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ABSTRACT

ALGEBRAIC STRUCTURES OF FINITE MORLEY RANK

Berkman, Ayse A.
M. Sc., Department of Mathemaics
Supervisor: Prof. Dr. Cemal Kog

Co-Supervisor: Prof. Dr. Simon Thomas

July 1995, 71 pages

In the first two chapters of this thesis, the model theoretical and the
axiomatic approaches to algebraic structures of finite Morley rank are explained.
The last two chapters prove that if R is an infinite ring of finite Morley rank

which contains no zero divisors, then R is an algebraically closed field.
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MORLEY RANKI SONLU OLAN CEBIRSEL YAPILAR

Berkman, Ayse, A.
Yiiksek Lisans, Matematik Bolimii
Tez Yoneticisi: Prof. Dr. Cemal Kog

Ortak Tez Yoneticisi: Prof. Dr. Simon Thomas

Temmuz 1995, 71 sayfa

Tezin ilk iki b6limiinde, Morley ranki sonlu olan cebirsel yapilar Mo-
deller Kuram: agisindan ve belitsel agidan ele alinnugtir. Son iki béliumde ise
Morley rank: sonlu olan, sifir boleni igermeyen sonsuz halkalarin cebirsel olarak

kapali cisimler oldugu kanitlanmugtar.

Anahtar Sozciikler: Morley Ranki, Rankli Yapilar
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CHAPTER 1

SOME MODEL THEORY

1.1 Basic Definitions and Properties

1.1.1 Language and Structure

A (first order) language L is a collection of three kinds of symbols,
which are relation symbols, function symbols and constant symbols. For each
relation and function symbol, there corresponds a natural number which shows

the arity of the relation or the function. In general, one can write

L ={R:}ic1 U{F;};es U {ck}rex,

where I, J, K are some index sets and R;’s, F}’s, ¢;’s denote the relation symbols,
function symbols, constant symbols respectively. In order to study groups, one
uses the language £ = {-, ~1,1}, where - is a binary function symbol, ~! is a unary
function symbol and 1 is a constant symbol. For a language £, an £-structure
M is a pair < M , T >, where M is a nonempty set and Z is an interpretation
function which maps the symbols of £ to the appropriate relations, functions and

constants of M. We use the following notation: Z(R) = Rm, Z(F) = Fa and
I(c) = cm.



The concepts of definable subset and interpretable subset are of fun-
damental importance in the study of structures of finite Morley rank. To give
the definitions of these concepts, we need to formalize the language £. Apart
from the symbols of £, we will use the foﬂowing symbols, which are called the

primitive symbols:

left and right parantheses (,)

e variables wv; fori €N

logical connectives A, -

a logical quantifier 3

a binary relation symbol, the identity =.

Most of the concepts that we need will be defined inductively.

Notation: ¢(my,...,m,) is used to denote (¢(m,),...,¢(m,)), where ¢ : M —

N is a map.
Homomorphisms of L-structures:
For two L-structures M and NV, a map ¢ : M — N is called a homo-
morphism iff:
1. ¢(Fm(m)) = Fa(¢()), for every function symbol F of £ and for all m €
M™, where n is the arity of F.

2. Rum () iff Rar(¢(77)), for every relation symbol R in £ and for all 7@ € M*,

where k is the arity of R.



3. ¢(cam) = cy. for every constant symbol ¢ in L.

Naturally. an isomorphism is defined to be a one to one and onto homo-
morphism. Epimorphisms, monomorphisms, endomorphisms and automorphisms

are defined in the usual way.

Terms of L:

1. All variables and constant symbols are terms.

2. F(ty,...,t,) is a term, where F' is an n-ary function and #i,...,t,’s are

terms.

3. A sequence of symbols is not a term, unless it can be shown that it is a

term by a finite number of applications of 1 and 2.

Note that terms are analogous to polynomials.

Atomic Formulas of L:

1. ¢; = t; is an atomic formula, where ¢; and #, are terms.

2. R(t4,...,t,) is an atomic formula, where R is an n-ary relation symbol and

t1,...,t,’s are terms.
Formaulas of L:

1. Every atomic formula is a formula.

2. =(a), (aAB), (Jv;)a are formulas, where a and 3 are formmilas and v; is a

variable.



3. A sequence of symbols is not a formula, unless it can be shown that it is a

formula by a finite number of applications of 1 and 2.

In order to make the formulas shorter, some abbreviations will be

used. The symbols V, =, < and V are abbreviations defined as follows:

(@V ) for =(=(a)A—=(8))
(@=B) for (~(a)V5)
(@@ pB) for ((a=F)A(8=a))
(Voo for =((Fv;)~(a)).

We could -have included these symbols in the language £, but then the
definitions and the proofs would be longer.

Free Variables of a Term t:

1. If ¢ is a constant symbol, then ¢ has no free variables.
2. If t is a variable v;, then v; is the only free variable of ¢.
3. If tis of the form F(t4,...,t,), then the set of free variables of ¢ is the union
of the sets of free variables of #,...,¢,.
We use t(v1,...,v,) to denote a term whose free variables form a
subset of {v1,...,v}.
Free Variables of a Formula o

1. If a i1s an atomic formula, then all the free variables of a are the variables

of a.



2. If @ = —(3), then the set of free variables of a is the set of {ree variables of
3.

3. If a = 3 A+, then the set of free variables of « is the union of the sets of
free variables of 8 and the free variables of ~.

4. If & = (Jv;)B, then the free variables of « are the free variables of 3 except

v;.
We use a(vy,...,v,) to denote a formula a whose free variables form
a subset of {v1,...,v,}.
A sentence is a formula which has no free variables.
The Value of a Term:
Let m = (my,...,m,) € M™ and {(v) = #(v4,...,v,) be a term. The

value of the term t at 7, denoted by t[), is defined inductively by:

1. If t is a variable v;, then t[m] = m;.
2. If t is a constant symbol ¢, then ¢[7] = cum, the interpretation of ¢ in M.

3. If t is of the form F(t4,...,t;), then t[m] = Fap(ti[m), ..., t[m]), where

Fy 1s the interpretation of F' in M.

m = (my,...,m,) satisfies a formula a(vy,...,v,) in M:

We denote it by M k& o[m].

1. If o is the atomic formula t; = ¢, then M | o[m] iff t,[m] = t,[m].



2. f a = R(ty.....t), then M = ao[m] iff Rm(ti[m),... t[m)).

3. If a = ~(3), then M E o[m] iff M £ 3[m].

4. Ha=(8 A7), then M k= o[ iff M = S[m] and M [ y[m].

5. If @ = (3v;)B(7,v;), then M [ a[m] iff M | f(T, a), for some a € M.
Any fact on terms (or on formulas) must be proven by induction on

the complexity of the term (or of the formula). The proof of the following lemma

is an example of such a proof.

Lemma 1.1 Let M and N be two L-structures.
(i) If ¢ : M — N is a homomorphism, t(7) is a term and T € M", then

$(t[m]) = t{o(m)].

(1) If ¢ : M — N s an isomorphism, a is a formula in £ and /@ € M", then
M = of] iff N = alg(m)]

Proof: (i) If ¢ is a variable v;, then ¢[m] = m; and t[¢()] = #(m;) which implies

that (1)) = (ms) = Hl4()].

If ¢ is a constant symbol ¢, then ¢[f] = cp and ¢[@¢(7R)] = cnr. Since

¢ is a homomorphism, ¢(t[7A]) = ¢(cm) = cx = t[(T)].

If ¢ is of the form F(ty,...,t), then t[m] = Fa(t1[m), ..., t[m]) and
Ho(m)] = Fx(tlg(m)),. ... ld(m))) |

$(t[m]) = $(Fm(ta[m],. ... 1x[m])) = Fa(¢(ta[m],. .., 14[m]))

6



= Fn(o(t1{m))])s - ... o(fx[m])). by the induction hypothesis.

= Fy(tlo(@)), ... tlo())) = tlo(m).

Thus the induction is over and ¢(¢[]) = t[¢(7)] for any term ¢(T) of
L.

(ii) If « is the atomic formula ¢; = t,, then M [k ofm] iff 4[] = t[m] iff
$(t1[m]) = ¢(t:[m]) iff t1[¢(T)] = t2[é(m)], by part (i), iff VN | a[é(m)].

f o = R(t,...,t), then M = afm] if Ba(ti[m),...,elm]) iff

Ry (é(t1[m]), ..., ¢(tk[m])), since ¢ is a homomorphism,

iff Ry (ta[6(m)); .. ., t[¢(m)]), by part (i), if N |= ofé(m)].

If = =(8), then M [ ofm] iff M [ 8[m] if N £ B[¢(m)], by
induction hypothesis, iff N = a[¢(m)).

If a =(8A%), then M E ofm] iff M = g[m] and M = y[m] if
N E Bl¢(m)] and N = 4[4(7)], by induction hypothesis, iff N = af¢(7)].

If a = (3v;)B(7,vi), then M = o] if M = (T, a) for some
a € M if N E B(é(T), ¢(a)) for some a € M if N = B(¢(7),b) for some
be ¢(M) = N, by induction hypothesis, iff V' |= aé(77)].

Now the induction is over. 0

1.1.2 Definable Sets

In order to use arbitrary elements of M in the formulas, it is a common

trick to extend the language £ to a new language £’ = LU {m},,epn. Obviously,

7



the interpretation of m in M will be m itself. The elements of M which are not

the interpretations of constant symbols of £ are called parameters.

Note that each formula a(?) with n free variables in £’ can be ex-
pressed by another formula 8(T,m;...,m;) with n free variables in £, where

my,...,my are the parameters used in a(v).

Let M be an L-structure and A C M. Then A is said to be definable
in M (or just definable where M is clear from the context) if there exists a
formula a(v) with one free variable v in £’ (or equivalently if there exists m =
(my,...,mi) € M* and a formula B(v,7) with one free variable v in £) such
that:

A={aeM: MEadd} ={a€ M: M pla,m}}.

More generally, a subset A C M™ is said to be definable if there
exists a formula a(v) with n free variables in £’ (or equivalently if there exist
m = (my,...,m;) € M* and a formula (7, m) with n free variables in £) such
that:

A={ae M": M= ofa]} = {ge M" : M E pla,m]}.

Here k parameters were used to express A, namely my,...,m;. If k£ is the mini-
mum number of parameters that we use to define A, then A is called k-definable.

In particular, A is called 0-definable if no parameters are needed to define A.

As an example, consider £ = {+,-,0,1} and the L-structure Z with
the underlying set Z and the natural interpretation function. Then N is 0-

definable in this structure, since

N={n€Z:Z | (3z)3y)(32)(Fw)(n = 2% + y* + 2° + v)}.



The additive inverse of an integer is 1-definable since
{-a}={neZ:ZEn+a=a+n=0} foranya€ Z.

An n-ary relation P defined on a definable set A C M is called a definable

relation in M if the set
{(a1y-.-,8,) € A" : M |= P(ay,...,an)}
is definable in M.
Let’s consider the above example again. < is a definable binary rela-
tion in this structure since

{(a,b)€ Z*: a < b} ={(a,b) € Z*: Z = (3z)(Ty)(32)(Fw)(b—a =z +y*+2%+w?)}.

A function f : A —» B, where A C M™ and B C M™ are definable

subsets, is called a definable function in M if its graph is definable in M.
Lemma 1.2 The set of definable subsets of M™ is a Boolean algebra.

Proof: Assume that A, B are definable subsets of M™. Then there exist formulas

a(7) and B(T) of n free variables defining A and B respectively.
ANB={meM": Mk (aApB)m]},
AUB={me M": M E (aV B8)[m]},
A\B={me M": M |= (a A-B)[m]}
prove that AN B,AU B and A\ B are all definable subsets of M™.
M" = {m e M" : M = m = m} implies that M" is definable. So

M"\ M™ = ¢ and M™\ A are all definable. This implies that the set of definable

subsets of M™ is a Boolean algebra. ]



Lemma 1.3 If A C M" and B C M* are definable. then A x B C M™t* is also
definable.

Proof: Let a(7) be a formula of n free variables defining A and 3(7) be a formula
of k free variables defining B. Then
A x B = {(m,7) € M™** : M | o[m, 7]},
where ¢(T1, %) = a(W) A B(7).
Thus A x B is definable. a

Lemma 1.4 Let A C M™ and B C M* be definable sets. The projection maps
I[Ib:AxB— AandIly: AX B — B are definable.

