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ABSTRACT

K-MEDIAN CLUSTERING ALGORITHMS FOR TIME SERIES DATA

Yı̇ğı̇t, Gökçem

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Cem İyigün

February 2021, 103 pages

Clustering is an unsupervised learning method, that groups the unlabeled data for

gathering valuable information. Clustering can be applied on various types of data. In

this study, we have focused on time series clustering. When the studies about time

series clustering are reviewed in the literature, for the time series data, the centers of

the formed clusters are selected from the existing time series samples in the clusters.

In this study, we have changed that view and have proposed clustering algorithms

based on the idea of selecting the cluster centers for each timestamp. With this view,

we aim to improve the clustering performance. Based on this idea four different

algorithms are suggested that are called as Center Based K-Median Algorithm (CKM),

CKM with Haar Wavelet decomposition, CKM with Haar Wavelet Decomposition

Without Projection and Search Based CKM with Haar Wavelet Decomposition.

In the first algorithm, the raw data is used and the clustering problem is solved by the

proposed optimization model. The other three algorithms are also solved by using the

proposed optimization model and instead of using raw data, transformed data, which

the Haar wavelet decomposition is applied to, is used. The proposed algorithms have

been experimented on different data sets and evaluated by using different internal and
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external indices. Due to the evaluations, successful results are obtained regarding

clustering performances of the CKM based algorithms.

Keywords: Clustering, Time Series Data, Haar Wavelet Decomposition, Optimization
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ÖZ

ZAMAN SERİSİ VERİLERİ İÇİN K-MEDYAN KÜMELEME
ALGORİTMALARI

Yı̇ğı̇t, Gökçem

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Cem İyigün

Şubat 2021 , 103 sayfa

Kümeleme bir denetimsiz öğrenme metodudur ve etiketlenmemiş veriyi, bilgi elde

etmek amacıyla gruplandırmayı amaçlar. Kümeleme pek çok veri çeşidine uygulanabi-

lir. Bu çalışmada, zaman serisi kümelemesi üzerinde durulmuştur. Literatürde, zaman

serisi verileri için, küme merkezleri, kümede var olan zaman serilerinden seçilmiştir.

Bu çalışmada, var olan bakış açısı değiştirilmiş ve küme merkezlerinin her bir zaman

noktası için seçilmesi fikrinden yola çıkarak algoritmalar oluşturulmuştur. Bu bakış

açısıyla, kümeleme performansını iyileştirmek amaçlanmıştır. Çalışmamızda bu fikir

baz alınarak dört farklı algoritma önerilmiştir. Bu algoritmalar şu şekilde isimlendiril-

miştir: Merkez Bazlı K-Medyan Algoritması (CKM), Haar Dalgacık Dönüşümü ile

CKM, Yansıtmasız Haar Dalgacık Dönüşümü ile CKM ve Arama Bazlı Haar Dalgacık

Dönüşümü ile CKM.

İlk algoritmada ham veri kullanılmış ve kümeleme problemi önerilen optimizasyon

modeli ile çözülmüştür. Diğer üç algoritmada da önerilen optimizasyon modeli kulla-

nılmıştır ve ham veri kullanmak yerine, Haar dalgacık dönüşümü uygulanmış veriler
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kullanılmıştır. Önerilen algoritmalar farklı indisler kullanılarak farklı veri setlerinde

denenmiş ve içsel ve dışsal indisler kullanılarak değerlendirilmiştir. Değerlendirmelere

göre, CKM bazlı algoritmaların kümeleme performansları ile ilgili başarılı sonuçlar

elde edilmiştir.

Anahtar Kelimeler: Kümeleme, Zaman Serisi Verileri, Haar Dalgacık Dönüşümü,

Optimizasyon
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CHAPTER 1

INTRODUCTION

Huge amount of data is gathered everyday and the analysis of data has a vital impor-

tance on human activities. From that much data, in order to obtain valuable information

and in order to transform this valuable information to organized knowledge, powerful

tools are needed. Data mining has a crucial importance at that point, since it is meeting

these mentioned needs.

Machine learning is a technology used in data mining and focuses on the learning

methods of computers from data. The main focus of machine learning is the recognition

of patterns in data and making precise decisions (Han et al., 2011). Two of the main

methods used in machine learning are supervised learning and unsupervised learning.

Supervised learning methods are working on the labeled data in order to train the

algorithm. Following this training process, the labels of unlabeled data are predicted.

Unsupervised learning is used for obtaining information from unlabeled data.

Clustering is an unsupervised method, grouping unlabeled objects, that is used for

dividing data points to similar groups. Each group is called a cluster, and each sample

in a cluster is similar to each other whereas dissimilar to the samples in other clusters

(Rai and Singh, 2010). Clustering is used for dividing unlabeled objects to similar

groups as mentioned earlier. This process can have lots of purposes such as image

segmentation, character and object recognition, information retrieval and data mining

(Jain et al., 1999). Clustering can be applied to various types of data. In this study, we

will be focusing on time series clustering.

The databases that include timestamp information are called temporal databases and

data classified in temporal databases called temporal data (Mitsa, 2010). Time series
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data is a type of temporal data. In addition to this, time series data is dynamic data

since it is composed of series of data points in same time spaces. In other words, it is

chronologic collection of observations. Some important features of time series data

are to change continuously and to be large in data size (Fu, 2011).

Since, the time series data can be huge in size, lots of users want to see the structured

way of the data in order to discover the patterns. By this way, they can get meaningful

information from data and can use this information in their studies. Time series

clustering has a big impact on the discovery of patterns and addresses two main things

in the given data. One is to discover the frequent patterns, two is to discover the

surprising patterns (Aghabozorgi et al., 2015). Discovery of patterns in stock options

can be given as an example. Some other use cases are recognition of changes, which

might help to find out correlation between time series data such as finding factories

that has similar move in productions. In addition to this, by applying a clustering

on a time series data, a prediction on future data and recommendations based on the

predictions can be made such as looking at the climate data of cities of a specific

region and making predictions based on that information.

Time series clustering algorithms are divided into five main groups as Hierarchical

Clustering, Partitional Clustering, Density Based Clustering, Model Based Clustering

and Grid Based Clustering. In this thesis, we propose partitional clustering algorithms

and we are following two main approach. In the first one, by using the raw time

series data, we are considering the clustering problem as an optimization problem and

providing an optimization model for the solution of it. In the second approach, we

are proposing algorithms that are also following the optimization problem approach

but instead of using raw data, data with Haar Wavelet Decomposition, that is a

preprocessing method applied to raw data, is used.

In Chapter 2, time series clustering algorithms will be explained, and Partitional

Clustering will be detailed more since it will be the main focus in this study. Also in

Chapter 2, since the distance measures has vital importance in time series clustering,

the types of distance measures will be explained. Following that, the literature, will be

reviewed since there are various studies about time series clustering.

In the literature, for the time series clustering, the centers of the clusters are selected

2



from the existing time series in the clusters. The algorithms proposed in this thesis is

based on a different idea. In the algorithms that we propose, the cluster centers are

selected for each timestamp. In other words, when the center points in timestamps

are merged, it is not forming an existing time series in the data set. In Chapter 3,

the algorithms developed with this idea will be reviewed and the term Haar Wavelet

Decomposition will be detailed, since it will be used in some of the proposed algorithms

in this thesis.

For the clustering algorithms, among the algorithm development, the performance mea-

sures has vital importance. In this study, for measuring the success of the algorithms,

internal and external indices are used. The external indices are Rand Index, Adjusted

Rand Index and Purity whereas the internal indices are Silhouette Index and C Index. In

Chapter 4, these indices will be explained. For measuring the algorithm performances

by using the internal and external indices, data sets generated from two different data

pools are used. One data pool is named as Synthetic Control Chart Time Series Data

Pool (SCD) and generated by using the base data taken from UCI repository (Dua and

Graff, 2017). The second data pool is named as Data Pool Including Periodicity (PD),

which is generated with the idea of having time series data including periodicity. These

data pools and the data sets generated from these data pools will be also explained

in Chapter 4. In the final part of this thesis, in Chapter 5, the findings of this study,

the advantages and the disadvantages of the proposed algorithms and future research

directions are detailed.
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CHAPTER 2

BACKGROUND ON CLUSTERING, TIME SERIES CLUSTERING AND

LITERATURE REVIEW

As it is mentioned in Chapter 1, time series clustering has wide range of uses. In

this chapter, more detailed information about clustering will be given and time series

clustering and the related terms used in this thesis will be explained in detail. Following

that, the literature will be reviewed.

2.1 Classifications of Time Series Clustering

Clustering is an unsupervised method that aims to provide maximum similarity for

the data within the cluster and minimum similarity with the data in other clusters. It

has a wide ranges of uses since with clustering, information can be identified from

unlabeled data set and the data set can be organized by having the similar data in the

same groups. By the advancing technology, due to more powered the data storages,

applications are able to store the data for a long time. Time series data, such as weather

data, finance data and exchange rates are some examples for this. In the literature, time

series clustering falls into three categories:

• Whole Time Series Clustering: It is defining a single time series as a distinct

sample and applying clustering based on the similarity of distinct time series

samples (Guijo-Rubio et al., 2020).

• Subsequence Time Series Clustering: It is clustering of subsequences of a

time series. In other words, it is clustering the sections of a long time series data.

Subsequence time series clustering is mostly used in discovery of patterns and
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structures in time series data (Zolhavarieh et al., 2014).

• Time Point Clustering: It is clustering time points due to their proximity and

similarity. Time point clustering is similar to subsequence clustering in terms of

clustering a single time series data but there can be some points which are not

assigned to any cluster and can be considered as noise (Zolhavarieh et al., 2014).

In this study, we will focus on Whole Time Series Clustering. Whole time series

clustering can be applied in three ways as shape, feature and model based (Fu, 2011).

• Shape Based: It is matching the shapes of data. An appropriate distance

measure is used and following this a conventional clustering algorithm is applied

(Hautamaki et al., 2008).

• Feature Based: Under this method, the original time series is converted into

a lower dimension vector (feature vector) and a distance vector is calculated.

Following this, a conventional clustering algorithm is applied to these lower

dimension vectors (Hautamaki et al., 2008).

• Model Based: In this method, the original time series data are converted to the

model parameters and following the distance measurement, a classic clustering

algorithm can be applied (Liao, 2005b).

2.2 Distance Measures Used in Time Series Clustering

Time series clustering is highly dependent on distance measures. The most common

clustering measures that will be mentioned in this thesis are rectilinear, euclidean

and dynamic time warping (DTW) distances. Time series distance measures can

be classified in four categories that are shape based (including lock-step and elastic

measures), feature based, edit based and structure based distances (Esling and Agon,

2012).

The shape based distances compare the time series by using their actual values and

including to categories as elastic and lock-step. For the lock-step measures (in which
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we will be mostly focused on under the study of this thesis), the time series should be

in same length whereas the elastic measures do not have such a constraint.

For the feature based distances, at first it is decided which features to extract and then

the distance of these features are calculated. Edit based distances are based on the

calculation of dissimilarity between time series. The main idea is to use minimum

number of transformations, in order to transform the initial time series data to the other.

Structure based distances aims to compare time series on more global scale.

Lock-step measures have two categories that are Minkowski distance and Pearson

correlation coefficient. The formula of Minkowski distance is as below:

dminkowski(x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

If p=2, then the distance is named as Euclidean distance and if the p=1, it is named as

Rectilinear distance. In our study, as the distance measure, rectlinear distance is used.

The elastic measures are including two different measures that are Dynamic Time

Warping and Longest Common Subsequence. Dynamic Time Warping is warping two

sequences non linearly with the aim of dealing with deformations in time. It was a

distance measure introduced by Berndt and Clifford (1994) with the aim of comparing

time series that are different in length.

In terms of similarity measures between time series, the elastic distance measures

mostly defeats the lock step distance measures. However, the disadvantageous part

of it is to cause increment in the calculation time that makes the lock step measures

more suitable due to the length and size of the time series. Also, in their paper Keogh

and Lin (2005) showed that the difference between the DTW and Euclidean distance

diminish when the classification error rates of the data are compared. Xi et al. (2006)

have also indicated that for the small data sets, DTW is beating Euclidean distance,

that is due to the increment in the requirement of warping for matching with the closest

neighbor but for the larger data sets, warping requirement is decreasing since it is more

common to find a closer match. And Keogh and Lin (2005) summarized this while

DTW warps, it resembles to simple Euclidean distance.
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2.3 Classifications of Time Series Clustering Algorithms

Time series clustering algorithms can be classified on to five main groups.

2.3.1 Hierarchical Clustering

Hierarchical clustering aims to form clusters by formation of hierarchy. For hierarchi-

cal clustering, the clusters are organized as a tree (Kaufman and Rousseeuw, 2009). It

has two types as agglomerative and divisive. Agglomerative clustering is starting from

the bottom and goes through to top, that is each cluster is merging to a higher cluster

whereas divisive clustering is dividing a larger cluster to smaller ones.

For hierarchical clustering, k is not needed to be predefined. For any k, the clusters

can be obtained by a cut in the dendrogram. While this is the advantageous part of

hierarchical clustering, the disadvantage is to calculate distance between each sample

and also having no flexibility of applying an adjustment to the tree after a merge or a

split is applied (Wang et al., 2006).

2.3.2 Partitional Clustering

The partitional clustering is based on clustering of n unlabeled samples to k clusters

in which each cluster contains at least one object and k ≤ n. Sardá-Espinosa (2017)

stated that the partitional clustering algorithms can be perceived as combinatorial

optimization problems since the purpose of a partitional clustering algorithm is to

minimize the distances of samples in a cluster whereas to maximize the distances

between the formed clusters. The partition is named as crisp when each sample is

a member of exactly one cluster and named as fuzzy as a sample can be in distinct

clusters with a specific degree.

In partitional clustering algorithms, after definition of k, the next step is to assign k

random initial centers. In this thesis, the random partitioning method will be used as

the initialization method that is based on making random assignment of samples to k

clusters and for each randomly formed cluster finding means or medians based on the
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algorithm used to assign them as cluster centers (Hamerly and Elkan, 2002).

2.3.2.1 Crisp Partition

The most well known partitional clustering algorithms under this category are k-means

(MacQueen, 1967) and k-medoids (PAM) (Kaufman and Rousseeuw, 1990) algorithms.

For k-means the cluster center is the mean value of the samples in the cluster whereas

in k-medoid, the cluster center is represented by the most centrally located sample in

the cluster.

In k-means algorithm, after the random initial center selection and assignment of

samples to the nearest centers, the cluster centers are updated based on the samples

assigned to a given cluster. This procedure repeatedly continues until the membership

of a sample can not be updated. The procedure is the same for the PAM, but instead of

mean, the cluster centers are taken as the sample that has the minimum distance to all

of the samples in the cluster.

In k-means algorithm, the cluster center can be affected from the outliers, whereas

under k-medoids the cluster center is less reactive to the outlier data. For k-means

algorithms, the distance measures used should be meaningful for mean interpretation

whereas for k-medoids the distance measure is more flexible.

2.3.2.2 Fuzzy Partition

While the k-means and k-medoid algorithms are giving exact results about an object

belonging to a cluster, Fuzzy c-means algorithm (Bezdek et al., 1984) is giving softer

results that means each sample has ratios of belonging to a cluster.

