
A NEW FAULT-TOLERANT REAL-TIME ETHERNET PROTOCOL: DESIGN
AND EVALUATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRE ATİK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2021

Approval of the thesis:

A NEW FAULT-TOLERANT REAL-TIME ETHERNET PROTOCOL:
DESIGN AND EVALUATION

submitted by EMRE ATİK in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Şenan Ece Güran Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Prof. Dr. Klaus Verner Schmidt
Co-supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Prof. Dr. Şenan Ece Güran Schmidt
Electrical and Electronics Engineering, METU

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Prof. Dr. Cüneyt Bazlamaçcı
Computer Engineering, İzmir Institute of Technology

Dr. Sibel Tarıyan Özyer
Computer Engineering, Cankaya University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Emre Atik

Signature :

iv

ABSTRACT

A NEW FAULT-TOLERANT REAL-TIME ETHERNET PROTOCOL:
DESIGN AND EVALUATION

Atik, Emre
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Şenan Ece Güran Schmidt

Co-Supervisor: Prof. Dr. Klaus Verner Schmidt

January 2021, 89 pages

This thesis is motivated by the communication requirements of contemporary real-

time and embedded applications. These requirements are high-bandwidth, fault tol-

erance, determinism that allows schedulability and bounded latency, broadcast capa-

bility, accommodating sporadic traffic efficiently together with periodic traffic, and

finally low cost, COTS interface hardware.

To this end, we propose a novel protocol, Shared Queue based Dynamic Slot Reser-

vation (SQDSR) complete with message format, medium access and fault tolerance

mechanisms. SQDSR implements a time-slotted synchronized communication layer

over shared medium 100 Mbps Ethernet. SQDSR exploits the shared medium for

broadcast capability, distributed scheduling of messages and fault tolerance. Further-

more, no switches are required that reduce the cost of implementation.

The performance of SQDSR is evaluated with OMNeT++ simulator with a realistic

message set and node topology from an avionics application. To this end, we com-

pare the performance of SQDSR to AFDX (Avionics Full-Duplex Switched Ether-

v

net) which is a widely used Ethernet-based communication protocol. The evaluation

results show that SQDSR fulfills the requirements of the contemporary real-time em-

bedded applications.

Keywords: Shared medium access, fault tolerance, dynamic slot reservation, real time

communication, industrial Ethernet

vi

ÖZ

YENİ BİR HATAYA DAYANIKLI GERÇEK ZAMANLI ETHERNET
PROTOKOLÜ: TASARIM VE DEĞERLENDİRME

Atik, Emre
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Şenan Ece Güran Schmidt

Ortak Tez Yöneticisi: Prof. Dr. Klaus Verner Schmidt

Ocak 2021 , 89 sayfa

Modern gerçek zamanlı gömülü sistemlerin gereksinimleri bu tezin temel motivas-

yon kaynağıdır. Bu gereksinimler yüksek bant genişliği, hataya toleransı, kararlılığı,

anons yayın yeteneği, hem düzenli hem düzensiz trafik tipleriyle uyumluluğu ve ticari

olarak kullanıma hazır olmasıdır.

Bu çalışmada, Paylaşımlı Dizi Tabanlı Dinamik Ağ Dilimi Ayırma (SQDSR) yeni bir

protokol olarak mesaj formatı, veri yolu erişimi ve hataya tolerans özellikleri ile bir-

likte önerilir. Ethernet tabanlı 100 Mbps bant genişliği ile zaman dilimli ve eş zamanlı

bir haberleşme katmanı oluşturulur. Protokol veri yolunu anons yayın yapmak, mesaj-

ları düzenlemek ve hataları önlemek için kullanır. Ağ anahtarı gereksinimi olmaması

düşük maliyet sağlar.

Önerilen protokolün performansı endüstriden alınan veriler kullanılarak OMNeT++

simülasyon modelleri ile değerlendirilir. Sonuçlar Ethernet tabanlı sıklıkla kullanılan

bir protokol olan AFDX ile karşılaştırılır. Önerilen protokolün modern gerçek zamanlı

gömülü sistemlerin gereksinimleri karşıladığı görülür.

vii

Anahtar Kelimeler: Paylaşımlı ortam erişimi, hataya tolerans, dinamik ağ dilimi ayırma,

gerçek zamanlı iletişim, endüstriyel Ethernet

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to express my greatest gratitude to my supervisor Prof. Dr. Ece Güran

Schmidt and co-supervisor Prof. Dr. Klaus Verner Schmidt. Without their outstand-

ing guidance and support, this work would not have been succeeded.

I would like to thank ASELSAN Inc. for supporting my education. I appreciate the

encouragement policy of the company towards post graduate research.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 Real Time Safety Critical Systems 5

2.2 Bus Based Communication Architectures 6

2.2.1 Mil-Std-1553 . 6

2.2.2 SAFEBus . 11

2.2.3 TTP/C . 12

2.2.4 FlexRay . 13

2.2.5 TTCAN . 13

2.2.6 FireWire . 14

xi

2.2.7 SpaceWire . 15

2.3 Ethernet Based Communication Architectures 15

2.3.1 Ethernet Powerlink . 17

2.3.2 EtherCAT . 18

2.3.3 Time Sensitive Networking 19

2.3.4 Avionics Full-Duplex Switched Ethernet 20

3 SHARED QUEUE BASED DYNAMIC SLOT RESERVATION PROTOCOL 25

3.1 Motivating Specifications . 25

3.2 Overview . 27

3.2.1 Control State . 29

3.2.2 Static State . 32

3.2.3 Dynamic State . 34

3.3 Time Synchronization . 37

3.4 Frame Format . 39

3.5 Fault Tolerancy . 42

4 PERFORMANCE EVALUATION . 45

4.1 Evaluation Criteria . 45

4.1.1 Latency Modelling . 46

4.1.2 Reliability and Scheduling 46

4.1.3 Confidence Interval . 47

4.2 Performing Simulation with OMNeT++ 47

4.2.1 OMNeT++ Overview and Models 48

4.2.2 SQDSR OMNeT++ Model 49

xii

4.2.2.1 Traffic Generator and Interface Components 51

4.2.2.2 Delay Component . 53

4.2.2.3 SQDSR Protocol Component 53

4.2.3 AFDX OMNeT++ Model . 54

4.2.3.1 AFDX End System Model 55

4.2.3.2 AFDX Switch Model 58

4.3 Experimental Results . 61

4.3.1 SQDSR Simulation Results 64

4.3.1.1 SQDSR Performance 66

4.3.1.2 SQDSR Fault Handling Observation 69

4.3.1.3 Effects of Startup Configuration on SQDSR Results . . 71

4.3.1.4 Effects of Network Configuration on SQDSR Results . 72

4.3.2 AFDX Simulation Results 74

4.3.2.1 AFDX Performance 75

4.3.2.2 AFDX Fault Handling Investigation 78

4.3.2.3 Traffic Burst Effects on AFDX 79

5 CONCLUSION . 83

REFERENCES . 87

xiii

LIST OF TABLES

TABLES

Table 3.1 SQDSR Reserved Message IDs 41

Table 4.1 Configurable SQDSR Simulation Parameters 52

Table 4.2 Configurable AFDX Simulation Parameters 57

Table 4.3 Configured AFDX Bandwidth Allocation Gap (BAG) Values based

on VL IDs from Table 4.6 . 57

Table 4.4 AFDX Routing Table for Switch 2 59

Table 4.5 AFDX Routing Table for Switch 1 60

Table 4.6 Properties of Simulated Real Case Message Set 63

Table 4.7 Measuring Network Utilization of Simulated SQDSR based on Rx

Status of Nodes . 66

Table 4.8 SQDSR Queuing Delay and End-to-End Latency Results for Peri-

odic and Sporadic Traffic Types . 66

Table 4.9 SQDSR Average and Maximum End-to-End Latency Results After

Modification to Message Set . 67

Table 4.10 SQDSR Queuing Delay Results Under Different Start Time Config-

uration of Nodes . 72

Table 4.11 Average and Maximum Latency Results of SQDSR Simulation with

Reduced High Level Cycle Period (3 ms) 73

xiv

Table 4.12 The Observations on Custom SQDSR Network with Active Nodes

0x00, 0x01, 0x0A and 0x0C . 74

Table 4.13 Average and Maximum Latency Results of AFDX OMNeT++ Sim-

ulation . 75

Table 4.14 AFDX End-To-End Latency Results under Different Start Time

Configuration of End Systems . 80

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Mil-Std-1553 Expired Packet Percentage with Maximum Packet

Length . 10

Figure 2.2 Mil-Std-1553 Expired Packet Percentage with Minimum Packet

Length . 10

Figure 2.3 Mil-Std-1553 Expired Packet Percentage with Uniformly Dis-

tributed Packet Length . 11

Figure 2.4 Categorization of Industrial Ethernet Systems in terms of Soft-

ware and Hardware Needs . 16

Figure 2.5 Ethernet Powerlink Polling Response Chain 17

Figure 2.6 EtherCAT Ethernet Frame . 18

Figure 2.7 Time Sensitive Networking IEEE 802.1 Standards 19

Figure 2.8 TSN Packet Forwarding with IEEE 802.1AS and IEEE 802.1Qbv 20

Figure 2.9 AFDX Frame Format . 21

Figure 2.10 AFDX Flow Regulation with BAG 22

Figure 2.11 The Jitter Effect on AFDX Flow Regulation 23

Figure 3.1 SQDSR Protocol Stack . 27

Figure 3.2 SQDSR High Level Cycle . 28

Figure 3.3 Illustration of SQDSR Successive High and Low Level Cycles . 28

xvi

Figure 3.4 SQDSR Control Slots . 29

Figure 3.5 Flowchart of SQDSR Control State 31

Figure 3.6 SQDSR Static Slots . 32

Figure 3.7 Flowchart of SQDSR Static State 33

Figure 3.8 SQDSR Dynamic State with No Re-transmission Required . . . 35

Figure 3.9 SQDSR Dynamic State with A Re-transmission of Faulty Frame 35

Figure 3.10 Flowchart of SQDSR Dynamic State 36

Figure 3.11 IEEE1588 PTP Messages to Exchange Clock Information 37

Figure 3.12 IEEE1588 PTP Messages on SQDSR Slotted Structure 39

Figure 3.13 SQDSR Ethernet Frame Format with Piggybacked Shared Record

Information . 40

Figure 3.14 SQDSR Retransmission Notice Frame for Faulty Packets 41

Figure 3.15 Illustration of SQDSR Retransmission with Two Faulty Messages 43

Figure 4.1 SQDSR Host OMNeT++ Model 50

Figure 4.2 Types of Network Components in SQDSR Host Model 51

Figure 4.3 SQDSR Message ID . 53

Figure 4.4 Simulated AFDX OMNeT++ Network with Two End System

Groups and Redundant Switches . 55

Figure 4.5 AFDX End System OMNeT++ Model 56

Figure 4.6 AFDX Switch Model Containing Switch Port and Fabric 61

Figure 4.7 Schedule of Message Set for SQDSR Simulation 64

Figure 4.8 Observing The Effects of SQDSR Control Slots and Periodic

Schedule over Three Different Messages 65

xvii

Figure 4.9 SQDSR Sporadic Queue Length Cumulative Distribution Func-

tion for Two Camera Nodes where the Upper Line Indicating the One

with Additional Periodic Slots . 68

Figure 4.10 SQDSR Simulation Latency (ms) Measurements per Message ID 69

Figure 4.11 Observing The Effects of Faults on SQDSR Latency Results . . 70

Figure 4.12 AFDX Latency (ms) Results per VL ID 76

Figure 4.13 Plotted Time-varying TX Queuing Delay of AFDX Switch-2

Port-9 . 77

Figure 4.14 Plotted Time-varying TX Queue Length of AFDX Switch-2 Port-

9 . 77

Figure 4.15 Effects of Fault on Packet Count for VL IDs 0x2A00, 0x2A01,

0x2A02 with No Packet Loss, Packet Loss at Switch, Packet Loss at

End System Respectively . 79

Figure 4.16 Plotted Time-varying TX Queuing Delay of AFDX Switch-2

Port-9 at Traffic Burst . 80

Figure 4.17 Plotted Time-varying TX Queue Length of AFDX Switch-2 Port-

9 at Traffic Burst . 81

xviii

LIST OF ABBREVIATIONS

ABBREVIATIONS

AFDX Avionics Full-Duplex Switched Ethernet

BAG Bandwidth Allocation Gap

CSMA/CD Carrier Sense Multiple Access Collision Detection

EOF End of Frame

ES End System

FPGA Field Programmable Gate Array

FT Fault Tolerance

LLC Logical Link Control

OSI Open Systems Interconnection

PES Packetized Elementary Stream

PTP Precision Time Protocol

SNAP Subnetwork Access Protocol

SPoF Single Point of Failure

SQDSR Shared Queue based Dynamic Slot Reservation

SYNC Synchronization

TDMA Time Division Multiple Access

TSN Time Sensitive Networking

VL Virtual Link

xix

xx

CHAPTER 1

INTRODUCTION

Real-time and embedded applications are implemented on distributed components

which exchange information to achieve the desired system behaviour. This message

exchange is realized with a communication network.

The amount of data for such applications increase with the developments of new

devices and sensors that can collect more and different types of information. Fur-

thermore, video and images are also incorporated. Hence, a high amount of network

bandwidth is required. These applications are often designed for life-critical dynamic

systems where the communication network is required to provide fault tolerance and

determinism. The high bandwidth together with determinism can together achieve

the next requirement which is low and bounded delay for the messages. End-to-end

message delays in the order of miliseconds are necessary to enable the correct opera-

tion of the control loops running on the distributed devices. The time synchronization

of the nodes is an important support to satisfy such timing behaviour and delays.

Furthermore, synchronization enables the coordination of the message transmission

among nodes. The messages can be both periodic such as sensor data and sporadic

such as messages produced by the actions of the users. The communication network

should efficiently support both periodic and sporadic message types. Broadcast/mul-

ticast of these messages are required to coordinate the tasks that are running on the

distributed nodes.

Finally, COTS network interfaces are preferred because of their compatibility, exten-

sive testing record, availability and low cost. Furthermore network architectures that

do not introduce devices such as switches in addition to the end-systems achieve low

cost and complexity.

1

There is a large number of real-time embedded communication network standards

that are developed both by the academic and industrial communities. Our literature

survey in Chapter 2 shows that there is no single existing network architecture or

standard that fulfill all of the requirements listed above.

The main contribution of this thesis is a novel real time protocol that we call Shared

Queue based Dynamic Slot Reservation (SQDSR) that aims for addressing these re-

quirements. SQDSR is implemented as a layer over full-duplex shared-medium 100

Mbps Ethernet. Hence, it features a bandwidth of 100 MBps, is inherently broadast

capable and can be implemented by low cost COTS network interfaces. SQDSR fea-

tures time slots for control and data communication where the lengths of the time slots

carrying data frames are decided in run time to achieve efficient use of the network

bandwidth. IEEE 1588 synchronization protocol is used for maintaining the time

slotted structure. SQDSR introduces a novel slot reservation method for the sporadic

messages by the means of a queue data structure that is consistently stored in all of

the nodes. The queue contains the records of message send notifications of the nodes.

These notifications are broadcast by the nodes and stored in the order of the message

deadlines in the queue data structure by all of the nodes. The inherent broadcast capa-

bility of the shared medium is further exploited to support fault tolerance. If there are

missing or lost messages, retransmission of those messages is scheduled by broadcast

control messages allocating bandwidth on demand for efficient operation.