Proof: Let a(%) and 3(7) be the formulas defining A and B respectively. Then

the graph of I1; is

{(m,7,@) € M™*": M = o(g,7,w)},

0

where ¢(%,7, W) = (T = W) A a(T) A 5(7). O

Lemma 1.5 If A C M™t* is definable, then the projection of A on M™ is also
definable.

Proof: Let a(7,w) be the formula of n + k free variables defining A, where

7= (v1,...,0,) and @ = (wy, ..., wk).

The projection of A on M* = {m € M™: M E ¢o(Tm)},

10



where () = (3b)(a(7, b)) is a formula of n free variables. O

Lemma 1.6 Let ¢ : M — M be an automorphism and X C M be a definable
set. Then ¢(X) is definable. .

Proof: Let a(v) = 3(v, @) be the formula which defines X. Then X = {m € M :
M = B(m,a)}. Note that M = f(m,a) if M E 5(¢(m), ¢(a)), by Lemma 1.1
(ii).

Claim: ¢(X) = {m € M : M | 3(m, é(a))}

To see that ¢(X) C {m € M : M | B(m,é(a))}, let m € ¢(X).
Then there exists z € X such that m = ¢(z). So, M |= §(z,@) and by the above
remark M | B(¢(z), #(a)) = B(m, ¢(a)). This proves that m € {m e M : M |

B(m,¢(a))}.

For the converse, let m € M and M = 8(m, ¢(@)). Since ¢! is an
automorphism, we have M | B(¢~!(z),a). This implies that ¢~'(m) € X. Then
m = ¢(x) for some € X, and so m € ¢(X).This proves the claim. Thus ¢(X)

is definable. 0

Now let A C M™ be a definable set and ~ be a definable equivalence
relation on A. Then any Boolean combination of the sets of the form A/ ~ is
called an interpretable set in M. By taking ~ to be the identity relation, one

can see that a definable set is interpretable.

The interpretable relations and functions are defined naturally as in

the definable case.

11



Lemma 1.7 If A and B are interpretable sets and f : A — B is an interpretable

function, then the following statements hold:

(1) A x B is interpretable

(i1) The projection mapsIl; : AX B — A and I, : Ax B — B are interpretable
(iii) A(A) = {(a,a) : a € A} is interpretable

(iv) For any interpretable set C C A, f(C) is interpretable.

(v) For any interpretable equivalance relation FE on A, the set A/E and the

canonical map A — A/E are interpretable.

Proof: To simplfy the notation, assume that A = £ and B = :—;, where X and

~1
Y are definable sets and ~; and ~ are definable equivalance relations on X and
Y respectively. Let’s agree to use Gy to denote the graph of f and assume that
Gy =D/ ~y.

(i) By Lemma 1.3, X x Y is definable. Define a relation ~ on X x Y so that

(z1,11) ~ (z2,y2) iff 23 ~; z3 and y; ~y yz. The relation ~ is a definable

XxY

~ 7

equivalance relation. Now A x B =

and so A X B is interpretable.

(ii) The graph of II; is {(a,b,a) : @ € A,b € B}. Let P = {(z,y,2) : z,z €
XAy €Y Az = z}. Now P is definable. Let’s define a new relation ~ on P
such that (zy,y;,21) ~ (22,y2,z2) iff £, ~; x; and y; ~; y2. Then the graph of
I, is P/ ~ which proves that II; is an interpretable function. Similarly II; is an

interpretable function.

(ii1) The set L = {(z1,23) : 21,22 € X A xy = z,} is definable. Define a new

12



relation ~ on L such that (z;.21) ~ (r2,x3) iff 27 ~ 2. A(A) = L/ ~ proves
that A(.4) is interpretable.
(iv) There exists a definable subset S of X such that C = S/ ~y. Let
T={yeY:(z € S)(z,y) € D}.
Now f(C) =T/ ~; proves that f(C) is interpretable.
(v) E is an interpretable relation on A implies that there exists a definable set
N and a definable equivalance relation R on N such that
{(z,y) e AX A: E(z,y)} = N/R.
If we define a relation ~ on X such that for any z1,z; € X, 1 ~ 25 iff 2y ~; 2,
or E([z1)1, [x2]1), then A/E = X/ ~.
The following argument shows that ~ is definable.

ry ~zy ff 1 ~1 29 or E([z1}1, [22]1)
iff Iy ~1 Iy OT ([.’L'l]], [.’L'z]]) € N/R

iff zy ~q Zy or there exists n € N such that ([z1]1,[z2)1) = [n]&.

Equivalance class of an element with respect to a definable relation is a definable
set. Since everything is definable in the last statement, ~ is a definable relation

on X. Thus X/ ~= A/E is interpretable.

Define a relation ~p on X x X such that (z;,dy) ~n (z2,d2) iff 21 ~

zo and E([d1];,[d2):). Then

Gn = {(a,b)€ Ax A/E : E(a,[d];), where [d]; = b}

{(z,d) € X x X : E([z]s, [d]l)}_
~N

13



1.1.3 Counsistency

Let £ be a language, T be a set of sentences in £ and ¢ be a sentence
in £. o is said to be a logical consequence of ¥, in symbols ¥ + o, iff there is
a finite sequence o4, ..., 0, of sentences such that o, = o and each o; is either
in ¥ or a logical axiom or deduced from two earlier sentences by applying some

logical rules of inference.

One can find the logical axioms and rules in any standard logic or

model theory book. For example see [3].

A formula a(vq,...,v,) is said to be a logical consequence of ¥ if the

sentence (Vv1) ... (Vu,)a(vi,...,v,) is a logical consequence of X.

Y is called consistent if no sentence of the form o A ¢ is a logical con-

sequence of . If ¥ I (¢ A o) for some sentence o, then ¥ is called inconsistent.

A sentence which is satisfied in every model of £ is called a wvalid

sentence. A formula o(vy,...,v,) is called a valid formula if the sentence

(Vvy) ... (Yo, )a(vy,...,v,) is valid.

Theorem 1.8 (Compactness Theorem) Let ¥ be a set of sentences. X is

consistent iff every finite subset of ¥ is consistent.

Proof: Assume that ¥ is inconsistent. Then there exist a finite sequence of
sentences 04,...,0, such that o, = a A ~«a for some sentence «, some o}’s are
logical axioms and the remaining ones belong to £. The remaining ones constitute

a finite subset of ¥ and a A —a is a logical consequence of it.

14



Thus ¥ has an inconsistent finite subset. The other part is obvious.

An L-structure M is called a -model of ¥, denoted by M | X, iff

M k= o for every o € L.

If ¥ has a model, then obviously ¥ is consistent. The converse is also

true.

Theorem 1.9 (Extended Completeness Theorem) Let ¥ be a set of sen-

tences. ¥ has a model iff ¥ is consistent.

Proof: See [3].
Therefore the Compactness Theorem may be restated as follows:
¥ has a model iff every finite subset of ¥ has a model.

A consistent set T' of sentences of £ is called a theory.

We use F,(T) to denote the set of all formulas in the language of T

whose free variables form a subset of {vy,...,v,}.
A formula a(vy,...,v,) is said to be consistent with T iff
TF(3u)...(3v)ofrn,...,v5).

More generally, a set I' C F,,(T') is said to be consistent with T iff the conjunction

of any finite number of members of T is consistent with T.

An n-type is a maximal consistent subset of F, (T).

15



We denote the set of all n-types of T by S, (T).

For any model M of T and for arbitrary elements my,...,m, € M the
set I'(vq,...,v,) consisting of all formulas y(v1,...,v,) satisfied by my,...,m, is

a type. It is called the type of my,...,m, in M.

We use Th(Mjy) to denote the set of all sentences in LU {m}nmen

which are satisfied in M.

An L-structure M is called w-stable iff whenever N is a model of

Th(M) and |N| = w, then |S1(Th(Nn))| = w.

1.2 Morley Rank and Morley Degree

Let £ be a first order language and M be an L-structure. We will
define the Morley rank and the Morley degree of a formula ¢(z) of one free

variable in the language £ U {m}.en, by induction.

The Morley rank, or simply the rank, of a formula is infinity or an
integer greater than or equal to -1. The Morley degree, or simply the degree, of
a formula is only defined if the formula is of finite Morley rank. The degree is

always a positive integer.

If ¢(z) is satisfied by finitely many elements of M, then ¢(z) is said
to be of Morley rank 0. In this case, the Morley degree of ¢(z) is the number of

elements in M that satisfy ¢(z).

As an example, consider K =< K,+,-,0,1 », where K is an alge-

braically closed field. Then every nonconstant polynomial p(z) € K{z] will be of

16



rank 0 and deg(p(z)) will be the number of distinct roots of p(x).

Assume that all formulas of rank less than n have been defined. Write
Snt1(z) = {—o(z) : rk(c) < n}. Then ¢(z) is said to be of rank n + 1 iff the set
of formulas {@(z)} U S,41(z) is consistent in £ U {m}n,ep and has finitely many
maximal consistent extensions. The degree of ¢(z) is the number of maximal

consistent extensions of ¢(z) in Th(Myy).

Note that Sp(z) is the set of all valid formulas in Th(Mys) and Si(z)

is logically equivalent to the set {z Zm:m € M}.

If ¢(z) is inconsistent with Th(Mjs), then we define rk(¢) = —1. If

¢(z) is consistent but has no rank, then we define rk(¢) = oco.

The formula z = z has the largest rank in a structure. rk(A) is
defined to be rk(z = z). Similarly, deg(A) is deg(z = z). The rank and the
degree of definable subsets of M are also defined. Let A be a definable subset of
M. Then there exists a formula ¢4(z) such that A = {m € M : M | ¢,(m)}.
Then rk(A) = rk(¢4) and deg(A) = deg(da).

Once more consider the structure K. {z = z} U Si(z) is consistent

by compactness theorem and has no maximal consistent extensions except from

itself. Thus, rk(K) =1 and deg(K) = 1.

However, if K is not algebraically closed, then the situation will be
different. Consider R =< R, +,-,0,1 >. One can define the additive inverse of a
real number in the structure R, just like we did on page 9. Now the relation <

is definable in R since

{(a,b) e R*:a < b} = {(a,b) e R?: (Fz)(b—a =z - 2)}.
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For any a.b € R, the interval {a, b] is definable, since [a,b] = {z € R:
a < z < b}. Suppose that there exists an integer n > 1 such that rk([0,1]) = n.
Note that if [a,b] and [¢,d] are any two closed intervals, then there exists a
definable bijection f : [a,b] — [e,d]. It 'follows that rk([a,b]) = rk([c,d]) =
n. But the interval [0,1] contains the infinitely many disjoint closed intervals
[(3)%,(3)**!] for n > 0. The contradiction shows that rk([0, 1]) = co and hence

rk(R) = oo.

18



CHAPTER 2

RANKED STRUCTURES

2.1 The Universe and the Rank Function

Throughout this section, £ will stand for a first order language and

M will stand for an arbitrary L-structure.

Definition: A nonempty collection &/ of sets is called a universe iff for every

A,B,C € U the following holds:

1. ANB,AUB,A\B¢ U

2. AxBelUu,
the graphs of II; : AXx B— Aand Il : A x B — B arein U,
forany CCAx BII;(C) € Ufori=1,2.
A(A) ={(a,a):ac A} e U

3. a € A implies that {a} € U

4. E is an equivalance relation on A and {(z,y) € A? : E(z,y)} € U imply
that A/E € U and the graph of the canonical map A — A/E isin U.
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The reader probably noticed the similarity between the definition of

the universe and the properties of the interpretable sets in some L-structure

In fact, Lemma 1.7 proves tha.t. the collection of interpretable sets in
M is a universe. We denote this universe by Uz (M) or simply by U(M), where

L is clear from the context.

Thus it is reasonable to call the elements of a universe interpretable

sets and the function whose graphs lie in the universe interpretable functions.

Definition: Let I/ be a universe and rk : U \ {¢} — N be a function. The

function rk is called a rank function iff the following axioms are satisfied:

Axiom A:rk(A) > n+1 iff there exists a sequence of nonempty sets

{Ai}2, such that A; C A, A; €U, AinA; =¢if ¢ # j and rk(A;) > n.

Axiom B: f: A — B is an interpretable function implies that {b €
B:rk(f~'(b)) =n} € U,foralln e N.