The advantage of partitional clustering to hierarchical clustering is the rapidness and

as a result they are more suitable for clustering the time series data.
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2.3.3 Density Based Clustering

Density based clustering is applied for identifying the clusters in data according to the

idea of a cluster is being a region with high density and distinctive from the other such

clusters by regions of low density (Sander, 2010). Since the density based clustering

algorithms have high complexity, they are not much used in time series clustering.

2.3.4 Model Based Clustering

Under this approach, for each cluster a model is assumed and the data is clustered

according to fitting to the models. Model based clustering algorithms mostly have

scalability problems and once the clusters become close to each other, the performance

of the model based clustering algorithms reduces (Liao, 2005a).

2.3.5 Grid Based Clustering

The grid based clustering is different from the other clustering algorithms since it is

focusing on the value space around the data points rather than focusing on data points.

The grid based clustering algorithm is starting with formation of grid structure and

calculation of the cell density for each of the cells. Following that, the cells are sorted

due to their densities and the cluster centers are found (Schikuta, 1993).

2.4 Literature Review for Clustering and Time Series Clustering

Clustering problems are tried to be solved in various ways in the literature. Bradley

et al. (1996) try to solve this problem by concentrating on a concave minimization

formulation which, they claimed, is a fast and finite algorithm. They define their

problem explicitly as: for m points in n-dimensional space (Rn), given number of

clusters as k, specify k centers in Rn such that the sum of distances of points to the

closest center is minimized. They depict that the solution of this problem is not easy

since a minimum local point might not be a global minimum point and as a result,

conversion of this problem to a bilinear program, that is called “a fast successive
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linearization k-median Algorithm” can give a more accurate result. Bradley et al.

(1996) also indicate that the k-median algorithm is giving better results than k-means

algorithm since the outliers affect the k-median algorithm less.

The first algorithm that they have proposed is as below in 2.1. In the below formulation,

the matrix A ∈ Rmxn is representing a set A of m point in Rn, k is the number of

clusters, Cl is the center of cluster l ∈ {1, 2, 3...k} , Dil is indicated as a dummy

variable (i ∈ {1, 2, 3...m}), which is used for bounding the 1-norm distance between

Ai and Cl. In this algorithm, it is aimed to find the cluster centers to minimize the sum

of the distances between a point and the cluster center that the point belongs to.

Minimize
m∑
i=1

min
l=1,2,...k

(
eTDil

)
(2.1)

subject to: −Dil ≤ ATi − Cl ≤ Dil. i ∈ {1, 2, 3...m} , l ∈ {1, 2, 3...k} (2.2)

In this algorithm, since the objective is minimization of k linear and concave functions,

it is named as a piecewise linear concave function (Bradley et al., 1996). For an

effective solution of this problem, they propose reformulating the problem as a bilinear

program. The bilinearized version of the problem can be seen in below.

Minimize
m∑
i=1

k∑
l=1

eTDilTil (2.3)

subject to: −Dil ≤ ATi − Cl ≤ Dil, i ∈ {1, 2, 3...m} , l ∈ {1, 2, 3...k} (2.4)
k∑
l=1

Til = 1, i ∈ {1, 2, 3...m} , l ∈ {1, 2, 3...k} (2.5)

Til ≥ 0. i ∈ {1, 2, 3...m} , l ∈ {1, 2, 3...k} (2.6)

For the solution of this problem, Bradley et al. (1996) mention the term uncoupled

bilinear programming (UBPA), which is firstly defined by Bennett and Mangasarian

(1993) in the literature. Bennett and Mangasarian (1993) define UBPA as an algorithm

that decomposes the existing problem into two and solving them by fixing a variable

alternatively until an optimal solution is found.
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In their paper, Charikar et al. (2002) mention that the k-median algorithm has similar

points with the uncapacitated facility location problem. In this problem type, for

the opened facilities, there is no limit and the aim is to minimize the cost which is

composed of the cost of opening facilities and the cost of assigning a location to the

nearest facility.

For p-median facility location problem, the first formulation is done by ReVelle and

Swain (1970) in which there the two decision variables are binary: one is the selection

variable whereas the other one is the allocation variable.

They have used the following notations: yi indicates if i is selected as median, zij

indicates whether sample j is assigned to the cluster which has i as median. In the

objective function, they have the matrix D ∈ Rnxn, where dij is the distance between

sample i and j. ReVelle and Swain (1970) form the following model:

Minimize
n∑
j=1

n∑
i=1

dijzij (2.7)

subject to:
n∑
i=1

zij = 1, j ∈ {1, 2, 3...n} (2.8)

n∑
j=1

zij ≤ yi, i ∈ {1, 2, 3...n} (2.9)

n∑
j=1

yj = k, (2.10)

zij ∈ {0, 1}, (2.11)

yj ∈ {0, 1}. (2.12)

The objective of this model is to minimize the sum of distances from samples to cluster

centers. The first, second and third constraints are respectively indicating each sample

should be assigned to a cluster, samples should be assigned to selected centers, there

are k clusters.

In this study, the proposed algorithms, that will be detailed in Chapter 3, are under the

category of Whole Time Series Clustering. In the algorithms that we proposed, both

raw and transformed data are used and rectilinear distance is selected as the distance
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measure. In the literature, there are various studies that are focusing on Whole Time

Series Clustering which differ due to the representation of the data used, distance

measures used for measuring the distance between time series and proposed clustering

algorithms.

Košmelj and Batagelj (1990) propose a clustering method in which time series data

are used as raw time series and the distance measure is euclidean. In the proposed

method, a procedure that includes iterative relocation clustering is used. Their method

starts with initial partition. Following the distance calculation between time series, the

clusters are updated by swapping units between clusters until the best solution can be

found. Another study, in which the raw time series data and the euclidean distance is

used, is proposed by Golay et al. (1998). In their study, fuzzy c-means algorithm is

used in order to cluster brain signals due to applications of different stimuli. Policker

and Geva (2000) also propose a study that is using raw time series data and fuzzy

partition. In their study, as the distance measure, Dynamic Time Warping (DTW) is

used and their aim is to cluster time series with similar patterns. Ratanamahatana and

Keogh (2004) is also proposed a clustering method that uses raw time series data. In

their study, multimedia data are represented as time series data and the k-medoids

algorithm is applied to this data by using DTW as the distance measure.

Hautamaki et al. (2008) emphasize the importance of cluster prototype calculation in

shape based time series clustering by using DTW as a distance measure. In their paper,

they mention that, in the k-medoids problem, the medoid is selected as a prototype

which is defined as the time series in the cluster in which the distance of other time

series in the same cluster is minimized. In their paper, they suggest alternative

prototype calculations such as averaging and prototype by local search. Averaging is

simply taking the mean of the time series in each time point. In prototype by local

search, the method includes combining the time series in sequential or hierarchical

order. One negative side is summarized as the final prototype is dependent on the order

of pairing.

Besides the raw time series, there are literature studies that are using transformed time

series data for the application of clustering algorithms. Lin et al. (2004) suggest a new

method by applying k-means algorithm to a transformed time series data. For k-means
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algorithm, the initial center selection has an effect on the quality of the resultant

clusters. Method suggested by Lin et al. (2004) clarifies this effect. Under this method

for each time series, the Haar wavelet decomposition is calculated. This calculation is

a one time process. The original data is in level 0 of the Haar Wavelet decomposition

and the levels are getting higher in number as the data gets simpler with decomposition.

After the Haar Wavelet decomposition, starting with the highest level of transformation

(lower resolution data), the k-means algorithm is applied gradually to the levels. The

I-kmeans algorithm, that they suggest, is standing for interactive k-means. Due to

Lin et al. (2004), time series’ shape are preserved well in very beginning levels of

the wavelet decomposition so that the results of the clusters can be obtained in the

low levels which don’t need the full decomposition of the data. Ratanamahatana et al.

(2005) propose applying k-means algorithm with the clipped time series representation

of the initial data. In their study, they prove that this method is giving faster results

than using DTW as a distance measure for time series data. Bagnall and Janacek

(2005) also defend the advantages of using clipping time series data in time series

clustering by using euclidean distance as the distance measure and applying k-means

and k-medoids clustering algorithms. Aghabozorgi et al. (2012) focus on studying

with transformed time series by using Discrete Wavelet Transform. In their study, an

iterative clustering algorithm, that is called Incremental Fuzzy C-Mean Clustering

for time series, is proposed by aiming the algorithm to have the ability of accepting

new time series and updating clusters. As the distance measure Longest Common

Subsequence is used.

Seref et al. (2014) define the discrete k-median clustering (DKM), in which the cluster

centers are selected among an existing sample in the clusters. The algorithm that

they suggest in their paper is based upon the formulation defined by Bradley et al.

(1996). In the algorithm of Bradley et al. (1996) only 1-norm distance can be used

as a distance measure but Seref et al. (2014) expand this work in their algorithm in

which any distance measure can be used. Since the model of Bradley et al. (1996)

is a bilinear model, Seref et al. (2014) propose to solve it with uncoupled bilinear

program that is proposed in the paper of Bennett and Mangasarian (1993) that solves

the bilinear problem by dividing it into two alternating linear programs that is solved

in assignment of samples and update of medians steps. In this thesis, the proposed
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algorithms will be compared with DKM algorithm. Since as the distance measure, the

rectilinear distance is used in our algorithms, it is also used in DKM algorithm.

The mentioned literature studies, that are focusing on Whole Time Series Clustering,

are also summarized in Table 2.1.
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CHAPTER 3

PROBLEM DEFINITION

In the previous chapters, it is mentioned about the background of clustering, the terms

used for clustering are introduced and the taxonomy of clustering is detailed. Following

these, the time series algorithm types are briefly summarized and the literature review

that is focusing on partitional clustering, which will be our main focus in this thesis, is

given. In this chapter, the features of the problem defined in this study will be detailed.

Following that, proposed algorithms will be discussed.

3.1 Problem Statement

As it was mentioned in the previous studies in the literature review, for the k-median

clustering algorithm applied to time series data, the centers of the clusters are selected

among the existing time series in each cluster. This can cause the selected cluster

center to miss the local changes of the time series data in the cluster.

In our solution approach, this is not followed and the cluster centers are selected for

each timestamp. In other words, when the resultant cluster centers in each timestamp

is combined, the resultant vector is not an available time series in the data set, so it

is allowed the cluster centers to be selected from different time series data for each

timestamp. Due to this timestamp based center selection approach, the local changes

in the formed clusters can be identified. In Figure 3.1, it can be seen that when a

cluster center is selected from an existing time series, the center might miss the local

changes in the data. With the timestamp based center selection approach, the center

can represent the local behaviors of data.
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Figure 3.1: Example cluster with different center selection approaches
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For the solution of the clustering problem, by following the defined center selection

approach, the steps of the problem formulated and solved as an optimization problem.

Since in this study each timestamp has different centers, the distance of a time series

to a cluster center is computed by the summation of distances between the value that

time series is taking in timestamp q and the cluster center in timestamp q in which

q ∈ t. As the similarity measure, rectilinear distance is used and a distance matrix

Djiq is formed, that includes rectilinear distance between time series j and time series

i in timestamp q.

The calculation can be formulated as follows:

Let Siq be the value that time series i is taken in timestamp q.

Djiq =
∣∣Sjq − Siq∣∣

The main objective in this study is to assign n samples, that is the number of time

series data, to the k clusters by minimizing the summation of the distances between n

samples to the nearest cluster centers.

3.2 Proposed Algorithms

Under this chapter, four different models, suggested for the solution of time series

clustering problem, are defined. In each algorithm, the main purpose is to select

cluster centers for each timestamp such that the summation of the distances between n

samples and the nearest cluster centers are minimized.

For solving the defined clustering problem, mainly, two approaches are followed. In

the first approach, we formulated the model as an optimization model. In the first

algorithm, the proposed optimization model is solved by using the raw time series

data. In the second approach followed, that is used for the three other algorithms, for

the solution of the problem, the proposed optimization model is solved with using the

transformed time series data with Haar Wavelet Decomposition, that will be detailed

later.
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3.2.1 Center Based k-Median Algorithm for Time Series Data

Consider a data set where I represents the set of time series, Q represents the times-

tamps and P represents the set of clusters. We try to assign time series data to the

given number of clusters by selecting the appropriate centers of the clusters for each

timestamp so that the summation of the distances between samples and the nearest

cluster centers are minimized.

For the solution of this problem, an optimization problem is formulated. The following

problem is to solve the k-median problem in which the objective function (3.1) aims

to assign n samples to the k clusters by minimizing the summation of the distances

between n samples to the nearest cluster centers.

(CKM) Minimize
n∑
i=1

min
p=1,2,...k

(
t∑

q=1

(
n∑
j=1

DjiqXjpq

))
(3.1)

subject to:
n∑
i=1

Xipq = 1, ∀p ∈ P, ∀q ∈ Q (3.2)

k∑
p=1

Xipq ≤ 1, ∀i ∈ I,∀q ∈ Q (3.3)

Xipq ∈ {0, 1}. ∀i ∈ I,∀p ∈ P, ∀q ∈ Q (3.4)

The binary decision variable in this formulation is Xipq that is equal to 1 if time series

i in timestamp q (Siq) is selected as median to cluster p in timestamp q.

The inner summation is the sum of the distances of the time series i (Siq) to the centers

of cluster p in each timestamp q. In the first inner minimization, we are trying to

minimize the value gathered in inner summation for different values of p.

The constraint 3.2 indicates, for a given timestamp q and cluster p, there can be at most

one center. The constraint 3.3 indicates time series i in timestamp q can be at most

center to one cluster.

In Table 3.1, the notation used for mathematical formulations is provided.
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Table 3.1: Notation used for mathematical formulations

Sets

P Set of clusters (p = 1, 2, ..., k)

Q Set of timestamps (q = 1, 2, ..., t)

I Set of time series (i = 1, 2, ..., n)

Parameters

Djiq Rectilinear distance between time series j and time series i

in timestamp q.

Decision Variables

Xipq Binary decision variable equal to 1 if time series i in cluster

p is selected as center for timestamp q.

Tip Binary decision variable equal to 1 if time series i is in

cluster p.

The inner minimization in 3.1 is equal to the following problem:

Maximize U (3.5)

subject to: U ≤
t∑

q=1

(
n∑
j=1

(DjiqXjpq)

)
. ∀p ∈ P, i (3.6)

And when the dual of the problem above is taken, the following formulation is found:

Minimize
k∑
p=1

(
t∑

q=1

(
n∑
j=1

(DjiqXjpq)

))
(3.7)

subject to:
k∑
p=1

Tip = 1. ∀i ∈ I (3.8)

When 3.7 is replaced with the first inner minimization in 3.1 the following final

formulation of CKM is gathered:
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(CKM) Minimize
n∑
i=1

[
k∑
p=1

(
t∑

q=1

(
n∑
j=1

DjiqXjpq

))
Tip

]
(3.9)

subject to:
n∑
i=1

Xipq = 1, ∀p ∈ P, ∀q ∈ Q (3.10)

k∑
p=1

Xipq ≤ 1, ∀i ∈ I,∀q ∈ Q (3.11)

k∑
p=1

Tip = 1, ∀i ∈ I (3.12)

Xipq ∈ {0, 1}, ∀i ∈ I,∀p ∈ P, ∀q ∈ Q (3.13)

Tip ∈ {0, 1}. ∀i ∈ I,∀p ∈ P (3.14)

As it can be realized from the formulation of the problem, in this problem, there are

two unknown variables that are Xipq and Tip. Seeing that there are two unknown

variables, in order to solve this bilinear problem, the approach that Bradley et al.

