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ABSTRACT

LOW-POWER AND AREA-EFFICIENT FINITE FIELD ARITHMETIC
ARCHITECTURE BASED ON IRREDUCIBLE ALL-ONE POLYNOMIALS

Mohaghegh, Shima

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ali Muhtaroğlu

Co-Supervisor : Assoc. Prof. Dr. Satoshi Kondo

September 2020, 121 pages

This thesis presents a low-power and area-efficient finite field multiplier based on

irreducible all-one polynomials (AOP). The proposed organization implements the

AOP multiplication algorithm in three stages, which are reduction network, AND

network (multiplication), and three input XOR tree (accumulation), while state-of-

the-art implementations distribute reduction, multiplication and accumulation opera-

tions in a systolic array. The optimization reduces the overall number of sequential

elements and provides lower pipeline latency compared to literature. This leads to

the reduction of power dissipation and area for a system clock frequency. Both the

previously reported and the proposed architectures have been implemented in Ver-

ilog for three different binary field sizes using TSMC 90 nm standard cell library

from Artisan Components, and have been synthesized with a target 1.2 GHz system

clock frequency using the Cadence Genus Synthesis tool. The proposed architec-

ture offers 14%, 30%, and 19% reduction in average leakage, dynamic power, and

area, respectively, compared to the state-of-the-art. Thus, the proposed architecture is

better suited for energy-efficient portable systems, including wireless sensors.

Keywords: Galois field multiplier, synthesis, irreducible, low-power, area-efficient,

all-one polynomial (AOP), elliptic curve cryptography (ECC).
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ÖZ

İNDİRGENEMEZ POLİNOMLARA (AOP) DAYALI DÜŞÜK GÜÇ VE ALAN
VERİMLİ SONLU ALAN ÇARPANLARI

Mohaghegh, Shima
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ali Muhtaroğlu
co Ortak Tez Yöneticisi: Doç. Dr. Satoshi Kondo

Eylül 2020 , 121 sayfa

Bu çalışma, indirgenemez polinomlara (AOP) dayalı düşük güç ve alan verimli sonlu

alan çarpanları sunmaktadır. Önerilen organizasyon, AOP çarpma algoritmasının azalma

ağı, AND ağı (çarpma) ve üç girişli ağacı XOR (birikim) ağı olmak üzere üç aşamada

uygulanırken, literatürdeki uygulamalar azaltma, çarpma ve birikim işlemlerini sisto-

lik bir diziye dağıtır. Optimizasyon, sıralı elemanların toplam sayısını azaltır ve lite-

ratüre kıyasla daha düşük boru yolu gecikmesi sağlar. Bu, belirlenmiş bir sistem saat

frekansı için güç dağılımının ve alanın azaltılmasına yol açar. Daha önce bildirilen ve

önerilen mimariler, Artisan bileşenlerinden TSMC 90 nm standart kütüphanesini kul-

lanılarak, üç farklı alan boyutu için Verilog ile uygulanmış, ve Cadence Genus sentez

aracını yürüterek, 1.2 GHz sistem saat frekansı ile sentezlenmiştir. Önerilen organi-

zasyon, literatüre kıyasen sırayla ortalama sızıntı, dinamik güç ve alanda %14, %30

ve %19 azalma sunmaktadır. Böylece, önerilen organizasyon, kablosuz sensörler de

dahil olmak üzere, enerji tasarruflu taşınabilir sistemler için daha uygundur.

Anahtar Kelimeler: Galois alan çarpanı, sentez, indirgenemez polinomlar (AOP), dü-

şük güç, alan verimliliği, eliptik eğri kriptografisi.

vi



This thesis is dedicated to my parents for their patience and unquestioned support

through easy and difficult times.

vii



ACKNOWLEDGMENTS

I would like to express my gratitude and appreciation for my supervisor Prof. Dr. Ali

Muhtaroğlu, for his dedicated support and guidance throughout this research project.

I am incredibly grateful to Assoc. Prof. Dr. Satoshi Kondo for his advice on mathe-

matical approaches. I would also like to thank Assist. Prof. Gürtaç Yemişçioğlu for
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CHAPTER 1

INTRODUCTION

1.1 Modern Computing and Security Trends

With the continual advances as part of the digital revolution dating back to the eight-

ies, there has been an increased demand for digital services. The emergence of

the information economy, driven by the development of computers, the expansion

of telecommunications, and the Internet has radically changed the way people do

business, deal with the government, receive health and education services, entertain

themselves, and hold a conversation with friends and families. Private documents that

were previously committed to paper and hand-delivered or stored under lock and key

are now produced, submitted, processed, and stored electronically on a routine basis

[17].

The Cross-European Technology Platforms (X-ETPs) community sees the Internet

of Services (IoS) as a core component of the future Internet (see Figure 1.1). In the

future of the IoS, cloud computing will play a prominent part, allowing on-demand

provisioning of software, networks, and computing infrastructures. Security, privacy,

and reliability should be taken into account in all areas of the future of the Inter-

net. Although cloud service providers utilize numerous processes and technologies

to ensure the protection and privacy of data and information, there is significant room

for improvement concerning the authentication, authorization, and audit frameworks

introduced within the current infrastructure as a service [5].
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Future Network

(Society &

Infrastructure)

Internet for the People

Internet of Content

and Information

Internet of Things

Internet of Services

Figure 1.1. Backbone of Future Internet [5]

Cryptography is a method for information and communication to be secured using

codes to be interpreted and processed by those for whom the data is intended. Thus

cryptography targets preventing unauthorized access to information. The "crypt" pre-

fix means "hidden," and the "graphy" suffix means "writing" [18].

1.2 Use of Finite Field Arithmetic for Cryptography

Finite or Galois field (GF ) arithmetic is universally utilized in error-correcting cod-

ing systems [19], like Hamming or Reed-Solomon code, and cryptosystems like el-

liptic curve cryptography (ECC) [20]. ECC based secure communication has re-

cently gained popularity in Wireless Sensor Networks (WSNs) due to the utilization

of WSNs in healthcare and other private applications. Since WSN nodes have strin-

gent power and energy consumption requirement, an emerging critical research focus

is energy-efficient implementation of ECC systems [21], [22], [23] and [24]. This
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premise is founded on the fact that all internal operation of Advanced Encryption

Standard (ASE) is to be associated with finite fields [25]. Virtually all public-key

cryptographic algorithms depend heavily on finite field arithmetic, which is to be ef-

fectively performed to satisfy execution speed and design space constraints. Such

priorities are significant obstacles that involve interdisciplinary research activities to

generate the best algorithms, architectures, implementations, and design practices

[26].

