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ABSTRACT

ZERO-KNOWLEDGE RANGE PROOFS AND APPLICATIONS ON
DECENTRALIZED CONSTRUCTIONS

Günsay, Esra

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

February 2021, 54 pages

Appropriate, effective, and efficient use of cryptographic protocols contributes to
many novel advances in real-world privacy-preserving constructions. One of the most
important cryptographic protocols is the zero-knowledge proofs. The zero-knowledge
proofs have recently gained the utmost importance in terms of decentralized sys-
tems, especially in the context of privacy. In many decentralized systems, such as
electronic voting, e-cash, e-auctions, or anonymous credentials, the zero-knowledge
range proofs are used as the building blocks. In this thesis, we examine, summarise
and compare range proofs based on zero-knowledge proofs, and examine their appli-
cations in decentralized systems such as distributed ledgers, confidential assets and
smart contracts. We also, investigate different basis of OR-proofs and compare the
efficiency of different basis approaches. To this end, we have modified the Mao’s
range proof [31] to base-3 with a modified OR-proof [16]. For each basis, we de-
rive the number of computations in modulo exponentiations and the cost of numbers
exchanged between parties. Then, we have generalized these costs for base-u con-
struction. At the end of these comparisons, we observe that comparing the number of
computations in modulo exponentiations with other base approaches, the base-3 ap-
proach is 5.5% more efficient. In addition, comparing the cost of numbers exchanged
between prover and verifier, base-3 approach is 7% more efficient than other base
approaches.
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ÖZ

SIFIR BİLGİ ARALIK ISPATLARI VE DAĞITIK SİSTEMLERDEKİ
UYGULAMALARI

Günsay, Esra

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Şubat 2021, 54 sayfa

Kriptografik protokollerin uygun, etkili ve verimli kullanımı, gerçek dünyadaki giz-
lilik koruma temelli birçok yeni ilerlemeye katkıda bulunur. En önemli kriptografik
protokollerden biri de sıfır bilgi ispatlarıdır. Sıfır bilgi ispatları, özellikle son zaman-
larda gizlilik bağlamında, merkezi olmayan sistemler açısından önemli hale gelmiştir.
Elektronik oylama, e-nakit, e-açık artırmalar veya anonim kimlik bilgileri gibi birçok
merkezi olmayan sistemde, sıfır bilgi aralığı ispatları yapı taşı olarak kullanılmakta-
dır. Bu tezde, sıfır bilgi ispatlarına dayalı aralık ispatları açıklanıp karşılaştırıldı ve
dağıtılmış defterler, gizli varlıklar ve akıllı sözleşmeler gibi merkezi olmayan sistem-
lerdeki uygulamaları incelendi. Ayrıca, farklı tabanlardaki aralık ispatları incelenip
verimlilikleri karşılaştırıldı. Bu amaçla, Mao’nun aralık ispatı [31] 3 bazında modi-
fiye edildi. Bunun için OR şeması [16] 3 tabanında inşa edildi. Her bir değişik taban
için gerekli modülar formda üst alma işlemi maaliyeti ve partiler arası değiş tokuş
edilen sayıların maaliyetleri hesaplandı. Daha sonrasında, bu hesaplamalar u-tabanı
için genelleştirildi. Bu karşılaştırmaların sonunda, modüler üstelleştirme hesaplama-
ların maliyetinin diğer baz yaklaşımlarıyla karşılaştırıldığında, taban-3 yaklaşımının
yaklaşık %5.5 daha verimli olduğunu gözlemlendi. Ayrıca, kanıtlayıcı ve doğrulayıcı
arasında değiş tokuş edilen sayıların maliyetini karşılaştırdığımızda, taban-3 yakla-
şımı diğer taban yaklaşımlarına göre yaklaşık %7 daha verimli olduğu da görüldü.
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Anahtar Kelimeler: sıfır bilgi ispatı, aralık ispatı, blokzincir, dağıtık sistemler, taahhüt
şemaları, sigma protokolü.
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CHAPTER 1

INTRODUCTION

Zero-knowledge proofs are one of the most important building blocks of many privacy-

preserving systems. The basic principle of the zero-knowledge protocol construction

is to prove the information you know to someone else without revealing any infor-

mation about the secret itself. The method of proving this hidden knowledge is often

the output of a cryptographic function. There exist various types of zero-knowledge

proofs used in the area of computer science and applied mathematics.

Among these various different proofs, one very important them is the zero-knowledge

range proofs (ZKRPs), which prove that an integer lies in an interval without revealing

the integer itself. There are numerous areas of usage of ZKRPs in the real-world [3]

[12] [11]. One basic example as widely popular is to assume one person wants to

prove that she is over 18 in order to validate that he/she can consume an age-restricted

service, say he/she wants to vote. In this example, a cryptographic ZKRP algorithm

is used to prove this without revealing the age.

Another common example, especially in the banking industry, assume a party wants

to transfer x (which can be money, services, etc.). To do so, the party needs to prove

that the amount he/she tries to send is positive. Otherwise, this transaction works

in opposite direction. The problem is how one person can prove that he has enough

money without revealing the transaction amount. At this point, the ZKRP goes into

the work to solve the problem.

Due to this importance, there exist many up-to-date studies to explain and compare

existing range proofs [36][19][26][15]. Apart from these studies, the motivation of
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this thesis is to focus on underlying cryptographic primitives, explain some more

recent schemes and decentralised applications to lead the establishment of new de-

centralized systems, and the improvement of existing systems. Also, in this study, we

examine different base approaches, analyse the complexity for these basis by aiming

to find most efficient approach.

As we mentioned, there are numerous techniques to achieve range proofs. In this

thesis, we separated them into 3 main categories:

1. Strong RSA problem based method,

2. Diffie-Hellman problem method,

3. Discrete logarithm problem based method.

For each catogory, we investigate one or two leading examples, which can be useful

in context of decentralised applications (DApps), or different base approach.
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CHAPTER 2

PRELIMINARY TO THE SUBJECT

In this chapter, some of the basic primitives, notations, and definitions will be in-

troduced to provide the reader with sufficient theoretical background about the zero-

knowledge range proofs.

There are 5 main sections in this chapter. Firstly notation of the thesis will be intro-

duced. Secondly, some algebraic backgrounds will be summarized, and then bilinear

pairings will be defined. Due to its important role in ZKRP systems, a comprehen-

sive explanation of commitment schemes will be given. The last section will explain

digital signatures and define one particular digital signature due to its role in the next

chapters.

2.1 Notations

Let G and Q be two cyclic groups of order p and q respectively, where both p and q

are large primes. Let Zp denotes residue class ring of modulo p. By both r $← Z∗p, and

r ∈R Z∗p, we denote that r is randomly chosen over Z∗p. To notate the protocols, we

choose to use the Boudot’s representation as PKtype(x : R(x)), which denotes proof

of x when x ∈ R(x).

Also, some related but specific definitions and notations will be given when needed

in the following chapters.
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2.2 Finite Field Cryptography

In public-key cryptography, many applications are constructed over algebraic struc-

tures. It is crucial to know these bases to get the cryptographic protocols.

A set G with a binary operation ∗ is called as a group and shown as (G, ∗). A group

has 4 properties to hold:

1. ∀a, b ∈ (G, ∗), a ∗ b ∈ (G, ∗), and uniquely defined.

2. ∀a, b, c ∈ (G, ∗), a ∗ (b ∗ c) = (a ∗ b) ∗ c.

3. ∃e ∈ (G, ∗) s.t a ∗ e = e ∗ a = a, ∀a ∈ (G, ∗).

4. ∃a−1 ∈ (G, ∗) s.t a ∗ a−1 = a−1 ∗ a = e, ∀a ∈ (G, ∗).

A set with at least two binary operations (+, ∗) is called as field and satisfies:

1. (F,+), needs to be a commutative group, and its identity element is I+ = 0.

2. (F∗, ∗), needs to be a commutative group, and its identity element is I∗ = 1.

3. ∀a, b, c ∈ F, a ∗ (b+ c) = a ∗ b+ a ∗ c.

Based on these explanations, a finite field is a field with a finite number of elements.

Now we will give some definitions on finite fields.

Definition 2.2.1. (RSA assumption) Let n be a RSA modulus, and x be a RSA

exponent. RSA assumption states that given element s ∈ Z∗n it is hard to find such m

providing:

mx = s (mod n).

Definition 2.2.2. (Strong RSA assumption) Let n be a composite number which is

n = pq. p and q are t-bit random primes and let τ ∈ Z be a security parameter. For

a secret s ∈ Z∗n, Strong RSA assumption states that it is hard to find such x and m

providing:

mx = s (mod n),

where x 6= ±1.