(1996) is followed for solving a bilinear problem, that is called Uncoupled Bilinear

Program (UBPA) is followed. UBPA can be defined as an algorithm that decomposes

the existing problem into two and solving them by fixing a variable alternatively until

an optimal solution is found.

For the solution of this problem, two subproblems are solved one after the other,

in which one variable is set and the problem is solved to find the other variable

alternatively.

Before the first subproblem is solved, at first the initial cluster center assignments X0

are made for each timestamp q. For this, random clusters are formed for the given

number of clusters. And based on the cluster members, the cluster centers for each

timestamp are determined based on selecting the sample that has the closest total

distance to the other data points.

In the given timestamp q, X0,mpq=1 for m is a member of cluster p, and the minimum

value of the given calculation is found for j = m for the formulation 3.15 , in which

Ip indicates the samples that are members of cluster p.
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min
j∈Ip

∑
j 6=i,i∈Ip

Djiq (3.15)

After this initialization, the subproblem 1 is formulated as below (CKM-S1). In

this problem, the cluster centers are assumed to be known (Xjpq) and the cluster

assignments (Tip) are taken as the decision variable.

(CKM-S1) Minimize
n∑
i=1

[
k∑
p=1

(
t∑

q=1

(
n∑
j=1

DjiqXjpq

))
Tip

]
(3.16)

subject to:
k∑
p=1

Tip = 1, ∀i ∈ I (3.17)

Tip ∈ {0, 1}. ∀i ∈ I,∀p ∈ P (3.18)

This problem aims to assign the time series i to cluster p in which its sum of distances

between the time series i and the cluster centers in each timestamp q is minimized.

Based on the solution of this subproblem (CKM-S1) the second subproblem (CKM-

S2) is solved in order to find new medians for the given cluster members.

(CKM-S2) Minimize
t∑

q=1

[
k∑
p=1

(
n∑
i=1

(
n∑
j=1

TjpDjiq

)
Xipq

)]
(3.19)

subject to:
n∑
i=1

Xipq = 1, ∀p ∈ P, ∀q ∈ Q (3.20)

k∑
p=1

Xipq ≤ 1, ∀i ∈ I,∀q ∈ Q (3.21)

Xipq ∈ {0, 1}. ∀i ∈ I,∀p ∈ P, ∀q ∈ Q (3.22)

The inner summation indicates that, for given timestamp q and for given cluster p, if

time series i is selected as cluster center, the total distances of the other time series

data in the same cluster to center i. So, by minimizing the total sum and based on this

assignment cost problem, the new centers for each cluster are determined. Following

that subproblem 1 (CKM-S1) can be solved again.
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Under our algorithm, in order to prevent excess calculation, i and p are restricted as

the samples in cluster p that is denoted as Ip. In other words, the objective function in

3.19 is reformulated as follows:

t∑
q=1

 k∑
p=1

∑
i∈Ip

∑
j∈Ip

TjpDjiq

Xipq

 (3.23)

Since the solution of this sequential algorithm can change for each initial assignment,

we have conducted the initialization 500 times and results are investigated for each

different initialization. Among 500 initialization, the initialization in which the cluster

and center assignments are providing the minimum optimal objective function is

selected in order to evaluate the algorithm based on different indices. This approach is

followed for all of the algorithms defined in chapters 3.2.2, 3.2.3 and 3.2.4.

Pseudocode of CKM is provided in Algorithm 1.

Algorithm 1: Center Based k-Median Algorithm
Procedure CKM()

input :k, I
output :Tip, Xipq

1 Initialize X0,ipq

2 Z0 ←∞
3 δ = 1000000
4 repeat
5 CKM-S1

input :Djiq, X0,ipq

output :Tip
6 T0,ip ← Tip
7 CKM-S2

input :Djiq, T0,ip
output :Xipq

8 X0,ipq ← Xipq

9 Z ←
∑t

q=1

[∑k
p=1

(∑
i∈Ip

(∑
j∈Ip TjpDjiq

)
Xipq

)]
10 δ = Z0 − Z
11 Z0 ← Z
12 until δ < 0.000001

end
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CKM is visualized in Figure 3.2 with a small data set that has 6 time series data,

t = 10 and given k = 2. In the figure, the initial centers are visualized with points

in the Data Set and Initial Centers (1) graph. An iteration of CKM is completed

by the successive applications of CKM-S1 and CKM-S2. In the first iteration, after

the application of CKM-S1, the clusters based on the initial centers are found, that is

visualized in the Iteration 1: Clusters after CKM-S1 Applied (2) graph. Following

the new cluster, the new centers are found by applying CKM-S2. The found centers

are merged with a black line and once the graph Iteration 1: Clusters after CKM-S2

Applied (3) is checked, it can be realized that the black line do not represents an

existing time series. After the new centers are found, the algorithm comes back to the

CKM-S1 in iteration 2 and new clusters are found (Graph 4). CKM-S2 followed that

process by finding the cluster centers (Graph 5). Seeing both the centers and cluster

assignments have not been changed, the algorithm is stopped and the final version of

the clusters and cluster centers are visualized in Final Clusters (6).
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3.2.2 CKM with Haar Wavelet Decomposition

In the previous chapter, we have defined the formulation of the proposed optimization

problem. In the provided algorithm, CKM, the problem is solved by using the raw

data. Besides the algorithms using raw data, while applying the clustering algorithms

on time series data, the data can be preprocessed or transformed. In the proposed

algorithms in this part, the optimization model approach, followed in the solution of

the first algorithm, is applied by using transformed data. For this transformation, the

method "Haar wavelet decomposition" is used, since the transformed data, which the

Haar wavelet decomposition is applied to, still preserves the shape of data and do not

loose the characteristics of the original data. These are important features of the Haar

wavelet decomposition, since we are working on timestamp based center selection

approach.

The Haar transform is a term to be mentioned before Haar wavelet decomposition. The

Haar transform is decomposing a discrete signal (in our case a time series) to different

subsignals that are trend (running average) and fluctuation (running difference). The

fluctuation subsignal is small in magnitude when it is compared with the original

subsignal.

The trend subsignal is calculated by taking the running average of two successive

values and then multiplying it by
√
2. Let’s call the discrete signal (in our case a single

time series data) as f = f1, f2, ....fN . The trend subsignals will be calculated as below.

am =
f2m−1 + f2m

2
·
√
2 , m = 1, 2, 3, ...,

N

2
(3.24)

The fluctuation subsignal is calculated by taking the averages of differences of two

successive values and then multiplying it with
√
2.

dm =
f2m−1 − f2m

2
·
√
2 , m = 1, 2, 3, ...,

N

2
(3.25)
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Wavelets are defined as the mathematical functions used in order to make the rep-

resentation of data in terms of differences (fluctuation) and averages (trend) of a

prototype function called the mother wavelet (Daubechies and Bates, 1993). The Haar

wavelet representation can be summarized as approximating time series with a linear

combination of the basis functions (Lin et al., 2004).

In order to show 1-level fluctuation subsignals in a simpler form, the scalar products

of the 1-level Haar wavelets can be used and 1-level Haar wavelets are defined as:

W 1
1 =

(
1√
2
,− 1√

2
, 0, 0, 0, 0..., 0

)
W 1

2 =

(
0, 0,

1√
2
,− 1√

2
, 0, 0..., 0

)
...

W 1
N
2
=

(
0, 0, 0, 0, .., 0,

1√
2
,− 1√

2

)
The the 2-level Haar wavelets can be defined as:

W 2
1 =

(
1

2
,
1

2
,−1

2
,−1

2
, 0, 0, 0, 0, ., 0

)
W 2

2 =

(
0, 0, 0, 0,

1

2
,
1

2
,−1

2
,−1

2
, .., 0

)
...

W 2
N
2
=

(
0, 0, 0, 0, ....,

1

2
,
1

2
,−1

2
,−1

2

)
The fluctuation subsignal in 3.25 can be written in terms of scalar products of the

discrete signal and 1-level Haar wavelet.

dm = f.W 1
m, m = 1, 2, 3, ...,

N

2
(3.26)
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In order to express, 1-level trend values by scalar product of certain elementary signals,

1-level Haar scaling signals can be used and they are defined as:

V 1
1 =

(
1√
2
,
1√
2
, 0, 0, ., 0

)
V 1
2 =

(
0, 0,

1√
2
,
1√
2
, ., 0

)
...

V 1
N
2
=

(
0, 0, 0, ..,

1√
2
,
1√
2

)
2-level Haar scaling signals are defined as:

V 2
1 =

(
1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0, ., 0

)
V 2
2 =

(
0, 0, 0, 0,

1

2
,
1

2
,
1

2
,
1

2
, .., 0

)
...

V 2
N
2
=

(
0, 0, 0, 0, ....,

1

2
,
1

2
,
1

2
,
1

2

)
The trend subsignal in 3.24 can be written in terms of scalar products of the discrete

signal and 1-level Haar scaling signal.

am = f.V 1
m, m = 1, 2, 3, ...,

N

2
(3.27)

A single time series data f = f1, f2, ....fN can be expressed by the summation of two

signals that are called the first averaged signal (A1) and the first detail signal (D1). By

formulation:

f = A1 +D1 (3.28)

A1 = a1V
1
1 + a2V

1
2 + ....+ aN/2V

1
N/2 (3.29)

D1 = d1W
1
1 + d2W

1
2 + ....+ dN/2W

1
N/2 (3.30)

As an example, let say the time series data is:

f = (10, 12, 4, 6, 6, 8)

The trend subsignal of this time series data is:

a1 = (11
√
2, 5
√
2, 7
√
2)
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The first averaged signal of this time series data is:

A1 = (11, 11, 5, 5, 7, 7)

The fluctuation subsignal of this time series data is:

d1 = (−
√
2,−
√
2,−
√
2)

The first detail signal of this time series data is:

D1 = (−1, 1,−1, 1,−1, 1)

As the Haar wavelet representation of this data in level 1, the first averaged signal will

be used. The representation of data in the other levels are calculated with this logic.

To summarize, Haar wavelet decomposition can help in representation of time series

data in different resolutions. Additionally, by applying the Haar wavelet decompo-

sition, in a time series, there are coefficients stored, that are the averages and the

averages of the differences of two successive values, which are important for storing

the information about the transformed times series sample. In Figure 3.3, a time series

data with different levels of Haar wavelet decomposition can be seen.

If the time series has the length as N, the decomposition levels can be maximum

log2N , if N is power of 2 and floor(log2N/2) otherwise.

Figure 3.3: The application of Haar wavelet decomposition on an example time series

data
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For the defined algorithm in this chapter, CKM is combined with the idea proposed

in the paper of Lin et al. (2004) and the algorithm is called CKM with Haar wavelet

decomposition (CKM-H1). The additional notation used in CKM-H1 formulation can

be seen in Table 3.2.

Table 3.2: Notation used for mathematical formulations of CKM-H1

Sets

H Set of Haar wavelet decomposition levels (h = 1, 2, ..., r)

(h=1 indicates level 0, h=r indicates the highest level)

Parameters

Miqh Matrix in which the Haar wavelet decomposition of each time

series is stored.

Djiqh Rectilinear distance between time series j and time series i in

timestamp q for Haar wavelet decomposition level h.

(|Mjqh −Miqh| )
Decision Variables

Xipqh Binary decision variable equal to 1 if time series i is selected as

median to cluster p in timestamp q for Haar wavelet

decomposition level h.

Tiph Binary decision variable equal to 1 if time series i is in cluster p

for Haar wavelet decomposition level h.

Under the method proposed by Lin et al. (2004), for each time series, the Haar

wavelet decomposition is calculated before applying the algorithm. The data in level

0 of the Haar wavelet decomposition is the original data and the levels are getting

higher in number as the data gets coarser. After the application of the Haar wavelet

decomposition for all levels, starting with the highest level of transformation (lower

resolution data), the k-means algorithm is applied. The resultant cluster centers are

projected as the initial centers of the data in the next haar level. The algorithm

continues recursively until it is found out that the cluster assignments are not changing

after applying the k-means algorithm for the successive haar levels.

In this chapter, we will be defining the main implementation of the combination of
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CKM and the idea proposed by Lin et al. (2004). In the following chapters, 3.2.3 and

3.2.4, two different approaches that are based on that idea will be defined.

Before starting the solution of CKM-H1, at first the Haar wavelet decomposition for

each time series is calculated. The transformed set of time series are stored in a matrix

that has the size of n x t x r.

The formulation for minimizing the objective function in level h is as below:

(CKM-H1) Minimize
n∑
i=1

[
k∑
p=1

(
t∑

q=1

(
n∑
j=1

DjiqhXjpqh

))
Tiph

]
(3.31)

subject to:
n∑
i=1

Xipqh = 1, ∀p ∈ P, ∀q ∈ Q (3.32)

k∑
p=1

Xipqh ≤ 1, ∀i ∈ I,∀q ∈ Q (3.33)

k∑
p=1

Tiph = 1, ∀i ∈ I (3.34)

Xipqh ∈ {0, 1}, ∀i ∈ I,∀p ∈ P, ∀q ∈ Q (3.35)

Tiph ∈ {0, 1}. ∀i ∈ I,∀p ∈ P (3.36)

When the optimization problem 3.31 is divided into two subproblems the formulations

are as below:

(CKM-H1-S1) Minimize
n∑
i=1

[
k∑
p=1

(
t∑

q=1

(
n∑
j=1

DjiqhXjpqh

))
Tiph

]
(3.37)

subject to:
k∑
p=1

Tiph = 1, ∀i ∈ I (3.38)

Tiph ∈ {0, 1}. ∀i ∈ I,∀p ∈ P (3.39)
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(CKM-H1-S2) Minimize
t∑

q=1

[
k∑
p=1

(
n∑
i=1

(
n∑
j=1

TjphDjiqh

)
Xipqh

)]
(3.40)

subject to:
n∑
i=1

Xipqh = 1, ∀p ∈ P, ∀q ∈ Q (3.41)

k∑
p=1

Xipqh ≤ 1, ∀i ∈ I,∀q ∈ Q (3.42)

Xipqh ∈ {0, 1}. ∀i ∈ I,∀p ∈ P, ∀q ∈ Q (3.43)

For this version of the algorithm, at first, it is started with Haar wavelet decomposition

level r, that is the highest level in number, but the simplest and most transformed level

of the data. Following this, the initialization is done as it is mentioned in the previous

part. Then, new cluster assignments are made due to the distance matrix Djiqh in level

r (3.37). Due to new clusters, new centers in each timestamp q are calculated (3.40).

The found centers are used as the initial centers for the next run and calculations

continue until no better objective function value for level r can be found.

For the center and cluster assignments that give the minimum objective function value

for level r, the centers in which Xipqr = 1 become the new initial center for the cluster

p at same timestamp q for Haar wavelet decomposition level r − 1. And the values of

centers in each timestamp computed at the end of level r are projected onto level r− 1.

