, along on an

epipolar line each pixel in an image is matched with corresponding same pixel in

other image using a matching cost function. After pixels are matched, depth can be

calculated by using the distance between two cameras and the pixel distance between

matched pixels.
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Figure 2.2: Top: Non-rectified Images, Bottom: Rectified Images. [4]

Reflective, transparent, highly textured areas and very smooth regions create the

biggest difficulty for stereo matching algorithms. Edge details of an object in one

image may be disappeared in second image due to perspective change. If algorithm

cannot match these edge points on other image, it might generate an inaccurate depth

value at those points and create noise in estimated depth map. Disappearance of ob-

ject boundaries might also be caused by a fast moving object. Due to direction of

movement, the object might become blurred in one of the stereo images. Apart from

camera and environment related these problems, algorithm used for depth calculation

may also create problems. Matching cost function used in the algorithm may gen-

erate false-positive signals for some edges. These falsely matched edges also create

inaccurate depth maps. Therefore, post processing techniques are mostly required in

stereo vision application in order to eliminate noise and refine depth maps. Most used

post processing techniques are median filter, bilateral filter, interpolation etc. In Fig-

ure 2.3, calculated disparity maps obtained using stereo vision algorithm are provided

along with the refined disparity maps and the ground truth images for comparison.
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(a) (b) (c) (d)

Figure 2.3: Original image in (a), raw disparity maps in (b), refined disparity maps in

(c) and ground truth maps in (d) [5].

2.1.1 Monocular Depth Estimation Using Deep Learning

Even though estimation of depth from multiple images has a long history in computer

vision area, extracting depth information from single images is rather a new concept

in deep learning area. The concept has been started to be investigated thoroughly with

the developments in deep learning techniques. One of the biggest problems in deep

learning is lack of dataset that fits to the problem which is a considerable problem

for monocular depth estimation networks too. Data that can be used in training can

be collected by Lidar sensors, RGB-D cameras or stereo vision cameras. However,

collecting suitable data is generally costly. Therefore, different learning strategies are

developed in order to reduce dependency for dataset.

Learning in monocular depth estimation networks can be divided into three main

categories according to their strategies:

1. Supervised Learning [6], [32], [7], [8], [33], [34], [35]

2. Unsupervised Leaning [9], [10], [11], [12], [13], [19]

3. Semi-Supervised Learning [14], [15], [16]
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2.1.1.1 Supervised Learning

Supervised learning for depth estimation requires pixel-wise ground truth depth infor-

mation. The method proposed in Eigen et al. [6]’s study was one of the first that uses

depth information to train a model by deep learning. They state that their CNN-based

network that is given on Figure 2.4 comprises of two deep network stacks. In first

stack their deep neural network makes depth prediction in coarse scale from an input

image. As seen on the Figure 2.4, input image is provided to the both stacks while

the output depth map of first stack is also provided to the second stack in order to

refine depth map. In second stack the predicted depth map is merged with first layer

image features. Task of this stack is to align received coarse depth predictions with

the objects in the scene.

In order to calculate error irrespective of the global scale, Eigen et al. [6] defined

a loss function in log space. They used this scale-invariant error function as training

loss to measure difference between predicted depth map and ground truth depth. They

claim that using scale-invariant mean squared error function as training loss increases

accuracy and improves the sharpness in object edge boundaries.

Figure 2.4: Eigen et al. [6]’s network structure

.
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After Eigen’s study [6] explained above, several methods have been proposed to im-

prove accuracy of estimated depth map. Li et al. [32] constructed a deep learning

network using Conditional Random Fields for depth map refinement. Similar to [6]

they used a two stage network for depth map prediction and refinement. In first stage,

super-pixels are obtained from input image and image patches extracted around these

super-pixels. Depth map is regressed for these image patches at super-pixel level.

Then, in second stage, conditional random fields are used to refine depth map by

converting super-pixel depth map to pixel level. By their super-pixel image patch

approach, they intended to keep sharper object boundaries.

Additional to ground truth depth supervision some approaches also exploit geometric

relationships to extract a better depth map. In [7] Qi et al. used two networks to

predict depth map and surface normal from single images. Their proposed network

architecture is given on Figure 2.5 with sample images. These two networks enable

conversion of depth-to-normal and normal-to-depth, and collaboratively increase ac-

curacy of depth map and surface normal. Although their neural network can increase

the accuracy of depth maps by this method, for training they require ground truth

labeled surface normal which is hard to obtain.

Figure 2.5: GeoNet Network [7].

Ummenhofer et al. [8] proposed a network to predict depth by the help of structure

from motion (SfM) approach. Two view of the scene is provided as input to create

a single depth map in a three stage network structure which is shown on Figure 2.6.
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In their study, they argue that a basic encoder-decoder architecture cannot process

two input images at the same time. Thus, they proposed an architecture that outputs

optical flow, ego-motion and depth map from an image pair. In the first stage, boot-

strap net takes image pair as input and calculates depth map and relative pose of the

second camera. In the second stage, iterative net has similar structure to bootstrap

net, but it processes optical flow and depth map iteratively to increase accuracy. In

the final stage, refinement net takes input image and low-resolution predicted depth

map as input, and outputs high-resolution depth map by upsampling it to the original

resolution. Ummenhofer et al. [8] also applied a scale invariant gradient loss in train-

ing. This loss term increases smoothness in homogeneous areas and stimulates depth

discontinuities in object boundaries.

Figure 2.6: Ummenhofer et al.’s Depth and Motion Network (DeMoN) [8].

Quality of dataset is as important as the methodology applied in supervised learning

systems. Especially in depth prediction very sparse GT (Ground Truth) depth points

might limit the learning of the network. Rosa et al. [33] drew attention to this problem

in their study. They proposed a technique to create denser GT depth maps from sparse

Lidar measurements by increasing the valid depth pixels in depth images. They train

their model both with sparse GT depth maps and denser GT depth maps and compared

the results. The increase they observed in the performance of their network when

denser GT depth maps are used is undeniable.

Gan et al. [34] also suggested a method to increase quality of GT data while train-

ing their network. They use a Stereo Matching Network additionally to predict depth

maps from stereo image pairs. Then, they use these generated depth maps to assist

Lidar GT depth maps. They also state that in an outdoor scene major depth changes

occur in vertical direction. They claim that roads mostly lie on the vertical direction

and the faraway objects like sky and mountains are positioned on top of the scene
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in general. Based on this assumption they implemented vertical pooling in their net-

work. According to the performance results they share, their proposed techniques

yield better results than previous works. However, the assumption they made for

vertical direction depth changes cannot be generalized for most cases.

Ranftl et al. [35] have proposed an important learning strategy that incorporates mul-

tiple datasets in order to increase performance of monocular depth estimation net-

work. They collected ground truth depth maps for multiple datasets and additionally

they created their own dataset from 3D movies. In order to create their own dataset

from 3D movies they have used stereo matching to infer depth for frames of these

movies. They have pointed out to many problems they have encountered during cre-

ation of this dataset. Unknown camera parameters, changing resolution, negative and

positive disparity values are some of these problems they have dealt with during this

process. In order to show generalization ability of their method they have also used

zero-shot cross-dataset transfer and evaluated their models on datasets that were not

used during training. With the help of their proposed methods for combining mul-

tiple datasets, they have achieved high accuracies with their model for monocular

depth estimation problem. Another observation they have made during their study is

that performance of encoders on ImageNet [2] dataset for object detection problem

provides insight for the performance of these encoders on monocular depth estima-

tion problem. This observation was important for us since EfficientNet encoder we

choose to use in our networks provides state-of-the-art accuracy results on ImageNet

dataset. Using multiple datasets to train their network Ranftl et al. [35] created a ro-

bust and generalized network. They have also achieved state-of-the-art performance

for monocular depth estimation problem and showed the importance of dataset diver-

sity in training once again.

2.1.1.2 Unsupervised Learning

With the increase of layers and trainable parameters in deep neural networks, the need

for the train data increases as well mostly. The main problem with the increasing the

need of more train data is that ground truth depth maps are difficult to obtain. In this

case, unsupervised learning becomes a good option, since unlabeled data might be
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rather easy to find.

With the idea of eliminating the need for ground truth depth maps Garg et al. [9]

became one of the first to propose a method to learn depth in an unsupervised fashion.

Their encoder-decoder architecture based model that is shown on Figure 2.7 is trained

with stereo image pairs. Left image of the pair is given as input to the network and

predicted inverse depth map is obtained as output from the network. The predicted

inverse depth map and right image is used to generate target left image by warping.

Warping operation simply moves pixels along on horizontal lines. Pixels of far objects

move less while pixels of close objects move more. Then the reconstructed left image

and the original left image are used together to calculate image reconstruction losses

for train loss.

Figure 2.7: Garg et al. [9]’s training method.

Godard et al. [10], further improved [9] by inserting left-right consistency check into

the loss function. Their network outputs two disparity maps (left and rigth) from only

left image. Then the left and right images are reconstructed by using these disparity

maps. The reconstructed images are compared with the original ones and the dif-

ferences are noted as train loss. Since they have formulated the depth estimation as

an image reconstruction problem, they have selected the loss functions that calculate

error between reconstructed and original images. They have used Structural Similar-

ity Index (SSIM), disparity smoothness term and left-right consistency check term as

loss functions. SSIM is a function that is used to measure the similarity of two im-

ages. It compares two images in terms of luminance, contrast and structure. Disparity

smoothness term penalizes depth discontinuities unless there is an image gradient at
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regarding area of the image. If image gradient exist at some point, probably there is

an object edge and it is not penalized. Left-right consistency check term is calculated

by using mean absolute error and it is used for each reconstructed and original pair of

images.

In order to warp right image to left image they employ image sampler from spatial

transformer network (STN) which uses bilinear sampling. Their left-right consis-

tency check system is shown on Figure 2.8. Bilinear sampler used in the network is

locally fully differentiable and according to their evaluation results it improves the

overall accuracy of their network. Due to their open-source code, network materials

and implementation details, their work has become one of the most referred study in

monocular depth estimation field.

Figure 2.8: Godard et al. [10]’s left-right consistency check method.

Inference speed in testing time is also a consideration in depth estimation. For ex-

ample, fast prediction is essential for autonomous vehicles. Poggi et al. [11] im-

proved [10] by simplifying the network architecture and they reported that a remark-

able speed in inference time was obtained. They adopted the same strategy for depth

prediction problem. However, with their pyramidal encoder structure which reduces

the complexity, they have managed to reduce number of parameters to 6% compared

to number of parameters used in Godard et al. [10]’s network. Their pyramidal net-

work architecture is shown on Figure 2.9. With their simplified model, they can infer

depth map even on a Raspberry Pi 3 in 1.7s.
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Figure 2.9: Poggi et al. [11]’s network structure .

Unsupervised methods investigated until now used stereo images as supervision and

their train loss was depending on image reconstruction errors only. Consecutive

frames from a video can also be used as supervision in training a depth prediction

network. The challenge in this approach is that the camera transformation between

consecutive frames must also be predicted, which brings extra complexity to the net-

work.

Zhou et al. [12] proposed an architecture to predict depth map and camera pose

simultaneously that is shown on Figure 2.10. Three consecutive frames are fed into

the network as input. The Pose CNN predicts relative camera poses while the Depth
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CNN predicts a depth map from the first image. Then, predicted depth map and

other two frames are used with relative camera pose information to reconstruct target

image. The image reconstruction stage employs bilinear sampling similar to [10]

and similar reconstruction errors are used as train loss. Zhou et al. [12]’s proposed

method falls behind [10] which might has happened because of two reasons. [12]

does not employ left-right consistency check as train loss and this might decrease

accuracy. Another possible reason is that [10] uses calibrated stereo pairs, which is

absent in [12]’s method and predicting relative camera pose adds another unknown

parameter to the architecture.

Figure 2.10: Zhou et al. Network [12].

There are also some approaches that merge multiple self-supervision methods into

one to achieve better accuracy in depth prediction. In their work, Godard et al. [13]

proposed using video sequences and stereo image supervision together to train their

model. They use estimated depth map and estimated relative camera pose to construct

other stereo view and adjacent other two frames in the video sequence. Then, image

reconstruction errors are calculated using these reconstructed images and the original

ones. [13] has some other improvements compared to their previous work [10], in

terms of loss functions and network architecture. They have added a pose network

to their model to estimate relative camera pose in adjacent frames. Their proposed

network architecture and the methods applied in training are shown on Figure 2.11.