4



Definition 2.2.3. (Discreate Logarithm problem) Let G be a multiplicative cyclic

group and g be a generator over G and h be an element of G. Discrete Logarithm

problem states that it is hard to find such x providing:

gx = h.

2.3 Bilinear Pairings

In pairing-based cryptography, bilinear maps are a special form of pairings.

Definition 2.3.1. (bilinear map)[5] Let G1,G2,GT are cyclic groups with suffi-

ciently large order p..

A bilinear pairing bp := (ê,G1,G2,GT ) is a map:

ê : G1 ×G2 → GT ,

with satisfying all the following requirements:

– bilinearity Let u ∈ G1 and v ∈ G2. ∀a, b ∈ Z,

ê(ua, vb) = ê(u, v)ab.

– non-degeneracy non-degeneracy means map should be non-trivial. ∀u ∈ G1,

different than identity element of G1, there exist v ∈ G2 s.t.

ê(u, v) 6= 1.

Similarly, ∀v ∈ G1, different than identity element of G2, there exist u ∈ G2

s.t.

ê(u, v) 6= 1.

– efficient computability operations within the group and membership decisions

in G1,G2,GT should be efficiently computable.

Here order might be a prime composite number. Usually, prime orders are preferred.

It is also correct to write groups G1 and G2 additively, this time definition becomes

ê(au, bv) = ê(u, v)ab which is still correct.
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Weil and Tate pairings [25] are examples of pairings where the above properties hold

an elliptic curve over G1 and finite field G2.

Definition 2.3.2. (bilinear Diffie-Hellman Problem) Let u ∈ G1, for given u ∈ G1

ua, ub, uc one must be able to find uab then compute ê(uab, uc) = ê(u, vu)abc.

q-Strong Diffie-Hellman Problem is another important tool for the following proofs.

Boneh and Boyen proposed it for the first time related to Boneh-Boyen short signature

scheme [6].

Definition 2.3.3. (q-Strong Diffie-Hellman Problem (q-SDH)) [42]

Let bp := (ê,G1,G2,GT ) be a bilinear map. G1 and G2 has order p and g be the gen-

erator in G1. Then for any random chosen x ∈ Zp, given g1, gx1 , g
x2

1 . . . gx
q

1 computing

a pair g
1
x+c

1 , where c ∈ Zp.

2.4 Commitment Schemes

Commitments are important building blocks due to their major role in many cryp-

tographic applications such as zero-knowledge proofs or secure multiparty compu-

tations. These schemes were introduced in 1998, by Brassard, Chaum & Crépeau

[7].

Definition 2.4.1. (Commitment Scheme) A commitment scheme a deterministic

polynomial-time algorithm, and a commitment is {0, 1}k × {0, 1}∗ → {0, 1}∗ where

k is a security parameter.

A commitment scheme has 3 polynomial algorithms (Gen, Com, Open) defined as

follows:

Gen: Public commitment key cpub is generated cpub ← {1k}.

Com: Using public commitment key cpub it generates the commitment c.

Open: It takes randomness r, message m, and opens the committed value and reveals

the message.

6



Committer Opener

Com

Com

Figure 2.1: Commitment scheme workflow.

A commitment scheme has 2 stages, namely committing and revealing, as shown

in figure 2.1. Here 1k is the security parameter. At the committing stage, using

the deterministic Com algorithm sender hides the message m. At the end of this

step, both sender and receiver have the same output. The revealing stage is non-

interactively occurs. In the revealing stage, the sender sends the random value d,

and message m to the receiver. The receiver uses the Com algorithm and checks the

equality of the new and previous commitments. Depending on the result, it accepts

or rejects.

As a security requirement, a commitment scheme should satisfy hiding and binding

properties.

Hiding: For any adversary A, it is computationally infeasible to find Com(m0) =

Com(m1), when m0 6= m1. This property assures that given committed value c,

adversary cannot learn anything about message m. For all sufficiently large λ:

Pr
[
b = b

′ | cpub ← Gen{1λ}; b← {0, 1};
(com, d)← Com(cpub,mb) : b

′ ← A(com)
]
< 1

2
+ negl(λ).

If a probabilistic polynomial-time (PPT) adversary is in the case, then the commit-

ment scheme is called computationally hiding. Otherwise, considering the adversary

has unlimited power sources, the scheme is called information-theoretically hiding.

It is called statistically binding commitment scheme if for any adversary having un-

limited sources and for sufficiently large λ following holds:

Pr
[
b = b

′ | cpub ← Gen{1λ}; b← {0, 1};
(com, d)← Com(cpub,mb) : b

′ ← A(com)
]
< 1

2
+ negl(λ).
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It is called a perfectly binding commitment scheme if for any adversary having un-

limited sources and for sufficiently large λ following holds:

Pr
[
b = b

′ | cpub ← Gen{1λ}; b← {0, 1};
(com, d)← Com(cpub,mb) : b

′ ← A(com)
]

= 1
2
.

Binding: it is infeasible to find two different openings from one committed value

which guarantees committer cannot forge the system even if she changes her mind.

More formally, for any adversary A:

Pr
[
cpub ← Gen{1λ}; (com,m0,m1, d0, d1)← A(cpub) :

m0 6= m1 and Open(cpub, com, d0,m0) = Open(cpub, com, d1,m1) = 1
]
≤ negl(λ).

If PPT adversary is in the case, then the commitment scheme is called computation-

ally binding. Otherwise, considering the adversary has unlimited power sources, the

scheme is called information-theoretically binding.

It is called statistically binding commitment scheme, if for any sender having unlim-

ited sources and for sufficiently large λ following holds:

Pr
[
cpub ← Gen{1λ}; (com,m0,m1, d0, d1)← A(cpub) :

m0 6= m1 and Open(cpub, com, d0,m0) = Open(cpub, com, d1,m1) = 1
]
≤ negl(λ).

It is called a perfectly binding commitment scheme, if for any sender having unlimited

sources and for sufficiently large λ following holds:

Pr
[
cpub ← Gen{1λ}; (com,m0,m1, d0, d1)← A(cpub) :

m0 6= m1 and Open(cpub, com, d0,m0) = Open(cpub, com, d1,m1) = 1
]

= 0.

Definition 2.4.2. (Bit commitment scheme) Bit commitment scheme is a function

{0, 1} × {0, 1}∗ → {0, 1}∗. In a language L a bit commitment scheme is a protocol

user chooses a bit b and a random element r and produce a commitment Com(b, r).

In a bit commitment scheme following properties must be satisfied:

1. It would be computationally infeasible to reveal a b for a given Com(b, r).

2. Com(b, r) must be openable simply with revealing r by the committer.

3. It would be computationally infeasible to find an r′ s.t. Com(1, r
′
) = Com(0, r

′
)

8



Definition 2.4.3. (Homomorphic commitment scheme) Let Comm be a commit-

ment, and m,m′ be two messages, r,r′ two randomness values. A commitment

scheme Com(m, r) is said to be homomorphic if in the case of multiplying two com-

mitments result is a new commitment that includes both messages under operation.

Com(m, r)Com(m
′
, r
′
) = Com(mm

′
, rr

′
)

Now, we will move on with some particular commitment schemes, which will be used

constructing range proof schemes.

2.4.1 Pedersen Commitment

The idea of Pedersen commitment with perfectly hiding and computationally binding

properties is presented for the firts time in [33] [34]. The security of the scheme is

based on the hardness of the discrete logarithm problem (DLP).

In the setup phase receiver picks uniformly random primes p and q with p | (q − 1).

Suppose G be the subgroup of Z∗p. Receiver picks an element h generator g,∈ G

randomly where logg h is unknown.

In the committing phase, to commit a secret x ∈ Z∗q , she computes Com(x, r) =

gxhr. Opening phase is quite similar, committer reveals x and corresponding r for

opener to compute Com(x, r) = gxhr to check its correctness.

– perfectly hiding It is computationally infeasible to reveal x for a givenCom(x, r).

– binding This property directly holds due to DLP assumption.

2.4.2 Fujisaki-Okomoto Commitment

Fujisaki-Okomoto Commitment scheme is firstly presented in [21]. In 2002, it was re-

visited by Damgard and Fujisaki [17]. It has statistically hiding and computationally

binding properties. Security of the scheme is based on the hardness of the strong-RSA

assumption.
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In the setup phase 3 elements are generated n, h, g. Uniformly random primes p and

q are chosen and n = p ∗ q is computed. Quadratic resudue modulo n generated

by generator h ← Gen(1λ). g is an element of subgroup generated by h. Finally, a

random element r is chosen from the set Z2N+λ .