For the distance matrix in the iteration 2 of the algorithm, the distance matrix Djiq(r−1)

is recalculated by forming the distance matrix between data in level r − 1 with the

version of projected values of centers in each timestamp from level r to level r − 1 as

Miq(r) to Miq(r−1).

This iteration continues until the end of level 1 and the indices are calculated based on

the final assignments. Steps of CKM-H1 can be seen in Figure 3.4. The Pseudocode

of the CKM-H1 is provided in Algorithm 2.
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Step 0. Set h = r, Initialize X0,ipqh.

Step 1. Run CKM-H1 for h. Find Xipqh and Tiph.

Step 2. Use the final center assignments (Xipqh) that gives the minimum objective
function value (Z) as the initial center assignments for h = h− 1 (X0,ipq(h−1)).

Step 3. If Xipqh = 1, project the value of center points from Miqh to Miq(h−1).
Recalculate Djiq(h−1).

Step 4. h = h− 1, check h.

If h 6= 1, set h = h− 1, go to Step 1 and continue.

If h = 1, repeat Step 1 and STOP.

Figure 3.4: Steps of CKM-H1
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Algorithm 2: CKM with Haar Wavelet Decomposition
Procedure CKM-H1()

input :k, I
output :Tip1, Xipq1

1 h = r
2 Initialize X0,ipqh

3 repeat
4 Z0 ←∞
5 δ = 1000000

6 repeat
7 CKM-H1-S1

input :Djiqh, X0,ipqh

output :Tiph
8 T0,iph ← Tiph
9 CKM-H1-S2

input :Djiqh, T0,iph
output :Xipqh

10 X0,ipqh ← Xipqh

11 Z ←
∑t

q=1

[∑k
p=1

(∑
i∈Ip

(∑
j∈Ip TjphDjiqh

)
Xipqh

)]
12 δ = Z0 − Z
13 Z0 ← Z
14 until δ < 0.000001

15 X0,ipq(h−1) ← Xipqh

16 Miq(h−1) ←Miqh

17 Recalculate Djiqh−1
18 h← h− 1

19 until h = 0
end

The visualization of the solution of this problem can be seen in Figure 3.5 . As it can

be seen in figure, the algorithm is started to be solved from the simplest level of the

data and the complexity of the data improved gradually. In the clustering applied for

the example data set in Figure 3.5, k = 3 and time series data in different clusters are

represented with different colors. The black line represents the combination of centers

in each timestamp.
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3.2.3 CKM with Haar Wavelet Decomposition without Projection

This method is very similar with CKM-H1 but different in Step 3 of the algorithm,

since the value of centers in level h are not projected to level h− 1 and the original

Djiq(h−1) matrix is used in the calculations. Steps of CKM with Haar Wavelet Decom-

position without Projection (CKM-H2) algorithm can be seen in Figure 3.6. Also, the

Pseudocode of the CKM-H2 is provided in Algorithm 3.

Step 0. Set h=r. Initialize X0,ipqh.

Step 1. Run the CKM-H2 for h. Find Tiph and Xipqh.

Step 2. Use the final center assignments (Xipqh) that gives the minimum objective
function value Z as the initial center assignments for h = h− 1 (X0,ipq(h−1)).

Step 3. h = h− 1, check h.

If h 6= 1, go to Step 1 and continue.

If h = 1, repeat Step 1 and STOP.

Figure 3.6: Steps of CKM-H2

In Figure 3.7, there is a small data set with 5 time series. Since in CKM-H1, the values

of centers found in level h is projected to level h− 1 while in CKM-H2 the original

values of the centers are preserved from level h to level h − 1, there is a difference

in the steps of both algorithms. In the figure, this change can be observed from the

location of the centers.
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Algorithm 3: CKM with Haar Wavelet Decomposition without Projection
Procedure CKM-H2()

input :k, I
output :Tip1, Xipq1

1 h = r
2 Initialize X0,ipqh

3 repeat
4 Z0 ←∞
5 δ = 1000000
6 repeat
7 CKM-H2-S1

input :Djiqh, X0,ipqh

output :Tiph
8 T0,iph ← Tiph
9 CKM-H2-S2

input :Djiqh, T0,iph
output :Xipqh

10 X0,ipqh ← Xipqh

11 Z ←
∑t

q=1

[∑k
p=1

(∑
i∈Ip

(∑
j∈Ip TjphDjiqh

)
Xipqh

)]
12 δ = Z0 − Z
13 Z0 ← Z
14 until δ < 0.000001

15 X0,ipq(h−1) ← Xipqh

16 h← h− 1

17 until h = 0
end
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3.2.4 Search Based CKM with Haar Wavelet Decomposition

Another proposed algorithm is named search based CKM with Haar wavelet decompo-

sition (CKM-SH). The main difference of CKM-SH to CKM-H1 is while projecting

the values of centers in each timestamp q from Haar wavelet decomposition level h to

h− 1, a threshold level is used.

If Xipqh = 1, check |Miq(h−1)−Miqh|
|Miqh| . If it is lower than the threshold level, Miq(h−1)

will take the value of Miqh . In other words, Miqh will be projected directly to Miq(h−1)

and the distance matrix Djiq(h−1) will be recalculated based on this. But if this value

is higher than the threshold level, Miq(h−1) will stay as it is. As the threshold level 0,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 are used.

It is searched which threshold level provides the clustering that provides the best result

in terms of used indices for the given value of k (Highest Silhouette Index, lowest C

Index). The steps of algorithm can be seen in Figure 3.8

The steps of the algorithm can be also viewed from the flow chart in Figure 3.9. Also,

the pseudocode of the algorithm can be seen in Algorithm 4.
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Step 0. Initialize, X0,ipqr and take Iteration = 1. (Iteration increase by one once
the algorithm comes to Step 0.

Step 1. Set threshold = 0.1 ∗ Iteration.

Step 2. Run the CKM-H1 algorithm for h = r representation of the data. Find Xipqh

and Tiph.

Step 3. Use the final center assignments (Xipqh) that gives the minimum objective
function value Z as the initial center assignments for h = h− 1 (X0,ipq(h−1)).

Step 4. If Xipqh = 1, ∀i,∀p,∀q, check |Miq(h−1)−Miqh|
|Miqh| .

If |Miq(h−1)−Miqh|
|Miqh| ≤ threshold, Miq(h−1)=Miqh.

If |Miq(h−1)−Miqh|
|Miqh| > threshold, Miq(h−1) will stay as it is.

In either step after the check is done for ∀i, ∀p,∀q, recalculate Djiq(h−1).

Step 5. h = h− 1, check h.

If h 6= 1, go to Step 2 and continue.

If h = 1, run the CKM-H1 algorithm for h = 1, save Xipq1 and Tip1 and
calculate Silhouette Index and C Index, then continue with Step 6.

Step 6. Check threshold.

If threshold < 1, go back to Step 0.

If threshold = 1, STOP. Take the Xipq1 and Tip1 as the optimal cluster and

center assignments for the threshold that gives the maximum Silhouette

Index and minimum C Index.

Figure 3.8: Steps of CKM-SH
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Algorithm 4: Search Based CKM with Haar Wavelet Decomposition
Procedure CKM-H2()

input :k, I
output :Tip1, Xipq1

1 for threshold=0:0.1:1
2 h = r
3 Initialize X0,ipqh

4 repeat
5 Z0 ←∞
6 δ = 1000000
7 repeat
8 CKM-H1-S1

input :Djiqh, X0,ipqh

output :Tiph
9 T0,iph ← Tiph

10 CKM-H1-S2
input :Djiqh, T0,iph
output :Xipqh

11 X0,ipqh ← Xipqh

12 Z ←
∑t

q=1

[∑k
p=1

(∑
i∈Ip

(∑
j∈Ip TjphDjiqh

)
Xipqh

)]
13 δ = Z0 − Z
14 Z0 ← Z
15 until δ < 0.000001

16 X0,ipq(h−1) ← Xipqh

17 if |Miq(r−1)−Miqr|
|Miqr| ≤ threshold

18 Miq(r−1) ←Miqr

19 end
20 Recalculate Djiq(h−1)
21 h← h− 1

22 until h = 0
23 Calculate SI(threshold), CI(threshold)
24 Save Tip1, Xipq1

25 end for
26 For threshold that gives max(SI(threshold)), min(CI(threshold)),

Tip1, Xipq1 is the solution.
end
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CHAPTER 4

COMPUTATIONAL STUDY AND RESULTS

4.1 Data Sets

For the evaluation of the algorithms, data sets generated from two different data pools

are used. The formation of the first data pool is initiated by the data set taken from

the UCI repository (Dua and Graff, 2017), which is named as Synthetic Control Chart

Time Series Data Set and generated by the process defined in Alcock et al. (1999). In

addition to the time series data taken from UCI repository that includes six different

patterns, time series data that includes eight other patterns are generated and added

to the data set. The different patterns in the data set can be seen in Figure 4.1. The

data with patterns 1, 2, 3, 4, 5 and 6 are taken from the repository and the others are

generated. The new formed data pool will be called as Synthetic Control Chart Time

Series Data Pool (SCD) in the later parts of this thesis. Each pattern includes 50 time

series data. The common behavior of the patterns is the data points in time series in

each pattern can take a value between -2 and 2.

The second data pool is generated with the idea of having time series data that includes

periodicity. For this, three trend terms, three periodicity terms and two error terms are

generated as the first step.

• Trend Terms: Each trend term has an increasing behavior. The graph of trend

terms can be seen in Figure 4.2.

Trend term 1: T1(t) = t
31
48

Trend term 2: T2(t) = t
28
48

Trend term 3: T3(t) = t
24
48
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Figure 4.1: Synthetic Control Chart Time Series Data Pool
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• Periodicity Terms: At first, sine and cosine waves are generated with sine term

as 4sin
(
2πt
75

)
and cosine term as cos

(
πt
4

)
. Following that, the periodicity terms

are formed. The graph of periodicity terms can be seen in Figure 4.2.

Periodicity term 1: P1(t) = 4sin
(
2πt
75

)
+ cos

(
πt
4

)
Periodicity term 2: P2(t) = 4sin

(
2πt
75

)
∗ cos

(
πt
4

)
Periodicity term 3: P3(t) = (4 + 4sin

(
2πt
75

)
)
1
5

• Error Terms:

Error term 1: E1 ∼ N(0, 1.5)

Error term 2: E2 ∼ N(0, 3)

Figure 4.2: Trend terms and periodicity terms used in the generation of the data

Following the generation of trend, periodicity and error terms, time series data pool

that includes 18 different patterns, in which each data in different pattern is formed
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by the combination of the one trend term, one periodicity term and one error term are

formed. In Figure 4.3, it can be seen the possible combinations of trend, periodicity

and error terms for the generation of data in different patterns. Each pattern includes

20 time series data. This data pool will be called as Data Pool Including Periodicity

(PD) in the later parts of this thesis.

Figure 4.3: Generated Data Pool

For the evaluation of the algorithms, from both data pools, SCD and PD, new data

sets with different true number of clusters are formed by taking combinations of 2,

3, 4 and 5 different data patterns. In other words, by combining data that follows the

known patterns, we have an information of true cluster labels and this can help in the

evaluation part of the algorithms due to both internal and external indices, that will be

explained in Chapter 4.2. Data sets that are composed of 2, 3, 4 and 5 patterns will be

called as the member of SCD-2, SCD-3, SCD-4, SCD-5 and PD-2, PD-3, PD-4, PD-5
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respectively. For each data set, the internal and external indices, that will be detailed

in Chapter 4.2, are calculated for comparing the performances of proposed algorithms

CKM, CKM-H1, CKM-H2, CKM-SH and DKM. In tables 4.1 and 4.2, the number

of patterns used in order to generate smaller data sets from SCD and PD, the number

of data sets generated, the number of time series in each data set, and length of time

series can be seen.

Table 4.1: Details of the data sets generated from SCD

Number of

Combined Patterns

Number of

Data Sets Generated

Number of Time Series

in Each Data Set

Length of Each

Time Series

2 91 100 60

3 364 150 60

4 1001 200 60

5 2002 250 60

For PD, there are some exclusions in the combined time series data with different

patterns since it is not allowed to put groups of patterns 1-2, 3-4, 5-6, 7-8, 9-10, 11-12,

13-14, 15-16 and 17-18 in a data set and the reason is these groups include same trend

and periodicity patterns but just different error terms.

Table 4.2: Details of the data sets generated from PD

Number of

Combined Patterns

Number of

Data Sets Generated

Number of Time Series

in Each Data Set

Length of Each

Time Series

2 144 40 150

3 672 60 150

4 2016 80 150

5 4032 100 150
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The number of time series in the combined patterns to form the data sets generated

from SCD and PD are same, that makes the formed data sets balanced. In order to test

the algorithms, for the unbalanced data sets, 50 unbalanced data sets are generated by

combining 3 and 4 patterns for both SCD and PD. The groups of data sets that are

composed of 3 unbalanced patterns from SCD are called SCD-3-U and from PD are

called PD-3-U. The same approach is followed for 4 patterns and the groups of data

sets are called as SCD-4-U and PD-4-U. The summary of the formed unbalanced data

sets can be seen in Table 4.3.

Table 4.3: Details of the unbalanced data sets

Data Sets in:
Number of

Data Sets Generated

Number of Data Sets in Randomly Combined Patterns

Pattern A Pattern B Pattern C Pattern D

SCD-3-U 50 40 30 20 -

PD-3-U 50 15 10 20 -

SCD-4-U 50 30 40 20 30

PD-4-U 50 15 10 20 5

In addition to the data sets generated from the explained data pools, a real data set, that

will be called as PSA Data Set, is used in order to test the algorithms . The data set is

taken from the study of Petricoin III et al. (2002) and includes time series data that

includes samples of patients with prostate diseases. For each time series, t is equal to

15154. The data includes 4 true labels since it is taken from 4 patient groups that are:

• cancer with PSA level greater than 10 ng/ml (43 time series)

• cancer with PSA level within 4 ng/ml and 10 ng/ml (26 time series)

• benign with PSA level greater than 4 ng/ml (190 time series)

• no evidence of disease (63 time series)

The PSA data set can be seen in Figure 4.4.
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Figure 4.4: PSA Data Set
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4.2 Performance Measures

As it was mentioned in the earlier chapters, clustering aims to group the unlabeled data

into clusters in which the similarity of the data in the same clusters are maximized

and the dissimilar samples are separated to different clusters. For measuring the

cluster quality, there are two types of indices as internal and external indices. The

external indices evaluates the resultant clusters by comparing it with pre-specified

cluster labels that are supplied externally (Halkidi et al., 2001). The internal indices are

evaluating the resultant clusters internally without the need of an external information.

In this study, for the evaluation of proposed algorithms, three internal and two external

measures are used.

4.2.1 External Measures

As the external measures, that are used for evaluating the resultant clusters with

pre-specified cluster labels, Rand Index, Adjusted Rand Index and Purity are used.

4.2.1.1 Rand Index

Rand Index (RI) is used for measuring the consistency of clustering algorithm results

(X) and real clusters (Y ). Rand Index can be calculated with the following formula:

RI =
a+ d

a+ b+ c+ d

a: Pairs that have same label in Y and also are in the same cluster in X .

b: Pairs that have same label in Y but are assigned to different clusters in X .

c: Pairs that are assigned to the same cluster in X but have different labels in Y .

d: Pairs that are assigned to different clusters in X and also have different labels in Y .