Scheduling different traffic types is not straightforward for bus based communication

architectures. There are two prevalent real time scheduler types; cyclic and priority

based [1]. Cyclic schedulers are used in time triggered networks that repeat the pre-

viously determined pattern to provide medium access to the communication nodes.

On the other hand, the priority based schedulers are used in event triggered networks

that dynamically apply the arbitration process to gain medium access. Though both

have advantages and disadvantages, time triggered networks are known as more de-

terministic and preferred for systems with real time requirements. The reason behind

it is the availability of assigned time slot for each network components in a predefined

interval, which makes the worst case response time computable and the system de-

terministic. A deterministic system is the one whose time evolution can be predicted

exactly [2], therefore, the transmission of a message is guaranteed to be realized in

2

a certain time interval. However, time triggered networks are generally less efficient

solutions due to unused but allocated time slots. Plus, it is more difficult to update

the network, i.e. adding or removing components, since it is non-trivial to update the

schedule.

Besides from the type of scheduler for medium access control, the medium itself also

plays an important role while designing a real time communication network. Today,

the industry tends to prefer Ethernet based communication architectures rather than

the bus based ones. The reason behind is its low cost, high bandwidth capability and

strong compatibility. Although the lack of reliability for the original version of Eth-

ernet CSMA/CD, many proposed alternatives exist to ensure reliable communication

by incorporating either time division multiple access, token passing or master-slave

architecture [3]. Yet, they all have several disadvantageous, which requires to seek

new solutions.

The proposed protocol is intended for supporting both periodic and sporadic traffic

by means of statically and dynamically allocated slots, respectively. The static and

dynamic slots are repeated successively over each cycle with configurable length.

The static part is scheduled in advance whereas dynamic slots are reserved based on

the requests during run time. These requests could be notified either by predefined

control slots or piggybacking to the end of any transmitted frame. The broadcasted

nature and shared medium allows the notifications to reach all the components. Fur-

thermore, it enables to intercept and report any failure thanks to constant monitoring

of the network. The functionality of SQDSR depends on accurate time synchroniza-

tion and reliable error management. Even though the protocol is not constructed on

master-slave architecture, the time synchronization and error management operations

should be handled by corresponding master nodes, which are configurable and alter-

able during run time.

In the scope of the thesis, the prevalent architectures and their pros and cons are de-

tailed for both bus-based and Ethernet-based solutions. The protocols are evaluated in

terms of reliability, efficiency and determinism. The background research paves the

way for designing the new protocol. Therefore, it does not cover only introductory in-

formation on them, but there are also simulations and analyses performed. Next, the

3

proposed protocol SQDSR is introduced with detailed specifications. The protocol

state machine is demonstrated with flowcharts and figures. Time synchronization and

fault handling mechanisms are discussed. Finally, the evaluation part contains mod-

elling and simulation of SQDSR using OMNeT++ [4]; an official network simulator

and INET [5]; an open source library of network protocols and modules for OM-

NeT++. Special network traffic is obtained to perform real case simulation, supplied

by a commercial company in the avionics industry. Avionics Full-Duplex Switched

Ethernet (AFDX) is chosen as the benchmarking protocol since it is one of the most

prevailing Ethernet based architectures deployed in real time systems, patented by

Airbus [6]. The work concludes with the results of the comparison, the improve-

ments offered by SQDSR and the possible future work. Briefly, the contribution of

the thesis could be summarized as follows:

• Proposing a novel shared medium Ethernet based real-time communication pro-

tocol SQDSR for embedded systems complete with its message format and

medium access arbitration mechanisms

• A novel decentralized time slot allocation method and enabling distributed fault

management solution by means of broadcast communication

• An extensive comparative simulation study for the SQDSR under realistic mes-

sage set and node functionality using OMNeT++ network simulator

The simulation results show that SQDSR fulfills the requirements of the real-time

embedded applications.

4

CHAPTER 2

BACKGROUND

2.1 Real Time Safety Critical Systems

There is a growing trend in the embedded industry towards developing distributed

systems with strict real time capabilities. Distributing system components does not

only increase the modularity and maintainability, but it is also compulsory to prevent

single point of failure (SPoF). Such systems require network architectures to enable

the information exchange among the system components. Deterministic real time

communication and fault tolerance for reliability are the primary requirements. A

system meets real time requirements if both execution of tasks and transmission of

messages have deterministic and bounded worst case response times [1]. The conse-

quences of missing the deadline determine the degree of real time capability; soft real

time and hard real time. For the latter, following the real time constraints is a must

for the system validity and missing a deadline is unacceptable.

Ensuring safety for the distributed embedded systems is another critical concern. It

is expected that the system continuously operates without any fault or handles faults

appropriately and returns to its normal operation. The mechanisms and techniques

that enable the system deliver consistent service even in the presence of fault is called

Fault Tolerance (FT) [1]. FT is achieved using different types of redundancy; hard-

ware, software, time and information. Hardware redundancy is provided by replica-

tion of components such as nodes, switches, communication links. Software redun-

dancy contains multiple tasks to do same operations to have a backup state to restore

from fault. Time redundancy performs actions several times with the same hardware

and software, such as retransmission of a message. Finally, information redundancy

5

is provided by means of storing additional information to restore from fault state [1].

The replication of hardware or software components is categorized under active and

passive replication. If the same redundant operation is carried out in parallel, it is

referred to as active replication. Hence, the failover time, i.e. the act of switching

to a redundant system, is zero for active replication. The main disadvantage of this

method is that the selection algorithm between one of the redundant operations needs

to be defined and applied in normal operating conditions. On the other hand, the

passive replication is activated in case any fault occurs. Therefore, there is a non zero

failover time, which is the main disadvantage of passive replication.

2.2 Bus Based Communication Architectures

There are several different communication architectures to provide special require-

ments. They could differ by the implementation of physical layer, media access

control, error detection and correction. It is expected that they satisfy the proper-

ties of reliability, flexibility and scalability. In the sense of these concerns, we fo-

cus on widely used bus based communication architectures including Mil-Std-1553,

SAFEBus, TTP/C, FlexRay, TTCAN, FireWire and SpaceWire. After giving a brief

information on each, they will be analyzed by disclosing their advantages and disad-

vantages based on the requirements. Furthermore, several simulations and analyses

are performed for Mil-Std-1553 since it influences the dynamic slot reservation fea-

ture of the proposed protocol SQDSR as introduced in Chapter 3.

2.2.1 Mil-Std-1553

Mil-Std-1553 represents one of the first communication data bus standards which is

extremely reliable and widely used in military and space applications including Space

Shuttle and the International Space Station [2]. The communication over bus is half

duplex master slave and limited to 1 Mbps, but there are improvements reported to

reach up to 100 Mbps with transceiver upgrade with new CMOS technology [7].

There is a single bus controller supervising the bus access to the nodes. The protocol

contains a query cycle to ask each node whether they have any packet to transmit or

6

not. Each node that returns true for the query part is asked to transmit one by one.

Each query consists of 2 control packets, while each transmission consists of 4 control

packets plus data packet. Mil-Std-1553 packets are named as word and a word has

20 bits length with 4 bits header and 16 bits payload. Since data packets consist of

words, the minimum data length is 2 bytes while maximum data length for each turn

is restricted with 64 bytes by the protocol. Mil-Std-1553 operates with at most 32

nodes including the master. One of the nodes could be assigned as a backup master,

which makes the master assignment possible during run time [8].

Mil-Std-1553 is considered as a reliable protocol due to the master slave polling re-

quest response structure. Since the nodes are only allowed to respond after the com-

mand, there is no possibility of collision. Furthermore, the protocol also supports dual

redundancy. In this configuration, the redundant channel is not always active but only

in case of failure. The secondary bus could be used to remove or tolerate the fault

in case of babbling or failure on the primary bus. Any message failure could be de-

tected by status bit, but the protocol does not tolerate message loss and retransmission

is required [2]. As a prevalent safety protocol, Mil-Std-1553 has many inspirational

characteristics and techniques for the design of a fault tolerant real time communica-

tion architecture, therefore, it needs to be examined with details. Next, the network

capacity of Mil-Std-1553 and performed simulation results will be discussed in the

scope of the thesis.

In this part of the thesis, we try to model Mil-Std-1553 in deterministic network con-

ditions. The polling request response cycle and transmission cycle together construct

a repeating periodic cycle (T) and it’s strongly related with number of nodes who

have data to transmit. Hence, the periodic cycle is referred to as T(n) where n is the

number of nodes that return true to in the query cycle. The period is related to the

total number of nodes (N), control packet length (Cp), data packet length (Dp) and

bus bit rate (B) as follows:

T (n) =
N · (2 · Cp) + n · (4 · Cp+Dp)

B
(2.2.1)

Assume that all the nodes generate packets uniformly. For the maximum possible

arrival rate, each node always has some packet to transmit in each cycle. Then, the

7

equation is updated as :

T (N) =
N · (2 · Cp) +N · (4 · Cp+Dp)

B
(2.2.2)

Each node could only transmit one packet per T. Hence, for a stable network, it is only

allowed to generate maximum N packets in each interval T; i.e. maximum arrival rate

(λmax) :

λmax =
N

T
(2.2.3)

λmax =
N ·B

N · (2 · Cp) +N · (4 · Cp+Dp)
(2.2.4)

λmax =
B

6 · Cp+Dp
(2.2.5)

Mil-Std-1553 serves as a reference point for the proposed protocol in this thesis. To

this end, we perform a simulation study of Mil-Std-1553 to demonstrate its capabili-

ties. In this thesis, we use OMNeT++ [4] for performance evaluation as we introduce

in detail in Chapter 4. To the best of our knowledge, there is no published and ver-

ified Mil-Std-1553 model for OMNeT++. Therefore, we developed a simulator that

we call NetworkSimulator in the scope of this thesis to perform analysis for Mil-Std-

1553 protocol.

NetworkSimulator is designed to be generic with respect to the media access proto-

col. The protocol and parameters should be easily updated via a configuration file.

The network packets are produced based on packet arrival rate and packet arrival

distribution where uniform and exponential distribution are supported. NetworkSim-

ulator has a configurable clock cycle that determines the granularity of the system.

For each cycle, several packets can be generated based on the packet arrival rate. The

packet properties as source node, destination node, deadline, priority, data length are

assigned randomly among the constraints indicated in the configuration file. Based

on the media access protocol used, each node tries to transmit the packets on their

8

queues. Moreover, NetworkSimulator has a statistics feature to calculate performance

metrics of the designed system. The results contains average latency, maximum la-

tency, average queuing delay, average jitter, real data bit rate, dropped and expired

packets count.

The command response protocol is implemented as a subclass of the abstract media

access protocol class of NetworkSimulator in order to simulate Mil-Std-1553. The

aim of the simulator is finding the maximum possible arrival rate the network supports

to meet the latency requirements by considering various data lengths. The deadline

of messages is set to the 50 µs to observe the number of expired packets detected by

NetworkSimulator. The arrival rates are selected within the constraint of the stable

network conditions as (2.2.5). Clock cycle is set to 0.01 µs and physical layer bit

rate capacity to 100 Mbit/s. Since Mil-Std-1553 supports a maximum of 32 nodes,

the number of selected nodes is 32 to find the worst case results. The expired packet

percentage is measured in the case of maximum length data packets, minimum length

data packets and uniformly distributed length data packets as shown in figures 2.1,

2.2, 2.3.

For the maximum data length (64 bytes), the simulation results show that an arrival

rate of more than 32 packet/ms results in more than 1 percent expired packets. For

the minimum data length (2 bytes), the arrival rate is increased to 270 packet/ms

for the same performance. If the packet lengths are uniformly distributed between 2

to 64 bytes, than the results shows 80 packet/ms causes more than 1 percent expired

packets. The results are obtained with 5000 packets per simulation providing a sample

mean within 2% of the true mean with probability of 99% based on the confidence

calculation explained in Section (4.1.3).

9

Figure 2.1: Mil-Std-1553 Expired Packet Percentage with Maximum Packet Length

Figure 2.2: Mil-Std-1553 Expired Packet Percentage with Minimum Packet Length

10

Figure 2.3: Mil-Std-1553 Expired Packet Percentage with Uniformly Distributed

Packet Length

The simulation puts forward essential results for the performance of Mil-Std-1553

in high loaded stable network conditions. The limited arrival rates are found in re-

turn for compromising packet lost. Mil-Std-1553 has high efficiency if each node

has a packet to transmit. Plus, Mil-Std-1553 has only 20 bits length control packets

which gives a significant advantage over the Ethernet based protocols. However, the

command response cycle is a useless interval, if the queues of the nodes are empty.

Plus, the command response cycle is not the only cycle that uses the control packets,

but also the data transmission cycle requires commands between master and source

node, master and destination node. An other disadvantage of the protocol is its de-

pendency on special hardware devices, therefore, incompatibility with the other pro-

tocols. Hence, Mil-Std-1553 is not an ideal protocol with regard to efficiency and

compatibility although it has a good reputation of being reliable and redundant.

2.2.2 SAFEBus

SAFEBus [2], is a backplane bus in a computing cluster, registered trademark of

Honeywell Corporation, used in safety critical functions on commercial aircrafts. It

has masterless, quad redundant bus with 60 MB/s limited data rate. Full duplication

11

of bus interface units (BUIs) in each node exists that act as a bus guardian for the

other BIU to prevent any babbling or transmitting erroneous data. BIU also check the

data transmitted and received for errors. They also control their partner’s access to

bus lines. The system is designed as fault tolerant such that its standard is guaranteed

to tolerate one failure and may tolerate multiple faults. If any message is lost, it is

handled by quad redundant bus, therefore, retransmission is not required. If any node

breaks down, the failing node will be fail-silent and removes itself from operation.

The other nodes detect the situation by loss in scheduled communication and will

continue their normal operation without any problem.

One of the apparent disadvantages of SAFEBus is its expensive architecture and

proprietary components. Plus, it has a limited network length less than 1.5 meter.

SAFEBus is not an extensible protocol during run time since adding a new node re-

quires a new design of schedule. Nevertheless, it is possible to replace any failed

node with the same type of node. Hence, SAFEBus does not meet the conditions

if the system requires off-the-shelf components, extensibility and satisfying network

length.

2.2.3 TTP/C

Time Triggered Protocol with Society of Automotive Engineers Class C Require-

ments (TTP/C) [2], is a time triggered, masterless communication protocol that is

mostly used in the automotive industry. It is designed independently from the physi-

cal layer. It has a high level of reliability and could tolerate multiple faults thanks to

its dual redundancy. The supported bit rate is between 5-25 Mbps, but could enhance

up to 1 Gbps with Gigabit Ethernet. It provides autonomous message transmission

with known delay and bounded jitter.

The protocol could cope with node failure with bus guardians that also report the fail-

ure to the other nodes. The failed node will be fail-silent if any problem has occurred.

Any message failure could also be detected by a status bit and global acknowledge-

ment. As a time triggered protocol, it requires pre-design of schedule, therefore,

adding a new node during run-time is not possible. Nevertheless, it is possible to

replace any failed node with the same type of node.

12

Not supporting event triggered communication and relying on TDMA slotted archi-

tecture are the main disadvantages of TTP/C. Slots reserved for sporadic messages

could be idle if the assigned nodes have nothing to transmit. Hence, TTP/C is not

an efficient protocol in terms of utilization. Furthermore, in spite of commercially

available components, it should be licensed to use.

2.2.4 FlexRay

FlexRay [2], is designed to be used in the automotive industry by the FlexRay con-

sortium and only available to the member of consortium. The protocol supports both

time triggered and event triggered communication as synchronous frames and asyn-

chronous frames in a single communication cycle. Synchronous frames exist in the

static segment that each slot is assigned to specific node at design time. The static

segment is followed by the dynamic segment which consists of mini slots for event

triggered frames based on arbitration. The protocol is tolerant to node failure; the

communication proceeds between remaining nodes. It is also tolerant to message

failure if the redundant channel exists.