Now the commitment is of the form Com(x, r) = gxhr (mod n)

– perfectly hiding Since random element r is used in the commit phase, the

result of the commitment scheme is a random group element.

– binding It is computationally infeasible to find two openings due to strong-RSA

assumption.

2.5 Digital Signatures

A digital signature scheme is formed with 3 main functions (Gen, Sign, Verify), key

generation, signing, and verifying, respectively. Gen algorithm outputs private-public

key pairs (kskkpk). Sign algorithm generates the signature σ by using ksk. Verify

algorithm checks the correctness of the signature by using corresponding kpk The

message is signed with the private key and verified with the corresponding public

key.

2.5.1 Boneh-Boyen Signature Scheme

As provided in [24], the signature scheme has 3 main functions (Gen, Sign, Verify),

respectively key generation, signing, and verifying algorithms.

Gen: Random element x ∈R Z∗p chosen and set as secret key. Then public key set as

y ← gx.

Sign: Signing process is hold as ζ ← g
1

x+m .

Verify: To verify the given signature following should be checked ê(ζ, y.gm) =

ê(g, g).

10



CHAPTER 3

PROOF SYSTEMS AND PROTOCOLS

A proof system is a workflow between two parties, namely the prover and the verifier.

Usually, it has 3 phases: commit phase, challenge phase, and response phase.

A cryptographic protocol is a construction performing security related functions us-

ing cryptographic techniques such as encryption, hashing, signing, etc.

Since this thesis’ main topic is range proofs, due to their important property, so-

called zero-knowledgeness, we explain zero-knowledge proofs with their security

definitions. Since range proofs are a particular kind of proof of knowledge (PoK)

protocols, it is also important to get the idea of the proof of knowledge.

In this sense, we are going to use interactive or non-interactive proofs to classify types

of the range proofs in the next chapters.

Also, since many of the range proofs are based on Σ-protocol, we explain them with

compositions of them at the end of this chapter in detail.

3.1 Interactive Proof Systems

The idea of interactive proofs was introduced in 1985, by Goldwasser, Micali, and

Rackoff for cryptographic applications [23]. Interactive proofs take place between

two parties: prover and verifier. These parties are interactive Turing machines that can

send and receive messages. In most cases, we assume prover has infinite computer

power while verifier is a polynomial-time computer, which means his computations
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are in bounded-error probabilistic polynomial time (BPP). Verifier sends some ran-

dom challenge, namely x, to the verifier and wants to convince that x in a language,

namely L. Prover, responds to the challenge after computing a polynomial-time func-

tion for x. Depending on the result/response verifier decides whether it accepts or

rejects the proof, as shown in the figure 3.1.

Figure 3.1: Interactive proof system [1].

Definition 3.1.1. (Interactive Proof) For the proof system pair (P, V ), the statement

in language L ⊂ {0, 1}∗ system accepts x in time t is

Prt
[
(V ↔ P ) accepts x] = Prt

[
(V ↔ P )(x, r) = accepts],

where verifier’s private randomness r is generated uniformly. It should satisfy the

following 2 properties:

Completeness: For every true claim, verifier needs to be convinced.

Soundness: It should be computationally infeasible to convince the verifier for a false

claim.

3.2 Proof of Knowledge Systems

In a secure computation, PoK systems are used as building blocks in almost every

protocol. The impacts of underlying PoKs on the degree of security and efficiency of

the system cannot be ignored.

In the PoK systems given a binary relation set R = (x,w) for any x and witness

set w(x), membership can be tested in polynomial time. It is a type of proof of

membership. The witness set is all w, providing (x,w) ∈ R.

12



Definition 3.2.1. (Proof of Knowledge) The relation R with knowledge error κ

where κ : {0, 1}∗ → [0, 1] is a function, a proof of work system is a pair (P, V ),

which satisfies the followings:

Completeness: ∀(x,w) ∈ R

Pr
[
(V ↔ P ) accepts x

]
> 1− κ(x),

which means if (x,w) ∈ R, then verifier always accepts.

Soundness: ∃E as an extractor which is a probabilistic oracle machine, for a constant

c > 0,∀P ′ , ∀x, ∀w′ satisfies that:

If

Pr
[
(V ↔ P

′
)(x,w

′
accepts

]
> κ(x),

then outputting string w by the extractor E (x,w) ∈ R can be done in steps bounded

by:
|x|c

ε(x)− κ(x)
,

and the probability is shown as:

Pr
[
(V ↔ P

′
)(x,w

′
accepts

]
< Pr

[
(E(x,w

′
;P
′ ∈ w(x))

]
+ κ(n).

A well-known example of this protocol is knowledge of a discrete logarithm. Let G

be a group of prime order q. Let x is a common input and x = gw when g 6= 1

Protocol workflow is depicted in the figure 3.2.

Prover Verifier

Chooses

Chooses

Computes

Checks

Figure 3.2: Proof of Knowledge construction workflow.
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3.3 Zero-Knowledge Proofs

The class non-deterministic polynomial-time (NP ) problems are those, assuming

prover has infinite computing power, and the verifier is polynomially bounded. So

in this set of decision problems, the "yes" answer can be verified with proofs in a

polynomial time by a deterministic Turing machine. We know that any NP problem

instance can be proven to be true in zero-knowledge [22].

complete

Figure 3.3: Space scheme.

The class of IP denotes the class of problems solvable by an interactive proof system.

The class of PSPACE, on the other hand, denotes the class of problems that can be

solvable by a Turing machine using a polynomial amount of space. We direct the

reference [41], for proof of the claim of PSPACE = IP . Assuming a prover with

unlimited power wants to convince a polynomially bounded verifier that a statement

is valid. It is quite similar to interactive proof systems. It holds completeness and

soundness properties. As a difference, in addition, zero-knowledgeness should be

satisfied.

Definition 3.3.1. (Zero-Knowledge) For the interactive protocol system pair (P, V ),

the statement in language L ⊂ {0, 1}∗, if for all polynomially bounded verifier V ′

there exist a probabilistic expected polynomial time simulator SV ′ ,

x ∈ L,
[
(V
′ ↔ P )

]
(x,w) and

{
SV ′ (x)

}
.

it is said that interactive proof is zero-knowledge.

Definition 3.3.2. (Honest Verifier Zero-Knowledge) For the interactive protocol

system pair (P, V ), the statement in language L ⊂ {0, 1}∗, if there exist an honest

14



probabilistic expected polynomial time simulator SV ′ ,

x ∈ L,
[
(V ↔ P )

]
(x,w) and

{
SV (x)

}
.

it is said that interactive proof is zero-knowledge.

A simulator S is a polynomial-time probabilistic machine for an interaction of a ver-

ifier and a prover if for every element in the language L the output of simulator is the

information that the verifier possibly have gained, namely a transcript).

It is clear that the idea of zero-knowledge is related to the concept of a simulation.

The relation of the set of valid transcripts and the set of possible simulations specifies

the security.

An interactive proof system (P, V ) is computationally zero-knowledge if the set of

simulations and the set of real-world valid transcripts are computationally indistin-

guishable. While ξ is an auxiliary symbol:

SV ′ (x) ∼c (P, V
′
(ξ))(x).

An interactive proof system (P, V ) is said to be perfect zero-knowledge if the set of

simulations and real-world valid transcripts are identical.

SV ′ (x) ∼p (P, V
′
(ξ))(x).

When the difference between these sets is just a small statistical distance, it is called

statistical zero-knowledge.

SV ′ (x) ∼s (P, V
′
(ξ))(x).

A zero-knowledge proof is used to be sure that the malicious parties do not cheat.

This proving process may take several steps. Depending on the response, at each step

verifier decides whether it accepts or rejects the proof. It should satisfy the following

2 properties:

Completeness: For every true claim verifier needs to be convinced.
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Soundness: It should be computationally infeasible to convince the verifier for a false

claim.

Zero-knowledge: At the end of the process prover reveals nothing but her claim.

Arbitrary zero-knowledge proofs of NP statements are usually considered as some-

how expensive and therefore not efficient enough for protocols. Although this is true

still there exist many languages having extraordinary efficient zero-knowledge proofs.

3.4 Σ−Protocols

Σ− protocols are special types of interactive 3-move honest verifier zero-knowledge

proofs (HVZK). The first movement is usually a committed value sent by the prover.