The value of Rand Index is changing between 0 and 1, in which, 1 indicates that the

algorithm clustered the data set same as its actual labels. In other words, the greater

the Rand Index, the better that the algorithm results fit with the actual result (Ansari

et al., 2015a).

52



4.2.1.2 Adjusted Rand Index

Adjusted Rand Index (ARI) is suggested since it was found out that, in an accurate

clustering, the RI is not allowing randomness. ARI can take negative values too and

like RI, the more the ARI value, the more successful the clustering algorithm. When

ARI takes negative values, that indicates random partition is better than the clustering

applied.

Based of the contingency table of two partitions X and Y, the ARI is formulated as

below:

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ni.

2

)
∗
∑

j

(
n.j

2

)
/
(
N
2

)]
1
2

[∑
i

(
ni.

2

)
∗
∑

j

(
n.j

2

)]
−
[∑

i

(
ni.

2

)
∗
∑

j

(
n.j

2

)]
/
(
N
2

)
nij: The number of points that are common in cluster i of partition X and cluster j of

partition Y.

N : Total number of samples in the dataset.

ni.: Column sums are taken for row i in the contingency table.

n.j: Row sums are taken for column j in the contingency table.

4.2.1.3 Purity

Purity measures how well the data with the same labels are clustered (Rendón et al.,

2011). The value of purity can be between 0 and 1. If purity equals to 1, it indicates

that, data with the same labels are in the same clusters without any exception.

Pj =
1

Nj

max
iεC

nij

Purity =
∑
j

Nj

N
Pj

C: Given set of classes of samples (known from the real data).

N : Total number of samples in the dataset.

Nj: Total number of samples in cluster j.
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nij: The total number of samples in cluster j with class i.

Pj: Calculation the fraction of the samples whose class are majority in the cluster j.

4.2.2 Internal Measures

As the internal measures, that are used for evaluating the resultant clusters without a

need of an external information, Silhouette Index and C Index are used.

4.2.2.1 Silhouette Index

Silhouette Index is used for measuring clustering quality when the real clusters of data

are not known. It is both measuring how well the data is clustered and how well the

compactness of the clustered data (Han et al., 2011). It is formulated in Rousseeuw

(1987) as below:

S(i) =
b(i)− a(i)

max(a(i), b(i))

S(i): The Silhouette Index for sample i.

a(i): The average dissimilarity of i to the other samples in the cluster that i is in.

d(i, C): The average dissimilarity of i to the samples in another cluster C.

b(i): min
C
d(i, C)

The value of the Silhouette Index is changing between -1 and 1. When S(i) is close to

1, that means, the dissimilarity of i to the other samples in the same cluster (a(i)) is

smaller than the minimum dissimilarity of i with the samples in another cluster (b(i)).

When a(i) is much more larger than b(i), the worst S(i) is found, that is -1 and it is

indicating the within cluster distance is much more higher than the between cluster

distance, that means the sample i is more close to the samples in another cluster rather

than the samples that it’s in the same cluster (Rousseeuw, 1987).

So, it can be concluded that sample i is clustered well, when the Silhouette Index is

close to 1. For measuring how well the data set is clustered, mean S(i) can be used.

Han et al. (2011) also stated that for measuring the clustering quality of an algorithm

on a data set, the average Silhouette Index value of samples can be taken. For the
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average Silhouette Index, the more it is close to 1, the more clusters are compact and

clearly separated.

In their paper, Wang et al. (2009) used the Silhouette Index for comparing the perfor-

mances of different clustering algorithms. In their study, they formed a graph including

the number of clusters (k) versus the average Silhouette Index obtained by applying

different clustering algorithms. As the most successful algorithm, they have selected

the algorithm that has the highest average Silhouette Index value in the formed graph,

since the quality of clustering gets better with a larger average Silhouette Index. Chen

et al. (2002) also used average Silhouette Index for comparing the clustering quality

of different algorithms in their data set and they have indicated that if a clustering

algorithm has smaller average Silhouette Index, it can be said that for this algorithm

there are more misclassified data in comparison to the algorithms that have larger

average Silhouette Index.

Another use case of average Silhouette Index versus number of clusters (k) graph is

to find the optimal number of clusters by selecting the k that has the largest average

Silhouette Index value (Ansari et al., 2015b).

4.2.2.2 C Index

The C Index is firstly defined in Hubert and Levin (1976) and it is calculated by the

formula below:

C =
S − Smin

Smax − Smin

S: Sum of distances of all pairs of samples in clusters (let’s say m is the number of

these pairs).

Smin: Sum of m smallest distances of pairs for the samples in the dataset.

Smax: Sum of m largest distances of pairs for the samples in the dataset.

C Index becomes close to 0 when S is very close to Smin, that indicates the sum of

within cluster distances are close to Smin, which is an indicator of accurate clustering.

C Index becomes close to 1 when S is very close to Smax, that indicates the clustering

could not be done for the nearest samples. In their paper, (Roux, 2006) indicated that
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for C Index, only the within cluster distances are taken into account, which makes the

C Index a compactness measure and the lower the C Index for an algorithm, the better

the data partitioned.

4.3 Computational Experiments for Measuring the Performances of the Algo-

rithms

For the given data sets, the performances of the algorithms are compared in two ways.

Firstly, the proposed algorithms are compared with the algorithm called discrete k-

median clustering (DKM) proposed by Seref et al. (2014), in which the cluster centers

are selected among an existing sample in the clusters. In the second way, the algorithm

performances are compared within each other.

The number of patterns used for the generation of the data set are giving the true cluster

numbers and for the true cluster numbers, since it is known from which pattern the

data is taken, the external indices can be calculated. In Table 4.10, it can be seen which

indices are calculated for data sets with different k values. In the table, "x" denotes,

the related index is calculated.
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Table 4.4: Indices calculated for different true number of clusters and k values

Indices
True Number of Clusters=2 (SCD-2, PD-2)

k=2 k=3 k=4 k=5 k=6 k=7 k=8

Silhouette Index x x x x x x x

C Index x x x x x x x

Rand Index x

Adjusted Rand Index x

Purity x

Indices
True Number of Clusters=3 (SCD-3, PD-3)

k=2 k=3 k=4 k=5 k=6 k=7 k=8

Silhouette Index x x x x x x x

C Index x x x x x x x

Rand Index x

Adjusted Rand Index x

Purity x

Indices
True Number of Clusters=4 (SCD-4, PD-4)

k=2 k=3 k=4 k=5 k=6 k=7 k=8

Silhouette Index x x x x x x x

C Index x x x x x x x

Rand Index x

Adjusted Rand Index x

Purity x

Indices
True Number of Clusters=5 (SCD-5, PD-5)

k=2 k=3 k=4 k=5 k=6 k=7 k=8

Silhouette Index x x x x x x x

C Index x x x x x x x

Rand Index x

Adjusted Rand Index x

Purity x
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4.4 Initialization of the Algorithms

For each data set for given k, at first 500 initialization are made for the first center

assignments and each algorithm is run 500 times with the same 500 initialization.

Since the center selection in DKM is conducted by selecting an existing time series

as the initial center while in CKM, CKM-H1, CKM-H2 and CKM-SH the centers of

each cluster can be selected from different time series for each timestamp, in order to

imitate the initialization, the steps in Figure 4.5 below are followed.

Step 1. For the given number k and the initialization number = 1, random
partitioning of time series data to the k clusters are conducted.

Step 2. For DKM, the cluster centers of each clusters are selected as the time series
that has the closest total distance to the other time series in the cluster.

Step 2. For CKM, CKM-H1, CKM-H2, CKM-SH, the cluster centers are selected
for each timestamp by minimizing the total distances of points of time series in each
timestamp to the center points.

Step 3. Check the initialization number.

If the initialization number < 500, go back to Step 1 by increasing the
initialization number by 1 and continue.

If the initialization number = 500, STOP.

Figure 4.5: Steps of initialization

The results of the 500 initializations are saved, and each algorithm run 500 times by

starting with these initializations. As the final center and cluster assignments for each

algorithm, the runs starting with the initialization that gives the minimum objective

function value is taken. Following that, the indices are calculated.

In Figure 4.6, it can be seen how the center selection can be different in a cluster

between DKM and CKM based algorithms. The bold line in DKM graph is indicating

the center of the cluster, the dots in the CKM based graph is indicating the centers in

each timestamp.
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Figure 4.6: Initial center selection in an example cluster for DKM and CKM
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4.5 Computational Results

Experimental studies were carried out on 64-bit Windows 10 PC with 3.6 GHz 6 core

Intel Xeon E-2246G processor and 16 GB RAM. All of the algorithms are coded in

MATLAB.

As it was mentioned in Section 4.3, after the application of the algorithms, the indices

are calculated for the formed data sets in SCD-2, SCD-3, SCD-4, SCD-5 and PD-2,

PD-3, PD-4, PD-5.

Since there is a huge number of data (3458 total data sets generated from SCD and

6844 total data sets generated from PD), in order to express and evaluate the results

for Silhouette Index and C Index, a ranking approach is used.

For each data set, the Silhouette Index matrix is formed that includes the Silhouette

indices for DKM, CKM, CKM-H1, CKM-SH and CKM-H2 in k = 2, k = 3, k = 4,

k = 5, k = 6, k = 7 and k = 8. For each Silhouette Index matrix, for each column

(for a k value), the Silhouette indices are ranked from 1 to 5. This ranking is done by

giving 1 to the cell that has the highest Silhouette Index and going on until 5, that is the

ranking score given to the lowest Silhouette Index. Same approach is also followed for

the C Index. For C Index, in a column, the smallest number is ranked as 1, while the

largest number is ranked as 5 since the smaller the C Index, the better the clustering

algorithm applied. In order to see the ranking method with examples for Silhouette

Index and C Index for a data set from SCD-2, Table 4.5 and Table 4.6 can be checked

respectively. This ranking approach is followed for all of the data sets in SCD-2,

SCD-3, SCD-4, SCD-5 and PD-2, PD-3, PD-4, PD-5.

With the ranking method, for each data set, we have ranking matrices for Silhouette

indices and C indices. The results are evaluated by taking average of the ranking

matrices of the data sets in SCD-2, SCD-3, SCD-4, SCD-5 and PD-2, PD-3, PD-4,

PD-5. In other words, for each data pool SCD and PD, we have 4 Silhouette Index

average ranking matrices and 4 C Index average ranking matrices. Due to the resultant

average matrices, it can be evaluated for which algorithm and given value of k, the

Silhouette indices and C indices give the highest values and lowest values. At that

point, taking the average of ranking matrices indicates, what is the rank that the related
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Table 4.5: Silhouette Index Table and Silhouette Index Ranking Table for an Example

Data Set in SC-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 0.1996 0.1746 0.1492 0.1532 0.1767 0.1816 0.1510

CKM 0.2272 0.1916 0.1592 0.1771 0.1908 0.1895 0.1799

CKM-H1 0.2272 0.1933 0.1654 0.1540 0.1792 0.1840 0.1748

CKM-H2 0.2215 0.1933 0.1644 0.1595 0.1879 0.1736 0.1793

CKM-SH 0.2272 0.1935 0.1644 0.1821 0.1973 0.1975 0.1902

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3 5 4 5 5 4 5

CKM 1 4 3 2 2 2 2

CKM-H1 1 3 1 4 4 3 4

CKM-H2 2 2 2 3 3 5 3

CKM-SH 1 1 2 1 1 1 1

Table 4.6: C Index Table and C Index Ranking Table for an Example Data Set in SC-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 0.2314 0.1805 0.1923 0.1986 0.1771 0.1835 0.2154

CKM 0.1716 0.1580 0.1642 0.1578 0.1483 0.1474 0.1575

CKM-H1 0.1716 0.1555 0.1534 0.1581 0.1554 0.1472 0.1547

CKM-H2 0.1804 0.1576 0.1521 0.1595 0.1525 0.1794 0.1664

CKM-SH 0.1716 0.1544 0.1521 0.1492 0.1414 0.1384 0.1409

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3 5 4 5 5 5 5

CKM 1 4 3 2 2 3 3

CKM-H1 1 2 2 3 4 2 2

CKM-H2 2 3 1 4 3 4 4

CKM-SH 1 1 1 1 1 1 1
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algorithm is taking on average.

For SCD-2, SCD-3, SCD-4, SCD-5, the average of rankings of Silhouette indices can

be seen in Table A.1 and the rankings of averages of Silhouette indices’ rankings can

be seen in Table 4.7. The average of rankings of C indices for SCD-2, SCD-3, SCD-4,

SCD-5 can be seen in Table A.2 and the rankings of averages of C indices’ rankings

can be seen in Table 4.8.

For PD-2, PD-3, PD-4, PD-5, the average of rankings of Silhouette indices can be seen

in Table A.3 and the rankings of averages of Silhouette indices’ rankings can be seen

in Table 4.9. The average of rankings of C indices for PD-2, PD-3, PD-4, PD-5 can be

seen in Table A.4 and the rankings of averages of C indices’ rankings can be seen in

Table 4.10.

For SCD-3-U, SCD-4-U and PD-3-U, PD-4-U, the average of rankings of Silhouette

indices can be seen in tables 4.11 and 4.12 and the rankings of averages of Silhouette

indices’ rankings can be seen in tables A.5 and A.6. The average of rankings of C

indices for SCD-3-U, SCD-4-U and PD-3-U, PD-4-U, can be seen in tables 4.13 and

4.14 and the rankings of averages of C indices’ rankings can be seen in tables A.7 and

A.8.