Axiom C: f: A — B is an interpretable function which is onto and

rk(f~1(b)) = n for all b € B imply that rk(A) = rk(B) + n.

Axiom D: For any interpretable function f : A — B, there exists

m € Z such that

|f71(b)] = m implies that |f~(b)| = oo, forall b€ B.

Definition: A universe i/ is called a ranked universe if there exists a rank func-
tion on U. M is called a ranked structure if the universe U (M) consisting of

interpretable subsets in M is a ranked universe.
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M is a ranked group means that M ={(G.-,71,1,...), where (G,-,71, 1)

is a group and .M is a ranked structure.

In [8], Poizat showed that ranked groups and w-stable groups of finite
Morley rank coincide. The proof is skipped since it requires hard model theoretic

machinery. w-stable groups of finite Morley rank will be discussed in Chapter 3.

2.2 Properties of Ranked Universes

Throughout this section, assume that I/ is a fixed ranked universe of
the form U, (M) with the rank function rk : 4 \ {#} — N. For convenience, we
set rk(¢) = —1.

For the following lemmas, assume that A and B are interpretable sets

and f: A — B is an interpretable function.
Lemma 2.1 rk(A) > 1 iff A is infinite.

Proof: Let A be a finite set, then A does not have infinitely many nonempty
pairwise disjoint subsets. Axiom A implies that rk(A) = 0. Now let A be infinite,
then the sequence {a},c4 fulfills the requirements of Axiom A for the case n = 0,

thus rk(A) > 1. ]
Lemma 2.2 A C B implies that rk(A) < rk(B).

Proof: Let rk(A) = n. Then Axiom A implies that A has infinitely many
pairwise disjoint interpretable subsets of rank greater than or equal to n — 1.

These sets also lie in B, so rk(B) > n = rk(A) by Axiom A. o
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Lemma 2.3 rk(AU B) = maz{rk(4).rk(B)}.

Proof: Set C = AU B, then rk(C) > maxz{rk(A),rk(B)} by Lemma 2.2. The
proof of the converse will be done by induction on rk(C). lf rk(C) = 0, then the
inequality obviously holds. Assume that rk(C) = n, then C has infinitely many
pairwise disjoint interpretable subsets C; of rank greater than or equal to n-1.
Let A; = ANC; and B; = BN C;. The induction hypothesis implies that for each
¢, either rk(A;) = n —1 or rk(B;) = n — 1. Without loss of generality, assume
that there are infinitely many sets A; of rank n — 1. Now Axiom A implies that

rk(A) > n =rk(C). O

Now we will associate a positive integer to each element of U \ {4},

which is called the degree of the set.

Definition: deg(A) is defined to be 1 if for any interpretable subset B C A, we
have either rk(B) < rk(A) or rk(A\B) < rk(A). deg(A) is defined to be d if there
exist interpretable subsets Ci,...,Cy of A such that A = U¢ ,C;, deg(C;) = 1
and rk(C;) = rk(A) foreach: =1,...,d.

Lemma 2.4 Degree is well-defined.

Proof: Let A be an interpretable set and rk(A) = n. Assume that
A=UL A = L%, B;, where A;’s and B;’s are all interpretable sets of rank n and
degree 1. Now a one to one map will be defined from {1,...,d} into {1,...,e}

to show that d < e.

For any i € {1,...,d}, wehave A; = U%_,(B;NA;). rk(A;) = nimplies
that there exists j € {1,...,e} such that rk(B; N A;) = n. Since deg(A;) =1, j

is unique with this property. Thus d <.
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Since everything is symmetric, e < d which shows that d = e and

degree is well-defined. 0

Lemma 2.5 Let AN B = ¢ and rk(A) = rk(B), then deg(A U B) = deg(A) +
deg(B).

Proof: Let rk(A) = rk(B) = n, deg(A) = d and deg(B) = e. Then
there exist disjoint interpretable sets A;,...,Agin A and By,..., B, in B of rank
n and degree 1. Then AUB = A;U...A; U By U...UdB,. By Lemma 2.3,
rk(AUB) = n so AL B can be written as a disjoint union of (d+e) interpretable
sets of rank n and degree 1; i.e. deg(AU B) =d + e = deg(A) + deg(B). 0

Lemma 2.6 Every nonempty interpretable set has a degree.

Proof: Assume that A is an interpretable set of rank n and A does not have a
degree. Since deg(A) # 1, there exist two disjoint interpretable sets A;, A3 in A
such that A = A; U A; and rk(A;) = rk(A2) = n.

If A; and A; both have degrees, then by Lemma 2.5 A has a degree.
Assume that A; does not have a degree and call A, = B;. Now we can apply the
same arguement to A; and obtain two disjoint interpretable sets A;; and A, in
A; C A of rank n. Assume that A;; does not have a degree. Now set By = Aj;.

Notice that B; and B; are of rank n and disjoint.

Continuing like this, we can obtain infinitely many disjoint inter-
pretable sets (B;)%2; in A each of rank n contradicting Axiom A. The contra-

diction implies that A has a degree. O
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Lemma 2.7 If rk(4) > rk(B), then deg(AU B) = deg(A).

Proof: First assume that deg(A) = 1 and C is an interpretable subset of AU B.
Then C N A is an interpretable subset of A and either rk(C N A) < rk(A) or
rk(A\ C) < rk(A).

Assume that rk(CNA) < rk(A). C = (CNA)U(CNB) and rk(C) =
maz{rk(C N A),rk(C N B)}. By assumption, rk(C N A) < rk(A) = rk(AU B)
and rk(C N B) < rk(B) < rk(A) = rk(AU B). Thus rk(C) < rk(AU B) in this

case.

Now assume that rk(A\C) < rk(A). (AUB)\C) = (A\C)U(B\C)
and rk((AU B)\ C) = maz{rk(A\ C),rk(B\ C)}. By assumption rk(A\ C) <
rk(A) = rk(AU B) and rk(B \ C) < rk(B) < rk(A) = rk(AU B). Thus
rk((AUB)\ C) <rk(AU B).

This proves that deg(A U B) = 1 = deg(A).

Now let deg(A) = d > 1, then there exist disjoint interpretable subsets
Ai, ..., Ag of A such that rk(A;) = rk(A) and deg(A;) =1 foralli =1,...,d.
Then AUB = ((B\A)UA;)UA,L. . .UAg. rk(B\A) < rk(B) < rk(A) = rk(4,)
implies that deg((B \ A) U A;) =1 by the above arguement. rk((B\ A)U 4;) =
rk(A;) = rk(A) =rk(AUB) forall: = 2,...,d. Thus deg(AU B) = d = deg(A).

]

Lemma 2.8 If AC B and rk(A) = rk(B), then deg(A) < deg(B).

Proof: Let deg(A) = d then there exist interpretable subsets A;,...,Aq of A

24



satisfying rk(A4;) = rk(A), deg(4:;)) = 1foralli = 1,...,d and 4 = UL, 4,
Then B = UL, 4; U (B\ A).

If rk(B\ A) = rk(B) = rk(A), then Lemma 2.5 implies that deg(B) =
d+deg(B\ A) > d = deg(A).

If rk(B\ A) < rk(B) = rk(A), then Lemma 2.7 implies that deg(B) =
deg(A).

Combining these two results, we get that deg(B) > deg(A). 0

Lemma 2.9 f: A — B is an interpretable bijection implies that f~' : B — A

is also an interpretable bijection.

Proof: Clearly f : A — B is a bijection implies that f~!: B — A is a bijection.

To see that f~! is interpretable, consider the graph of f~! which is

{(6,f71(0) : b € B} = {(f(a),a) s a € A}.

This set is the image of A = {(a, f(a)) : @ € A} under the map 8 defined by
0((a, f(a))) = (f(a),a). Ais interpretable, since it is the graph of f. So, it suffices
to show that @ is interpretable, or equivalently the set R = {(a, f(a), f(a),a) :

a € A} is interpretable.

S = {(a, f(a), f(a)) : a € A} is the graph of the second projection
from A onto B, so S is interpretable. Finally, R is the graph of the first projection

from S onto A, which proves that R is interpretable. a

Lemma 2.10 If there exists an interpretable bijection f : A — B, then rk(A) =
rk(B) and deg(A) = deg(B).
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Proof: Since f is one to one, rk(f~(b)) = 0 for all b € B. Now Axiom C implies

that rk(4) = rk(B).

Now let deg(A) = d, then there exist interpretable subsets Aj, ..., Ay
in A such that rk(A4;) = rk(A), deg(A;) = 1 for allz = 1,...,d and A =
Ué  A;. Then B = U2, f(A;) since f is a bijection. The above arguement
implies that rk(A;) = rk(f(A;)), also rk(B) = rk(A) = rk(A;). Thus deg(B) =
T deg(f(A)) 2 d.

f~1is also an interpretable bijection by Lemma 2.9, so applying the

same arguements to f~! will prove that deg(A) = deg(B). a

In particular, rank and degree are invariant under interpretable auto-
morphisms. In fact requiring the automorphism to be interpretable is superfluous,

as the following lemma shows.

Lemma 2.11 Let ¢ : M — M be an automorphism and A C M be a definable
subset, then rk(A) = rk(¢(A)) and deg(A) = deg(¢(A)).

Note that we can not use Axiom C, since ¢ is not interpretable.

Proof: Proof will be done by induction on rk(A). If rk(A) = 0, then A is
finite and deg(A) = |A|. ¢ is an automorphism implies that |A| = |#(A)| and
rk(4(A)) = 0 and deg(¢(A)) = |6(A)| = |A| = deg(A).

Let rk(A) = n, then Axiom A implies that there exist a sequence
{A;i}2, of disjoint interpretable subsets of A of rank greater than or equal to
n — 1. The induction hypothesis implies that rk(¢(A;)) > n— 1. ¢ is one to

one implies that ¢(A;)’s are disjoint and Lemma 1.6 implies that ¢(A;)’s are
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definable. So rk(o(4)) > n = rk(A4). by Axiom A. ¢7! is an automorphism.

Thus rk(A4) = rk(o(4)).

The proof of the equality of the degrees is exactly the above proof. O

Lemma 2.12 rk(A x B) = rk(A) + rk(B).

Proof: Consider the canonical projection II; : A x B — A. II; is onto and
interpretable by the second axiom of the definition of the universe. For any

a € A, TI7"(a) = {a} x B, so rk(II*(a)) = rk({a} x B) = rk(B) by Lemma 2.10.
Now Axiom C implies that rk(A x B) = rk(A) + rk(B). D
The next lemma is simple but will be needed in Chapter 3.

Lemma 2.13 Assume that A is a definable set of rank n and degree 1. Let

Xi,...,Xm be definable subsets of A of rank n also. Then rk(X;N...NX,) = n.

Proof: It is enough to prove the statement for m=2. Assume that rk(X;NX;) <
n, then rk(X;\ Xz2) = n since X7 = (X1NX2)U(X;\X;). By the same arguement,
rk(X2\ X1) = n. Thus there are two disjoint sets of rank n in A. This contradicts

the fact that deg(A) = 1. 0
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CHAPTER 3

GROUPS OF FINITE MORLEY RANK

When we say that G is an w-stable group of finite Morley rank, we

mean that:

¢ (G is an L-structure, where £ = {-, 71,1},
o U.(G) is a ranked universe,

e <@G,-,7 1,1 > satisfies the following:
(Vz)(Vy)(V2)((z - y) - 2 =z - (y - 2)),
(Vz)(z-1=1-z =x),

(Vz)(z-z'=2z"1-2=1).

Recall that, U, (G) is the collection of all interpretable subsets of G in

the language L.

However, the word "“w -stable” is usually omitted, so when one says
that G is a group of finite Morley rank, one means that G is an w -stable group

of finite Morley rank.

In this chapter, G will stand for a group of finite Morley rank.
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It is customary to use the term definable subset instead of the term
interpretable subset. From now on. all facts will be stated in terms of definable
subsets to mean an interpretable subset. Here we give some examples of definable

subsets of G.

o The center of G, Z(G) = {g € G : (Vz)(zg = gx)}, is a definable subgroup
of G.

For z € G, Cg(z) = {9 € G : gz = zg} is a definable subgroup of G.

For r € G, the conjugacy class of 7, 7% = {g € G : (3z)(9 = =" 'rz)} is a
definable subset of G.