Although the protocol is only allowed to be used in the consortium members, it has

importance for leading the way of using synchronous and asynchronous communi-

cation together. Apart from unavailability, its supported limited network length and

bit rate are the other cons of the protocol. Moreover, the arbitration process in the

dynamic segment is priority based, i.e. comparing message IDs of packet. It could

lead the messages with low priority miss the deadlines.

2.2.5 TTCAN

TTCAN [2], is an extension to the standard CAN with time triggered communica-

tion capability. TTCAN uses the modified CAN controllers enhanced with a frame

synchronization entity. There are slots to transmit periodic messages, slots to trans-

mit event triggered messages. Likewise CAN, arbitration based on message priority

is applied on event triggered section. Supporting both event triggered and time trig-

gered communication makes it resemble FlexRay. Plus, it is publicly available and

13

has off-the-self components.

The protocols having master should have a backup master, which will be activated

if the master breaks down, for the reliability purposes. TTCAN has a time master

to achieve clock synchronization which periodically sends a reference frame to be-

gin the communication cycle. In case of failure, the nodes which are configured as

redundant time masters try to be the master by sending the reference message; and

the one that wins the arbitration will be the new master. Briefly, the protocol is worth

mentioning as publicly available alternative to FlexRay. However, it has limited bit

rate of maximum 1 Mbps and constrained network length. Plus, the standard does not

include any redundancy management.

2.2.6 FireWire

FireWire (IEEE 1394) [2], is a communication architecture with fast communication

rates up to 3.2 Gbps. It is commonly used in consumer electronics and avionics

systems due to low cost high bandwidth capability. FireWire speeds up the arbitration

process by using bidirectional communication in which arbitration frames are sent

while data frames are being sent. It has isochronous transmission phase for broadcast

high speed data transmission without checking errors and asynchronous transmission

phase for error-free peer to peer communication.

The protocol is not able to operate in fault tolerant mode and has no fault hypothesis.

However, node failure is detected by arbitration timeout or cable bias voltage drop.

In asynchronous mode, message failure is detected by loss of acknowledgement mes-

sage. The protocol does not provide redundancy but there could be an unused loop

that activates if any failure occurred in tree topology. The protocol allows adding

removing nodes during run time. When a node is removed or added, a bus reset

process is automatically initiated, starting a new bus and node auto-identification pro-

cedure to provide newly added node’s address to the other nodes, select root nodes

and isochronous master node.

Using full duplex bidirectional communication to speed up arbitration process puts

FireWire forward among other protocols. Even though it lacks of redundancy and

14

strict reliability, it could be preferred because of its high speed data transmission

and support of both isochronous and asynchronous modes. Additionally, it requires

license to be employed.

2.2.7 SpaceWire

SpaceWire [2], is an event triggered masterless data transmission architecture that

operates with cascades of hubs and switches. In addition to switch based architecture,

the protocol also provides peer to peer communication. It has found applications on

aerospace industry including NASA’s spacecrafts. SpaceWire supports high speed bit

rate and regulates message flow with control tokens.

SpaceWire supports redundancy management and handles node failure. The failed

node could be replaced with the same type of node but adding a new node is not

possible since it requires update on routing switch configuration. The dependency to

switches to operate introduces indeterminism to the protocol. Furthermore, SpaceWire

is not compatible with the other communication architectures. It has a special frame

format and requires special components to operate.

2.3 Ethernet Based Communication Architectures

Ethernet, or IEEE 802.3 is layer-2 media access protocol that offer high flexibility,

compatibility and ability to connect many nodes at long distances. Ethernet promises

higher bandwidth and performance and lower component costs compared to field-

bus technologies that are currently replaced by Industrial Ethernet. However, stan-

dard Ethernet does not provide real-time characteristics due to the nature of shared

medium access algorithm CSMA/CD. If more than one node start transmitting simul-

taneously, the collision is detected and causes the node to wait for a random amount

of time based on exponential back off. Hence, it is not possible to know the worst

case response time and whether or not the messages meet the deadlines. Modern

Ethernet now employs full-duplex links and switches to overcome the effects of CS-

MA/CD. Although an improvement, the non-deterministic factor is still present due

to the unknown latency in switch queues [9].

15

To bring the real time characteristics to Ethernet, there are three type of solutions

applied to the standard Ethernet [10], as shown in Fig. 2.4 cited from [10]. The first

option utilizes standard Ethernet and TCP/UDP/IP protocols. The real time mech-

anism is provided on application layer but it has limited performance. The second

solution contains a special data protocol on top of Ethernet plus the real time services

on application layer. The unchanged Ethernet layer provides adapting standard Ether-

net without any modification but limited performance compared to the last solution. It

is the one with modified Ethernet layer plus special top layers. Despite compatibility

issues, this solution generally results in higher real time performance.

Figure 2.4: Categorization of Industrial Ethernet Systems in terms of Software and

Hardware Needs

The industrial Ethernet protocols develop new access methods rather than non-deterministic

CSMA/CD. Major industrial Ethernet protocols EtherNet/IP, Ethernet Powerlink, PROFINET

RT/IRT, EtherCAT, SERCOS III, Modbus/TCP implement these methods by either

adding a new layer on top of MAC or update the MAC itself. For the scope of the the-

sis, prevailing Ethernet based solutions; Ethernet Powerlink, EtherCAT, AFDX and

TSN protocols will be discussed.

16

2.3.1 Ethernet Powerlink

Ethernet Powerlink [11], is a software based master-slave solution to provide real

time characteristic to standard Ethernet, as category B in Fig 2.4. The master gives

permission to slaves sequentially in the isochronous phase. This mechanism allows

only one node to transmit in each time slot, therefore, there is no possibility of col-

lision. There is also an asynchronous phase where standard Ethernet communication

takes place.

Powerlink resembles Mil-Std-1553 including polling request-response between master-

slave. The main difference is that the node responds directly with its data via Ethernet

frame after the request. Still, it suffers from inefficiency of the command response

cycle. To make polling request response structure more efficient, ’Poll Response

Chaining’ methodology is implemented such that all polling data of managing node

is combined into a single broadcast frame, as shown in Fig. 2.5 from [11]. The slave

nodes could send their responses at a specified point of time with fixed predetermined

time delays.

Figure 2.5: Ethernet Powerlink Polling Response Chain

The protocol supports both dual redundancy and master redundancy. The redundant

master remains on hot standby and monitors the master’s operation to take action

if necessary. The master and slave nodes do not require special hardware to imple-

ment and the software implementations are publicly available [12]. Besides, Ethernet

Powerlink is hot-plug capable; the nodes could be added or removed during run time

[10].

17

2.3.2 EtherCAT

EtherCAT is a master slave based layer-2 protocol that requires implementation on

dedicated hardware for slaves [9]. There is no command response cycle as in Pow-

erlink or Mil-Std-1553, instead, the master is always the only node allowed to start

a frame. This frame passes through all nodes in sequence where each node reads the

data addressed to it and writes its data back to the frame all while the frame is moving

downstream [13]. During each cycle, relevant output data is extracted by the devices

from the Ethernet data packets sent by the bus master. Input data is also stuffed into

packets “on the fly“; these packets arrive again at the bus master upon reaching the

end of the ring. As this processing is done “on-the-fly”, a specialized hardware is

required. Fig. 2.6 from [13] shows EtherCAT frame with successive datagrams as-

signed to slaves. The datagrams contain control and data sections where they are also

divided into send and receive parts. EtherCAT slaves write to send and read from re-

ceive parts of the datagram. Hence, single datagram consists of two control sections

and two data sections.

Figure 2.6: EtherCAT Ethernet Frame

EtherCAT is a summation frame protocol that does not support direct cross-traffic, i.e.

direct communication between nodes without having to go through a master, which

increases the overall data traffic on the network. If frame is corrupted, summation

frame protocols always lose the entire cycle. EtherCAT is optimized for applications

with only very low network traffic volume. In systems with a heavier data load, there

is a disproportionate rise in cycle times. It suffers greatly from the lack of direct

cross-traffic due to the duplicate data in send and receive parts of datagram, which

sharply reduces the performance. To sum up, EtherCAT does not fit the required

qualifications of efficiency and compatibility.

18

2.3.3 Time Sensitive Networking

Time Sensitive Networking is one of the emerging standards to overcome the inde-

terminism in Ethernet while using its power of interoperability. It is a pure layer-2

protocol that supports time-critical and non-critical traffic at the same time. TSN

improves the standard Ethernet by means of IEEE 802.1 extensions given in Fig.2.7

[14]; including timing, synchronization, forwarding, queuing and redundancy. The

standard provides guaranteed message transmission through switched Ethernet based

network. TSN has an IP core with embedded software package providing TSN func-

tionality to FPGA devices.

Figure 2.7: Time Sensitive Networking IEEE 802.1 Standards

The extensions IEEE 802.1AS and IEEE 802.1Qbv are responsible for accurate time

synchronization and traffic scheduling. The switches hold the messages in queues un-

til the corresponding schedule time as represented in Fig. 2.8 [15]. IEEE 802.1Qbv

provides guaranteed bound for message latency in switches, which the worst case

latency for time critical data is 100 µs. IEEE 802.1Qbv provides best effort service

to non-critical data. IEEE 802.1CB provides required redundancy by transmitting

multiple copies of messages. The first message copy is processed and the others are

discarded. The TSN 802.1Qbu includes preemption feature to increase the bandwidth

of low priority messages against large high priority packets. Preemption makes the

fragmentation of large packets possible to maximize the bandwidth for all type of net-

19

work packets. The extension IEEE 802.1Qca and 802.1Qci protect against failure in

nodes or switches by isolating them from the system. IEEE 802.1Qch is responsible

for traffic shaping. IEEE 802.1Qcc is the stream reservation protocol that identifies

traffic class between specific source and destination. It focuses on network manage-

ment and administration.

Figure 2.8: TSN Packet Forwarding with IEEE 802.1AS and IEEE 802.1Qbv

The major drawback of TSN that it is not designed for low latency hard real time en-

vironments. IEEE 802.1 does not guarantee latency lower than 2 ms [16]. Apart from

this, it depends on switches to operate introducing additional delays and SPoF. Yet,

it is one of the best among Industrial Ethernet solutions in terms of the capability of

timing, synchronization, forwarding, queuing and redundancy all-in-one with IEEE

802.1 extensions, which gives inspiration to the novel protocol designed in this thesis.

2.3.4 Avionics Full-Duplex Switched Ethernet

Avionics Full Duplex Switched Ethernet (AFDX) [2], is derived from IEEE 802.3

Ethernet medium access control by adding timing and redundancy management on

top of it. It enables deterministic communication by defining virtual links identities

(VL IDs) and deploying switches to control the traffic. It has error detection, integrity

check and dual redundancy. The redundancy is not only with physical links but also

with redundant switches. Each frame is transmitted via two independent paths to the

20

redundant switches. The receiving end system discards the redundant frame, figuring

out from repeated sequence number. Thanks to the dual redundancy, the protocol is

tolerant to message lost unless the lost occurs in both channels. AFDX switches are

responsible for preventing babbling of end systems and routing the packets based on

VL IDs. Incidentally, end systems are the special names of network nodes in AFDX.

Although it is possible to replace any failed end system, it is not applicable to add a

new end system during operation since it requires update in the routing table of VL

IDs.

AFDX has traffic shaping capability by defining virtual links. Once an AFDX switch

receives a frame, it stores and forwards it based on the quality of service requirements.

Each virtual link is unique to a source end system but can have one or more destination

end systems [17]. VL IDs are embedded in the destination MAC addresses of Ethernet

frames so AFDX has no special frame format. Minimum AFDX Ethernet frame is

demonstrated in Fig. 2.9 cited from [18], containing UDP-IP network protocols as

standard. Hence, the frame involves 47 bytes overhead which results in less efficient

frame compared to overhead of raw Ethernet protocols, 18 bytes. The figure excludes

preamble, start of frame delimiter and interframe gap fields.

Figure 2.9: AFDX Frame Format

AFDX switches and end systems manage traffic shaping based on bandwidth allo-

cation gaps (BAG) defined to each VL. The value of BAG indicates the minimum

allowed time interval between two consecutive frames of the same VL ID [6]. It can

be from 1 ms to 128 ms and must be a power of 2. An end system trying to trans-

mit successive packets with the same VL ID in a smaller interval than BAG causes

the latter to get blocked and queued for the duration of BAG. Unless the queue is

non-empty, the upcoming packets with the same VL ID are also queued. Hence, end

systems have a distinct queue for each VL ID they transmitting. Fig. 2.10 from [6]

21

demonstrates the traffic regulation under BAG condition.

Figure 2.10: AFDX Flow Regulation with BAG

As end systems BAG control is shaping the traffic, there is also policing traffic capa-

bility in AFDX switches. It is token bucket based shaping where packets are dropped

if there is no adequate credit for that VL ID. The account credit (AC) increases as

time passes with rate (2.3.1). It is set to the value in (2.3.2) at startup and this is the

maximum allowed credit for each VL ID. An incoming packet is forwarded to desti-

nation port, if there is eligible credit and the amount of credit equal to its frame size

is cut. Insufficient credit causes packet drops.

ACrate
i =

Smax
i

BAGi

(2.3.1)

ACmax
i = Smax

i · (1 + Jitteri
BAGi

) (2.3.2)

40 µs ≤ Jitteri ≤ 500 µs (2.3.3)

where:

Smax
i = Preamble + Start Frame Delimiter + Lmax

i + Interframe Gap

Lmax
i = maximum frame size for VL i

As shown in (2.3.2), the jitter plays a role in the calculation of the maximum credit.

AFDX end systems introduce some jitter bounded with (2.3.3) according to specifi-

cations. The jitter is due to the AFDX transmission technology and traffic shaping in

end systems. The packet flow under jitter effect is represented in the following Fig.

2.11 cited from [6].

22

Figure 2.11: The Jitter Effect on AFDX Flow Regulation

The main disadvantage of AFDX is its strong dependency on switches, introducing

more jitter and delay. The standard states that the latency in end system during trans-

mission could be up to 150 µs. The total latency proportionally increases with number

of links and number of switches on virtual link path [17]. In the scope of the thesis,

AFDX is selected as the primary comparison protocol for the proposed protocol since

it provides fast and reliable communication on Ethernet. Plus, there is an OMNeT++

model for AFDX. Finally, Chapter 4 includes the details of model provided by OM-

NeT++ and the simulation performed in Chapter 4.2.3 with real case traffic set.

Our literature survey shows that the existing protocols do not fulfill all the require-

ments of the network architectures for the real-time embedded systems that we state

in Chapter 1.

23

24

CHAPTER 3

SHARED QUEUE BASED DYNAMIC SLOT RESERVATION PROTOCOL

In the conclusion of the paper “Tomorrow’s In-Car Interconnect? A Competitive

Evaluation of IEEE 802.1 AVB and Time-Triggered Ethernet” [19], it is highlighted

that to share the benefits of IEEE 802.1 AVB and time-triggered communication, an

interesting subject of future work is an in-car network that uses both protocols on the

same physical layer, using time-triggered messages for critical control data and event

triggered messages for time sensitive streams. In the scope of the thesis, the proposed

protocol comes up with a solution to handle both time triggered and event triggered

packets in a collision free shared medium. The protocol solves the problem with

its broadcasting communication architecture. This enables nodes to gather relevant

network information to handle scheduling, fault management and synchronization.

