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ABSTRACT

CHARACTERIZATION OF QUASIDIAGONAL
ISOMORPHISMS BETWEEN SOME TYPES OF KOTHE
SPACES

Sozen, Yagar
M.S., Department of Mathematics
Supervisor: Prof. Dr. Zafer Nurlu

January 1996, 47 pages

This thesis consists of two basic parts. The first part contains a survey
on linear topological invariants in the class of Kéthe spaces. In the second
part, we present a characterization of quasidiagonal isomorphisms between
spaces of the types Dy (k,7,a), Hoolk,7,a), and Dy(k,v,a). These concrete

Kothe spaces are investigated by functional analysists led by V.P. Zahariuta.

Keywords: Nuclear, Schwartz Kothe Spaces, Lincar Topological luvariants,

Quasidiagonal Isomorphisms.
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BAZI TiP KOTHE UZAYLARI ARASINDAKI
QUASIDIAGONAL IZOMORFIZMALARIN
KARAKTERIZASYONU

" Sozen, Yagar
Yiiksek Lisans Tezi, Matlemaltik Bolumii
Tez Youeticisi: Prof. Dr. Zaler Nurlu

1996 Ocak, 47 sayfem

Bu tez iki ana boliimden olugmaktadir. Ik bolim lineer topolojik
degigmezler konusunda genel bilgiler icermektedir. Ikinci boliimde ise
Doo(kyv,a), Hoolk,7,a) ve Dy(k,v,a) tip uzaylar arasindaki quasidiagonal
izomorfizmalarin karakterizasyonu sunuyoruz. Bu somut Kothe uzaylart de-
tayli olarak Prof. Dr. V.P. Zahariuta tarafindan yonlendirilmekie olan

fonksiyonel analiz grubu tarafindan incelenmektedir.

Anahtar Sozciikler: Nikleer, Schwartz Kothe Uzaylari, Lineer Topolojik

Degigmezler, Quasidiagonal [zomorfizmalar.
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CHAPTER 1
DEFINITIONS AND PRELIMINARY RESULTS

1.1 LOCALLY CONVEX SPACES

For undefined concepts and general terminology we refer the reader to [11], [15]

or [19] and on invariants to [24].

Definition 1.1 An ordered pair, (X,7 ), where X is a vector space over I
, (which will be taken as C or IR) , and 7 is a Hausdorff topology on X,
will be called a locally convex topological vector space (l.c.s.), if the mapping
(x,y) = & +yof X x X into X and the mapping (A, z) — Az of IX x X into X
are both continuous and moreover, for every point there exists a neighborhood

basis 4 consisting of convex sets.

In a l.c.s. addition is not ouly a continuous mapping but also a home-
omorphism. Therefore it is no loss of generality to deal only with neighborhoods
of the origin , and to take the neighborhoods of the origin to be absolutely convex
sets , that is, if A € 4, and z,y € A, || +|8]| < 1, then az + fy € A. Hence

from now on we will denote a l.c.s. by (X, u).



Definition 1.2 A lLc.s. (X,4) will be called a Frechet space, in case 4 can be
chosen to contain atmost countably inlinitely many sets, say {U,}:2,, and (X, d)

is a complete metric space where

A 1 PU y) . _ . . .
= Z — and py, is the Minkowski functional of U,.
=2 erun(Jc - y)

1.2 NUCLEAR AND SCHWARTZ SPACES

Definition 1.3 Let (X, [.|), and (Y, ]|.||} be two normed linear spaces. A linear
and continuous mapping 7' : X — Y will be called nuclear, in case there exist
()32, C X', and (0,)%2; C Y such that

Te =73
of a,. T is called compact, if T(U) C Y is compact where U = {ee X: |z <1}

L ()b, and 3522 ey |[||6a]| < oo where |la,|| is the operator norm

Notation: Let (X,u) be a Les.. If U is in g, then 7Y : X — X/ kerpy is the
quotient map 7Y () = []ir :'{y € X: w—y€kerp,}. Now if U,V in U satisfy
V XU, thal is, V C AU for some A > 0, then we will denote the continuous
mapping [z]y +> [2]y of £/ ker py into E/kerpy by Y.

Definition 1.4 A l.cs. (X,4) is called nuclear (respectively, Schwartz), if for
every U € 4 there exists V € y such that V < U and 7Y/ is a nuclear (respectively,

compact) mapping.



1.3 BASES IN A L.C.S.

Definition 1.5 Let (X,4) be a l.c.s., and let (b,)72, be a sequence in X. Then
(b)) is called a basis, if for every @ € X there exists a uniquely determined
sequence (A,)22, of scalars such that @ = 322 | A, b,.
Now let (5,)22, be a basis in X. Then (b,)72, is called
(1) a Schauder basis, if for cach n the mapping = — [, () 2 Ay is continuous.
(2) an equicontinuous basis, if {/,}52, is equicontinuous.

oo

(3) an unconditional basis, in case 300 | A, b, converges unconditionally in X,

(4) an absolute Dbasis, in case

YU € 43V € dsuch that Y A |pu(by) < pyv(z) Ve € X.

n=1

Theorem 1.6 (Dynin-Mitiagin) Iu a nuclear Frechel space any basis is abso-

lute.
1.4 SOME SPECIAL OPERATORS BETWEEN L.C.S.

Definition 1.7 Let X, Y be two l.c.s. with unconditional bases respectively
{en}ys {yn}i,. Anoperator T: X =Y

(1) is called quasi-diagonal (q.d.) (with respect to these bases), il Tz, = YuYo(m)
where o : IN — IN is a permutation, and {,}52, is a sequence of scalars.

Now a q.d. operator T will be called

(ii) permutable, if v, = I for each n € IN

(iii) diagonal, if o(n) = n for all n in IV.



If, moreover, the mapping T is an isomorphism of the type respectively

(i),(ii),(iii), then the bases {x,}22,, {y.}32, are called respectively quasi-equivalent,

permutably equivalent, diagonally equivalent.

Now if T'is a q.d. isomorphismn (q.d.i), and v, = 1, o(n) =n for alln
in IV, then the bases are called equivalent. Moreover, we will say a l.c.s. X has the
quasi equivalence property (q.e.p.), if every unconditional basis is quasi-equivalent
to the natural coordinate vector basis, {e,}52, where ¢,, = (0,...,1,0,...), 1is

in the :—th place and 0 elsewhere.

Isomorphisms of types respectively (i),(ii),(iii) will be denoted respec-
g.d.i p d
tively by X &2 V, XY, X &Y.

1.5 KOTHE SEQUENCE SPACES

Definition 1.8 An infinite matrix [a,,] with non-negative entries will be called
a Kothe maltrix, if the following conditions are fulfilled:

(i) for every n there exists p such that a,, > 0;

(ii) for each p and for each n, a4, < apt1,n-

And the sequence space

- A o , © A o .
1\'([“7)71]) = {('7n)n=1 e K" : H(')’n)n-_—lllp = Z |’7nl“pn < oo foreach p € W}

n=1

will be called a Kothe sequence space.




Fact 1.9 (K([apn]), {I-1}521) and (K([b]), {1l ||}pz1) are equal as sets if and only
if I K([apm]) = K([bp]), defined by Te; = e; for all i € IN, is isomorphism.
Proof:(«) It follows from the fact that |e,|, = ¢p, and |le.]|p, = bpa-

(=): Let us assume the contrary. Without loss of generality, suppose that there
is some pg such that for all ¢, ' > 0 there is some n a,y, > Cby,. Letting C = ¢2,
¢ € IN, we inductively define a subsequence (n,) of IN satislying @y, > ¢*byu, .

Now define the following sequence (&),

1 . .
il . = n, lor some q
0 otherwise
Now let ¢ be given. Then
o0 b q b [2'¢) ['e) [)
§ : — } : dnp § : 4ty flﬂlp q,np Pihip
l Ln,bqn = - S— + Z < E —
n=1 p=1 Upony  p=1 Uposny =q+1 Ypoy  pmy “po,np p=q+1 %po,np

%)

< Z Dup + > —l; < oo0.

=1 Upg Sp p‘"q+l

However, for ¢ = py, 3004 @ |dgn = oo.

Let (X, {U, Then X is

X A
isomorphic to A([epn]), where ag,, = pu, (b.,).

o21) be a nuclear Irechet space with a basis (6,)2,.

The following theorem is called Grothendick-Pietsch Criterion [or Kothe
spaces.

Theorem 1.10 A Kéthe space A([apy]) is nuclear (respectively, Schwartz) if and
only if for every p in IV there exists ¢ in IV such that 32 %:i < oo (respectively,

S () as n— 00).
yn



1.6 SOME SPECIAL KOTHE SPACES )

A . L. A .