In their paper, Godard et al. [13] state that with careful choices of appearance losses,
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significant improvement in the accuracy can be obtained. One of the main problems

in self-supervised methods using video is occluded pixels which are resulted by the

camera motion. In a 3 frame sequence, instead of using classical average loss for

occluded pixels, they propose to use minimum loss which helps to get non-occluded

pixel from amongst previous or next frame. Another improvement they have ac-

complished compared to their previous work [10] is computing image reconstruction

losses in original image scale. In this work, they upsample predicted depth maps to

original input image size to compute reconstruction losses instead of computing them

on the ambiguous low-resolution images. With this approach they state, texture-copy

artifacts are prevented. In this paper, they have reached to the state-of-the art perfor-

mance in unsupervised learning for monocular depth estimation.

Figure 2.11: Godard et al. [13]’s Network Architecture (Monodepth2).

Increase in the accuracy of unsupervised methods has encouraged others to adapt

knowledge distillation methods into the monocular depth estimation problem. Pilzer

et al. [19] adapted an unsupervised monocular depth estimation network to the

teacher-student learning framework. Their proposed approach uses stereo image pairs

to train a teacher network. As they state, their student network is a sub-network of

teacher network, so they call their method more of a self-distillation process. While

their teacher network shows promising results, their student network cannot reach to

the accuracy of teacher network. Instead, student network is double time faster than

the teacher network at inference. Pilzer et al. [19]’s methodology is analyzed in detail

in Teacher-Student Learning section.
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2.1.1.3 Semi-Supervised Learning

In contrast to supervised and unsupervised methods, there are less studies about semi-

supervised methods in monocular depth estimation. An approach proposed by Kuzni-

etsov et al. [14] uses supervised loss term and unsupervised loss term at the same

time during training. Their proposed architecture is shown on Figure 2.12. Predicted

inverse depth maps are used to reconstruct left and right images by warping and un-

supervised loss term is computed using reconstructed and target images. At the same

time supervised loss term is computed using predicted depth maps and ground truth

depth maps. They have also evaluated the usage of skip connections from encoder

part to decoder part and claimed that using skip connections slightly improves per-

formance of the overall network. Moreover, they stated that estimated depth maps

become more detailed when skip connections are used.

Figure 2.12: Kuznietsov et al. [14]’s Network Structure.

Luo et al. [15] considered dividing the monocular depth estimation problem into

two sub-problems and deal with these problems separately. According to their ap-

proach, they expect to decrease the need of network for labeled ground truth depth

data. They also stated that using geometric constraints during inference may be pos-

sible and can improve the performance even further. Their overall architecture which

is given on Figure 2.13 comprise of two sub-networks: View Synthesis Network and

Stereo Matching Network. Adapted from Deep3D [36], their View Synthesis Net-
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work learns to synthesize right image of stereo pair using left image. In this network

only L1 loss is as an unsupervised loss term between original right image and syn-

thesized right image. In Stereo Matching Network, left and synthesized right image

are used together in an encoder-decoder architecture pipeline to obtain disparity map.

In this network ground truth depth maps are used as supervision in order to compute

loss for predicted depth maps. According to their approach two networks are trained

separately in first stage, then they are fine-tuned in an end-to-end fashion in second

stage.

Figure 2.13: Luo et al. [15]’s Network Architecture.

Cho et al. [16] introduced a new teacher-student learning strategy to train a monocular

depth estimation network in a semi-supervised manner. Their proposed method that

is shown on Figure 2.14 consists of two stages similar to [15]. In first stage they

train a stereo matching network with GT labeled data and call it the teacher network.

Then, they allow the teacher network to predict depth from stereo pairs of a massive

unlabeled dataset. In the second stage of their strategy, they use these predicted depth

maps and unlabeled dataset to train a student network optimized for monocular depth

estimation. They have also evaluated the trade-off between the accuracy and the

density of pseudo labeled depth maps. The density increases as the pixels in the depth

map increase. They measured the accuracy of pseudo labeled depth maps with Abs

rel and RMSE error metrics with changing density of the depth maps. They observed

that accuracy of the pseudo labeled depth maps increases when density decreases.

They interpret this relationship as elimination of inaccurate pixels while the density
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decreases. They have also reported that their monocular depth estimation network

reaches the best accuracy when the density of pseudo labeled depth maps are around

80 percent. As stated in their paper [16], using more accurate pseudo labeled depth

maps does not necessarily yield better results.

Figure 2.14: Cho et al. [16]’s Network

2.2 EfficientNet

This chapter presents background information about EfficientNet model and the anal-

ysis of related works that employ EfficientNet. EfficientNet model is a strong tool for

deep learning architectures. When proposed by Tan et. al [17] in 2019, EfficientNet

drew big attention with its accuracy and efficiency. Compared to other Convolution

Neural Network based architectures ResNet [37], Xception [38], EfficientNet has

achieved state of the art performance in image classification like tasks. They cre-

ated their baseline network using neural architecture search and with the help of grid

search strategy they found appropriate scaling coefficients for each model type. In

time, with its small to large scalable models EfficientNet started to meet needs of

many architectures by just scaling depth, width and resolution coefficients.

A deep neural networks size can be changed in terms of depth, width and resolution.

Depth of a model can simply be considered as the number of layers in the network.

Each layer in a deep learning network has convolution based operations and addi-

tionally operations like batch normalization, activation function etc. can be added

to the layer. As layers in the network increase, the deeper the network becomes.

Depth wise scaling is the most popular one among others as known from ResNet [37]

models. With increasing layers, models called ResNet18, ResNet50, ResNet100 are
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constructed. Width is simply the number of channels used in each convolution layer.

Channels of a layer is also known as filters. Input data is encoded into many channels

during layer operations and the extracted features are transferred by those channels.

Increasing channel sizes in a model may increase number of trainable parameters

enormously depending on the convolution operation used in the model. Resolution

is simply the size of the input image supplied to the network. In some cases, high

resolution images can help detecting small or thin objects more easily at the cost of a

larger model size.

Scaling depth, width and resolution were used methods among researchers to achieve

better accuracy. At the cost of small increments in model sizes, up-scaling these

parameters can provide better results. However, according to [17] up-scaling these

parameters individually can provide better results up to a point and after a threshold

the performance gain reaches saturation. Compound scaling method as described in

[17] is strategically scaling depth, width and resolution of the model all together to

achieve a better trade off between model accuracy and size.

To show accuracy increment when depth, width and resolution parameters are scaled

individually, ImageNet Top-1 Accuracy vs. Flops graphs are provided in [17]. These

graphs are given on Figure 2.15. Accuracy of the model is evaluated after training an

image classification network to classify images in ImageNet [2] dataset. ImageNet

is a large dataset of images, designed for computer vision tasks. It includes over 14

million images organized into almost 22,000 categories. There are two well-known

evaluation metrics for image classification when ImageNet dataset is used, Top-1 ac-

curacy and Top-5 accuracy. Top-1 accuracy is the traditional accuracy, which implies

that the networks answer with the highest probability must be expected target answer.

If networks answer is not the expected answer, it is considered as a wrong output.

Top-5 accuracy implies that, expected target answer must be amongst the 5 highest

probability answers given by the network. If the target answer is not amongst these 5

highest probability answers, it is considered as a wrong output. Flops (floating point

operations per second), on the other hand, is a measure for model performance. It

roughly shows the number of operations required to be done in the model. When

depth, width or resolution of the model is increased, number of operations (flops)

required in the network increases as it is expected.
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Figure 2.15: Scaling Up a Baseline Model with Different Network Width (w), Depth

(d), and Resolution (r) Coefficients [17]

In Figure 2.15, effect of individually scaled width, depth and resolution parameters

on the accuracy and flops can be observed. Scaling these three parameters eventually

end-up with saturation in accuracy and after some threshold increasing these param-

eters just decreases the model speed. According to [39], increasing width of model,

that is increasing number of channels in the model, helps detecting fine-grained fea-

tures. However, as discussed in [17], solely increasing width of a shallow network

does not provide a huge improvement and network might still have difficulties in

detecting fine-grained features.

Increasing depth of model has a similar effect on network in capturing high-level fea-

tures. Additionally, increasing depth of network helps model to generalize better on

unseen datasets. However, as stated in [17], increasing depth of model creates van-

ishing gradient problem and it becomes difficult to train these networks. In networks

with large number of layers, gradient of the loss function approaches to zero when it

is calculated for first layers in back propagation operation. This problem is generally

caused by some activation functions like sigmoid activation function. Since, sigmoid

function projects a large input space into a small one and the derivative of this func-

tion is small, gradient of loss function becomes smaller when passes a function like

sigmoid in back propagation. As proposed in [17] too, this vanishing gradient prob-

lem can also be solved by using skip connections and batch normalization.

Skip connection is the name given to the link between two nonsuccessive layers. With

a skip connection, output feature map of a layer is given as input to another layer that
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is not adjacent. In the accepting layer two feature maps, one from skip connection and

one from previous layer, will be taken as input. These two feature maps are in general

combined using concatenation operation and then processed in the accepting layer.

These connections between the early layers of the network and the layers at the end

help to solve vanishing gradient problem. During back propagation skip connections

are used to update weights of earlier layers in the network.

Batch normalization is a set of operations applied to a batch of input data in order

to reduce internal covariate shift. When batch normalization is applied, the batch

of inputs is simply normalized by subtracting the batch mean and then dividing by

the batch’s standard deviation. It will be explained in detail in Activation & Batch

Normalization section. This operation helps solving vanishing gradient problem by

preventing the gradients from getting too large or too small.

Using higher resolution images as input to the model expectedly helps model to cap-

ture fine-grained features. As seen in Figure 2.15, after some increment in resolution

model accuracy saturates like other parameters. However, increase in resolution ex-

ponentially increases flops of the model compared to other parameters.

Based on above studies about parameter scaling, Tan et. al [17] reached 2 observa-

tions. According to their first observation, upscaling depth, width and resolution of

network increases accuracy, but as model gets larger with increment of these param-

eters, the accuracy increase diminishes. Their second observation states that, in order

to get better accuracy, scaling of these parameters need to be done by some specific

ratio. Thus, they propose a compound scaling method to scale these parameters for

different model types. Their proposed compound scaling method is based on the

following formula:

depth: d = αφ

width: w = βφ

resolution: r = γφ

α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(2.1)

25



φ is a compound coefficient, used to scale depth, width and resolution of the network

while α, β, γ are constant values, determined by a grid search. In the paper [17], the

authors propose a two-step process to determine values of coefficients and constants.

In first step, φ is fixed to 1 and by using grid search α, β, γ values are determined.

For baseline EfficientNet-B0, these values are determined as α=1.2, β=1.1, γ=1.15.

In second step, α, β, γ values are fixed and value of φ is scaled to get different net-

work structures called EfficientNet-B1 to B7 by using Equation (2.1). Corresponding,

depth, width and resolution coefficients of obtained network structures can be seen

on table 2.1. According to these obtained coefficient values and repetition, structure

of structure of the network is altered and EfficientNet-B0 to B7 are obtained.

Table 2.1: EfficientNet Model Coefficients

Width Coefficient Depth Coefficient Resolution Coefficient

EfficientNet-B0 1.0 1.0 224

EfficientNet-B1 1.0 1.1 240

EfficientNet-B2 1.1 1.2 260

EfficientNet-B3 1.2 1.4 300

EfficientNet-B4 1.4 1.8 380

EfficientNet-B5 1.6 2.2 456

EfficientNet-B6 1.8 2.6 528

EfficientNet-B7 2.0 3.1 600

Scaling parameters of the network solely, may not be enough for the best accuracy

always. A good network structure is essential to have a good accuracy. Tan et. al [17],

used Neural Architecture Search to develop a good baseline network structure. Neural

Architecture Search (NAS) is an automated design method used for neural networks.

It provides the most efficient network design for given needs. While determining

network structure they used a specific operational block called MBConv [18] as a

main block. MBConv is an Inverted Residual Block proposed in [18] that is optimized

for accuracy and consists of several convolution operations. After Neural Architecture
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Search, they developed and proposed their baseline network called EfficientNet-B0.

Structure of EfficientNet-B0 model can be seen on Table 2.2.