3.1 Motivating Specifications

Shared Queue based Dynamic Slot Reservation (SQDSR) protocol is designed for

meeting the communication requirements of the fault tolerant hard real time embed-

ded systems. It is developed by looking at the advantages and disadvantages of the

prevalent communication architectures. The protocol is based on a half duplex shared

bus with Ethernet physical layer since Ethernet is the prevalent technology thanks to

its compatibility, low cost components and high speed capability. There are no any

additional smart network components including switches that may introduce more

delay and non determinism.

The proposed protocol is a combination of time triggered and event triggered commu-

nication architectures, having variable length slots where some of them are statically

25

assigned to nodes at the beginning of communication, called static slots, and some

of them are left to dynamic allocation during run time, called dynamic slots. Static

slots are used similar to the TDMA (Time Division Multiple Access) based approach

to handle periodic packets while dynamic slots are reserved for sporadic packets to

provide temporary slots. A repeated pattern of slots is called as cycle providing a

modular design to the communication architecture. The cyclic process paves the way

for scheduling and worst case analysis.

The main principle of the architecture is broadcast communication over the bus. The

broadcasting communication is a must for the basic working principle of the protocol;

shared queue based medium access. Shared queue is an internal queue that each

node maintains in order to decide on the allocation of dynamic slots. The queue

contains records of information on the pending sporadic packets notified by each

network component. The notification is realized by inserting the information into

the Ethernet frame payload. The information contains the record for the top packet

waiting in the sporadic queue. Since all the nodes listen to the shared bus, they are

able to update their shared queue with the latest information. The arbitration of the

bus access is resolved through the shared queue so that the node possessing the highest

priority packet on the shared queue wins the arbitration and has the shared medium

access in the next dynamic slot. Note that each node maintains exactly the same copy

of the shared queue thanks to the broadcast communication.

The broadcasting nature of the SQDSR protocol makes fault tracking and handling

easy. The nodes can detect any failure and react accordingly. Most of the prevalent

protocols possess only a single node which is aware of the fault conditions. This

introduces the single point of failure problem. Plus, remote nodes are not capable of

fault reporting. Since the proposed protocol is designed for fault tolerant real time

embedded systems, the way of fault management and reporting is an essential point

of the design.

26

3.2 Overview

The proposed protocol is constructed in SQDSR Controller as a link layer protocol

on top of Ethernet MAC layer as shown in Figure 3.1. It is designed to be imple-

mented on hardware to reduce variable processing delays based on the operating sys-

tem. SQDSR protocol has a predefined frame format explained in Section 3.4 with

special inner header inserted into the beginning of the Ethernet payload field. The

header contains message ID information to indicate whether it is a control, periodic

or sporadic message. This field is filled by the application layer software; control traf-

fic generator, periodic traffic generator and sporadic traffic generator. The message

type parameter is used to classify packets in the SQDSR protocol layer in which the

packets are stored in classified queues and handled differently.

Figure 3.1: SQDSR Protocol Stack

SQDSR protocol communication architecture is formed by three network states de-

fined as control state, static state and dynamic state. The states differ from their slot

characteristics. In the scope of the thesis, the slot concept is used as a time interval

where only one node is able to access the shared bus and allowed to send merely one

Ethernet packet during this interval. It does not have to be a fixed time interval but

its length is naturally restricted by the maximum Ethernet frame length. Since all the

network components listen to the bus consistently, they know the end of each slot

through the end of frame. The slots are named based on the state they belong to. This

naming convention creates control slots, static slots and dynamic slots. The slot at the

beginning of the dynamic state is the retransmission slot which is used to notify the

27

faulty packets that need to be retransmitted.

Figure 3.2: SQDSR High Level Cycle

Fig. 3.2 demonstrates a high level cycle of the protocol. It is the cycle where there is

a control state at the beginning. The first row indicates the state of the network and

the second row is for time intervals of the corresponding slots. The cycle starts with

the control state that is responsible for synchronization and information exchange

between nodes. Next, the static state follows containing periodic slots scheduled in

advance. The end of the cycle is left for the dynamic state to provide nodes to reserve

additional slots as demanded during run time.

Having control slots at the beginning of each cycle usually ends up with a poor effec-

tive data utilization. Therefore, the protocol is designed to have the control slots only

in each previously determined period of cycles. This period is referred to the high

level cycle period. The remaining cycles without control slots are named as low level

cycles. The low level cycles are available just after the high level cycle and repeated

until the next high level cycle; then, the whole process restarts again. The following

figure is a representation of this process where CS, SS, RE and DS refer to control

slots, static slots, retransmission slots and dynamic slots respectively.

Figure 3.3: Illustration of SQDSR Successive High and Low Level Cycles

The further sections clarifies the algorithm behind each network state with the timing

analysis of slots. Next, the state transitions are explained with flowcharts. The ap-

28

plied process for time synchronization between the nodes follows the state transition

section. Finally, the frame format of SQDSR protocol is going to be discussed.

3.2.1 Control State

At the beginning of each cycle, the network state is set to the control state, where the

time synchronization and notifications of status take place. The Figure 3.4 represents

the slot timing structure for the high level cycle control state. The state starts with

the synchronization slot (SYNC) indicating the start of a new cycle where the syn-

chronization frame is transmitted. The frame is sent by a specific node determined

beforehand, called time synchronization master who is responsible for synchronizing

the clocks for the rest of the nodes. Likewise the start of cycle slot, the synchro-

nization slot, there is also an end of cycle slot, abbreviated as EOC. It is an interval

left empty to keep communication idle until the next cycle in order to keep the nodes

prepared to the next cycle.

The name of state is coming from the successive notification of control information

from the nodes. Each control slot is assigned to one unique node determined in the

design time. Minimum length Ethernet frame is transmitted in each control slot, that

consists of information on status and demands of the node. Each node notifies the

status about the waiting packet on top of the sporadic queue based on the priority.

If the queue is non empty, then the node requests slot allocation in dynamic state.

The rest of the nodes processes the notification and updates their shared queue with

this new record. This shared queue is going to be used in the arbitration process at

dynamic state slots. The content of the records and how they transmitted are detailed

in the further Section 3.4. Apart from the control information, control slots are part

of the time synchronization process explained in 3.3.

Figure 3.4: SQDSR Control Slots

29

One of the major concern with the control slots is the specification of the slot length.

These slots carry small information that can fit into the minimum Ethernet frame with

46 bytes payload. This frame takes up to total 84 bytes including Ethernet header,

preamble, start frame delimiter and inter-frame gap. The transmission of this frame

takes 6.72 µs in case of 100 Mbps bit rate. Therefore, the length of the slot should be

larger than this value. Note that these slots are time triggered, thus there is no need

to process neither the transmitted nor received packet. The packet to be transmitted

should have been ready at that time instant. Therefore, the processing delay is only

the time passed between network interface driver and the physical layer. This delay

is measured approximately 1 µs in [20]. Plus, there could be time synchronization

errors results in lagging. The synchronization is accurate under 1 µs for IEEE 1588

Precision Time Protocol with hardware time stamping according to the paper [21].

As a result, it is decided to determine length of the control slots as 10 µs.

Moreover, control slots are alive or fault checks for the components in the network.

For instance, they could be used to verify the distributed shared queue information

throughout the nodes. It is possible to insert a part of the shared queue into the control

packet so that the information can be checked by the other components to ensure all

have the same records in their shared queues. Although it is not expected to have

distinct shared queue records, the example was given to illustrate a possible scenario

that control slots could be used to prevent any faults.

30

Figure 3.5: Flowchart of SQDSR Control State

31

3.2.2 Static State

SQDSR protocol supports TDMA likewise slotted architecture and the static state is

specialized for it. It is available in each cycle as far as there is at least one scheduled

static slot. Static slots are shared medium access form and determined prior to the run

time. The slots are assigned to the nodes having periodic messages to transmit. Since

all of the network components know the designed schedule, the one who’s going to

transmit next is evident. Probably the biggest difference compared to TDMA is that

the length of static slots is not fixed. Thanks to the broadcast communication, the

successive node finds out when the previous slot ends with the EOF signal. This

paves the way of efficient slot utilization for distinct length of frames.

The interval of static state depends on the load and distribution of periodic messages.

A cycle could contain no assigned slot, thus no static state, which leads to skip directly

to the dynamic state. It is allowed to have more than one periodic slot per node for

each cycle but there could solely one packet per slot to be transmitted. An important

design point on scheduling static slots is to consider the time left till the end of the

low level cycle. This is the maximum allowed period to be utilized for static state.

High utilization of static slots leads to lack of time for dynamic slots.

Even if there is no periodic packet to send, the components should notify it with a

message in the dedicated slot. Not transmitting anything, raises a fault in the network

and should be handled properly in the re-transmission part. The fault is realized when

the maximum allowed time to transmit is lapsed. The duration of 10 µs for timeout

is selected by relying on the measurement in [20]. The Figure 3.6 represents a static

state with three different length slots and the maximum permitted guard time of 10

µs.

Figure 3.6: SQDSR Static Slots

32

Figure 3.7: Flowchart of SQDSR Static State

33

3.2.3 Dynamic State

Dynamic state is the last part of the SQDSR cycle where slots are dynamically al-

located based on the shared queue records. Dynamic slots are free space to utilize

the remaining time left from static slots in order to handle time sensitive sporadic

data. It is a special interval to serve packets of any node without waiting for the entire

communication cycle.

The slot reservation process is enabled not only in control slots, but also static and

dynamic slots with piggybacked reservation record in payload. The details of the

record is explained in the further Section 3.4 SQDSR Frame. In short, it contains

the record of the highest priority packet waiting in the queue and ready to transmit.

The notification of records updates the shared queue of each node. The records are

ordered by their deadlines because the dynamic state exist for handling time critical

packets before missing the deadlines.

The start of the state begins with the re-transmission message (RE) sent by the prede-

termined master selected at design time. This frame contains information on any fault

occurred in the previous cycle. In this case, faulty messages should be re-transmitted

in the dynamic state. The frame format of re-transmission message is discussed in the

Section 3.4, but briefly, it announces faulty message IDs from the previous cycle. Just

after the re-transmission message, erroneous packets are re-transmitted in the order

they announced in the notified message. Hopefully, the re-transmission processes do

not have to be used often so that the communication proceeds with dynamic slots.

A new record could change the ordering in the shared queue. Each dynamic slot

could affect directly the next slot arbitration process. The shared queue records might

also be updated in dynamic slots, therefore, who’s going to transmit in the next slot

is not known till the previous frame received and processed. Moreover, if the re-

transmission master implies any fault, the next slots are allocated for fault manage-

ment rather than dynamic slots.

The arbitration process is mostly straightforward. The node having the highest pri-

ority record, i.e. the record on top of the queue, selected to gain the access of bus.

However, the frame should be checked whether it fits to transmit till the end of the

34

cycle or not. If not, the next record is investigated for the same constraint. If none of

the records are appropriate, the remaining time stays unallocated.

Arbitration process in dynamic slots results in a delay on start of each slot. The source

of the delay is the processing time to receive previous frame, process it, update the

shared queue, decide on the arbitration and transmit if the record belongs to itself.

If the node is not transmitted even if the record belongs to it, then it is a fault con-

dition needs to be handled in the next cycle re-transmission part. For this reason,

there should be a predefined guard time to indicate the limits of transmission lag. It

is designed as 15 µs referring the paper [22] proving this amount of guard time is

sufficient to separate slots in a similar communication architecture.

The next figures show two different dynamic state schedule instances. The former,

Figure 3.8, does not have any faulty message re-transmission and the dynamic slots

start just after the re-transmission message. This cycle is probably not highly loaded

or waiting packets are too long to fit, since the end of the dynamic state is left unallo-

cated. The latter, Figure 3.9, has one faulty message from previous cycle, that’s why

dynamic slots lags until the completion of re-transmission.

Figure 3.8: SQDSR Dynamic State with No Re-transmission Required

Figure 3.9: SQDSR Dynamic State with A Re-transmission of Faulty Frame

35

Figure 3.10: Flowchart of SQDSR Dynamic State

36

3.3 Time Synchronization

Synchronization among nodes plays an important role for time sensitive applications.

Time slotted networks require accurate clock synchronization for reliable communi-

cation. The synchronization is the key component for time triggered architecture of

control slots for SQDSR protocol. Since the control slots carry Ethernet frame with

minimum length, it is not efficient to implement the network without precise clock

synchronization. It takes only 6.72 µs for transmission of 84 bytes Ethernet frame

including preamble, start of frame delimiter and inter frame gap over 100 Mbps phys-

ical layer. Besides, the react of network interface card, i.e. round trip latency between

receive and transmit of a frame, takes similar amount of time [20]. Therefore, the

nodes should be able to transmit in the exact time of assigned control slots without

waiting the completion of processing previously received packets. In this way, it ends

up with minimum processing delay making possible to fit a control slot.

Figure 3.11: IEEE1588 PTP Messages to Exchange Clock Information

Even if the clocks of nodes are adjusted at a specific time instant, they tend to drift

separately as time forwards. The oscillator distinctions and environmental effects are

major reasons for this clock drift. The solution to the problem is provided through

structured implementation of Precision Time Protocol based on IEEE 1588 [21], by

37

exchanging messages between one clock master and multiple slaves as shown be-

low. The synchronization with IEEE 1588 Precision Time Protocol has under 1 µs

accuracy based on the article [21].

IEEE1588 PTP has predefined messages to manage time synchronization as described

in Figure 3.11 cited from [21]. It requires one master node and multiple slave nodes

with the intent of synchronizing slave clocks with the clock of master. The algo-

rithm starts with SYNC message sent by master to slave. FOLLOW UP comes after

it, carrying the timestamp info when SYNC was transmitted. Aftermath of SYNC and

FOLLOW UP, each slave node sends DELAY REQUEST message to the master and

expects the timestamp when it is received. The reception time is sent with the re-

sponse message DELAY RESPONSE . By combining all available timestamps, there

is enough information to find out transmission delay between nodes, therefore, the

offset between slave and master, using the following equations (3.3.1), (3.3.2) and

(3.3.3).

Offsetslave +Delaytransmission = t2 − t1 (3.3.1)

Delaytransmission −Offsetslave = t4 − t3 (3.3.2)

Offsettransmission =
(t2 − t1)− (t4 − t3)

2
(3.3.3)

SQDSR protocol handles the exchange of time synchronization related information

in control slots. As required by IEEE 1588 protocol, one master node should be

chosen. The master does not need to have any specific ability, thus any node can be

appropriate. For the sake of fault tolerance, a secondary master should exist to replace

in any erroneous condition. Time synchronization master sends SYNC message in the

SYNC slot of control state and the FOLLOW UP message in the control slot assigned

to the master node. Slave nodes send DELAY REQUEST in control slots assigned to

each of them so that SYNC, FOLLOW UP and DELAY REQUEST messages are done

in a single cycle. The remaining DELAY RESPONSE is transmitted in the SYNC slot

38

of the next cycle from the synchronization master. Note that the communication is

always broadcast in SQDSR and it is only allowed to send one frame per slot.

The Figure 3.12 represents the layout of IEEE1588 messages in control slots. Slaves

calculate the offset using equation (3.3.3) and correct their clocks. In this way, the

process is completed in two successive cycles.

Figure 3.12: IEEE1588 PTP Messages on SQDSR Slotted Structure

3.4 Frame Format

SQDSR protocol operates on Ethernet frames by means of inserting additional infor-

mation into the Ethernet payload. The destination address of frames are mapped to

broadcast MAC address FF:FF:FF:FF:FF:FF due to the broadcast communica-

tion architecture of SQDSR, and the source address field indicates the source address

of node transmitting the frame. Ethernet header type field is assigned to specific value

to show that it is a SQDSR frame. The SQDSR protocol uses Ethernet payload to pig-

gyback SQDSR protocol headers as seen in Figure 3.13, which are message ID of the

frame, data length and shared record information. Since there is an additional field

after the data field of SQDSR specialized payload, the length of the data should be

specified explicitly.