The second movement is by the verifier, and usually, it is a large enough uniformly

random challenge. The third movement comes from the prover to aim that the verifier

will be able to run a proof of knowledge with some specific steps.

In most of the protocols, non-interactive proofs are preferred because they do not

take direct input from the verifier. This problem can be passed simply by using Fiat-

Shamir transform, which hashes the message and the prover’s statement. Some of

these protocols are considered very efficient in applications. Here provide the neces-

sary definitions:

Definition 3.4.1. (Σ-Protocol) For the protocol system pair (P, V ), a Σ-Protocol for
the relationR, is of the following form:

sends message 

P v
sends t-bit random 

sends  Accept/Reject
based on 

Figure 3.4: 3-move HVZK.

Both P and V have x as common input, P has private input w, where (x,w) ∈ R.

A typical Σ-protocol needs to achieve 3 security parameters. These are (perfect) com-

pleteness, special soundness, and Special honest-verifier zero-knowledgeness (sHVZK).
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Completeness: If (x,w) ∈ R then the Verifier always accepts.

Special soundness: Let a, e, z and a, e′ , z′ be two accepting transcripts with e 6= e
′ .

Then there exists a PPT knowledge extractorE, and always there exists a probabilistic

polynomial time knowledge extractor that can output a witness w satisfying (x,w) ∈
R.

sHVZK: There exists a PPT simulator S, for any given input x, and t−bit random

challenge e, it outputs the (x, a, e, z) with the probability distribution of outputting it

between honest P and V.

As an example, Schnorr’s Protocol for discrete logarithm can be given as we depicted

in the figure 3.5.

Prover Verifier

Checks

Chooses

Figure 3.5: Schnorr’s Protocol for Discreate Log.

As common input both parties have (p, q, g, h). Here p and q are primes. Prover has

a value w ∈ Zq and wants to convince the Verifier that she knows h = gw. This is a

3-step protocol.

1. First prover chooses uniformly a random r and computes a = gz mod p, and

then sends a to the Verifier.

2. Verifier chooses a t-bit random challenge e, where 2t < q.

3. Prover computes z = (r + ew) mod q sends z to Verifier to check weather

gz = ahe mod p holds. This equation holds if only ord(g) = ord(h) = q.
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It is easy to see the completeness of the protocol:

Since z = r + ew, gz = gr+ew = gr(gx)e = ahe.

Now we will examine the case that the Verifier sends two different challenges e, e′ .

Then, Prover computes two different values z = (r+ ew) and z′ = (r+ e
′
w) in mod

q. This will lead computing gz = ahe mod p and gz
′

= ahe
′

mod p.

For the soundness property, it needs to answer two different challenges correctly so

that it should be hold that:

gz.h−e = gz
′

.h−e
′

,

z + w.(−e) = z
′
+ w.(−e′).

So that we get:

w ←− z − z′

e− e′
.

It is known that e 6= e
′ . Also, z, z′ , e, e′ are all known by the prover. Hence, the

value of w can be recovered by the prover. Then this protocol has special soundness

property and it is said to be proof of knowledge. Note that fraction fails in the situation

of e = e
′ , which happens probability of 2−t, so the error probability is 2−t.

3.4.1 Compositions of Σ-Protocol

Combining the existing protocol for achieving different aims results compositions.

There are many compositions such as AND, parallel, EQ, NEQ, OR compositions;

however, in the context of this thesis, only AND and OR compositions will be exam-

ined by sampling the Schnorr protocol. We will define these compositions.

3.4.1.1 AND-Composition

AND-Composition is a special form of parallel composition. It checks that two given

statements are correct individually. SupposeR1 andR2 be two relations in language

L. Prover now wants to prove that:

For public keys p1 and p2, prover is able to compute x1 = loggp1, x2 = loggp2

respectively. To prove these statements, two Σ−protocols work in parallel.
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The figure 3.6shows the workflow of the AND-composition.

Prover Verifier

Figure 3.6: AND-composition of Σ−protocol for Schnorr protocol.

Proof of the relevant properties can be shown as follows:

– soundness property let AND(a, r) and AND(a
′
, r
′
) be two accepted conversa-

tion. Suppose they have different challenges c 6= c
′ . We know that gr1 = upc1

and gr
′
1 = upc

′

1 . Dividing both sides one can get gr1−r
′
1 = pc−c

′

1 . From this

equality p1 can be taken as p1 = g
r1−r

′
1

c−c′ . Since p1 also equals to p1 = gx1 , one

can obtain x1 as x1 = (r1 − r
′
1)/(c− c

′
). Similarly x2 = (r2 − r

′
2)/(c− c

′
).

– Completeness is almost straight forward. Since r1 = z1 + cx1

gr1 = gz1+cx1 = gz1gcx1 = ug(x1)
c

= upc1.

Similarly,

gr2 = gz2+cx2 = gz2gcx2 = ug(x2)
c

= upc2.

– sHVZK property, under the simulation both verifier and simulator has the same

probability of distribution.
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Prover Verifier

Figure 3.7: OR-composition of Σ−protocol for Schnorr protocol.

3.4.1.2 OR-Composition

OR composition is a type of Σ-protocol that one of the statements is correct. Again

under assumption of R1 and R2 being two relations, let the prover knows private

input which belongs to herself (namely witness) belongs to R1. So that she knows

her private input is in R1 ∨ R2. To prove that, she needs to run an OR-proof as seen

in figure 3.7. Proofs of the relevant properties can be shown as follows:

– special soundness property, let OR(a, r) and OR(a
′
, r
′
) be two accepted con-

versation. Suppose they have different challenges c 6= c
′ . Since c = c1 + c2 and

c
′
= c

′
1 + c

′
2 , at least one of the followings should hold c1 6= c

′
1 or c2 6= c

′
2.

On the other hand, we know that gr1 = upc11 , gr2 = upc22 and gr
′
1 = up

c
′
1
1 ,

gr
′
2 = up

c
′
2
2 . Dividing both sides one can get the followings.

gr1−r
′
1 = p

c1−c
′
1

1 , gr2−r
′
2 = p

c2−c
′
2

2 .

After that in situation of c1 6= c
′
1 from this equality p1 can be taken as p1 =

g
r1−r

′
1

c−c′ . Since p1 also equals to p1 = gx1 , one can obtain x1 as x1 = (r1 −
r
′
1)/(c− c

′
).
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Else if c2 6= c
′
2 similarly one can obtain x1 as x2 = (r2 − r

′
2)/(c − c

′
). As a

result at least one of this situations will be obtained.

– Completeness We know that c = c1 + c2 (mod n)

gr1 = gz1+cx1 = gz1gcx1 = ug(x1)
c

= upc1,

gr2 = upc2.

Similarly,

gr1 = upc1,

gr2 = gz2+cx2 = gz2gcx2 = ug(x2)
c

= upc2.

– sHVZK property, under the simulation both honest verifier and simulator has

the same probability of distribution for any given challenge.

3.5 Non-Interactive Proof Systems

There exist various methods to achieve a non-interactive proofs. Throughout this

thesis, the structures we examined can be easily turned into non-interactive by using

Fiat-Shamir Heuristic. Fiat-Shamir Heuristic is a transform to make interactive proofs

into non-interactive ones by using a hash algorithm. This technique is presented by

Amos Fiat and Adi Shamir in 1986 [20]. According to their original publication, the

formal definition is:

Definition 3.5.1. (Fiat-Shamir Heuristic) Let (P, V ) be a Σ-Protocol pair for the

relation R and H be hash function. Let δ=(Gen,Com,Open) denotes the result of the

commitment scheme. The proof system, depending on the δ, generating the challenge

value by hashing the δ as H(δ), and the resulting response is defined as The weak

Fiat-Shamir transform.

Similarly, generating the challenge value by hashing the δ, Y as H(δ, Y ), where y is

the input statement, is defined as The strong Fiat-Shamir transform.
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CHAPTER 4

RANGE PROOFS

Brickell, Chaum, Damgård & van de Graaf proposed the first range proof in 1987

[8]. Their construction was based on discrete logarithm with using a bit commitment.

The check accuracy of the proof they use Σ−protocol. This construction has many

negative features, especially in ranging.

In 1995, Damgard proposed a ZKRP construction[18]. Soon later, in 1997, Fujisaki

& Okamoto proposed another construction [21]. Although they work properly, the

problem with both of these schemes was that they were inefficient to use in real-world

cases.

In 1997, Bellare and Goldwasser presented binary decomposition range proof [14].

In this construction, secret s is represented in binary. This structure allows to s ∈
[0, 2k−1] where s has k bits. This construction is quite similar to Mao’s construction.

