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ABSTRACT

ESTIMATION OF PARTIALLY OCCLUDED HUMAN JOINTS USING A
BAYESIAN APPROACH AND AN APPLICATION OF HUMAN IMAGE

INPAINTING

Dursun, Ahmet Anıl
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Temel Engin Tuncer

February 2021, 87 pages

Human pose estimation is a well-known computer vision task that has applications

in the fields of surveillance, computerized outfit planners, and video special effects.

State-of-the-art pose estimators are based on CNN structures and use visual features

obtained from single images. However, occlusions are prevalent problems in the nat-

ural scenarios for this task, and the performances of CNN-based estimators degrade

significantly under occlusion conditions. In this thesis, a novel Bayesian approach,

BAKE: Bayesian Approach for occluded Keypoint Estimation, is presented to esti-

mate the positions of occluded human joints in a given video sequence. This approach

uses a well-known CNN-based pose estimator Openpose [1] to detect the visible hu-

man joints in a given image and then develops a Bayesian framework to complete

missing pose elements. This approach can be evaluated as an alternative for 3D CNN

structures in terms of embedding the information in time-dependent event sequences.

In our case, the problem is ill-conditioned since it is in general not possible to com-

plete the missing joints for an arbitrary occlusion on the human body accurately.

However, it is possible to localize some missing joints in certain regions based on

the apriori information on the human skeleton with a certain confidence. This apriori

v



information is obtained from the previous frames of the video sequence. A statistical

human body model is generated by defining the joint length and angle parameters.

The parameters of the model are calculated from the non-occluded frames of the

video sequence as the local information as well as a human pose database is utilized

for obtaining the general joint statistics. Then, on a partially occluded video frame,

body length and angle distribution are updated by using the visible joints. These

length and angle distributions are used for the estimation of occluded joints. A new

confidence score is also proposed. This confidence score is used to develop a hybrid

technique which combines the predictions of the Openpose and the proposed method,

BAKE. Several experiments are performed to compare the outputs of the Openpose,

BAKE, and the hybrid approach. It is shown that BAKE outperforms Openpose in

general and the hybrid method generates a slight improvement over the BAKE. In ad-

dition to the BAKE method, an inpainting method for the partially occluded human

video frames is proposed. In this method, non-occluded images of the target person

obtained from the video sequence are used with a 3D body reconstruction algorithm,

SMPLify-x [2]. Image patches are transferred from non-occluded images to occluded

parts after a matching process and the corresponding results are shown.

Keywords: Occluded human pose estimation, convolutional neural networks, Bayesian

inference, statistical modelling, image inpainting
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ÖZ

KISMİ KAPANMAYA UĞRAMIŞ İNSAN EKLEMLERİNİN BAYESYEN
YAKLAŞIMLA KESTİRİMİ VE İNSAN GÖRÜNTÜSÜ TAMAMLAMA

UYGULAMASI

Dursun, Ahmet Anıl
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Temel Engin Tuncer

Şubat 2021 , 87 sayfa

İnsan poz kestirimi güvenlik, kıyafet uygulamaları ve özel video efektleri alanlarında

gerçekleştirilmesi önemli bir problemdir. Bu problemin çözümünde tek bir görüntü-

den faydalanarak görsel öznitelikleri kullanan konvolüsyonel sinir ağları tabanlı me-

totlar en başarılı yöntemlerdir. Ancak kapanmalar doğal senaryolarda sıkça ortaya

çıkmakta ve KSA tabanlı insan poz kestirimi metotlarının performasını ciddi oranda

düşürebilmektedir. Bu çalışmada, verilen bir görüntüde kapanmaya uğrayan insan ek-

lemlerinin konumunu kestiren ve özgün bir Bayesyen yaklaşım olan BAKE metodu

sunulmaktadır. Bu yaklaşımda görüntüdeki görünür eklemleri bulması için popüler

bir kestirim metodu olan Openpose’dan [1] faydalanılmakta, sonrasında ise Bayes-

yen bir çerçevede kapanmaya uğramış noktaların yerleri kestirilmektedir. Bu metot,

zamana bağlı olay dizilerini istatistiksel bir şekilde modelleyebilmesi bakımından 3

boyutlu KSA yapılarına bir alternatif olarak görülebilir. Kapanmaya uğramış eklem-

lerin kestirimi kötü koşullu bir problem olsa da önsel bilgiden faydalanılabilir ve

bu önsel bilgi önceki kapanmaya uğramamış video karelerinden elde edilebilmekte-
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dir. Bu kapsamda, eklem uzunlukları ve açıları tanımlanarak istatistiksel bir vücut

modeli oluşturulur. İstatistiksel parametreleri hesaplamak amacıyla kapanmaya uğ-

ramamış video karelerinden faydalanılarak lokal bilgi, geniş bir insan pozu veri kü-

mesinden faydalanılarak da genel bilgi elde edilir. Sonrasında, kapanmaya uğramış

video karesinde görülebilir noktalar kullanılarak uzunluk ve açı dağılımları güncelle-

nir. Kaba kuvvet yöntemiyle de kapanmaya uğramış eklemler için pozisyon kestirimi

yapılır. İnsan eklemlerini tamamlama işleminin ne kadar güvenilir yapıldığını ölçen

yeni bir güven puanı da ortaya konmuştur. Bu puan Openpose ve BAKE algoritma-

larının çıktılarını birleştiren hibrit bir algoritmada da kullanılmıştır. Yapılan deney-

lerde Openpose, BAKE ve hibrit yaklaşım karşılaştırılmış, BAKE’nin Openpose’dan

üstün başarı sergilediği gösterilmiştir. Hibrit metodun da BAKE’nin performansını

bir miktar artırdığı gözlemlenmiştir. Ayrıca kısmi kapanma yaşanan insan görüntüle-

rinde tamamlama yapacak bir metot da önerilmektedir. Bu metotta yine videodaki ka-

panmaya uğramamış görüntülerden faydalanılmakta, ayrıca da görüntüden 3 boyutlu

vücut örgüsü oluşturabilen SMPLify-x [2] algoritması kullanılmaktadır. Kapanmaya

uğramamış karelerdeki görüntü parçaları kapanma olan karede kapanma yaşanan böl-

gedeki görüntü parçalarıyla eşleştirilmekte ve eşleştirilmiş görüntü parçaları kapanma

yaşanan bölgeye aktarılarak tamamlama işlemi yapılmaktadır. Bu metoda ait sonuçlar

da sunulmuştur.

Anahtar Kelimeler: Kapanma durumunda insanda poz kestirimi, konvolüsyonel sinir

ağları, Bayesci çıkarım, istatistiksel modelleme, görüntü tamamlama
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CHAPTER 1

INTRODUCTION

Occlusions in visual systems occur when an object in the scene cannot be observed

by the camera while it is still in the camera’s field of view, spatially. Reasons for

occlusions are the interactions of objects in the scene while different parts of an

object could also cause occlusions. This second type of occlusions is named self-

occlusions since both the occluded and occluder objects are the same. Occlusions

are important problems for applications of surveillance [3], human-robot interactions

[4], augmented reality [5] etc., since lower-level computer vision tasks such as object

detection/segmentation, object tracking, or pose estimation used in these complicated

applications suffers from occlusions in general.

It is possible to categorize occlusions depending on their severity [6]. If the object

becomes completely unobservable by the camera while it is still in the scene, it is fully

occluded. Therefore, the visual information related to it is lost in the image. In case of

complete or significant occlusions, object detection, segmentation, or pose estimation

from a single image may not be possible. While in the most general scenario, it

may not be possible to estimate the positions of occluded objects (occluded human

keypoints in our case), temporal information in a video sequence can be used for

estimation on the low to mild occluded sequences.

There could be cases where only a portion of the objects are occluded, namely par-

tially occluded cases. In such cases, visual cues of occluded human joints can be

obtained from the previous video frames where there is no occlusion. One critical

task is how to exploit the information in the local video frames in addition to the

global anatomical constraints for the human joints extracted from certain databases.

In this thesis, a new approach is presented as a solution. This new method uses the
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Bayesian framework which is shown to perform effectively in modeling the local and

global information for the human joints. The proposed approach is compared with the

state-of-the-art human pose estimation CNN network, Openpose[1], results. In this

thesis, an additional problem is also investigated. This is the inpainting of partially

occluded human images in video sequences. In this case, only the local informa-

tion from the previous frames is used with a 3D human pose estimation algorithm,

SMPLify-x[2].

1.1 Motivation and Problem Definition

2D Human pose estimation under partial occlusions is an important computer vision

task especially for applications of surveillance [7] and computerized outfit planners

[8]. In this problem, it is desired to detect the partially occluded body part locations of

the target person in an image. In video surveillance applications, there are scenarios

where the 2D joint positions of the tracked person are desired to be detected in the

occluded region. In computerized outfit planners, a target person is tried to be dressed

up with predefined clothes, or the clothes are desired to be obtained from images of

a person who wears them. For images in wild, dressing up a person or observing the

clothing of a person becomes difficult due to different problems where one of them

is occlusion. Thus, it is desired to estimate the pose of a person in partially occluded

scenarios for such applications [9, 10].

Completion of occluded keypoints is an ill-conditioned problem in general since the

information of the occluded keypoint is lost and reconstruction is ambiguous. In

order to recover the lost information related to the occluded part, apriori information

is required such as the physical shape of the human body. However, human body

motion has a high amount of variety. Considering it as a rigid object and inferring

about the occluded regions is not feasible in general. Therefore, a model is required

which utilizes both anatomical constraints and motion information of the target person

in order to estimate the 2D locations of occluded joints. In this work, a Bayesian

framework is proposed which uses a database and previous non-occluded frames of

video in order to embed the anatomical and kinematic relations of the human body

joints. Human pose estimation under partial occlusions task is performed with the
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help of the proposed model.

A method for inpainting the occluded regions of the target human utilizing computer

graphics is also proposed in this thesis. Such an application could be used in video

special effects and restoration of damaged videos [11]. This method reconstructs

the 3D body structure of the human in non-occluded and partially occluded frames

and transfers the previously observed body patches to the occluded region. This is

a different approach than popular inpainting methods [12] which do not consider the

complex appearance of human images.

1.2 Proposed Methods and Models

There are two methods presented in this thesis. The first one is the Bayesian pose

estimation for partial occlusions. This method first uses a base model for 2D pose

estimation and a foreground extraction method to find the visible and occluded joints.

In this study, Openpose[1], a popular neural network-based pose estimator, is used

as the base pose estimator with a Gaussian Mixture Model foreground extraction

algorithm [13]. Such a classification of joints or keypoints, allows us to find the

positions of occluded ones with the information obtained from the visible ones. A

simple 13-keypoint skeleton human body model is used throughout the study. Model

parameters are defined as the normalized lengths and angles obtained from this 13-

keypoint model. These parameters let us have shift and scale invariance through the

process and they are assumed to have a joint Gaussian distribution. COCO dataset

[14] and frames, where the target person is not occluded, are used for the estimation

of the mean vector and covariance matrix of this joint Gaussian distribution. In mean

and covariance parameters, COCO contributes with the global information while non-

occluded frames contribute with the local information obtained from the target person

in the video sequence.

After obtaining the joint distribution of angle and length parameters, the occluded

keypoints are ordered with a priority scheme which determines the proximity of the

visible keypoints with occluded ones. In the order of most prior to less prior, ap-

proximate positional probability distributions of occluded keypoints are estimated.
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In order to estimate approximate positional probability distributions, a derivation us-

ing the joint distribution of length and angle parameters is given. Then, positional

probability distributions are estimated by sampling the derived approximate proba-

bility mass function in possible search regions which are specific to each occluded

keypoint and found by investigating the maximum probabilistic length values of oc-

cluded keypoints with visible ones. Maximum likely positions of occluded keypoints

in the obtained positional distributions become the estimates of the proposed Bayesian

approach. The joint-wise confidence scores are also obtained from the positional dis-

tributions.

The proposed approach also gives a new overall body confidence score output which

implies how accurately the pose of a given partially occluded body can be recovered.

In addition, a hybrid method that utilizes both the Openpose and the Bayesian ap-

proach is given. This method makes predictions in accordance with the confidence

ratios of the two methods’ predictions.