Polynomial (or standard), normal, dual, and triangular basis are alternative repre-

sentations of the elements over the binary field GF (2m). The polynomial basis is

widespread for bit-parallel multipliers due to the fact that it offers the potential for

reasonably simple and scalable designs for the fields of the higher-order and does

not demand a basis conversion [27]. Multiplication in GF (2m) is more complicated

than addition and subtraction since it involves two steps: polynomial multiplication

and reduction modulo of an irreducible polynomial. All-One Polynomials (AOP),

Equally Spaced Polynomials (ESP), trinomials, and pentanomials are known as dif-

ferent types of irreducible polynomials [28]. Although the AOP classes of irreducible

polynomials offer considerably efficient implementation of finite field multiplication

[2], they are not as commonly studied as irreducible trinomials or pentanomials. Thus,

the multiplier architecture proposed in this work is based on AOP. AOP multiplica-

tion architecture may, in fact, be used as a kernel for field exponentiation, inversion,

and division as well as ECC implementation using Nearly AOP (NAOP) [29]. AOPs

are relatively simple to implement for finite field generation [30], and are packed as

computation cores to be used for trinomial and pentanomials multipliers [3].

1.3 Power Dissipation

It is generally believed that the smartphones and computers we use are eco-friendly;

however, the fact is a tenth of the electricity used across the world is predominantly

consumed by the digital industry resulting in vast consequences for our economy and

eco-system [31]. It is globally reported that semiconductor industry sales drastically

increased from 21 billion dollars in 1985 to 306 billion dollars in 2013 [32].
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Power consumption is one of the critical parameters in integrated circuits customized

for embedded and battery-powered applications. The observations regarding power

dissipation are particularly relevant for two reasons. Firstly, to the best of found

knowledge, the levels of current and power available in a battery are virtually con-

stant. Therefore, the analysis shows that the power dissipation of a circuit or a product

determines the battery life. As a result, it can be mentioned that if the power dissipa-

tion increases, the battery life will decrease. Another critical issue is that the power

dissipation and the heat generated by the microchip or product are not independently

variable. Extreme heat dissipation might raise the operating temperature, and this

may either increase the risk of gate circuitry drifting out of its regular operating curb

bringing the gates to failure in producing appropriate output values. As shown, there

are several possible reasons that the power dissipation of any gate implementation

must be maintained at the lowest possible value [33].

Recently, the well-known Environmental Protection Agency (EPA) [34] has given an

accurate estimation of 1.52 pounds of carbon dioxide per kilowatt-hour (excluding

line-losses) [35]. It could be said that carbon dioxide plays a critical role in global

warming. On the other hand, critical applications of daily life such as wearable and

portable devices, embedded systems, wireless sensor nodes, healthcare, and other

private devices are expected to develop at a significant speed and change people’s

daily routine eminently. Concurrently, privacy and security inherent in the use of

these devices gain importance.

All in all, in addition to security and privacy, power and energy dissipation in dig-

ital systems have grown equally important. Lower power dissipation in integrated

circuits is important to optimize system size and cost in terms of simpler cooling

solutions, more compact power electronics components, and smaller batteries [36].

Alternatively, lower power dissipation prolongs battery life forgiven battery capacity.

Considering most of the consumer electricity is generated based on fossil fuel con-

sumption, lower power dissipation is also important to improve efficiency and hence

the sustainability of the electronic systems.
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1.4 Motivation and Problem Definition

Security hardware is expected to grow in the near future, along with the digital eco-

system [37]. The binary extension field utilization for secure hardware implementa-

tions is of high interest because it leads to carry less arithmetic operation and provides

a faster and smaller system [38]. As expected, the most significant operations in bi-

nary fields are addition, multiplication, squaring, and inversion. Using low-power and

area-efficient hardware implementation will result in smaller, lower cost and more

sustainable systems.

It could be concluded that the problems that arise when using applied science for

overlapping areas between mathematics, computer engineering, electronic engineer-

ing are to be investigated in the present thesis project.

1.5 Proposed Methods and Models

Selecting the right variables deeply affects the outcome of the optimization process.

Therefore, in order to consider the behavior of digital circuits in the power sector, the

first stage is to choose suitable metrics. Through the design optimization process of

AOP multipliers, it is expected to keep some of the variables constant in this thesis

which are:

1. The cell height,

2. Power supply voltage (1.08 V).

Some of the variables which are subjected to be modified are:

1. Architecture of multiplier ,

2. Word length (bits).

5



State-of-the-art approaches for implementing reduction, multiplication, and accumu-

lation operations of an AOP multiplication in a systolic array will be studied first. Al-

ternate hardware organizations will then be studied with low-power and cost-efficient

design targets. Verilog implementations of previously reported and proposed imple-

mentations will then be compared in three different binary field sizes, after synthesis

of the circuits using a 90 nm standard cell library from Taiwan Semiconductor Man-

ufacturing Company (TSMC). The synthesis will be done with a 100 MHz system

clock frequency using the Genus Synthesis Solution tool from Cadence. The research

method is summarized in Figure 1.2.

Problem Description and Research Method (Chapter 1)

Background on Arithmetic & De-

sign Methods (Chapter 2&3)

Existing Implementations of AOP (Chapter 4)

Proposal for Alternate Low

Power Organization (Chapter 5)

Implementation, Results Analysis and

further Optimizations (Chapter 6)

Conclusions and Future Work (Chapter 7)

Figure 1.2. Flow-Chart of the Completion Steps of This Research
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1.6 The Outline of the Thesis

The rest of the thesis is outlined as follows: The mathematical background is pre-

sented in Chapter 2. Chapter 3 provides background information on employed imple-

mentation and synthesis techniques. Chapter 4 discusses the existing implementations

of irreducible AOP. The proposed low-power and area-efficient hardware organization

is explained in Chapter 5. In Chapter 6, the proposed organization is implemented in

different sizes and is compared against the alternatives in recent literature. Chapter 7

outlines the conclusion and future work.
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CHAPTER 2

MATHEMATICAL BACKGROUND

This chapter introduces some key definitions and general concepts concerning the

finite field’s mathematical context.

2.1 Field

A field F is a set of numbers which can be added, subtracted, multiplied and divided.

The following are the properties of a field:

1. Commutativity

a+ b = b+ a for all a, b ∈ F ,

ab = ba for all a, b ∈ F .

2. Associativity

a+ (b+ c) = (a+ b) + c for all a, b, c ∈ F ,

a(bc) = (ab)c for all a, b, c ∈ F .

3. Identity

There is an element in F , denoted by 0F , such that a+ 0F = a ∀a ∈ F ,

There is an element in F , denoted by 1F , such that a · 1F = a ∀a ∈ F .

4. Inverse

For each a ∈ F there is an element in F , denoted by−a , such that a+ (−a) =

0F ,

For each a 6= 0F there is an element in F , denoted by a−1, such that a · a−1 =

1F .
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5. Distributive law

a(b+ c) = ab+ ac ∀a, b, c ∈ F [39].

Examples of fields include the real numbers (IR), complex numbers (C), and rational

numbers (Q).

2.2 Finite Field

A finite field Fq is a field that consists exactly of q elements. It has been shown q can

be written as q = pm, where p is a prime, and m is a positive integer. A finite field

is known as a Galois field in honor of Évariste Galois (1811-1832), a young French

mathematician who contributed significantly to the theory of fields (see Figure 2.1).

Therefore, it can be written Fq or GF (pm) for the finite field of q = pm [18].