Table 2.2: EfficientNet-B0 baseline network

Stage Operator Resolution #Channels #Layers

i Fi Hi x Wi Ci Li

1 Conv3x3 224 x 224 32 1

2 MBConv1, k3x3 112 x 112 16 1

3 MBConv6, k3x3 112 x 112 24 2

4 MBConv6, k5x5 56 x 56 40 2

5 MBConv6, k3x3 28 x 28 80 3

6 MBConv6, k5x5 14 x 14 112 3

7 MBConv6, k5x5 14 x 14 192 4

8 MBConv6, k3x3 7 x 7 320 1

9 Conv1x1 & Pooling & FC 7 x 7 1280 1

As stated before MBConv used in EfficientNet is an Inverted Residual Block. It has

inverted structure of a Residual Block that is first proposed in ResNet [37]. In neu-

ral networks increasing the depth of network by adding more layers does not always

make the network train better and reach to a better accuracy but sometimes causes

degradation in accuracy. While the model is expected to converge to a higher accu-

racy, its accuracy saturates and eventually degrades rapidly. He et. al [37] claimed

that using Residual Blocks helps solving this problem. As seen on Figure 2.16, a

residual block has a skip connection and it compresses the data by reducing number

of channels and then it expands the data by increasing back the number of channels.

With the help of this reduce and increase in the channels, a residual block extracts

the useful features more easily. On the other hand, skip connection in the block that

connects input to the output prevents loss of data during channel reducement. In the

output, compressed and expanded data is added with input data.
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(a) Residual Block (b) Inverted Residual Block

Figure 2.16: Structure of Residual and Inverted Residual Block [18]. Thickness of

each block shows the relative number of channels.

Inverted residual block follows the reverse of procedure applied in a residual block.

First, the data is expanded by increasing number of channels and then it is compressed

by decreasing number of channels. Skip connection works in the same way and input

data is added to the output data at the end. There are two types of MBConv blocks

used in EfficientNet architectures, MBConv1 and MBConv6. The number after the

MBConv indicates the expansion size of the block. In MBConv6, the channels are

expanded 6 times, while in MBConv1 the channels are not expanded at all.

MBConv blocks in EfficientNet are a version of inverted residual block but have some

extra modifications. First, activation functions are changed to Swish activation func-

tions. Structure of swish function is similar to widely-used ReLU and its function is

f(x) = x · sigmoid(x). Swish activation function will be explained in detail in Ac-

tivation & Batch Normalization section with other activation functions. Compared to

ReLU, swish activation function shows better performance in deeper networks. Sec-

ond, a depthwise separable convolution layer is added to the block after the expansion

layer. When computational resources are restricted, using depthwise separable con-

volution layer is more advantageous as they need less resource due to their separable

structure.

After the depthwise convolution layer sometimes a squeeze-excitation block is added

into the MBConv block. The squeeze-excitation (SE) block proposed in [40], focus

on channel relationships in the network. They claim that in a feature map not all

channels have the same importance so they must be weighted according to their im-

portance. In a squeeze-excitation block, all channels are reduced to a single value
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first. Then, two fully connected layers followed by activation functions adds non-

linearity to these values. In the last stage, obtained values are used to weight each

corresponding channel by multiplication. According to the [40], SE block improves

performance of the network significantly in the exchange for a small computational

cost. Structure of MBConv6 block and squeeze-excitation block can be seen on Fig-

ure 2.17.

Figure 2.17: MBConv6 Block and Squeeze-Excitation Block

Since it is published, studies that use EfficientNet model family proposed by Tan et. al

[17] have increased unexpectedly fast. Liebl et. al [41] pointed out the challenge in

separation of text from non-text content in optical character recognition (OCR) of his-

torical documents. They approached to the problem like a segmentation problem and

they trained their models using supervised learning. EfficientNet-B1 and B2 models

were employed in their studies and they indicated that EfficientNet employed network

gives one of the best results among 11 other networks. Another computer vision re-

lated study was carried out by Zoph et. al [42] about semantic segmentation task.

Their network architecture with EfficientNet outruns state-of-the-art DeepLabV3+
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[43] architecture in PASCAL VOC 2012 segmentation dataset [44]. Moreover, they

achieved this with EfficientNet-B7 model used with one third of FLOPs compared to

DeepLabV3+ [43].

Image classification is one of the most studied computer vision task in deep learning.

Noisy Student Training method proposed by Xie et. al [1], improves image classi-

fication accuracy of EfficientNet Networks on ImageNet Dataset [2]. The proposed

training method is a semi-supervised learning method called Teacher-Student learn-

ing. The training process consists of two steps. Firstly, an EfficientNet based network

is trained on ImageNet [2] with labeled images as a teacher network. Then, 300M

unlabeled images are provided to the network and pseudo labels of these images are

taken as output from teacher network. In second step, another EfficientNet based

network is trained with labeled and pseudo labeled images as a student network. At

this stage, two types of noise is additionally included into the process which are in-

put noise and model noise. Both of them is used to make student network generalize

better. Input noise is added to the training as data augmentation. On the other hand,

regularization methods like dropout and stochastic depth are known as model noise

and they are also injected to the training process of student network. The proposed

Noisy Student Training process improves self-training and increases EfficientNet’s

accuracy in ImageNet image classification task by noticeably. The Teacher-Student

learning process and the details of this paper will be provided in Teacher-Student

Learning Section.

HigherHRNet [45] is an human pose estimation network proposed by Cheng et. al.

Using high resolution future pyramids in their network they have achieved the state-

of-the-art accuracy for human pose estimation problem. Neff et. al [46] proposed

merging HigherHRNet [45] with EfficientNet [17], in order to decrease computational

load of the network and increase accuracy in human pose estimation task. They used

the advantage of scalable architecture of EfficientNet models from B0 to B7. They

state that, by scaling EfficientNet models, they managed to set up lightweight net-

works for human pose estimation while maintaining accuracy competitive with other

state-of-the-art models.

Tan et. al [47] have modified EfficientNet for Object Detection task and introduced
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EfficientDet network architecture. Similar to EfficientNet, EfficientDet architecture

is also based on scalable depth, width and resolution parameters. They imply that

with their network structure, accuracy obtained by other state-of-the-art models is

achieved in object detection with 4x – 9x smaller network sizes.

Object detection architectures are used even in diagnosis of certain diseases from

medical images. Anwar et. al [48] have studied diagnosis of COVID-19 from CT

(Computed Tomography) scan images using an EfficientNet based network structure.

By using COVID and non-COVID CT scan images for supervised learning, they ap-

proached to the problem like an object detection problem and achieved almost 90%

accuracy in detection of infected lungs from CT scan images.

2.3 Activation & Batch Normalization

There are many activation functions that can be used in deep neural networks based

on the problem need to be solved. Depending on the choice of activation function,

performance and accuracy of the overall architecture can be increased. In deep learn-

ing studies one of the most used activation function is Rectified Linear Unit (ReLU).

As given in the equation 2.2 ReLU has non-negative activation so mean of activation

is always above zero and it creates an undesirable bias for next layers in the network.

If mean activations of layers in the network are around zero learning process might

become faster and convergence time will be decreased.

ReLU Activation Function:

f(x) = max(0, x) (2.2)

Unlike Rectified Linear Unit (ReLU), Exponential Linear Unit (eLU) can generate

negative outputs as given in equation 2.3. It is differentiable and continuous at all

points. Compared to ReLU it might be slower but compared to other non-saturating

activation functions, eLU still provides speed advantage during training time. As pro-

vided in equation 2.3, eLU function consists of a parameter α that is used to control

when function saturates for negative input values.
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eLU Activation Function:

f(x) =

x if x > 0

α(ex − 1) if x < 0
(2.3)

Similar to eLU, Sigmoid is a continuous and differentiable activation function. How-

ever, it has a disadvantage that it creates vanishing gradient problem if it is used too

much in hidden layers of the network. Sigmoid projects a large input space into a

small one so gradient of loss function becomes smaller as it passes a Sigmoid func-

tion in back propagation. However, this problem can be eliminated in general if skip

connections are used. Formula of Sigmoid Activation Function is provided in equa-

tion 2.4. Its outputs are bounded in the range of (0,1).

Sigmoid Activation Function:

f(x) =
1

1 + e−x
(2.4)

Swish Activation Function is similar to ReLU in terms of structure but it is continuous

and differential at all points. As explained before in EfficientNet section of Chapter

2, it is used in EfficientNet structure. In equation 2.5 formula of Swish Activation

Function is given.

Swish Activation Function:

f(x) = x · sigmoid(x) (2.5)

Graph of all four activation functions are provided in the Figure 2.18 for comparison.
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(a) ReLU Activation Function (b) eLU Activation Function

(c) Sigmoid Activation Function (d) Swish Activation Function

Figure 2.18: Activation Functions

As explained before in EfficientNet section, Batch normalization helps solving van-

ishing gradient problem. If the variance of data transferred from one layer to another

is too large, during back propagation some gradients calculated for weight update

would be so small while some of them is very large. These small gradients will even-

tually vanish before they reach to earlier layers. If Batch normalization is applied, cal-

culated gradients will have small variance and the vanishing gradient problem might

be solved.

Besides its effect on the vanishing gradient problem, Batch normalization also ac-

celerates training by standardizing the data in a batch between layers. Formula of

Batch normalization is provided in equation 2.6. There are two trainable parameters

of Batch normalization operation, γ and β. During back propagation these parame-

ters are updated and the normalization applied to the batch after an activation layer

in forward propagation is reversed by using only these two parameters. ε is a small
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constant added to the variance in order to avoid dividing by zero.

µB =
1

m

m∑
i=1

xi //Batch Mean

σ2
B =

1

m

m∑
i=1

(xi − µB)2 //Batch Variance

x̂i =
xi − µB√
σ2
B + ε

//Normalize

yi = γx̂i + β //Scale and Shift

(2.6)

2.4 Teacher-Student Learning

In deep learning applications lack of training data and the limited computational re-

sources are the biggest motivations in developing different techniques. With this mo-

tivation and due to it’s wide applicability, teacher-student learning methods appear in

many different studies in deep learning area. Teacher-student learning approaches are

often called as knowledge distillation. In general, the smaller of the two networks is

called as student and it is trained by the supervisory signals that come from the larger

network. These supervisory signals might be gradient required for the weight update

of student network or any kind of data that can be used in training of student network.

Size of student network can be small or same compared to teacher network. If a net-

work that is lighter than the original network but has similar accuracy is required,

then the student network can be built smaller than the teacher network.

Bucilua et. al [49] were one of the first to propose a method to train a smaller network

with the help of a larger original network. Motivation of their work was to create a

compressed model of their original model to use it in computational power or storage

space limited applications. They called their method as model compression and did

not refer their large and small networks as teacher and student but the procedure

applied in their work lead the way for teacher-student learning methods. The idea

behind their method was to use a largely trained model to create pseudo labels for a

pseudo dataset. Then, by using these pseudo dataset and labels created, they trained

a smaller network to mimic original large network.
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Later Hinton et. al [50] popularized the idea by using knowledge distillation descrip-

tion for a similar process, transferring knowledge from a large model to a small model.

In their method which is also known as vanilla knowledge distillation, teacher model

is much larger than the student model. With the help of supervisory data coming from

teacher model, student model tries to generate same outputs or soft labels of teacher

model. Supervisory data from the teacher does not need to be taken from the output

necessarily. Instead it can be intermediate features that can guide the training of stu-

dent network. In our case supervisory data predicted by teacher network is the depth

map and these depth maps are used to train our student network. These predicted

depth maps are called pseudo labels in our work.

With the improvements in teacher-student learning frameworks, more methods have

been proposed in the deep learning area. Even some approaches have reached to the

state-of-the art performance results while dealing with monocular depth estimation

problem. The teacher-student approach proposed by Pilzer et al. [19] has a novel

self-supervised architecture. They do not use any supervisory signal from outside of

the network. Instead, they use stereo image pairs as input to the network and calculate

reconstruction errors in loss function similar to [9] and [10] in order to train their

networks. Novelty in their study is that they train their student and teacher networks

in a self-supervised fashion.

In Pilzer et al. [19]’s architecture, teacher network and student network which is a

sub-network of teacher are trained together as seen on Figure 2.19. In their method,

student network makes a disparity map estimation for an input image first. Then,

opposite view image is reconstructed using input image and the predicted disparity

map. Then, the overall network, called Teacher, calculates reconstruction errors and

implements inconsistency checks for the reconstructed image. Calculated loss is used

by teacher to train itself along with student network.
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Figure 2.19: Pilzer et al. [19]’s network structure.