39

Figure 3.13: SQDSR Ethernet Frame Format with Piggybacked Shared Record Infor-

mation

Message ID field stores either reserved unique number for some sort of slots or the

transmitted packet message ID for static and dynamic slots. The reserved message

IDs are shown in the Table 3.1. These are for the internal operation of the SQDSR

protocol. The reserved message IDs are restricted for use by the user defined mes-

sages. The frames with reserved message IDs consist of IEEE 1588 time synchro-

nization messages, re-transmission message and control messages.

Shared queue record is piggybacked to the data field of Ethernet payload in order to

notify the top waiting packet in the sporadic queue. It is allowed to notify a single

record per Ethernet frame. The record includes message ID, data length and expired

time. Other nodes get the record, obtain the required information of the notified

packet and save it to the shared queue. These records are deployed for the arbitration

process in dynamic state. Expired time information has four bytes to store the time

40

Reserved Message IDs Description

0xFFFF Re-transmission Frame

0xFFFE Standard Control Frame

0xFFFD IEEE 1588 SYNC Frame

0xFFFC IEEE 1588 FOLLOW UP Frame

0xFFFB IEEE 1588 DELAY REQUEST Frame

0xFFFA IEEE 1588 DELAY RESPONSE Frame

Table 3.1: SQDSR Reserved Message IDs

instant when the message misses its deadline. Every time information in SQDSR

frames is in the microseconds range.

Re-transmission frame is a special packet transmitted in each cycle at the beginning of

dynamic state. The frame notifies the faulty messages of the previous cycle. The er-

roneous packets are successively declared with the pair of message ID and source ID.

The responsible units should retransmit the packets with respect to the notification or-

dering. The representation of the re-transmission frame is shown in Figure 3.14. The

message ID of the frame is set to 0xFFFF and the data length set to multiplication of

number of faulty packets with three bytes.

Figure 3.14: SQDSR Retransmission Notice Frame for Faulty Packets

41

3.5 Fault Tolerancy

The primary design requirement of SQDSR protocol is to provide fault tolerant com-

munication architecture. The mechanisms and techniques that enable the system de-

liver consistent service even in the presence of fault is called Fault Tolerance (FT) [5].

The way of implementing FT is realized by redundancy management. Redundancy

is a backup mechanism that could be applied to either hardware or software. Repli-

cating the same procedure with backup hardware, software and also with the same

hardware and software in another time is the implementation of redundancy in order

to ensure the correct output of the operation.

SQDSR protocol has designed on the base of broadcast communication which en-

ables to track and report any fault. Every node monitors the traffic flow consistently

and could detect any problem instantly. There are mainly two types of traffic flow;

statically scheduled flows at design time and dynamically scheduled flows at run time.

The previously scheduled traffic flows are checked whether they are consistent or not

by looking at the schedule table distributed to nodes in advance. Whereas dynami-

cally arranged traffic is controlled with the help of shared queue that all nodes have

the same exact copy. The shared queue mechanism enables common and synchro-

nized arbitration for dynamic slots in which any incorrect medium access raises an

exception. Thus, monitoring the entire traffic thanks to the broadcast communication

makes the fault awareness possible. Plus, it provides to report any failure from any

node to the client simultaneously.

Even though there is no master node to control the network in SQDSR, there are

still some nodes having additional tasks such as time synchronization and retransmis-

sion. Having a special node with critical responsibility induces SPoF issue. There are

many protocols suffer from SPoF probability and tackle the problem with hardware

redundancy. The same manner is applicable for time synchronization and retransmis-

sion masters of SQDSR. One advantage of SQDSR protocol, the said masters have

no particular feature that’s why they are easily replaceable with other nodes. The

secondary master nodes are substituted if any misbehaviour is detected. Hence, the

backup nodes should be configured to the system in advance.

42

The fault handling mechanism of SQDSR relies on the retransmission slot. This

slot is available in each cycle at the beginning of dynamic state. The retransmission

master declares any erroneous frames from the previous cycle with their message

and responsible unit IDs. An example of retransmission frame is demonstrated in

Figure 3.14. After the retransmission slot, the faulty frames are retransmitted again

with respect to the ordering in the notification frame. If there is no fault record for

that moment, the retransmission slot has zero length data field and the state continues

with dynamic slots.

Figure 3.15: Illustration of SQDSR Retransmission with Two Faulty Messages

Figure 3.15 illustrates a simple scenario of fault handling mechanism for two er-

roneous packets. The retransmission master declares that frames with message ID

0x0001 from node 0x0A and message ID 0x0002 from node 0x0B have not trans-

mitted successfully. Aftermath of retransmission notification, the responsible source

nodes need to retransmit corresponding frames respectively. If the failure keeps go-

ing for the retransmitted frame, the source node is marked as faultier and should be

diagnosed.

43

44

CHAPTER 4

PERFORMANCE EVALUATION

It is important to demonstrate the performance of proposed protocol SQDSR on re-

alistic network traffic. This section provides a complete network simulation to un-

derstand capability of the protocol. Average and maximum network delay, queuing

length, schedulability of the given message set are some of the investigated perfor-

mance metrics in the scope of thesis. The simulation is performed on OMNeT++

which provides built-in network layers and real world simulation environment.

It is rational to compare the proposed protocol with one of the prevalent real time

communication architecture. AFDX protocol is selected for this purpose since it pro-

vides Ethernet based deterministic communication via virtual links and redundancy

for any faulty condition thanks to its switched architecture. Most importantly, OM-

NeT++ supports AFDX simulation model from [23] so that the comparison could be

realized under similar parameters.

4.1 Evaluation Criteria

The way of performing simulation could be more importantly than the results of it.

The simulated network should be rational and schedulable. Plus, the results should be

reliable and repeatable. Therefore, OMNeT++, an official network simulator frame-

work, is used with the real traffic data obtained from a commercial company. The

designed network is tested for reliability and schedulability. The results containing

latency measurements are validated with the confidence interval 4.1.3.

45

4.1.1 Latency Modelling

The evaluation of simulation results rely on latency measurements for the compared

protocols. The latency refers to the amount of delay the packets experience from

the generation time at source to the reception time at destination. It is application to

application delay including processing time of packets in hosts, propagation time on

physical medium from source to destination and the protocol delay due to slot timing

and queuing. The simulations are performed under 100 Mbps physical bit rate, so

the transmission delay for each packet can be calculated with the following equation

(4.1.1).

Ttransmit =
FrameLengthbits

100Mbps
(4.1.1)

Since we are comparing two different protocols; one with shared medium and another

with switched architecture, the latency model can be quite different for them. The

shared medium based architectures have single transmission whereas the switched

architectures have at least two transmission for single message from source to desti-

nation. Including the processing delay occurred in switches, the latency model con-

sists of the following parameters in (4.1.2) excluding the transmission delay. The

processing delay components are constant and known at design time, hence even if

the latency results involve these components, it is possible to remove them.

Tlatency = Tprocsource+Tpropagation+n·(Tprocswitch+Tpropagation)+Tprocdestination

(4.1.2)

4.1.2 Reliability and Scheduling

Simulation results are only meaningful in a fault tolerant real time system if none

of the packets are lost or dropped. Therefore, the main criteria during design is to

achieve schedulable and reliable network. To this end, both protocols are tested un-

46

der the given traffic load whether or not the network manages all the generated pack-

ets. The maximum amount of delays introduced are followed to check for deadline

conditions.

Next, the simulation results need to be controlled to verify outputs. The rationality of

measurements should be checked manually. The states of each network components

are controlled during simulation. The models in simulation framework is designed

as safe such that any missing information, dropping packet or unexpected behavioral

raises an exception. Therefore, the obtained results could be assumed to be safe under

these constraints.

4.1.3 Confidence Interval

One of the crucial parameter when performing a simulation is to make sure on collect-

ing the adequate number of results. Since it is not possible to perform the simulation

forever, we never know the true mean µ. However, it is important to know how close

our sample mean is yn with respect to true mean. It is likely to say our sample average

yn is within4% of the true mean µ with a confidence level of g% that we would have

if n goes to infinite. Using the following equation, where sn is standard deviation, n

is number of samples and tg is the constant selected 1.96 or 2.58 for g 95% and 99%

respectively [24]. All the simulation results for both SQDSR and AFDX are verified

by the confidence interval of true mean. The equation justifies that simulation outputs

are below 1% of the true mean with probability of 99%. The results are obtained

with 10 seconds of simulation for the given network traffic which generates 128.000

packets at the end.

4% =
sn · tg
yn ·
√
n

(4.1.3)

4.2 Performing Simulation with OMNeT++

OMNeT++ [4] is an open source, discrete network simulation framework based on

C++ and distributed under Academic Public License. Components are modeled in

47

Network Description Files (NED) that provide to create more complex modules by

connecting and assembling them. It supports modelling wired and wireless networks,

protocols, queuing; plus, analyzing and validating the developed model. OMNeT++

offers graphical run time environment and Eclipse based IDE.

INET framework [5] is an open source library for OMNeT++ containing prevalent

Internet protocols and implementation of OSI network layers. Ethernet protocol sup-

port is available in INET framework, including Ethernet MAC layer, encapsulation

of Ethernet packets and generating Ethernet traffic. Therefore, it is suitable to utilize

INET framework for the simulation of SQDSR.

Although NetworkSimulator was developed and tested for various protocols

during the research as in Section 2.2.1, OMNeT++ was ultimately preferred for test-

ing and validating protocols since it is official and verified network simulation tool.

In the scope of this thesis and based on the specification that we use as input for

our design, the simulation models for AFDX and SQDSR are performed, tested and

analyzed with OMNeT++ version 5.6.2 and INET version 4.1.2.

4.2.1 OMNeT++ Overview and Models

The model of the proposed protocol is constructed on top of EtherHost model of

INET framework. EtherHost model is under inet.node.ethernet package

of INET framework and designed as a simple Ethernet host with one Ethernet traf-

fic generator and one Ethernet port to simulate request reply traffic between nodes.

EtherTrafGen is under inet.applications.ethernet producing Ether-

net frames.

Apart from the traffic generator, the model contains MessageDispatcher to con-

nect multiple application layer protocols with each other and dispatch packets be-

tween them; EtherEncap to perform LLC/SNAP encapsulation and decapsulation

of Ethernet frames; IEthernetInterface to simulate Ethernet MAC layer and

physical layer properties. These modules are all used with the default parameters

during simulations. IEthernetInterface model supports full duplex commu-

nication but it is disabled for SQDSR protocol. The promiscuous mode is also enabled

48

so that nodes receive all the packets in the shared medium regardless of the packets

are destined to them. This enables to simulate the broadcasted nature of SQDSR.

OMNeT++ gives the opportunity of creating new modules. The modules are able to

transmit and receive frames with the interface provided by OMNeT++. Any imple-

mentation is possible including queuing or discarding packets, introducing delays and

recording information about traffic. Therefore, it is not obligatory to depend strictly

on INET models. New modules are used in the design of SQDSR in order to improve

the functionality of original EtherHost model.

4.2.2 SQDSR OMNeT++ Model

EtherHost model of INET framework is enhanced to create generic model of

SQDSR host as shown in Fig. 4.1. The most apparent modification to the EtherHost

INET model is that the number of EtherTrafGen modules is increased to three

to distinguish the traffic generators of control frames, periodic frames and sporadic

frames. These separate instances are also designed as arrays of EtherTrafGen

module with parametric count value. Since a traffic generator is designed to produce

only one type of packet, multiple packet generations per node can only be accom-

plished with multiple traffic generators. Application interface layers following the

traffic generators are new add-on components which are simple OMNeT++ mod-

els. Their main task is to keep the statistics of transmitted and received packets.

There is also another add-on component, called Delay, that is not available in orig-

inal EtherHost model but created to simulate processing delay in host machine.

Finally, the last layer before Ethernet physical layer, protocolLayer, is created

to implement SQDSR protocol operations.

Types of network components deployed to create SQDSR custom host are demon-

strated in Fig. 4.2. Besides the instant components of INET, there are other com-

ponents inherited from SimpleModule of OMNeT++ and designed from scratch.

This module enables users to implement custom network components. It has an in-

terface to receive and transmit from adjacent layers so that it is possible to set and

get properties of packets, store or discard them, apply delays, make module specific

operations.

49

Figure 4.1: SQDSR Host OMNeT++ Model

50

Figure 4.2: Types of Network Components in SQDSR Host Model

The designed model is configurable based on the parameters given in Table 4.1. Since

the protocol is based on cycles; the periods of them should be parametric. There are

some fixed size slots such as control slots and end of cycle slot which should also be

configurable during design time. Delay component takes a parameter to decide on

the amount of delay introduced in order to simulate latency caused from operating

system, framing and deframing. Determining the synchronization and retransmission

master nodes are also available during configuration process.

4.2.2.1 Traffic Generator and Interface Components

SQDSR protocol handles three types of packets; control packets, periodic packets

and sporadic packets. A simple SQDSR node is able to generate each of them,

but should generate at least one control packet for each high level cycle. To this

end, there are three instances of EtherTrafGen that we call controlTrafGen,

periodicTrafGen and sporadicTrafGen. These instances are stored in an

array with a parametric length for flexible network configuration. The configuration

51

Parameters Simulation Values

Node Count 23

Low Level Cycle Period 1 ms

High Level Cycle Period 5 ms

Control Slot Length 10 µs

End of Cycle Slot Length 10 µs

Processing Delay 15 µs

Bandwidth 100 Mbps

Table 4.1: Configurable SQDSR Simulation Parameters

of traffic generators are done by the parameters; offset, period, data length of message

and the destination address.

The instances of EtherTrafGen are directly connected to MessageDispatcher

in standard EtherHostmodel. Nevertheless, an additional layer is inserted between

them with the purpose of assigning message IDs to generated packets and recording

simulation statistics of packets. The layer is named based on the traffic generator

it follows. Even if their names are different, these layers are completely identical.

AppInterfaceLayer is created from OMNeT++ simple module. It is a transpar-

ent layer that has no effect on simulation process. It is used to keep the records of

the periodic and sporadic packets including latency histogram, average/max latency

for periodic and sporadic messages. The delays are measured end to end; from trans-

mitter AppInterfaceLayer to receiver AppInterfaceLayer. This layer also

assigns message IDs help tracking each distinct packet performance. A message ID

is a combination of source node ID, defined index of the message in that node and the

message type where it is 0x00 for control messages, 0x01 for periodic messages and

0x02 for sporadic messages. The format of message ID is available in Fig 4.3. The

assigned message IDs for the whole message set can be seen in Table 4.6.

52

Figure 4.3: SQDSR Message ID

4.2.2.2 Delay Component

SQDSR model contains another custom component, Delay, simulating the process-

ing delay due to operating system, framing, and deframing. Since the processing

delay is mostly dependent on the hardware and operating system, there is no similar

component designed for in OMNeT++ or INET framework. However, there is one in

AFDX model described in 4.2.3. The model is smoothly portable and used in SQDSR

model. The component requires the value of delay parameter.

The paper [22] states that a guard time of 15µs is a sufficient duration as TDMA slot

length over a network transmitted Ethernet frames without any higher level proto-

cols. The same paper states that it is difficult to achieve a network response time less

than 10s of microseconds for an application level software. Furthermore, idle Linux

kernel can transmit and receive a UDP packet within a round trip time of 32µs [20].

Considering these results, the Delay component is modeled to introduce 15µs for

transmitted packets from application layer to protocol layer and for received packets

from protocol layer to application layer.