If H is a definable subgroup of G, then Cg(H) and Ng(H) are also definable

subgroups of G.

3.1 The Descending Chain Condition

The purpose of :this section is to prove that a group of finite Morley
rank satisfies the descending chain condition on its definable subgroups; i.e. for
any descending chain (H;);cs of definable subgroups of G, there exists k € I such
that H, = H, for all n > k.

Note that an arbitrary group does not necessarily satisfy the descend-
ing chain condition on its definable subgroups. For example, for any n € Z, nZ
is a definable subgroup of Z, since nZ = {k € Z : (3m)(k = nm)}. Now, let
n # %1, then
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is a descending chain, but does not satisfy the descending chain condition.

Nor does a group of finite Morley rank satisfy the descending chain
condition on its nondefinable subgroups. For example, C is a group of finite
Morley rank and has a descending chain of subgroups which is not stationary,

namely
C>Z>nZ>n%Z>------ >pkZ >p*lZ > . ... ,n# *1.
In order to prove that a group of finite Morley rank satisfies the de-

scending chain condition on its definable subgroups, we will need some lemmas.

When H < G is a definable subgroup of G, it is meaningful to write
rk(G/H), since G/H is an interpretable set. To see this, define a relation ~ on
G such that g; ~ g, iff there exists » € H such that g5'g; = h. Since H is
definable, ~ is a definable equivalance relation.

Lemma 3.1 Let H < G be a definable subgroup of G. Then

rk(G) =rk(G/H) + rk(H).
Proof: Let ¢ : G — G/H be the canonical epimorphism. rk(p~'(gH)) =
rk(gH) = rk(H) for all g € G. Now Axiom C implies that rk(G) = rk(G/H) +
rk(H). 0
Lemma 3.2 Let ¢ : G — H be a definable group homomorphism, then

rk(G) = rk(Kerd) + rk(4(G)).
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Proof: Kfm = o(G) implies that 1'kt(h.g’;¢) = rk(o(G)), by Lemma 2.10. Now

Lemma 3.1 implies that rl‘(KegrE) =rk(G) — rk(Ker¢) = rk(é(G)) which proves

the result. ) |

Lemma 3.3 Assume that K and H are definable subgroups of G and K < H.
Then, the following holds:

rk(K)=rk(H) if and only if [H: K] < o0
Moreover, we have deg(H) = [H : K]deg(K) in such a case.

Proof: rk(K) = rk(H) iff rk(H/K) = 0, by Lemma 3.1, iff H/K is finite.

For the last part, write H = | |, h;K. Since rk(H) = rk(h;K) for all
t=1,...,n; Lemma 2.5 implies that deg(H) = 37, deg(h;K) = Y7, deg(K) =
ndeg(K) = [H : K)deg(K). 0

Notice. that, for any two definable subgroups K < H of G, we also
have:
rkK <rkH <= [H:K]=o0 (3.1)
and

K=H < rk(K)=rk(H) and deg(K) = deg(H). (3.2)

Equation 3.1 is just the contraposition of Lemma 3.3 and Equation 3.2 is an easy

consequence of Lemma 3.3.

Now it is time to prove the main result of this section.

Theorem 3.4 (Macintyre) A group G of finite Morley rank satisfies the de-

scending chain condition on its definable subgroups.
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Proof:Let (H;);c; be an arbitrary descending chain of definable subgroups of G.
Consider the sequence (rk(H;));e; of integers which is bounded from below by -1.
Lemma 2.2 implies that (rk(H;));:c; is a decreasing sequence. Therefore, there ex-
ists m € I such that rk(H,) = rk(H,,) for all n > m. Now, consider the sequence
(deg(H;))icr of integers which is bounded from below by 1. Lemma 2.8 implies
that the sequence (deg(H;)):cr is decreasing after the m-th term, so necessarily
there exists k € I such that £ > m and deg(H,) = deg(Hy) for all n > k. What
we proved is: There exists k € I such that for all n > k,deg(H,) = deg(H;)
and rk(H,) = rk(H). Equation 3.2 implies that there exists k € I such that
H,=H;, for alln > k. O

Note that groups of finite Morley rank do not satisfy an ascending .
chain condition. Although the corresponding rank sequence will become station-
ary at some point, the corresponding degree sequence may increase without any
bounds. Here is an example of such a case: Let G = C, p be a prime number
and H, = {z : 22" = 1}. H,’s are definable subgroups of G and H, < H,,;.
However, H, # H,1; since a primitive p"*!st root of unity ¢ belongs to H, 44,
but ¢ is not in H,. Thus, the ascending chain (H,),en never becomes stationary.
The fact that for all n € N, rk(H,)) = 0 and deg(H,,) = |H,| = p" explains why

the chain does not become stationary after some point.

The following form of the previous theorem is more useful, so it is

worth stating it.

Corollary 3.5 Let H;’s be definable subgroups of G for i € I. Then there exists
a finite subset J C I such that ey H; = N;jeq Hj. In particular, iy H; is also

a definable subgroup of G.
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Proof: Assume that the conclusion of the corollary is false. Then there exists a
sequence (7,) in [ such that K, = H;; N...... N H;_ is a strictly decreasing chain
of definable subgroups of G. This contradiction implies that the above statement

is true. . 0

Corollary 3.6 Let X C G be any subset of G, not necessarily definable. Then
Ce(X) is a definable subgroup of G.

Proof: Cg(X) = NzexCg(z). The previous corollary implies that there exists
Ty, -, 2, € X such that Ce(X) = N%,Cqs(z;). Therefore, Cg(X) can be written
as a finite Boolean combination of definable subgroups of G which shows that

Ca(X) is definable. a

One can use Theorem 3.4 or Corollary 3.5 to show that certain groups
are not of finite Morley rank. Now, we will apply these facts to free abelian
groups, free groups and symmetry groups of X, where X is an infinite set, to see

that they are not groups of finite Morley rank..

o A free abelian group A is not of finite Morley rank.

Let X be a basis of A, then A = Y cx Zz. For every n € Z \ {£1} and
ke Z*, n*A={a € A:(3b)(a =nFb)} is a definable subgroup of A. Now,
A>nA>n?A> ... > nkA > nFt1A > ... is a descending chain of
definable subgroups of A, which is not stationary. A does not satisfy the
descending chain condition which implies that A is not a group of finite

Morley rank.

e A free group F is not of finite Morley rank.
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Let X be a basis of F' and # € X. Cg(x) is a definable subgroup of F.
Then Cg(z) is isomorphic to the infinite cyclic group, which is free abelian.
However, a definable subgroup of a group of finite Morley rank is also of

finite Morley rank. This proves that F' is not a group of finite Morley rank.

e Sym(.X) is not a group of finite Morley rank, where X is an infinite set.

For each z € X, define S, = {¢ € Sym(X) : o(z) = z}. S,’s are definable
subgroups of Sym(X) and NyexS, = {id}. Consider an arbitrary finite
subset Y C X ,then obviously, Nyey Sy # {¢d}. Now, Corollary 3.5 implies

that Sym(X) is not a group of finite Morley rank.

3.2 The Connected Component

In this section, an important subgroup, the connected component, of
a group of finite Morley rank will be introduced and some properties of it will be

stated.
Throughout this section, G denotes a group of finite Morley rank.

Definition: The connected component of G, denoted by G°, is the intersection

of all definable subgroups of finite index in G.
Definition: G is called connected if G° = G.

Thus G is connected if and only if G has no proper definable subgroups

of finite index.

Lemma 3.7 Assume that G is connected and ¢ : G — G is a definable group

homomorphism. If Ker¢ is finite then ¢ is onto.
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Proof: Kerg is finite implies that rk(Ker¢) = 0. Lemma 3.2 implies that
rk(G) — rk(Kerg) = rk(¢(G)). Thus rk(G) = rk(¢(G)). Lemma 3.3 implies
that [G : ¢(G)] < 0o. Thus ¢(G) is a definable subgroup of G of finite index. G

is connected implies that G = ¢(G); i.e. ¢ is onto. c
Lemma 3.8 G° is a definable subgroup of G.

Proof: Since G satisfies the descending chain condition there exists definable
subgroups H,,...,H, of G such that [G : H;] < oo for i =1,...,n and G° =

% .H;. A finite intersection of definable subgroups of G is a definable subgroup

=1

of G. 0
Lemma 3.9 [G:G°] < >

Proof: This follows from the fact that if [G : H;] < oo and [G : H;] < o0, then
[G:HiNHy] < oo O

Lemma 3.10 rk(G°) = rk(G)

Proof: Lemma 3.3 and Lemma 3.9 imply this result. O

Remarks:

1. G° has no proper definable subgroups of finite index .
2. G° is contained in any definable subgroup which is of finite index in G.

3. G° is connected.
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1. A finite group is not connected unless it is the trivial group.
Lemma 3.11 An infinite simple group G is connected.

Proof: Assume that G is not connected. Then G has a proper definable subgroup
H of finite index, say n. Consider the homomorphism G — Sym(g,H,...,9,.H)
defined by g +— o,, where 0,(g;:H) = gg;H. Since NgegH? is the kernel of this
map, [G : NyeeH?] < n!. Thus NyegH? is a normal subgroup of G of finite
index. G is simple implies that NyegH? = {id} or NyegH? = G. The first case
is impossible, since G is infinite. The second case implies that H = G, which

contradicts the assumption that H is a proper subgroup.

Thus G has no proper definable subgroups of finite index. Hence G is

connected. u
Lemma 3.12 A divisible (abelian) group G is connected.

Proof: Let H be a proper definable subgroup of finite index in G. Then G/H
is divisible and finite. Thus G/H is the trivial group, and so G = H. This
contradiction shows that G is connected. o

Lemma 3.13 A group G of degree 1 is connected.

Proof: Since rk(G) = rk(G°) and G° < G, deg(G°) < deg(G) = 1. Thus
deg(G°) = 1. Equation 3.2 implies that G = G°. Hence G is connected. O

Lemma 3.14 If ¢ is an automorphism of G, then ¢(G°) = G°.
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Proof: ¢(G®) is a definable subgroup of finite index in G by Lemma 1.6. So
Remark 2 implies that G® < ¢(G°). ¢! is an automorphism implies that G° <
¢~ G®). So ¢(G°) < G°. Thus we get G° = ¢(G°). 0

Lemma 3.15 G° <4 G.

Proof: For any g € G, ¢,(z) = g~'zg is a definable automorphism of G. By the
previous lemma, ¢,(G°) = G°, for all g € G; i.e. g7'G°g = G°, for all g € G.

Thus G° is normal in G. 0

Definition: Assume that G is acting on a definable set X. G is said to act
definably on X if the map ¢ : G x X — X defined by (g,z) +— gz is definable.

Lemma 3.16 If a connected group G acts definably on a finite set X, then the

action ts trivial,

Proof: Define a groip homomorphism ® : G — Sym(X) such that ®(g) = oy,
where o,(z) = gz. Ker & = {g € G : (Vz)(9z = z)} is a definable subgroup of
G. G/Ker® is isomorphic to the image ®(G), which is a subgroup of Sym(X).
X is finite implies that Sym(X) is finite. Since [G : Ker®] = ®(G) C Sym(X),
[G : Ker?®] is finite. G is connected, and so Ker® = G. Thus gz = z, for all

g € G and for all z € X. 0

The converse of Lemma 3.13 is also true; i.e. the degree of a connected

group is 1. We need the following lemma to prove this fact.
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Lemma 3.17 Let rk(G) = n, deg(G) = d and X C G be a definable subset.
Then, rank(X) < n iff ViZ, P, where

P (3gu),. ., Fgiaen))(X € Ui::l [n;{jil;i¢jg;jlgki-YC])'

Proof:(=) : Let £ be the language such that G is an L-structure and T be the
complete theory of G. Define £' = L U {g},ec U {a} and let S(g1,...,9411) =
Vijil;i¢j[g{ lg;a € X]. Now define a new theory T’ containing the theory T,
the sentence {a € X} and the sentences S(gi,...,944+1) for each d + 1-tuple

g15---59d+1 in G.

Assume that T' is consistent and G* is a model of T’. Choose a
maximal set {g1,...,9-} C G such that g;'g;a € X if ¢ # j. Then, necessarily
r < d. Since it is the maximal set, for all g € G, there exists ¢ < r such that
g7 'ga € X or g™'g;a € X, which implies that g € g;:Xa™! or g € g;aX ™. Hence
G C U_(g:Xa ' Ug;aX™ ') whose rank is equal to rk(X) < n = rk(G). This

contradiction implies that 7" is inconsistent.