The second method is an inpainting application for the occluded regions of human

images. 3D body meshes for both non-occluded and partially occluded frames are

reconstructed to this end. In the reconstruction process, 2D keypoint estimates of

the partially occluded body are utilized as the input of a 3D body reconstruction

algorithm, SMPLify-x [2] in our case. SMPLify-x algorithm simply tries to fit a pre-

defined 3D SMPL [15] body mesh’s pose and shape parameters to given 2D joint

coordinates. After the reconstruction step, 3D body meshes are rendered on the video

frames. Corresponding occluded region of 3D body mesh is known with the help

of a foreground extraction algorithm again. Then, the process is transferring the non-

occluded image patches to the corresponding occluded region with the required warp-

ing operations, briefly.

The notation is as follows. Vectors are shown with lowercase boldface letters, x ∈
IRn throughout the paper where matrices are shown with uppercase boldface letters,

A ∈ IRnxm. Sets are represented with uppercase letters, such as the set B. Moreover,

fx(x) is used for a probability density function on continuous valued variable x, while

py(y) represents probability mass function defined for discrete valued variable y.

Multivariate Gaussian distribution is denoted as N(µ,Σ) where µ is the mean vector
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and Σ is the covariance matrix.

1.3 Thesis Contributions

Our contributions for different problems are as follows:

• Problem 1: Estimation of occluded keypoints.

– A 13-keypoint skeleton body model is proposed.

– A simple Bayesian model which employs both local and global informa-

tion is proposed.

– A Gaussian formulation with cylindrical parameters to encode 2D human

body pose is proposed.

– An approximation for probability distribution of missing joints on Carte-

sian pixel coordinates by using cylindrical parameters of the statistical

model is proposed.

– An overall body pose predictability score is proposed.

– Joint-wise confidence score is proposed.

– A hybrid method is proposed to improve the proposed Bayesian tech-

nique.

• Problem 2: Inpainting of occluded human body parts.

– A new method for inpainting the occluded human body parts in video

sequences is presented.

1.4 The Outline of the Thesis

In Chapter 2, background information related with human pose estimation problem

and 3D body reconstruction literature will be mentioned. For the human pose estima-

tion task, used body models in the literature will be explained. Popular pose estima-

tion approaches and algorithms will be introduced. Among those popular methods,
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Openpose is used as a base pose estimation algorithm in this study, so the structure

of the Openpose will be explained. Moreover, strategies in the literature for perfor-

mance improvement under partial occlusion conditions will be given. For 3D body

reconstruction, created 3D human body models in the literature will be introduced.

In Chapter 3, an occlusion detection method is proposed which is used further in the

methods of both Bayesian approach for occluded keypoint estimation and human im-

age inpainting. A comparison is performed between the proposed occlusion detection

scores in Section 3.2. This chapter is an auxiliary part of the main work of this thesis.

In Chapter 4, the proposed Bayesian pose estimation method under partial occlusion

conditions will be explained. The mathematical formulation and details of the algo-

rithm will be given. Confidence score outputs of the algorithm will be explained in

Section 4.1.6 and the Hybrid approach which uses the outputs of both Openpose and

proposed Bayesian approach is introduced in Section 4.1.7. The experimental results

will be given in Section 4.2.

In Chapter 5, the inpainting application of partially occluded human images will

be given. The inpainting process for the partially occluded frames using the non-

occluded video frames will be explained. Experiments related to the inpainting appli-

cation will be given at the end of this chapter.

Discussion and possible future work related with the thesis will be given in Chapter

6.

In Appendix A, a derivation for the positional distributions of occluded keypoints is

given. A derivation for the total body length distribution is also given in Appendix B.

Test frames related to the BAKE update weight experiment are shown in Appendix C.

In Appendix D, inpainting results of two video sequences are shown for the BAKE-

Openpose inpainting comparison experiment. Lastly, the results of the candidate set

selection experiment are shown in Appendix E.
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CHAPTER 2

HUMAN POSE ESTIMATION

Human pose estimation is an important problem which founds wide-spread applica-

tions in the literature. In 2D, it is defined as the detection of the body part locations in

a given image with respect to a graphical body model. In this section, previous works

on human pose estimation are presented. In addition, 3D human pose modeling is

discussed.

2.1 Previous Works on Human Pose Estimation

Human pose estimation has many applications in virtual reality, human-computer

interaction, video surveillance, medical assistance, etc. [16] A predefined body model

is required for pose estimation applications. In general, there are three types of body

models that exist in the literature [17, 16]: Skeleton-based, cardboard-based, and

volume-based models as shown in Figure 2.1. Skeleton-based models consist of a set

of joints and the connections between joints correspond to related body parts. Used

skeleton models vary in terms of included joints in different algorithms [18, 1]. In

cardboard-based body models, body parts are represented with rectangular blocks

and in volume-based body models, 3D mesh models are used.

In the Bayesian occluded pose estimation part of this study, a 13-keypoint skeleton-

based body model is utilized. The keypoints in the model are nose, left/right shoulder,

left/right elbow, left/right wrist, left/right hip, left/right knee, and left/right ankle.

This body model includes the joints that can act independently, so it simplifies our

analysis by including only the major keypoints. Openpose [1], the base network used

in this study, uses a 25-keypoint skeleton-model and the COCO dataset [14] uses a 17-
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(a) Skeleton-based (b) Cardboard-based (c) Volume-based

Figure 2.1: Body models used in the human pose estimation problem

keypoint model. They commonly include eyes and ears as extra keypoints, however,

in 3D, relative positions of eyes and ears with respect to nose keypoint can be assumed

as constant when the orientation of the head is known. Openpose also includes 3 extra

keypoints per foot (heel, big toe, and small toe keypoints), the mid-hip keypoint and

neck keypoint different than our model. A similar case is also valid for extra foot

keypoints as in face keypoints, so it could be assumed that their relative position to

ankles in 3D does not change when the leg orientation is known. Furthermore, mid-

hip and neck keypoints are at the middle of right/left hip and shoulder keypoints.

Therefore, it is not necessary for our analysis to insert these keypoints in the used

skeleton-model.

2.1.1 2D Human Pose Estimation Methods

It is useful to mention the general human pose estimation algorithms briefly, before

the specific problem of pose estimation under partial occlusions, since we adapt to

use a popular pose estimator Openpose. It is a widely studied problem for the past 2

decades. There are 2 main approaches for the pose estimation problem in 2D: bottom-

up and top-down approaches. In bottom-up architectures, location of each keypoint

is predicted using the visual cues and further, those keypoints are linked with each
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other for assigning each keypoint to a single individual with different strategies. In

top-down approaches, firstly the individuals are detected with some object detectors,

and then, the keypoint locations are tried to be found inside the detection boxes for

each individual. Both frameworks have some advantages and disadvantages as stated

in [16, 19]. Note that this study focuses on single person pose estimation problem,

so the used video sequences contain only one human. Thus, we do not consider the

problem of assigning found keypoints to different individuals in the image.

Before the increasing popularity of neural networks, hand-crafted visual features like

HOG features are used for estimating 2D keypoint locations in images. Such meth-

ods are summarized in [17]. After the success of convolutional neural networks in

object classification and detection problems, it is started to be used in the pose esti-

mation problem and state-of-the-art methods are generally based on CNN structures

[18, 20, 1, 21]. Among those, Openpose is a widely known open-source algorithm. It

is also a CNN-based architecture for multi-person 2D keypoint estimation and used

in this study. It includes the concatenation of CNN blocks, which consists of two sub-

blocks. The first one is responsible for predicting PAFs (part affinity fields) and the

second sub-block predicts the confidence maps (spatial distribution of each keypoint).

PAFs (Part affinity fields) are the attractive point of Openpose where they imply the

relationships between different keypoints, in other words, the body limbs. Such rela-

tions are useful for predicting unseen body joints since the anatomical structure of the

human body is learned and utilized in this way. The concatenation of PAF and con-

fidence map structures provides the capability of capturing features in a hierarchical

order. Therefore, Openpose can successfully extract the visual features in images and

is good at estimating the visible keypoints.

2.1.2 Performance Measure for 2D Human Pose Estimation

• Mean Per Joint Position Error in Pixels (MPJPE) [22]:

MPJPE is the mean of the Euclidean distances of predicted joints and ground

truth joints. It is originally used in [23] for 3D human pose estimation in mil-

limeters. However, it could also be used for pixel coordinates as in [22]. MPJPE
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can be expressed as given below.

MPJPE =
1

Nj

Nj∑
m=1

‖ppred
m − pgt

m‖2 (2.1)

where Nj is the number of joints, ppred
m and pgt

m are the predicted and ground

truth position vectors of mth joint, respectively.

2.1.3 Methods for Human Pose Estimation under Partial Occlusion

State-of-the-art neural network based methods like Openpose are good at estimating

the visible keypoints, however, when partial occlusions emerge, their performances

decrease significantly. For Openpose, PAFs make it possible to estimate the partial

occlusions, however, it does not focus on completing the missing human joints. It

works on single images and does not use the person-specific kinematic and anatomical

information which may be hidden in the previous image sequence.

In order to overcome the problems encountered when partial occlusions exist, data

augmentation strategies are utilized. In [9], a two-stage structure that uses occlusion-

aware bounding boxes is proposed. Since the method includes a segmentation block

in the architecture, it is proposed to utilize person detection datasets. In [24], a data

augmentation strategy that creates occlusions synthetically on available pose estima-

tion datasets is used for training the CNN network. In [25], for dealing with self

occlusions, existing datasets are enriched by using the 3D cylinder man model. In

[26], a new dataset is introduced for occlusions that emerged from multi-person in-

teractions. Although the above strategies improved the obtained results, they do not

insert the person-specific anatomical information like body ratios into the models.

They tend to give general estimations in case of partial occlusions.

There are some methods that employ extra information sources such as anatomical

constraints or temporal information into their models for partially occluded human

pose estimation. In [25, 27], temporal information is imported to the model via an

architecture capable of taking multiple frames as input and imposing optical flow

constraints. However, these methods have short-term memory and long duration oc-

clusions cause an increase in errors. Although joint angle limits are used in [28],
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importing anatomical constraints without temporal information is also problematic.

In [10, 29], sparse formulations are used through matrix recovery methods for recon-

structing the occluded 3D keypoints. Depth information is also used for 3D human

pose estimation in [30, 31]. In some 3D human pose estimation approaches, Eu-

clidean distance matrices (EDMs) for keypoint pairs are used [32, 33] for the recov-

ery of occluded keypoints. The above methods usually use general constraints for the

estimation of occluded joints which returns reasonable results only for certain cases.

The proposed Bayesian approach utilizes both general and local data in contrast to

mentioned strategies. The local data provides temporal information and person-

specific anatomic constraints to the model which is more suitable to complete the

occluded human joints in different scenarios.

2.2 3D Human Body Models

In the application of inpainting partially occluded human images, we propose to use

3D body models, so it is useful to mention them. In general, used models are tri-

angle meshes. These meshes consist of a certain number of vertices and connection

patterns. Set of vertices can be defined as,

G = {g1, ..., gn} (2.2)

The connection patterns include the edges and triangles or triangular faces. Edges,

ei, are the lines between vertices while triangles, fi, are formed by the edges. For a

defined 3D mesh, all possible edges and triangles are not used, instead sets of edges,

ε, and triangles, F , are predefined as,

ε = {e1, ..., ek}, ei ∈ GxG (2.3)

F = {f1, ..., fm}, fi ∈ GxGxG (2.4)

with certain number of elements.
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There are different works in the literature to model the 3D human body mathemat-

ically. Creating realistic 3D human bodies in a variety of body poses with different

body shapes and rigging the body meshes with a skeletal structure in order to animate

them are some of the aims [34]. SCAPE [35] and SMPL [15] are popular 3D body

models used in the computer graphics literature. They both utilize triangular meshes

and learn parameters from 3D scans of different people in a variety of body poses.

SCAPE models 3D bodies with pose and shape parameters by the deformation of tri-

angles from a template body, while SMPL models them with vertex displacements. In

this study, SMPL body model is used for the inpainting application, since it is a more

accurate model than SCAPE as stated in [15]. Template triangular mesh of SMPL

body which contains 6890 vertices with 13776 triangles is given in Figure 2.2. SMPL

models the vertex positions using given pose parameters, given shape parameters, and

the learned model parameters.