4.2.2.3 SQDSR Protocol Component

The layer handles all functionality of SQDSR protocol. It is on top of the INET

Ethernet MAC and physical layer. The outgoing sporadic and periodic packet requests

are queued in this layer with a special container that orders packets based on their

deadlines. The packet on top of the periodic queue is removed and sent in static

slot and the packet on top of the sporadic queue is removed and sent in dynamic

53

slot assigned to the corresponding node. Control packets are generated and sent in

assigned time slots. IEEE1588 time synchronization protocol is applied in this layer

to synchronize internal clocks of nodes as described in Section 3.3.

The layer has three states of operation; control, static and dynamic as the details of

the states explained in Section 3.2. State transitions are occurred with timer interrupt,

packet reception or transmission. Control state starts and ends in predefined time

points based on low level and high level cycle periods. Following the control state,

static state starts and progresses based on the schedule predetermined. There are

no time divided slots in static and dynamic states. The operations are triggered by

reception of packets. Since each node is able to analyze packets and know the next

schedule, there is no need for a time dependent mechanism.

The main responsibility of this layer is to store the shared queue that involves the

packet records from different nodes. These records determine the next schedule in

dynamic state of network based on the deadline information as priority. Unless a spo-

radic packet is notified and inserted to shared queue, it is not allowed to be transmitted

in dynamic state. Retransmission of erroneous packets is also handled in this network

layer. The error reports are received at the beginning of the retransmission cycle and

the nodes are reacted accordingly the faults. To be able to retransmit, the copy of the

previous packets should be stored internally. Since the retransmission cycle repeats

in each low level cycle, it is sufficient to store only the packets sent in the last cycle.

If the node is the retransmission master, then the fault report need to be generated for

each previous cycle.

4.2.3 AFDX OMNeT++ Model

There is an AFDX model for OMNeT++ available under simulation models and tools

[23]. The model was developed by Rudolf Hornig and includes basic AFDX MAC

layer and AFDX switch implementation. The model offers redundancy management

and queuing in both switches and end systems. The available real time traffic set

should be applied to this model in order to compare it with SQDSDR protocol. The

architecture of given network consists of 2 switches and 23 nodes. The Fig. 4.4 shows

the representation of the given network in OMNeT++ AFDX model.

54

Figure 4.4: Simulated AFDX OMNeT++ Network with Two End System Groups and

Redundant Switches

ESGroup1 and ESGroup2 refer to end systems connected to either Switch2 or

Switch1. They are declared as arrays of nodes with configurable size; nodeCountESGroup1

and nodeCountESGroup2, which are equal to 10 and 13 respectively for the given

traffic. As seen in Figure 4.4, there are two instances of each switches as A and B. The

reason is providing hardware redundancy on switches by sending duplicate messages

from end systems to the both switches A and B.

4.2.3.1 AFDX End System Model

AFDX EndSystem model is demonstrated in Fig. 4.5. The original AFDX model

does not contain LatencyTransmission and LatencyReception compo-

nents, so they were added to represent the delay due to AFDX end system technol-

ogy. It is by definition the time required to accept, process and begin transmission

of frame when the system is idle [6]. They do not refer to the latency due to con-

tention or queuing. Furthermore, AFDX ES model has RegulatorLogic unit but

does not have the BAG control implementation as discussed in Chapter 2.3.4. The

55

regulator algorithm is realized in Regulator Logic unit based on the specifications

[6]. Another modification has been made in the components TrafficSource and

TrafficSink to gather statistics of sent and received packets including the aver-

age and maximum latency. In other words, the packet statistics are always end to end;

from ES where packet is generated to the ES where it is received. Note that all the

modifications comply with the original simulation model and specifications [6].

Figure 4.5: AFDX End System OMNeT++ Model

The configuration parameters of AFDX EndSystem model is available in Table 4.2.

The network traffic is regulated with respect to BAG and jitter values. BAG is set

based on the assigned VL IDs of messages in Table 4.3. BAG value should be at

least 1 and power of 2, logically should be less than or equal to the period of message

[6]. Latency is configured as 50µs according to specifications from the manufacturer

of end system. The other parameters including minimum and maximum jitter values

are kept with default values in model for the simulation. AFDX protocol is based on

UDP by design, packet overhead parameter is defined as 47 bytes to include overhead

of Ethernet, IP and UDP frames.

56

Parameters Simulation Values

Minimum Jitter 40 µs

Maximum Jitter 500 µs

Latency Transmission 50 µs

Latency Reception 50 µs

TX Queue Capacity Infinite

Queue Algorithm Priority

MAC Fetching Algorithm Round-robin

Packet Overheads 47 Bytes

Supported Bit Rate 100 Mbps

Table 4.2: Configurable AFDX Simulation Parameters

BAG VL IDs

1 ms 0x2000, 0x2100, 0x2A00, 0x2A01, 0x2A02

0x2B00, 0x2B01, 0x2B02, 0x1900

4 ms 0x2400, 0x2500, 0x2600, 0x2700, 0x2C00

0x2C01, 0x2C02, 0x2C03, 0x2C04, 0x2C05

0x2C06, 0x2C07, 0x2C08, 0x2C09, 0x2C0A

0x2C0B, 0x1000, 0x1100, 0x1200, 0x1300

0x1400, 0x1500, 0x1600, 0x1700, 0x1800

32 ms 0x2200, 0x2300

64 ms 0x2800, 0x2C0C

Table 4.3: Configured AFDX Bandwidth Allocation Gap (BAG) Values based on VL

IDs from Table 4.6

57

4.2.3.2 AFDX Switch Model

AFDX switch model consists of a switch fabric and multiple switch ports. The mod-

ules of fabric and port are shown in Fig. 4.6. SwitchPort contains MAC to receive

and send frames; FrameFilter to verify virtual link identity (VL ID) incoming

port pairs and the availability of destination port; TrafficPolicy to check the de-

fined bandwidth limit for VL ID and accept incoming packets based on token bucket

algorithm; TxQueue to convey packets to MAC and store the bursts. SwitchPort

consists of Classifier to direct packets to correct priority queue; Scheduler

to select packets from priority queues; Delay to simulate total processing time con-

sumed on switch; Router to route packets to correct ports based on VL IDs.

AFDX switch model requires to have an implementation for VL routing in order

to forward packets to the correct ports. The solution is providing routing tables to

each switches that includes mappings for VL IDs to destination ports. Routing files

differ from one switch to another since they expect different VL IDs. Once a packet

received, destination ports are resolved and the packet is forwarded to corresponding

ports. If the packet’s VL ID is not in the configuration table, it will be dropped. In

the scope of thesis, we have two switches, therefore, two routing table. The VL ID

to destination ports mapping is given in routing Table 4.4 and Table 4.5 where VL

IDs are assigned to the message set in Table 4.6. The tables are created as text files,

parsed and distributed to switches at run time. The port number 23 is determined as

the port destined to the other switch for both switches. If the destination and source

nodes are connected to different switches, the packet is forwarded to port 23.

AFDX switches have traffic policing capability based on token bucket explained in

Section 2.3.4 where packets are dropped if there is no adequate credit for that VL

ID. The credit increases as time passes with rate (2.3.1). It is set to the maximum

possible credit (2.3.2) at startup. Packets having insufficient credit are dropped in

switch. The token bucket algorithm is not implemented in the original model that’s

why it is developed regarding to the specifications [6].

AFDX switch model is designed to process frames within 50µs with respect to the

given specification from the manufacturer. It is configured with Delay component of

58

VL ID Destination Ports

0x2000, 0x2100, 0x2200, 0x2300

0x2500, 0x2600, 0x2700, 0x2800

(4, 9, 12)

0x2400, 0x2A00, 0x2A01, 0x2A02

0x2B00, 0x2B01, 0x2B02

(9)

0x2C00 (4, 5, 9)

0x2C01 (4, 6, 9)

0x2C02 (4, 7, 9)

0x2C03, 0x2C04, 0x2C05, 0x2C06

0x2C07, 0x2C08, 0x2C09, 0x2C0A

0x2C0B

(4, 9, 23)

0x2C0C (4, 8, 9)

Table 4.4: AFDX Routing Table for Switch 2

59

VL ID Destination Ports

0x1000, 0x1100, 0x1200, 0x1300

0x1400, 0x1500, 0x1600, 0x1700

0x1800, 0x1900

(23)

0x2C03 (0)

0x2C04 (1)

0x2C05 (2)

0x2C06 (3)

0x2C07 (4)

0x2C08 (5)

0x2C09 (6)

0x2C0A (7)

0x2C0B (8)

Table 4.5: AFDX Routing Table for Switch 1

60

AFDX switch fabric model shown in Fig. 4.6. This amount of delayed is introduced

to packets passing through each switch. Therefore, the packets crossing multiple

switches experience more delays. Apart from delay, AFDX switch parameters have

similar with end system ones including queuing properties, fetching algorithms and

BAG.

Figure 4.6: AFDX Switch Model Containing Switch Port and Fabric

4.3 Experimental Results

The simulation models in previous chapters were tested under real network architec-

ture and message set. It was supplied by one of the commercial company at avionics

industry. The network consists of 23 nodes where most of the messages are periodic.

61

In the scope of the thesis, the proposed protocol SQDSR is compared with AFDX

protocol with the given message set, shown in Table 4.6. The network consists of two

switches, where 13 nodes are connected to Switch 2 and 10 nodes are connected to

Switch 1. The switched configuration are applied directly to AFDX model. How-

ever, it is not possible to use it with SQDSR simulation since it is a shared bus based

protocol without any switches. Therefore, switches are removed and all nodes in the

network are connected to the same shared bus.

If the message set in Table 4.6 is examined, the data length of packets is lower than

maximum Ethernet frame data length, 1500, except from the last message generated

by node 0x16. It has 5000 bytes data per frame so it should be fragmented. The

message is partitioned into 4 packets with the length of 1471, 1471, 1471 and 587

bytes respectively due to the maximum data length carried on AFDX payload. They

share the same VL ID whereas they have different SQDSR message IDs; 0x1601,

0x1611, 0x1621 and 0x1631 based on the message ID assignment method in Fig.

4.3 and referred as 0x16X1 in Table 4.6. It is seen that most of the messages are

periodic. There are also sporadic messages and two of them have length of 1316

bytes with periods of 421 µs. These are cameras producing H.264 encoded videos.

According to [25], the streams with H.264 encoding are sliced into 188 bytes called

Packetized Elementary Stream (PES). It is better to combine PES packets into single

frame to eliminate frame overheads. Therefore, single Ethernet frame is able to carry

7 of them which is equal to 1316 bytes data length. The specifications indicate that

the camera nodes can operate at 25 Mbps rate; hence the period of camera data with

1316 bytes data length should be 421 µs. However, minimum value of BAG is defined

as 1ms in AFDX specification which results in blocking all packets having smaller

periods at traffic regulation. Since this is also valid for camera data, it is not possible

to carry it in a single VL ID. The problem is managed by partitioning the data into

three VL IDs such that their periods become 1.263 ms which is no longer violating

our BAG condition. For camera node 0x0A, the corresponding VL IDs are 0x2A00,

0x2A01 and 0x2A02 referred as 0x2A0X; whereas they are 0x2B00, 0x2B01 and

0x2B02 referred as 0x2B0X in Table 4.6 for camera node 0x0B.

62

Source
ID

Switch
Port

Message
Period

Data
Length

Message
Type

SQDSR
ID

AFDX
VL ID

0x00 SW2 - P0 1 ms 250 Bytes Periodic 0x0001 0x2000
0x01 SW2 - P1 1 ms 750 Bytes Periodic 0x0101 0x2100
0x02 SW2 - P2 50 ms 750 Bytes Periodic 0x0201 0x2200
0x03 SW2 - P3 50 ms 750 Bytes Periodic 0x0301 0x2300
0x04 SW2 - P4 5 ms 100 Bytes Sporadic 0x0402 0x2400
0x05 SW2 - P5 5 ms 200 Bytes Periodic 0x0501 0x2500
0x06 SW2 - P6 5 ms 200 Bytes Periodic 0x0601 0x2600
0x07 SW2 - P7 5 ms 100 Bytes Periodic 0x0701 0x2700
0x08 SW2 - P8 100 ms 1000 Bytes Periodic 0x0801 0x2800
0x0A SW2 - P10 421 µs 1316 Bytes Sporadic 0x0A02 0x2A0X
0x0B SW2 - P11 421 µs 1316 Bytes Sporadic 0x0B02 0x2B0X
0x0C SW2 - P12 5 ms 200 Bytes Periodic 0x0C01 0x2C00
0x0C SW2 - P12 5 ms 200 Bytes Periodic 0x0C11 0x2C01
0x0C SW2 - P12 5 ms 100 Bytes Periodic 0x0C21 0x2C02
0x0C SW2 - P12 5 ms 100 Bytes Periodic 0x0C31 0x2C03
0x0C SW2 - P12 5 ms 200 Bytes Periodic 0x0C41 0x2C04
0x0C SW2 - P12 5 ms 100 Bytes Periodic 0x0C51 0x2C05
0x0C SW2 - P12 5 ms 200 Bytes Periodic 0x0C61 0x2C06
0x0C SW2 - P12 5 ms 200 Bytes Periodic 0x0C71 0x2C07
0x0C SW2 - P12 5 ms 200 Bytes Periodic 0x0C81 0x2C08
0x0C SW2 - P12 5 ms 100 Bytes Periodic 0x0C91 0x2C09
0x0C SW2 - P12 5 ms 100 Bytes Periodic 0x0CA1 0x2C0A
0x0C SW2 - P12 5 ms 100 Bytes Periodic 0x0CB1 0x2C0B
0x0C SW2 - P12 100 ms 1000 Bytes Periodic 0x0CC1 0x2C0C
0x0D SW1 - P0 5 ms 100 Bytes Periodic 0x0D01 0x1000
0x0E SW1 - P1 5 ms 200 Bytes Periodic 0x0E01 0x1100
0x0F SW1 - P2 5 ms 100 Bytes Periodic 0x0F01 0x1200
0x10 SW1 - P3 5 ms 200 Bytes Periodic 0x1001 0x1300
0x11 SW1 - P4 5 ms 200 Bytes Periodic 0x1101 0x1400
0x12 SW1 - P5 5 ms 200 Bytes Periodic 0x1201 0x1500
0x13 SW1 - P6 5 ms 100 Bytes Periodic 0x1301 0x1600
0x14 SW1 - P7 5 ms 100 Bytes Periodic 0x1401 0x1700
0x15 SW1 - P8 5 ms 100 Bytes Periodic 0x1501 0x1800
0x16 SW1 - P9 5 ms 5000 Bytes Periodic 0x16X1 0x1900

Table 4.6: Properties of Simulated Real Case Message Set

63

4.3.1 SQDSR Simulation Results

SQDSR OMNeT++ simulation is configured with the parameters in Table 4.1 and

scheduled as in Fig. 4.7. It is assumed that the reaction time between receiving

a packet and forwarding the queued one is negligible during the simulation. The

simulated network is highly loaded such that the utilization is measured as % 79 by

means of the reception status of any node thanks to the broadcasted architecture. End

to end delay is measured for each packet during the simulation and the overall results

per message ID are available in Fig. 4.10. The latency measurements are obtained

by finding the difference between the time of the last bit of packet received at the

receiver node and the time packet generated at the transmitter node.

Since the protocol has static slots reserved for periodic messages, it is necessary to

schedule the simulated message set in Table 4.6. There is an offset column describing

the low level cycle that the message is generated. The offsets are adjusted such that

the schedule is appropriate to handle all the messages assigned to that low level cycle.