T is inconsistent implies that for any z € X there exist hy,...,hg41 €
G such that A]'h;z ¢ X whenever i # j. Let’s set h; = gk(z)i = gki and rewrite
this statement. For any z € X there exists k < m such that gilgr;z & X

whenever ¢ # j.

Note that the following statements are all equivalent: g;;'gr;z & X if

and only if g5;'gr;z € X¢if and only if z € g,:j] gk XC.

Thus we have for all z € X there exists ¥ < m such that z €
g,:jlgk,-Xc whenever ¢ # j. Hence for all £ € X there exists k¥ < m such that

z € ﬂ‘-i"-'ll;,-;ejg{jlgkiX ¢, In other words, X C Ul ﬂ;{'jil#j g,:jl griXC.

8=
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Therefore V2, (X C U, ﬂi}'ﬁihi# 9x; 9xiX°) holds.

(<) : Since there exists V{2, P, there exist [ and g11...,gid+1) such
that X C UL, ﬂ?‘}'-'__l_l#j g,:jlgkch. For 1 <k <, define X} = ﬂ?}ihi#g;jlgkch.
Then, X C Ui_, X}, so there exists 1 < ko < [ such that rk(X) < rk(Xk,)-
Forany 1 <k <, Llfillgk,-Xk is a disjoint union, because ot-herwise for some
¢ # j, there exists a € gx; Xi N gr;Xg. Then there exists ay,a; € Xj such that
@ = griay = grjaz and az = g;;'griar € Xi C gi; 9rX°. This implies that
a; € X N X¢, which is nonsense. Thus, in particular, Ut g, X}, is a disjoint
union in G. deg(G) = d implies that rk(Xy,) < n. Since rk(X) < rk(Xy,), it

follows that rk(X) < n. O
Theorem 3.18 G is connected iff deg(G) = 1.

Proof: By Lemma 3.13, if deg(G) = 1, then G is connected. For the converse,
assume that G is connected and deg(G) = d and let rk(G) = n. Then, there
exist definable sets A; C G, for ¢ = 1,...,d such that rk(A;) = n, deg(A4;) =1
and G = LI¢_  A;.

Now define an action of G on {1,...,d} such that rk(gA; N Ay) = n.
Let’s prove that this action is well defined. Fix gA;. Then, rk(gA;) = rk(G) =
n and deg(gA;) = 1. gA; = (gA:N A;) U...U (gA; N Ay) implies that n =
rk(gA;) = mazi<j<i{rk(gA; N A;)}. Thus there exists j € {1,...,d} such that
rk(gA; N A;) = n. If j is not unique, then gA; can be written as a disjoint union
of at least two definable sets of rank n. But this contradicts the fact that gA; is

of degree 1. This proves that the action is well defined.

To prove that the action is definable, we have to prove that the map
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(9.7) — gt is definable. The graph of this map is
{l9:7,90) 1 g € Gyi€{1,...,d}} = UL, (X5 x {i} x {5}),

where X;; = {g € G : 7k(9A: N A;) < n}. Lemma 3.17 implies that X;; is defin-
able, so the action is definable. Lemma 3.16 implies that the action is trivial;i.e.
rk(gAiNA;) = n,forallg € Gandforall: =1,...,d. Now, gA; = Ui, (gAiNA4;),
deg(9A;) = 1 and rk(gA; N A;) = n. These imply that rk(gA; N A;) < n, for all
j#iand forall g € G.

Define a new language £’ = LU{g},ec U {a}, where L is the language
of groups and a new theory T" = T'U {P,},cc, where T is the complete theory
of G and P, is the sentence ga € A;. (Since A, is definable, P, is a first order

statement. )

Now the problem is to prove that T” is consistent. First, take a finite
subset ¥ of 7'. Then there exists k € N such that ¥ 2 TUP,, U...UP,,. To prove
that ¥ is consistent, let’s apply Lemma 2.13 for A = A; and X; = gj'4; N Ay, to
get k(97741 N...Ng; A1 N A4;) = n. Since we have gitAIN...Ng;tAIN A C
gl AiN...NgitA C G, rk(¢7* A1 N... Ngg'A;) = n. Thus one can choose

a € NE_,g7 1 A;, which implies that g;a € A4;,...,gxa € A;.

%

What we proved is: T” is finitely satisfiable. The compactness theorem
implies that 7" is satisfiable,and hence has a model say G*. {g},e¢ C £ implies
that G < G*. Let A} be the interpration of A, in G*. Then ga € A7, for all

g € G, so Ga C Af and we have G C Afa™!.

If we assume that d > 1, then in particular, A, C A%a!. Also
A; € A3, So, A2 C Ata 1N A3, rk(A;) = n and rk(A4fa™! N A%) < n gives

a contradiction. Therefore d = 1. 0
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Corollary 3.19 deg(G) = [G : G°).

Proof: Let [G : G°] = d and rk(G) = n. Then rk(G°) = n and deg(G®) = 1,
since G° is connected. By Lemma 2.5, G = L¢_,9;G° implies that deg(G) =
¢ deg(9:G°) = £t ,deg(G°) =d = [G : G°). 0

3.3 Regular Subgroups of GL,(K)

Throughout this section, K will stand for an algebraically closed field.

Definition: Let G be a group acting on a set X. The action is called transitive,
if for all z,y € X there exists ¢ € G such that gr = y. The action is called

sharply transitive if for all z,y € X, there exists uﬁique g € G such that gz = y.
Sharply transitive actions are also called regular actions.

Definition: A subgroup G < GL,(K) is called regular, if G acts on K™ \ {0}

regularly.

The main result of this section is: If G < GL,(K) is a regular subgroup
of finite Morley rank, then n = 1 and G = K* or n = 2. In fact, it was proved

that in such a case n # 2. See [5].

n = 1 and G is a regular subgroup directly implies that G = K™.

From now on, it will be assumed that n > 1.

Va(g) denotes the a-eigenspace of g and C(g) stands for Cg(g) and
set V = K",
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Lemima 3.20 Forg.h € G,

(1)gh = hg iff g and h have a common eigenvector.

(ii)g and h are conjugate iff g and h have a common eigenvalue.
(iii) Z(G) acts as a group of scalars and G is not abelian.

(iv)C(g) acts regularly on V,(g), for each eigenvalue o of g.

Proof: (i)(=): Let a be an eigenvalue of g. h(V,(g)) C V,(g), because if v €
Va(g), then gv = av and g(hv) = hgv = hav = a(hv) implies that hv € V,(g).
Therefore, h acts on the subspace V,(g) of K™ and h has an eigenvector in the

subspace V,(g).

(<):Let v be the common eigenvector of g and h, then there exists o, 8 € K
such that gv = av and hv = Bv. This implies that ghv = ¢g(Bv) = Bgv = fav =

affv = ahv = h(av) = hgv. Now, sharpness implies that gh = hg.

(ii)(=):Let g = h* and let a be an eigenvalue of g. Then there exists a non-zero
v € V,(g) such that gv = av. Now, h(kv) = kgv = kav = a(kv) implies that o

is an eigenvalue of h.

(<=):Let a be the common eigenvalue of g and A, then there exists v,w € K"
such that gv = av and hw = aw. Regularity implies that there exists a unique
k € G such that kv = w, then k~'hkv = k™!(aw) = av = gv. Finally, sharpness
implies that k™ 1hk = g.

(iii) Let z € Z(G), z has eigenvectors, say zv = av. Fix an arbitrary w €

K™\ {0}. By regularity, there exists ¢ € G such that gv = w. Then we have

42



sw = :gv = gzv = gav = agv = aw. Thus every vector in A™ lies in 15(2)

which shows that z acts scalarly.

G is not abelian, because G is regular and n > 1 implies that G can

not act as a group of scalars.

(iv) For any & € C(g), h(Va(g)) € Va(g). This was proven in part (i). For
regularity, let v,w € V,(g)*, then there exists unique h € G satisfying hv = w.
To see that & € C(g), consider [g,hlv = g~ A~ ghv = g7'h~law = v. Now
sharpness implies that [g, 2] = id. Thus gh = kg and h € C(g)- 0

For the following three lemmas, it will be assumed that C(g) is abelian
for all ¢ € G\ Z(G). This assumption will allow us to prove Cherlin’s theorem

on division rings.

Lemma 3.21 (i) For all g € G\ Z(G), if Va(g) # 0 then dim(V,(g)) = 1. In
particular, C(g) = K*.

(ii) G is divisible and has no subgroups of finite index.

Proof: (i) Take an arbitrary h € C(g), then k has an eigenvector in V,(g); say
hv = cv. Take an arbitrary w € V,(g), then there exists hy € C(g) such that
hyv = w. Then hw = hhyv = h1hv = hycv = cw. So every vector of V,(g) is an

element of V,(h). Thus for every h € C(g), h acts as a scalar on V,(g).

If dim(V,(g)) > 1, then there exist two linearly independent elements
B1, Ba € V,(g). Since C(g) acts regularly on V,(g), there exists x € C(g) such
that =8 = B,. However, z € C(g) implies that & acts as a scalar on V,(g), thus

2B, = ¢/, for some ¢ € K. This contradiction implies that dim(V,(g)) = 1.
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(ii) For all g € G\ Z(G), C(g) = K* and K is algebraically closed imply that
C(g) is divisible. Fix an arl;itrary g € Gand n € N. If g € G\ Z(G), then
g € C(g) implies that there exists z € C(g) such that 2" = g. If ¢ € Z(G), then
choose an arbitrary element & € G\ Z(G). We have g € C(h) & K*, so G is

divisible. '

If G has a subgroup H of finite index, then G/G° is a nontrivial finite

divisible group which is not possible. a

Notation: N(g) denotes Ng(C(g))-

Lemma 3.22 For any g,h € G\ Z(G), we have the following:

(1) gh = hg iff they have the same set of eigenspaces.

(ii) C(g) = C(k) or C(g) N C(h) = Z(G).

(iii) N(g)/C(yg) acts regularly on the set of eigenspaces of g.

(iv) C(g) and C(h) are conjugate.

Proof: (i) Let « be an eigenvector of g. gh = hg implies that 2(V,(g)) C Va(g).

This fact and dim(V,(g)) = 1 prove that V,(g) is an eigenspace of k. The converse

is trivial by Lemma 3.20(i).

(ii) First let’s prove that to commute is an equivalance relation on G\ Z(G).
It is trivially reflexive and symetric. To see the transitivity, let ¢ € C(h) and

h € C(k), then g,k € C(h). C(h) is abelian implies that gk = kg.
Therefore, the C(g) \ Z(G)’s partition G'\ Z(Q), that is either C(g) =
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C(h) or C(g) N C(h) is the empty set in G\ Z(G). Since, Z(Q) is a subset of

each centralizer, second case implies that C(¢g) N C(k) = Z(G).

(iii) Let o and § be eigenvalues of g. Consider some arbitrary vectors in v €
Va(g)®, w € Vs(g)* and some k € N(g). kv is an eigenvector of g, since g(kv) =
(gk)v = kk~'gkv and k~!gk € C(g) implies that k(k~'gk)v = k(cv) = c(kv), for

some ¢ € K.

G is regular implies that there exists k € G such that kv = w. To prove
that the action is tramsitive, it is enough to prove that £ € N(g). k™ 'gk(v) =
k~l'gw = k~!'fw = Bv implies that v is an eigenvector of g and ¢g*. Thus ¢ and ¢*
commute and g € C(g) N C(g*). If C(g) N C(g*) = Z(Q), then g € Z(@), which

is not the case. Now part (ii) implies that C(g) = C(g*).

k=1C(g9)k = C(g*) = C(g) implies that & € N(g). Since the dimen-

sions ol the cigenspaces are 1, kV,(¢) = Vs(yg).

If kVo(9) = Va(g), then k has a common eigenvector with ¢ and

k € C(g). This proves that N(g)/C(g) acts regularly on the set of eigenspaces of

g.

(iv) Let a and S be eigenvalues of g and h, respectively. Then there exist
v,w € K™ such that gv = av and hw = Pfw. Regularity implies that there exists
k € G such that kv = w. Thus k~1hkv = k™' fv = P, that is g and k~'hk have a
common eigenvalue. So g and k™'hk commute. Since all centralizers are abelian,

we have C(g) = C(k™'hk).