Each bit si of the secret s, written as a committed value to prove that it is actually a

binary element. To do this, a special technique of proof of knowledge is used. This

technique is also known as OR-proof, explained in Chapter 3, section 3.4. In 2001,

Boudot proposed the first useful scheme [36], which we will explain in later this

chapter in detail.

The main purpose of range proofs is to prove that a committed number lies in an

interval without revealing the number itself. There exist various methods/algorithms

to achieve this goal.

ZKRPs are important due to their several use cases. Some of them can be listed as

e-cash schemes, group signature schemes, verifiable secret sharing (VSS) schemes,
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and they can also be used as sub-protocol in other zero-knowledge systems.

First, one should know zero-knowledge set membership proofs because any set-mem-

bership proof can be easily converted into a range proof [10]. The problem is trans-

forming such proofs is not effective in many ways. Therefore some specific tech-

niques are developed for this specific purpose.

This part will briefly give information about the set membership proofs, transform

them into range proofs, and explain why these proofs are considered inefficient.

Some of the range proofs can be considered as special subsets of set membership

proofs. Suppose δ=(Gen, Com, Open) be a denotation of a commitment scheme. A

proof of set membership is a construction of a proof of knowledge with respect to

challenge c and the set Ψ.

PK
[
(u,w) : δ ← Com(u,w) ∧ u ∈ Ψ

]
.

Set membership proofs are used when a party wants to prove that an S is a member

of a language L. As an example, [28], [10], [38] can be given for these varieties of

constructions.

In the literature, there exist 2 main ways to commit the secret wanted to prove. These

are integer or binary. In this thesis, we divide it to 3 main methods. We add an extra

method namely u−ary method.

1. binary method This way allows to check that binary representation of a com-

mitted value is in the interval [0, 2k−1]. Due to the inefficiency of this method,

we consider this method impracticable.

2. integer method In this way, it is enough to check whether a committed number

belongs to interval I or not. Usually, I is chosen as a much larger interval

space.

3. u−ary method This way allows to check that u-ary representation of a com-

mitted value is in the interval [0, uk−1]. It is stated in the literature, this method

itself does not add extra efficiency to an algorithm.

We will also mention which of these methods the given structures use.

24



Range Proofs

strong RSA problem
based DH problem based

as

Mao's SchemeCamenish' Scheme 
(SDH-based)

DL problem based

Boudot's Scheme

Tsai's Scheme

Figure 4.1: Classification of zero-knowledge range proofs.

In this thesis, existing schemes will be examined based on their hardness assumption

under these three main headlines as shown in the Figure 4.1:

1. Strong RSA problem-based method,

2. Diffie-Hellman problem-based method,

3. Discrete logarithm problem-based method.

For each category, we will explain one or two constructions. In the DLP-based

method, we will analyse the efficiency of one of the existing protocols for different

basis.

4.1 Strong RSA problem based ZKRP

We have already defined strong RSA problem in chapter. One of the very old and im-

portant schemes is Boudots, depending on this problem. Later Lipmaa has proposed

another construction. We can say that also Grooth’s studies were based on this prob-

lem. To keep it short, at first, we will explain Boudot’s scheme and then we will give

Tsai et.al.’s scheme which has common underlying protocols with Boudot’s scheme.
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4.1.1 Boudot’s Scheme

To prove an integer x lies in interval [a, b] it is enough to prove both x− a and b− x
are both positive. Indeed the problems turn out to proving the positivity of an integer.

To do so, there exist three more proofs one needs to know beforehand. These are:

1. the proof of the committed number is a square,

2. the proof of two commitments hides the same secret,

3. the CFT proof.

First, we will explain these, and after that, we will explain Boudot’s construction.

Suppose E(x, r) = gxhr (mod n) is a homomorphic commitment where g ∈ Z∗n and

h is element of a group generated by g both logg h and logh g are unknown by prover.

n is composite number and factors of it are unknown for both prover and verifier.

Lastly r ∈R [−2κn+ 1, 2κn− 1].

First sub-protocol used in the construction is the proof that two committed values hide

the same secret. Where (t, l, κ) are security parameters:

PKss[x, r, r̂|E = E(x, r) ∧ Ê = E(x, r̂)].

Prover Verifier
Randomly chooses:

µ
$← [1, 2l+tb− 1]

τ1
$← [1, 2l+t+κ1n− 1]

τ2
$← [1, 2l+t+κ2n− 1]

Computes:
Ψ1 ← gµhτ1 (mod n) and Ψ2 ← ĝµĥτ2 (mod n)

c← H(Ψ1 ‖ Ψ2)

W0 ← µ+ cx1
W1 ← τ1 + cr, W2 ← µ+ cr̂

c,W0,W1,W2−−−−−−−→
To verify checks the following:

c
?
= Hash(gW0hW1E−c ‖ ĝW0ĥW2Ê−c)

Figure 4.2: Proof of two commitments hide the same secret PKss
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The second sub-protocol used in this construction is the proof of the committed value

is a square. Where (t, l, κ) are security parameters:

PK[x, r
′|Ê = E(x2, r

′
)], where r

′
= xr + r̂.

Prover Verifier
Randomly chooses:

r̂
$← [−2κn1, 2κn− 1]

Ê ← gxhr̂

r̃ ← r − r̂x
E ← Êxhr̃

Calls for PKss

PKss(x, r̂, r̃|Ê = gxhr̂ mod n ∧E = Êxhr̃ mod n
From PKss she gets c,W0,W1,W2

Ê,c,W0,W1,W2−−−−−−−−→
Checks if the following is valid to verification:

PKss(x, r̂, r̃|Ê = gxhr̂ mod n ∧E = Êxhr̃ mod n

Figure 4.3: Proof of committed value is a square PKsq

The last sub-protocol is a variation of the CFT protocol to proving x ∈ [−Θ,Θ], the

absolute value of committed value x is less than Θ.

PKCFT [x, r, E = E(x, r) ∧ x ∈ [a, b]].

At the and of this protocol verifier convinces that committed value x ∈ [−2t+lb, 2t+lb]

After these building blocks, to make the overall system to work, Boudot’s ZKRP
inputs are chosen as follows. Let Λ = |b − a|. Set T = 2(t + l + 1) + Λ, X = 2Tx

and R = 2T r.
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Prover Verifier
Randomly chooses:

µ
$← [0, 2l+tb− 1]

τ
$← [1− 2l+t+κ1n+ 1, 2l+t+κ1n− 1]

Computes:
Ψ1 ← gµhτ (mod n)

c← H(Ψ)

c
′ ← c( mod 2t)

W1 ← µ+ xc
′

W2 ← τ + xc
′

If W1 /∈ [cb, 2t+lb− 1] starts again from the beginning
c,W1,W2−−−−−→

Verification is done by checking:

W1
?
= [cb, 2t+lb− 1]

c
′ ?
= Hash(gW1hW2E−c

Figure 4.4: Proof of CFT for larger interval PKCFT

Prover Verifier
Computes: Computes:

EA = E/ga (mod n) EA = E/ga (mod n)

EB = gb/E (mod n) EB = gb/E (mod n)

Sets:
x̂← x− a and x̃← b− x

Sets:
x̂1 = b

√
x̂c and x̂2 = x̂− x̂21

x̃1 = b
√
x̃c and x̃2 = x̃− x̃21

r̂1, r̂1 ∈R [−2κn+ 1, . . . , 2κn− 1] s.t r̂1 + r̂2 = r

Similarly,
r̃1, r̃2 ∈R [−2κn+ 1, . . . , 2κn− 1] s.t r̃1 + r̃2 = −r
Computes new commitments:
EA1 = gx̂

2
1hr̂1 and EA2 = gx̂2hr̂2

EB1 = gx̃
2
1hr̃1 and EB2 = gx̃2hr̃2

EA1&EB1−−−−−−→
Validation of the Commitments:
PKsq(x̂1, r̂1, EA1 = (x̂21, r̂1))

PKsq(x̃1, r̃1, EB1 = (x̃21, r̃1))

PKCFT (x̂2, r̂2, EA2 = E(x̂2, r̂2) ∧ x̂2 ∈ [−θ, θ])
PKCFT (x̃2, r̃2, EB2 = E(x̃2, r̃2) ∧ x̃2 ∈ [−θ, θ])

Figure 4.5: Boudots ZKRP with Proof with Tolerance
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To compute the cost of this construction in terms of exponentiations, we first consider

the prover side. 8 exponentiations come from the PKSS , 4 exponentiations come

from the PKSQ, and CFT proof only has 3 exponentiations. The main scheme has

12 exponentiations. Overall scheme costs 27 E . Similar computations can be done

for the verifier side and results 24 E . There exist 4 elements to exchanged which are

c,W0,W1,W2.