Figure 2.1. Portrait of Évariste Galois
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2.2.1 Prime Fields

When m equals one, GF (p1) is a the prime field. The elements of the prime field

GF (p) are the integers {0, 1, . . . , p− 1} with operations (addition, subtraction, mul-

tiplication, and inverse) computed mod p.

Let a, b ∈ GF (p),

a+ b ≡ c mod p,

a− b ≡ d mod p,

a.b ≡ e mod p,

a.a−1 = 1 mod p.

In Figure 2.2, common operations are illustrated for a very common prime field,

GF (2) with the elements 0, 1.

 

 

Figure 2.2. Arithmetic Operations for GF (2)

2.2.2 Extension Fields

We will call the fieldsGF (pm) withm is greater than one extension fields. This is be-

cause they are extensions of their prime sub fields. Computers use the binary system;

therefore, this thesis will focus on binary extension fields GF (2m). A binary exten-

sion field has 2m elements, and there is an irreducible polynomial, say f , such that

GF (2m) ∼= GF (2)[x]/(f) (that is, polynomials with coefficients in GF (2)modulof .

So the elements of GF (2m) can be represented by various (not necessarily irre-

ducible) polynomials.
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2.3 Basis of Finite Fields

Suppose that V is an n dimensional vector space over F . A basis is e1, e2, ·, en ∈ V
such that {a1e1 + a2e2 + · + anen | a1, . . . , an ∈ F} = V . If these e’s are

{x0, x1, x2, . . . , xm−1, xm} it will be polynomial or (standard) basis since any ele-

ment of GF (2m) can be expressed as bits using x0, x1, x2, . . . , xm−1, xm which is

called an extended basis of the canonical basis [40], and if the set is similar to

{xq0 , xq1 , xq2 , . . . , xqm−1}. It is called normal basis. Figure 2.3 shows the hierar-

chy of finite field and basis.

Finite Fields

Prime Fields Extension Fields

Binary extension Fields

Normal Basis Polynomial Basis

Figure 2.3. Finite Field and Basis [6], [7]

The polynomial and normal bases are also recommended by standards institutions

for practical use. For hardware implementation, the polynomial basis multiplier is

more widely used than the normal basis since the normal basis requires non-regular

multiplication [41]; therefore, this thesis focuses on the polynomial basis. Equation

(21) describes a set of polynomials

P (x) = xm+am−1x
m−1+···+a1x+1, ai ∈ GF (2) for 1 ≤ i ≤ m−1. (21)
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Table 2.1 summarizes all the concepts which have been studied so far.

Table 2.1. Binary Representation for the Polynomial in GF (24)

Decimal Polynomial Binary

0 0.x4 + 0.x3 + 0.x2 + 0.x+ 0.1 00000

1 0.x4 + 0.x3 + 0.x2 + 0.x+ 1.1 00001

2 0.x4 + 0.x3 + 0.x2 + 1.x+ 0.1 00010

3 0.x4 + 0.x3 + 0.x2 + 1.x+ 1.1 00011

4 0.x4 + 0.x3 + 1.x2 + 0.x+ 0.1 00100

5 0.x4 + 0.x3 + 1.x2 + +0.x+ 1.1 00101

6 0.x4 + 0.x3 + 1.x2 + 1.x+ 0.1 00110

7 0.x4 + +0.x3 + 1.x2 + 1.x+ 1.1 00111

8 0.x4 + 1.x3 + 0.x2 + 0.x+ 0.1 01000

9 0.x4 + 1.x3 + 0.x2 + 0.x+ 1.1 01001

10 0.x4 + 1.x3 + 0.x2 + 1.x+ 0.1 01010

11 0.x4 + 1.x3 + 0.x2 + 1.x+ 1.1 01011

12 0.x4 + 1.x3 + 1.x2 + 0.x+ 0.1 01100

13 0.x4 + 1.x3 + 1.x2 + 0.x+ 1.1 01101

14 0.x4 + 1.x3 + 1.x2 + 1.x+ 0.1 01110

15 0.x4 + 1.x3 + 1.x2 + 1.x+ 1.1 01111

2.4 Four types of Irreducible Polynomials

An irreducible polynomial of degree m with coefficients in GF (2) is used to produce

GF (2m). To the best of the author’s knowledge, irreducible polynomials have four

main categories: Trinomial, Pentanomial, EPS, and AOP.

2.4.1 Trinomials

If a polynomial contains three nonzero terms, it is called trinomial. The national

institute of standards and technology (NIST) recommends five binary finite fields for

ECC, two of them are trinomials, and these irreducible polynomials security lifetime

(duration of validity) is through 2030. The first trinomial is for GF (2233) field as

equation (22).

P (x) = x233 + x74 + 1, (22)
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Another trinomial is for GF (2409), and the security lifetime is beyond 2030 [42].

P (x) = x409 + x87 + 1, (23)

2.4.2 Pentanomials

If a polynomial consist of five nonzero terms, it is called pentanomial.

NIST recommends GF (2163) with a security lifetime (duration of validity) through

2010. An irreduciable pentanomial defining GF (2163) is

P (x) = x163 + x7 + x6 + x3 + 1. (24)

Another term via security life time beyond 2030 is for GF (2283) and GF (2571) via

the following irreducible polynomials [42],

P (x) = x283 + x12 + x7 + x5 + 1, (25)

P (x) = x571 + x10 + x5 + x2 + 1. (26)

2.4.3 ESP

An ESP irreducible polynomial is the expression (27),

P (x) = xns + x(n−1)s + · · ·+ xs + 1, m = ns for 1 ≤ s ≤ m

2
. (27)

2.4.4 AOP

An AOP is a polynomial in the following form:

P (x) = xm + xm−1 + · · ·+ x+ 1, (28)
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where the coefficients of all terms are one. An AOP is irreducible and may be used to

define GF (2m) if and only if m+ 1 is a prime and 2 is a primitive root modulo m+ 1

[43].

As an example, for m≤ 600 the AOP is irreducible for the following values of m: 2,

4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100, 106, 130, 138, 148, 162, 172, 178, 180,

196, 210, 226, 268, 292, 316, 346, 348, 372, 378, 388, 418, 420, 442, 460, 466, 490,

508, 522, 540, 546, 556, 562, 586 respectively [20].

In this thesis, three of these bit lengths have been chosen, namely 162, 268, and 562,

to analyze and compare hardware organizations.

2.5 GF (2m) Arithmetic Operations

Addition, multiplication, squaring, and inversion are four essential arithmetic opera-

tions in GF (2m). These operations are performed modulo an irreducible polynomial

P (x) over GF (2).

2.5.1 Addition and Subtraction

The addition of polynomials is performed under modulo two arithmetic. Conse-

quently, the addition of two polynomials becomes the bitwise Exclusive OR (XOR)

of their binary representations. Figure 2.4 depicts the XOR logic symbol and the truth

table.
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Figure 2.4. Logic Symbol and Truth Table of XOR Gate

The following table shows the addition when m is equal to 2.

Table 2.2. Addition for GF (22) = Z2[x](mod x2 + x+ 1)

+ 0 1 x x+ 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

Figures 2.5, and 2.6 display the same values as the Table 2.2, and it computes using

Collaborative Calculation in the Cloud (CoCalc), a sophisticated web-based platform

for computational mathematics [13].
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Figure 2.5. CoCalc Addition Computation

The other four additional computations are deprecated in Figure 2.6.