In Pilzer et al. [19]’s approach, since training of the student by the teacher is dis-

tillation of knowledge from overall network to a sub-network of all structure, they

called it self-distillation. As stated before in Unsupervised Learning section, accord-

ing to their evaluation results, their student network shows worser performance than

the teacher and this would be expected since they use student network to improve

performance of teacher.

In Cho et al. [16]’s proposed method teacher and student networks have different

structures. Both of them predicts depth maps but they do it by using different method-

ologies. Their teacher network is a Stereo Matching Network and uses stereo image

pairs to predict a depth map while student is a shallow network that predicts depth

by using single images. In other words, their student network is a monocular depth

estimating network while the teacher is not. Additional to auxiliary information pro-

vided by teacher network they also provide stereo confidence maps as supervision

to the student network during training to prevent the student from using inaccurately

predicted depth maps. They mainly focused on domain adaptation in their work but

they also proved that using pseudo ground truth depth maps to train a student network

can provide good results.

Ye et al. [20] proposed a method to train a student network by using more than

one teacher network, which they call knowledge amalgamation. They have two pre-
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trained teacher networks for scene parsing (semantic segmentation) and depth estima-

tion. Both these networks and the student network have same architecture. Basically

their method depends on exchanging pre-trained network blocks between teacher net-

works and the student. They called this process as knowledge amalgamation.

In Ye et al. [20]’s architecture, student network’s decoder part splits into two at some

point to output both scene parsing and depth estimation results as seen on Figure 2.20.

The main objective here is to train an encoder to extract both depth and scene parsing

features at the same time. During training of the student network they try to match

extracted features and final predictions with the teacher networks outputs. They stated

that, according to their results, student network surpasses the teacher networks in their

own area of specialties.

Figure 2.20: Ye et al. [20]’s network structure.

Similar to monocular depth estimation, semantic segmentation is one of the most

studied problem of deep learning area. Many methods including teacher-student

learning procedures [51], [52], [21] have been applied to reach state-of-the-art perfor-

mance in this topic. Chen et al. [21] focused on the problem of inadequate number

of ground truth labeled datasets and how hard it is to obtain them. Their solution in-

cludes a labeled small dataset and an unlabeled dataset in training of a network. They

proposed to train a teacher network with labeled images and then use this network to
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predict labels of an unlabeled dataset. Then in the last stage, they use both labeled

and pseudo labeled dataset in training of a student network. Their student and teacher

network has a shared encoder, which enables student network to learn from features

that are extracted by teacher network. In their work Chen et al. [21] investigated the

amount of labeled data needed for their student network to pass performance of fully

supervised teacher network. They show that when same amount of labeled data is

used in training of both teacher and student, at some point with the help of pseudo

labeled dataset, student network can pass the performance of teacher network.

Figure 2.21: Chen et al.’s network structure. Image is taken from [21]

In most of the teacher-student learning methods, student network is smaller than the

teacher network and the main objective is training a student network that can mimic

the teacher network. As mentioned in EfficientNet section, Xie et. al [1] brought

a new perspective to the teacher-student learning methods. They proposed using a

student network that is equal-or-larger than the teacher network and adding both input

noise and model noise to the training process of the student. Main difference of their

work from previous teacher-student learning methods is that they add the noise very

aggressively to make student network outperform the teacher and generalize much

better than it.

In Xie et. al [1]’s approach, noise is injected by three methods. Data augmentation is

applied during training as input noise. On the other hand, Dropout [53] and stochastic

38



depth [54] are applied as model noise. Model noise methods are also known regular-

ization methods. Data augmentation is a well-known and commonly used input noise

method in deep learning. During training altering input data is called data augmen-

tation and generalization of the network for unseen input data is expected by using

this method. If input data given to the network is an image, then properties like color,

brightness, saturation and angle of it can be changed before it is fed into network.

Moreover, it can be stretched or cropped.

Dropout is another commonly used method in deep learning that is proposed by Sri-

vastava et. al [53]. Dropout is an operation applied to the layers. According to a

probability rate during training some randomly chosen units are not taken into ac-

count while calculating the layer output. Those chosen units are called dropped and

they are ignored during that forward pass of the network. This forces network to ex-

tract required features with less number of units. Most important expectation from

the dropout operation is to reduce over fitting of the network.

Stochastic depth process is proposed by Huang et. al [54] and the goal is same with

the dropout process. While dropout removes units during training stochastic depth

removes layers and replaces them with identity functions. This enables the network to

become shorter during training and train in fewer time. It also prevents overfitting and

makes the network generalize better on unseen data. All these three noise elements

are only used in training and not used in testing.

As mentioned before, Xie et. al [1] has a two-step training process. Teacher network

is trained with a labeled dataset without injecting any noise. Then, this trained net-

work is used for creating pseudo labels for an unlabeled dataset. In second stage,

student network is trained with labeled and pseudo labeled datasets by injecting noise

into the training. However, their method does not ends at this stage. Their method’s

another difference from previous works is that they propose training more than one

student network in an iterative way. When they train first student, it becomes their new

teacher and gives pseudo labels to the unlabeled dataset again. With labeled dataset

and updated pseudo labeled dataset they train another student. They claim that, this

iterative learning strategy can continue until accuracy reaches at top or over-fitting

starts. Their proposed iterative learning process is given in Figure 2.22.
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Figure 2.22: Xie et al. [1]’s iterative learning method.

They show the effectiveness of iterative training and share the acccuracy results of

their image classification network tested on ImageNet Dataset [2]. During three

iterative learning process their network continuously increases its accuracy. They

have also observed that their student network trained on labeled and pseudo labeled

datasets outperforms the network that is pretrained on unlabeled dataset and finetuned

on labeled dataset. This comparison reveals the effectiveness of training on both la-

beled and pseudo labeled dataset jointly.

In their study Xie et. al [1] also drew attention to the ratio of unlabeled data to la-

beled data used in training of student networks. They claim that if the number of

images in unlabeled dataset increases compared to labeled dataset, student networks

can generalize better. In order to increase performance of third student network they

increase the ratio of images in unlabeled and labeled dataset from 14:1 to 28:1 in third

iteration. One of their findings is using a large ratio between unlabeled and labeled

data number increases accuracy of the student network and its generalization ability

as well. They also suggest that joint training on both datasets provides much better

results than training separately or fine-tuning on any of them.

Xie et. al [1] evaluated the effect of injecting noise into the network as well. Since
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they train student networks with a much larger dataset compared to teacher network,

they thought performance increase in the student networks may not be resulted from

the injected noise but it might be a result of increasing the number of training data.

Therefore they have trained and evaluated their networks with and without noise in

order to observe effectiveness of noise in performance. They have used EfficientNet-

B5 model size for their teacher and student networks. They state that, in order to

save time they did not use iterative training and same number of data is used for

labeled and unlabeled datasets. Their evaluation results are given on Table 2.3. They

have trained their networks on ImageNet Dataset [2] for image classification problem.

Original EfficientNet-B5 network accuracy result is also provided on the Table 2.3 for

comparison.

Table 2.3: Effect of injecting noise into the training [1]. Evaluation results on Ima-

geNet Dataset [2] for image classification problem.

Model Name Top-1 Accuracy

Original EfficientNet-B5 83.3%

Noisy Student Training (B5) 83.9%

Student w/o Aug 83.6%

Student w/o Aug, SD, Dropout 83.2%

Teacher w. Aug, SD, Dropout 83.7%

With their findings and their proposed noisy iterative learning process, Xie et. al [1]

made a great contribution to the deep learning literature. In this thesis, we create

a monocular depth estimation network and train it similar to Xie et. al’s method,

teacher-student iterative learning.

2.5 Dataset

KITTI Dataset [22] contains several images from outdoor scenes captured while driv-

ing with a car. For each scene there are images taken from different angles of the car
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together with depth maps obtained by Lidar depth sensor. These captured images and

depth maps are synchronized and calibrated by publishers. There are a total of 42,382

stereo image pairs from 61 scenes in KITTI dataset. Images in the dataset generally

have 1245x375 pixels in size. All these image pairs have raw depth maps obtained by

Lidar but not all of these depth maps are reliable to use. Some of these images and

depth maps still have calibration faults, measurement errors etc. Lidar measurements

are sparse that is depth maps in the dataset does not have depth measurement for each

pixel corresponding to the camera image. Only 5% of the pixels in input image has

depth values. Moreover, the angle of view of Lidar is narrow in vertical direction

and ground truth depth maps only include depth measurements in the two third of the

overall image and one third of the depth map is empty from top.

There are also KITTI 2015 stereo dataset [24] that provides highly detailed 200

ground truth depth maps for specifically selected 200 images. There are left and

right views so there are actually a total of 400 images. Due to low frame rate of the

laser scanner depth of moving objects are not scanned precisely. In order to solve

this problem, Menze et al. [24] proposed a method. They first recovered the static

background of the scene. After estimating ego-motion of the moving objects, using

optical flow they have calculated the precise depth of these objects. Then, they have

re-inserted calculated depth of these moving objects into the ground truth depth maps.

Since, these 200 image-ground truth pairs are highly detailed, they are used for com-

parison of our modified Monodepth model to the original Monodepth model in the

early stages of our work.

According to utilizable data, there are some splits of KITTI proposed by researchers

that work on monocular depth estimation problem. Eigen et al. [6] have split the

KITTI dataset into two for training and testing purposes and the images they have

selected from KITTI dataset was named as Eigen Split of KITTI. Their training set

includes 23,488 images from different 32 scenes and testing set includes 697 images

from remaining 29 scenes. The KITTI dataset also includes opposite (right camera)

view of these 23,488 images. In later works, [22] published annotated depth maps of

KITTI dataset which includes denser depth measurements compared to initial sparse

measurements. 652 images from Eigen test split was provided in annotated depth

maps and in the evaluation stage of their model performance many researchers that
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work on depth estimation problem have trained their networks on Eigen train split

and evaluated their models on Eigen test split. In a short time, Eigen train and test

splits have become a fair comparison benchmark for researchers. Some images and

corresponding depth maps from KITTI dataset can be seen on Figure 2.23. Since lidar

depth measurements are sparse as seen in the images on second row, we have applied

an interpolation procedure to make them more perceivable. These dense ground truth

images are shown on last row.

Figure 2.23: KITTI Dataset [22] sample images. From top to bottom: Sample Image,

Sparse Ground Truth Depth Map, Dense Ground Truth Depth Map

In our work, we have used Eigen train split of KITTI dataset to train our models and

evaluated them on Eigen test split in order to fairly compare our results with other

studies. As explained before, there are also right camera views of each image included

in Eigen train set. So, there are approximately 46,000 images with ground truth depth

maps that can be used in training. For our teacher-student learning method, we use

some of these images with ground truth to train our teacher model in a supervised

manner and use rest of them to predict depth maps. Overall training procedure will

be explained in Teacher-Student Learning section of Chapter 3.
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CHAPTER 3

PROPOSED METHOD

In this chapter, proposed network architecture will be presented in detail. First,

overview of encoder and decoder parts of the network architecture and the training

losses used in the training will be explained. Later, the iterative teacher-student learn-

ing procedure that has been followed during training of our models will be explained

in detail.

3.1 Network Architecture

Most of neural networks consist of three main parts, encoder, decoder and training

loss. Encoder structure is composed of neural layers which calculates convolutional

operations, pooling operations etc. Input to an encoder can be any type of data, an im-

age, a recorded voice even a written text while the output of it is a feature map/tensor.

Encoder part as its name signifies, encodes the data or features given in the input data

and provides it to decoder part. Decoder part on the other hand, takes the encoded

feature maps and gives the best closest match to intended output. Output of decoder

can be a reconstructed image, a probability distribution, a depth map or any type of

desired data. The proximity of obtained output to the desired output is calculated by

training loss. Overall network model tries to minimize this training loss to get desired

output by changing weights used in layers of encoder and decoder parts. The change

that will be applied to weight values are calculated using training loss with gradient

operations and applied to the layers through back-propagation. Our proposed overall

network structure is given in Figure 3.1

45



Figure 3.1: Our proposed network structure.