4.1.2 Tsai’s Scheme

In 2019. Tsai et. al. proposed an improved range proof for decentralized applications

[43]. For simplicity, we call this construction as Tsai’s scheme in this thesis. The idea

is that to prove an integer x lies in interval [a, b] it is enough to prove (x− a+ 1)(b−
x+ 1) > 0, assuming both a and b positive integers.

With this aim, to prevent information leakages, for random chosen integer δ, they

prove δ2(x − a + 1)(b − x + 1) > 0. Let S + P = δ2(x − a + 1)(b − x + 1). It

uses PKSS and PKSQ as sub-protocols which we have explained in Boudots scheme.

But we use non-interactive versions of these proofs. It is stated in the original paper,

non-interactive range proofs are more suited options comparing with interactive ones.

So that, they construct a non-interactive ZKRP that has flexiable range form. We will

directly give the workflow of the scheme as follows:

This construction provides completeness, soundness and zero-knowledgeness prop-

erties. To see the proofs of these properties, original paper in [43], can be checked.

4.2 DHP-based ZKRP

Strong Diffie-Hellman (SDH) and Decisional Diffie-Hellman (DDH) assumptions

can be used in this method. A suitable digital signature algorithm signs each ele-

ment in the range. Then, the prover proves that he knows a secret signature in a blind

way.

There are not many structures proposed with this method. In the literature, Camenisch

et al. proposed an efficient construction based on q-Strong Diffie-Hellman assump-
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Prover Verifier
Computes: Computes:

E1 = E/ga−1 (mod n) E1 = E/ga−1 (mod n)

E2 = gb+1/E (mod n) E2 = gb+1/E (mod n)

Computes:
Ê = E

(b−x+1)
1 hr̂ (mod n)

Ẽ = Eδ2

1 h
r̃ (mod n)

Choses

λ
$← Z+

Computes:
S = λ2 where S < δ2(x− a+ 1)(b− x+ 1)

P = δ2(x− a+ 1)(b− x+ 1)− S
Sets r1, r2 ∈ Z+, s.t.

r1 + r2 = δ2((b− x+ 1) + r + r̂) + r̃ − S
Computes new commitments:
E
′
1 = gShr1 (mod n)

E
′
2 = gPhr2 (mod n)

E,Ê,Ẽ,E
′
1,E
′
2&P−−−−−−−−−→

Validation:
PKss(E2, Ê, b− x+ 1,−r, r̂)

PKsq(δ, r̃1, Ẽ = (δ2, r̃))

Ẽ
?
= E

′
1E
′
2 (mod n)

PKsq(α, r1, E
′
1 = (S, r1)

P
?
> 0

Figure 4.6: Tsai’s non-interactive ZKRP

tion for the ranges of the type [0, nl]. Applying the proof twice can also be used for

ranges of the type [−nl, nl].

4.2.1 Camenisch’s Scheme

In 2008, Camenisch et al. proposed an efficient zero-knowledge set membership

proof and a range proof application [10]. Their construction inspired an oblivious

transfer scheme proposed by Camenisch et al. [13], and it is based on bilinear group

signatures and Strong RSA assumption.

The main idea of range proof is defined in previous sections. In this construction,
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instead of using bit commitment schemes, base−u representation is used. Then every

element of the set is encoded with a digital signature with a key by the verifier. So

that the problem becomes "prove that signed value refers to a committed element of

the set C." Prover gets subject matter signatures, after signing blinds them, to hide the

committed element.

They used the Boneh-Boyen signature algorithm. Security of the algorithm relies on

the hardness of the q-Strong Diffie-Hellman assumption.

Lemma 4.2.1 (4). Suppose ê : (G1,Gt) is a bilinear map. In the case of q-Strong

Diffie-Hellman assumption valid on ê, then under a weak chosen message attack,

Boneh-Boyen signature scheme is q−secure against an existential forgery.

Prover Verifier

First verifier picks random x,x $←− Zp
And computes the corresponding y as y ← gx

For each i ∈ Zu, computes Ai ← g
1
x+1

xA ← x− a and xB ← b− x
sends the values of y&Ai←−−−−−−−−−−−−

Prover binds the signatures
For each j ∈ Zp,randomly picks vj
ComputesVj ← A

vj
σj s.t. σ =

∑
j(σju

j)
sends the values of Vj−−−−−−−−−−→

Prover and verifier performs proof of knowledge
For each j ∈ Zp,randomly picks s, t
Computes aj ← e(Vj, g)−sje(g, g)tj ,
and D ←

∏
j(g

ujsj)hmj ,
sends the values of (a,D)(j∈Zp)−−−−−−−−−−−−−−−−→

Figure 4.7: Proof Generation of ZKRP by Camenisch et al.

So far, the construction above results correct solutions for ranges of the form [0, B)

or [0, ul). In real-world applications, this is not always the case. To handle arbitrary

ranges that might be of the form [A,B], an improvement on Berry Schoenmakers

folklore suggestion can be used.

Let upper bound B can be expressed as ul−1 < B < ul. Our aim is to prove σ ∈
[A,B). Then it is straigtforword to show σ ∈ [A,A + ul) and σ ∈ [B − ul, B) is
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Prover Verifier
Verification of PoK

Verifier randomly chooses c← Zp
random challange c←−−−−−−−−−

For each j ∈ Zl computes
zσj ← sj − σjc and zvj ← tj − vjc
then computes zr ← m− rc

In Verification step verifier checks the followings

D
?
= Cchzr

∏
j(g

zσj
j )

For every j values in Zl checks the following

aj
?
= e(Vj, y)ce(Vj, g)−zσj e(g, g)zvj

Figure 4.8: Verification of ZKRP by Camenisch et al.

enough.

If σ ∈ [B − ul, B), one can also represent this as σ − B + ul ∈ [0, ul). Similarly

σ ∈ [A,A+ ul) can be represented as σ − A ∈ [0, ul).

It is enough to send for once the verification key vk and u signatures for both of

the sets above. Therefore in the scenario arbitrary range [A,B], the verifier needs to

check

D
?
= Ccg−B+ulhzr

∏
j

(g
zσj
j )

D
?
= Ccg−Ahzr

∏
j

(g
zσj
j )

There also exist more optimized version in the version of A + ul−1 < B, the set can

be represented as [A,B) = [B − ul−1, B) ∪ [A,A + ul−1). Here OR-composition is

used.

4.3 DLP-based ZKRP

Working on DLP has many positive features. One of them is, it makes schemes easily

applicable on elliptic curves. There are many old studies on this method. In [31],

Mao proposed a binary algorithm to prove the secret s lies in the given interval which

we will examine deeply in this section.
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Schoenmakers, on the other hand, has many researches and iterative algorithms in

this decomposition. Suppose we have an interval I = [0, b) he suggested to write

upper bound as a variant of 2: I = [0, 2n). He has two approaches: one is done by

using AND-proofs and the other is done by using OR-proof.

While 2n−1 < b < 2n, interval can be rewritten as

I[0, b) = [0, 2n−1) ∩ (b− 2n−1, b),

with using AND-composition of Σ-protocol (AND-proof). An equivalent representa-

tion is given by,

I = [0, b) = [0, 2n) ∪ (b− 2n, b),

with using OR-composition of Σ-protocol (OR-proof). In this scenario 4(n̂ − 1)

Schnorr-type OR-proofs are needed.

To increase the efficiency, another suggestion Berry Schoenmakers made is, in case

of 2n̂−1 < b < 2n̂, precedent upper bound b can be rewritten as b = 2n̂ + κ, where

2n
′−1 < κ < 2n

′
. Here n′ ≤ n̂. So the OR proof case will become:

I = [0, b) = [0, 2n̂) ∪ (b− 2n
′

, b).

Bulletproofs are also very important DLP-based range proofs. The aim of to protocol

is to prove that commitment Com(s, r) = xH + rG, hides the secret element s ∈
[0, 2k). To do so, the protocol uses inner product argument, which based on the

fact that we can represent any number as an inner product of two vector. When

(a1, a2, . . . , ak) is the bits of the secret s, we show that s = (a1, a2, a3 . . . , ak) ×
(20, 21, 23, . . . , 2k−1), and this leads us the result of s ∈ [0, 2k) [44].