(1) Au(a) = K([apn]) where e is in (—o0,00), ¢y, = €, r, increases

to a, and a, is an increasing sequence of non-negative reals, is called a finite fype
power series space. For example, the space of all analytic functions in the open

unit disc with the topology of unilorm convergence on compact sets, is isomorphic

to Ag(n).

o L. A .
(2) Aco(a) = K([epn]) where @, = €™, 7, increases to oo, and a,
is an increasing sequence of non-negative reals, is called an infinite type power

series space. For example, the set of all entire functions is isomorphic to Ay (n).

. A . A (=ianp)e .

(3) E(X a) = K([ap]) where a,, = T Fnplan g )< 1, a, > 1.

For instance, if A, — 0, then E(, «) is isomorphic to Ag(a), if liminf, e Ay > 0,
then £(A, a) is isomorphic to Ay (a). For more details, see [24], in which isomor-

phic classification of such spaces can also be {found.

(4) Let K([apn]), K([by]) be two Kothe spaces. Then by the fact
that absolute convergence implies unconditional convergence, K'([apm]) X K([bpn])

is isomorphic to K([cyn]) where

A { Upk if n=2k ,k c N

Cpn = R
bpr  if n=2k-1

Now K ([apn])80-K([byn]) and K([d,y,pl) where d jy = dpibyj, are isomorphic by

the following mapping e; & e; — e,(; ), where o : IN* — IN is a bijection.



The following two types ol Kothe spaces are generalised [rom the par-
ticular counter-examples given by M.M.Dragilev (see [7] aud the remark following

Theorem 2.7 in section 2.1).

(5) Do(x,7,4¢) 2 K([apn]) where ap, 2 tt[%+7"X(7’_';")]“", p € IV,
1 < a, is increasing to infinity, v, = 0, & : IN — IN is a function, x 2 X[0,00)5
the characteristic function of [0,00). (See section 2.5.1) P.B. Djakov and V.P.
Zahariuta examined the case v, = 1 for each n € IV and gave an isomorphic char-
acterization of such spaces. Now il sup,ep #n < 00, then Dok, 7, @) é’ Ao(a).
If limiyosoo Kn = 00, then Dy(k,7y,a) = Ao(a) . Hence in general it is assumed
that » has infinitely many finite limit points. Now let v be a subsequence 11
IN. If limue, fn = 00, then K([ap]penner) = Ao(D) and if sup,e, ki, < 00, then
K ([epn)pennev) '(\=1‘ Ao(b) where b is the sequence {d, }nes- More precisely, each

basic subspace has a {inite type power series subspace.

(6) Doo(r,7, ) = A:([apn]) where a,,,; 2 ¢l

. . - ., . N .
is increasing to infinity, v, > 1, £ : IN — IV is a [unction, X = X[o,00)- By a simi-

p‘l"’YnX(P_‘f;n)]”-n, l) E W’ 1 S (l"IL

lar argument as in (5), we can say that each basic subspace of Dy (k,7,¢) has a

basic infinite type power series subspace.

A . N (K
(7) Hoo(K, 7, @) = K([¢pn]) Where ap, = elrFrmin@sn)lon where g, 7,4
are as in (6). In this case, again all basic subspaces have basic inlinite type power

series subspaces. (See [13])

The definitions below are introduced by M.M. Dragilev [6].



Definition 1.11 A Kéthe space K([a,,]) belongs to the class

(1) do and is called regular, if “"'"3‘1 < fetlntl for gll p, nin IN;

X l‘p+l
(ii) dy, if 3p V¢ Ir such that <:upn€1N~——“a—: < 00

(iii) dy, if Vp 3¢ Vr such that eupnelN—M < 00
(iv) Dy, if it is in do and dy;

(v) Dy, il it is in dp and dy;

(vi) D, if it is in Dy or D,.

Definition 1.12 Let A([a,,]) be a Kothe space. Then

..
(i) it will be called stable, it K(lam]) % A(lap]) = A({apa))-
(ii) it will be called weakly stable, if A([apa]) x IWZA([apn])-

(iii) it will be called unstable, if 3s Vp Jg Vr limy, . 2252 = (),

Ayntsn

Definition 1.13 Let (¢,)%,, (b.)3; be sequences of positive real numbers.

Then we will say that the sequences are weakly equivalent and denote by

n=1

(00)5%1 = (ba)oZy, if there exists ' > 0 such that for every n % < b, < Cay,.



CHAPTER 2
LINEAR TOPOLOGICAL INVARIANTS

2.1 THE CLASSICAL INVARIANTS I', 1"

Definition 2.1 Let £ be a subclass of the all Lc.s.’s and let 7 be a set valued
function on £ . Then we will say that 7 is a linear topological invariant (1.t.i.), if

X, Y are both in £ and are linear isomorphic , then 7(X) = 7(Y).

Definition 2.2 Let (X,4) be a (l.c.s.), and let U, V be in 4 such that V < U.
Then

d,(V,U) 4 inf{a >0: V C L+ aU for some L € F,}
where F,, is the class of at most n— dimensional subspaces of X, will be called

the n—th Kolmogorov diameter of V with respect to U.

Definition 2.3 Let (X,u) be a Lc.s., and let U/, V be in 4 such that V < U.

Then we call the sequence space

D(X) £ {(7a) € K™ : VU €43V €t such that V < U, 7.du(V,U) — 0}

the diametral dimension of X and we call the following space

F'(X) 2 {(m) € KN : 3U € uVV € usuch that V < U, —2L_ _, 0}
du(V,U)

the dual diametral dimension of X.



Since obviously dy (T(V),T(U)) < dy,(V,U) il T'is a linear map, then
Fact 2.4 Both I' and I are l.i.i.’s.

Because of the [ollowing lemma (see [21]) these invariants are very

useful in investigating Kothe spaces with regular matrices.

Lemma 2.5 Let K ([¢,,])) be a regular Kothe space. Then for every n € IV

d.(U,,Uy) = Z"” where U, £ {(2n) € KN = [[(2) I £ > lwn]ar < 1}
pr n=1

By the following theorem, we can say that both of the invariants I', I
are complete in the class of all Schwartz power series spaces; that is, if X,Y are
Schwartz p.s.s., and if either [(X) = ['(Y) or I'(X) = I"(Y), then X and Y are

isomorphic. To prove the theorem we will observe the [ollowing:

Fact 2.6 Let X 2 Av(@)and let Y = A (D) be Schwartz p.s.s., that is, a,, 6,
- 00. Then

(i) D(X) = Mpen {(m)52y € 5N que ™ = 0} £ 4

(i) T'(X) = Upen {(1)5z) € KN 2 yuev™ — 0} 2 13;

(i) T(Y) = Upen{(m)sz € KN : 22— 0} 2C

(iv) T'(Y) = Myen{ (32 € KN : yer — 0} 2 D.

Proof: We will prove (iii) and (iv). The rest can be handled similarly.

(ii1): Let (7,,)52; be in I'(Y). Then for each p there exisls ¢ such that
e~ 0. Thus, in particular, if we let p 2 [, then ¢y exists such that
Yt 0 This implies ['(Y) € €.

In

Conversely, let (ym)p2; belong to C. Then there exists ¢o such thal - — 0.

N N . .
£ ie o . : ave — T . .
Now If p is given, then choose ¢ = ¢o + p. So we have e = B — 0, which

implies that C' C I'(Y).

10



(iv): Let (7,,)52; be in IY(Y). But then there is py such that for all ¢

AneldPo)en — 0. Hence for ¢ 2 P+ qu, we have 7, e7Poen = 4 ePin s 0,
. BN .

Conversely, let (7,)22; be in . Let pp = | and ¢ be given. Then

Apeld=Po)in = ~ ele=l)an _,

Remark: In the case of nuclear p.s.s., since €, and 1 norms are equivalent, one

has (X)) =X and I'(Y) =Y.
The following theorem is due to B.S. Mitiagin.

Theorem 2.7 Let X = A.(«), Y = A.(b), where a;,b; — o0, and a = 0, co.
Then the following conditions are equivalent:

i) X zv;

(ii) I(X) = I'(Y);

(iii) I"(X) = I"(Y);

(iv) (@) =< (bi)i2y;

V) x &y,

Proof: Because the proof for o = oo is similar to that for o = 0, we will give a
proof of the case a = 0.

(i)=>(ii), (iii): This follows from the Fact 2.4.

(ii)= (iv): Let & be in IV and let M, £ {neN: et > (k—1)e7")}. Then
My = IN, My C M, for all kin IV.

Claim: The sets My’s are finite from some ko on.