3.1.1 Endoder Architecture

VGG [55], ResNet [37] and Xception [38] are well known and mostly used encoders

in deep learning area. Performance of these structures in most deep learning studies

are non-negligible. On the other hand, there are other proposed encoder architectures

like EfficientNet [17] that show success on the applied problems. EfficientNet has

showed a great success on Image Classification problem of ImageNet [2] and drew

attention since then. However, EfficientNet is a rather new concept in deep learning

field and the problems that it has been applied are still few. To the best of our knowl-

edge, during this study, it was not applied to the monocular depth estimation problem

yet. Therefore, considering its high performance on the problems it is applied we

proposed a model including EfficientNet as encoder and tested it on depth estimation

problem.

Since EfficientNet was not used in any monocular depth estimation networks pre-

viously, we wanted to see it’s performance before we proceed further on our model.

Therefore, we have decided to choose a well-performed open-source monocular depth

estimation network for our comparison. Godard et al. [10] have proposed a depth

estimation model trained in an unsupervised fashion. Their model was one of the

most referenced paper in depth estimation area since they have shared every single

file they have used, all trained models and all hyper-parameter values. Because of

their open-source content, we have chosen Monodepth [10] to evaluate EfficientNet’s
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performance.

Godard et al. [10] have used ResNet and VGG as encoders in their model called

Monodepth. Their encoder and decoder part are two different blocks. Therefore,

we have replaced their encoder block with the EfficientNet-B7 encoder. For a fair

comparison we did not used any pre-trained EfficientNet model parameters in our

network. Monodepth’s unsupervised learning depends on using stereo image pairs

during training. For both input images, their model outputs two disparity maps of

provided scenes. Then by using opposite view disparity maps and original input

images, other views are reconstructed by spatial transformation. In other words, by

using right image and left disparity map, left image is reconstructed and by using left

image and right disparity map, right image is reconstructed. In the Figure 3.2, only

one part of the reconstruction is given for simplicity.

Figure 3.2: Modified Monodepth network structure. Encoder part is replaced with

EfficientNet

After modified Monodepth network is tested, evaluation results were good as ex-

pected and accuracy of the model was increased compared to original Monodepth. In

fact, the results were better than expected. Monodepth was trained on full training set

of KITTI dataset while we could only train it on 1/3 of KITTI dataset due to resource

limitations. Since, two input images are used during training, required computational

resource was heavy. Although, our model with EfficientNet encoder was trained with
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a smaller subset of KITTI dataset, the evaluation results were much better than the

original Monodepth model. Details of these results will be given in Experimental

Results chapter.

3.1.2 Decoder Architecture

Objective of encoder part is to extract features from an input data and transfer them

to decoder part, while in this part, objective is combining these features to produce

a meaningful output. In our case, since depth estimation is a representation problem

and aim of our decoder part is to recover depth map for a given input image. In en-

coder part, input image is reduced to 1/32 of its original size with pooling operations.

While width and height of input image is reduced, to prevent data loss channels of

the feature map are also increased. In an RGB image channel size is 3, while in our

model, encoder outputs a feature map with 2560 channels. Extracted features are

stored in these 2560 channels and given to the decoder part. In a monocular depth es-

timation network, decoder part is responsible for processing the extracted features to

get desired output while recovering the original size of the input image at the output.

Main operations used in decoder part are in general convolutional operations, resiz-

ing operations and concatenation of skip connections obtained from previous layers.

Resizing can be applied by image resizing methods or upsampling functions that in-

cludes convolution operation. Although, there are not exact results for our particular

case, using upsampling and deconvolution functions that has trainable parameters in-

side, may cause checker board artifacts in the output image as mentioned in [56].

Therefore, we have preferred to use image resizing functions while upscaling our

feature map in the decoding phase.

As explained before, skip connections help dealing with vanishing gradient problem.

Therefore, we have used skip connections between our encoder part and decoder part.

Long skip connections from encoder part to decoder part transfers low-level features

extracted in earlier layers and ensures flowing of maximum feature information be-

tween two architectures. These connections also help to recover spatial information

better during up-sampling. We get skip feature maps from 5 different step of encoder

part so each one of them has different sizes in width and height. These skip feature
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maps are concatenated with the same size feature maps at the decoder part. Batch

normalization is also used to deal with vanishing gradient problem. Besides it ac-

celerates training by normalizing the batch of inputs. Due to these reasons we have

decided to use Batch normalization too in our decoder part.

As explained before in Activation & Batch Normalization section of Chapter 2, Expo-

nential Linear Unit (eLU) can generate negative outputs and compared to activation

functions, eLU provides speed advantage during training time. Due to these reasons

we have decided to use eLU activation function in our hidden layers of decoder part.

As given before in equation 2.3, eLU activation function has a parameter α that de-

termines when function saturates for negative input values. In our case we have used

the suggested default value of 1 for α.

Sigmoid activation functions output is bounded in the range of (0,1). In general it is

used to predict a probability in last layer of deep neural networks. We have decided

to use Sigmoid Activation Function in the last layer of our decoder part in order to

make it generate relative depth values for each pixel. After a relative depth map is

obtained at the last layer of our network we scale it to the range of 0 to 80 meters as

it is the range of depth maps in KITTI dataset.

There are other alternative techniques to use in decoding stage of the networks. One

of them is Atrous Spatial Pyramid Pooling (ASSP), proposed by Chen et al. [28]

in DeepLab network structure which is a well-known high performance image seg-

mentation network. Atrous convolution (Dilated convolution) is a method applied to

enchance field-of-view of filters. Dilation rate is a parameter that is used to define

enlargement of a filter. When atrous convolution with dilation rate (r) is applied in

a layer, (r-1) zeros are put between each elements of filter. For example, if a convo-

lution with a 3x3 filter and dilation rate 2 is going to applied in a layer, then filter

size becomes 5x5. In ASPP, first atrous convolutions are applied at different dilation

rates to the same input. This operation helps obtaining useful context information at

multiple-scales. Then outputs of these atrous convolution operations are concatenated

and 1x1 convolution is applied to obtain final feature map. Using ASPP enables an

enhanced field-of-view in the network and incorporate spatially distributed features.

According to the results Chen et al. [28] shared, using ASPP in their model brought
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a significant performance gain.

Since [28] is published, different types of ASPP is proposed in deep learning field.

One of these types was proposed by Artacho et al. [23] for semantic segmentation

problem, called Waterfall Atrous Spatial Pyramid Pooling. Their proposed approach

differs from the original ASPP by its structure. In original ASPP, all atrous convolu-

tion operations are parallel or cascaded, while, in Artacho et al.’s proposed method

atrous convolution operations are both parallel and cascaded. When operations are

parallel, they all use the same input data which has the most channels. However,

when operations are cascaded output of an operation has less channels and the next

operation is required to process less number of channels but in return they are lacking

the larger FOV. Artacho et al. [23] claimed that their approach requires less number

of parameters and it is more memory efficient while it provides better performance.

Their proposed ASPP structure is given in the Figure 3.3. Our proposed model has

a similar structure to waterfall ASPP, but we do not use average pooling operation

which is not used in original ASPP as well.

Figure 3.3: Waterfall Atrous Spatial Pyramid Pooling(ASPP) structure [23].

Before we proceed further and start training our model with iterative teacher-student

learning mechanism we wanted to observe performance increase of our ASPP struc-

ture. While, we were training our modified Monodepth network to observe Effi-
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cientNet performance, we have also included ASPP and trained two models with and

without using ASPP. We have observed a significant accuracy gain in the evaluation

results of model trained with ASPP. Test results of these trained models will be given

in Experimental Results chapter. After testing performance of ASPP structure, we

have decided to add it into our proposed model.

Figure 3.4: Decoder structure used in our network.

Overall structure of decoder part can be seen on Figure 3.4. Feature map and skip

connections are obtained from encoder of our network. Concat operation is concate-

nation of two feature maps without loss of any information. Conv block includes a

standard convolution operation. Upconv block incorporates a resize operation which

doubles the size of input followed by a convolution operation. At the end of decoder

part, a sigmoid activation function is used to estimate depth of every pixel in the out-

put image. In training, ground truth is used to calculate error of estimated depth map

that will be mentioned in Training Loss section.

3.1.3 Training Loss

In monocular depth estimation networks pixel-wise regression is applied during train-

ing. Difference between the expected and the predicted values are called as error and
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the model tries to minimize this error by using an optimization algorithm and opti-

mizes itself. Most known optimization algorithm is stochastic gradient descent but

through time additional to it many alternative optimization algorithms have been pro-

posed. One of them is adam optimizer that is proposed by Kingma et al. [57]. Adam

optimizer have proved its reliability and efficiency in many works it is used. There-

fore, we use adam optimizer in our model as well. Apart from optimizer, choosing a

training loss function is also important.

Training loss or error in monocular depth estimation networks is chosen based on

the learning method used. Unsupervised learning methods incorporate reconstruction

losses while in supervised methods deviation between the ground truth depth map

and the predicted depth map is used. Semi-supervised methods might be using both

of them together with auxiliary geometric knowledge.

In supervised learning methods of monocular depth estimation most preferred loss

functions are L1 and L2 loss. They give the absolute and squared difference between

the predicted and expected values respectively as shown in equations 3.1 and (3.2)

L1 Loss =
n∑
i=1

|ytrue − ypredicted| (3.1)

L2 Loss =
n∑
i=1

(ytrue − ypredicted)2 (3.2)

Similar to optimization algorithm there are many proposed loss functions that work

well for specific tasks. For monocular depth estimation problem Eigen et al. [6]

proposed a scale invariant error function to be used in a supervised learning method.

Their proposed loss function handles the difference between expected and predicted

depth values in log space in order to solve scale-problem. Their proposed loss func-

tion can be seen on equation (3.4). Lee et al. [58] presented a modified version of

Eigen’s loss function. They claimed that with a higher λ convergence of the model

improves and the final performance increases. Their proposed loss function can be
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seen on equation (3.5)

di = log(ytruei)− log(ypredictedi) (3.3)

Loss =
1

n

n∑
i=1

di
2 − λ

n2

(
n∑
i=1

di

)2

(3.4)

Loss =
1

n

n∑
i=1

di
2 − 1

n2

(
n∑
i=1

di

)2

+ (1− λ) 1
n2

(
n∑
i=1

di

)2

(3.5)

In our learning process, we used the loss function proposed by [58]. In our case,

expected depth values are depth value pixels that are available in the ground truth

map. Since Lidar depth measurements are sparse in the depth map, zero valued pixels

in the ground truth depth maps are not taken into account in loss calculation.

In early stages of our work, while we were evaluating performance of EfficientNet

and ASPP, we have trained the modified Monodepth model in an unsupervised man-

ner like proposed by Godard textitet al. [10] in their original work. As explained

before their unsupervised learning model were using stereo images to create other

view with the help of depth maps. Then, reconstructed left-right images are used

with original left-right images to calculate training losses. Their training losses de-

pend on reconstruction losses like SSIM (Structural Similarity Index Measure). In

order to make a fair comparison we have used the same training loss functions to

train our modified Monodepth model.

3.2 Teacher-Student Learning Method

Teacher-Student learning mechanism has been applied in many studies in deep learn-

ing area. While the concept of training of a student network with the help of an

teacher network is same, many different methods have been used during training. In-

creasing or decreasing size of student with respect to teacher network, embedding

student network into the teacher network are just some methods. When Xie et. al [1]

outperformed the state of art image classification perfomances on ImageNet [2], noisy
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student learning method applied by them added a new perspective to the literature of

deep learning. There are some key points about their research that are provided in

their paper one-by-one. One of them is having a student model size same or larger

than the teacher leads to better results. Joint training of student model on labeled

and unlabeled datasets achieves a higher accuracy compared to separately training on

both datasets. We have applied their iterative teacher-student learning procedure into

the monocular depth estimation problem which is not applied before to the best of our

knowledge. While training our models we paid attention to their findings to achieve

a higher accuracy.

As explained before we have used the Eigen split of KITTI in training of our network

which is seen on Figure 3.1. After some eliminations, we had a total of 40,526 images

that we could use in training. We have used 5,790 of these images with ground truth

depth maps and called them labeled dataset, while 34,736 of them is used without

ground truth depth maps and called as unlabeled dataset. Thus, the ratio between

labeled and unlabeled dataset has become as 1:6. Number of images used in each

network is given on Table 3.1.

Table 3.1: Number of images used in training.