Figure 2.2: SMPL 3D body template constructed by triangles
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CHAPTER 3

OCCLUSION DETECTION

Occlusion detection is the first step of the proposed methods. It can be defined as the

detection of frames where the target person is occluded on a given video sequence. In

the proposed human image inpainting method, it is required to detect which part of the

body is occluded if occlusions exist. Moreover, in the Bayesian occluded pose estima-

tion method, visible and occluded keypoints have to be determined. In experiments of

both methods, it is assumed that the used video sequences are stationary, the scenes

are static where only one person is moving and there are available frames where the

target person is not in the scene, for simplicity. Furthermore, occlusions in video se-

quences are created with black boxes in order to perform controlled experiments and

three types of occlusions are assumed to exist: upper body occlusions, middle body

occlusions, and lower body occlusions. An example video frame based on the given

scenario is shown in Figure 3.1. Then, an occlusion detection strategy is proposed to

detect the occurrence of occlusion, the type of occlusion, and the occluded keypoints

on a given frame. Note that any occlusion detection and segmentation strategy could

also be used as a prior step of the BAKE or the inpainting method. The proposed

occlusion detection strategy performs well enough in the test scenarios and it is also

expected to work on natural occlusion cases on stationary videos.

3.1 Proposed Method for Occlusion Detection on Monocular Stationary Video

A foreground extraction algorithm and Openpose [1] are utilized collaboratively for

the occlusion detection strategy. Keypoint estimates of Openpose are found and re-

duced to the 13-keypoint model where the keypoints were given in Figure 3.2. Using
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Figure 3.1: An example video frame based on the given scenario

Figure 3.2: 13-keypoint skeleton body model

the Openpose estimates, the detection box is defined as the smallest box that contains

the reduced Openpose estimates.

Then, a foreground mask that gives the pixel regions of moving foreground objects

is required. The detection box contains the information of the whole body while the

foreground mask gives information of only the visible parts of the human body in

the video sequence. A Gaussian Mixture Model (GMM) based foreground extraction
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algorithm is employed for this purpose which is given in [13]. This method estimates

a GMM probability density function for each pixel in a recursive update manner by

using the frames where the target person is out of the scene. Pixel values varying at

the static background image are modeled in this way. Then, at inference, if the cor-

responding likelihood of a pixel is smaller than a predefined threshold, it is identified

as a foreground pixel, since it does not fit the trained background model.

Obtained foreground mask with GMM based background subtraction method, M0, is

defined as,

M0[m,n] =

1, if (m,n) corresponds to a foreground pixel

0, if (m,n) corresponds to a background pixel
(3.1)

and an example is shown in Figure 3.3a for the given frame in Figure 3.1, In order

to focus only on the region where the target person exists, a larger detection box is

defined. This box is the expansion of the detection box with a certain number of pixels

in each direction with the top left corner coordinates, xld0 , y
ld
0 and bottom right corner

coordinates, xld1 , y
ld
1 . Outside of the larger detection box is taken as the background

region. In this way, limited foreground area, M1 is obtained as,

M1[m,n] =

M0[m,n], if xld0 < m < xld1 and yld0 < n < yld1

0, otherwise
(3.2)

where the example frame is given in Figure 3.3b. However, there could be still noisy

foreground estimates inside the larger detection box. Furthermore, the foreground

human body consists of separate connected parts as the output of the background

subtraction method. In order to clean the noise and unify the foreground human

silhouette inside the larger detection box, morphological operations, i.e., opening and

closing are used. Opening is applied first to filter out small undesired foreground

regions. Obtained mask, M2 is given as,

M2[m,n] = M1[m,n]◦Ko[m,n] = (M1[m,n]	Ko[m,n])⊕Ko[m,n] (3.3)
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where ◦ is the opening operation, 	 is the morphological erosion operation, ⊕ is the

morphological dilation operation and Ko is the structural element used in the opening

process. Opening is applied on Figure 3.3b and the result is shown in Figure 3.3c.

Then, in order to connect the separated parts of the resultant foreground human body,

closing operation is applied and the final foreground mask, M3 is obtained as,

M3[m,n] = M2[m,n]•Kc[m,n] = (M2[m,n]⊕Kc[m,n])	Kc[m,n] (3.4)

where • is the closing operation and Kc is the structural element used in closing.

The result of the closing operation on the Figure 3.3c, which will be mentioned as

the resultant foreground human silhouette for further parts, is given in Figure 3.3d.

Used structural elements for opening and closing operations are defined as circular

elements with different sizes. Sizes of structural elements are determined by investi-

gating the target video. Different sized elements could be chosen depending on the

video. Furthermore, in M3, the smallest box containing the foreground area is defined

as the foreground box and used in further steps.

The existence of the target person in the frame is assumed to be known apriori. Then,

Algorithm 1 is used to detect the occlusion and its type. In Step 1 of Algorithm 1,

predictions of Openpose are investigated for video frames where the target is in the

scene. If the head keypoint, p0 is not predicted by Openpose while at least one foot

keypoint (p11 or p12) is predicted, the occlusion exists at the top part of the body.

For the opposite case where Openpose predicts p0 but could not predict any foot key-

point, (p11 or p12), it is concluded that the occlusion occurs at the bottom part. If p0

is detected with at least one foot keypoint, we conclude that Openpose can predict the

whole body. Then, the resultant foreground human silhouette is investigated for fur-

ther steps. In step 2, the existence of mid-body occlusions is searched by connected

component labeling. If there are multiple connected components in the resultant fore-

ground human silhouette, it is concluded that the occlusion exists in the middle part

of the target human body as shown in Figure 3.4.

If there is only one connected component, an area ratio score for extracting the occlu-

sion information from the foreground box and detection box is proposed to be used in
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(a) Output foreground mask of GMM based

background subtraction method

(b) Filtering foreground area with larger

detection box

(c) Result of opening operation after using the

larger detection box for filtering

(d) Result of closing operation after opening

operation

Figure 3.3: Process to obtain the resultant foreground human silhouette with proposed

steps

step 3. Thresholding using this score gives the result of whether the occlusion exists

or not on the target person. Then, the type of occlusion is detected by investigating the

centroid of foreground box position with the detection box. If the centroid is closer

to the upper side of the detection box, it means the occlusion is at the lower part of

the body and for the opposite condition, occlusion is at the upper part. There are two

alternatives for the score to detect occlusions. The first one is intersection over union

(IoU) which is the ratio of intersected area to the unified area of the boxes. The sec-

ond one is the intersection area of the boxes over the detection box area (IoBox). The

rationale of choosing such a metric is that detected keypoints stay inside the resultant

foreground human silhouette generally for non-occluded cases, so the IoBox becomes

one, while the IoU score becomes less than one in general since the foreground box

and detection boxes do not fit exactly. When occlusions exist, both scores become

similar. Therefore, the second metric, IoBox, is more discriminative for this task as
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Algorithm 1 Occlusion Detection on Target Person
Step 1: Investigate the detection of head and foot keypoints by Openpose.

if (p0 is detected) AND (p11 and p12 are not detected) then

OCC = True, OCC TYPE = Bottom

else if (p0 is not detected) AND (p11 or p12 is detected) then

OCC = True, OCC TYPE = Top

else if (p0 is detected) AND (p11 or p12 is detected) then

Step 2: Investigate if the mid part of the body occluded using the number of

foreground connected components, Nfg.

if Nfg > 1 then

OCC = True, OCC TYPE = Mid

else

Step 3: Investigate the area ratio score (Sfg,det) with threshold, Tfg,det, y co-

ordinates of foreground box center, yfgc , upper side of detection box, ydet0 and

lower side of detection box, ydet1 to detect occlusion.

if (Sfg,det < Tfg,det) AND (|ydet0 − yfgc | > |ydet1 − yfgc |) then

OCC = True, OCC TYPE = Top

else if (Sfg,det < Tfg,det) AND (|ydet0 − yfgc | ≤ |ydet1 − yfgc |) then

OCC = True, OCC TYPE = Bottom

else

OCC = False

end if

end if

end if

the experiments also showed.

If an occlusion is detected on the target person, the occluded keypoints have to be

identified for the proposed Bayesian approach, BAKE. Algorithm 2 summarizes the

used strategy. All of the keypoints in the defined body model are investigated to this

end as stated in Algorithm 2. If a keypoint is predicted by Openpose and its predicted

position corresponds to a foreground pixel, it is classified as a visible keypoint. If

Openpose could not predict a joint or the predicted joint stays in the background area,

that joint is classified as an occluded one.
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(a) Detected keypoints by Openpose on mid

occlusion occurred frame

(b) Image masked with foreground mask. Blue

box is larger the detection box, purple box is

the detection box and cyan boxes are the

foreground boxes which contain foreground

connected components

Figure 3.4: Example case where mid body occlusion occurs

Occurrence of occlusion with its type (upper body, mid-body, and lower body oc-

clusions) and the occluded keypoints are detected using the given procedure. In the

following part, occlusion detection scores IoU and IoBox will be compared.

3.2 Comparison of IoU and IoBox Scores for Occlusion Detection

IoU and IoBox are the proposed area ratio scores for the occlusion detection proce-

dure. If the existence of occlusion could not found by steps 1 and 2 of Algorithm

1, the area ratio score is compared with a threshold as given in step 3. In order to

compare the performance of these scores, several experiments are done. For a given

video sequence, synthetic occlusions for the upper and lower body are generated in

four different severity levels for both. Example frames for generated upper occlusions

are given in Figure

Occluded and non-occluded frames are labeled in all video sequences. Then, detec-

tion results are obtained for both IoU and IoBox scores by iterating the threshold

values. In order to compare results, receiver operating characteristic (ROC) curves

for all levels of upper and lower occlusions are drawn by using the obtained results.

The vertical axis of the ROC curve is the true positive rate. It is the ratio of the num-
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Algorithm 2 Identification of Visible and Occluded Keypoints
Identify the set of occluded keypoints, OC, and the set of visible keypoints, V IS,

for Bayesian occluded pose estimation with the resultant foreground human silhou-

ette, M3, if an occlusion occurs.

if OCC == True then

V IS = ∅, OC = ∅
for i = {0, 1, .., 12} do

if pi = (p0i , p
1
i ) is detected then

if M3(p
0
i , p

1
i ) = 1 then

V IS ← V IS ∪ {i}
else

OC ← OC ∪ {i}
end if

else

OC ← OC ∪ {i}
end if

end for

else

V IS = {0, 1, ..., 12}, OC = ∅
end if

ber of accurately detected occluded frames over the number of all occluded frames.

The horizontal axis of the ROC curve is the false positive rate which is the ratio of

the number of false alarms (frames detected as occluded but actually not occluded)

over the number of all non-occluded frames. In a ROC curve, it is desired to pick a

threshold that gives a result close to 1 in true positive rate and 0 in false positive rate

which corresponds to detecting all occluded frames accurately while not detecting

non-occluded frames as occluded. Obtained ROC curves for the upper occlusion sce-

nario are given in Figure 3.6 while curves for the lower occlusion scenario are given

in Figure 3.7.

When the results are compared for IoBox and IoU, IoBox is a better score for both up-

per and lower occlusions, since the areas under the IoBox ROC curves are larger than

the corresponding IoU areas. Furthermore, as the occlusion severity level increases,
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(a) Example frame for level 1 upper occlusion (b) Example frame for level 2 upper occlusion

(c) Example frame for level 3 upper occlusion (d) Example frame for level 4 upper occlusion

Figure 3.5: Example frames for different levels of upper body occlusions

detection results get better as seen from ROC curves, since the area under curves also

increases for both scores. As the results of the experiments, IoBox score is used in

other videos for the occlusion detection task.
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(a) ROC Curve for level 1 upper occlusion (b) ROC Curve for level 2 upper occlusion

(c) ROC Curve for level 3 upper occlusion (d) ROC Curve for level 4 upper occlusion

Figure 3.6: ROC Curves for different levels of upper body occlusions
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(a) ROC Curve for level 1 lower occlusion (b) ROC Curve for level 2 lower occlusion

(c) ROC Curve for level 3 lower occlusion (d) ROC Curve for level 4 lower occlusion

Figure 3.7: ROC Curves for different levels of lower body occlusions
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CHAPTER 4

BAYESIAN POSE ESTIMATION UNDER PARTIAL OCCLUSIONS

A Bayesian approach for the estimation of partially occluded keypoints is presented in

this chapter. The method is explained in detail in the following part and experimental

results are presented in Section 4.2.