Figure 2.6. Continued CoCalc Addition Computation
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Subtraction is identical as an addition in modulo two arithmetic, as illustrated in Fig-

ure 2.7.

Figure 2.7. CoCalc Subtraction Computation

2.5.2 Multiplication in GF (2m)

Multiplication is a standard multiplication of polynomials followed by a reduction of

modulo irreducible polynomials [44]. Therefore, multiplication in GF (2m) is more

complex than addition and subtraction since it involves two steps: polynomial multi-

plication and reduction modulo an irreducible polynomial.

Table 2.3. Multiplication for GF (22) = Z2[x](mod x2 + x+ 1)

. 0 1 x x+ 1

0 0 0 0 0

1 0 1 x x+ 1

x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x
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Figures 2.8, and 2.9 illustrate the eight values of Table 2.3.

Figure 2.8. CoCalc Multiplication Computation

Figure 2.9. Continued CoCalc Multiplication Computation

Irreducible AOPs, trinomials, and pentanomials are known as different types of irre-

ducible polynomials [28], and each of them has different algorithms for implementa-

tion.
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2.5.2.1 AOP Multiplication

An AOP is a polynomial in the following form:

P (x) = xm + xm−1 + · · ·+ x+ 1, (29)

Then
{

1, x, x2, · · ·, xm
}

are the polynomial extended bases of GF (2m)[40]. Let x be

a root of the irreducible AOP. Since P (x) = 0, it can first be concluded that:

xm = xm−1 + · · ·+ x+ 1. (210)

Second,

P (x) + xP (x) =(xm + xm−1 + · · ·+ 1)

+ x(xm + xm−1 + · · ·+ 1) = 0. (211)

Then,

xm+1 = 1. (212)

Equation (212) is a property of AOP that can be used to reduce the complexity of

algorithm as follows:
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Figure 2.10. AOP Multiplication GF (24)

Although the explained algorithm makes the computation more straightforward, in

hardware implementation is cumbersome, so two more approaches from the literature

will be introduced next to reduce the implementation complexity.

The First Algorithm For Implementation

Let

A(x) = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0 =
m−1∑
k=0

akx
k, (213)

and the next polynomial be

B(x) = bm−1x
m−1 + bm−2x

m−2 + · · ·+ b1x+ b0 =
m−1∑
k=0

bkx
k, (214)

and the primitive, irreducible polynomial

F (x) = xm + fm−1x
m−1 + fm−2x

m−2 + · · ·+ f1x+ f0. (215)

Suppose P is the product of A and B,

P = A ·B, (216)
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Substitute equation (214) in (216)

P = A ·
m−1∑
k=0

bkx
k, (217)

so A can move inside the summation

P =
m−1∑
k=0

(Axk)bk. (218)

Since in the finite field, when we multiply one polynomial by x, the coefficients rotate,

and the main structure remains the same so that we can rewrite (213) as below.

Axk = a
(k)
m−1x

m−1 + a
(k)
m−2x

m−2 + · · ·+ a
(k)
1 x+ a

(k)
0 =

m−1∑
n=0

a(k)n xn, (219)

according to (219) and (218) it can be written as

P =
m−1∑
k=0

(
m−1∑
n=0

a(k)n xn)bk, (220)

it can be written as

P =
m−1∑
n=0

(
m−1∑
k=0

a
(k)
n−1bk)xn, (221)

Let us set pn as

pn =
m−1∑
k=0

a(k)n bk. (222)

So P can be written as (according to equations (221) and (222))

P =
m∑

n=0

pnx
n. (223)
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It can be concluded that the highest degree of P can be m − 1. Now let’s compute

Axk in a different way. It can be written as

Axk = (Axk−1)x, (224)

According to (219) substituting k instead of k − 1

Axk−1 = (
m−1∑
n=0

a(k−1)
n xn), (225)

Therefore,

Axk =
m−1∑
n=0

a(k−1)
n xn+1. (226)

Expand the summation

Axk = a
(k−1)
m−1 x

m +
m−2∑
n=0

a(k−1)
n xn+1. (227)

We are changing the interval of summation.

Axk = a
(k−1)
m−1 x

m +
m−1∑
n=1

a
(k−1)
n−1 xn. (228)

Let us consider (215) when x is the root of F (x) so that F (x) = 0. We obtain

xm = fm−1x
m−1 + fm−2x

m−2 + · · ·+ f1x+ f0 =
m−1∑
n=1

fnx
n + f0. (229)

Via substituting (229) in the equation (228)

Axk = a
(k−1)
m−1 (

m−1∑
n=1

fnx
n + f0) +

m−1∑
n=1

a
(k−1)
n−1 xn, (230)
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Let us expand

Axk = a
(k−1)
m−1 f0 + a

(k−1)
m−1

m−1∑
n=1

fnx
n +

m−1∑
n=1

a
(k−1)
n−1 xn, (231)

Factor xn

Axk = a
(k−1)
m−1 f0 +

m−1∑
n=1

(a
(k−1)
n−1 + a

(k−1)
m−1 fn)xn, (232)

As it is known (219) can be written in

Axk = a
(k)
0 +

m−1∑
n=1

a(k)n xn. (233)

If (232) and (233) are compared, we can conclude these equations are exactly same

as in [12]

a
(k)
0 = a

(k−1)
m−1 f0

a
(k)
n = a

(k−1)
n−1 + a

(k−1)
m−1 fn for 1 ≤ n ≤ m− 1

(234)

The implementation of the algorithm will be discussed in Chapter 4 in detail.

The Second Algorithm For Implementation

Let A(x), B(x), C(x) ∈ GF (2m).

A(x) =
m∑
k=0

akx
k, B(x) =

m∑
k=0

bkx
k, C(x) =

m∑
k=0

ckx
k, (235)

where ak, bk, and ck ∈ GF (2) for 0≤k≤m. Also, am, bm, and cm are equal to zero.

Galois field multiplication in extension binary field is performed as [25]:

C(x) ≡ A(x) ·B(x) modP (x). (236)

24



Substituting equation (235) into (236), and applying commutativity property, the fol-

lowing can be derived:

C(x) ≡
m∑
i=0

bi(A(x)xi) modP (x). (237)

The next step is computing (A(x)xi) modP (x) part of (237). Defining A(0) = A

and A(i) = A(x)xi modP (x), we obtain

A(i+1) = xA(i) modP (x). (238)

and writing A(i) same as A(x):

A(i) = a(i)m x
m + · · ·+ a

(i)
1 x+ a

(i)
0 =

m∑
k=0

a
(i)
k x

k. (239)

In the same manner,

A(i+1) = a(i+1)
m xm + · · ·+ a

(i+1)
1 x+ a

(i+1)
0

=
m∑
k=0

a
(i+1)
k xk. (240)

If (239) is multiplied by x, it will be

A(i)x = a(i)m x
m+1 + · · ·+ a

(i)
1 x

2 + a
(i)
0 x. (241)

Substituting xm+1 from 212, and using (241),

A(i+1) = xA(i) = a
(i)
m−1x

m + · · ·+ a
(i)
1 x

2 + a
(i)
0 x+ a(i)m . (242)

(240) and (242) can be written vectors of coefficients as [18]:

A(i+1) = [a(i+1)
m , · · ·, a(i+1)

1 , a
(i+1)
0 ], (243)
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A(i+1) = xA(i) = [a
(i)
m−1, · · ·, a

(i)
0 , a

(i)
m ]. (244)

Comparing (243), and (244),

a
(i+1)
0 = a

(i)
m if k = 0

a
(i+1)
k = a

(i)
k−1 if 1 ≤ k ≤ m.