Proof of the claim: Assume that all M,’s are infinite. Now let (m4)32, be a

subsequence of natural numbers such that my, € M), for all k. Define the sequence

('Yn)f;] by

, s { :»__-b% il 1 = my, for some k
n

0 otherwise

11



—dmy amyy, Ty, 11
mg=1) ,—- T o=t = lxmT)em — 0 as

Let [ be given. 50 Y, e "™ = =5 ¢ < eF e
— (L —b
k — oo. Thus y,e T — 0 as n — oo. However, Y, e” "™ = Mk — 1 40,

which is a contradiction. Hence M}’s are finite from some kp on. It implies that
supen 2 < 00. The result follows if we change the roles of the sequences.
(iii)= (iv): Assume (iii) holds. For p =2, the sequence (e™**)%2; is in set IN09)
and hence e=btnem — 0 for some py. It implies that [rom some ny on we have
ew < ebr or < by Now if we let M 2 max(po, {2 1 1 < ny}), we get for all
n, a5 < (—ll!'f Changing the roles of @ and b, we get the resull.

(iv)=(v): If (iv) is true, then there is some ¢ >0 such that @ < b, < Cay.
Because for each p we have e < e < ¢, the mapping [ X oY,
defined by le; 2 e; for every 1, is a quasi-diagonal isomorphism.

(v)=(1): Clear.

[n [6], M.M. Dragilev proved the following theorem stating the com-
pleteness of the invariant I in the class D, which is the union of regular d; and
d, classes. Later, he gave an interesting example showing that the I' invariant is

not sullicient to examine spaces in dy (see [7]).

Theorem 2.8 Let X = K([tp]), aud Y = K([bpn]) be two D—spaces. Then
X 2 Y if and only if they belong to the same D;—class (i = 1,2) and
[(X) =T(Y).

L. Crone, W.B. Robinson ([2]) and V.P. Kondakov ([14]) showed that
the invariant IV is complete in the class of all regular Kothe spaces. In 1975, P.B.

Djakov gave a considerably simpler proof of this result. (13])

12



Theorem 2.9 Let X = A([upn]) and Y = K([b,.]) be regular nuclear spaces.
Then the following statements are equivalent:

() X =Y,

(i¢) I'(X) = I"(Y);

gdi

(i) X 2 Y.

Hence in each NI'S with a regular basis all bases are q.e.. However
the insufficiency of the invariant I is observed by M.M. Dragilev, B.5. Mitiagin,

S. Rolewicz (see [20]) in the [ollowing example:

The space Ag(n) X Ag(n) has no regular basis whereas Ag(n) has a
regular basis. Therefore Ag(n) X Ax(n) is not isomorphic to Ag(n) , but they
have the same diametral and dual diametral dimensions. By this example, we
can conclude that I', TV are too rough to examine spaces without regular basis.
Hence il is necessary to consider more general invariant(s) which take the irreg-

ularity of bases into account.

2.2 AN INVARIANT ON CARTESIAN PRODUCTS OF L.C.S.

Definition 2.10 Let X, Y be two Lc.s.. We will denote X = Y, and say X is
pearly isomorphic to Y, in case there is a linear continuous mapping satisfying
the following conditions

(i) T(X) is closed in Y, and T : X — T'(X) is an open mapping,

(ii) dimker T" < oo, (iil) dim Y/T'(X) < oo.

Hence we can regard 7' as a "nearly | — 1”7 and "nearly onto” map.



Definition 2.11 Let (X,4) be a Les.. Then we will say that the space X be-

longs o the class M, and call it a Montel space, il every bounded set is relatively

compact, i.e. its closure is compact and X is barreled.

Definition 2.12 Let X, Y be two Lcs.. We will write (X, Y) € &, if for every

linear continuous T : X — Y, there exists a neigborhood U of the origin in X

such that T'(U) is compact in Y.

Definition 2.13 Let X be a Les. and s € Z. £ s> 0, then X® will denote an
arbitrary subspace, say L, of X such that X & L x IK*. s < 0, it will be an

arbitrary lL.c.s., say L, such that L = X x IK™°

The proof of the following lemma can be found in [22].

Douady-Zahariuta’s Lemma 2.14 Let X = X x X,, Y =Y x Y} be cartesian
products of Lc.s.. Assume (X;, Yz) € &, (Y1, X2) € & Then X = Y if and only
X, =Y (i=12).

By the help of above lemma, V.P. Zahariuta defined the following in-
variant (see [22]) on the class of all cartesian products of the form X X Y where
(X,Y) € &

Definition 2.15 Let X, 9 be classes of Le.s. such that (X,Y) € & whenever X
is in X and Y is in 9. Then '

P(X % Y) 2 (X, (YN ) ez

is a linear topological invariant on the class X x9) = {XxY: XexandY € 9}.

14



To prove the following theorem we will need the observations below:

Fact 2.16 Let X and Y be Les.. Then

(i) Y = X if and only if X = y(=3)

(ii) ( XYW = x(std)

(iii) If X = K([apn]) belongs to class D and s is a nonnegative integer, then both
X x I* and X belong to the same d; class.

Proof:(i) It is enough to prove when X is isomorphic to Y and s is positive.
Now if this is the case, then there exists a subspace of X with dimension s and
X =Y x I, But then ¥ will be isomorphic to X (=9,

(i1) Again it sullices to prove the statement for nonnegative s, d. Now Let Y be
isomorphic to X and let Z be isomorphic to Y. Then we have X 2 Y x K”°
and ¥ = X x K%, And thus we get X =Y x IN° = 7 x K+

(iii) Let {e,}22, and {f.}2_, be the natural bases of X and IK”, respectively.
Then {(0, f1)y ..., (0, f5), (€1,0), (€2,0),...} is an absolute basis for X x K with

is any norm in K°.

: A
the following norm system ||(:e,y)|l, = |zl + |lyl| where |||
Then the Koéthe matrix, except the first s rows, will be of the same type as that

of X.

Proposition 2.17(see [22]) Let X 2 K([a,m)) belong to the class dy, let
y & K([bpm]) belong to the classes M and dy. Then all the linear continuous

maps from X into Y are compact.

Theorem 2.18 If X, Y € ® £ d, x d, M, then X = Y if and only if
PX) =I(Y).

Proof: I X = X; x X, and Y = Y] x Y, both belong to class ® and are iso-
morphic, then by the above proposition and Douady-Zahariuta’s Lemma 2.14,

there is some s in Z such that ¥; & X, and Y, = Xz(”s). Since X7 = Yl(""),



X, & Yz(s) for d € Z, we get X, @) oy, (4=3) 4nd X, 2y, (=) This implies
that I'(X) c I'(Y). Changing the roles of the spaces, we conclude that I'(X) is
an invariant in the class ®.

Now conversely, let us assume that X is not isomorphic to Y. But then for all
integer s we have either Y; 2 X&) or Y, 2 X, Thus, by the help of the

Theorem 2.8 and above fact, we can conclude that T'(X) is not equal to I'(X).

Now let Ay(e) be a p.s.s. and let s € IV, If we let b = (hts)iey, then
Aq(b) is a subspace of Aq(«) with Aq(e) = Al(b) x I°. Heunce (Ay(@))®) can be

taken as An(b). Thus the previous theorem has the following corollary.

Theorem 2.19 Let X = Ag(a!) x Ao(@?), Y = Ag(0') x Ao (6?)
where af, ' are increasing to infinity (¢ = 1,2). Then X 2 Y if and only if there

exists s € Z such that (ap,,)ie; < (0472, and (af_,)2, < (b9):-
2.3 THE INVARINATS M, m OF MITIAGIN

Definition 2.20 Let ()2, be a positive sequence, and ¢ > 7 be positive num-

bers. Then

ma(t) 2 #{ie N: a; < t}, M,(r, ] #{ie IN: 7 <a; <t}

where # A stands for the cardinality of the set A.

Definition 2.21 Let (a;)%2,, (b))
M, = M,, in case there exists C > 0 such that

%, be two positive sequences. We write

M, (7,1} < Mb(C, tCland M,(r,t) < Mu((w 7], whenever 0 < 7 <t < oo.
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And we write that 12, = my, in case there exists ¢ > 0 such that
me(t) < myp(tC), and ne(t) < m(1C), for each 0 <1 < co.

The proofs of the lollowing results can be found in [17], [24]; here we only state
the results. Firstly, in the general case, the invariant M is complete in the class

of all p.s.s..

Theorem 2.22 Let ()2, (bi=1)2; be two positive sequences. Then the fol-
lowing conditions are equivalent: (i) Aq(a) = Aq(b) (o =0, 00);

(2i) M, =~ My;

(51) Aa(a) 2 Aa(b) (@ = 0, 00).