4.1 Bayesian Approach for Occluded Keypoint Estimation

On partially occluded video frames, pose estimation algorithms that use visual fea-

tures are not effective. A strategy to embed the motion character and anatomical

features of the target person is required when partial occlusions occur, since visual

features are not observable. In this thesis, a Bayesian framework is proposed to esti-

mate occluded keypoints by using the visible ones. A well-known CNN-based pose

estimator Openpose [1] is used to detect visible keypoints and using the statistical

information obtained from the COCO dataset [14] and non-occluded video frames,

estimation of occluded keypoints are performed. In the following part, used body

model and the statistical model parameters will be introduced. Then, how the estima-

tion process is performed for a single occluded keypoint will be explained.

4.1.1 Body Model and Parameters of The Method

A skeleton body model is used which contains 13-keypoints in this method. These

keypoints are the major body keypoints that can represent a human body and motion

effectively as stated in Section 2.1. In Figure 4.1, used skeleton model is shown with

black points and lines.
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Figure 4.1: 13-keypoint skeleton human body model used in this paper. Keypoints

are numbered from p0 to p12. Lengths between the keypoints are represented by lk,n.

Angle for each keypoint pair is represented by ak,n.

Using the 13-keypoint skeleton model, length parameters, lk,n, and angle parameters,

ak,n where k = 0, ..., 11, n = 1, ..., 12, k < n are defined. These parameters are

obtained from the combinations of all keypoint pairs. For the 13-keypoint model,
(
13
2

)
= 78 length and angle parameters exist. In Figure 4.1, some of these parameters are

shown. The length values are defined as the Euclidean distances in pixels normalized

by a total body length parameter which is given as,

lk,n = ||pk − pn||2/T, k = 0, ..., 11, n = 1, ..., 12, k < n (4.1)

where pk is the position vector of kth keypoint in pixel coordinates and the total body

length, T , is defined as the sum of segment lengths in 13-skeleton body model and

given as,
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T = ||p0 − p1||2 + ||p0 − p2||2+

||p1 − p3||2 + ||p1 − p7||2 + ...+

||p10 − p12||2 + ||p9 − p11||2 (4.2)

Note that such a normalization provides scale invariance for the length parameters.

Then, the angle parameter, ak,n is defined as the angle between the x coordinate axis

and the vector pk − pn in the counterclockwise direction. It is defined as,

ak,n =

cos
−1(uk,n(0)), if uk,n(1) ≥ 0

2π − cos−1(uk,n(0)), if uk,n(1) < 0

k = 0, ..., 11, n = 1, ..., 12, k < n (4.3)

where uk,n is also defined as the 2-dimensional unit vector given as,

uk,n =
pk − pn

||pk − pn||2
(4.4)

Then, the parameter vector x = [l0,1, l0,2, ..., l11,12, a0,1, a0,2, ...a11,12] is the vector

which consists of all the length and angle parameters.

4.1.2 Positional Distribution Estimation of a Single Occluded Keypoint

Parameter vector x is used for the positional distribution estimation of a target oc-

cluded keypoint, pk, given a partially occluded body annotation and total body length,

T . Note that the visible and occluded keypoints are assumed to be known and grouped

with the sets V IS and OC. Then, x is a random vector for our case and it is assumed

that x has a multivariate Gaussian probability density function, fx(x), which is given

as,

fx(x) = N(µx,Σx) (4.5)
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µx is the mean vector and Σx is the covariance matrix for x. These terms are es-

timated through an update procedure by using the global and local estimates. The

global estimates are obtained from the COCO database [14] and they are denoted as

µgl and Σgl. The local variables µlc and Σlc are obtained from the statistics ex-

tracted from the non-occluded frames of the evaluated video sequence. Then, the

update equation for µx and Σx are given as,

µx = (1− α)µgl + αµlc (4.6)

Σx = (1− α)Σgl + αΣlc (4.7)

where α < 1 is a scalar.

The above equations allow us to find the mean and covariance terms. In our case,

some of the joints are occluded. Hence, the parameters in x corresponding to these

joints are not observable. In order to estimate these parameters, a Bayesian framework

is proposed. For this purpose, the parameters in x are separated in two parts, namely

known parameters, xk, and unknown parameters, xu, whose parameters are obtained

from the Bayesian theorem as given in (4.9) and (4.10). The statistics for x can be

rewritten as shown below in terms of xk and xu.

x =

 xk

xu

 ∼ N

  µxk

µxu

 ,

 Σxk
Σxkxu

Σxuxk
Σxu

  (4.8)

Then, the statistics for the parameters of the occluded joints, xu, can be obtained as,

µxu|xk=x̃k
= µxu + Σxuxk

Σ−1xk
(x̃k − µxk

) (4.9)

Σxu|xk=x̃k
= Σxu −Σxuxk

Σ−1xk
Σxkxu (4.10)

where x̃k is a realization of xk.

Our target is to find the position vector of the occluded keypoint using the statistics

given in (4.9) and (4.10). Let pk be the position vector of an occluded keypoint. We
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need to find the probability mass function for this occluded keypoint by considering

a continuous probability density function and the related continuous position vector,

pc
k. The probability mass function for a given total body length can be written as,

ppk|T (pk|T ) = P (‖pk − pc
k‖2 < ∆p) (4.11)

where 2∆p is the scalar step size of discrete valued coordinate vector in x and y

directions.

In order to find a simple expression for the above probability, we need to consider only

the length and angle parameters for the single occluded joint alone. These parameters

for pk are denoted by xk
r . Figure 4.2 is an explanation for this point. In Figure 4.2,

red dots indicate occluded keypoints. Yellow dot is also an occluded keypoint where

we would like to calculate the position vector, namely pk. Black dots correspond to

non-occluded keypoints. Pink lines represent the unknown length parameters. Since

we need to consider only the related parameters for finding the pk, in Figure 4.2b,

blue lines are shown as the unknown segments for only the single occluded keypoint.

The angle and length parameters are kept in the vector xk
r . Therefore, xk

r can be

defined as the random vector of related variables with the occluded keypoint with

a probability density function fxk
r
(xk

r ) which is marginalized from fxu|x̃k
(xu|x̃k).

Using the derivation in Appendix A, the probability mass function for the occluded

keypoint position pk given total body length can be written approximately as,

ppk|T (pk|T ) ≈ β1fxk
r
(x̃k

r)
∏

i∈V IS

∆ak,i (4.12)

where x̃k
r is the realization of xk

r for given pk, V IS is the given visible joints set and

∆ak,i is given as,

∆ak,i = 2tan−1(
∆p

‖pk − pi‖2
) (4.13)

β1 in (4.12) is a normalization constant.

Equation (4.12) is highly nonlinear and it is decided to be evaluated in the given image

frame for each pixel coordinate. In order to decrease the computational complexity,
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(a) Illustration of unknown

variables

(b) Illustration of related vari-

ables

Figure 4.2: Examples of unknown and related variables for the positional distribution

estimation process of an occluded keypoint. In both figures, black dots are the visible,

red dots are the occluded keypoints and the yellow dot is the occluded keypoint under

consideration. The gray lines form the defined body model. In (a), keypoint pairs that

form the unknown variables are shown with purple lines while in (b) keypoint pairs

that form the related variables are shown with blue lines.

the search region for the occluded keypoint is limited by a square region of 2T (µ+3σ)

x 2T (µ+ 3σ) where µ is the mean value of the length between the occluded keypoint

and the non-occluded keypoint and σ is the standard deviation for the same parameter.

Multiple square regions are determined by considering different segments between

the occluded keypoint and the non-occluded keypoints. The intersection of these

square regions is taken as the final search region. In Figure 4.3, this process is shown.

Note that, total body length can be estimated from the image sequence at the begin-

ning of the process where there is no occlusion. However, since the position of the

person might change after the occlusion, total body length might also change. The

calculations are performed in pixel dimension. Hence, such a change might generate

substantial total body length differences. Therefore, we need to estimate the proba-

bility mass function of total body length, pT (T ). This estimation is discussed in the

following part.
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Figure 4.3: A possible search region for the right hip keypoint, (p8), for a partially oc-

cluded body on the whole image, is given. Green dots represent the visible keypoints.

Blue boxes are obtained through the visible keypoints neighboring the occluded key-

point. The intersection of blue boxes is represented as a red box which is the possible

search region.

4.1.3 Estimation of Total Body Length Probability Distribution

The total body length parameter, T given in (4.2), is an important scalar used for

the scale-invariant solution of the occluded keypoint estimation. When some of the

keypoints are occluded, we present a Bayesian approach to estimate the probability

mass function of T . This approach is based on an approximate formulation given in

Appendix B.

First, the general joint distribution for the parameter vector, x, namely fx(x) is

marginalized by using the vector of known parameters, xk and fxk
(xk) is obtained.

Let ak and lk be the random vectors of known angles and lengths. Their relationship

with xk is given as,

xk =

 ak

lk

 ∼ N

  µak

µlk

 ,

 Σak
Σaklk

Σlkak
Σlk

  (4.14)

Let ãk be the known angle vector for a particular observation. The conditional mean

µlk|ãk
and covariance Σlk|ãk

terms can be written under the Gaussian assumption,
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i.e.,

µlk|ak=ãk
= µlk + Σlkak

Σ−1ak
(ãk − µak) (4.15)

Σlk|ak=ãk
= Σlk −Σlkak

Σ−1ak
Σaklk (4.16)

The Gaussian conditional distribution flk|ãk
(lk|ãk) with its parameters in (4.15) and

(4.16) is used to estimate the probability mass function of total body length parameter,

T , by considering the non-normalized known length vector observation, l̃k. This

is achieved through an approximation given in Appendix B where probability mass

function for T is given as,

pT (T ) ≈ β2
T 2
flk|ãk

((̃lk/T )|ãk) (4.17)

where β2 is a normalization constant. Note that β2 is selected such that sum of mass

function in (4.17) is unity.

4.1.4 Estimation of the Occluded Keypoint Position

In this part, the estimation of the occluded keypoint position is discussed. This estima-

tion is achieved by using probability mass function in (4.17) as well as the conditional

probability mass function in (4.12). For this purpose, (4.17) is sampled for different

values of T . For each of these T values, occluded keypoint probability mass function

is estimated as,

ppk
(pk) =

N∑
n=1

ppk|Tn(pk|Tn)pT (Tn) (4.18)

where it is assumed that T is sampled byN points, namely Tn, n = 1, ..., N . In Figure

4.4, probability mass function in (4.17) is shown for different values of T . Note that

this type of characteristics can be sampled with a sufficiently small number of values

centered around the peak. Hence, the computational complexity can be reduced by
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Figure 4.4: Illustration of total body length sampling process for a given partially

occluded body

selecting an appropriate value for N . Note that this process ignores the small values

of pT (T ).

Then, the estimation of the keypoint position pk is given as a maximization problem

as below,

p∗k = arg max
pk

ppk
(pk) (4.19)

4.1.5 Solution Paths for Multiple Occluded Keypoints

In the previous part, solution for a single occluded keypoint is presented. In prac-

tice, the position of several occluded keypoints should be estimated. In this process,

it is advantageous to use the positions of estimated keypoints for the estimation of

remaining occluded keypoints. This requires a solution path estimation process for

the best solution. We have considered two different strategies for the solution path

estimation. It turns out that while there could be different techniques for this purpose,

their solution paths, as well as their estimation errors, are not significantly different.

While this is so, we selected an algorithm which is more simple and with a better

estimation error. In the following part, this algorithm is explained.
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The proposed approach first selects the "most suitable" occluded keypoint for estima-

tion. This corresponds to a keypoint which has the largest number of non-occluded

keypoints in its first immediate neighborhood, second immediate neighborhood, etc.

in order to identify a score which gives an estimate for processing quality. Once this

keypoint is found, then the solution path for the keypoint is estimated. The estimated

occluded keypoint is regarded as a visible keypoint for further steps of keypoint se-

lection.