Since the high level cycle period is 5 ms, the range of offsets changes between 0s to

5ms. The sample schedule used in simulation is shown in Fig. 4.7. The first cycle is

deliberately less loaded due to the existing control slots at the beginning of it.

Figure 4.7: Schedule of Message Set for SQDSR Simulation

Fig. 4.8 demonstrates the effects of schedule on three different messages; 0x0001,

64

0x0101 and 0x1201. It shows end to end latency results based on the number of

packets per message ID. The figure is important to understand the fundamentals of

protocol static state explained in Section 3.2.2. The messages 0x001 and 0x0101 have

the same period of 1 ms and scheduled successively at the beginning of the cycle as

indicated in schedule Fig. 4.7. However, Cycle-0 is special for having control slots

for each node, which increases the queuing time of packets, therefore, end to end

latency, assuming that the packets are generated at the beginning of cycles. Since

Cycle-0 is proportionally 20 % of the overall high level cycle, the same proportion

is valid for the latency results of packets with message IDs 0x001 and 0x0101. The

simulation runs for 10 seconds, so the number of packets generated is 10.000 for both

of them. On the other hand, the packet with message ID 0x1201 has 5 ms period

so it produces 2000 packets at the end of the simulation. It is again scheduled at

Cycle-0 according to Fig. 4.7. However, it does not have distinct latency values

as the previous messages, since it has solely a single slot over the whole high level

cycle.

Figure 4.8: Observing The Effects of SQDSR Control Slots and Periodic Schedule

over Three Different Messages

65

Reception Status Percentage

Rx Idle % 21

Rx Active % 79

Table 4.7: Measuring Network Utilization of Simulated SQDSR based on Rx Status

of Nodes

Message
Type

Avg. End to
End Latency

Average
Queuing Delay

Max. End to
End Latency

Maximum
Queuing Delay

Periodic 0.214 ms 0.170 ms 0.595 ms 0.533 ms

Sporadic 1.971 ms 1.854 ms 5.484 ms 5.364 ms

Table 4.8: SQDSR Queuing Delay and End-to-End Latency Results for Periodic and

Sporadic Traffic Types

4.3.1.1 SQDSR Performance

The performance of SQDSR are observed with simulation of 10 seconds and avail-

able in Table 4.8. It is assumed that nodes are able to react instantly so there is no

processing time between static slots or dynamic slots. The results show that periodic

messages have 0.214 ms average latency and 0.595 ms maximum latency. There is

an improvement in terms of the latency for periodic messages compared to AFDX

simulation results in Table 4.13. Even though there is a small deterioration for aver-

age end to end latency of sporadic messages, it is seen that SQDSR outperforms than

AFDX in terms of maximum end to end latency. The lack of additional delays due to

switches and not having traffic regulation have significant role in this enhancement.

The Table 4.8 also contains average and maximum queuing delays packets experi-

ence. The queuing delay is the component of the latency measurement excluding the

propagation and processing delays.

The reason behind the poor performance of sporadic packets is that the nodes trans-

mitting them do not have any periodic messages, therefore no static slots. For this

66

Message Type
Avg. End to
End Latency

Max. End to
End Latency

Periodic 0.215 ms 0.615 ms

Sporadic 1.037 ms 3.061 ms

Table 4.9: SQDSR Average and Maximum End-to-End Latency Results After Modi-

fication to Message Set

reason, control slots are the only way to notify the sporadic messages which repeat

only in high level cycles within 5 ms intervals. Hence, the latency of the sporadic

messages rises up to the period of high level cycle. To overcome the disadvantageous

situation for sporadic packets, the message set is modified. The modification keeps

all the message set as it is, but involves additional one periodic message per node who

transmit sporadic messages; i.e. the nodes 0x04, 0x0A and 0x0B in Table 4.6. The

add-on periodic messages have 1 ms periods with minimum Ethernet frame length.

They are served as additional notification points for the new sporadic message re-

quests. The results for the modified message sets are available in Table 4.9 indicating

the latency of sporadic messages is reduced roughly by %50, now better than the

average latency result of AFDX.

The effect of having periodic slots is also measured in an another simulation with

original message set but one of the camera node has reserved periodic slot in each

cycle. The sporadic queue lengths of two camera nodes are compared and the cu-

mulative distribution function (CDF) is deducted as a result, plotted in Fig. 4.9. The

upper line indicates the camera nodes having the extra periodic slots, whereas the

other does not have any. The results justify that average length of the sporadic queue

is reduced and the maximum length of it goes down to 14 from 18, if the node pro-

ducing sporadic messages also has periodic slots. Again, the effects of periodic slots

as an additional notification point to update shared queue is observed.

67

Figure 4.9: SQDSR Sporadic Queue Length Cumulative Distribution Function for

Two Camera Nodes where the Upper Line Indicating the One with Additional Peri-

odic Slots

The measurements for each message ID are also obtained to compare them with

equivalent AFDX messages. The results conclude that messages destined to other

switched network in AFDX model performs quite worse than the SQDSR model.

Periodic message performances differ depending on the schedule order in the cycle.

Even if the simulation is realized in a highly loaded network, the queues are not

growing during simulation; plus, there is no message missing its deadline. Hence, the

network is schedulable for SQDSR protocol architecture. The latency figures would

be better in low traffic network conditions for sporadic messages. The simulation

results point that SQDSR performs sufficiently and could be a good alternative for

AFDX protocol.

68

Figure 4.10: SQDSR Simulation Latency (ms) Measurements per Message ID

4.3.1.2 SQDSR Fault Handling Observation

SQDSR is designed to handle any faults occurred thanks to the broadcasted commu-

nication. The retransmission master listens the network consistently to detect any in-

convenient situation. As discussed in Section 3.5, SQDSR retransmission notification

frame is transmitted at the beginning of dynamic state in order to convey the faulty

packets information to the nodes. It is expected that the nodes responsible for the

faults should retransmit the packets based on the same order in the notification frame.

A simple simulation is performed to illustrate the retransmission procedure with mes-

69

sage IDs 0x0501 and 0x1201. Note that both of them are scheduled at Cycle-0 as

seen in Fig. 4.7 whereas the latter is assigned to the last periodic slot in that cycle.

They both have 5 ms periods, hence, producing 2000 packets at the end of 10 sec-

onds simulation. It is expected to have retransmission notification frame just after the

periodic slot reserved for 0x1201 and the retransmission of erroneous packets follow

it.

The frame with message ID 0x0501 and 0x1201 are transmitted with probability of

50 % and 20 % fault respectively. The left-most two lines in Fig. 4.11 represents the

reception time of non-faulty packets relative to the low level cycle for message IDs

0x0501 and 0x1201 respectively. The number of non-faulty packets matches with the

fault probabilities. If one of these packets fails, retransmission is realized and the la-

tency values around 0.45 ms are obtained. However, it is also possible to both packets

could fail at the same cycle. It ends up with more delay for 0x1201 since it is going

to be located at the second position on retransmission notification frame. Hence, it

should wait till the the first faulty frame 0x0501 completed its retransmission. It is

assumed that the retransmitted frames are completed without any fault.

Figure 4.11: Observing The Effects of Faults on SQDSR Latency Results

70

4.3.1.3 Effects of Startup Configuration on SQDSR Results

The previous simulations for SQDSR are performed under assumption that periodic

packets are generated at the beginning of the cycle where they have the scheduled

static slots. Though this is the ideal case for SQDSR, it is not an obligation. The

packets could be generated at any time and served at their scheduled slots. This

apparently induces more queuing time which is bounded by the period of packet.

Therefore, it is important to test the proposed protocol response time under different

startup configurations apart from the default case (synchronized with offsets).

First, it is assumed that there is no synchronization at all for both inter-nodes and

intra-node during packet generation. In other words, every periodic packet has dis-

tinct start time assigned randomly. The results in Table 4.10 show that the maximum

queuing delay goes up to 100 ms as expected which is the largest period in our mes-

sage set in Table 4.6 that could also be observed in schedule table Fig. 4.7 (messages

with IDs 0x0801 and 0x0CC1). Average queuing delay also increases compared to

the default configuration since the packets are not generated in the cycle where they

have scheduled static slots. The same observation is valid for the next simulation con-

figuration where the nodes are still not synchronized but each node is able to generate

their packets synchronously. However, the possibility of missing the first assigned

slot still exists which ends up with additional delay up to the periods of packet. The

last configuration involves synchronous nodes producing packets at t0. It is seen that

the worst case response time of periodic messages is bounded by the period of high

level cycle which is determined as 5 ms for the simulation. In this configuration,

all messages have the chance to transmit at their first scheduled slots, so the perfor-

mance is improved for periodic packets. It is remarkable that sporadic messages are

not affected significantly from different configurations since they are always gener-

ated randomly independent from the startup of nodes and they could be served at the

first dynamic slot available.

71

Startup Configuration Avg. Queuing Delay Max. Queuing Delay

No Synchronization Periodic: 2.476 ms

Sporadic: 1.898 ms

Periodic: 100 ms

Sporadic: 5.602 ms

Synchronization In-Node Periodic: 2.767 ms

Sporadic 1.968 ms

Periodic 100 ms

Sporadic 5.366 ms

All Synchronized at t0 Periodic 1.803 ms

Sporadic 1.868 ms

Periodic 4.532 ms

Sporadic 5.363 ms

Synchronized with Offsets

(Default Configuration)

Periodic 0.170 ms

Sporadic 1.854 ms

Periodic 0.533 ms

Sporadic 5.364 ms

Table 4.10: SQDSR Queuing Delay Results Under Different Start Time Configuration

of Nodes

4.3.1.4 Effects of Network Configuration on SQDSR Results

The simulated network consists of 23 nodes producing both sporadic and periodic

messages. The low level cycle period is selected as 1 ms based on the greatest com-

mon divisor of message periods. The high level cycle period of SQDSR is selected as

5 ms with regard to the traffic load and message periods. It is noteworthy to demon-

strate the effects of selected network parameters on SQDSR simulation results. To

this end, the section covers the results of additional simulations with different net-

work configurations.

First, the impact of high level cycle period needs to be investigated. As it determines

the frequency of control state, it provides notification point for shared queue requests.

However, there is an excessive wasted bandwidth utilization once they exist in a cy-

cle. If the network is highly loaded, the less high level cycle period could result in

smaller space left for dynamic state, i.e. more queuing time for sporadic messages.

Hence, it is essential to select the most appropriate value. The simulation result in

72

Message Type Average Latency Maximum Latency

Periodic 0.248 ms 0.823 ms

Sporadic 3.128 ms 12.200 ms

Table 4.11: Average and Maximum Latency Results of SQDSR Simulation with Re-

duced High Level Cycle Period (3 ms)

Table 4.11 shows the effects of smaller high level cycle period by selecting it as 3 ms.

The sporadic packets are not the only ones affected, but also periodic packets perform

worse due to the extra offset for control slots at the beginning of every three cycles.

Incidentally, this period is the lowest possible integer value that the network is still

schedulable. Lower figures result in constantly growing queues because of the spo-

radic packets and the network would not be stable anymore. However, more frequent

high level cycle does not always mean poorer performance, which will be discussed

in the following simulation. It depends on the network traffic load. It could enhance

dynamic slot allocation process with more frequent control slots and therefore pro-

ducing better sporadic performance if the network has low traffic.

Next, it is significant to demonstrate the effects of node count on SQDSR perfor-

mance. To this end, number of nodes is increased to 32, which is the maximum

allowed number of nodes for SQDSR by design. As the number of nodes increases,

the length of control state extends which causes worse performance on latency results.

Nevertheless, it is subtle to see the impact with 5 ms high level cycle period. There-

fore, it is reduced to to 1 ms, now equals to the low level cycle period enabling to have

control slots in every cycle. However, the original network with message set in Table

4.6 is too loaded for this configuration. For this reason, the network is modified such

that the nodes apart from node ID 0x00, 0x01, 0x0A and 0x0C do not transmit any-

thing. First, the custom network is simulated with default configuration; 5 ms high

level cycle period and 23 nodes. Then, the period is reduced to 1 ms while conserving

the same number of nodes. Finally, it is increased to 32 in order to demonstrate the

impact of node count.

Table 4.12 indicates that reducing high level cycle period might improve sporadic

73

Network Configuration Avg. Queuing Delay Max. Queuing Delay

High Level Cycle Period: 5 ms

Node Count: 23

Periodic: 0.114 ms

Sporadic: 1.834 ms

Periodic: 0.339 ms

Sporadic: 4.879 ms

High Level Cycle Period: 1 ms

Node Count: 23

Periodic: 0.301 ms

Sporadic 0.578 ms

Periodic 0.442 ms

Sporadic 1.912 ms

High Level Cycle Period: 1 ms

Node Count: 32

Periodic 0.391 ms

Sporadic 0.635 ms

Periodic 0.532 ms

Sporadic 2.232 ms

Table 4.12: The Observations on Custom SQDSR Network with Active Nodes 0x00,

0x01, 0x0A and 0x0C

packet’s performances. It is the consequence of having more chance to notify lately

generated sporadic packets by means of control slots in order to make slot reservation.

The impact is opposite to the results in Table 4.11 as the network is more idle for

this simulation. Furthermore, the table shows that increasing the node count affects

negative even if the add-on nodes do not produce packets to transmit.

4.3.2 AFDX Simulation Results

AFDX OMNeT++ simulation was performed with the message set in Table 4.6 as we

did for SQDSR simulation. The network architecture consisting of 2 switches and 23

nodes was modelled with AFDX OMNeT++ model. The model is configured with the

parameters in Table 4.2. The routing tables per VL IDs were created as detailed in the

previous Chapter 4.2.3. The simulation of AFDX model with the specified message

set is performed for 10 seconds under 100Mbps line speed. The packets are generated

randomly based on their fixed periods and data lengths. End to end delay is measured

for each packet during the simulation. Latency measurements are obtained by finding

the difference between the time of the last bit of packet received at the receiver node

and the time packet generated at the transmitter node.

74

Message Type Average Latency Maximum Latency

Periodic 0.335 ms 3.720 ms

Sporadic 1.210 ms 24.118 ms

Table 4.13: Average and Maximum Latency Results of AFDX OMNeT++ Simulation

4.3.2.1 AFDX Performance

The statistics of latency figures per virtual link ID are collected and summarized in

Table 4.13. It shows that periodic messages have 0.335 ms average latency and 3.720

ms maximum latency, whereas the sporadic messages have 1.210 ms average latency

and 21.118 ms maximum latency. The same message set performs worse than SQDSR

simulation due to the additional delays and queuing occurred in switches and traffic

regulation with BAG. The reason behind the maximum latency value of periodic mes-

sages is the regulated frame with 0x1900 VL ID. It consists of four successive packets

which are blocked by the traffic regulation at ES and sent within 1 ms intervals that

is the assigned BAG value for this VL ID. Even if sporadic messages perform better

in terms of average latency, there could be excessive maximum latency up to 24 ms

because of the traffic shaping mechanism when there is a burst of them.

The results contain 50 µs processing delays for each end system and switch the node

passing through. The latency values should be examined with considering the packet

sizes listed in message set Table 4.6. The latency figures for each VL ID are demon-

strated in Fig. 4.12. Note that the camera data produced from node 0x0A and 0x0B

are partitioned into three VL IDs due to the BAG traffic regulation, the corresponding

VL IDs; 0x2A00, 0x2A01, 0x2A02 and 0x2B00, 0x2B01, 0x2B02 are reassembled

to IDs 0x2A03 and 0x2B03 in simulation results respectively. This enables to gather

statistics for each camera node so that it is comparable with SQDSR protocol message

IDs 0x0A02 and 0x0B02.