The map ¢ : G — G which is defined by ¢(¢g) = £~ gk is an automor-
phism. Hence ¢(C(h)) = C(4(h)) = C(k7'hk). On the otherhand ¢(C(h)) =
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k7'C(h)k. Combining these observations, we get that C(g) = C(k~1hk) =
k=YC(h)k as desired. o

Before starting the last lemma; let’s recall all the assumptions once
more. G is a regular subgroup of GL,(K), K is an algebraically closed field,
n > 1 and C(g) is abelian for all g € G\ Z(G). C(g) and N(g) stand for Cg(g)

and Ng(C(g)) respectively.

Lemma 3.23 (i) n=2 and char K # 2

(ii) Every g € G\ Z(G) has two distinct eigenvalues and [N(g) : C(g)] = 2.

Proof: (i) Lemma 3.22(iii), for any g € G \ Z(G), N(g)/C(g) acts regularly on
the set of eigenspaces of g. The action is regular implies that ]g—f—j)ll = number
of eigenspaces of g= number of eigenvalues of g. Let’s call this number m. By
Lemma 3.22(iv), for any g,k € G \ Z(G), there exists y € G such that C(g) =
y~*C(h)y. Moreover we have y‘lgj(%y = Jc\,l(%. Since N(h)/C(h) and N(g)/C(qg)
are conjugate, they have the same cardinality. Therefore for any g,k € G\ Z(G),

g and h have the same number of eigenvalues.

Now suppose that m = 1 and char K = ¢, then there exists r,e € N
such that n = ¢"e and ¢ fe. For any % in the commutator subgroup G’, deth = 1.
Note that the constant term of the characteristic polynomial of & is (—1)"deth =
(=1)". Let a be the unique eigenvalue of h, then (—1)* = (~1)"a", so a" = 1.
char K = q implies that a® = 1. Now h®v = a®v = v and sharpness implies that

h® =1.

char K = ¢ implies that the polynomial z® — 1 does not have any

multiple roots. Thus the minimal polynomial of & does not have any multiple
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roots which implies that h is diagonalizable. h has one eigenvalue implies that
h is similar to a scalar matrix. Thus A is a scalar matrix. Therefore there is a
bijection between G’ and the set of e-th roots of unity. Thus G is finite. Elements

of G' are scalar matrices implies that G' < Z(G).

Fix an arbitrary z € G and consider the map 0 : G — G’, defined by
0(y) = z~'y~'zy. @ is a homomorphism, since 8(y)8(y:) = z~ 'y leyz lyy 2y =
ey z(z 7y zy)y = 27 (yya) " zyy = O(yy). G is divisible implies that its
homomorphic image [z, G] is divisible. G’ is finite implies that [z, G] is the identity
group for all z € G. Thus G = Z(@G). This contradicts with Lemma 3.20(iii).

Therefore m > 1 and |%| =m > 1. Let p be a prime number which
divides m, then there exists A € N(g) \ C(g) such that A? € C(g). k € C(k) but
h € C(g) implies that C(g) # C(h), so C(g) N C(h) = Z(G) by Lemma 3.22(ii).

Thus h? € Z(G), that is h? is a scalar.

h has m distinct eigenvalues, say a;,...,a,. Foreachi =1,...,m,
“af is an eigenvalue of A? and h” has only one eigenvalue. Hence of = of for all

t,J=1,...,m. If char K = p, then o; = ¢, which is a contradiction. Thus char

K #p.

For any z € C(g), A~ 'zh € C(g), since h € N(g). Thus ¢ : C(g) —
C(g), o(z) = h~'zh is an automorphism and o?(z) = h~PzhP = z implies that

of = id.

Now let U, be the set of p-elements of C(g) & K*. Then U, = Z(p™).
To see that o(U,) C U,, let = € U,, then for some r € N, zP" =1 and o(z)? =

o(z?") = h~1zP"h = 1. This proves that o(z) € U,.
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Now suppose that p > 2. Then Aut(Z(p™)) = Z; has no elements of
order p. For the proof see [1]. Thus ¢ = id on U,. By definition, U, C C(g)
and ¢ = id implies that A™'zh = z for all z € U,. So U, € C(h). Thus

Uy, € C(g) NC(R) = Z(G).
Claim: Z(G) is p-divisible.

Let a € Z(G) £ C(g9). By Lemma 3.21(i), C(g) is p-divisible, so
there exists z € C(g) such that 2?7 = a and there exists y € C(g) such that
y? = z. Now our aim is to show that y? € Z(G). Define z = o(y)y~!. Then
27 = o(y” )y, since o(y),y~! € C(g) = K* which is abelian. Now z#* =
o(y?'y~P’) = o(zP)z~? = zPz~? = 1, since o is identity on Z(G). Thus z € U, <
Z(G) and o(z) = 2. o(y) = zy implies that o?(y) = o(2)o(y) = 2zy = z%y.
Thus o”(y) = 2Py. But at the same time o?(y) = y, so 22 = 1 which implies
that z € U, < Z(G). So we have o(y*) = o(y)? = (zy)? = 2y? = y?. This
implies that y?» € C(k). Also y € C(g) implies that y*» € C(g). Therefore
y? € C(g) N C(h) = Z(G) which proves that Z(G) is p-divisible.

Since h? € Z(G), h® acts like a scalér, that is there exists A € K such
that h?v = Av. Z(G) is p-divisible implies that there exists z € Z(G) such that

2Pv = lv. By replacing h with 2714, one can assume that h? = 1.

Let v # 0 be an eigenvector of g, so for some ¢ € K, gv = cv. Let

w = v+hv+...+hP 1y, then h(w) = hvt+h?v+...+hPv = hv+.. . +hP"lo+v = w.
Claim: w # 0.

Lemma 3.22(iii) implies that N(g)/C(g) acts regularly on the set of

eigenspaces of g. So hv €< v >, because of sharpness. Moreover, all A*v’s belong
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to different eigenspaces, for t = 0,....p — 1. A fact from linear algebra implies
that sum of the vectors from different eigenspaces are linearly independent, so

their sum can not be zero. Thus w # 0.

Now h fixes a nonzero vector. But then sharpness implies a contradic-
tion. Thus p = 2. p = 2 implies that char K # 2 and h? € Z(G). Hence h? acts
like a scalar, say A. Then we have h? — Al = 0, which shows that the minimal
polynomial of A divides the polynomial z2 — A\. Therefore h has at most two
distinct eigenvalues; i.e. m < 2. Since m > 1 was assumed, necessarily m = 2.
h has two distinct eigenvalues and the degree of the minimal polynomial of A is
less than or equal to 2 imply that % is diagonalizable. The sum of the dimension
of eigenspaces of h is equal to the dimension of V, which is n. Lemma 3.21(i)

implies that the dimension of each eigenspace is 1, so we can conclude that n = 2.

a

Here is the exact statement of the fact that will be used to prove

Cherlin’s theorem on division rings.

Theorem 3.24 Let G be a regular subgroup of GL,(K) of finite Morley rank,
where K is an algebraically closed field. Suppose that Cg(g) is abelian for all
g € G\ Z(G). Then one of the following possibilities holds.

(i) n=1 and G = K*.

(ii) n = 2 and [Ng(Cs(9)) : Ca(g)] = 2.
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CHAPTER 4

FIELDS AND RINGS OF FINITE
MORLEY RANK

4.1 Fields of Finite Morley Rank

4.1.1 Galois Theory

Throughout this section, the letters E, F, K, L, L' will stand for arbi-

trary fields.

Definition: An extension F': K is called algebraic, if every element a € F is a

root of a polynomial f(z) € K[z].
Lemma 4.1 If F': K is a finite extension, then it is algebraic.

Proof: Assume that [F : K] = n, then for any a € F, the set {1,a,a?%,...,a"} is
linearly dependent over K; i.e. there exists cg,...,c, € K such that ¢l + c;a +

...+ ¢,a” = 0. Thus a is the root of the polynomial f(z) = cg+c1z+...+cz™ €

K{z], which implies that a is algebraic over K, for any a € F. B

Definition: An irreducible polynomial f(z) € K|[z] is called separable, if the
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roots of [ are pairwise different. An arbitrary polynomial p(r) € A'[r] is called

separable, if its irreducible factors are separable.

Lemma 4.2 Let f(z) € K[z] and a € K be a root of f(z). Then a is a multiple
root of f(z) iff f'(a) =0

Proof: (=): If a is a multiple root of f(z), then there exists h(z) € K[z] such
that f(z) = (z—a)?h(z) and f'(z) = 2(z—a)h(z)+(z—a)?*h/(z). Then f'(a) = 0.

(<):a is a root of f(z) implies that there exists g(z) € KJz] such
that f(z) = (z — a)g(z). So f'(z) = g(z) + (z — a)¢'(z) and f'(a) = 0 implies
that g(a) = 0. Thus there exists h(z) € K[z] such that g(z) = (z — a)h(z) and

f(z) = (z — a)?h(z) which proves that a is a multiple root of f(z). 0
Lemma 4.3 Let f(z) € K[z] be an irreducible polynomial. Then the following
are equivalent:

(i) f(z) is separable

(i) ged(f(z), f'(2)) = 1 in K]z]

(i) f'(z) #0.

Proof: (i)=(ii): Assume that ged(f(z), f'(z)) = h(z) # 1. Then deg h > 1.
Then k(z) has a root z, in some extension field L of K. There exists fi(z),g:(x) €
K{z] such that f(z) = h(z)fi(z) and f'(z) = h(z)g1(z). Now, we have f(zo) =

f'(zo) = 0. Lemma 4.2 implies that z is not a simple root of f(z). Thus, f(z)

is not separable,
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(ii)=(iii): If f'(x) = 0, then ged(f(z). f'(z)) = [(x) # 1.

(iif)=(i): f(z)is irreducible, f'(z) # 0 and deg f > deg f’, so ged(f(z), f'(2)) =
1. Now there exists g(z), h(x) € K[z] such that 1 = f(z)g(z) + f'(z)h(z). Let
zo be an arbitrary root of f(z) in some extension field of K. Then we have
1 = f'(z0)h(zo), and so f'(xg) # 0. Lemma 4.2 implies that zo is a simple root
of f(z). Hence f(z) is separable. o

Definition: K is called a perfect field, if either char K = 0 or char K = p and
K = K”.

Theorem 4.4 Let K be a perfect field and p(z) € K|z] be an irreducible polyno-

mial. Then p(z) is separable.

Proof: First consider the case when char K=0. Let p(z) € K|[z] be an irreducible
polynomial. If deg p < 1, then there is nothing to prove. If deg p > 1, then

p'(z) # 0. Lemma 4.3 implies that p(z) is separable.

Now consider the case when char K=p. Since K is perfect, in this
case we have K = K?. Let p(z) = £ 4a;z" be an irreducible polynomial over K
and assume that p(:c) is not separable. Then Lemma 4.3 implies that p’(z) = 0;
ie. X ,ia;z""! = 0 and so ia; = 0 for all : = 1,...,n. Thus a; = 0 or pli for
all: =1,...,n. Therefore p(z) = 1_0%,27’” Since K = KP?, for each a,;, there
exists b; € K such that 8’ = a,. Thus, p(z) = TEbe? = (Zhbiz®)”. This

contradicts the fact that p(z) is irreducible. So necessarily p(z) is separable. 0O

Definition: Let p(z) € K[z] be a nonconstant polynomial. A field extension L

of K is called a splitting field over K of p(z) if p can be written as a product
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of linear factors in L[z] and L is minimal with this property. In other words.

L =HK(ay,....a,). where a,,...,a, are the roots of p.

Lemma 4.5 Let f(z) € K|z] and deg f =n > 1. Then there exists a splitting
field F of f(z) satisfying [F : K] < nl.

Proof: See Theorem V.3.2 in [6).

Lemma 4.6 Let f(z) € K[z], o be an automorphism of K and L be a splitting

field over K of the polynomial f(z). Then o can be extended to an automorphism
of L.

Proof: See Theorem V.3.8 in [6].

Notations: AutxL = {0 € Aut(L) : o(k) =k, for all k € K}, where K C L
and GL' = {z € L: g(z) = z, for all g € G}, where G C AutgL.

Definition: Let L be a finite extension of K. L is called a Galois eztension of

K if (Autx L)L = K.