Solution path is used to determine the related keypoints with the occluded keypoint

using the 13-keypoint skeleton body model in Figure 4.1. If the solution path of

an occluded keypoint includes previously estimated keypoints, those estimated key-

points are used as visible keypoints in the solution. This solution path is found by

using a path extending strategy where neighboring keypoints are traced up to the end

keypoints. End keypoints are defined as the p0, p5, p6, p11 and p12 respectively. If

a visible (non-occluded) neighbor is reached, that path is closed. If no visible key-

point is reached, that path is removed from the solution. In Figure 4.5, an example

of the path extending for the solution path of the right hip (p8) is given where green

points represent the visible joints and the yellow one is the occluded keypoint under

consideration. In Figure 4.5a, the first possible paths from p8 are shown with purple

lines. One of the paths ends at a visible point p2 while the others continue to extend.

In Figure 4.5b, the possible paths for the second step are shown with blue lines where

another path reaches a visible joint, p1. In Figure 4.5c, the only possible path remain-

ing is shown with an orange line. Note that, the paths reaching joints p11 and p12 are

removed from the solution since they do not reach a visible joint. The resulting solu-

tion path is given in Figure 4.5d with green lines. The solution path includes p1, p2

and p7 points as shown in Figure 4.5d. In Section 2-B, the process of finding possible

search regions to obtain the positional distribution of an occluded keypoint is given.

In Figure 4.6, the rectangle denotes the final search region by applying this process.

Then, the distribution for the keypoint position is estimated by using Equation (4.18)

and this distribution is shown inside the rectangle region as a purple point cloud for

the keypoint p8.
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(a) Path extending step 1 (b) Path extending step 2

(c) Path extending step 3 (d) Solution path of right hip joint

Figure 4.5: Illustration of path extending steps: (a) - (c) and solution path: (d) for

right hip joint (p8)

4.1.6 Pose Predictability Score Estimation

In this part, predictability scores for the overall body and individual keypoints are

presented. Overall body predictability score is used to give a measure of how good

the occluded keypoints are estimated. This confidence score can be seen as a measure

to evaluate the overall estimation quality. The estimation of the keypoint predictabil-

ity score is especially important to develop a hybrid technique presented in the next

section.
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Figure 4.6: The positional probability distribution of the right hip (p8) for the occlu-

sion pattern given in Figure 6. Green points are the visible keypoints, the cyan box

represents the possible search region, and purple is used to represent pixels with high

probability values. The yellow point is the ground truth position of p8.

While there are some examples in the literature for the estimation of confidence score

[1], the expression for these are not completely characterizing the probability distri-

bution of the parameter. In our case, a different confidence score is presented. This is

based on the fact that the worst confidence is obtained when the positional distribution

of the keypoint is uniform. Therefore, a normalized confidence score with respect to

uniform distribution can better represent the statistical character of the occluded key-

point. The proposed confidence score, cBAKE
k , is given as,

cBAKE
k = b2log(

varuni
var(pk)

) (4.20)

where var(pk) is the estimated variance of the occluded keypoint position using the

found probability mass function, ppk
(pk), and b2 is a constant for normalization.

varuni is the variance of uniform position distribution of the occluded keypoint and

given as,

varuni =
W∑
u=1

H∑
v=1

1

WH
((u− W

2
)2 + (v − H

2
)2)

=
(H2 +W 2 + 4)

12
(4.21)
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where H is the height and W is the width of the image.

Then, the total body confidence score is given as,

ctot =

∑
k∈OC cBAKE

k

|OC|
(4.22)

which is the mean of occluded keypoint confidences also proposed in [36].

4.1.7 Hybrid Prediction Approach of Occluded Joints

Bayesian approach for occluded keypoint estimation (BAKE), uses local and global

information extracted from video sequence under consideration as well as COCO

dataset [14]. This allows us to combine both long-term and short-term information

into the estimation procedure. In contrast, Openpose [1] has only limited capacity

for this purpose. Nevertheless, both approaches can estimate the occluded keypoints.

While there are cases where Openpose fails to estimate some occluded keypoints,

its performance in general sets a baseline for comparison. We have done several

simulations to compare BAKE and Openpose. It turns out that while BAKE has a

better performance than Openpose in general, there is no guarantee that this will be

so for all cases. In order to take advantage of both techniques, a hybrid approach, B-

OP, is presented. The combination of these two techniques is based on the confidence

scores of occluded keypoints obtained by the two techniques. The position estimate

for the hybrid technique can be written as,

pB−OP
k = γkp

BAKE
k + (1− γk)pOP

k (4.23)

where pBAKE
k is the position estimate for BAKE and pOP

k is the position estimate of

Openpose respectively. γk is a weighting term obtained from the confidence scores of

both techniques and is given as,

γk =
cBAKE
k

cBAKE
k + cOP

k

(4.24)

In (4.24), the confidence scores for the individual methods are consistent within their
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techniques but they have different scales. In order to use (4.24), we need to equalize

the scale difference between confidence scores of both methods. This is achieved

by considering a validation video sequence and an affine relationship for the error

and the confidence score. Validation video sequence is an annotated video sequence

where the ground truth, occluded and non-occluded keypoints are well defined. The

affine relationship between the keypoint distance error with respect to ground truth

and the confidence score is given as,

e = ηk0c+ ηk1 (4.25)

where ηk0 and ηk1 are affine weights for the predictions of Openpose or BAKE for the

kth joint, e is the joint’s prediction error, c is the confidence score for the joint.

The validation video sequence is used to estimate the η weights for the 13-keypoint

skeleton body model for both Openpose and BAKE where a least-squares solution

is utilized. For each of 13 joints, different sets of coefficients should be found. The

distributions of errors in pixels and confidence scores for the Openpose and BAKE

are obtained from the validation set. Equation (4.25) can be written in matrix form

for a single keypoint as,

Akηk = ek (4.26)

where ηk is the weight vector [ηk0 ηk1 ]
T . In (4.26), Nvx2 matrix Ak = [ck1] is

composed of confidence score vector ck corresponding to the scores estimated for the

joint k in the validation set with Nv images. 1 is a vector of ones. ek is the vector

of distance errors for the kth joint in the validation set. The least squares solution for

(4.26) can be written as,

ηk = (Ak
TAk)−1Ak

Tek (4.27)

The above solution for the weights of affine relations should be computed for both

Openpose and BAKE. Then, the distance errors for both Openpose and BAKE can be
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calculated by using Equation (4.25). In order to have equivalence between confidence

measures, the error for both cases should be the same as shown below,

e = ηOP
k0
cOP
k + ηOP

k1

= ηBAKE
k0

cBAKE
k + ηBAKE

k1

(4.28)

The relation between two confidence measures can be written as,

cOP
k =

ηBAKE
k0

ηOP
k0

cBAKE
k +

ηBAKE
k1

− ηOP
k1

ηOP
k0

(4.29)

in terms of the estimated relation weights ηOP
k0

, ηOP
k1

, ηBAKE
k0

and ηBAKE
k1

. The above

equation can be used to obtain a confidence score ĉBAKE
k which is compatible with

the cOP
k measure. This is given as,

ĉBAKE
k = zkc

BAKE
k + qk (4.30)

where zk and qk are the first and second coefficients in Equation (4.29).

Using ĉBAKE
k in (4.30), we compute γk in (4.24). Then, the keypoint estimate for the

hybrid method is obtained by using (4.23).

4.2 Experimental Results

Currently, a common database for the pose estimation under partial occlusion is not

available. Previous works in the literature [9, 10, 33], use their synthetic data for eval-

uation. We also generated a synthetic dataset in order to compare the performances

of BAKE, Openpose, and B-OP (hybrid technique in section 4.1.7). The process for

data generation is similar to [9, 10, 33]. Selected frames from three image sequences

are shown in Figure 4.7. These three video sequences are used as ground truth. Ex-

amples of possible synthetic occlusions for the image sequence 1 are shown in Figure

4.8. Three different occlusion scenarios are considered, namely, lower, upper, and

middle occlusions respectively. For lower occlusions we consider three different oc-

clusion levels with occlusion severity levels labeled as l1, l2 and l3 respectively, as
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shown in Figure 4.8a, 4.8b and 4.8c. Similarly, three different upper occlusions are

considered with severity described as u1, u2 and u3 respectively as shown in Figure

4.8d, 4.8e and 4.8f. There are only two middle occlusions, m1 and m2 as shown in

Figure 4.8g and 4.8h.

Given the occluded video sequence as in Figure 4.8, the occluded and visible key-

points are determined using Algorithm 2 in Section 3.1 for each frame. Then, the

occluded keypoints are estimated using the BAKE, Openpose, and B-OP algorithms

as outlined in Section 4.1. The performances of these three techniques are compared

using mean per joint positional error (MPJPE) in terms of pixels as it is given in

[22]. Expression for MPJPE is given in Equation (2.1). For occluded pose estimation

problem, it is also useful to rewrite it as,

MPJPE =
1

NOC

∑
m∈OC

Em (4.31)

in terms of Em where Em is the distance error between the true and estimated oc-

cluded keypoint position in pixels and is given as,

Em = ‖ppred
m − pgt

m‖2 (4.32)

In this equation ppred
m is the estimated keypoint position, pgt

m is the ground truth for

the same keypoint.

The summation is over all occluded keypoints in the set OC where there are NOC

occluded keypoints in total. When there are several frames for evaluation, the average

MPJPE score should be evaluated which is given as,

MPJPEav =
1

Nfr

Nfr∑
m=1

MPJPEm (4.33)

where MPJPEm is the MPJPE score as in (4.31) for the mth frame. Nfr is the

number of test frames.

In order to see the effect of using a total body length value distribution instead of using

only the maximum probable T value, an experiment is set. In sequence 1, average
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(a) Sequence 1

(b) Sequence 2

(c) Sequence 3

Figure 4.7: Example frames in test sequences. row (a) is from sequence 1, row (b) is

from sequence 2, and row (c) is from sequence 3.

41



(a) Lower occlusion severity

level 1, l1

(b) Lower occlusion severity

level 2, l2

(c) Lower occlusion severity

level 3, l3

(d) Upper occlusion severity

level 1, u1

(e) Upper occlusion severity

level 2, u2

(f) Upper occlusion severity

level 3, u3

(g) Middle occlusion severity

level 1, m1

(h) Middle occlusion severity

level 2, m2

Figure 4.8: Examples of synthetically occluded frames in test sequence 1. Row (a) is

lower occlusions, row (b) is upper occlusions and row (c) is middle occlusions.

MPJPE errors of each occlusion case for both multiple T values and single T value

cases are found for this purpose. The results are shown in Figure 4.9. In general,

using multiple T values decreases the error. When the occlusion severity decreases,

using single T values also results in similar errors with multiple T values.

Then, the ordering strategy is investigated. For different occlusion patterns on the
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Figure 4.9: Average MPJPE results of BAKE for different strategies to use total body

length T . Horizontal axis corresponds to occlusion cases where u is for upper, l is for

lower and m is for mid occlusions. Vertical axis is the average MPJPE of test frames

for each occlusion case.

occluded body as shown in Figure 4.10, two different ordering strategies are exam-

ined. The occlusion patterns are chosen so that the ordering strategies give different

keypoint selection orders. Method 1 is the used strategy mentioned in section 4.1.5.

Method 2 also utilizes the occluded neighboring keypoints. It selects the "most suit-

able" occluded keypoint by considering the largest number of first immediate non-

occluded neighbors - occluded neighbors, second immediate non-occluded neighbors

- occluded neighbors, etc.

Results are given in Figure 4.11 for this experiment. Using different ordering strate-

gies does not affect the obtained average MPJPE errors. Therefore, the simpler strat-

egy Method 1 is chosen to be followed.

The Bayesian approach proposed in this paper uses global and local information and

combines them in Equations (4.6) and (4.7). This is an important and effective step

in the proposed method. When the action for the person is steady, local information

is sufficient to represent the motion statistics. On the other hand, when the action

is changing in time, global information extracted from the COCO database must be

used to capture the motion statistics since the local information obtained from the

non-occluded previous frames does not reflect the motion statistics. These points are
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Figure 4.10: Occlusion patterns for the ordering strategy test. Green points and

lines represent the hypothetical visible points where the gray lines represent unknown

parts.