For PSA data set, the real Silhouette Index and C Index values for different k values

can be seen in tables 4.15 and 4.16.
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Table 4.7: Rankings of averages of Silhouette Indices’ rankings for data sets in SCD-2,

SCD-3, SCD-4, SCD-5

Rankings of averages of Silhouette Indices’ rankings

for data sets in SCD-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 4 2 2 2 2 2 3

CKM-H1 3 4 4 4 4 4 4

CKM-H2 2 3 3 3 3 3 2

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of Silhouette Indices’ rankings

for data sets in SCD-3

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 2 3 3 4 4 4 4

CKM-H1 4 4 2 2 3 3 3

CKM-H2 3 2 4 3 2 2 2

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of Silhouette Indices’ rankings

for data sets in SCD-4

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 4 2 2 2 2 2 4

CKM-H1 2 3 4 3 3 4 3

CKM-H2 3 4 3 4 4 3 2

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of Silhouette Indices’ rankings

for data sets in SCD-5

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 3 2 2 2 2 3 4

CKM-H1 2 3 3 3 3 2 3

CKM-H2 4 4 4 4 4 4 2

CKM-SH 1 1 1 1 1 1 1
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Table 4.8: Rankings of averages of C Indices’ rankings for data sets in SCD-2, SCD-3,

SCD-4, SCD-5

Rankings of averages of C Indices’ rankings for data sets in SCD-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 4 2 2 2 2 2 2

CKM-H1 3 4 4 4 4 4 4

CKM-H2 2 3 3 3 3 3 3

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of C Indices’ rankings for data sets in SCD-3

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 2 3 2 2 3 2 2

CKM-H1 4 4 3 4 4 4 4

CKM-H2 3 2 4 3 2 3 3

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of C Indices’ rankings for data sets in SCD-4

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 2 2 2 2 2 2 2

CKM-H1 4 4 4 4 4 4 4

CKM-H2 3 3 3 3 3 3 3

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of C Indices’ rankings for data sets in SCD-5

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 2 2 2 2 2 2 2

CKM-H1 4 4 4 4 4 4 4

CKM-H2 3 3 3 3 3 3 3

CKM-SH 1 1 1 1 1 1 1
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Table 4.9: Rankings of averages of Silhouette Indices’ rankings for data sets in PD-2,

PD-3, PD-4, PD-5

Rankings of averages of Silhouette Indices’ rankings

for data sets in PD-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2 4 4 4 4 4 4

CKM 1 2 2 2 2 2 2

CKM-H1 1 5 5 5 5 5 5

CKM-H2 1 3 3 3 3 3 3

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of Silhouette Indices’ rankings

for data sets in PD-3

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 3 5 5 5 5 5

CKM 4 1 2 2 2 2 2

CKM-H1 3 2 4 4 4 4 4

CKM-H2 2 1 3 3 3 3 3

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of Silhouette Indices’ rankings

for data sets in PD-4

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 4 4 4 2 2 2 2

CKM-H1 2 3 3 4 4 3 3

CKM-H2 3 2 2 3 3 4 4

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of Silhouette Indices’ rankings

for data sets in PD-5

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 4 4 4 2 2 2 2

CKM-H1 2 3 3 4 4 3 3

CKM-H2 3 2 2 3 3 4 4

CKM-SH 1 1 1 1 1 1 1
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Table 4.10: Rankings of averages of C Indices’ rankings for data sets in PD-2, PD-3,

PD-4, PD-5

Rankings of averages of C Indices’ rankings for data sets in PD-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3 5 5 4 4 4 3

CKM 2 2 2 2 2 2 2

CKM-H1 1 4 4 5 5 5 5

CKM-H2 1 3 3 3 3 3 4

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of C Indices’ rankings for data sets in PD-3

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 3 4 2 2 2 2 2

CKM-H1 4 3 3 4 4 4 4

CKM-H2 2 2 4 3 3 3 3

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of C Indices’ rankings for data sets in PD-4

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 4 4 4 2 2 2 2

CKM-H1 2 3 2 4 3 3 3

CKM-H2 3 2 3 3 4 4 4

CKM-SH 1 1 1 1 1 1 1

Rankings of averages of C Indices’ rankings for data sets in PD-5

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 5 5

CKM 4 4 3 2 2 2 2

CKM-H1 3 3 2 3 3 3 3

CKM-H2 2 2 4 4 4 4 4

CKM-SH 1 1 1 1 1 1 1
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Table 4.11: Rankings of averages of Silhouette Indices’ rankings for data sets in

SCD-3-U, SCD-4-U

Rankings of averages of Silhouette Indices’ rankings

for data sets in SCD-3-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 5 5 5 4 3

CKM 4 2 4 4 4 3 1

CKM-H1 1 4 2 3 3 2 2

CKM-H2 3 3 3 2 2 3 2

CKM-SH 2 1 1 1 1 1 1

Rankings of averages of Silhouette Indices’ rankings

for data sets in SC-4-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 4 4 4 4 5 4 5

CKM 3 3 3 3 4 2 4

CKM-H1 1 2 3 2 2 3 2

CKM-H2 2 3 2 2 3 2 3

CKM-SH 1 1 1 1 1 1 1

Table 4.12: Rankings of averages of Silhouette Indices’ rankings for data sets in

PD-3-U, PD-4-U

Rankings of averages of Silhouette Indices’ rankings

for data sets in PD-3-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3 2 5 5 3 4 5

CKM 2 1 3 4 4 5 2

CKM-H1 4 3 4 3 2 2 3

CKM-H2 2 5 2 2 3 3 4

CKM-SH 1 4 1 1 1 1 1

Rankings of averages of Silhouette Indices’ rankings

for data sets in PD-4-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 5 5 4 4 5 4 5

CKM 4 4 3 3 4 3 4

CKM-H1 3 1 2 2 3 2 3

CKM-H2 2 3 3 2 2 2 2

CKM-SH 1 2 1 1 1 1 1
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Table 4.13: Rankings of averages of C Indices’ rankings for data sets in SCD-3-U,

SCD-4-U

Rankings of averages of C Indices’ rankings

for data sets in SCD-3-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3 5 3 5 5 3 4

CKM 1 2 2 3 3 2 3

CKM-H1 5 4 4 4 4 4 4

CKM-H2 4 3 3 2 2 2 2

CKM-SH 2 1 1 1 1 1 1

Rankings of averages of C Indices’ rankings

for data sets in SCD-4-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3 5 4 5 5 4 5

CKM 1 1 2 3 2 2 2

CKM-H1 4 3 5 4 4 3 4

CKM-H2 3 4 3 2 3 2 3

CKM-SH 2 2 1 1 1 1 1

Table 4.14: Rankings of averages of C Indices’ rankings for data sets in PD-3-U,

PD-4-U

Rankings of averages of C Indices’ rankings

for data sets in PD-3-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3 3 5 4 4 3 3

CKM 2 1 4 3 4 5 2

CKM-H1 4 4 2 2 2 2 3

CKM-H2 2 3 3 4 3 4 4

CKM-SH 1 2 1 1 1 1 1

Rankings of averages of C Indices’ rankings

for data sets in PD-4-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3 2 4 5 5 5 5

CKM 1 2 3 3 4 4 4

CKM-H1 4 3 5 4 3 3 3

CKM-H2 2 1 2 2 2 2 2

CKM-SH 2 1 1 1 1 1 1
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Table 4.15: Silhouette Index Table for PSA data set

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 0.3787 0.3618 0.3140 0.2977 0.2668 0.2459 0.2148

CKM 0.4044 0.3766 0.3689 0.3022 0.2692 0.2461 0.2253

CKM-H1 0.4069 0.3771 0.3223 0.2984 0.2687 0.2302 0.2056

CKM-H2 0.4044 0.3766 0.3223 0.2984 0.2565 0.2306 0.2053

CKM-SH 0.4080 0.3771 0.3223 0.2984 0.2697 0.2759 0.2375

Table 4.16: C Index Table for PSA data set

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 0.1667 0.0763 0.0706 0.0750 0.0792 0.0847 0.0947

CKM 0.1196 0.0695 0.0527 0.0520 0.0819 0.0840 0.0927

CKM-H1 0.1165 0.0695 0.0680 0.0763 0.0812 0.0932 0.0983

CKM-H2 0.1196 0.0695 0.0680 0.0763 0.0889 0.0931 0.1025

CKM-SH 0.1156 0.0695 0.0680 0.0763 0.0812 0.0580 0.0684

For evaluation of the performances of the algorithms based on the external indices,

that are only calculated for the true number of clusters for a data set, the average values

of the indices for each data set in SCD-2, SCD-3, SCD-4 and SCD-5 and for each data

set in PD-2, PD-3, PD-4 and PD-5 are calculated. The resultant tables can be seen in

Table 4.17 and Table 4.18.

For the unbalanced data sets, the average values of the indices for data sets in SCD-3-U,

SCD-4-U, PD-3-U and PD-4-U can be seen in Table 4.19.

Also for PSA data set, the external indices are calculated for k=4, that is the true cluster

number. The results can be seen in Table 4.20
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Table 4.17: Averages of external indices for data sets in SCD-2, SCD-3, SCD-4, SCD-5

Algorithms

Average Adjusted Rand Index for

the data sets in:

SCD-2 SCD-3 SCD-4 SCD-5

DKM 0.5440 0.5507 0.4912 0.4223

CKM 0.6868 0.6568 0.6306 0.5937

CKM-H1 0.7136 0.7008 0.6792 0.6491

CKM-H2 0.6867 0.6683 0.6456 0.5986

CKM-SH 0.6857 0.6601 0.6382 0.5892

Algorithms

Average Rand Index for

the data sets in:

SCD-2 SCD-3 SCD-4 SCD-5

DKM 0.7718 0.7958 0.8024 0.8062

CKM 0.8432 0.8408 0.8535 0.8611

CKM-H1 0.8566 0.8625 0.8747 0.8808

CKM-H2 0.8431 0.8477 0.8615 0.8635

CKM-SH 0.8426 0.8432 0.8579 0.8594

Algorithms

Average Purity for

the data sets in:

SCD-2 SCD-3 SCD-4 SCD-5

DKM 0.9332 0.9133 0.7049 0.6352

CKM 0.9755 0.9933 0.7948 0.7556

CKM-H1 0.9753 0.9867 0.8285 0.7943

CKM-H2 0.9767 0.9933 0.8091 0.7640

CKM-SH 0.9743 0.9933 0.8050 0.7573
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Table 4.18: Averages of external indices for data sets in PD-2, PD-3, PD-4, PD-5

Algorithms

Average Adjusted Rand Index for

the data sets in:

PD-2 PD-3 PD-4 PD-5

DKM 0.8385 0.8334 0.6847 0.6106

CKM 0.9442 1.0000 0.9575 0.8101

CKM-H1 0.9448 1.0000 0.9887 0.7801

CKM-H2 0.9457 1.0000 0.9837 0.7653

CKM-SH 0.9447 1.0000 0.9850 0.7800

Algorithms

Average Rand Index for

the data sets in:

PD-2 PD-3 PD-4 PD-5

DKM 0.9192 0.9254 0.8762 0.8645

CKM 0.9721 1.0000 0.9821 0.9305

CKM-H1 0.9721 1.0000 0.9953 0.9199

CKM-H2 0.9724 1.0000 0.9932 0.9146

CKM-SH 0.9717 1.0000 0.9937 0.9195

Algorithms

Average Purity for

the data sets in:

PD-2 PD-3 PD-4 PD-5

DKM 0.9332 0.9117 0.8003 0.7262

CKM 0.9755 1.0000 0.9681 0.8482

CKM-H1 0.9753 1.0000 0.9922 0.8307

CKM-H2 0.9767 1.0000 0.9890 0.8226

CKM-SH 0.9743 1.0000 0.9892 0.8270
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Table 4.19: Averages of external indices for data sets in SCD-3-U, SCD-4-U, PD-3-U,

PD-4-U

Algorithms
Average Adjusted Rand Index for the data sets in

SCD-3-U SCD-4-U PD-3-U PD-4-U

DKM 0.1172 0.2844 0.8388 0.0186

CKM 0.2845 0.4220 0.9165 0.1098

CKM-H1 0.4412 0.4262 0.9165 0.2171

CKM-H2 0.3257 0.4022 0.9165 0.1062

CKM-SH 0.2798 0.4039 0.9165 0.1171

Algorithms
Average Rand Index for the data sets in

SCD-3-U SCD-4-U PD-3-U PD-4-U

DKM 0.5998 0.7233 0.9261 0.5998

CKM 0.6722 0.7770 0.9885 0.6511

CKM-H1 0.7296 0.7707 0.9885 0.6712

CKM-H2 0.6912 0.7699 0.9885 0.6506

CKM-SH 0.6707 0.7702 0.9885 0.6552

Algorithms
Average Purity for the data sets in

SCD-3-U SCD-4-U PD-3-U PD-4-U

DKM 0.5333 0.6150 0.9111 0.4360

CKM 0.6400 0.6917 0.9817 0.5400

CKM-H1 0.7556 0.6800 0.9817 0.6200

CKM-H2 0.6778 0.6800 0.9817 0.5320

CKM-SH 0.6511 0.6783 0.9817 0.5360

Table 4.20: External indices for PSA data set

Algorithms
External Indices

ARI RI Purity

DKM 0.0065 0.5471 0.5901

CKM 0.0540 0.5571 0.6242

CKM-H1 0.0102 0.5492 0.5901

CKM-H2 0.0102 0.5492 0.5901

CKM-SH 0.0102 0.5492 0.5901
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4.6 The Overall Rankings of the Algorithms and Evaluation

In order to evaluate the algorithms based on the internal indices, the ranking data in

Table 4.7 and Table 4.8 for the data sets generated from SCD and the ranking data in

Table 4.9 and Table 4.10 for the data sets generated from PD, are formed. For making a

comparison between the algorithms, the overall rankings of the Silhouette Indices and

the overall rankings of the C Indices of different data groups in each data pool should

be considered. Realising that the decision of selecting the best algorithm and ranking

the algorithms due to their performances, multiple criteria should be considered, in

order to compare the algorithm performances, TOPSIS (Technique of Order Preference

Similarity to the Ideal Solution) which is a multi criteria decision making method, is

used.

Under this approach, the best algorithm is the one that is the closest alternative to

the ideal solution and furthest alternative to the nadir solution (Ishizaka and Nemery,

2013). In the application of TOPSIS, the decision is given due to the relative closeness

coefficient of the alternatives, that is in between 0 and 1. If the relative closeness

coefficient of an alternative approaches to 1, that means the alternative is closer to the

ideal solution. For applying TOPSIS, the median rankings of averages of the Silhouette

indices’ rankings and the median rankings of averages of the C indices’ rankings for

each algorithms in tables 4.7 and 4.8 respectively for SCD and in tables 4.9 and 4.10

for PD are calculated.

In the first applied TOPSIS for SCD, the alternatives are the algorithms DKM, CKM,

CKH-H1, CKM-SH and CKM-H2, and 4 criteria with equal weights (0.25) are the

median rankings of averages of the Silhouette indices’ rankings of data sets in SCD-2,

SCD-3, SCD-4 and SCD-5. The criteria will be named as S1, S2, S3, S4 in tables. The

values of criteria for each alternative and the relative closeness coefficients found by

applying TOPSIS can be seen in Table 4.21.

In the second applied TOPSIS for SCD, the alternatives are the same and 4 criteria with

equal weight (0.25) are the median rankings of averages of the C indices’ rankings of

data sets in SCD-2, SCD-3, SCD-4 and SCD-5. The criteria will be named as C1, C2,

C3, C4 in tables. The related values can be seen in Table 4.22.
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In the final TOPSIS applied for SCD, the criteria in firstly and secondly applied

TOPSIS are combined with equal weight and the weight is taken as 0.125 for each

criteria. The related values can be seen in Table 4.23.

For the data sets in PD-2, PD-3, PD-4 and PD-5, for deciding which algorithm is

the best alternative, again TOPSIS is applied three times with the same logic that is

explained for the data sets generated from SCD above. The related tables for the first,

second and final applied TOPSIS can be seen in tables 4.24, 4.25 and 4.26 respectively.