Theorem 4.7 If L is a splitting field over K of a separable polynomial f(z) €

K[z], then L : K is a Galois eztension.

Proof: Lemma 4.5 directly implies that the extension is finite. To show that the

extension is Galois, it is enough to prove that (Autx L)* C K.

The proof will be done by induction on r=number of roots of f(z) not

lying in K. r = 0 implies that all roots lie in K. So L = K and [L : K] is Galois.
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Now let r > 0, then for some a € L\ K. f(a) = 0. Let g(r) be the
minimal polynomial of a over K. Then, f(x) = g(x)h(z) for some h(zx) € K][z].
f(z) is still separable as a polynomial over K(a)[z] and L is the splitting field of

f(z) over K(a). By induction hypothesis, [L : K(a)] is Galois, so (Autx(s)L)F =
K(a) AutK(a)L C Autg L implies that (AutKL)L C (AutK(a)L)L = K(a)

Thus, any y € (Autg L)* can be written as y = ko+kya+...+k_1a*72,
where s = deg g. f(z) is separable implies that g(z) is separable. So g(r) has
s distinct roots, say @ = ay,...,a;. The maps ¢; : K(a) — K(a;) defined by
éi(k) = k for all k € K and ¢;(a) = a; are field isomorphisms for all 7 =1,...,s.

Lemma 4.6 implies that each ¢; can be extended to an automorphism
®; of L, so ®; € AutgL. Thus, we have ko + kya; + ... + k1057t = @,(y) =
y=ko+ kia+...+ ks—1a°7. Define p(z) = k,_12°" 1 +... + kyz + ko — y, then
ple;))=0foralli=1,...,s. deg p < s—1 and p(z) has s distinct roots implies
that p(z) = 0. Thus, y =k, € K. o

Definition: Let S be a nonempty set of homomorphisms from L into L’. S is

called linearly independent if for any k,,...,k, € L' and s4,...,5, € S, we have:

kisi(z)+...... + krnsy(z) = 0 for all z € L implies that k; = 0 for all

t=1,...,n.

Lemma 4.8 Let S be an arbitrary subset of homomorphisms from L into L',

then S is linearly independent.

Proof: If S is not linearly independent, then there exist a;,...,a, € L' and

01,...,05, € S such that
ao(u)+...... + ano,(u) =0, forall u € L. (4.1)
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Among all such relations, choose the one with n minimal. Clearly. n > 1. oy # o,

implies that there exists v € L such that oy(v) # o2(v). Now, we have

a0y (u)oy(v) +...... +.a,0,(u)o,(v) = 0. (4.2)
Multiply Equation 4.1 with o1(v) to get

aio(u)or(v) +...... + anon(u)oy(v) = 0. (4.3).
The difference of Equation 4.2 and Equation 4.3 gives

az[o2(v) — o1(v)]oa(u) + ... ... + anfon(v) — 01(v)]on(u) =0
Now a3 # 0 and o3(v) # o1(v). This contradicts with the minimality of n.

Therefore S is linearly independent. a
Lemma 4.9 Let L and L' be finite extensions of K. There are at most [L : K]
distinct field homomorphisms defined from L into L' fizing K. In particular,
|Autg L] < [L : K].

Proof: Denote the set of K-linear maps from L into L' by Homg(L,L'). In
fact, Homg(L,L') is a vector space over L'. Let oy,...,0, be distinct field
homomorphisms from L to L'. Lemma 4.8 implies that the set {oy,...,0,} is

linearly independent, so n < dimp(Homg(L,L')).
Now our aim is to prove that [L : K| = dimp(Homg(L,L")). Let
{a1,...,an} be a K-basis for L and define f; € Homg (L, L') such that

1 if i=j

1) ={ 0p if i,
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I 2.6 f; = 0 for some b; € L', then b; = 72, b; fi(a;) = 0.s0 b; =0

for all j = 1,...,m. Hence {fi,..., fm} is linearly independent.

If f e Homy(L, L"), then f = £7,f(a;)f;. Therefore {f1,...,fm} is
an L'-basis for Homg (L, L'), which proves that [L : K| = dimp(Homg (L, L")).
a
Lemma 4.10 Let G be a finite subgroup of Aut(L) and K = GL. Then,
(@) [L: K] =G|
(ii) AutxL = G.
Proof: (i) Lemma 4.9 implies that [L : K] > |Autx L| > |G|]. Thus it is enough
to prove that [L : K] < |G|. Let |G} = n and G = {oy,...,0,}. Now our aim

is to show that any n+1 elements in L are linearly dependent over K. That will

imply [L: K] <n+1.
Let ag,...,a, € L and consider the system of equations:
o7 (ao)zo + - .-... + o7 (an)z, =0, fori=1,...,n.

There are n equations in n+1 variables, so there exists a nontrivial solution of
this system, say by, ...,b,. But then, for any ¢ € L, ¢by, ..., cb, is also a solution

for the system. Assume that by # 0. Apply o; to the equation:
o7 (ao)cbo + ... + o7 (an)ch, = 0

to get :

Yi=oaroi(chy) =0foralli=1,...,n.
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When we take the sum over all equations, we will get:
Yotk Xl 0i(cby) = 0.

vr_oi(chby) € G = K for all ¢ € L implies that the map £2 ,0; is defined from
L into K. Since, 0;’s are linearly independent, this map is nonzero. Thus, there
exists ¢ € L such that X7 ,0;(cby) # 0. Therefore, {ag,...,a,} is a linearly

dependent set.

(ii) Trivially, G C Autg L. Part (1) implies that |G| = [L : K] > |Autx L|. Thus,
G = AutgL. 0O

Lemma 4.11 If L : K is a finite eztension then the following are equivalent:

(i) L: K is a Galois extension

(ii) |[AutxL| = [L: K].

Proof:(i)=(ii): AutxL is a finite subgroup of Aut(L) and by our assumption
(Autg L)t = K. Thus Lemma 4.10(i) can be applied for G = AutgL to get
[L: K]=|AutgL|.

(ii)=(i): Let G = AutxL. By Lemma 4.10 and the assumption, we have [L :
Gl = |G| = [L: K]. K C G implies that [L : GF]|[G* : K] = [L : K] and
[GY : K] =1, 50 G = Kj; ie. (AutxL)l = K implies that L : K is a Galois

extension. 0

Theorem 4.12 If L : K is a Galois extension and E is an intermediate field,

then L : E is also a Galois extension.
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Proof: In order to show that L : E is Galois. it is enough to prove that [ AutgL| >
[L: E]. First let’s see that

]‘4ut}\-L|

{olg :0 € AutgL}| = AutpL]

(4.4)

Note that ¢ € Auty L implies that o|g is a field homomorphism from FE to L and

its restriction to K is the identity map.

For 0,7 € AutgL, olg = 7|g iff 77'0|g = id|g iff 770 € AutgL iff

7Autpl = o Autg L. Thus Equation 4.4 is proven.

Lemma 4.9 implies that |{o|g : ¢ € AutxL} < {o: E - L:ois

an embedding and o

x = id}| < [E : K]. When we combine this result with
Equation 4.4 we get: [E : K] > [{o|g : 0 € AutgL}| = BUEL oo | AutpL| >

|AutgL|’
|Autg L L:K]
[E:II:’] L= [[E:K] = [L: E].

Thus L : E is Galois. O

Theorem 4.13 Let L : K be a Galois extension. Then the map defined from the
set of subgroups of Auti L into the intermediate fields of L and K that sends. U

to UL is a bijection. The inverse of this map takes E to AutglL.

Proof: It is enough to prove that AutyrL = U, for any U < AuixL and

(AutEL)L = F, for any intermediate field E.

For the first one; since U is finite, we can apply Lemma 4.10(ii) for

G = U and get Autyr L = U.

For the second one; E C (AutgL)” clearly holds. By Theorem 4.12,
L : E is Galois. Therefore [L : E] = |AutgL| = [L : (AutgL)*] by Lemma 4.10(i).
Thus E = (AutgL)~. ]
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Definition: An extension L of K is said to be a cyclic extension of degree n, if

L : K 1s a Galois extension and Auty L is a finite cyclic group of order n.

Theorem 4.14 Let char K=p, where p is a prime number and F be a cyclic
extension of K of degree p. Then there exists o € F such that F = K(a) and

o? —a—a=0 for somea € K.

Proof: Let o be the generator of the cyclic group AutxF. Now we will see
that there exists @ € F such that o(a) — a = 1k. Let’s agree to use T;(z)
as an abbreviation for z + o(z) + ... + ¢*(z) for any z € F and for all ¢ €
{0,1,...,p—1}. Lemma 4.8 implies that there exists z € F such that T,_1(2) # 0.
Now let w = —(T,_1(2))"'z and a = Z22(i + 1)o*(w). Then T,_;(w) = —1x
and o(a) — a = X02(i + 1o (w) — Z22( + 1)oi(w)

= Y5 (1)o'(w) — EIZ5(0 + 1)o'(w)

= ~1.0%(w) ~ B2 (w) + (p — 1)o7 (1)

= X530t (w) = ~Tpa(w) = 1.

o(a) — a =1 implies that c(a) =a+1# a,s0 a € K.

[F : K] = pimplies that there are no intermediate fields, so necessarily
F = K(a). In order to show that o? — a € K, it is enough to prove that o fixes

(o —a). o(a?—a) = g(a?)~o(a) = (¢(a))?—0o(a) = (a+1)P—(a+l) = o? —a.

Thus there exists @ € K such that o — o = a. Hence o —a —a = 0

for some a € K. 0



Theorem 4.15 Assume that N contains a primitive n-th root of unity ¢ and F is
a cyclic extension of K of degree n. Then there exists a € F such that F = K (a)

and a" —a =0, for some a € K.

Proof: Let o be the generator of the cyclic group AutgxF. Now we will see
that there exists @ € F such that ( = a 'o(a). Since {0'}%y’s are distinct
automorphisms of F', by Lemma 4.8, there exists y € F' such that L7110 (y)

is nonzero. Call this element a1
o(a™?) = BiZ (ot (y) = B, (o'(y)
=D Coi(y) + (Mo (y) = ZEL ot (y) +y
=y+ DL (o' (y) = S (oiy) = (TG (lo(y) = (e

Thus o(a) = (a which implies that o(a”) = o(a)” = ("a™ = a”. So

a" € K;ie., a" = a for some a € K and a™ — a = 0 for some a € K. a

4.1.2 Macintyre’s Theorem

Lemma 4.16 An infinite division ring of finite Morley rank, considered as an

additive group, is connected.

Proof: Let D be a division ring of finite Morley rank. Consider D as an additive
group and let D° be the connected component of D. I = NgepkD® is a left ideal
of D,so I =D or I ={0}. By descending chain condition, we can express this
left ideal as ﬂkéDkD° = N, k;D°. Since [D : D°] is finite, [D : N, k;D°] is also
finite. D is infinite and [D : I] is finite imply that I # {0}. So necessarily I = D;
i.e. NgepkD°® = D.
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Therefore kD°® = D for all k € D. In particular we have D° = D by

choosing k = 1. Thus D is connected. O

Lemma 4.17 If K is an infinite field of finite Morley rank, then K+ and K* are

connected groups.

Proof: K* is connected by Lemma 4.16. Thus deg(K) = 1 by Theorem 3.18.
Now Lemma 2.7 implies that deg(K*) = 1. Applying Theorem 3.18 once more,

we get that K™ is connected. : o

Theorem 4.18 (Macintyre) An infinite field of finite Morley rank is an alge-
braically closed field.

Proof: Let L be an infinite field of finite Morley rank. Let’s first see that L is
perfect. Assume that char L = ¢ and consider the homomorphism ¢ : L* — L*
of multiplicative groups defined by a — a?. 2% — 1 = 0 has at most q solutions in

L™ and so Ker¢ is finite. Lemma 4.17 and Lemma 3.7 imply that ¢ is onto, so
L?= L.

Now let’s assume that L is not algebraically closed and try to get a
contradiction. L{z] must contain an irreducible polynomial p(z) of degree n > 1.
Let L' be the splitting field of p(z) over L, then [L' : L] < nl. Now Theo-
rem 4.4 implies that p(x) is separable and Theorem 4.7 implies that L' is a Galois

extension of L, which is different from L.