Model Name # of Labeled Images # of Pseudo Labeled Images # of Total Images Ratio

Teacher Network 5,790 - 5,790 -

Student Network 5,790 34,736 40,526 1:6

After splitting the dataset and building our teacher network with EfficientNet we

trained it with labeled dataset without injecting any noise. Contrary to some other

methods we have not used a pre-trained model for our teacher network and trained it

from the scratch. After training of teacher network is completed, we made it to predict

depth maps for our unlabeled dataset. We called the depth map predictions of teacher

network for unlabeled dataset as pseudo labels. With the predictions of teacher net-

work, we had a total of 40,526 images with depth maps. We then created our student

network again without a pre-trained model. Student network’s size is same with the

teacher network. In the training of student network both input noise and model noise
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is injected. Input noise is injected as data augmentation. Model noise methods are

also known as regularization methods and they are injected as dropout and stochastic

depth as explained before. With the injection of such noise, the generalization and

the performance of student network is expected to outperform teacher network. First

student network is trained with both labeled and pseudo labeled datasets and after

training is completed it becomes the new teacher. As a new teacher our old student

network makes depth map predictions for the 34,736 images of unlabeled dataset.

Then, these new pseudo labels are replaced with the old pseudo labels. As itera-

tive learning continues, we created our second student network and trained it with

the labeled and new pseudo labeled dataset. At this point we have stopped training

since we had enough data to evaluate our results. We had one old teacher model and

two student models one of which became a teacher afterwards. Our whole simplified

training process is given below. Training hyper-parameters and evaluation results of

trained model will be given in Experimental Results chapter.

1. Train a teacher network by using labeled dataset

2. Make depth map predictions for unlabeled dataset using teacher network

3. Train a student network by using labeled and pseudo labeled dataset

4. Trained student model becomes the new teacher

5. Make new depth map predictions for unlabeled dataset using new teacher net-

work

6. Train a student network by using labeled and new pseudo labeled dataset

7. Process is completed
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Performance Criteria

In order to evaluate performance of a monocular depth estimation network, there are

some metrics used in the literature. Commonly accepted these metrics can be classi-

fied into two sub-classes as error (Abs Rel, Sq Rel, RMSE, log RMS) and accuracy

metrics. In error functions lower values are better while in accuracy higher values are

better. Formulations of these evaluation metrics are given as follows:

Absolute Relative Difference Error (Abs Rel) :

1

N

N∑
i=1

|yi − ŷi|
yi

(4.1)

Squared Relative Difference Error (Sq Rel) :

1

N

N∑
i=1

||yi − ŷi||2

yi
(4.2)

Root Mean Squared Error (RMSE) :√√√√ 1

N

N∑
i=1

||yi − ŷi||2 (4.3)

Root Mean Squared Error Log (RMSE log) :√√√√ 1

N

N∑
i=1

|| log yi − log ŷi||2 (4.4)
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Threshold :

% of yi s.t. max(
yi
ŷi
,
ŷi
yi
) = δ < threshold (4.5)

yi and ŷi denotes the ground truth depth value and predicted depth value of corre-

sponding pixel. N is the number pixels evaluated in a depth image. Since ground

truth depth maps are sparse and not every pixel has a depth value. These zero valued

pixels are not taken into account when evaluation is being done. The accuracy is de-

scribed by the percentage of the relative predicted depth value within threshold 1.25j

where j = 1, 2, 3. A higher δ indicates a better accuracy. These 5 evaluation met-

rics are the most used when evaluating performance of a monocular depth estimation

model on KITTI dataset.

In addition to pixel sparsity in depth maps obtained by Lidar sensors, these depth

maps have one more problem. Due to placement on top of a car, Lidar sensors scan

the environment horizontally. However, in vertical direction their view of angle is

limited since they do not move vertically. Due to this reason, depth information in

ground truth depth maps of KITTI dataset is limited from top and bottom. On each

depth map, about 30 percent from the top and 10 percent from the bottom of the image

are blank. These parts of the depth map images are cropped and the rest of the depth

map is used for evaluation.

4.2 Test Networks

In section 3.1, architecture of used models are explained. In order to use Efficient-

Net in our model we were required to evaluate its performance in a monocular depth

estimation network since it had not been utilized previously in a depth estimation

study. With this motivation we created the modified Monodepth model by replacing

the encoder used in Monodepth with EfficientNet encoder. We called this network

architecture as "Modified Monodepth Eff.". Then, we integrated ASPP module into

the decoder part of Monodepth to evaluate its performance too and called it as "Mod-

ified Monodepth Eff.&ASPP". Evaluation results of original Monodepth model will

be provided in section 4.4 for comparison. Original Monodepth has VGG network

encoder integrated and for training of their model KITTI [22] dataset is used. Details
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of this network are given in Table 4.1

Table 4.1: Test networks for evaluation of EfficientNet Encoder and ASPP Module.

Model Name Train Method Encoder ASPP Training Dataset

Monodepth [10] Unsupervised VGG No KITTI

Modified Monodepth Eff. Unsupervised EfficientNet-B7 No KITTI

Modified Monodepth Eff.&ASPP Unsupervised EfficientNet-B7 Yes KITTI

After deciding to use EfficientNet and ASPP, we have created our own network archi-

tecture which was described in Section 3.1. Since EfficientNet provides scalability

for network with compound scaling methodology, we created three teacher networks

using EfficientNet-B5, B6 and B7. We trained these networks in a supervised fashion

on our selected labeled dataset that is explained in Section 3.2 and evaluated their

performances in order to decide which model we can use as a teacher network in it-

erative teacher-student learning. Noise is not injected during training of these teacher

networks. Details of these networks are given on Table 4.2.

Table 4.2: Test networks for evaluation of different EfficientNet model sizes.

EfficientNet Model Coefficients

Model Name Train Method Encoder ASPP Noise Width Depth Resolution

Teacher-B5 Supervised EfficientNet-B5 Yes No 1.6 2.2 456

Teacher-B6 Supervised EfficientNet-B6 Yes No 1.8 2.6 528

Teacher-B7 Supervised EfficientNet-B7 Yes No 2.0 3.1 600

According to procedure of teacher-student learning method, we trained our teacher

network in a supervised manner without injecting noise as described in 3.2. We used

ground truth labeled dataset to train our teacher network. After teacher network is

trained it predicted the depth maps for unlabeled dataset. Then, first student net-

work was trained with the labeled and pseudo labeled dataset that is predicted by the

teacher. After first student became the teacher, second student was trained with the
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labeled and pseudo labeled dataset that is predicted again by the new teacher. Details

of these 3 networks are given in Table 4.3

Table 4.3: Teacher and student test networks. Both Labeled and Pseudo Labeled

datasets are parts of Eigen training split of KITTI dataset as described before.

Model Name Train Method Encoder ASPP Training Dataset

Teacher Network Supervised EfficientNet-B7 Yes Labeled

Student-1 Network Supervised EfficientNet-B7 Yes Labeled + Pseudo Labeled

Student-2 Network Supervised EfficientNet-B7 Yes Labeled + Pseudo Labeled

In order to investigate effects of noise injection more comprehensively, we have also

trained teacher networks with noise injected. We have used the Teacher-B5, B6 and

B7 networks explained before and evaluated their performances in order to observe

effect of noise injection for different scale networks. After training these networks

with noise, we chose "Noisy-Teacher-B7" to become a teacher to predict depth maps

for unlabeled dataset. Then, with two iterations we have trained two student net-

works. By applying iterative teacher-student learning procedure here too, we expect

to observe how injecting noise to the teacher affects student networks. Details of

these networks are given in Table 4.4

Table 4.4: Test networks for evaluation of noise injection to the teacher network

during training.

EfficientNet Model Coeff.

Model Name Train Method Encoder ASPP Noise Width Depth Resolution

Noisy-Teacher-B5 Supervised EfficientNet-B5 Yes No 1.6 2.2 456

Noisy-Teacher-B6 Supervised EfficientNet-B6 Yes No 1.8 2.6 528

Noisy-Teacher-B7 Supervised EfficientNet-B7 Yes No 2.0 3.1 600

Student-1 with Noisy Teacher-B7 Supervised EfficientNet-B7 Yes No 2.0 3.1 600

Student-2 with Noisy Teacher-B7 Supervised EfficientNet-B7 Yes No 2.0 3.1 600
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4.3 Implementation Settings

Training of Modified Monodepth models were done with the hyper-parameter settings

proposed and applied by Godard et al. [10]. They have trained their Monodepth

model for 50 epochs with a batch size of 8. Due to system resource limitations, we

have trained our Modified Monodepth models with a batch size of 4. As proposed by

[10], initial learning rate was 10−4 for the first 30 epochs and then learning rate was

halved for each 10 epochs. Adam optimizer was used for applying gradient operations

to trainable parameters with β1 = 0.9 , β2 = 0.999 , and ε = 10−8 . No pre-trained

network was used while training Modified Monodepth models.

All our teacher and student models were trained for 50 epochs separately. Each of

them was trained from scratch without using any pre-trained network. Our teacher

networks take 9 hours to train for 50 epochs. Each of our student networks take 50

hours to train for 50 epochs.

In training of all our models, learning rate was 10−4 at the beginning. Similar to

training of [10] and many other monocular depth estimation studies, learning rate was

kept same for 30 epochs and then for each 10 epoch it was halved. Batch size was

4 during training. Adam optimizer was also used in training of teacher and student

networks with same hyper-parameters before. Input images provided for training had

size 256x512 pixels that means each training image from KITTI dataset was resized

to this dimension and then provided to the network.

4.4 Performance Evaluation

In this section, performance of EfficientNet encoder and ASPP module will be given

and be compared with Monodepth [10]’s results. Test results of our monocular depth

estimation teacher and student networks will be provided and the effect of iterative

teacher-student learning method will be explained. Experimental results will be com-

pared with previous works on monocular depth estimation problem and discussed.
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4.4.1 Evaluation of EfficientNet & ASPP

As explained before our Modified Monodepth model was trained for 50 epochs by

using stereo images in an unsupervised manner same with the original Monodepth

model [10]. After training is completed, we tested our network on KITTI 2015 stereo

dataset [24] which has 200 highly detailed ground truth depth maps. Comparison

of test results on this highly detailed dataset instead of sparse ground truth depth

maps would give more information about the efficiencies of EfficientNet and ASPP.

Performance results of our models are provided in Table 4.5 along with the original

Monodepth model.

Table 4.5: Evaluation Results of EfficientNet Encoder and ASPP Module.

Error (Lower is better) Accuracy (Higher is better)

Model Name Training Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth [10] with VGG KITTI 0.124 1.388 6.125 0.217 0.841 0.936 0.975

Modified Monodepth Eff. KITTI 0.109 1.355 5.453 0.187 0.885 0.956 0.982

Modified Monodepth Eff.&ASPP KITTI 0.102 1.095 5.353 0.180 0.888 0.956 0.982

According to results given in Table 4.5 we can see that EfficientNet replaced with

VGG provides a significant error drop in absolute relative difference and RMS error.

Another large error drop is accomplished in the square relative error when the ASPP

module used in decoder part.

Hyper-parameters used in training of our Modified Monodepth models are in fact

optimized for original Monodepth with VGG encoder. Godard et al. [10] have opti-

mized their network and training hyper-parameters in order to obtain best results for

their Monodepth model. We evaluated our Modified Monodepth models after training

them using same hyper-parameters. Therefore, we can say that hyper-parameters that

we used in training of our modified Monodepth models might not be optimized for

a network with EfficientNet encoder and ASPP. Hyper-parameters can be optimized

further using grid search and a better performance can be achieved by these networks.

62



(a) (b) (c) (d)

Figure 4.1: Qualitative comparison of predicted depth maps. Images are taken from

KITTI 2015 stereo dataset [24]. From top to bottom, sample image, ground truth

depth map, prediction of ’Original Monodepth’, ’Modified Monodepth Eff.’ and

’Modified Monodepth Eff.&ASPP’.

Figure 4.1 presents the comparison of predicted depth maps of Original Monodepth

and our modified Monodepth models. Improvements made in depth predictions are

marked with green circles. As seen on the predicted depth maps of Image (a), model

with Efficientnet shows better performance on realizing distance between poles. On

the other hand, ASPP recognizes triangular shapes more successfully. In some cases,

even if features for thin objects are extracted by encoders, ordinary upsampling oper-

ations and simple decoders might not be enough to process these features and detect

these thin objects. Especially in Images (b) and (c), effectiveness of ASPP in realizing

thin objects is clear.