Now, in the particular case ol Schwartz p.s.s., that is, spaces of the
form Ay(a) where @ = 0,00 and a, /' oo, all the invariants m, M, I', I are

complete.

Theorem 2.23 Let («;)52,, (bi=1)2, be two positive sequences increasing to oo.
Then the following stalements are equivalent:

(1) Aa(a) 2 Ay(b) (o = 0,00);

(i1) m, = my;

(i) M, = M,;

(iv) [(Aa(a) = T(Aalb) (@ = 0,00);

(V) P(Aula)) = T(Aal8)) (e = 0,00);

(vi) Au(a) z An(b) (@ =0, 00).

-~
| ~—

1%
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2.4 The  INVARIANT OF ZAHARIUTA

For the proofs that we do not give and a more complete list ol references, see

[24].
Definition 2.24 Let (X,4) be a lc.s.,, and A, B C X be absolutely convex

subsets of X. Then

B(A, By & sup{dimL: ANLC B}
LeF

where F is the set of all finite dimensional subspaces of X.

Remark: The invariant 3 is closely connected to the so called Bernstein diame-

ters, b;(V,U) (see[8]). Namely, #(V,U/)) = suppersup{a > 0: b(vu) <1}.

The following, which is a direct consequence of the definition of an

invariant, has practical use in estimates.

Lemma 2.25 Let X be a l.c.s. and let Vi C V,, U, C Uy be absolutely convex
subsets of X. Then A(V,U;) < (Vy, Us).

Definition 2.26 Let K([a,,]) be a Kothe space and let U, U, be two abso-

lutely convex neighborhoods of the origin. Then

U;"QUC' = {(@n )y Z |L,Lla:m“ oy < 1},

n=1

where o € [0, 1], will be called an interpolative neighborhood of the origin.



Interpolation Lemma 2.27 Let o, a',b' be positive sequences, and assume
that £;(¢) L 4,(1°) and £, (ah) L5 ¢,(b') are linear and continuous. Then T’ can
be regarded as a linear continuous mapping from £ (¢*) into £,(0%)

where af = (@) %(a;)* and b = (L0)1=(b')" and a € [0,1]. Moreover,
I T llesasy—er oy < max(ITllos [171]1)-

Lemma 2.28 Let (a;)%;, (b)), be two positive sequences. Then

(i) B(B(b), Bo(a)) =#{i € N: 3 <1}

where B*(b) £ {(z,) € IKN : T2 Jaub, < 1}

(ii) B(a V b) C B%(a) N Be(b) C 2B°(a V b) where a V b 2 (max{a;, b;})2,.

(iii) cono(B*(a) U Be(b)) = B(a A b) where a A b = (min{e;, b:})2,, conv(A) is
the closed absolute convex hull of the set A.

Proof:

(1) Let X = li(a) N 0 (b), A & {z : (%L < 1} and let Y be the subspace of X
generated by {e; : ¢ € A}. Now let L be any linite dimensional subspace of X
such that £ N B%(a) C B%(b) and let P be the canonical projection from X onto
Y, defined by P £ Yiey wiei To conclude S(B%(a), BE(b)) < #{i: & <1}, it
suffices to show that the restiriction of the projection on L is 1 — 1. Now let us
assume the contrary. Then there is some non-zero element, say z, in the kernel

of P. Thus (/ —P)z ==z and w 2

=~ el (0 ||[ (a E Be (U/ Hence we have

Z |2:1b; > ——— Z |2 )a;

Nwlleyy = 11 = P)wlle,o) = ||= ”ﬂ ) ll= “1’ ()
1 aQ zeA 1 ZgA

||Z||n(a) _
“ “[1(“ “(I [) “1'1(“ - = L.

Consequently, ||z|le,5) > l|2llei(a) = 12)le1(5), Which is a contradiction.

To prove the converse, let (£,,)52, be in Y. Then

lzlley) = Z 2] b < Z 2] dn = Jlz]le o)-

n=1 n=1
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It implies that Y N B*(¢) C Be(b). Therelore

BB (), BE(b)) = #1i : 9—<1}.

(i) This follows from the definition of Be(b).

(iii) Clearly, B¢(a) U B°(b) C B"(a V b). Siuce Bf(« V b) is absolute convex and
contains B®(«¢) U Be( ), @mo( B%(a) U B°(b)) lies entirely in Be(a V b).
(Jonvelsely, ife= {.l,n}n_1 is in B%(a V b), then let us define

AL {n € IN: g, <b,}andloreach m, let 2™ be the sequence (21, Tz, vy T,y 0y .00).
Then since |fz — 2™, — 0, it will be sufficient if we prove that z™’s are in
cono(B%(a) U B°(b)). Now define « 2 Sonea ltu] an and 2 S onga [En| bu. 1t
implies that

12> Y || (@ V) = > ] (@ V b)n + > |wal (a VD),

neiN neA ngA

= > |waf an + 3 faal by =+ 4.

neAi ngA

It is no loss of generality to assume that both @ and f are nonzero. Because for

otherwise 2 would be in either B(«¢) or in B*(b). Now since

-—az e,—l—/iZ%ei

n€A tgA

€Ty
and 1 = HZ —"anll (a) = “Z fz“l’l ()

zEA zeA

£™’s are in the absolute convex hull of B®(a) U B*(b).

The below is a direct consequence of Lemma 2.25 and Lemma 2.28.
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« . o m
Lemma 2.29 Let a!, a?,a®, a* be positive sequences. Then
2

() #{ie IV: 2R <y glie N: B <l <)

< B(B(d®) 0 B%(a?), conw( B(al) U B*(u?))).

) — Linax(a?,a?

(id) B(B(a®) () BS(a®), Tomo( B (a') U B (a))) < #{i € IN: z*-(‘—u)—’ <1}

. a:} az p '
<H#l{ie IN: ¥ <2, ;?32}.

Using the above properties of #, one can use it as a two parameter ( by
using more complicated interpolative neighborhoods, also as a multi-parameter)

invariant as follows: If (£,4) is isomorphic to (Y, %), then

YU, 3V, YV, ¢ Vi 3U,, C > 0 such that
Vi, 7 > 0 it follows that A(EVa, 7V4) < B(CLU,, %Ul)

and also the converse inequality with an appropriate symmetry.

By the help of the invariants 4 and M, M. Yurdakul, V.P.Zahariuta

gave an allernative proof of the Theorem 2.19
2.5 SOME RECENT RESULTS

The following results are obtained by using more developed forms of
the above invariant {4, basically using more complicated neighborhoods formed

by taking intersection, convex hull of interpolative neighborhoods of the origin.

(A) P.B.Djakov, M.Yurdakul, V.P.Zahariuta gave a complete classifi-
cation of cartesian products of spaces of the form Ag(e) X Ax(b) where a;, b; are

arbitrary positive sequences (not necessarily increasing to infinity). (see [4])
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Theorem 2.30 Let X = Ag(a) X Ao, (b), Y = Au(a) X Aoo(D). Then the following
conditions are equivalent:

(1) X =Y,

.. qdi

(ii) X 2Y;

(iii) either X, Y are both Schwartz spaces and there exists s € Z, permutations
o, 71 IN — IN such that (@)72; X (Go(k)+s)im1> (b)) 2y =X (y()—s) 7t

or X, Y are non-Schwartz spaces and M, ~ Mz, My = M;j.

(B) With the help of the invariant 4, A.Goncharov and V.P.Zahariuta
gave some necessary conditions of isomorphism of spaces of the [orm Al (@)@ Ao (D),
AL (@) B Aoo (D), Al (a)RrAo(b), Al (a)®rAoa(b) where @ and b are nuclear expo-

nent sequences, that is, the corresponding p.s.s’s are nuclear. (see 18])

(C) A.Goncharov, T.Terzioglu, V.P.Zahariuta gave complete isomor-
phic classification of spaces of the form 50, A" (@) (see [9]). Later, in [10], they
proved similar results for the spaces ol the form Aso(@)@,AL_(b) where at least

one of the sequences a, b increasing to infinity is stable.

(D)In [13], M.Kocatepe and V.P.Zahariuta investigated an invariant
in the class of Kothe spaces of the type Hoo(k,7,«) and gave some examples of
this type that show their invariant is stronger than some of the old invariants.
Namely, the examples they gave have the same D, whereas they can be distin-

guished by this new invariant.
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(E) P.B.Djakov, V.P.Zahariuta gave a complete isomorphic classifica-
tion of stable spaces of the form AK([¢,,]) where «p, = el=ptx(p=—rn)lan (see [5])
In fact, they showed that if two such spaces are isomorphic then there is a

quasidagonal isomorphism between them. We state the result below:

Theorem 2.31 Let X 2 Dy(,7,¢) and Y 2 Do(k, %, @), where ~y, 2 T £ 1 for
each n in IV, be stable Kothe spaces. Then

..