Figure 4.11: Average MPJPE results of BAKE for different occluded keypoint selec-

tion ordering strategies. Horizontal axis corresponds to occlusion patterns. Vertical

axis is the average MPJPE of test frames for each occlusion case.

reflected by the first experiment which includes 350 non-occluded frames of a steady

motion followed up with a similar sequence of 14 occluded frames and then, the last

14 occluded frames involve a different action than the non-occluded frames. These

two sequences are shown in Figures C.1a and C.1b in Appendix (C). The proposed
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Figure 4.12: Average MPJPE results of BAKE for the first 14 frames of test sequence

where walking motion is performed with different update weights: 0.2, 0.4, 0.6, 0.8,

0.9, and 1. Horizontal axis corresponds to occlusion cases where u is for upper, l is

for lower and m is for mid occlusions. Vertical axis is the average MPJPE of test

frames for each occlusion case.

method, BAKE, requires the estimation of 156 parameters for the 13-keypoint skele-

ton model. 350 non-occluded frames are used to estimate the local parameters as in

Equations (4.6) and (4.7). Then, the BAKE algorithm is applied for the next 14 oc-

cluded frames to obtain MPJPE values for each occlusion case. The result is shown

in Figure 4.12. Horizontal axis shows the occlusion cases with different severities as

it is described in Figure 4.8. Since this 14 frame test sequence has a similar action

as the previous 350 frames, the best MPJPE scores are obtained for α ∈ [0.8 − 1.0].

This shows that local information obtained from the previous 350 frames is sufficient

to estimate the occluded keypoints for this sequence. Then, the next 14 occluded

frames, which have a different action than the 350 frames, are considered. Figure

4.13 shows the result for this sequence. As it is seen from this figure, the best MPJPE

scores are obtained for small values of α. This shows that local information is not

sufficient and global information should be included as in Equations (4.6) and (4.7).

When we consider the first and second 14 frame sequences together, the result that

is shown in Figure 4.14 is obtained. In this case, the evaluated sequence contains a

mixture of actions and the best MPJPE scores are obtained for α ∈ [0.2− 0.6].
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Figure 4.13: Average MPJPE results of BAKE for the second 14 frames of test se-

quence where a different motion is performed than the 350 non-occluded frames with

different update weights: 0.2, 0.4, 0.6, 0.8, 0.9, and 1. Horizontal axis corresponds

to occlusion cases where u is for upper, l is for lower and m is for mid occlusions.

Vertical axis is the average MPJPE of test frames for each occlusion case.

Figure 4.14: Average MPJPE results of BAKE for the whole 28 frames of test se-

quence with different update weights: 0.2, 0.4, 0.6, 0.8, 0.9, and 1. Horizontal axis

corresponds to occlusion cases where u is for upper, l is for lower and m is for mid

occlusions. Vertical axis is the average MPJPE of test frames for each occlusion case.

The two proposed methods, BAKE and hybrid B-OP, are compared with the Open-

pose [1] by using three different video sequences as discussed in Figure 4.7. Figure
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4.15 shows the average MPJPE scores for each sequence and method. As it is seen

from this figure, the proposed method, BAKE, performs significantly better than the

Openpose for all three sequences. The hybrid B-OP method can slightly improve the

performance of BAKE in certain cases. Overall, this figure shows that the proposed

Bayesian approach is a good technique to include long-term and short-term informa-

tion in an effective framework compared to the CNN approach in [1].

In Figure 4.16, BAKE and Openpose are compared for a single occlusion. In Fig-

ure 4.16a, it is shown that Openpose cannot estimate the occluded keypoints. On the

other hand, BAKE estimates the keypoints as shown in Figure 4.16b. In the evalu-

ation of these two algorithms, only the occluded keypoints where Openpose returns

predictions are considered. Note that BAKE method always gives the predictions for

the occluded keypoints thanks to the Bayesian approach.

In Figure 4.17, the results of the process for obtaining an equivalent confidence score

expressed in Equation (4.30) for the BAKE algorithm is shown for joint 0 (nose). The

orange dots represent the confidence score - MSE relation for the BAKE algorithm.

The orange line is the LS best fit for these points. When these points are mapped

into an equivalent score as in Equation (4.30), green dots are obtained. The best LS

fit for green points is the green line which matches perfectly with the best fit for the

Openpose which is shown with a blue line. This shows that the hybrid technique

can be constructed appropriately by using the confidence score of Openpose and the

modified BAKE confidence score.

In Figure 4.18, keypoint confidence score, cBAKE , in (4.20) is compared with the

Openpose in terms of keypoint estimation error, Em, in Equation (4.32) for all the

occluded keypoints in all the frames of image sequence 1. As it is seen in this figure,

confidence scores for BAKE and Openpose closely match and Em decreases as the

confidence increases. In Figure 4.19, total body confidence score, ctot, and the corre-

sponding occluded body estimation error, MPJPE, is shown for a video sequence. As

the body confidence score in (4.22) increases the estimation error MPJPE decreases.

Hence, this shows that the total body confidence score in (4.22) accurately represents

the predictability of the occluded keypoints in the body.

47



Figure 4.15: Results of the obtained tests are given for sequences 1, 2 and 3 from top

to bottom respectively. Horizontal axis corresponds to occlusion cases where u is for

upper, l is for lower and m is for mid occlusions. Vertical axis is the average MPJPE

of all test frames for each occlusion case.
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(a) Prediction of

Openpose

(b) Prediction of

BAKE

Figure 4.16: Example case where Openpose could not predict the locations of all

occluded keypoints while the proposed approach does.

Figure 4.17: Example distribution of validation set for the joint 0 (nose). Orange line

represents the relation of confidence scores vs. errors of proposed method via ηBAKE
00

and ηBAKE
01

coefficients while blue line represents relation of confidence scores vs.

errors of Openpose via ηOP
00

and ηOP
01

coefficients.
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Figure 4.18: Scatter plots of keypoint-wise confidence scores vs. keypoint-wise dis-

tance errors, Em, of BAKE and Openpose for all the occluded keypoints in sequence

1.

Figure 4.19: Scatter plot of total body predictability scores vs. MPJPE errors of

BAKE for sequence 1.
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CHAPTER 5

HUMAN IMAGE INPAINTING APPLICATION ON VIDEO FOR

PARTIALLY OCCLUDED FRAMES

Image inpainting is the process of filling the missing or corrupted regions of an image

[37]. In this section, a new method for inpainting the partially occluded human images

in a video sequence is proposed. In this problem, focus is only inpainting the occluded

human parts. Occluded background regions can be recovered with the mentioned

methods in [11, 12]. The proposed method employs a human pose estimation method

to complete the missing joints. Then, a 3D body reconstruction method is used to

replace the occluded part with image patches extracted from the previous frames.

In the proposed method, human pose estimation is performed by using the proposed

BAKE method. The results of this are also compared with the case where Openpose is

used. Several experiments are done in order to show the effectiveness of the proposed

approach. The details of the proposed approach are presented in the following part.

5.1 Inpainting Using the Non-Occluded Candidate Images

In order to inpaint the occluded parts of human images, occlusion detection and seg-

mentation processes are required. The occlusion detection strategy in Section 3.1

is utilized for this purpose in the further parts of this section. After detecting the

occluded frames and occluded regions of them, human image inpainting can be ap-

plied by using the non-occluded frames. In order to inpaint a partially occluded body

image, a set of candidate non-occluded images is given. Then, 3D human body re-

construction from images is proposed to be used for the inpainting process. The

target person is reconstructed in both the occluded frame and candidate non-occluded
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frames. In non-occluded frames, Openpose [1] and SMPLify-x [2] algorithms are

used together. Openpose estimates the 2D keypoint locations of the target person.

SMPLify-x uses the keypoint estimates and defines a camera in the 3D scene with

an approximate focal length value. It estimates the unknown camera translation and

global orientation of the body first. Then, since it estimated the approximate position

of the body with respect to the camera, it tries to fit the projected 2D positions of

3D SMPL body joints [15] to Openpose keypoint estimates by optimizing the body

shape and pose parameters over a re-projection loss [2]. It outputs the 3D vertex coor-

dinates of the SMPL body in camera coordinates. In target partially occluded frame,

using the Openpose and the proposed Bayesian approach, 2D keypoint locations are

estimated and similarly, SMPLify-x estimates the 3D SMPL body. In this work, an

open-source python library, Pyrender, is used for rendering the 3D SMPL body onto

the target images. Frames containing the estimated and projected SMPL bodies for

an occluded and non-occluded frame are given in Figure 5.1.

(a) Estimated 3D SMPL body on a

non-occluded frame

(b) Estimated 3D SMPL body on an occluded

frame

Figure 5.1: Estimated and rendered 3D SMPL bodies in example frames

As previously mentioned, SMPL bodies include 6890 vertices with 13776 triangles.

LetG and F are the sets of vertices and triangles for a given SMPL body, respectively.

The goal of the application is to transfer the triangular image patches in non-occluded

frames to the occluded region of the partially occluded frame. For a given frame with

a projected SMPL body, some triangles can be observed by the camera while some of

them cannot. The unobservable triangles are the ones that stay at the backside of the

3D body with respect to the camera. It is desired to identify the observable triangles in

each non-occluded frame and also in the occluded frame using the SMPL bodies. For
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a given camera and given 3D object in the scene, there are different methods to find

visible 3D surface points in computer graphics [38] which is a must in the rendering

process. During the rendering, Pyrender also finds the visible 3D surface points,

however, it does not identify directly the visible triangles of the 3D body. Then, we

developed a strategy to determine the visible triangles of the 3D SMPL body for a

given frame by using the depth image rendered by Pyrender, ID, where an example is

given in Figure 5.2.

Figure 5.2: An example depth image of an SMPL body. Only the depth information

of the SMPL body exists. The closest point to the camera is shown with black while

the farthest point is shown with white.

Note that, only the depth information of 3D SMPL body exists in this image. Using

the depth image and vertices of SMPL body, we find the visible vertices and then,

associate them with triangles to identify visible triangles. In order to find visible

vertices, 3D coordinates of vertices are converted to pixel coordinates by applying

perspective projection from 3D camera coordinates to 2D image plane as,

pi
proj = Mprojp

i
cam (5.1)

where MProj is the 3x4 projection matrix defined by SMPLify-x and pi
cam is the ith
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vertex position in camera coordinates with the homogeneous form which is given as,

pi
cam =


xi

yi

zi

1

 (5.2)

Then, the pixel coordinates of ith vertex, ui and vi are calculated by using the vector

pi
proj as,

pi
proj =


x′i

y′i

z′i

 , ui =
x′i
z′i
, vi =

y′i
z′i

(5.3)

After finding the vertex pixel coordinates, the procedure for the identification of visi-

ble triangles is applied. This procedure is given in Algorithm 3. In step 1 of Algorithm

3, the set of visible SMPL vertices, GV , is found by checking the depth values in the

depth image and each vertex. Then, in step 2, elements of fi are investigated whether

they are in the set GV or not. The set F V is identified for estimated SMPL bodies in

this way.
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Algorithm 3 Identification of Visible SMPL Triangles

GV = ∅, F V = ∅
Step 1: For each vertex, check the equality of vertex depth value, zi, to the value

in the depth image’s corresponding pixel, ID(ui, vi)

for i = {1, 2, .., 6890} do

if zi == ID(ui, vi) then

GV ← GV ∪ {gi}
end if

end for

Step 2: Note that elements of F are subsets of G with three elements. For each

element fi of F , check whether the elements of fi, gi1 , gi2 , gi3 , are also elements

of GV .

for i = {1, 2, .., 13776} do

if gi1 ∈ GV AND gi2 ∈ GV AND gi3 ∈ GV then

F V ← F V ∪ {fi}
end if

end for

In the estimated SMPL body of the partially occluded frame, some of the triangles

are not visible due to the occlusion. It is necessary to identify those, so they could be

inpainted with the corresponding visible triangles in candidate frames. Foreground

mask of partially occluded frame, M3 given in Section 3.1, is used for the identifica-

tion of occluded triangles. Algorithm 4 explains the process of finding the occluded

triangles. In step 1, found visible vertices of occluded frame are investigated with

foreground mask, M3. If the corresponding vertex pixel is not in the foreground re-

gion, it is concluded that it is not seen in the scene, so it is occluded. In Figure 5.3,

occluded vertices of the frame given in Figure 5.1b are shown as the output of step 1.

In step 2, set of occluded vertices,GO, is investigated to find set of occluded triangles,

FO. If any vertex of the triangle fi is occluded, it is also concluded as an occluded

triangle.