Table 4.21: Performances of the alternatives for criteria S1, S2, S3, S4 and Relative

Closeness Scores of the algorithms for the data sets generated from SCD

Alternatives
Criteria

The Relative Closeness Coefficient
S1 S2 S3 S4

DKM 5 5 5 5 0.00

CKM 2 4 2 2 0.61

CKM-H1 4 3 3 3 0.44

CKM-H2 3 2 3 4 0.50

CKM-SH 1 1 1 1 1.00

Table 4.22: Performances of the alternatives for criteria C1, C2, C3, C4 and Relative

Closeness Scores of the algorithms for the data sets generated from SCD

Alternatives
Criteria

The Relative Closeness Coefficient
C1 C2 C3 C4

DKM 5 5 5 5 0.00

CKM 2 2 2 2 0.75

CKM-H1 4 4 4 4 0.25

CKM-H2 3 3 3 3 0.50

CKM-SH 1 1 1 1 1.00
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Table 4.23: Performances of the alternatives for criteria S1, S2, S3, S4, C1, C2, C3, C4

and Relative Closeness Scores of the algorithms for the data sets generated from SCD

Alternatives
Criteria

The Relative Closeness Coefficient
S1 S2 S3 S4 C1 C2 C3 C4

DKM 5 5 5 5 5 5 5 5 0.00

CKM 2 4 2 2 2 2 2 2 0.67

CKM-H1 4 3 3 3 4 4 4 4 0.36

CKM-H2 3 2 3 4 3 3 3 3 0.50

CKM-SH 1 1 1 1 1 1 1 1 1.00

Table 4.24: Performances of the alternatives for criteria S1, S2, S3, S4 and Relative

Closeness Scores of the algorithms for the data sets generated from PD

Alternatives
Criteria

The Relative Closeness Coefficient
S1 S2 S3 S4

DKM 4 5 5 5 0.11

CKM 2 2 2 2 0.75

CKM-H1 5 4 3 3 0.35

CKM-H2 3 3 3 3 0.50

CKM-SH 1 1 1 1 1.00

Table 4.25: Performances of the alternatives for criteria C1, C2, C3, C4 and Relative

Closeness Scores of the algorithms for the data sets generated from PD

Alternatives
Criteria

The Relative Closeness Coefficient
C1 C2 C3 C4

DKM 4 5 5 5 0.11

CKM 2 2 2 2 0.75

CKM-H1 5 4 3 3 0.35

CKM-H2 3 3 3 4 0.44

CKM-SH 1 1 1 1 1.00
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Table 4.26: Performances of the alternatives for criteria S1, S2, S3, S4, C1, C2, C3, C4

and Relative Closeness Scores of the algorithms for the data sets generated from PD

Alternatives
Criteria

The Relative Closeness Coefficient
S1 S2 S3 S4 C1 C2 C3 C4

DKM 4 5 5 5 4 5 5 5 0.11

CKM 2 2 2 2 2 2 2 2 0.75

CKM-H1 5 4 3 3 5 4 3 3 0.35

CKM-H2 3 3 3 3 3 3 3 4 0.47

CKM-SH 1 1 1 1 1 1 1 1 1.00

When the performances of the algorithms, due to internal indices for the data sets

generated from SCD, are reviewed from tables 4.21, 4.22 and 4.23, for all of the

TOPSIS methods applied, the best alternative among the algorithms is CKM-SH since

it has the highest relative closeness coefficient. The performances of CKM, CKM-H2,

CKM-H1 and DKM follows it respectively.

Similarly, when the TOPSIS applied due to the internal indices for the data sets

generated from PD, the performances of the algorithms are in the same order. The

alternative that has the highest relative closeness coefficient is CKM-SH and CKM,

CKM-H2, CKM-H1 and DKM follows it respectively. It is an expected result that

CKM-SH is the best alternative among the other CKM based algorithms, since it is a

search-based algorithm. Also it can be observed that CKM is more successful than the

proposed algorithms that includes Haar wavelet decomposition and if the ones that

includes Haar wavelet decomposition are compared, it is apparent that CKM with Haar

Wavelet Decomposition without Projection (CKM-H2) performs better than CKM

with Haar Wavelet Decomposition (CKM-H1).

TOPSIS is also applied to the unbalanced data sets generated from SCD and PD.

For SCD, the criteria are the median rankings of averages of the Silhouette indices’

rankings of data sets in SCD-3-U and SCD-4-U, that are named as S1-U, S2-U and the

median rankings of averages of the C indices’ rankings of data sets in SCD-3-U and

SCD-4-U, that are named as C1-U, C2-U. For all of the applied TOPSIS, the criteria

have equal weights. The related results can be seen in tables 4.27, 4.28 and 4.29. The

same approach is also followed for PD-3-U and PD-4-U. The results can be seen in

tables 4.30, 4.31 and 4.32.
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When the performances of the algorithms, due to internal indices for the unbalanced

data sets, it can be realised that CKM-SH is again the best algorithm while DKM

gives the smallest relative closeness coefficient which indicates it is the least preferred

algorithm. While for the balanced data sets, CKM is the second best algorithm among

the alternatives, for the unbalanced data sets, it is realised that CKM-H1 or CKM-H2

can give better results than CKM in tables 4.27, 4.30, 4.31 and 4.32 .

According to the Silhouette Index table (Table 4.15) and C Index table (Table 4.16)

for PSA data set, CKM based algorithms performs better than DKM since in most of

the given k values, CKM based algorithms are giving higher Silhouette Indices and

lower C Indices. For k=4, that is the true number of clusters, CKM has the highest

Silhouette Index and lowest C Index, that makes it the best alternative, and CKM-H1,

CKM-H2 and CKM-SH follow it with equal values of indices.
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Table 4.27: Performances of the alternatives for criteria S1-U, S2-U and Relative

Closeness Scores of the algorithms for the data sets in SCD-3-U and SCD-4-U

Alternatives
Criteria

The Relative Closeness Coefficient
S1-U S2-U

DKM 5 4 0.00

CKM 4 3 0.29

CKM-H1 2 2 0.71

CKM-H2 3 2 0.58

CKM-SH 1 1 1.00

Table 4.28: Performances of the alternatives for criteria C1-U, C2-U and Relative

Closeness Scores of the algorithms for the data sets in SCD-3-U and SCD-4-U

Alternatives
Criteria

The Relative Closeness Coefficient
C1-U C2-U

DKM 4 5 0.00

CKM 2 2 0.71

CKM-H1 4 4 0.18

CKM-H2 2 3 0.57

CKM-SH 1 1 1.00

Table 4.29: Performances of the alternatives for criteria S1-U, S2-U, C1-U, C2-U

and Relative Closeness Scores of the algorithms for the data sets in SCD-3-U and

SCD-4-U

Alternatives
Criteria

The Relative Closeness Coefficient
S1-U S2-U C1-U C2-U

DKM 5 4 4 5 0.00

CKM 4 3 2 2 0.49

CKM-H1 2 2 4 4 0.45

CKM-H2 3 2 2 3 0.57

CKM-SH 1 1 1 1 1.00
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Table 4.30: Performances of the alternatives for criteria S1-U, S2-U and Relative

Closeness Scores of the algorithms for the data sets in PD-3-U and PD-4-U

Alternatives
Criteria

The Relative Closeness Coefficient
S1-U S2-U

DKM 4 5 0.00

CKM 3 4 0.28

CKM-H1 3 2 0.57

CKM-H2 3 2 0.57

CKM-SH 1 1 1.00

Table 4.31: Performances of the alternatives for criteria C1-U, C2-U and Relative

Closeness Scores of the algorithms for the data sets in PD-3-U and PD-4-U

Alternatives
Criteria

The Relative Closeness Coefficient
C1-U C2-U

DKM 3 5 0.00

CKM 3 3 0.39

CKM-H1 2 3 0.50

CKM-H2 3 2 0.53

CKM-SH 1 1 1.00

Table 4.32: Performances of the alternatives for criteria S1-U, S2-U, C1-U, C2-U and

Relative Closeness Scores of the algorithms for the data sets in PD-3-U and PD-4-U

Alternatives
Criteria

The Relative Closeness Coefficient
S1-U S2-U C1-U C2-U

DKM 4 5 3 5 0.00

CKM 3 4 3 3 0.34

CKM-H1 3 2 2 3 0.54

CKM-H2 3 2 3 2 0.55

CKM-SH 1 1 1 1 1.00
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When the algorithms DKM, CKM, CKM-H1, CKM-SH and CKM-H1 are evaluated

based on external indices, Table 4.17 and Table 4.18 can be checked for the average

external indices for the data sets generated from SCD and PD respectively. In Table

4.17, for the average Adjusted Rand Index, Rand Index and Purity, values of each

indices of CKM based algorithms (CKM, CKM-H1, CKM-SH, CKM-H2) are very

close to each other and their value is higher than DKM, which indicates, based on

the external indices, CKM based algorithms are better alternatives, when they are

compared with DKM.

The same comment and performance evaluation can be also done due to the values

of external indices in Table 4.18. Again, when the performances of the algorithms

are checked due to the external indices for the data sets generated from PD, the CKM

based algorithms performs better than DKM.

When the resultant clusters formed by the algorithms applied on data sets are checked,

it can be also realised that the CKM based algorithms are better in terms of compactness

of similar data in the same cluster and separation of dissimilar data in different clusters.

The visualisation of the resultant clusters after the algorithms applied on example data

sets can be seen in figures 4.7 and 4.8. In the figures, each color represents a resultant

cluster.

For the unbalanced data sets the results of the external indices can be seen in Table

4.19. In the table, it can be realised that the CKM based algorithms have very close

results and they have higher values than DKM which makes us conclude CKM based

algorithms performed better than DKM based on external indices for the unbalanced

data sets.

For the real PSA data set, by knowing the true labels of the clusters, the external

indices are also calculated. Due to the results in Table 4.20, based on all external

indices, CKM performs better than the other algorithms and CKM-H1, CKM-H2 and

CKM-SH follow it with equal values.
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Average computing times of the algorithms DKM, CKM, CKM-H1, CKM-H2 and

CKM-SH for data sets in SCD-2, SCD-3, SCD-4, SCD-5 and PD-2, PD-3, PD-4, PD-5

can be seen in tables 4.33 and 4.34, that summarizes how computational times differ

due to the applied algorithms. Due to the tables, execution time of DKM is shorter

than the CKM based algorithms since in the approach that DKM follows, centers of

clusters are selected in a global view, as an existing time series in the cluster. CKM

based approaches are selecting the centers for each timestamp, with a local approach,

that makes the execution time longer.

When CKM is compared with the algorithms that are using Haar wavelet decomposi-

tion, CKM-H1, CKM-H2 and CKM-SH, it can be realised that the application of CKM

in each Haar level increases the execution time. The algorithm that has the highest

execution time is CKM-SH, since it is following a search based approach and applying

the clustering for 11 threshold levels to find the best result.

It can be also realised that as the number of time series in the data set increases, the exe-

cution time also increases too since the average execution times of the algorithms from

SCD-2 to SCD-5 in Table 4.33 and from PD-2 to PD-5 in Table 4.34 are increasing.
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CHAPTER 5

CONCLUSION

Clustering is a widely used unsupervised learning method that aims to group similar

data in the same clusters and separate the dissimilar data to the different clusters. Clus-

tering can be applied to various data types. In this thesis, we address the application

of clustering algorithms on time series data that can be defined as the chronologic

collection of data.

In this thesis, for the solution of time series clustering problem we are proposing two

main approaches. In the first approach, the clustering problem is considered as an

optimization problem and an optimization model is proposed for the solution of it.

In the defined algorithm, the raw time series data is used and the problem is solved

by using the proposed optimization problem. In the second approach, three other

algorithms are proposed which are also following the optimization problem approach

but instead of using raw data, transformed data is used.

In the literature, the studies about time series clustering select the centers of the clusters

among the existing time series. In this study, we have developed a different center

selection method. In our method, the center points of a cluster are selected for each

timestamp and when these center points are combined, it is not forming an existing

time series. For comparing the performances of the proposed center based algorithms,

an algorithm called Discrete k-Median Algorithm (DKM), that is proposed in the paper

of Seref et al. (2014) and follows the selection of centers from the existing time series,

is used.

By following the logic of selecting the cluster center points for each timestamp,

four algorithms are proposed, that are Center Based k-Median Algorithm (CKM)
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in which the raw data is used, CKM with Haar Wavelet Decomposition (CKM-H1),

CKM with Haar Wavelet Decomposition without Projection (CKM-H2) and CKM

with Search Based Haar Wavelet Decomposition (CKM-SH). In CKM, that is the first

proposed algorithm, at first the optimization problem formulation is given, in which the

objective function aims to assign the given n samples to the k clusters, by minimizing

the distance between time series data to the center points in the clusters which data

are member of. CKM is solved by dividing the problem into two subproblems that

are CKM-S1 and CKM-S2. In CKM-S1, the cluster centers are assumed to be known

and the problem is solved to find the cluster assignments of the data. Following that,

CKM-S2 is solved to find the new centers from the resultant cluster assignments of

CKM-S1. The algorithm goes back to CKM-S1 and recursively continue to be solved,

until no better objective function (no better cluster assignments) can be done. In

CKM-H1, at first the Haar wavelet decomposition of each time series is calculated.

Haar wavelet decomposition can be defined as smoothing the time series by taking

average of two successive values in the sample in a defined resolution level. Following

this step, the same two subproblem logic applied in CKM is followed. The difference

is the algorithm is started to be solved with the lowest resolution (the most transformed

time series) of the data, and after the application of CKM, the new centers are projected

and used as the initial center assignments for the next lowest resolution which CKM

will be applied again. The algorithm continue to be applied like that until it is solved

for the highest resolution level (original data). CKM-H2 is different than CKM-H1 in

the center projection step. The last proposed algorithm, CKM-SH is the search based

version of CKM-H2.

For evaluating the performances of the algorithms, data sets that are generated from

two different data pools namely Synthetic Control Chart Time Series Data Pool (SCD)

and Data Pool Including Periodicity (PD) are used. In the data pools, there are 14

and 18 different patterns respectively. By taking combination of 2, 3, 4 and 5 patterns,

new data sets are generated, that are named as the data sets in SCD-2, SCD-3, SCD-4,

SCD-5 and PD-2, PD-3, PD-4, PD-5. In addition to the formed balanced data sets,

unbalanced data sets, which have patterns that include different number of time series

are formed too. The unbalanced data sets, which are composed of 3 patterns, are

named as data sets in SCD-3-U and PD-3-U and the ones formed with 4 patterns are
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named as data sets in SCD-4-U and PD-4-U. Finally, the tests are conducted to a real

data set that is called PSA Data Set, which is formed by time series data that includes

4 labels.

In order to evaluate the performances of the algorithms, the compactness inside the

cluster and the separation of the data in different clusters needed to be checked. For

this purpose, as the performance measures, three external and two internal indices are

used. For the calculation of the external indices, true cluster information is needed. As

a result, the performance evaluation due to external indices are made for the data sets

which k is equal to the combined pattern number used for the formation of the data

set. The used external indices are Rand Index, Adjusted Rand Index and Purity. The

internal indices, Silhouette Index and C Index, do not need any additional information

other than the resultant clusters and evaluate the compactness and separation internally.

For each data set, for the resultant clusters of the algorithms, the internal indices are

calculated for k = 2, 3, 4, 5, 6, 7 and 8.

For evaluating the internal indices, TOPSIS (Technique of Order Preference Similarity

to the Ideal Solution), that is a multi criteria decision making method is used. From

best to the worst alternative, the performances of the algorithms are sorted as CKM-SH,

CKM, CKM-H2, CKM-H1 and DKM for the balanced data sets in SCD-2, SCD-3,

SCD-4, SCD-5 and PD-2, PD-3, PD-4, PD-5. When the evaluation of the algorithms

is made, based on the calculated internal indices for the unbalanced data sets in SCD-

3-U, SCD-4-U and PD-3-U, PD-4-U, it can be concluded that CKM-SH is the best

alternative again and CKM-H1 and CKM-H2 give better results than CKM. For the

PSA data set, it can be also concluded that CKM-SH is the best alternative while DKM

is the least preferred.