We want to hide the bits of the secret in a single vector Pedersen commitment. Since

we have vectors of size k, the cost of exponentiations is quite expensive. The homo-

morphic property of Pedersen commitments, allows us to halve the vectors. By doing

this halving log2 k times, we get a single element. We apply this method to the inner

product vectors until we get a single multi-exponentiation instead of k-times which

makes the system more efficient.

In the workflow of the protocol, some combinations of constrictions and challenges

over Zp are sent to the prover by the verifier. With these combinations, the prover
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computes the inner product containing vector a, and blinding vectors. With the help

of the Fiat-Shamir heuristic whole scheme can be made non-interactive easily.

Now we will examine Mao’s bit-wise construction, after that, we will analyze the

efficiency of the scheme if we modify the scheme for other bases.

4.3.1 Mao’s Construction [31]

Let p be a large prime and let p = kq + 1 where k is an even number. Let g, h ∈ Z∗p
is an element of order q and discrete logarithm of h in base g, logg(f) is unknown by

Prover.

When r ∈R Z∗p, we say that E = gxhr mod p is a commitment to hide x.

Firstly, when k = |x|+ 1 binary representation of x can be written as:

x = x02
0 + x12

1 + · · ·+ xk−12
k−1 for xi ∈ 0, 1 and i = 0, 1, . . . , k − 1.

Prover chooses r0, r1, . . . , rk randomly s.t.
∑

i=0,...k−1 ri = r then computes the fol-

lowing bit commitment scheme:

Ei = E(xi, ri) = gxihri mod p for i = 0, 1, . . . , k − 1.

After that, the prover proves that, in each step, the value committed by E(xi, ri) is

whether 0 or 1. For this purpose, one can use a zero-knowledge sub-protocol, namely

the OR-composition of Σ-protocol, and shows that she knows whether Ei in base h

or Ei/g in base h as shown in Figure 4.9.

After all, verifier gets each Ei and r, with help of homomorophic property, he also

needs to check:

k−1∏
i=0

E(xi, ri)
?
= E(x, r) mod p.
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Prover (Alice) Verifier (Bob)

c

Above computing in mod p

Above computing in mod q

Figure 4.9: bit-lenght-based OR-Proof [31]

Here we say, a large enough p is 1024-bits, so q is 1023-bits. By E , we denote

exponentiation. Similarly, I denotes inverse, M denotes multiplication.

The complexity of the proof depends on the size of x. We supposed k = |x| + 1 at

the beginning. Since both prover and verifier need to compute 4 exponentiations for

each bit of x, in total we have 4k exponentiations.

We also have 7 integers: a1, a2, c, r1, r2, c1, c2 exchanged between prover and verifier.

Say k′ = |q|. In total, cost of exchanging integers equals 7kk
′ .
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CHAPTER 5

BASE-U RANGE PROOF

In this chapter, we investigate existing bit-wise range proofs on different bases. To

do so, the secret we want to commit is represented in base-u. For each bit of the

secret, we call the scheme we want to use. Here, though complexity is increasing on

the scheme, we expect to decrease overall complexity since we call the scheme fewer

times.

In this thesis, we take Mao’s construction and modified it to base-3, and after that, we

generalize it for base-u.

5.1 Mao’s ZKRP with Base-u OR-Proof

In this section we will observe Mao’s construction for different basis. At first we use

ternary-lenght-based representation instead of bit-length-based. So that, we denote

the secret we want to prove as ternary representation as follows:

x = x03
0 + x13

1 + · · ·+ xk̃−13
k̃−1 for xi ∈ 0, 1, 2 and i = 0, 1, . . . , k̃ − 1.

After that, for randomly chosen r0, r1, . . . , rk̃−1 values s.t.
∑

i=0,...k̃−1 ri = r, we

compute the commitments as:

Ei = E(xi, ri) = gxihri mod p for i = 0, 1, . . . , k̃ − 1.

After this step, we need to use OR-proof. But with classical base-2 OR-proof, we

cannot check each commitment for once in our case. So, instead of base-2 OR-Proof
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we construct base-3 OR-proof to prove that committed value is weather equal Ei, or

Ei/g, or Ei/g2 as follows.

Prover (Alice) Verifier (Bob)

c

Above computing in mod p

Above computing in mod q

Figure 5.1: 3-base OR-proof.

Again, verifier gets each Ei and r, he needs to check the following with help of

homomorophic property:

k̃−1∏
i=0

E(xi, ri)
?
= E(x, r) mod p.

5.2 Comparisons and Discussions

Clearly, this base-3 scheme succeeds in our case. For the complexity of the base-

3 construction, both prover and verifier need to compute 6 exponentiations in each

step. In total, we need 6k̃ exponentiations. On the other hand, we will consider

the numbers exchanged between the prover and the verifier. In this scenario, there

exist 10 integers to exchange between prover and verifier in each step. The cost of
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exchange then equals 10k̃k
′ .

Based on this, we can write the requirements for base-4. This time, 2 more exponen-

tiations needed for both prover and verifier, so we need 8k̃ exponentiations. This time

there would be 13 numbers to exchange which will cost 13k̃k
′ in total.

Before generalizing this scheme to base-u, remember E ≈ 8I , which means inverse

operation cost much less comparing exponentiation. Also E ≈ 1000M . That is

why other operations are can be seen as negligible. So that, it is enough to check

exponentiations here. Now in general, when we work on base-u, both prover and

the verifier needs to compute 2u exponentiations in each step. And since there will

be 3u + 1 numbers to exchange in each step on base-u. One may see the required

exponentiations at the Table 5.1.

Table 5.1: Table to compare requirings for different basis in each step

Cost type
Basis

Base-2 Base-3 Base-4 . . . Base-u

exponentiations 4 6 8 . . . 2u

numbers to exchange 7 10 13 . . . 3u+ 1

These exponentiations and exchangings will tekrar edicek length of secret. Remem-

ber length of the secret x is denoted k = |x|+1 in base 2 representation and k̃ = |x|+1

in base 3 representation. We know that, log 2 = 0, 30102 and log 3 = 0, 47771 so in

base 3 representation k̃ = log 2
log 3

m ≈ 0, 63k. Now we can compare these 2 worst case

complexities by exponentiations of both proof generation and verification as:

0, 63k(6E )

k(4E )
=

3, 78E

4E

It can be seen that we have 5.5% efficiency in both proof generation and verification

if we use ternary-length-based representation instead of bit-length-based. We also

analyze other basis complexities either in the same way and generalize this for base-u.

For base-4, since log 2
log 4
≈ 0, 5, so 4k exponentiations required. For base-u, number of

required exponentiations can be formalised as log 2
log u

(2u)k. Similar computations can

be done for total numbers exchanged between prover and verifier. In the bit-length-

based approach, 7kk
′ bits exchanged. In ternary-length-based 10k̃k

′ bits exchanged
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Table 5.2: Table to compare requirings for different basis in total

Cost type
Basis

Base-2 Base-3 Base-4 Base-5 . . . Base-u

exponentiations 4k 3.785k 4k 4.3k . . . log 2
log u

(2u)k

numbers to exchange 7 6.309 6.5 6.88 . . . log 2
log u

(3u+ 1)

as we mentioned before.
0, 63k(10k

′
)

k(7k′)
=

6.309E

7E

So that we have approximately 7% efficiency in the base-3 approach comparing with

the base-2 approach. If we generalize this to base-u, it can be formalized as log 2
log u

(3u+

1), and the most efficient computations come in base-3.

We also sketch the total required exponentiations among different bases as seen in the

first of the following graphs. You can check that maximum efficiency can be observed

on base-3.

Also, in the second graph one can see the comparison of the total number of exchange
bits again has maximum efficiency on base-3.
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Figure 5.2: Caption for this figure with two images

In the first graph 5.2a, you may find the number of required exponentiations depend-

ing on different bases. The graph has its minimum value in (3, 3.78), which is our

most efficient point.

In the second graph 5.2b, we can see the number of bits exchanged. Although in

folklore bit-representation it equals 7, in base-3, base-4 and base-5 it has better results.

Still, it has its minimum value in (3, 6.31), which is our most efficient point. As a
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result of both comparisons, construction has its most efficiency when using base-3

with our base-3 OR-composition.
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CHAPTER 6

APPLICATIONS ON DECENTRALIZED CONSTRUCTIONS

Many privacy concerns may easily be solved on up-to-date decentralized systems by

using variants of ZKPs[27][4][35]. In these constantly improving systems, ZKRP’s

have a significant role in achieving privacy. We have mentioned various areas to use

ZKRP’s in electronic voting, electronic cash, multi-coupon, and anonymous creden-

tial systems. Many of these systems are non-decentralized applications. However, in

the context of decentralized systems, we will not consider non-decentralized applica-

tions so that we will explain some financial decentralized distributed ledgers and how

they use ZKRP’s. In this chapter, we will mention some of the substantial applications

that used ZKRP’s.