Success of EfficientNet in extracting features can also be observed in Image (d) of

Figure 4.1. While, the traffic sign in Image (d) is not recognized by Original Mon-
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odepth it is detected when the encoder is replaced with EfficientNet. After observing

these evaluation results, we have decided to use both EfficientNet and ASPP in our

proposed model architecture.

4.4.2 Evaluation of EfficientNet Model Sizes

In order to investigate how changing encoder size alters the evaluation results of a

neural network in monocular depth estimation problem, we used the compound scal-

ing ability of EfficientNet. We designed three teacher networks using B5, B6 and B7

model sizes of EfficientNet and trained them on our labeled dataset for 50 epochs.

At this stage we did not inject any noise to the networks during training. Evaluation

results of these three networks are provided in Table 4.6.

Table 4.6: Evaluation results of different EfficientNet model sizes.

Error (Lower is better) Accuracy (Higher is better)

Model Name Encoder Type Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Teacher-B5 EfficientNet-B5 0.126 0.823 4.843 0.188 0.841 0.955 0.985

Teacher-B6 EfficientNet-B6 0.115 0.718 4.522 0.173 0.864 0.962 0.988

Teacher-B7 EfficientNet-B7 0.110 0.671 4.349 0.165 0.876 0.965 0.990

EfficienNet model B7 is the largest network that is proposed by et. al [17]. Evaluation

results in Table 4.6 clearly shows that, using this largest model provides a significant

performance increase in the network. This would have been expected, since a larger

network can adapt itself to a dataset with a higher accuracy unless it overfits to the

dataset. As seen from the results, performance continuously increases from Efficient-

Net B5 to B7. We can see that the accuracy and the performance is not saturated

yet. If there was a larger EfficientNet model and it was used in our network it could

have provided better results. However, for the time being EfficientNet model B7 is

the largest network that is proposed by et. al [17]. Therefore, considering our com-

putational resource limitations and the high performance of B7, we have decided to

use model B7 in our teacher and student networks.
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4.4.3 Evaluation of Iterative Teacher-Student Learning

Performance of our proposed architecture and the effect of iterative teacher-student

learning can be best compared with other monocular depth estimation networks that

are trained by using the same dataset. We present here the performance of previous

works that are trained and tested on KITTI dataset in 3 classes according to their

training method. In fact, unsupervised methods cannot be exactly compared to semi-

supervised and supervised methods since they output a relative depth map for the

objects in the scene. In order to get exact metric depth map from a model, metric

depth information or camera intrinsic parameters should be provided to the model.

Yet, we provide performance results of unsupervised methods here to show some

state-of-the-art results in literature of monocular depth estimation.

All models provided in Tables 4.7, 4.8 and 4.9 are trained and tested on Eigen splits

of KITTI dataset. In Table 4.7, evaluation results of previous unsupervised methods

are provided. In Table 4.8, evaluation results of previous supervised methods are

provided along with our teacher networks that are trained in a supervised fashion. In

Table 4.9, evaluation results of previous semi-supervised methods are provided along

with our student networks that are trained in a semi-supervised fashion.

Table 4.7: Evaluation results of Unsupervised trained networks. Best results are in

bold and second best results are underlined (Stereo: Stereo images are used in train-

ing. Video: Consecutive frames of a video are used in training. )

Error (Lower is better) Accuracy (Higher is better)

Year Model Name Train Data Type Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

2017 Godard et al. [10] Stereo 0.148 1.344 5.927 0.247 0.803 0.922 0.964

2018 Poggi et al. [11] Stereo 0.153 1.363 6.030 0.252 0.789 0.918 0.963

2019 Casser et al. [59] Video 0.109 0.825 4.750 0.187 0.874 0.958 0.983

2019 Li et al. [60] Video 0.150 1.127 5.564 0.229 0.823 0.936 0.974

2019 Pilzer et al. [19](Student) Stereo 0.142 1.231 5.785 0.239 0.795 0.924 0.968

2019 Pilzer et al. [19](Teacher) Stereo 0.098 0.831 4.656 0.202 0.882 0.948 0.973

2019 Godard et al. [13] Video + Stereo 0.080 0.466 3.681 0.127 0.926 0.985 0.995

2020 Wang et al. [61] Video + Stereo 0.101 0.725 4.360 0.179 0.898 0.965 0.983

2020 Patil et al. [62] Video 0.111 0.821 4.650 0.187 0.883 0.961 0.982
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Unsupervised learning methods when trained by both stereo images and video se-

quences show promising results. The main problem with video sequences is the es-

timation of change in relative position of the camera between consequtive frames.

However, this problem mostly be solved by the auxiliary information obtained from

stereo images. By merging the depth information from both input data, more reliable

depth maps and higher performances are can be obtained as seen on Table 4.7 from

results of [13] and [61].

Table 4.8: Evaluation results of Supervised trained networks. Best results are in

bold and second best results are underlined. (GT: Ground truth depth maps are used

in training. SMN: Stereo matching network is used in training for auxiliary depth

information.)

Error (Lower is better) Accuracy (Higher is better)

Year Model Name Train Data Type Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

2014 Eigen et al. [6] GT 0.190 1.515 7.156 0.270 0.692 0.899 0.967

2018 Gan et al. [34] GT + SMN 0.098 0.666 3.933 0.173 0.890 0.964 0.985

2019 Rosa et al. [33] GT 0.123 0.641 4.524 0.199 0.881 0.966 0.986

2020 Fang et al. [63] GT 0.105 - 4.486 0.183 0.873 0.960 0.984

Ours (Teacher) GT(1/6 of KITTI) 0.110 0.671 4.349 0.165 0.876 0.965 0.990

As mentioned before our proposed model for teacher network was trained by 1/6 of

Eigen train split of KITTI dataset in a supervised manner. Although, less training

data was used, the evaluation results of our teacher model are still comparable to the

results of state-of-the-art methods as seen from Table 4.8.

Loss function used in training plays an important role for the performance of network.

Sometimes even used loss functions can be inferred from the evaluation results. For

example, when L1 loss function provided in equation 3.1 is used as training loss

function, model tries to minimize relative distance between predicted and expected

depth values. This results in a low valued absolute relative error in evaluation of

the model. However, when squared relative error and RMS error of the model is

compared with similar models, their values might still be relatively high. By using this

knowledge, we can compare our models given in Table 4.9 with the model proposed

by Yang et al. [65]. Loss function used in [65] includes L1 loss and according to their
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Table 4.9: Evaluation results of Semi-Supervised trained networks. Best results are

in bold and second best results are underlined. (GT: Ground truth depth maps are

used in training. SGM: Semi-Global Matching used in training for obtaining depth

map from stereo images.)

Error (Lower is better) Accuracy (Higher is better)

Year Model Name Train Data Type Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

2017 Kuznietsov et al. [14] Stereo + GT 0.113 0.741 4.621 0.189 0.862 0.960 0.986

2018 Guo et al. [64] Stereo + GT 0.105 0.717 4.422 0.183 0.874 0.959 0.983

2018 Yang et al. [65] Stereo + GT 0.097 0.734 4.424 0.187 0.888 0.958 0.980

2019 Tosi et al. [66] Stereo + SGM 0.111 0.867 4.714 0.199 0.864 0.954 0.979

2019 Amiri et al. [67] Stereo + GT 0.096 0.552 3.995 0.152 0.892 0.972 0.992

2019 Cho et al. [16] Stereo + GT 0.099 0.748 4.599 0.183 0.880 0.959 0.983

Ours (Student-1) Unlabeled + GT 0.102 0.551 3.979 0.151 0.889 0.975 0.993

Ours (Student-2) Unlabeled + GT 0.100 0.525 3.930 0.149 0.892 0.976 0.993

evaluation results, their absolute relative error is lower than our model. However,

when compared with other evaluation metrics, both of our student models and even

our teacher model given in Table 4.8 shows a better performance due to our scale-

invariant loss function presented in equation 3.1.

As seen on Table 4.9, our Student-1 network achieves a state-of-the-art performance

when trained with labeled and pseudo labeled datasets. One of the most important

advantage we had here was that our teacher model was also trained well compared to

other works presented in Table 4.8. Of course the effects of EfficientNet encoder and

ASPP module used in our network were undeniable. With a poorly trained model,

predicted depth maps of the unlabeled dataset would be poor and expected perfor-

mance increase in the student model would not be occurred. That’s why we have

evaluated it’s performance first with state-of-the-art performances of previous works.

After obtained satisfactory results we continued predicting depth maps of unlabeled

dataset and training student.
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Table 4.10: Evaluation results of Teacher and Student networks

Error (Lower is better) Accuracy (Higher is better)

Model Name Train Data Type Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Teacher GT(1/6 of KITTI) 0.110 0.671 4.349 0.165 0.876 0.965 0.990

Student-1 Unlabeled + GT 0.102 0.551 3.979 0.151 0.889 0.975 0.993

Student-2 Unlabeled + GT 0.100 0.525 3.930 0.149 0.892 0.976 0.993

After training and evaluating our Student-2 network we have observed the perfor-

mance increase compared to Student-1 as seen on Table 4.10. Increase in perfor-

mance results was relatively small compared to the difference between teacher and

Student-1 network. That would be expected, since teacher network was trained with

a small labeled dataset only. On the other hand, even though it was small, the per-

formance increase in Student-2 network was good enough to prove effectiveness of

iterative teacher-student learning methodology.

Student-1 and Student-2 networks were trained with a same amount of training data

and the depth maps were similar. There were improvements in the pseudo labeled

dataset predicted by Student-1 when compared to the depth maps predicted by teacher

network. Therefore, this improvement in the training data resulted in a performance

increase in Student-2 networks evaluation results.

Both Student-1 and Student-2 networks were trained without pre-trained weights.

One of the reasons behind this implementation was that when student model uses pre-

trained weights from previous network, it might get stuck in a local optima. Another

reason was possibility of overfitting of the model. To prevent these from happening,

training the network from scratch sometimes becomes a better option and that was

the motivation of us for training from scratch.

Aside from the performance increase in metric evaluation results, improvement from

teacher to first and second student networks can be observed in predicted depth maps.

We selected 9 different test images from Eigen test split. These 9 images are taken in

unique environments. Since original GT images taken by Lidar are sparse, we have

applied interpolation to understand them better while comparing with our models’
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results. These 9 test images, their GT depth maps and predicted depth maps by our

models are provided in Figures 4.2, 4.3 and 4.4.

After we made our models to predict depth maps of these 9 test images, we observed

the improvement in recognizing people. As seen in Figure 4.2, while the teacher

model has difficulties in detecting each individual person, student-1 and student-2

models detects these people more successfully. Moreover, vehicle shapes are also

recognized by student networks more nicely.

Input

GT Depth

Teacher

Student-1

Student-2

Figure 4.2: Qualitative comparison of predicted depth maps. Images are taken from

Eigen Test Split of KITTI Dataset [22].

Test images that made teacher network to show worst performance are shown in Fig-

ure 4.3 and Figure 4.4. Due to lack of training data, teacher network cannot recognize

the shapes of cars properly. Apart from this, most of the problematic areas have win-

dows of cars. This is one of the biggest problems of predicting depth maps by deep

learning models. Lidar depth maps are generally not continuous and reliable on glass

surfaces which causes the deep learning models to get confused. That’s why our

teacher network cannot make proper prediction in these regions. At this point advan-

tage of iterative teacher-student learning method steps in and the predictions made by

student networks these regions become more appropriate. In predicted depth maps

of student-2 network, car windows are almost continuous and shapes of cars are pre-
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dicted correctly.

Input

GT Depth

Teacher

Student-1

Student-2

Figure 4.3: Qualitative comparison of predicted depth maps. Images are taken from

Eigen Test Split of KITTI Dataset [22].

Input

GT Depth

Teacher

Student-1

Student-2

Figure 4.4: Qualitative comparison of predicted depth maps. Images are taken from

Eigen Test Split of KITTI Dataset [22].

Another visible problem was the detection of railway tracks as seen on the rightmost

image in Figure 4.4. Even though it was not supposed to be sensed as an object, rail-
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way tracks was recognized by teacher network as an object and a false depth value

was predicted. On the other hand, as a progress in student networks this wrongly rec-

ognized area becomes corrected and in student-2 network it almost disappears. These

results also show that the noise injected during training of students to make them gen-

eralize better has helped our student networks. We can say that the generalization of

student networks compared to the teacher network is achieved.