(245)

The presented algorithm is the same as [2], which is utilized in different hardware

implementations.

2.5.2.2 Trinomial Multiplication

The trinomial general form is

P (x) = xm + xs + 1. (246)

Therefore,

xm = xs + 1. (247)

Substituting (247) in (240) we obtain

A(i+1) = xA(i) = a
(i)
m−1(x

s + 1) + · · ·+ a
(i)
1 x

2 + a
(i)
0 x+ a(i)m . (248)

Comparing (240) and (248) will be the following


a
(i+1)
0 = a

(i)
m−1

a
(i+1)
s = a

(i)
s−1 + a

(i)
m−1

a
(i+1)
k = a

(i)
k−1 for 1 ≤ k ≤ m− 1 and k 6= s.

(249)

So to implement this the circuit we will need some wiring and one XOR gate to do

the addition.
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2.5.2.3 Pentanomial Multiplication

Let

P (x) = xm + xs + xp + xt + 1. (250)

be a general pentanomial. Therefore,

xm = xs + xp + xt + 1. (251)

Substituting (251) at (240) will be

A(i+1) = xA(i) = a
(i)
m−1(x

s + xp + xt + 1) + · · ·+ a
(i)
1 x

2 + a
(i)
0 x+ a(i)m . (252)

Comparing (240), and (252) will be the following equation



a
(i+1)
0 = a

(i)
m−1

a
(i+1)
s = a

(i)
s−1 + a

(i)
m−1

a
(i+1)
p = a

(i)
p−1 + a

(i)
m−1

a
(i+1)
t = a

(i)
t−1 + a

(i)
m−1

a
(i+1)
k = a

(i)
k−1 for 1 ≤ k ≤ m− 1 and k 6= s, p, t.

(253)

In order to implement this equation, we will need wiring and 3 XOR gates.

Although the AOP class of irreducible polynomials offers considerably efficient im-

plementation of finite field multiplication [2], they are not as commonly studied as

irreducible trinomials or pentanomials. Thus, the multiplier architecture proposed in

this work is based on AOP. AOPs are relatively simple to implement for finite field

generation [45], and are packed as computation cores to be used for trinomial and

pentanomials multipliers [3].
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2.5.3 Squaring

Multiplication with only one entry is one method for applying to the square in the

finite field [28].

C(x) ≡ A(x) · A(x) modP (x) = A(x)2 modP (x). (254)

In addition, according to the author’s knowledge in the normal basis shifting is squar-

ing.

2.5.4 Inversion

If P (x) is an irreducible polynomial and A(x) is a nonzero polynomial of the finite

field GF (2m) has to inverse such as the following:

A(x) · A(x)−1 modP (x) = 1. (255)

It is the most complex operation that the Euclidean algorithm is required to be used.

For this part, the modulus P (x) is critical to be irreducible [44]. Euclidean algorithm

for polynomials computes the greatest common divisor (GCD) polynomial of two

polynomials. The optimized algorithm based on the Euclidean algorithm for calcu-

lating inversion is discussed in [46],[47].
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CHAPTER 3

BACKGROUND ON DESIGN METHODS

This chapter is categorized into three main sections: Physical design, design organiza-

tion, and VLSI custom digital design flow to addresses various hardware organization

and hardware system architecture techniques for implementation; in other words, all

parameters that can affect the design of IC’s are discussed. The design methods and

tools are outlined in the last sections of this chapter.

3.1 Physical Design

In this section, relevant IC physical design principles are discussed to provide a robust

system.

3.1.1 Process Corner

Process lots are defined as unique improved wafers designed to adapt substantiating

chip schematic strength for confirming process alterations that statistically occur in

wafer manufacturing throughout the years. Process lots are kind of products proposed

by semiconductor manufacturers. Corner lot wafers are a group of wafers skewed by

the fab to different corners. The function of process lots is to verify the immunity

of the planned design to process alterations in the future. A two-letter classification

system is utilized by the industry to identify the different corners, in which the initial

letter stands for the NMOS device, and the second means the PMOS device. There

are five exemplary corners:

1. FF (fast-fast),
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2. SF (slow-fast),

3. SS (slow-slow),

4. FS (fast-slow),

5. TT (typical typical) [48].

3.1.2 Thermal Effects

Analysis performed on data ascertains that architectures with high logic density in

arithmetic and logic unit (ALU) in processors affect heat generation through non-

uniform power density. Hot spots located in the heat map of a single-core processor,

as illustrated in Figure 3.1, can be seen, especially on ALU.

Figure 3.1. Power Density [8]

Furthermore, Figure 3.2 illustrates the Niagara T1 Processor’s heat map. Addition-

ally, the figure shows the power apex in proximity to the arithmetic logic unit (ALU).

Overall, in ALU and especially in graphical processing units (GPU), multiplication

is considered as the most time and power-consuming process because a large amount

of energy is consumed to compress and deliver an enormous body of data.
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Figure 3.2. Map of Temperature for Single Core Processor [9]

3.1.3 Routing Layers

Another touchstone for the analysis of technological progress and compression of

chips is the number of routing layers. The number of routing layers in a circuit refers

to the number of surfaces that hold the circuit connections and stack them in layers

without contact with each other. Evidently, with a higher number of routing layers,

chip production technology is more advanced, and the implementation is more com-

pact. Table 3.1 shows the number of connection layers in chips in recent years.

Table 3.1. Maximum Number of Routing Layers [1]

Year 2001 2002 2003 2004 2005 2006 2007 2010 2013 2016

Number of

Routing Layers
7 8 8 8 9 9 9 10 10 10

3.1.4 Power Supply Voltage and Allowable Maximum Power

Another factor for examining the agents influential in the development of chip tech-

nology is the power supply voltage. The power supply voltage connected to a chip

has a significant impact on its total power. The total power of a chip is a sum of

two parameters: Dynamic power and static power. Dynamic power dissipation in the
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electrical circuits is obtained from the following relation.

PD = α.CL.V
2
DD.fs, (31)

In equation (31), α is activity factor. CL is capacitive loading, VDD is power supply

voltage and fs is switching frequency.

The dynamic power of integrated circuits is positively related to its power supply

voltage square. In addition, static power in integrated circuits, which mainly consists

of idle leakage power when transistors are not switching, has a complicated superlin-

ear relationship to supply voltage. Accordingly, reducing supply voltage leads to a

significant reduction in power dissipation due to both dynamic and static effects.