XY ifandouly if X 2.
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CHAPTER 3
QUASIDIAGONAL MAPS BETWEEN
SOME TYPES KOTHE SPACES

The techniques we use in this chapter were introduced by P.B.Djakov

and V.P.Zahariuta in [5].

In this chapter we will classify the quasidiagonal mappings between
spaces of the types Dy (k,7, @), Do(r,7, @), aud He(k,7,a), for definitions see
section 1.6. Moreover, we will characterize such mappings between spaces one
of the type Deo(f,7,a) and the other of the type Heo(f,¥,a). Finally, we will
conclude this chapter by a counterexample which shows that the class of spaces
of the form D, (k,7,«) is not identical (in topological sense) with that ol spaces

of the form Ho.(%,7, @).

Since the proofs of the results are similar, we will give only one of

them completely, and state the others.
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Now let &, & be functions from IV to IV, 7 is a permutation of IV, and let m be

in IN. Then we define the following sets

L 2 {v = (i) 1 Kiny Fr(in) = ©};

L2 {v=(in): Ki, = 00, (Fr(in))oes is bounded };
L2 {v = (4n): (i), is bounded , Kn(;,) — 00};
LE{v="): (8,)2, (Frin))oz are bounded }.

N, ={ie N: g =m}.

Theorem 3.1 Let T : Doo(s,7,8) — Doo(,¥,@) be a quasidiagonal operator
defined by Te; = e¥ieq(;). Then T'is an isomorphism if and only if

(D) (e:)2) X (@n(i))Zes

(ii) For all » € Iy there exists ) such that "’:}’ <D;

For all v € I, there exists D > 0 such that "—"ﬁ’—'ﬁiﬂ—”(‘—’ll < D

For all v € I35 there exists D > 0 such that l-—‘—”—“?—;"—lh <D ;

For all v € I, there exists D > 0 such thal lt’“ﬂ"("‘)a’f“")—w"""‘"‘] < D.

iy -

Proof: (necessity) Let T' be an isomorphism in the given form. Then by the

continuity of 7" and T we get

Vp, dpy Vo, > py dpe > pr AM > 0 such that

leilp, < eM?||Teills,, 1Tells, < €Y/?|eilp, Tor each i € IN. Hence

ITeillss _ arleilpe
HE P2 < oM for each 1 € IV A
ITedlsn = ledm (%)

where {].|}32, respectively {||.||}32, denote the fundamental norms in D (k,7,a)

respectively Dy, (&, 7, @).



Similarly,
Vg, g V> ¢ A > @ IM > 0 such that

[Teills < eM/Zleinl, leilg, < eM/zHTei]I,;2 for each ¢ € IN . lence

el _ mllTeills . :
e o M for each ¢ € IN (B)
lez]g Tellq

Now (A) gives

eti el(PrHAn(iy X (P2 =~Fon(i))Jn(i)] M elrz+rix{pa—ri))ai]

for each t € IN.

e — . e
eli L1 Hn() X (F1 =Rx(i) an(i] — ellpr+rix(p—ri))ai]

Taking the logarithm of both sides, we have

[12 — 11 + Fniy X2 — Foniy) — X(P1 = Ba(iy) Héng)
<M+ [ps — p1 + vi{x(p2 — 1) — x(p1r — r;) Hai for each © € IV.

(i) Let (i,) bein [;. Let py > py 21, p 2 P11 > Pr. Siuce ki, Fx(in) — 00,

there exists ng € IV, such that for all 1 > ng ki, > pa, Kx@) > p2. So (A) becomes

B2 = Bt + Fr(in) {0 — OHén(in) < M + [p2 — p1 + 7,0 — 0}]a;, for each n > ny.

. . « — . . .
But since @;, — 0o, we have limsup,_,, 4’;&1 < l;%:—’;—i < oo. Likewise, using the
tn

. . r. . - a . »
inequality (B) with ¢ > @1 =1, p=q + 1> g1y we get (argin))nsy X (in)pmg -

. . . A ~ AN o
(ii) Let (i) bein fy. Let py; > pir = 1, pa = pr + 1 > sup,epn Fn(,). Because
#;, — 00, there exists ng € IV such that for every n 2> no, £, > pa. Thus (A)

becomes

W2 = P1 + V() {1 = 1Haw(in) S M +p2 —p1 + 7. {0 - 0}]a,, for each n > ny.

: . . s _ . .
But since «;, — 00, we have limsup,_,, {}"—’Q < Zz%:z% < oo. Similarly, using
n

. . . o . A o
the inequality (B) with ¢, > ¢1 = 1 + sup, e Kx(in)s € g ¢+ 1> q, we get
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(&W(t‘n) );)Lo::l bes (ain )7°;°=1 .

vos .y . A ~ AL “ "
(iii) Let (i) bein f3. Let py > p1 = L + SUp,ep Riny P2 = P1 +1 > py. Since
Rr(in) — 09, there exists ng € IV such that for each n = ng Kr@,) > P2- Hence

(A) becomes

B2 — Bt + An(im) {0 — OHam(iny < M + [p2 = 11 + % {1 — Ui, for all n 2 n.

Now as a;, — 00, we obtain lhnsupn_m,a—f}iml < BB < oo By the same

. . .oA A , ,
token, using (B) with ¢ > 1 = 1, 2 = 1 + 1 > 1 + supuep Kin, We get
(&n(in))z(;l = (ain);)zo=1'

(iv)

. . w4 .
Let (¢,) be in [y, Let py > py = L+ 8Up,c Kiy P2 = D1+ 1 > sup,epn fngin) + L.

Therefore (A) becomes
W2 ~ Pt + An(in) {1 = Wangny < M + [p2 — o1+ i {1l - 1}a;, foralln € IV.

But since a;, — o0, we have limsup,_, u—’;ﬁl’-‘l < ’;—;—:—%‘1— < o0o. Similarly, using the
. . . . .~ A . A
inequality (B) with ¢z > ¢1 = 1 +sup,epn Fn(in)> 42 = @1+ 1 > 1 +sup;epy K,y We

get (Gn(in))ozt X (Giy oz

Claim: There exists C > 0 such that & < i’iﬂ <C forallie N

Let us assume the contrary, i.e. for each C' > 0 there exists ¢ € IN such that either
%ﬂ- > (C or %Ell < &. Letting C =n € IN, we get a sequence (i) such that for
every n in IN either ?—’51;—‘1 > nor ‘—L%%l < 1, Passing to a subsequence of (i,), say
(), We either get E'a—("—"ml — 00 or a—:’(—”‘—’ﬂl — 0. So without loss of generality say

i

frlin) 5 0o, Now if &;, — 00, then fr(;,) 7> 0o. For otherwise, we would have a

Aty
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sequence (i,) € I; whereas (a;,) % (én(i,)), which is a contradiction. Hence there
is a subsequence of (i), say (¥n,), such that (Fn(in,)) is bounded. But in this
case, we would have a sequence (iy,,) € I3 such that (ai,,) % (@n(in,,)), which is a
contradiction. Thus ki, # oo. But then there is a subsequence (in,,) such that
(Kiy, ) is bounded. Now if &) — 00, then we would have a sequence (i,,,) € I3
such that (ai,, ) % (@r(in,,)), Which is a contradiction. So &x(,,) 7> co. But then
there is a subsequence of (¢,,,) say, (i,;mt), such that Rn,,, ) is bounded. As a
result, we would have a sequence (i, ) € [y but (“inm,) # ((lﬂ(inml)), which is a

contradiction. Therefore there exists C > 0 such that (l < a{f—l < CHforall: € IN.

Now since T' is continuous for each p € IN there exists p € IN, M > 0 such

that ||T2||5 < eM|z|, for all x € Deo(k,7,a) and since T~! is continuous for this

p there exists p, M > 0 such that ||, < M T:||s for every @ € Dyo(r,7v,a).

Putting « = e; and taking the logaritm of all sides, we have

ti + [+ FeyX (P = Fn(y)liny < M + [p+ vix(p — #:)]as

—ti+ [p+yix(p — 86 € M + [+ Fr) X (P — Fogiy)n(iy for all i € IV.