Then, occluded triangles in the partially occluded frame are known, so the inpainting

can be done by triangular image patch transferring from the candidate non-occluded
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Figure 5.3: Occluded (red) and visible (white) vertices of the frame given in Figure

4.4 (b) as the output of the step 1 of Algorithm 4

Algorithm 4 Identification of Occluded SMPL triangles on Partially Occluded Frame

GO = ∅, FO = ∅
Step 1: For each element of visible vertex set in occluded frame, GV

O, check

whether the corresponding pixel stays in the foreground or background area.

for each gi ∈ GV
O do

if M3(u
i, vi) == 0 then

GO ← GO ∪ {gi}
end if

end for

Step 2: For each element, fi of visible triangle set in occluded frame, F V
O , check

whether the elements of fi; gi1 , gi2 , gi3 , are also elements of GO.

for each fi = {gi1 , gi2 , gi3} ∈ F V
O do

if gi1 ∈ GO OR gi2 ∈ GO OR gi3 ∈ GO then

FO ← FO ∪ {fi}
end if

end for

frames. However, it is required to decide the correspondences of occluded triangles

and candidate frames for transferring patches. Algorithm 5 explains the process of re-

lating occluded triangles with candidate frames. According to Algorithm 5, numbers

of common triangles between the sets of visible triangles in candidate frames and oc-
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cluded triangles in the partially occluded frame are compared. The candidate with the

largest number of commonly visible triangles is chosen as the first frame to be used

in inpainting. Common triangles are decided to be transferred from this candidate

frame to the occluded region. Then, for the non-associated occluded triangles, other

candidates are investigated similarly. Hence, the process continues recursively until

all the candidates are used or all the occluded triangles are associated with candidates

for image patch transfer.

Algorithm 5 Associating Occluded SMPL Triangles with Candidate Non-occluded

Frames for Image Patch Transferring

Set of used candidates, Cu = ∅, set of not used candidates, Cn = {c1, c2, ..., cNc}
where there are Nc candidate frames.

Set of occluded triangles which are not associated yet with candidate frames, FO
n =

FO

Set of ordered candidates for image patch transferring, O = ∅
while (|Cn| 6= 0) and (|FO

n | 6= 0) do

for each ck ∈ Cn do

Let Fck be the set of common triangles between set of occluded triangles not

associated yet, FO
n , and set of visible triangles in kth candidate frame, F V

k .

Fck = ∅
for each fi ∈ FO

n do

if fi ∈ F V
k then

Fck ← Fck ∪ {fi}
end if

end for

end for

k∗ = arg maxk (|Fck |)
FO
n ← FO

n \ Fck

Cn ← Cn \ {ck}
O ← O ∪ {k}

end while

Then, each of the associated occluded triangles is transferred by the candidate frames
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according to the ordered candidate set, O, and common triangle sets, Fck . Image

patch transferring is performed through affine transformations of triangular image

patches. Affine transformation from a source pixel coordinates, (ut, vt), to target

pixel coordinates, (us, vs), is given as,


ut

vt

1

 = T


us

vs

1

 (5.4)

where T is the 2x3 transformation matrix given as,

T =


a11 a12 a13

a21 a22 a23

0 0 1

 (5.5)

where a13 and a23 are the coefficients responsible for translation. a11, a12, a21 and

a22 are the coefficients responsible for scaling and rotation operations. For the oc-

cluded triangle, fi with vertices gi1 , gi2 and gi3 , let the pixel coordinates of vertices

in occluded frame be (ui1o , v
i1
o ), (ui2o , v

i2
o ) and (ui3o , v

i3
o ), while the pixel coordinates of

vertices in associated candidate frame be (ui1c , v
i1
c ), (ui2c , v

i2
c ) and (ui3c , v

i3
c ). Then the

coefficients of affine transformation matrix for the occluded triangle fi is found as,



ai11

ai12

ai13

ai21

ai22

ai23


= D−1i



ui1c

ui2c

ui3c

vi1c

vi2c

vi3c


(5.6)

where Di is the matrix which consists of the candidate frame vertex coordinates and
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given as,

Di =



ui1o ui1o 1 0 0 0

ui2o ui2o 1 0 0 0

ui3o ui3o 1 0 0 0

0 0 0 ui1o ui1o 1

0 0 0 ui2o ui2o 1

0 0 0 ui3o ui3o 1


(5.7)

For the found transformation matrix of the occluded triangle fi, the pixels in the

triangular image patch of the occluded frame are transformed to the coordinates of the

associated candidate frame. The aim of transforming pixel coordinates from occluded

to candidate frame is to obtain the value of occluded pixels from the candidate. Then,

the pixel is inpainted in the occluded frame. However, the transformed coordinate

is real-valued instead of integer pixel coordinates. Therefore, bilinear interpolation

is performed using the transformed pixel coordinates in the candidate frame. The

bilinear interpolation operation for the transformed coordinates, (u′o, v
′
o), around the

four corner pixels; (ub, vb), ((ub + 1), vb), (ub, (vb + 1)) and ((ub + 1), (vb + 1)), is

given as,

Io(uo, vo) = (u′o − ub)(v′o − vb)Ick((ub + 1), (vb + 1))

+ (ub + 1− u′o)(v′o − vb)Ick(ub, (vb + 1))

+ (u′o − ub)(vb + 1− v′o)Ick((ub + 1), vb)

+ (ub + 1− u′o)(vb + 1− v′o)Ick(ub, vb)

(5.8)

where Ick is the candidate frame associated with the occluded triangle, fi, and Io is

the occluded frame. In Figure 5.4, corresponding positions of given points in (5.8) are

shown. If there are occluded triangles left unmatched with candidate frames, interpo-

lation is applied again to inpaint the pixels in these triangles. Delaunay triangulation

[39] and linear barycentric [40] interpolation is used to this end with the open-source
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Figure 5.4: Illustration of coordinates for bilinear interpolation

Figure 5.5: Result of inpainting procedure for the partially occluded frame.

software library Scipy [41]. In Figure 5.5, occluded image given in Figure 5.1b is

inpainted using the outlined method.

In the following part, experimental results related to inpainting method will be pre-

sented.
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5.2 Experiments Related with Human Body Inpainting

In order to show the effectiveness of the proposed inpainting method, several ex-

periments are done. In these experiments, occlusion detection on the test videos is

done using the proposed method given in Section 3.1. The foreground mask, M3, in

Section 3.1 is also used to detect occluded vertices and triangles.

5.2.1 Comparison for the Effects of BAKE and Openpose in the Inpainting

Application

In this section, inpainting results of occluded video frames from different video se-

quences will be shown. The performance of the application is directly related to the

base method SMPLify-x [2]. SMPLify-x obtains the anatomical information via the

found 2D keypoints of the target person. However, obtained 2D pose elements do not

contain enough information about the body shape in general. Moreover, SMPL bod-

ies do not have a clothing layer. Thus, the clothing information of the target person

is lost. Therefore, the performance of the application is limited inherently due to the

limitations of SMPLify-x. Nevertheless, the performance of the application can be

improved if the used keypoints for the occluded frame get more accurate. In this test,

we tested BAKE and Openpose methods in terms of correctly predicting the occluded

keypoints. 3D SMPL bodies reconstructed for the occluded frames with both Open-

pose and BAKE. Ground truth 3D body is also reconstructed for these frames. Then,

in order to measure the similarity of the reconstructed and projected SMPL bodies

with the ground truth SMPL body, the average of Euclidean distances between the

corresponding vertices of reconstructed body and ground truth body in the occluded

part, Ev, is used which is given as,

Ev =
1

No

∑
g∈GO

‖vpred
g − vgt

g ‖2 (5.9)

where GO is the set of occluded vertices of the projected SMPL body in the occluded

frame with No elements. vpred
g is the pixel coordinate vector of vertex g in the oc-

cluded frame while vgt
g is the pixel coordinate vector of SMPL body projected to the
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original frame where synthetic occlusion is not inserted. Two video sequences are

utilized in this experiment. Example frames for the occluded frames are given with

their corresponding ground truth images in Figure 5.6 for the video sequence 1.

Projected 3D bodies which are constructed from original image and occluded image

for the frame given in Figure 5.6a and 5.6b are shown in Figure 5.7. Vertices in

the set GO for the test frame in Figure 5.7 are shown in Figure 5.8. In Figure 5.8a,

ground truth vertices are shown with the vertices reconstructed by the occluded key-

point estimates of BAKE while in Figure 5.8b, ground truth vertices are shown with

the vertices reconstructed by the occluded keypoint estimates of Openpose. One-

to-one correspondence of the given vertices is known, so the average of Euclidean

distances between the vertices in the occluded region, Ev, can be calculated for both

reconstructions with BAKE and Openpose.

For both sequences, 4 test frames are used for each occlusion pattern: lower occlu-

sion, middle occlusion, and upper occlusion. Comparison results are given in Figure

5.9. The vertical axis is the average Euclidean distance error while the horizontal

axis corresponds to each test frame where l, m, and u are used for representing lower,

middle, and upper, respectively. Furthermore, all inpainted test frames of the two test

sequences are shown in Appendix D.

In lower and upper occlusion conditions, reconstructed bodies with occluded keypoint

estimates of BAKE are closer to the ground truth bodies than Openpose. In such

occlusion cases, BAKE gives more accurate estimates since it has the capability of

embedding the motion information. In occlusions that occurred on the middle part

of the body, Openpose might also be able to reconstruct accurate results as much as

BAKE, since the upper and lower parts of the human body are visible and Openpose

can localize the middle part using the information of upper and lower parts.
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(a) A test frame where lower

part is occluded

(b) Corresponding original

frame

(c) A test frame where mid part

is occluded

(d) Corresponding original

frame

(e) A test frame where upper

part is occluded

(f) Corresponding original frame

Figure 5.6: Occluded test frames and corresponding original frames for sequence 1
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(a) Projected 3D SMPL

body where the occluded

keypoint estimations of

BAKE are used in

reconstruction

(b) Projected 3D SMPL

body where the occluded

keypoint estimations of

Openpose are used in

reconstruction

(c) Projected 3D SMPL

body on the original frame

Figure 5.7: Projected SMPL bodies on occluded frame using BAKE and Openpose

and the ground truth SMPL body on original frame

(a) Vertices of ground truth body

and the reconstructed body in

occluded frame by using BAKE

(b) Vertices of ground truth body

and the reconstructed body in

occluded frame by using

Openpose

Figure 5.8: Vertices of ground truth and predicted bodies in the occluded region.

Red corresponds to the vertices of the predicted body while green corresponds to the

vertices of the ground truth body. Since the correspondence of each vertex between

two images is known, Ev can be used to measure the similarity of the reconstructed

SMPL body in the occluded frame with the ground truth body in the original frame.
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(a) Ev vs Inpainting Cases for video sequence 1 (b) Ev vs Inpainting Cases for video sequence

2

Figure 5.9: Obtained Ev errors for given video sequences

5.2.2 Effect of Chosen Candidate Images

In this experiment, the effect of chosen candidate images for the inpainting process is

examined. Two candidate image sets are used from video sequence 2 for this purpose.

Candidate set 1 and 2 are shown in Figure 5.10 and Figure 5.11.

The occluded test frames for sequence 2, which are used in the comparison of BAKE-

Openpose in Section 5.2.1, are also used in this experiment. 3D reconstructions of

bodies are done using the occluded keypoint estimates of BAKE for these test frames.

Then, the inpainting is performed using the candidate sets 1 and 2 separately. In

Figure 5.12, an inpainted test frame with the given candidate sets and the ground

truth of the frame are shown.

In order to measure the similarity of the inpainted images with the ground truth, PSNR

[42] and SSIM [42, 43] metrics are used. PSNR is the peak signal-to-noise ratio and

for 8-bit images, it is given as,

PSNR = 20log10(
255

MSE
) (5.10)
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(a) Candidate 1 (b) Candidate 2

(c) Candidate 3 (d) Candidate 4

Figure 5.10: Candidate Images Set 1 for Inpainting

(a) Candidate 1 (b) Candidate 2

(c) Candidate 3 (d) Candidate 4

Figure 5.11: Candidate Images Set 2 for Inpainting
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(a) Inpainted image with candidate set 1 (b) Inpainted image with candidate set 2

(c) Ground truth

Figure 5.12: Inpainting results with candidate sets 1 and 2 for a test frame and its

ground truth

where MSE is given as,

MSE =

∑N
n

∑M
m (I1(m,n)− I2(m,n))2

M ∗N
(5.11)

for the images I1 and I2.