Table 3.2 shows how power supply voltage and a maximum allowable power of chips

have changed in the last ten years (2001 to 2010) and foresees the maintenance of this

process until 2016.

Table 3.2. Processing of Power supply Voltage (Low operation Power, high VDD

transistor) and Maximum Power High Performance with Heat-sink [1]

Year 2001 2002 2003 2004 2005 2006 2007 2010 2013 2016

Power

supply

Voltage

(V )

1.2 1.2 1.1 1.1 1.0 1.0 0.9 0.8 0.7 0.6

Max

Power

(W )

130 140 150 160 170 180 190 218 251 288

The optimal voltage level is critical in digital circuits since it affects power, whereas

delay is inversely equivalent to the voltage [49].

3.1.5 Transistor Density

Gordon Moore, by inspecting the compression of the components and the complexity

of their routing network, introduced his well-known theory that the number of tran-
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sistors placed on a fixed surface is almost doubled every 1.5 to 2 years. He made this

observation of the process and claimed that such progress would be everlasting.

It could be concluded that it is possible to trace the integration of the components

to exponential function by following the significant points of the digital chips exam-

ination. In general, if the number of transistors on a chip in 1965 is equal to k, in

the specified year, the number of transistors is calculated as follows, according to

Moore’s Law.

Number of Transistor in a Chip in Y ear y = k.2( year−1965
2

). (32)

Although the theory has remained valid until recent years, studies show that it is no

longer applicable.

Moreover, it is essential to note that in addition to processors, the technology of man-

ufacturing other electronic components such as memories, microcontrollers, and data

transmission equipment, etc. has also improved according to Moore’s law; simulta-

neously, it has made the modern advanced chips compatible with each other [50].

3.1.6 Transistor Length

In order to examine the mentioned factors in the process of manufacturing chips in

recent years, Figure 3.1 shows that the history of the development and growth of chips

in the world are to be explored. As the first observation of the figure below reveals, it

shows the process of gate length changes in digital chips since 1995. Obviously, any

change in the process of development of the construction of chip should not be at the

expense of accuracy or processing speed of the chip. As it is clear from the diagram,

the length of the gate is reduced by about 30% for each two or three-year period.

The length of the transistor was articulated as micrometers until the early 1990s, but

today, due to the sharp decline in this size, its evaluation unit is expressed in Nano

terms. For instance, this chart postulates that the dimensions of transistors inside the

chip will have reached less than 10 nm by 2020, which is proven true [10].
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Figure 3.3. MOSFET channel length scaling in IC’s [10] Reprinted from Materials

Today, Wolfgang Arden, Review key challenges, Page No. 41, 2003, with permission

from Elsevier. Copyright © 2003 Elsevier Science Ltd. (appendix)

3.1.7 Clock Speed

Another factor is the processing speed of CPU chips. The clock pulse is a common

signal in synchronous sequential circuits. By adjusting the clock frequency, the pro-

cessing speed of circuits inside the chip can be changed. The clock period depends on

the delay of the circuits between consecutive registers. The delay is the time that the

transition of input through the output of the circuit is expected to have an effect. A

circuit’s maximum operating frequency is equal to the inverse of the maximum delay

in the circuit. This introduces the concept of the critical path.
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The critical path in sequential circuits: The path between two modules (usually

two registers) synchronized by a common clock, which has the longest delay among

all available paths between successive synchronized modules. Figure 3.4 shows a

path in sequential circuits as well. The two elements 1 and 2, refer to two successive

synchronized modules. It is clear that the constitutional elements of the path are all

combinational.

Figure 3.4. Path in Sequential Circuits

After understanding the concept of the clock, the process of increasing clock speed

in microprocessors from 1975 to 2020 is to be examined. The process of growing

microprocessors clock speed continued exponentially until 2000, however it slowed

down by entering the third millennium. This problem is raised by obstacles such as

elements delay inside the chip, and total power is a severe obstacle to technological

progress. The chart shows that before the year 2000; the microprocessors clock speed

has almost doubled every two years. This rate, nevertheless, has occurred every 2.5

years since 2000.

3.1.8 Cost

In addition to all the aforementioned factors, the cost of manufacturing chips is also

one of the important issues in evaluating the level of technological progress, which

must be examined at each level of manufacturing and production of chips. It is logical

to say that, when a new technology ramps in production, at first, the costs are greatly

reduced, and the market changes direction towards new technology, yet gradually

with the passage of time and the normalization of the situation, this process slows

down, and everything gets ready for new technology to come out. [50].
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3.1.9 Average Cost

The last topic discussed in the development of IC is the average price of each tran-

sistor in digital chips. The price of transistors manufactured in the past 30 years has

changed in US dollars. In the 70s and 80s, the price of transistors was almost halved

per year. On the other hand, after these two decades, this price reduction has occurred

every 1.5 years [50]. It could be concluded that advances made in manufacturing

technology affect and reduce the price of transistors in the final plan.

3.2 Design Organization

3.2.1 Pipelines or Single Cycle

Latency and throughput can describe the speed of a system. The latency of a system

is the time needed for a group of inputs to pass through the system from start to end.

The throughput is the number of groups of output that is being produced per unit

time. Consequently, throughput can be improved by processing several groups of

information at the same time. One form of this process is called pipelining. Pipelining

breaks a task into stages, and it speeds up a circuit without doubling the hardware

[32].

3.2.2 Systolic or Non-Systolic Designs

Multiplication over GF (2m) in aspects of their design scheme can be divided into

two main forms.

1. Systolic or semi-systolic,

2. Non-systolic [51].

The key goal of the non-systolic designs [52], [53], [54] is to reduce the number of

partial products to achieve multipliers with lower hardware and shorter latency. The

systolic designs typically have a higher latency compared to non-structural designs,

but their benefits are linked to regularity and modularity of design and simplicity [51].
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3.2.3 Input/Output Architectures

The GF (2m) multiplier can be divided into three main types as regards the input-

output structure:

1. Serial-in, serial-out,

2. Parallel-in, parallel-out,

3. Serial-in, parallel-out.

Within the serial in serial out systems, only one new input bit is taken, and one bit

of output per cycle is generated. Such structures are lightweight and can be used in

resource-restricted systems; they have disadvantages in high-speed applications for

a given system clock frequency. The bit-level Parallel-in parallel-out structures of-

fer extremely high throughput rates at relatively high hardware costs [55],[56]. The

serial-in parallel-out architecture, as the name implies, is a hybrid of the above struc-

tures.

3.3 VLSI Custom Digital Design Flow

Electronic systems are ubiquitously used in modern society, and integrated circuits

are crucially important for modern compact, energy-efficient, high-performance elec-

tronic systems. Today’s Very Large Scale Integrated (VLSI) circuits have thousands

to billions of transistors and interconnections within a tiny area. Such a design is

an elaborate and lingering process, and the complexity of the process is continually

increasing. The past decades have thus witnessed an increased use of designer pro-

ductivity applications. The result is the emergence of sophisticated Computer-Aided

Design (CAD) tools. Contemporary digital design requires description through a

Hardware Description Language (HDL) (which is a high-level description akin to

a programming language), and benefits greatly from synthesis tools to produce opti-

mized circuit layouts that could be sent off to a silicon IC manufacturer in a short time

[57]. VLSI chips used in most designs appear in three types: Full custom, application-

specific integrated circuit (ASIC), or system on chip (SOC) design. SOCs consists of
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the integration of previously generated design blocks on a single chip. In the full

custom approach, VLSI chips or some of their parts are hand-designed MOSFET by

MOSFET, allowing each transistor and each wire individually to be defined by a set of

polygons. Photographic masks needed in the fabrication process are thus generated.