Now
(1) Let (2,,) be in f1. As K;,, Kn(i,) — 00 there exists ng € IN such that for each

N2 ng Ki, > Py Kr(iy) > 1:) Hence we obtain

M g ti M (i
_—“‘P—ﬂ(‘ﬂ‘FPSﬂS‘——f)M—FP for all n > np.
in i, a;,, a;, s,

Now since «;, — oo there exists 1y > ng such that for all n > n, ;l—- < pC. Thus
in

S Aag t ~
~2pMC < 22 < 2pMC n > nq.

in
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Now let

f
———\ : < ng}).
a;

in

D& max(‘Zf;MC, 2wMC, {

Therelore

Ly,

a;,

<D nelN.

. . . . A . . .
(i) Let (4,) bein I Let p = | + sup,ep Fn(in)- SllCE Ki, — 00 there exists

ne € IN such that for all n>ne, &, > p- Thus we have

M <

bin F Vr(in) On(s M ax |
n T Yr(in) Er(in) < = —pu +p for all n > nq.

i, a;, ai, ai, a;,

Now because a;, — 0o there exists 14 > ng such that for all n > ny GL < C. Thus
n

iin + ’yﬂ(in)[”ﬂ'(in

‘I’i‘ll

(~13——M)(7§ < Mp+p n > n.

Letting

l’in + ’?‘"(in ) &Tf(in)
s,

I max(p + Mp, (p+ M)C, {’ t Do < ny}),

we have
tin + Vr(in) Ur(in)
a;

<D mnelN.

n

- LA . .
(iii) Let (é,) lie L. Let p = 1 and p > sup,en(#i, ). As Er(i,) — 0o there exists
no € IN such that for each n > ng firg,) > ;3 Therelore
t’L - z.n“in jvj ”dﬂ ’t
Yin T VinGin < — — p;") + p for all n = ny.

a;, s, as,, aq,, @,

Now as «;, — oo there exists ny > ng such that for all n > ny ;1— < C. Thus
: tn

X ~ tin ™ Yin vl"n
—pC —pM < Zin ~ Tin Gy <Mp-+p for all 1 > ny.

a;,,
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Let

X Y tin = Yin%in
hE max(p + Mp, pC + pM, {I+ tn < ny})
in

Hence

i = YinGin
(I'in

< D for all n € IN.

. . . . A " . .
(iv) Let (i,) be in Iy. Let p = 1+sup, e Fr(in), P > SUPueN Kins P > SUPneIN Fr(in)-

As a result

M aai tin = Fr(in)Er(in) = Vinlin . M . x(
——_“I;'(‘{M‘)"}'p S n i (Zn)a'"( n) 7"“2" S ___pu +1) fOI‘ cLH n & W,

iy ai,, i, i, iy

Because a;, — oo there exists ng such that for each n > ng (% < 1. Therefore
. 00 4 in

A < biy Vi) Cn(in) = Yin Gin
-pC - M < n 7+ Trlin) Cr(in) ~ Vi @ <M+p forall n > ng.

s,

Now let

tin + ;}',ﬂ'(in)(l'”(in) - 7in a”in
a'in

D max(p + M, pC + M, { : n< ngt).

Hence

tin + Vr(in) Cr(in) = Yin Gin

&y,

<D forallne N
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(Sufficiency): Let p be given. |
CLAIM 1: There exist py > p, D1 > 0 such that for all i such that
< D.

ki > P, Re) > 01 |2
Suppose the contrary,

for each p; > p, Dy > 0 there exists # € IV such that  &; > p1 Kz) > 1
but Iﬁfl > Dy. Lelting py = Dy =n € IN , we gel a sequence (z,,) in [;

t; . . . .
but ’a—’ﬂ—l — 00, which is a contradiction.
in

CLAIM 2: There exist py > p1, Dy > Dy such thatl for all i € IN such thal

. tiH (i) (i
Ki > P2y Ra(iy S 1 '__.L{(z:ﬁll < D,

For otherwise,
for all py > p1, Dy > Dy there exists ¢ € IV such that &; > pa, £r) < i

but lt—'ﬂ"ﬁ?m > Dy If we let py, = Dy = n € IN, there will be a sequence (i)

in I,

with |2t |y oo, which is a coutradiction.
@, ’

CLAIM 3: There exist p3 > pz, Dy > Dy such thal for every ¢ € IN such that
b < )y,

ki < P2y Ra(i) > P3

If otherwise,

for all p3 > pa, D3 > D thereexists ¢ € IN #; < py, gy > p3 but IE*—_—;Y‘—“' > Ds.
Letting p3 = D3 = n € IN, we have a sequence (i,) € I3 but “—'&Zaluﬂul — 00,

whicl is a contradiction.

CLAIM 4: There exist Dy > D3 such that for all 1 € IN such that
Ki < pa, k() < Y3 ! L, : < Dy.

ay

Assume the contrary,
for all Dy > Ds, there exists © € IN w; < pg, Fniy < P3 'W >

ay

D,. Now let Dy = n € IN. Then there is a sequence (¢,,) € I4 such that
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itV r(in) En(in) —Yin Yin

Qip

— 00, which is a contradiction.

Now let D 2 Dy, p > max(p,, pC + D).

(i) For all ¢ € IN such that &; > py, Fr) >,

ti + Plx(y Fn(y X(B— Rag)) Gn@iy= ti + Pany < Da; + pCla; < pa;
< pa; +%ix(p — Ki)ai.

(ii) For each ¢ € IN such that &; > py, £rq) <
ti + Pln(y iy X(P — Fx)) Gy < i + Py + (i) lng) < Dag + pCla;
< pa; = pai +%x(p — ki)

(iii) For every ¢ € IV such that r; < pa, Krs) > ps
Li + Pln(y +n() X(P— Ka(i)) Gn(iy = ti + Plniy < Dag + Yidi + Pl
< (BC + D)a; + yia; < pai + vix(p — £i)ai.

(iv) For all ¢ € IN such that &; < py, fr) < ps
i+ Pan(y Ty X(P — Rr(i)) Gny < b + Plnsy + Yn(i)nr) < (D + pC)ai + viai
< pa; +Yix(p — Ki)ai. '

Hence ||[T'e;l]; < les], for each i € IN. Now if @ € Dy(k,7,a), ¢ = e Eici,
then with Tz 2 SN zie; we get

I Tnzlls < Ly lwilliTeills < XK [eilledd, < Jel, for each N € IV.

Hence {Tn}%-; is a sequence of continuous linear mappings, which converges
pointwise to Tz 2 Yoieq &iTe;. Hence by Banach-Steinhaus Theorem T' is contin-

uous.
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Now let § > max(ps, (p + D)C).

(i) For all ¢ € IN such that &; > py , Rz > p1 we have

—t; + pa; +vi X(P — ki) ai = —ti + pa; < Da; + pa; < (D + p)Caqg
< Plin(i) + FniyX(B = Fon(i))n(i)-

(i1) For each ¢ € IV such that &; > p,, Kr) < p1 we gel
—t; + pa; +9i X(P— £i) @i = i+ Ppui < paq + Fa(i) ) + P < (D 4 P)Clangy +

a
~

Yr(i)ln(i) S ;;&‘n‘(i) + Fr@y X (D = Rn(i)) i)

(iii) For every ¢ € IV such that k; < py, fr) > ps it follows that
—t; + pa; +7; X(Pp— wi) @i < =i + pa; + via; < Da; + pa; < (D + p)Clg

>

< I:)dn(i) < ngiw(i) + Fr )X (P — Eni)) i)

(iv) For all © € IV such that &; < py, firy < ps we have
—bi + pa; +% X(P — ki) ¢; < =i + pa; + yidi < Dai + An(iyngsy + Pa
<D+ p)Clngiy + Fu(iylin(sy < Ptmiiy + An(i) X(B — For(i) )in

Therefore |e;]; < ||Tei||1~3 forallie IN,if & € Dyo(R,7,d) , ¢ = ;e wiei, then
with Tl 2 YN | @€, then it follows that

115" els < S fellT " eals < S el (el < [l

Thus {Tx'}%; is a sequence of linear mappings, which converges pointwise to
Tz & Y% 4T 'e;. Thus by Baunach-Steinhaus Theorem T is continuous.