Financial institutions might use Distributed Ledgers (DL) to construct an effective

and efficient compromise transaction between organizations. Current DL systems

have many drawbacks in terms of privacy and auditing. They are either public to all

participants which is not okay because some sensitive strategy and trading informa-

tion should have kept as secret, or they ensure privacy, but on the other hand, block

auditing. Again this is very problematic for financial institutions need to be audited

to proving they follow the regulations and financial oversights.

Usually, privacy in distributed ledgers can be provided in two different ways:

1. Using a hash function, hashing the transactions and keeping them as commit-

ting hashes. A TTP later can verify the transactions [37].

2. Using a cryptographic commitment scheme to commit transactions.
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6.1 Confidential Assets

Confidential transactions are those transferred amounts hidden/encrypted. While pri-

vacy is holding, it is still possible to prove that there is no money coming from thin

air or destroyed anywise. Its verification can be proven by showing the difference of

input amount, and output amount equal to the fee.

On the other hand, confidential assets are supporting to track multiple asset types in

a single blockchain transaction with keeping privacy [30]. In those schemes, both

amount and the asset type are kept secret. It enables users to use their assets on

privacy-related blockchain systems.

For example, Poelstra et al. [40] proposed a scheme in which multiple asset types can

be tracked with a single distributed ledger. The hardness of this scheme relies on the

elliptic curve discrete logarithm (ECDL). Due to its additively homomorphic prop-

erty, the Pederson commitment scheme is used to blind each UTXO’s amount. This

results in an enhancement of privacy. Using a variant of Borromean Ring Signature

[32], They constructed a Back-Maxwell range proof to deal with the attacks comes

overflow. Similar to Schoenmaker’s construction, OR-proofs are used to prove each

digit lies in the intended interval, and the amounts of to each UTXO’s are blinded.

6.2 Monero

Monero is an open-source, one-dimensional distributed acyclic graph, privacy-oriented

cryptocurrency on the blockchain. It uses ring signatures and stealth addresses to en-

sure privacy [2]. Due to its ring signature basis, it allows hiding identity from other

participants in a group.

In Monero, operations work on elliptic curves, specifically curve Ed25519. It uses

Pedersen Commitments and Schnorr-type Borremean signatures described teborre-

mean to hide the output amounts while input amounts are hidden with multilayered

linkable spontaneous anonymous group (MLSAG) signatures [29].

In each transaction of Monero, we use range proofs to show validation of amounts
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in the outputs. It is sufficient to show each output committed value, say Ci, must be

equal to the amount commitment CA. So it should behold that
∑k−1

i=0 = CA. It uses

folklore bit decomposition and proves that each committed value equals weather 0 or

1 with OR proof.

6.3 zkLedger

We explained that ensuring auditing while preserving privacy has the utmost impor-

tance for financial institutions. zkLedger[37] offers privacy with fast and provable

auditing with Schnorr-type NIZK’s. While transaction graph and linkages between

transactions kept secret, only transaction time and transferred asset type are pub-

lished. Still, it allows auditors to use primitives such as sums, moving averages,

variance, standard deviation, and ratios. The system does not need any trusted setup

and provides completeness.

We work on elliptic curves, points of the group G are on curve secp256k1. It uses

Pedersen Commitments because of its additive homomorphic property. A group of

banks might store the transactions as commitments instead of plaintext, later combin-

ing them homomorphically.

Every bank in the system generates a secret key sk, and corresponding public key

pk = hsk, together (sk, pk) called as Schnorr signature keypair. The public keys are

distributed to the participants in the system.

Suppose n be the order of the group G. Then it is sufficient to check if the committed

value is in the range [0, n−1]. Otherwise bothCom(x, r) andCom(x+n, r) have the

same result. This leads to the ability of a malicious bank to generate assets that cannot

be detected. In this point, Back-Maxwell Range proof [40] under Borremean ring

signatures [39], which are not explained in context of this thesis, is used. zkLadger

construction needs two range proofs: to prove the committed value and prove the

column’s sum of assets. These two range proves can be down to one proof as using

auxiliary commitment. This auxiliary commitment might be a commitment of , or

might be sum of the values of first m values
∑m

i=1 xi.
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6.4 Zether

Zether is a fully decentralized, confidential payment mechanism implemented as

Ethereum Smart Contract. Unlike Bitcoin or Monero with their UTXO model, Zether

has account-based model [9].

Since Bulletproofs has short proofs and does not need any trusted setup, it is used

as an underlying proof system. Instead of Pedersen commitments, it uses El-Gamal

encryptions which also have homomorphic property. It combines Bulletproofs with

Σ−protocol and results Σ-Bullets. To do so, they can efficiently prove that a value

encrypted with El-Gamal is within a range. Moreover combining range proofs with

ring signatures, they provide anonymous transfers.
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CHAPTER 7

CONCLUSION

One particular kind of ZKP is zero-knowledge range proof (ZKRP). This thesis has

examined and summarized the existing range proof methods into 3 main headlines

based on their underlying cryptographic hardness assumption: , strong RSA problem

based, DHP based, and DLP based. Since we focus on the cryptographic structure of

the schemes, we explained primitives such as commitments, digital signatures, proof

systems, and required sub-protocols in detail.

For each headline, we explain the workflow of one or two constructions. In strong

RSA problem-based constructions, we choose to explain Camenish’s scheme and Tsai

et al. scheme. Camenish’s scheme has importance for us due to its base-u represen-

tation, which we will use in Mao’s scheme. In this scheme, it is stated that using the

base-u approach does not add improvement, and this is why they use other techniques

to achieve efficiency. Tsai et al. scheme draws attention because it focuses directly on

DApps. In DLP-based constructions, although there exist many up-to-date works, we

chose Mao’s scheme since it is seen as classical proof in the context of range proofs

and has classical OR-composition as a sub-protocol. Since our aim is to analyze the

efficiency of Mao’s classical range proof on different bases, we modified with OR-

composition of Shnorr protocol to base-3. We compute the overall complexity in the

context of required exponentiations and the cost of numbers to exchange. Since the

cost grows in a pattern, we generalize and formalize the proof for different bases. At

the end of these comparisons, we observed that comparing the number of computa-

tions in modulo exponentiations with other base approaches, the base-3 approach is

5.5% more efficient. On the other hand, comparing the cost of numbers exchanged
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between prover and verifier, the base-3 approach is 7% more efficient with respect to

other base approaches.

To conclude, we have seen that in the base-3 approach, we get maximum efficiency

in both costs of required exponentiations and the cost of numbers to exchange. We

have tabulated and graphed the results to have a better look at overall comparisons.

DL(P) > DDH(P) > SDH(P) > sRSA(P)

It is obvious that anyone who can solve DL(P) can also solve DDH(P), and sRSA(P) is
the easiest one among them. However, this comparison itself is not enough to choose
the best range proof construction. Each of them has many advantages and drawbacks
in them. For a further comparison on existing range proofs, implementation analysis
should be done.

Table 7.1: ZKRP Methods based on their hardness assumptions
Method Hardness Assumption Commitment Range form
Boudot’s Scheme Strong RSA(P) Fujisaki Okomato C. integer
Tsai’s Scheme Strong RSA(P) Fujisaki Okomato C. integer
Camenish’s Scheme DH(P) Pedersen C. u-base
Mao’s Scheme DL(P) Pedersen C. bit-wise
Improved Mao’s S. DL(P) Pedersen C. u-base

The security of these schemes depends on the different variants. We can say strong

RSA assumption is weaker than others so that in general, the square decomposition

method is less secure compared with other decompositions. To compare signature

base and multi-base decompositions, one can also consider the range we were work-

ing on. To choose the best range proof construction, one should consider the range

size and the security desire.

Since the development of decentralized systems is of broad and current interest, range

proofs are also subject to intense study. So that, they are widely used in terms of

privacy-preserving constructions to develop and improve current systems. Still, these

methods have many drawbacks and challenges, so that they seem to receive a close

review in future research. As future research, instead of finite field DL(P) based

OR-proofs, other cryptographic primitives based range proofs can be investigated

on different bases in the near future together with a comprehensive comparison to
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increase efficiency. The construction of multi-base quantum-safe range proofs can

also be investigated.
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