Because full custom design is slow and cumbersome, a unique methodology to create

a standard cell-based design has been introduced to decrease the design time by mak-

ing use of standard cells or pre-designed components as building blocks, where-from

large logic circuits can be developed. All cells adapt certain vertical or horizontal

grid size to optimize the overall layout area and cost [33]. A standard cell ASIC

methodology incorporates a standard cell library and automated design tools to make

use of this library so that higher designer productivity can be attained. The designer

describes the circuit behavior in a hardware description language (HDL) such as Ver-

ilog or VHDL. This advanced specification is then annexed to a library of standard

cells that execute miscellaneous logic functions. Further, synthesis flow iterations are

executed to meet latency/frequency, power, or area targets specified by the designer.

The capacitance of the wires is determined by a wire load model because, at the syn-

thesis stage, the final structure of the chip is not determined. Once the standard cells

are placed, wires are dispatched between them, and a clock tree network is filled in to

supply the clock signal [36].
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Figure 3.5. Design Flow for Standard Cell ASIC [11]

The design flow is put into two categories called front end and back end.

3.3.1 Front-End Design Flow

As depicted in Figure 3.5, front-end design flow contains logic synthesis, register

transfer level (RTL) verification, gate-level net listing and verification, and gate-

level optimization. Logic synthesis is a method of changing a design structure to

a gate-level netlist. HDL is employed to describe the design. The logic synthesizer

first scrutinizes the HDL code, the standard cell library, and the design constraints.

Subsequently, the HDL code is rendered into logic blocks that are contained in a
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technology-independent library. Ultimately, the synthesizer projects the logic netlist

to a specific technology library, improving the design based on constraints declared

by the designer throughout the mapping.

3.3.2 Back-End Design Flow

The netlist based on the standard cell library is transformed into a design layout in

the back-end design flow. Herein, an EDA tool implements and routes the cells. For

back-end design flow, the Genus synthesis method could be applied.

3.3.3 Synthesis

Logic synthesis transforms HDL code into a netlist in terms of hardware (e.g., the

logic gate and the wires connecting them). The logic synthesizer may enact opti-

mizations to decrease the required amount of hardware. The netlist might be a text

file, or else it may be viewed as a schematic to help visualize the circuit. As part

of the Cadence IC Mixed-Signal Design Tool Suite, the Genus tool has been utilized

throughout this research to generate synthesized circuits and layout from the Verilog

design description. Cadence specifications report that:

“The Genus Synthesis Solution is a next-generation RTL synthesis and physical syn-

thesis tool that provides up to a 10X boost in RTL design productivity with up to 5X

faster turnaround times. The solution can scale its capacity to well beyond 10 million

instances flat. It also supplies tight timing and wire length correlation to within 5%

of place and route. Using the Genus Synthesis Solution, you can experience a 2X or

more reduction in iterations between block-level and unit-level synthesis [58].”

A review of the flow in the Genus synthesis solution will be provided in the following

sections.
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3.3.4 Basic Design Flow in Genus Synthesis Solution

To ensure reproducible results, the experiments should be carried out in a controlled

environment. Figure 3.6 shows the specific execution flow of the Genus synthesis

solution.

Setting the Target Library and Initial Setups

Reading Verilog Files

Elaborate Design

Setting Timing and Design Constraints

Apply Optimization

Reports

Figure 3.6. Genus Specific Execution Flow
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CHAPTER 4

EXISTING IMPLEMENTATIONS OF IRREDUCIBLE FINITE FIELD

MULTIPLIER

4.1 Yeh et al. Implementation

Yeh et al. have presented a serial-in, serial-out, one-dimensional systolic array over

a finite field multiplier [12]. Figure 4.1 depicts the details of their implementation.

This architecture is based on the algorithm, which was discussed in Chapter 2, section

2.5.2.1.

Figure 4.1. (a) a Serial-in, Serial-out Systolic Multiplier for the Finite Field (b) the

Circuit of the Cell Li [12]
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To comprehend the function of this system author implemented this circuit by utiliz-

ing Altera Quartus II. Figure 4.2 is a serial-in, serial-out systolic multiplier for the

finite field, functionally the same as in Figure 4.1.

Figure 4.2. Implementation of the Systolic Multiplier for the Finite Field via Quartus

Figure 4.3 shows a cell of the design the same as part b of Figure 4.1.

Figure 4.3. Implementation of the Cell Li via Altera Quartus
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Figure 4.4 shows the waveform of this design, and then it is compared with calculated

on paper 4.5, and at Colac 4.6, as it can see it, all of them show the same result, which

is correct. In the red box, it can be seen the result 10000 in the five clock cycle.

Figure 4.4. Quartus Waveform

It can be computed as follows.

Figure 4.5. Calculation
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The same example is done in Colac [13]. As x4 is the same as 10000.

Figure 4.6. Colac Calculation [13]

4.2 Implementations of Irreducible AOP Finite Field Multiplier

The first bit-parallel multiplier over GF (2m) based on Irreducible AOP was pro-

posed by [40]. Although bit-parallel multipliers require fewer clock cycles to per-

form a complete computation, they often utilize more areas and may not provide high

throughput. Regular systolic architectures are compelling for implementing efficient

synthesized circuits in large binary extension fields and are common due to their per-

tinence to pipelining, scalability, and other benefits [59], [60]. A systolic bit-parallel

AOP-based multiplier was proposed by [61], which was improved further in the area-

delay aspect by [2].

Figure 4.7. Multiplier Architecture for GF (2m) Based on AOP [2]
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As shown in the 4.7 diagram, it contains AND gates, XOR gates, Register, and a box

by name BCD. Figure 4.8 indicates BCD (BCD1) implementation and needs only

wiring. This cabling hardware is based equation (245), which is discussed in chapter

two.
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Figure 4.8. BSC1 structure

Table 4.1. Hardware and Time Complexity Multipliers of GF (2m) Based on AOP

[2]

Latency AND Count XOR Count Register Count

k + 2 (k + 1)2 ((k + 1)− 2 + 1)(k + 1) = K2 +K (3k + 2 + 1)(k + 1) = 3K2 + 6K + 3

4.3 Lower Register Complexity Implementation

Another systolic AOP multiplier implementation with lower register complexity was

presented in [3], which was then used as a computing core to construct a trinomial

base multiplier. As can be seen in Figure 4.9, this architecture, therefore, uses share

registers, decreases the number of registers, uses NAND gates instead of AND gates,

and uses XNOR gates instead.