75

Figure 4.12: AFDX Latency (ms) Results per VL ID

If the routing Table 4.4 and 4.5 are examined carefully, it will be observed that every

packet is forwarded to Switch-2 Port-9 eventually. For this reason, the status of port’s

TX queue is investigated. To this end, the length of queue over time is obtained in

Fig. 4.14. It indicates that number of packets waiting in the queue can reach up to

9 whereas the average is less than 2. The growing queue causes significant increase

on packet’s latency values. Apart from the queue length, the average queuing time

spent in this queue is analyzed in Fig. 4.13. It states that on average 100 µs delay

is introduced to packets and could be increased up to 600 µs. It is seen that jitter is

76

significant due to the constantly changing conditions in switch queues.

Figure 4.13: Plotted Time-varying TX Queuing Delay of AFDX Switch-2 Port-9

Figure 4.14: Plotted Time-varying TX Queue Length of AFDX Switch-2 Port-9

77

4.3.2.2 AFDX Fault Handling Investigation

Apart from the performance of AFDX, the fault handling mechanisms were also in-

vestigated. Note that the network shown in Fig. 4.4 contains redundant switches.

Therefore, the transmitter ES forwards duplicate packets to the switches with same

sequence number. Incidentally, every AFDX frame contains one byte sequence num-

ber field to discriminate redundant or invalid frames [6]. Thus, the receiver ES accepts

the first packet arrived and discards the redundant one due to the repeated sequence

number. The sequence number is kept per VL ID and incremented by one after each

packet. Therefore, AFDX has tolerancy to faults occurred at switches, but it is not

possible to handle faults happened at end systems. Dropped or corrupted packets in

ES result in loss since AFDX has no retransmission mechanism.

The simulation to demonstrate the redundancy on AFDX is performed for the camera

node whose data is partitioned into three VL IDs; 0x2A00, 0x2A01 and 0x2A02. At

the end of 10 seconds simulation, each of them is expected to generate 7917 packets

based on their periods given in Table 4.6. The number of packets received from

main channel, i.e. not the redundant line coming from the redundant switch, and

total number of packets received, i.e. from both channels, are measured respectively.

The model is updated such that the packets with VL ID 0x2A01 is dropped with

the probability of 20 % at main switch; while the packets with VL ID 0x2A02 is

corrupted with the probability of 20 % at end system. The packets from 0x2A00 are

left as they are for comparison. Fig. 4.15 justifies that the packets received from

redundant channel are successfully discarded for 0x2A00 as the number of packets

received from main channel and total number of packets are equal to the expected

number 7917. Next, ES accepts some packets forwarded from redundant switch due

to the packet drops for VL ID 0x2A01 at main switch with probability 20 %. The

number of packets received from main channel is reduced by 20 % while the total

number of packets states no packet loss at the end. Finally, the corrupted packets in

the camera end system cannot be recovered and cause losses for 20 % of packets.

78

Figure 4.15: Effects of Fault on Packet Count for VL IDs 0x2A00, 0x2A01, 0x2A02

with No Packet Loss, Packet Loss at Switch, Packet Loss at End System Respectively

4.3.2.3 Traffic Burst Effects on AFDX

The previous simulations for AFDX are performed under assumption that the startup

time of nodes are randomly distributed in order to prevent switches from traffic burst.

Moreover, the different packets generated from the same source is also not synchro-

nized to improve the status of TX queues in the end systems. Yet, it is important to

push the limits of AFDX to find the worst case response time. Therefore, additional

simulations with different configurations are performed and the results are demon-

strated in Table 4.14.

First, it is assumed that all end systems are synchronized and started to operate at

t0. In other words, all periodic packets are generated at the same time and transmit-

ted from end systems. Different configurations of periodic packets do not affect the

results of sporadic packets since they are randomly distributed. Due to the burst in

switches, end to end latency results of periodic traffic are affected poorly. Never-

theless, it is notable that the maximum latency of periodic messages is not shifted

significantly since the origin of this maximum latency value of 3.7 ms is from the

message with VL ID 0x1900 regulated by BAG mechanism of AFDX as explained

previously. The configuration of synchronization in-node is the case where end sys-

79

Startup Configuration Average Latency Maximum Latency

All Synchronized at t0 Periodic 0.480 ms

Sporadic 1.260 ms

Periodic 3.816 ms

Sporadic 23.491 ms

Synchronization In-Node Periodic: 0.395 ms

Sporadic 1.211 ms

Periodic 3.824 ms

Sporadic 22.522 ms

No Synchronization

(Default Configuration)

Periodic 0.335 ms

Sporadic 1.210 ms

Periodic 3.720 ms

Sporadic 24.118 ms

Table 4.14: AFDX End-To-End Latency Results under Different Start Time Configu-

ration of End Systems

tems have different startup time, but each of them is able to generate their internal

periodic packets synchronously. It performs slightly better but still worse than the

default configuration.

Figure 4.16: Plotted Time-varying TX Queuing Delay of AFDX Switch-2 Port-9 at

Traffic Burst

80

Figure 4.17: Plotted Time-varying TX Queue Length of AFDX Switch-2 Port-9 at

Traffic Burst

One remarkable affect of burst could be observed in TX queue of Switch-2 Port-

9. It is the most busy port for the given message set in Table 4.6 and the routing

configurations in Table 4.4 and Table 4.5. To this end, length of the queue and queuing

delay induced to the packets are obtained after the simulation with all synchronized

configuration, i.e. periodic packets are transmitted at t0. It is shown in Fig. 4.16 and

4.17 that the queuing delay at Switch-2 Port-9 could be as much as 1 ms whilst the

average is above 0.2 ms. The maximum and average queue length goes up to 30 and

6 respectively.

81

82

CHAPTER 5

CONCLUSION

The thesis proposes a novel protocol, Shared Queue based Dynamic Slot Reserva-

tion (SQDSR), that is a promising alternative to current prevalent real time commu-

nication architectures. It is designed on the base of Ethernet broadcast, where the

medium is a half duplex shared bus. SQDSR offers time slots for the transmission

of both periodic and sporadic messages in repeated cycles. Whereas the time slots

for periodic messages are assigned at design time, SQDSR keeps a global queue that

is shared among nodes through broadcast notifications for sporadic messages. The

shared queue (SQ) is updated based on special control slots and enables dynamic slot

allocation for the idle time intervals at the end of each cycle. Since all nodes share ex-

actly the same queue, collisions on the bus are avoided, which enables us to eliminate

non-deterministic nature of CSMA/CD on standard Ethernet.

The proposed protocol includes fault-tolerance features, which are developed based

on a detailed analysis of existing fault tolerant real time architectures. Considering

the advantages and drawbacks of these architectures including both fieldbus based

and Ethernet based protocols, it was seen that there is no architecture that satisfies

hard real time, reliability and compatibility without any specialized hardware, suf-

fering from single point of failure (SPoF) and requiring a commercial license. In

order to resolve the shortcomings of the current architectures, SQDSR is introduced

with detailed specifications including state machine, timing analysis, frame format,

fault handling mechanisms and time synchronization. Specifically, SQDSR realizes

an efficient implementation of the IEEE 1588 precision time protocol (PTP) to syn-

chronize the clocks of nodes with hardware time stamping with an expected accuracy

below 1µs.

83

In order to evaluate the performance of SQDSR, the protocol was modelled and simu-

lated using the INET framework of the OMNeT++ network simulator, which provides

Ethernet protocols and modules. SQDSR was developed and located at the link layer

of the EtherHost module of INET. The simulations were performed with a mes-

sages from a real application, having both periodic and sporadic traffic types. For the

purpose of comparison, AFDX (Avionics Full-Duplex Switched Ethernet) was se-

lected as a benchmarking protocol since it is widely employed in real time networks

and provides fast and reliable communication with full duplex switched Ethernet. An

existing model of AFDX in OMNeT++ was updated in order to fully cover all the

relevant specifications of AFDX for a realistic simulation.

The same message traffic was applied to both SQDSR and AFDX models. Several

simulations were conducted with different configurations. The simulation results jus-

tify that SQDSR performs better for periodic messages in terms of end-to-end latency.

The additional delay component from queuing and processing time of switches wors-

ens the performance of AFDX. It was also seen that the performances for sporadic

messages is quite close if the message set is modified such that the nodes sending

sporadic messages also have periodic messages. The add-on periodic messages pro-

vide static slots to these nodes, which are the notification points of sporadic packets.

Otherwise the only way to declare them is the control slots repeated at the beginning

of high level cycles.

Furthermore, the simulations test the fault tolerance performance of both SQDSR

and AFDX models. SQDSR is expected to handle any faults with the retransmission

mechanism in each cycle. A frame containing the information of erroneous packets

is sent in the scope of the retransmission mechanism to notify the nodes about frames

that need to be retransmitted. The nodes who are responsible for the retransmission

of packets, react accordingly based on the order in the notification frame. It was

observed that SQDSR handles all the erroneous packets in the retransmission section

such that there is no packet lost at the end. On the other hand, AFDX provides dual

redundant switches to cope with any failure. While this approach enables to save

packets that are lost or corrupted in one of the switches, it does not resolve any faults

that could be occurred in end systems. Since AFDX has no retransmission procedure,

it is likely to lose some of the packets due to the failures.

84

The thesis works justify that SQDSR fulfills fault tolerant real time communication

requirements by means of the properties of reliability, compatibility and low latency.

It is free from any SPoF conditions such as switches or master-slave architectures. It

is constructed on Ethernet having commercial off the shelf components and no com-

patibility issues. Furthermore, it showed successful results during simulations with

real case data. Next, it could be required to test SQDSR protocol with hardware as a

future work. Moreover, it would be better to compare SQDSR with other competitor

protocols.

85

86

REFERENCES

[1] I. Álvarez, A. Ballesteros, M. Barranco, D. Gessner, S. Djerasevic, and

J. Proenza, “Fault Tolerance in Highly Reliable Ethernet-Based Industrial Sys-

tems,” Proceedings of the IEEE, vol. PP, pp. 1–34, 05 2019.

[2] D. Gwaltney and J. Briscoe, “Comparison of communication architectures for

spacecraft modular avionics systems,” 01 2006.

[3] P. Pedreiras, P. Gai, L. Almeida, and G. Buttazzo, “FTT-Ethernet: A Flexi-

ble Real-Time Communication Protocol That Supports Dynamic QoS Manage-

ment on Ethernet-Based Systems,” Industrial Informatics, IEEE Transactions

on, vol. 1, pp. 162 – 172, 09 2005.

[4] O. Ltd., “Omnet++ (5.6.1),” 2020-02-10.

[5] O. Ltd., “Inet framework (4.1.2),” 2020-02-10.

[6] ARINC, Aircraft Data Network Part 7 Avionics Full-Duplex Switched Ethernet

Network, 09 2009.

[7] P. Pendyala and V. S. R. Pasupureddi, “100-Mb/s enhanced data rate MIL-

STD-1553B controller in 65-nm CMOS technology,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 52, no. 6, pp. 2917–2929, 2016.

[8] “Review and Rationale of MIL-STD-1553 A and B,” tech. rep., Data Device

Corporation.

[9] E. A. Sari Germanos, Wolfgang Seiss, “Synchronizing Mechatronic Systems

in Real Time Using FPGAs and Industrial Ethernet Communications,” 2015.

ALTERA White Paper WP-01249-1.0.

[10] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth, F. Golatowski, D. Tim-

mermann, and J. Schacht, “Survey on real-time communication via ethernet in

industrial automation environments,” in Proceedings of the 2014 IEEE Emerg-

ing Technology and Factory Automation (ETFA), pp. 1–8, IEEE, 2014.

87

[11] “Ethernet Powerlink Basics,” tech. rep., Ethernet POWERLINK Standardization

Group, 2018.

[12] “Industrial Ethernet Facts,” tech. rep., Ethernet POWERLINK Standardization

Group, 2016.

[13] “EtherCAT – The Ethernet Fieldbus Brochure,” tech. rep., EtherCAT Technol-

ogy Group, 2020.

[14] “Time-Sensitive Networking: A Technical Introduction,” tech. rep., Cisco,

2017.

[15] S. Brooks and E. Uludag, “Time-Sensitive Networking: From Theory to Imple-

mentation in Industrial Automation,” tech. rep., Intel, TTTech.

[16] H.-T. Lim, D. Herrscher, M. Waltl, and F. Chaari, “Performance Analysis of the

IEEE 802.1 Ethernet Audio/Video Bridging Standard,” pp. 27–36, 03 2012.

[17] N. Rejeb, A. K. Ben Salem, and S. Ben Saoud, “AFDX simulation based on

TTEthernet model under OMNeT++,” in 2017 International Conference on Ad-

vanced Systems and Electric Technologies (IC_ASET), pp. 423–429, 2017.

[18] R. Alena, J. Ossenfort, K. Laws, A. Goforth, and F. Figueroa, “Communications

for Integrated Modular Avionics,” pp. 1 – 18, 04 2007.

[19] T. Steinbach, H.-T. Lim, F. Korf, T. Schmidt, D. Herrscher, and A. Wolisz, “To-

morrow’s In-Car Interconnect? A Competitive Evaluation of IEEE 802.1 AVB

and Time-Triggered Ethernet (AS6802),” 09 2012.

[20] M. Flajslik and M. Rosenblum, “Network interface design for low latency

request-response protocols,” pp. 333–346, 06 2013.

[21] Z. Idrees, J. Granados, Y. Sun, S. Latif, l. Gong, Z. Zou, and L. Zheng, “IEEE

1588 for Clock Synchronization in Industrial IoT and Related Applications: A

Review on Contributing Technologies, Protocols and Enhancement Methodolo-

gies,” IEEE Access, vol. PP, pp. 1–1, 08 2020.

[22] B. Vattikonda, G. Porter, A. Vahdat, and A. Snoeren, “Practical TDMA for dat-

acenter Ethernet,” EuroSys’12 - Proceedings of the EuroSys 2012 Conference,

04 2012.

88

[23] R. Hornig and A. Varga, “Avionics Full-Duplex Switched Ethernet for OM-

NeT++.” https://github.com/omnetpp-models/afdx, 2017.

[24] D. M. Lane, “Confidence Interval on the Mean.”

[25] Cisco, “Fundamentals of Digital Video,” Sep 2014.

89

https://github.com/omnetpp-models/afdx

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND
	Real Time Safety Critical Systems
	Bus Based Communication Architectures
	Mil-Std-1553
	SAFEBus
	TTP/C
	FlexRay
	TTCAN
	FireWire
	SpaceWire

	Ethernet Based Communication Architectures
	Ethernet Powerlink
	EtherCAT
	Time Sensitive Networking
	Avionics Full-Duplex Switched Ethernet

	Shared Queue Based Dynamic Slot Reservation Protocol
	Motivating Specifications
	Overview
	Control State
	Static State
	Dynamic State

	Time Synchronization
	Frame Format
	Fault Tolerancy

	Performance Evaluation
	Evaluation Criteria
	Latency Modelling
	Reliability and Scheduling
	Confidence Interval

	Performing Simulation with OMNeT++
	OMNeT++ Overview and Models
	SQDSR OMNeT++ Model
	Traffic Generator and Interface Components
	Delay Component
	SQDSR Protocol Component

	AFDX OMNeT++ Model
	AFDX End System Model
	AFDX Switch Model

	Experimental Results
	SQDSR Simulation Results
	SQDSR Performance
	SQDSR Fault Handling Observation
	Effects of Startup Configuration on SQDSR Results
	Effects of Network Configuration on SQDSR Results

	AFDX Simulation Results
	AFDX Performance
	AFDX Fault Handling Investigation
	Traffic Burst Effects on AFDX

	CONCLUSION
	REFERENCES