1=1"

Hence T is an isomorphism.
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Corollary 3.2 The following conditions are equivalent:
(1) Deo(ky7,8) € di;
(ii) Fre Vm > mg supey,, i < 0;
(3i8) Do (K, 738) = Aoo(a);
(iv) Doo(k,7.2)= Ao ().
Proof: (i)=(ii):
Since Do (k,7,a) € d1, there exists po, for each ¢, there exists r such that
SUPiew(;%EZ;) 2 eM < oo for some M > .
Or el2at2vix(e—rillei < eM elpotr+vix(po—r)+rix(r—rln [or each 7 € IV.
Or [2¢ + 27:x(q — k)]s < M + [po + 7+ ix(po — #:) +¥ix(r — £:)]a; for every
¢ € INV.
Since a; — oo there exists B > 0 such that sup;cp % < B. Thus
[2¢ + 27ix(q — £:)] € B+ [po+ 7+ vix(po — #:) +yix(r = &i)] for all 4 € IV
Let myg = po + 1 and let m > mg. But then there exists » such that
[2m 4 2yix (e — k)] < B+ [po+ v+ vix(po — £:) +vx(r — &;)] for every ¢ € IN.
If IN,, # &, then 2m + 27 < B+ [po+r+ %0 +vx(r — )] S B+po+7r+ 7.
Therelore 4; < B + py +r —m for each ¢ € IN. Hence sup;cpy, (7:) < oo.
(i) = (iii): '
The map [ : Doo(&,¥,a) — Aw(a), defined by fe; = e; is an isomorphisin,
where k; = i,ﬂi = 1. Thus it suffices to show that
Du(£,7, @) g} Doo(ky7,a). Now let Jy = {t € IV : k; <}, Jy=IN\ Ji.
Define T : Doo(#,7, @) — Doo(k,7,a) by T'e; = e'e;, where
“é{%miueh
a; otherwise
Now let v = (i) C IN be such that x;, — oco. Let v = 1 U vy where v; =

vNJ; i=1,2. Since &;, — 00 , v is finite. Now let

il
:{% S <o,

b
a;

A .
D, = max;e,, ;- Thus for each : € v, <
I ifz€ewm

Now let v = (4,) C IV be such that (k;,) is bounded. Then there exists m € IV

such that x;, < m. Nowlet v = nUry; v, =vnJ; i = 1,2. Il i € vy, If‘—jﬂ'l = (;
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ifz € Va,

s=1hg

lti — Vit
a;

=7 —1<supf{y,—1:5 €Ul IN,} £ D for some D.

< D for all 2 € v. So by the previous theorem

Hence ‘t—‘:—"—‘&
ay

di
Doo(r,7y.2) & Do (K, 7, a).
(iii) = (iv): Clear.

(iv) = (i): Follows from the fact that ¢; is a linear topological invariant.

Theorem 3.3 Let T : Do(k,v,a) — Dy(k,7,d) be a quasi-diagonal operator
defined by T'e; = e¥en(;). Then T is an isomorphism il and ouly if

(1) (@) = (@n(@) 2y

(ii) For each v € I, lim, 0o l(i—:—l =0;

For each v € I, lim,_,o [Mﬂm"‘ll =4If

gy,
. t . .
For each v € I3, lim, I—‘u—%&ﬁ‘-& =0 4
in
. ti,, +4 (52 )—Yip, Li
For cach v < [4, l“n”_*oo l m+’77r(zn)“rr(zn) Yij ml ={.
in

Proof: The proof of this theorem is similar to that of Theorem 3.1, so we omit

it.

Corollary 3.4 The following statements are equivalent:

(1) Do(k,7,a) € dy;

(ii) There exists a sequence (¢;)$2; strictly increasing to oo such that
Vy ¥r > ¢; 3t, such that sup{y;: 1 € IN,,1 > i,} < %;

(i) Do(x,7:a)  Ag(a);

(iv) Do(k,v,a)=Ao(a).



Proof: (i)=-(ii):

Since Dy(k,¥,a) € dy, for all p there exists ¢ such that for all »

supiew(ﬁr“"{"l) 2 eM < oo for some M > 0,

Or e[:,,‘-%l—+m(x(z’—ﬂf)+x(r—ﬁi))]ﬂi < {1/;1(1[:({'2—4-2%\(1,—5,)]u, for each i € IN.

Or :p]— — % +vi(x(p— ki) + x(r— i) £ %f— — 5 + 27;ix(¢ — #;) lor cach ¢ € IV.
Let r > ¢,¢ € IN,, then -—;}—%—l—m{()—l—l} < —f‘f—fw and hence y; < f‘—t{——ﬁ—i—:—)—{—}
Because «; — oo there exists ¢, such that f‘—lf— < f—} holds for all ¢ > ¢, , ¢ € IN,.
Hence v; < % for each i € IN,., ¢ > 4,. Thus [or all j there is ¢; such that for all
7 > q; there exists ¢, such that for all ¢ > ¢ withi € IV, v < %

(i) =(iii):

Since Dy(k, 5, @), where £; 2 and i 2 %, is isomorphic to Ag(@), it is suflicient

gurl.t
to show that Dy(k,y,a) = Dy(k,5,a). Let us deline the following sets

Jléu U {1 ;o =1, /zlv}a

321 r€(qyuy41]

U U {itm=r i<il,

’2] 7'6('113‘1171-1]

e

J,

Js = {i: ki<qi}.

Let T : Do(k,7,a) — Dy(k,7,a) be defined by T'¢; = cte;
A Yt ilze JiU Js
where t; =
0 if2€.Jy
Now let v = (4,) C IV be such that x;,, — oco. et v = vy U vy U vy where

vi=vnJ; t=1,2,3. Since r;, — 00 , vy is linite. Now

. e X
lm— = lim— < lim -.
1€V U e Wy J—oo }

Now let v = (i,) C IV be such that (x;,) is bounded. But then there exists j, € IN
such that forall ¢ € v k; < ¢jp. Nowlet v =y Uy Ui s, =v 0 J; 1=1,2,3.

v, is composed of at most finitely many indices. Thus we have

. by i .t — v
11m’—~b=hmz~—%——t—=ﬂ.

1€ ; t€w3 u;
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~

Therefore Do(k, 7y, @) is quasidiagonally isomor phic to De(k, ¥, @). Consequently,
we get the result.
(iii) = (iv): Clear.

(iv) = (i): Tt is clear from the fact that d, is a linear topological invariant.

Theorem 3.5 Let T' : Heoo(£,7,8) — Hoo (,7,@) be defined by Te; = eter)
Then T is an isomorphism il and only if

(i) For all » = (in) € Iy one has (Fo(in)n(in)) =X (Yin@in);

For all v 2 (i) € I one has (dg(i,)) X (Yin i) 3

For all v £ (in) € Iy one has (Va(in)a(in)) = (@in);

For all v £ (1) € 14 one has (dxq,)) < (ai,)-

>

(ii) For every v € I there exists ) >0 such that |—2— < D)
For every v € I, there exists /2 > 0 such that t'"+7"(',’y’i)'::("‘)a"('") <D;
] —'Ye Kin @

For every v € I3 there

'n+'Yﬂ'('n)""('n1aﬂ'(in)_'“n KinGin ‘ < D

For every v € Iy there exists 1) > 0 such that 1

thyy,

Proof: It can he proved similarly as Theorem 3.1.

Corollary 3.6 The following statements are equivalent:

(1) Hoo(r,700) € dh;

(ii) There exists ) such that for all m > mg, sup{yi: ¢ € IN,,} < 005
(1) Heol,7,a) (g} Aoo() for some  @;

(iv) Hool(k,7,a)ZAoo(@) for some  a.

Proof:(i)=>(ii): Since Ho(#,v,a) € dy there exists po such that for each ¢ there
exists r such that snpiEW(l—;:—o’z—‘(L,:) 2 M < .

Or for each i € IN

f,[2q+'2'y,‘ min{g,%i))a; < eMe[po+T+"/i wmin(pp 5 )+ min{r,x;)]a;

37



Orfor all 7 in IV

[2q + 27; min(y, 5;)]a; < M + [po + r + v min(pg, £;) + v min(r, £;)]a;.

Since «; — oo there exists B > 0 such that S“Piew(},‘,l) < B. So for every i € IV

2q + 2vi min(q, £;)] < B+ [po + v + v min(py, £;) + 5 min(r, £;)]
Now let mey = po + | and let 1 > . Bub then there exists » such that for all

e IN

(210 + 2y min(on, £5)] < B+ [po + v+ 5 min(po, £) + v min(r, &;)].