Now let E be a finite field extension of L, then one can view E as a

structure defined in L as follows:
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Let [F : L] = d < >, then E can be considered as a vector space
of dimension d over L. Fix a basis for E. Now E and L? are isomorphic as
additive groups. The multiplication rule of the basis elements determines the
multiplication rule of the whole extension ‘ﬁeld. The multiplication rule for the
basis elements of L? can be defined so that the resulting structure is isomorphic

to E.

Since the multiplication rule for the basis elements of L? can be ex-
pressed by finite number of statements containing parameters only from the field

L, L? can be viewed as a structure defined in L, so is E.

Thus we have rk(E) < [E : Llrk(L) and so E is of finite Morley rank.
Hence any finite extension of a field of finite Morley rank is also of finite Morley

rank.

We have thus shown that if L is an infinite field of finite Morley rank
which is not algebraically closed, then there exists a Galois extension L’ of L such

that L' also has finite Morley rank.

Now consider all pairs (F, K) satisfying: F : K is a (finite) Galois
extension and F is an infinite field of finite Morley rank. Among all such pairs,
choose one with minimal degree and call it (F, K). [F : K] contains no intermedi-
ate fields. Otherwise we will get a contradiction with the minimality assumption
by Theorem 4.12. Theorem 4.13 implies that Aufgx F' has no nontrivial subgroups.

Thus Autx F is cyclic of prime order, say p.
We have two cases: Either char K = p or char K # p.

If char K = p, then Theorem 4.14 implies that there exists a € F such
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that F' = A(a) and o — a — a = 0 for some a € K. thus Irr{a, N})|zP — ¢ — a.

In fact, Irr(a, K) = 2P —z —a, since p = [F : K] = [K(a) : K] = deg Irr(a, k).
Claim: z? — z — a = 0 has a solution in K.

To prove the claim, consider the map 8 : K — K defined by k — kP—k.
6 is a homomorphism of the additive groups and Kerf is finite. Thus 8 is onto,
by Lemma 4.17 and Lemma 3.7. In particular, there exists ¢ € K such that

6(c) = a, so ¢ — ¢ — a = 0. This proves the claim.

Therefore Irr(a, K) is reducible in K. Thus we reached a contradic-

tion in this case.

If charK # p, then ged(p,char K) = 1. In order to apply Theo-
rem 4.15, we have to show that K contains a primitive p-th root of unity. Let L
be the splitting field of g(z) = 2P — 1 over K. Then L = K(u) for some primitive
p-th root of unity u. ? —1 = (z — 1)go(z), where go(z) = 2" ' + ...+ z + L.
Irr(u, K)|go(z) implies that [L : K] = deg(Irr(u,K)) < p — 1. The minimality
assumption forces that L = K. Thus K -contains all p-th roots of unity. Now
Theorem 4.15 implies that there exists & € F such that F = K(a) and a? —a = 0.
Then Irr(e, K) = z? — a for some @ € K. Define a homomorphism ¢ : K* — K*
such that (k) = k*. Keryp is finite and so ¢ is onto. Thus Irr(a, K) is reducible

over K, which is again a contradiction.

Since we got contradictions in both cases, K must be algebraically

closed. ]
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4.2 Rings of Finite Morley Rank

When we say that R is a ring, we mean that it is associative and

distributive, but does not necessarily contain a multiplicative identity.

Lemma 4.19 If R is a ring without any zero divisors of finite Morley rank, then

R is a division ring.

Proof: To show that R is a division ring, it is enough to prove that R contains

a multiplicative identity and every nonzero element has a multiplicative inverse.

Let a be a nonzero element of R satisfying aR # R, then a"R is a
definable additive subgroup of R for all n > 1 and a"R # a™*'R. To see the last
part, assume that a"R = a""'lR,‘ for some n > 1. Then, for all » € R, there exists
r' € R such that a"r = a"*'r’, so a™(r — ar’) = 0, which implies that ¢ = 0 or
r = ar'. Then @ = 0 or 7 = ar'. The contradiction implies that a®R # a"*1R, for
all n > 1. However we have obtained a descending chain of definable subgroups
which is not stationary. This contradicts the descending chain condition. Thus

for all @ € R*, aR = R and by symmetry for all « € R*, Ra = R.

Fix an arbitrary element a € R, then there exists b € R such that
ab = a. To see that b is the unique element with this property, let ab’ = a,for
some &' € R. But then ab’ = ab = a which implies that ab’ — ab = a(}¥' — b) = 0,
so b’ = b. Let r € R* be an arbitrary element, then there exists s € R such that
r = sa which implies that rb = sab = sa = r, so b = r for all » € R. Similarly,
there exists ¥ € R such that b'r = r for all »r € R. Finally, b = b'b = ¥/, which

shows that R has a multiplicative identity.
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Since an arbitrary element r € R satisfies rR = R = Rr, there exist
r1.73 € R such that rry = 1 = ror which implies that r; = rorry = r9, so 1y = 7rs.

Therefore all nonzero elements have an inverse in R.

Thus R is a division ring.

Lemma 4.20 Let D be an infinite division ring of finite Morley rank.

(i) If K is an infinite subfield of D, then D is a finite dimensional vector space

over K.

(ii) If Z(D) is an infinite algebraically closed field, then Z(D) = D.

Proof:(i) Let m > rk(D) and assume that D has m linearly K- independent

elements zy,...,2,. There is a bijection between

Thus we have

m>rk(D) 2 rk(Kz+...+ Kz,) =rk(Kz; X ... X Kzy)

= Y7 rk(Kz)=X2,rk(K) > m.

=1

This is a contradiction, and so D has at most rk(D) linearly K- inde-

pendent elements.
Thus dimg D < rk(D) < oo.

(ii) Let L be the smallest field containing Z(D) and some element ¢ € D\ Z(D).
Part (i) implies that [D : Z(D)] < o0, and so [L : Z(D)] < oo. Thus L : Z(D)
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is an algebraic extension by Lemma 4.1. Hence a is a root of a polynomial

p(z) € Z(D)[z].

Therefore a € Z(D), since Z(D) is algebraically closed by assumption.

Lemma 4.21 (Reineke) Let G be a group of finite Morley rank such that G =
z% U {1} for some element z € G. Then |G| =1 or 2.

Proof: In order to see that G contains a torsion element, let’s assume that G is

torsion free and get a contradiction.

There exists b € G such that ¢* = g~1, so we get g» = h~2gh? =
h~'g~'h = g which proves that g € C(h?)\ C(k). Thus C(h) # C(h?).

Note that G = z€U{1} implies that for any a,b € G\ {1}, there exists

¢ € G such that a = °. In particular, there exists @ € G such that A* = h2.

Since g € C(h?)\ C(h), we obtain that g* € C(h2)*\ C(k)* = C(h%)\
C(R2).

Note that (h%)* = h*, so C(h?) # C(h*). By similar arguments, one

can obtain an infinite ascending chain of definable subgroups of G;
Chy<CMHh)<ChY)<---.

By taking the centralizer of the elements of the chain, a non-stationary descending
chain of definable subgroups of G is obtained. This contradiction shows that G

is not torsion free.
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Now, there exists an element ¢ € (G of order some prime number p.
Since all nonidentity elements of G are conjugate, we see that each y € G\ {1}

has order p.
If p=2, then G is abelian so z¢ = {z}. Thus G = Z,.

If p>2, then choose g € G such that 7! = g~ lxg then z(-1" = z(™),

for all n. In particular, for n=p we have z7! = 29 = z, so p = 2. This is a

contradiction. O

Lemma 4.22 Let (K,+,-,0,1) be an infinite field and G be a group acting on K
as field automorphisms such that the structure (K,+,-,0,1,G) is of finite Morley

rank. Then the action of G on K is trivial.

Proof: Since G acts on K as field automorphisms, we have a map ¢ : G —

Aut(K). Let H = I\TGM Then the action of H on K is faithful.

Claim 1: The subfield K, = {k € K : gk = k} is finite for every

g € H~.

To prove the claim, assume that K, is infinite for some g € H™.
Theorem 4.18 implies that K, is an algebraically closed field. Thus K is a finite
extension of K. Lemma 4.1 implies that the extension is algebraic and since K|
is algebraically closed, we have K = K, which implies that g = 1. Thus K, must

be finite for every g € H*.

Corollary V.5.8 in [6] implies that finite fields have unique extensions
of any degree. In particular, K, has a unique quadratic extension L. Since K is

algebraically closed, L C K.
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Claim 2: Kp = L.

Since L is a quadratic extension of K, L = K(a) where a is a root of
a quadratic polynomial p(z) = z? 4+ ez + d € K, [z]. Let a be the other root of
p(z). Then gp(a) = (ga)®+c(ga) +d = p(ga). On the other hand gp(a) = g0 =0
implies that p(ga) = 0, thus ga = a or ga =a. Either case implies that g%a = a,

and similarly g?a=3a. Therefore L < K.

Now consider an arbitrary element z € K,». Then a = z + gz and
b=z-gx are in K; and 22 — az + b = 0. Thus z lies in the quadratic extension

of K;, namely in L. Therefore, K;» < L which proves that L = K.

We can apply the same argument to the fields K= and conclude
that each K2~ is finite and their cardinalities increase without any bounds. Now
consider the interpretable map ¢ : Hx K — Hx K defined by (h, k) — (h, k—hk).
Then ¢7'(g%*",0) = {(¢*",k) : k € Kpn}, which implies that |o~(¢*",0)| =
|Kz2n|. This contradicts with Axiom D, so H = 1 and G = Kerg. Thus the

action is trivial. a

Theorem 4.23 (Cherlin) Infinite rings of finite Morley rank containing no zero

divisors are algebraically closed fields.

Proof: Let D be such a ring. Then Lemma 4.19 and Lemma 4.16 imply that
D is a connected division ring. Let D be a counterexample of smallest Morley
rank. Assume that Z(D) is infinite. Then Theorem 4.18 implies that Z(D) is an
algebraically closed field, and so Z(D) = D by Lemma 4.20(ii). Hence Z(D) is

finite.
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Now assume that Cp(r) is finite for some r € D \ Z(D). Since one
can write

D = UzeD.mD. = Urgz(p).?:D. U Z(D)* (4.5)

and the map defined from CD‘ — rDP* defined by dCps+(r) — r? is a bijection,

p+(r)

we have rk(D*) = rk(rP").
Applying Lemma 2.5 and Lemma 2.7 to the Equation 4.5, we get
1= deg(D*) = Zz,gz(p)deg(xD‘) = zzgz(p)l.

Therefore, D* = Z(D)* U rP", which implies that

D*
Z(D)

= {1} U (rZ(D)")" /7).

Lemma 4.21 implies that |D*/Z(D)"| =1 or 2. But D* is infinite and Z(D)" is

finite, which is a contradiction.

Therefore for all r € D \ Z(D), Cp(r) is an infinite proper subring.
The minimality assumption implies that Cp(r) is an algebraically closed field for

allr € D\ Z(D).

Fix an arbitrary element r € D \ Z(D) and let K = Cp(r). Let K

act on D by right multiplication and consider D as a right vector space over K.

Lemma 4.20 implies that dimg(D) = n < oo.

Now let’s see that D* is a regular subgroup of GL,(K). Define a map

é: D* — GL,(K) such that ¢(d)(z) = dr, for all d € D* and for all z € D. For
all d € D* and for all z,y € D, we have

¢(d)(z +y) = d(z +y) = dz + dy = ¢(d)(z) + ¢(d)(z)
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and for all d € D=, for all x € D, and for all ¥ € K. we have
o(d)(zk) = dak = ¢(d)(x)k.

These two statements imply that ¢(d) is a linear transformation for all d € D*.

For regularity, let z,y € D*. Then ¢(yz~')(z) = .

D* satisfies the condition: For all r € D*\ Z(D)*, Cp-(r) is abelian.
Therefore we can apply Theorem 3.24 and conclude that n =1lorn=2. n=1
implies that K = D, which is not the case. Thus n = 2, and we can apply
Theorem 3.24(ii) for Cg(g) = Cp+(r) = K™ to conclude that there exists z €

D* \ K* satisfying that z € Np+(K*) and z° € K*.

Note that Np.(K*) acts on K definably as a group of field automor-
phisms. By Lemma 4.22 this action is trivial, that is 2 1kz = k for all k € K.

1

Thus in particular, z7'rz = r, since r € K which implies that z € Cp(r) = K.

This is a contradiction, since € D* \ K*. 0
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