Additionally, due to the evaluation of the external indices, the proposed center based

algorithms performed well when they are compared with the resultant clusters formed

by DKM. Due to these results, it is concluded that the clusters formed by the proposed

center based algorithms are in more compact in terms of grouping similar data and

well separated in terms of separating dissimilar data when they are compared with

clusters formed by the algorithm approach that is selecting the cluster centers from the

existing time series.
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By seeing the CKM based algorithms performed better than DKM due to the evalu-

ations based on internal and external indices, it can be concluded that CKM based

algorithms can be used in real life applications of time series clustering such as finding

stock option moves that follows similar patterns, clustering test results of patients

which might help to group the results due to disease levels, identification of countries

that has similar increases and decreases in their population levels, determining coasts

that has similar temperature moves, that can be used in geographical analysis.

While the advantage of the CKM based algorithms is to provide more compact clusters

in terms of grouping similar data, the disadvantage is to have higher computing time

when the CKM based algorithms are compared with DKM. The reason is since CKM

based algorithms are selecting centers for each timestamp, it increases the algorithm

execution time. It can be also realised that the CKM-SH has the highest computing

time, since it is a search based algorithm and trying to find the best result while running

the algorithm for different threshold levels.

In this study, the proposed algorithms are compared with DKM. A future study may be

comparing the proposed algorithms with the algorithms proposed in TSclust package

in R, such as the algorithm proposed by Maharaj (2000). TSclust package can be also

used in the algorithm evaluations, in addition to the used indices in this study. The

data sets used in our study are deterministic and do not contain noise. Another future

research may be testing the algorithms with data sets that have stochastic natures and

with data sets that contain noise. Additional future study might be conducting test of

significance for the evaluation of the results.
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APPENDIX A

APPENDIX

In this appendix, the average of rankings of Silhouette and C indices for the data sets

in SCD-2, SCD-3, SCD-4, SCD-5, SCD-3-U, SCD-4-U and the average of rankings

of Silhouette and C indices for the data sets in PD-2, PD-3, PD-4, PD-5, PD-3-U,

PD-4-U are provided.
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Table A.1: The averages of rankings of Silhouette Indices for data sets in SCD-2,

SCD-3, SCD-4, SCD-5

Averages of rankings of Silhouette Indices for data sets in SCD-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2.4066 3.5275 4.011 4.5055 4.5604 4.5934 4.4396

CKM 1.6044 2.1868 2.4945 2.5714 2.4945 2.5495 2.7912

CKM-H1 1.5275 2.5495 2.8022 3.2857 3.2967 3.5165 3.6154

CKM-H2 1.4725 2.3077 2.5714 2.6813 2.5934 2.6154 2.4505

CKM-SH 1.1868 1.3297 1.3956 1.3736 1.3077 1.2857 1.1978

Averages of rankings of Silhouette Indices for data sets in SCD-3

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2.6896 3.4863 4.1511 4.2747 4.3214 4.4615 4.522

CKM 1.4973 2.0659 2.5357 2.7335 2.8352 2.9753 3.0412

CKM-H1 1.6456 2.0852 2.4863 2.5495 2.7418 2.8407 2.794

CKM-H2 1.6374 2.0357 2.5824 2.7005 2.6484 2.6181 2.7198

CKM-SH 1.2527 1.3379 1.4863 1.478 1.4396 1.3901 1.4038

Averages of rankings of Silhouette Indices for data sets in SCD-4

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2.9311 3.5135 4.2058 4.4016 4.4306 4.4795 4.4835

CKM 1.7732 1.9491 2.3467 2.6214 2.6593 2.7493 2.9001

CKM-H1 1.7263 2.1768 2.5564 2.6673 2.7073 2.7952 2.8492

CKM-H2 1.7473 2.2857 2.5315 2.7163 2.7992 2.7942 2.7812

CKM-SH 1.3377 1.5015 1.5295 1.5994 1.6144 1.5644 1.5165

Averages of rankings of Silhouette Indices for data sets in SCD-5

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3.1598 3.7403 4.2223 4.5045 4.5654 4.5684 4.5854

CKM 1.9211 2.1324 2.2827 2.4965 2.6289 2.7398 2.8591

CKM-H1 1.7717 2.1698 2.5654 2.7393 2.7038 2.6748 2.7797

CKM-H2 1.9261 2.3247 2.6314 2.7398 2.7507 2.7862 2.7133

CKM-SH 1.4066 1.503 1.6054 1.6119 1.5834 1.5754 1.494
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Table A.2: The averages of rankings of C Indices for data sets in SCD-2, SCD-3,

SCD-4, SCD-5

Averages of rankings of C Indices for data sets in SCD-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2.3516 3.3736 4.1209 4.5495 4.5604 4.6484 4.6264

CKM 1.6154 2.3077 2.3736 2.5495 2.5055 2.4835 2.5824

CKM-H1 1.5934 2.6154 2.8352 3.044 3.4176 3.3077 3.4396

CKM-H2 1.4066 2.4396 2.5275 2.6593 2.7802 2.9231 2.6703

CKM-SH 1.1758 1.4286 1.3736 1.3956 1.2637 1.3407 1.2967

Averages of rankings of C Indices for data sets in SCD-3

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2.3352 3.3407 4.1154 4.3434 4.4231 4.5385 4.6346

CKM 1.5797 2.1236 2.5522 2.5934 2.7308 2.6648 2.7308

CKM-H1 1.9505 2.3132 2.6154 2.7637 2.8297 2.8736 2.9203

CKM-H2 1.7170 1.9918 2.6264 2.6621 2.6593 2.7582 2.7857

CKM-SH 1.3654 1.3214 1.5055 1.4258 1.4066 1.4451 1.4313

Averages of rankings of C Indices for data sets in SCD-4

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2.5445 3.2697 4.1369 4.5065 4.5544 4.6034 4.6304

CKM 1.7183 2.0100 2.3477 2.5025 2.4655 2.5385 2.6404

CKM-H1 2.2028 2.5305 2.7842 2.7962 2.8591 2.9720 2.9780

CKM-H2 1.9431 2.2857 2.4356 2.7073 2.7772 2.8202 2.8022

CKM-SH 1.4755 1.5105 1.4905 1.5994 1.5724 1.5574 1.5045

Averages of rankings of C Indices for data sets in SCD-5

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2.9101 3.4256 4.1149 4.5240 4.6354 4.6638 4.7108

CKM 1.7742 2.0544 2.3347 2.4321 2.5340 2.5265 2.6019

CKM-H1 2.2323 2.6813 2.8127 2.9156 2.8137 2.8596 2.9216

CKM-H2 2.0579 2.3826 2.5534 2.6434 2.7522 2.7502 2.7303

CKM-SH 1.4920 1.5300 1.5544 1.5654 1.5989 1.5594 1.5165
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Table A.3: The averages of rankings of Silhouette Indices for data sets in PD-2, PD-3,

PD-4, PD-5

Averages of rankings of Silhouette Indices for data sets in PD-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.1458 3.4722 3.4861 3.5208 3.5000 3.5486 3.5625

CKM 1.0000 1.7569 2.1458 1.8819 2.0694 2.0278 1.9236

CKM-H1 1.0000 3.8958 4.1458 4.3403 4.3542 4.3819 4.4653

CKM-H2 1.0000 3.0764 2.7222 2.7917 2.7431 2.8681 2.7361

CKM-SH 1.0000 1.5833 1.4792 1.5972 1.4444 1.4514 1.5208

Averages of rankings of Silhouette Indices for data sets in PD-3

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.3125 1.3646 3.6920 3.9792 3.9940 3.8973 3.7932

CKM 1.0417 1.0074 1.9955 2.5417 2.4568 2.3795 2.3601

CKM-H1 1.0238 1.0089 3.6161 3.4048 3.4509 3.5551 3.5491

CKM-H2 1.0223 1.0074 2.9762 2.7812 2.6830 2.6339 2.6399

CKM-SH 1.0119 1.0074 1.6473 1.4821 1.4643 1.4583 1.5060

Averages of rankings of Silhouette Indices for data sets in PD-4

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.5055 1.7386 1.8611 4.0461 3.9048 3.9102 3.9018

CKM 1.1974 1.2257 1.2098 2.3547 2.3894 2.4633 2.6215

CKM-H1 1.0923 1.1404 1.1538 3.1974 3.1875 3.1220 3.0228

CKM-H2 1.1062 1.1319 1.1434 2.7946 3.0357 3.1587 3.1151

CKM-SH 1.0704 1.0987 1.0942 1.5923 1.7386 1.7019 1.6860

Averages of rankings of Silhouette Indices for data sets in PD-5

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.5320 1.8958 2.3966 3.3681 4.1014 4.1285 4.0694

CKM 1.1825 1.4504 1.7381 2.2421 2.7230 2.7475 2.7540

CKM-H1 1.0970 1.2436 1.6758 2.4695 2.9070 2.8931 2.9296

CKM-H2 1.1062 1.2262 1.6372 2.3666 2.8514 2.9137 2.9568

CKM-SH 1.0786 1.1582 1.3247 1.4601 1.4990 1.5164 1.5402
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Table A.4: The averages of rankings of C Indices for data sets in PD-2, PD-3, PD-4,

PD-5

Averages of rankings of C Indices for data sets in PD-2

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.3194 4.0069 3.9306 3.7222 3.5764 3.3403 2.8542

CKM 1.1736 1.8125 2.0556 1.9028 1.7778 1.8681 1.9792

CKM-H1 1.1111 3.2847 3.7431 4.1875 4.2708 4.3333 4.3056

CKM-H2 1.1111 3.2708 2.7639 2.9583 2.9722 2.9236 3.0486

CKM-SH 1.1111 1.5278 1.4653 1.5208 1.6250 1.6458 1.8611

Averages of rankings of C Indices for data sets in PD-3

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.4018 1.4271 4.0744 4.2113 4.0908 3.9330 3.8110

CKM 1.1384 1.1057 2.0298 2.0640 2.0208 2.0387 2.1324

CKM-H1 1.1429 1.0699 3.1369 3.4509 3.7039 3.7039 3.6801

CKM-H2 1.1354 1.0685 3.1637 3.1086 2.9881 2.9152 2.8318

CKM-SH 1.1265 1.0461 1.5818 1.5640 1.5506 1.5714 1.6012

Averages of rankings of C Indices for data sets in PD-4

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.5427 1.7078 1.9127 4.2564 4.3085 4.3328 4.2872

CKM 1.2158 1.2664 1.2217 2.2827 2.1935 2.1865 2.2148

CKM-H1 1.1463 1.2078 1.1860 3.0670 3.0258 2.9906 2.9554

CKM-H2 1.1483 1.1870 1.1949 2.9727 3.2019 3.3075 3.3353

CKM-SH 1.1171 1.1513 1.1285 1.5387 1.6463 1.6558 1.6776

Averages of rankings of C Indices for data sets in PD-5

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.5312 1.8827 2.5089 3.4330 4.1496 4.2450 4.2946

CKM 1.1944 1.4638 1.7245 2.1049 2.4668 2.4082 2.3748

CKM-H1 1.1471 1.2631 1.7021 2.4501 2.9000 2.9459 2.9469

CKM-H2 1.1429 1.2326 1.7416 2.5826 3.1235 3.1307 3.1967

CKM-SH 1.1210 1.1647 1.3539 1.5040 1.5657 1.5756 1.5848
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Table A.5: The averages of rankings of Silhouette Indices for data sets in SCD-3-U,

SCD-4-U

Averages of rankings of Silhouette Indices

for data sets in SCD-3-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 4.6 5 4.6 4.8 5 4.6 5

CKM 3.6 2.6 3.6 3.4 4 2.8 2

CKM-H1 1.2 3 2.8 2.6 3 2.2 3

CKM-H2 2.6 2.8 3 2.2 2 2.8 3

CKM-SH 1.8 1.6 1 1.2 1 2 2

Averages of rankings of Silhouette Indices

for data sets in SCD-4-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3.6 4.8 4.2 4.6 4.4 4.8 4.8

CKM 3 2.8 2.4 3 3.6 2.6 3.4

CKM-H1 2 2.2 2.4 2.2 1.8 2.8 2.2

CKM-H2 2.2 2.8 2.2 2.2 2.2 2.6 2.4

CKM-SH 2 1.8 1.8 1.6 1.6 1.8 1.4

Table A.6: The averages of rankings of Silhouette Indices for data sets in PD-3-U,

PD-4-U

Averages of rankings of Silhouette Indices

for data sets in PD-3-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.4 1.2 3.8 3.6 3.2 3 4.4

CKM 1.2 1 3 3.4 4 3.8 2

CKM-H1 1.6 1.4 3.4 3.2 2.8 2.6 2.8

CKM-H2 1.2 1.8 2.8 2.2 3.2 2.8 4

CKM-SH 1 1.6 1.2 1.8 1 1.6 1.8

Averages of rankings of Silhouette Indices

for data sets in PD-4-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 4.8 4.2 4.2 4.6 4.6 4.2 4.2

CKM 3.2 3.6 2.8 3.6 3.6 3 3

CKM-H1 3 1.4 2.2 2 2.2 2 2.2

CKM-H2 2.2 2.2 2.8 2 1.8 2 1.8

CKM-SH 1.4 1.8 1.8 1.2 1.2 1.6 1.4
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Table A.7: The averages of rankings of C Indices for data sets in SCD-3-U, SCD-4-U

Averages of rankings of C Indices

for data sets in SCD-3-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2.6 5 3.2 4.6 4.8 4.4 4.2

CKM 2 2.2 2 2.6 2.8 2.4 2.4

CKM-H1 3.4 4 4.4 4.4 3.8 4.6 4.2

CKM-H2 3 2.4 3.2 2.4 1.8 2.4 2.2

CKM-SH 2.4 1.4 1.8 1 1 1.2 1.4

Averages of rankings of C Indices rankings

for data sets in SCD-4-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 2.6 4.2 3.4 4.2 4.4 4.2 4.2

CKM 1.8 2 2 2.6 2 2.6 2

CKM-H1 3.8 2.6 3.8 3.2 3.8 4 3.4

CKM-H2 2.6 2.8 3 1.6 2.4 2.6 2.4

CKM-SH 2.4 2.2 1.6 1 1.6 1.6 1.8

Table A.8: The averages of rankings of C Indices for data sets in PD-3-U, PD-4-U

Averages of rankings of C Indices

for data sets in PD-3-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 1.4 1.6 3.6 3.6 3.8 3 3.4

CKM 1.2 1 3.4 3.2 3.8 3.6 2

CKM-H1 1.6 2 2.2 2.6 2.4 2.8 3.4

CKM-H2 1.2 1.6 3.2 3.6 3.2 3.4 4.2

CKM-SH 1 1.4 1.2 1.2 1 1.6 1.6

Averages of rankings of C Indices rankings

for data sets in PD-4-U

Algorithms
Number of Clusters

k=2 k=3 k=4 k=5 k=6 k=7 k=8

DKM 3 2.6 4.2 4.2 4.6 4.2 4.4

CKM 1.4 2.6 2.8 3.4 3.8 3.4 3.4

CKM-H1 3.4 3.6 4.6 3.6 3.4 2.8 2.2

CKM-H2 2.2 1.2 2.2 2 2.2 2.4 2

CKM-SH 2.2 1.2 1.2 1.2 1 1.4 1.4
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