As observed in Figures 4.2, 4.3 and 4.4, provided training data plays an important

role in model performance. Due to sparsity of GT depth maps and lack of training

data, in some regions teacher network performs poorly as expected. When student-1

network is trained with labeled and pseudo labeled datasets, it outperforms the teacher

network and shows an important improvement in predicted depth maps.

With the help of performance increase in student-2 network, pseudo labeled dataset

becomes more accurate when predicted again by new teacher compared to the perfor-

mance of old teacher network. In last stage, when student-2 network is trained with

more accurate pseudo labeled dataset and labeled dataset, it outperforms both the

teacher and the student-1 network. Effectiveness of iterative teacher-student learning

method in monocular depth estimation problem is discovered with these results.

4.4.4 Evaluation of Noise Injection During Training

At this stage, we trained three teacher models by injecting noise during training. Data

augmentation, Stochastic Depth and Dropout are applied to the networks. Similar to

previous teacher training processes, all models are trained on our labeled dataset for

50 epochs and tested on Eigen test split. Evaluation results of these three networks

are provided in Table 4.11 along with our standard teacher networks for comparison.

71



Table 4.11: Evaluation results of Noise Injection During Training.

Error (Lower is better) Accuracy (Higher is better)

Model Name Encoder Type Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Teacher-B5 EfficientNet-B5 0.126 0.823 4.843 0.188 0.841 0.955 0.985

Noisy-Teacher-B5 EfficientNet-B5 0.104 0.578 4.016 0.154 0.885 0.973 0.993

Teacher-B6 EfficientNet-B6 0.116 0.729 4.547 0.174 0.865 0.962 0.988

Noisy-Teacher-B6 EfficientNet-B6 0.102 0.566 3.945 0.151 0.889 0.974 0.993

Teacher-B7 EfficientNet-B7 0.110 0.671 4.349 0.165 0.876 0.965 0.990

Noisy-Teacher-B7 EfficientNet-B7 0.101 0.555 3.925 0.149 0.891 0.976 0.993

After evaluating noise injected three models we observed surprising results. Inject-

ing noise aggressively to the teacher networks increases the performance results sig-

nificantly. According to these results, we can claim that noise injection makes the

monocular depth estimation networks generalize better.

In table 4.11, we can see that performance of small networks like B5 and B6 increases

relatively more compared to a larger network B7. At this point, our decoder part might

be limiting the performance increase of Teacher-B7 and Noisy-Teacher-B7 models.

However, in Teacher-B5 and Teacher-B6 models, since the limit performance is not

reached, injection of noise makes the networks generalize better and help them to

increase their performances further.

Performance of these networks might also be limited by the number of train sam-

ples used during training. If a larger dataset is used in training of non-noisy teacher

networks, their performance can increase further and reach to the performance of

noisy-teacher networks.

After obtaining these results, we have decided to train student networks with two it-

erations by using the Noisy-Teacher-B7 as our teacher network. For training student

networks, procedure of iterative teacher-student learning is followed. Noise is also

injected to the student networks during training. Evaluation results of these noisy-

teacher and student networks are provided in Table 4.12 along with our standard

teacher and student networks for comparison. All models provided on Table 4.12

have same encoder model size, EfficientNet-B7.
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Table 4.12: Evaluation results of Teacher and Student networks

Error (Lower is better) Accuracy (Higher is better)

Model Name Train Data Type Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Teacher GT(1/6 of KITTI) 0.110 0.671 4.349 0.165 0.876 0.965 0.990

Student-1 Unlabeled + GT 0.102 0.551 3.979 0.151 0.889 0.975 0.993

Student-2 Unlabeled + GT 0.100 0.525 3.930 0.149 0.892 0.976 0.993

Noisy-Teacher GT(1/6 of KITTI) 0.101 0.555 3.925 0.149 0.891 0.976 0.993

Student-1 with Noisy-Teacher Unlabeled + GT 0.099 0.525 3.820 0.146 0.894 0.977 0.994

Student-2 with Noisy-Teacher Unlabeled + GT 0.099 0.524 3.819 0.146 0.894 0.977 0.994

According to the results on Table 4.12, noisy-teacher already had better evaluation

results compared to standard teacher network that is trained without noise. However,

using iterative teacher-student learning can even increase the performance further.

"Student-1 with Noisy-Teacher" network trained after the "Noisy-Teacher" network

outperforms the previous evaluation results. However, a significant performance in-

crease is not observed for "Student-2 with Noisy-Teacher" network. This shows us

that the performance of network has saturated. At this point, in order to increase

performance one solution might be increasing the number of unlabeled data samples.

Another solution might be increasing the noise injected to the network during train-

ing. More aggressively injecting noise might help the Student-2 network to generalize

much better.

4.4.5 Other Results

During training of our teacher and student networks we have saved training loss val-

ues to investigate learning capability of our teacher and student networks. Loss values

are saved after each epoch. Epoch Number vs. Training Loss graphs of our three net-

works are given on Figure 4.5.
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Figure 4.5: Epoch Number vs. Training Loss

As seen on Figure 4.5, our Student-1 network converged to a fewer loss value than the

teacher. On the other hand, Student-2 network converged to a much fewer loss value

than the Student-1 network. We think, increasing the dataset by adding pseudo la-

beled dataset in training of Student-1 network made it converge to a lesser loss value.

However, in training of Student-2 network the number of data used was same with

the Student-1 networks training, yet Student-2 network converged to a much lesser

loss value. No pre-trained weights were used in training of these networks. There-

fore, we believe the reason behind Student-2 network having a much less training

loss compared to others is that pseudo labeled dataset used in training was predicted

by Student-1 network. At that point Student-1 network already had a high perfor-

mance and so the predicted depth maps by Student-1 network were more accurate

than the Teacher networks predictions. Using a more accurate pseudo labeled dataset

in training of Student-2 Network ensured it to converge to a lesser training loss value.

We have computed error maps for some predictions to examine whether our Student-

2 network performs better on near objects or distant objects. Error map is calculated

74



through absolute pixel difference between ground truth and predicted depth maps.

Predictions are made on KITTI 2015 stereo dataset [24] which has more highly de-

tailed ground truth depth maps. Original images, GT images, predicted depth maps

and error maps are provided on Figure 4.6.

(a) (b) (c) (d)

Figure 4.6: Qualitative comparison of predicted depth maps by Student-2 network

with ground truth depth maps in terms of error. Images are taken from KITTI 2015

stereo dataset [24]. From top to bottom, sample image, ground truth depth map,

prediction of Student-2 network, error map.

After calculating error maps, we observed that there is not a big difference between

far and near estimations of depth. As seen on error map of image ’c’, if object is

very close to the camera some distortions might be encountered. However, in general

faulty estimations occur on object boundaries as it is expected.

In order to observe effect of epoch number in training, we have evaluated performance

of three models for our Student-1 network. Evaluations are made with Student-2

network models trained for 30, 40 and 50 epochs. Results are given on Table 4.13.
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Table 4.13: Evaluation results of Student-1 network for different epoch numbers.

Error (Lower is better) Accuracy (Higher is better)

Model Name Epoch Number Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Student-1 30 0.100 0.527 3.861 0.147 0.890 0.976 0.994

Student-1 40 0.099 0.526 3.854 0.146 0.892 0.977 0.994

Student-1 50 0.099 0.525 3.820 0.146 0.894 0.977 0.994

As observed on Table 4.13, Student-1 network reaches to a high accuracy even before

30 epochs. Small improvements occur on RMS error but mostly other error values

and accuracy values does not change much. Although performance does not change

much, the network does not overfit to the dataset and its accuracy does not decrease as

most of the deep learning networks. This is achieved as noise is aggressively injected

during training.
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CHAPTER 5

CONCLUSION

A deep learning model can learn to estimate depth from monocular images with the

help of representation learning. This could be done with a good network structure

and an appropriate dataset suitable for the method used in learning. The aim of this

thesis is to design a successful auto-encoder structure and train it with teacher-student

learning method to achieve state-of-the-art accuracy. For that purpose, we start with

analyzing the networks structures and learning methods used in previous works. Since

monocular depth estimation problem is solved by representation learning, the feature

extraction by encoder structure plays an important role in networks performance. Ef-

ficientNet encoder [17] designed using neural architecture search, has shown an out-

standing performance in previous works in deep learning area. Therefore, we have

decided using EfficientNet encoder structure in our network architecture. We first

evaluated its performance by using it in a well-known model Monodepth [10] since it

was not used in a monocular depth estimation network before. We showed with our

experiments that using EfficientNet in a depth estimation network increases perfor-

mance. We have also evaluated the performance of ASPP (Atrous Spatial Pymarid

Pooling) [28] and showed that using it in decoder structure increases performance as

well. After these evaluations we have created our own network structure by using

EfficientNet and ASPP.

In second stage of our work, we focused on the learning method used in our exper-

iments. We first built 3 different size teacher networks by using EfficientNet-B5,

B6 and B7 encoder models and trained them. We built these different size networks

with the help of EfficientNet compound scaling strategy. We evaluated their perfor-

mances in order to decide which model size we should use as our original teacher
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network. We observed that EfficientNet-B7 model performed much better compared

to B5 and B6 models as it was expected in the first place. Since EfficientNet-B7

network has a larger network size it can learn and generalize better. After we have

evaluated B5 and B6 model sizes we observed that they cannot reach to the perfor-

mance of B7. However, when considered in terms of speed, EfficientNet-B7 trains

slower compared to others. After deciding to use EfficientNet-B7 model, we started

training with iterative teacher-student learning method. Our first teacher network was

trained in a supervised fashion with a small labeled dataset taken from KITTI dataset

[22]. Even though it was trained with a small dataset, our first evaluation results

showed that compared to the state-of-the-art supervised learning networks our pro-

posed network structure performed close and even better in some cases. Then we

used our teacher network to predict depth for an unlabeled large dataset and called

this dataset as pseudo labeled dataset. Our first student network was trained with

labeled and pseudo labeled datasets. In an iterative way, we used our first student

network to predict depth for pseudo labeled dataset and trained our second student

network with labeled and pseudo labeled datasets again. During training process of

student networks noise was aggressively injected to the models to make them gener-

alize and perform better than teacher network as proposed by Xie et. al [1]. Through

exhaustive experiments we proved that a depth estimation model trained with iterative

teacher-student learning method can increase its performance incredibly. Moreover,

our tests conducted on sample images showed that in confusing areas of the scene,

student networks learn to recognize objects better than teacher network even though

they are trained with same labeled dataset.

In third stage of our work, we trained three different size teacher networks again by

injecting noise this time. Then we compared our noise injected teacher network in or-

der to investigate effect of noise injection during training. We have observed a good

performance increase thanks to noise injection. We took Noisy-Teacher-B7 network

to become our teacher again for the iterative teacher-student learning. Following the

same procedure applied before, we trained two student networks. But this time, our

teacher network was noisy as well. Then, we evaluated the performances of student

networks compared them to the previous student networks. There was a performance

increase compared to teacher network and previous student networks but it was small.
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Apparently, injecting noise to the teacher made the student networks saturate eventu-

ally and they have reached to the top performance.

After evaluating all our models, our experiments showed that by using a small ground

truth labeled dataset, state-of-the-art performance results can be achieved with a

monocular depth estimation network if iterative teacher-student learning method is

used in training. The key practical benefit of proposed method is that it could enable

the decrease in need for massive labeled dataset in the monocular depth estimation

problem.

There are several studies left for future work in this thesis. First of all, transfer learn-

ing may be applied to our networks in order to evaluate them on different datasets.

While KITTI dataset includes outdoor street scenes mostly, an indoor or a different

dataset can also be used to train our networks from scratch. Moreover, our study

reveals that using noisy teacher-student learning, a solid student networks can be

trained even with a small set of ground truth labeled dataset. With the inspiration of

the results we share in this thesis, a network for a different representation problem

can also be trained. In the future, in order to increase accuracy and reliability of our

network and decrease its inference time, network architecture may be improved. Fur-

ther, monocular depth estimation networks can even be used in autonomous vehicles

if high reliability is achieved. But they should also have the ability to output real-time

depth maps.
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