SSIM [42, 43] is a metric more adapted to the human visual perception system since it

compares images on three different aspects: luminance, contrast, and structure. SSIM

metric is given as,

SSIM =
(2µI1µI2 + C1)(2σI1,I2 + C2)

(µ2
I1

+ µ2
I2

+ C1)(σ2
I1

+ σ2
I2

+ C2)
(5.12)

where the parameters µI1 and µI2 are the mean parameters while σI1 and σI2 are the

variance parameters of the images I1 and I2, respectively. σI1,I2 is the covariance

parameter between between two images. C1 and C2 are small constants to avoid

instability when (µ2
I1

+ µ2
I2

) or (σ2
I1

+ σ2
I2

) are very close to zero, respectively [43].
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In the occluded regions, similarity of the intersecting regions of ground truth body sil-

houettes and predicted body silhouettes are investigated for the comparison. Results

of the experiment are given in Figure 5.13. Furthermore, all of the inpainted frames

related to the candidate test are shown in Appendix E.

(a) PSNR scores for each test frame (b) SSIM scores for each test frame

Figure 5.13: PSNR and SSIM results of the inpainting application using candidate

sets 1 and 2

Both sets give successful inpainting results, especially when the SSIM scores are con-

sidered. The smallest SSIM score is around 0.975 which means the occluded region

in inpainted images is very similar to the corresponding region of the original image

indeed. Nevertheless, using candidate set 1 resulted in better SSIM and PSNR scores

than using candidate set 2 in all test frames. The main reason for that result is the body

pose angle of the test frames is closer to the candidate set 1 than candidate set 2. There

are more common triangles between an occluded test frame and a candidate frame of

set 1 than a candidate frame of set 2. This provides the ability to inpaint more area of

the occluded region using only one candidate frame, so a smooth inpainted region is

obtained. Additionally, there are many triangles on the occluded region of test images

that are not visible in any image of the candidates in set 2. Those unmatched regions

are interpolated during the inpainting, however, as the interpolated regions are getting

larger, the inpainting performance is degraded. Lastly, the illumination of the frames

in candidate sets 1 and 2 are different due to the body pose angle differences and the

illumination of the candidate set 1 is closer to test frames than candidate set 2.
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CHAPTER 6

CONCLUSIONS

A Bayesian approach, BAKE, is proposed for 2D human pose estimation under par-

tial occlusions as a part of this thesis work. BAKE uses the statistical information

extracted from the local frames as well as a database which represents the global

information for the human body. This Bayesian framework is integrated with the

CNN network structure to embed the characteristics of time-dependent human pose

features to estimate occluded keypoints. In this sense, BAKE can be seen as an alter-

native to 3D CNN structures with the advantage of convenient training and computa-

tional complexity. It is shown that local statistics is important to model the stationary

body motion whereas global statistics is useful to model the changes in the motion.

The robustness of the proposed action-specific distribution update strategy is shown

through several experiments in terms of the MPJPE performance metric. It is shown

that BAKE performs significantly better than Openpose which sometimes fails to give

estimates for certain occluded keypoints. A novel keypoint confidence score, as well

as a total body confidence score, are presented. It is shown that the proposed con-

fidence scores accurately represent the predictability of the occluded keypoints. A

hybrid method is also presented to further improve the performance of the BAKE al-

gorithm. The proposed hybrid technique slightly improves the BAKE performance.

Several experiments and results are presented to show the performance of the pro-

posed approaches in natural video sequences.

In the second part of this work, an inpainting method for the partially occluded human

images is proposed. This method employs 2D pose estimation under partial occlu-

sions and 3D body reconstruction. Using the non-occluded frames and corresponding

3D SMPL bodies, an image patch transfer procedure is explained for inpainting the
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occluded regions of a target human image. Through several experiments, realistic re-

sults are obtained in different video sequences, and the improvement on the problem

of occluded pose estimation with BAKE is also adapted for this application. Open-

pose and BAKE are compared for the 3D body reconstruction step and it is shown

that 3D bodies reconstructed with BAKE keypoints outperform Openpose in general.

Even though this method can be directly used in applications of video special effects

and it is inspiring for the computerized outfit planners, there are problems related

to the 3D reconstruction process which creates 3D bodies only using the 2D human

keypoints. Even in the cases where 2D pose elements are accurate, the reconstructed

occluded bodies do not exactly match with the target person due to the differences

in terms of body shape between the real and the reconstructed body. Furthermore,

clothing of the target person is missing in the reconstructed body.

As future work, the occlusion detection algorithm can be improved for natural oc-

clusion patterns. In this work, occlusions were modeled by black boxes and the pro-

posed occlusion detection method performed well for these cases. It is also expected

to work on natural scenarios. Therefore it can be employed for such scenarios to

measure its performance. For the occluded keypoint estimation, the proposed method

can be tested to estimate occluded keypoints in cases where more complex motions

are realized. In order to improve the human image inpainting results, a 3D body re-

construction algorithm which emphasizes the anatomical properties and the clothing

of the target person can be utilized.
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APPENDIX A

ESTIMATION OF APPROXIMATE PROBABILITY MASS FUNCTION OF

OCCLUDED KEYPOINT

Let 2∆p be the step size of discrete valued coordinate vector pk while pc
k is the con-

tinuous valued coordinate vector. Conditional probability mass function of occluded

keypoint for a given total body length, ppk|T (pk|T ) can be defined as,

ppk|T (pk|T ) = P (‖pk − pc
k‖2 < ∆p) (A.1)

It is defined as a circular region around pk with radius ∆p for analytical simplicity

instead of a square grid. The given probability value equals the result of integral given

as,

P (‖pk − pc
k‖2 < ∆p) =∫ aUk,v0

aLk,v0

...

∫ aUk,vK

aLk,vK

∫ lUk,v0

lLk,v0

...

∫ lUk,vK

lLk,vK

fxk
r
(xk

r )

dak,v0 ... dak,vK dlk,v0 ... dlk,vK (A.2)

where vi is the ith visible joint and aLk,vi , a
U
k,vi

, lLk,vi and lUk,vi are the lower and upper

limit functions for related angle and length variables respectively. Note that it is

assumed there are K visible joints.

lLk,vi and lUk,vi can be defined as,

lLk,vi =
‖pk − pvi

‖2 −∆p

T
(A.3)

77



lUk,vi =
‖pk − pvi

‖2 + ∆p

T
(A.4)

In order to approximate the above integral in a simpler form, aLk,vi and aUk,vi parameters

have to be defined independent of lk,vi , so that the circular region ‖pk − pc
k‖2 < ∆p

is needed to be converted to an annular sector defined by lLk,vi , l
U
k,vi

, aLk,vi and aUk,vi
parameters as shown in Figure A.1. Therefore, the angle limits aLk,vi and aUk,vi are

defined as,

aLk,vi = ãk,vi − tan−1(
∆p

‖pk − pvi
‖2

) (A.5)

aUk,vi = ãk,vi + tan−1(
∆p

‖pk − pvi
‖2

) (A.6)

where ãk,vi is the value of angle variable defined with points pk and pvi
using the

Equations (4.4) and (4.3).

Figure A.1: Illustration of deviation of unit area ‖pk − pc
k‖2 < ∆p for an example

point. Red area is the original region. pvi is the ith visible point and it is set to the

center of horizontal and vertical axes for illustration. By defining the angle limits

aLk,vi and aUk,vi , this region expands through the yellow region.

Defining aLk,vi and aUk,vi in this way causes a deviation in the integral area as shown in
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Figure A.1 such that the area changes with the distance ‖pk − pvi
‖2. The expression

for the annular sector area is given as,

area = 4∆p‖pk − pvi
‖2 tan−1(

∆p

‖pk − pvi
‖2

)

= 4ν∆2
p tan

−1(1/ν) (A.7)

where ν is also given as,

ν =
‖pk − pvi

‖2
∆p

, ν ≥ 2 (A.8)

However, this deviation is bounded as shown in Figure A.2, the plot of this area with

respect to ‖pk−pvi
‖2 distance. Note that the smallest ‖pk−pvi

‖2 distance could be

2∆p when pk is different than pvi , so the plot on Figure A.2 starts from the distance

2∆p.

Figure A.2: Plot of distance to visible point vs. angular sector area

Since the newly defined area in Figure A.1 is too small, the integral given above can

be approximated in a multiplicative form as,
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ppk|T (pk|T )

≈ ∆ak,v0
...∆ak,vK

∆lk,v0
...∆lk,vK

fxk
r
(x̃k

r)

= β1fxk
r
(x̃k

r)
∏

vi∈V IS

∆ak,vi
(A.9)

where ∆ak,vi
and ∆lk,vi

are also given as,

∆ak,vi
= aUk,vi − a

L
k,vi

= 2tan−1(
∆p

‖pk − pvi
‖2

) (A.10)

∆lk,vi
=
lUk,vi − l

L
k,vi

= 2∆p

T
(A.11)

As given in Equation (A.11), ∆lk,vi
is independent of the keypoint position, pk, so

multiplications of ∆lk,vi
terms in Equation (A.9) is combined in β1 term. Furthermore,

for given total body length T , given visible joints set, V IS with positions of visible

joints and a given position of the occluded joint, value of xk
r can be calculated with

Equations (4.1), (4.4) and (4.3) as the realized value vector x̃k
r .

80



APPENDIX B

ESTIMATION OF APPROXIMATE PROBABILITY MASS FUNCTION OF

TOTAL BODY LENGTH

Let T be the discrete-valued total body length variable with 2∆T steps while T c is

the continuous-valued variable and ω equals to 1/T c. Probability mass function of

discrete valued total body length, pT (T ) can be defined as,

pT (T ) = P (T −∆T < T c < T + ∆T ) (B.1)

Given probability value can be calculated through the integral from ωL to ωU as,

P (T −∆T < T c < T + ∆T )

=

∫ ωU

ωL

flk|ãk
(ωl̃k|ãk) dω (B.2)

where ωL and ωU are also given as,

ωL =
1

T + ∆T

(B.3)

ωU =
1

T −∆T

(B.4)

The interval (1/(T+∆T ) , 1/(T−∆T )) becomes too small as the value of T increases.

Therefore, the integral given above can be approximated as,

pT (T ) ≈ ∆ωflk|ãk
((
ωU + ωL

2
l̃k)|ãk) (B.5)
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where ∆ω is given as,

∆ω = ωU − ωL =
2∆T

T 2 −∆2
T

(B.6)

As T � ∆T , (ωU + ωL)/2 and ∆ω can also be approximated as,

T � ∆T → ωU + ωL

2
=

1

T
, ∆ω =

2∆T

T 2
(B.7)

Finally, the expression in Equation (B.5) simplifies to,

pT (T ) ≈ β2
T 2
flk|ãk

((̃lk/T )|ãk) (B.8)

where β2 is the normalization constant.
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APPENDIX C

TEST FRAMES RELATED WITH UPDATE WEIGHT TEST

(a) First 14 test frames (b) Second 14 test frames

Figure C.1: Test frames related to the update weight test. The first 14 frames are

the continuation of the walking sequence while a different motion character than the

non-occluded frames exists in the second 14 frames
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APPENDIX D

INPAINTING RESULTS FOR DIFFERENT CANDIDATE SETS

Figure D.1: Inpainting results of video sequence 1 related to the BAKE-Openpose

comparison experiment. Columns 1 and 4 correspond to inpainting results with oc-

cluded keypoint estimates of BAKE while columns 2 and 5 correspond to inpainting

results with occluded keypoint estimates of Openpose. Columns 3 and 6 are the

ground truths.
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Figure D.2: Inpainting results of video sequence 2 related to the BAKE-Openpose

comparison experiment. Columns 1 and 4 correspond to inpainting results with oc-

cluded keypoint estimates of BAKE while columns 2 and 5 correspond to inpainting

results with occluded keypoint estimates of Openpose. Columns 3 and 6 are the

ground truths.
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APPENDIX E

INPAINTING RESULTS FOR DIFFERENT CANDIDATE SETS

Figure E.1: Inpainting results of video sequence 2 related to the candidate selection

experiment. Columns 1 and 4 correspond to inpainting results with candidate set 1

while columns 2 and 5 correspond to inpainting results with candidate set 2. Columns

3 and 6 are the ground truths.
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