Without loss of generality assume IV, # ¢. Then 2m+ 2y < B+ [po+r4vipo +
yim]. Thus v:(m — po) < B + pg +r — 2m. Hence SUP;en,, Vi < éi{%olé-"i < 0.
(ii)= (iii): Since the map [ : Hoo(# ¥, @) — Ano(a@), delined by fe; = ¢, is
an isomorphism, where &; = i, 4; = 1, one has Hoo(%,%, @) qél Aw(a). Hence it
suflices to show that He. (%, 5, @) g} Heo(ryv,a). Now let Jy = {i 1wy < my},

Jz:l/V\.,/].

a; =

~ A{ai if i€ .J,

~Yit; otherwise

Clearly @; — oco. Let T': Heo(k,7,8) = Hoo(R, ¥, @), be defined by Te; = e'ie;,

where

[ A { vika; il € J,

vitt;  olherwise

Now let v = (i,) € [, v = vy Uy, where v; = v N J; i = 1,2. Because k;, — oo,

vy is at most finite. Then



~ o~ - l P

i a; = ili€ew
Jithi =4 . Henee
Vitki Vil I otherwise

min{[,{% ci €} < B < (a)7, X (rw), - Now

Yiai =

ti SACUTE i[‘i & V) A
—| = Mt < ) = max k;.
Vit | otherwise e

Now let v € I3. Hence there is some m > g such that for all ¢ € v &; < m
3 = <

v=1wUw,,where vy =v01.J; ¢=1,2. Then

’%(Li . a; _ i i1 e 7]
i

; (L otherwise

2

B

b Py 1 . . ! 1 . . 500000 oo
By assumption, sup,e,. 7 < co. So | < S Sy, Y = (i) X (@)

And

I — yirig; 0 iliew
y W o Ssupyi(w — 1) < oo.
o vi(wi — 1) otherwise i€y

(i11)=- (iv): Clear.
(iv)= (i): It follows (rom of the fact that d{ is a lincar topolugical invariant.
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Theorem 3.7 Let T : Hoo(r,7,a) — Dao (£,7, @) be defined by Te; = eben)-
Then 7' is an isomorphism if and only il

(i) For each v € Iy U Iy, (@n(i,)) X (Finin )i

For each v € [3U I, (Gn(iny) X (a3,);

(ii) For each v € Iy there exists [) >0 such that lT'—ftlz— < [
For each v € [, there exists [ > 0 such that —'ﬁ%’ﬁi"—"li’i'ﬂ < D;

For each v € I there exists DD > 0 such that ]ﬂ”—'—'ﬂiﬁ’ <D

'n+’7"(ln)'l"(in)_'y"n""fn”ﬁz| < [)

L2

For each v € I there exists D > 0 suck that l

Proof: This can be proved by using similar arguments introduced in the proof
ol Theorem 3.1.

Corollary 3.8 Il Hoo(k,7,a) gj Do (i, 4, ), then hoth spaces belong to class d
Proof: Let T : Hoo(#,7,8) = Doo(@, 7, @), defined by T'e; = eteq(iy, be the iso-
morphism. ' h

But then (drs,)) =X (Yinai,) for all (i) € LU [y (Grin)) X (ai,) for every
(in) € [3U Iy

Now let p 2 |. Then by a similar argument introduced in the prool of Theorem
3.1, there exist ps > pe >y > L, Dy > D> Dy > Dy 2 1 such that

i) < ), ; («)

'Yz'h -

O (b)

Yy —

171_:_ < [)3 N (C)

g

tr <, (d).

1/\

for all ki > pay Rr@y > Pis 3o

l/\

for all k; > pa, Fr) < Py p;

I/\

for all &; < p2, Kxy > 3y

l/\

for all w; < p2, Rey S P35 7
Now let pg 2 P2

But then there exist p3 > py > 171 > po, Dy > Dy > Dy > Dy > Dy such that

For every w; > py, K@) > p}, _<_ %&-“)— < 1)1, (a’)
for every ki > i, iy < Pty 1 _<: o < )
for all k; < p2, Ere) > Pa, —1— < ::i" < Dy (')
for every &; < pa, Ergy < Py %4 < '—:Eﬂ < Dy (d")



< fmu <oy

Thus for all i € IN such that py < #; < py, by (@), (b), we have ey =

A
D2
i B vp FAN
and by (¢), (d'), we have Lo« b < )y Henee if we let my = po and me > myg
? ? Dy — ai —

be given, then {v}iemn,, is bounded. This implies that He(%,7,a) is isomorphic

~

to A(a) for some a. Therelore Hoo (o 758), Doy (F17, @) belong to class d;.

The following example will show that there exist Do (K, 7,a)-lype spaces which are
not isomorphic to any Heo(£,7, @)-type spaces, also that there exist Hoo(®,7,a)-
type spaces which are not isomorphic to any D, 5. @)-type spaces. That is Lo

say both classes of spaces are not ideutical to cach other.
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Counterexample: Lot v, = n, (5,) = (1,1,2,1,2,3,...), @ =2
Then Dy (#,7,a) can not be in dy, since 5, — o0o. (see Corollary 3.2(i7))
Doo(ky7,a) ts unstable :

Let s = 1, for all p € IN, let ¢ = p+2, {or all # € IN. Because \ is nondecreasing
function and ¢ > p, X(p— Fng1) = X(¢ = fingr) < 0. Now observing that gﬁ’lﬁ — 0,
we can choose some ng such that %::'L—’]’ < ;1,— for all n > ng. Hence we have

ulp’"'_'—l ”'T’”' — e[}”“‘l'*"%l-l—l{,\(l’““u-}-l)"‘\(’I_“n+l)}]“n+1(,[7'_3’*")’"{\(7'_"311')"\(s—hiu)}]'ln

Uy nt1 s

— i — . ey ndn
S (3[7’—‘1](’,[7 8+’Yn]u"+l Ul S H[P 'I+Z(7‘ 3)(;"+l]'L11+l S C[p—q+l](b,,+1 S C-—a".}.l N U.

Similarly, Heo(k,7,a) is not in dy (see Corollary 3.6(i)) and is unstable.

Hence both Do (K, 7,a) and He(k,7,a) satisly Bessaga’s conjecture and thus they
have .e.p. ([18]). Observe the following fact

Fact 3.9 Having quasiequivalence property is a Li.i. in the class of Kothe spaces.
Proof of the fact: Lot X 2 K ([epn]) have the q.ep. and let

1.y & K([bp]) = X be an isomorphism. 1f {w.} is any unconditional hasis
in Y, then {Ue,},{Ux,} are two unconditional bases in X. Thus there ex-

ist a permutation 7 : IN — IV, a sequence ol scalars (a,) such that the map
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: . Jay . . . .
S X — X, defined by S({7e,) = aulU.ry is an isomorphism. Consequently

U v 85 Uy, . i
Y - X =5 X — Y is an isomorphism.

Let us go back to the example. If Dy, (x,7,a) is isomorphic to Ho (R, ¥, @) for
some &, 7, @, then by the above lact Ho (5,7, @) would have the q.e.p..

Let T': Hoo(£,5,4) — Doo(k,7,a) be the isomorphism. Then {T'e,} is a basis
in Do, (#,7,a) , again by q.e.p. there exist o 1 IN — IV, a sequence of scalars (1,,)
such that the map 2 : Deo(k,7,a) —= Do (K, 7,a), delined by £(T¢,) = tueq(y is
an isomorphism. Hence H.,, (/lt,j, @) 54 Do (K. 7,a) i Dok, 7,a) 18 an isomor-
phism. Therefore Hoo(%,7, @) g} Doo(r,7v,a). 1t Tollows from Corollary 3.7 that
Do (£y7,a) is in dy, which is a contradiction.

Therefore Dy (k,7,a) can not be isomorphic to Ho (%, 7, @), lor any ¥, &, ¢. Simi-

larly, Hoo (8, ¥,a) % Doo(fy 7, @). for any 7, &, a.



CHAPTER 4
CONCLUSIONS AND SUGGESTIONS

In this study, we examined the quasidiagonal isomorphisms between

Doo (K, v,a), Hoo(kyy,a), Dok, 7,a) Lypes spaces.

As consequences, we proved that the only spaces either of the first two
types belouging to the class dy are those which are isomorphic (or equivalently
quasidiagonally isomorphic) to an infinite type power series space. Furthermore,
it was shown that the only spaces of type Dy(r,v,a) belouging to the class dy are

the linite type power series spaces.

Fach basic subspace of a space of the type Dy(s,7y,a) has a basic linite
type power series subspace whereas basic subspaces those of the other types have
basic infinite type power series subspaces. Hence we can say that the class of
spaces of the type Dy(k,7,a) is completely dilferent (in topological sense) from
those ol the spaces of the other types. Therelore we discussed whether or not the

other two classes are identical (in topological sense).

By giving an example, we were able to show that these classes are not
identical. On the other hand, it was shown that a space which is quasidiagonally
isomorphic to a space in each of these two classes is a power series space of infinite

type.



We could not prove that a stable space either of these three types has
q.e.p.. In this case, it can be concluded that the intersection ol the class of spaces
of the type Do (k,7,a) and the class ol spaces of the type Ho, (K, v,a) is the class

of infinite type power series spaces.
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