Figure 4.9. Multiplier Architecture of GF (2m) Based on AOP [3]
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Table 4.2. Hardware and Time Complexity Multipliers of GF (2m) based on AOP [3]

Latency NAND Count XNOR Count Register Count

k + 1 k(k + 1) = k2 + k ((k − 2) + 1)(k + 1) = K2 − 1 (2(k − 1) + 1 + 1)(k + 1) = 2K2 + 2K

4.4 Low Cost, Low Latency, Energy-Efficient Designs

Power dissipation and energy have been considered as important metrics in a num-

ber of studies [62], [63], [64]. Recently, Meher and Lou [4] presented a regular and

efficient recursive formulation for the bit-parallel systolic multiplier to reduce power

and latency consumption for computing multiplication over GF (2m) using AOP ba-

sis, which is further re-architected in this work for both energy and layout area (cost)

improvements.

In [4], BSC1, BSCl, and BSC(l + 1) are defined. BSC1s are located in the first row,

BSC(l + 1)s in the next r (value of reminder) rows, and BSCls are positioned in the

rest of the rows. The result of each BSC is multiplied with corresponding b using

AND operation. The results of AND gates go through XOR, and this cycle repeats

recursively. The final result of each row is input to a pipelined adder-tree (XOR tree).

Figure 4.10 depicts the implementation in [4] for GF (2m).
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Figure 4.10. Multiplier Architecture for GF (2m) Based on AOP [4]
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For example, when m is 10 is finite field irreducible, as shown in figure 4.11.
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Figure 4.11. Multiplier Architecture for GF (210) Based on AOP [4]
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CHAPTER 5

PROPOSED LOW-POWER AND AREA-EFFICIENT HARDWARE

ORGANIZATION

5.1 Approach

There are a variety of aspects of the implementation [4] that can be optimized, such

as a large number of registers and the extent of the XOR tree, which are the critical

causes for the dissipation of power in this organization. Besides, there is an increased

reliance on the number of rows of architecture that can affect latency and defining

BSC and programming aspects. This research has, therefore, tried to encourage the

most recent state-of-the-art organization to make an original contribution by provid-

ing low-power, area-efficient, and lower latency.

5.2 Proposed Design

The proposed design contains three main computation blocks, as depicted in Figure

5.1. The first module is the BSC network, which contains BSC0 to BSCm − 1.

This unit consolidates the reduction calculations, which can be implemented through

wiring, as shown in figure 4.8. In other words, all Ais will be computed in this unit.

Calculated Ais are multiplied with the corresponding bi in the AND network. In the

last unit, the results from bit multiplication are processed through the three input XOR

tree (accumulation) to compute the final output(see equation (51)).

C(x) ≡
m∑
i=0

bi(A
i). (51)
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Figure 5.1. Proposed Multiplier Architecture for GF (2m) Based on AOP

Figure 5.2 depict implementations of proposed architectural schemes with GF (210)

based on AOP. It is clear from this simple example that the proposed approach flattens

the logic network, and henceforth creates an overall latency reduction opportunity

through reduction of serial paths and overall hardware when compared to Figure 4.11.

In applications that are more sensitive to single AOP multiplication execution time

than pipeline throughput, the latency margin can be translated to even lower power

consumption by reducing clock frequency.
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Figure 5.2. Proposed Multiplier Architecture for GF (210) Based on AOP
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5.3 Analysis and Complexity

Table 5.1 presents the hardware complexity and latency comparison of hardware or-

ganization proposed here and in reference [4]. The logic delay path in the proposed

implementation includes an AND network followed by a 3-input XOR tree, so the

logic latency of the proposed architecture is 2 + [log3m]. However, in [4] the latency

is l + [log2 y] + 1, where l represents the number of columns and [log2 y] represents

the delay in the XOR tree for y processing elements in a row. The throughput in

both implementations corresponds to one operation per clock cycle. All XOR and

AND gates are defined as m + 1 bit so the number of XOR and AND gates will be

(
∑[log3 m]−1

i=0 2i)(m+ 1) and m(m+ 1) respectively for the proposed implementation.

Data is staged at synchronous registers at the output of all AND and XOR gates.

Table 5.1. Architecture Level Hardware and Time Complexity Comparison Between

Bit Parallel Multipliers of GF (2m)

Structure Latency AND Count XOR Count Register Count

[4] la + [log2 y
b] + 1 m(m+ 1) (m+

[log2 y]−1∑
i=0

2i)(m+ 1) (2m+ l +

[log2 y]−1∑
i=0

2i)(m+ 1) +
ml

2

This Work 2 + [log3 m] m(m+ 1) (

[log3 m]−1∑
i=0

2i)(m+ 1)c (m+

[log3 m]−1∑
i=0

2i)(m+ 1)

a l is the number of the processing element in rows.

b y is the number of the processing element in columns.

c Three input XOR count.

5.4 Summary of Theoretical Benefits

It may seem the proposed architecture relinquishes regularity compared to the state of

the art systolic array approaches since it is not made up of processing elements with

similar features. Nevertheless, the design is not less regular than the one shown in Fig-

ure 5.1, is scalable, and is easily synthesized using parameterized design approaches.

Divergence from the architecture based on systolic processing element array for the

benefit of lower cost and power dissipation is well justified in the synthesized digital

VLSI environment.

53



Table 5.2. Compared Architectural Schemes for AOP Multipliers Over GF (2m)

m Structure Latency
AND

Count

XOR

Count

Register

Count

162
[4] 15 26406 28688 59486

This Work 7 26406 2445a 28851

268
[4] 15 72092 75858 161249

This Work 7 72092 8339a 80431

562
[4] 15 316406 324288 693022

This Work 8 316406 17453a 333859

a Three input XOR count.

As shown in Table 5.2 number of AND gates is unchanged, and the number of XOR

gates is reduced at the proposed design since it uses three XOR gate inputs such that

the height of the XOR tree (accumulation) is reduced. While registers are necessary

after each level in the XOR tree, the tree height in the proposed work is less than

state-of-the-art and decreases the number of registers used throughout the section

of accumulation. Importantly, in the proposed organization, the majority of register

reductions are due to the decrease in latency (flatting of the architecture). As can be

seen in Table 5.3, the number of registers is reduced by about 50%.

Table 5.3. % Register Reduction
Mult. Size % Reduction in Register Count

162 51

268 50

562 52
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CHAPTER 6

IMPLEMENTATION AND RESULTS

6.1 Functional Verification

[2], [4] and Proposed architectures have been implemented. These three organizations

were implemented in structural Verilog hardware description language at RTL.

Figure 6.1. Different Levels of Representation in Digital Circuit [14]

Programming via HDL’s has two main reasons.

1. Logic verification (and simulation),

2. Synthesis.

To ensure that the module operates correctly during simulation, inputs to a module are

stimulated with test vectors, and outputs are compared against expected values. This

effectively eliminates human errors (bugs) in the system. Debugging and correcting

errors after the system is built can be devastatingly expensive. Therefore, logic veri-

fication and simulation are essential steps to verify a system before it is built by [32].
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In this work, NCsim from Cadence has been utilized to test the functionality of the

circuits Figure 6.4).

Figure 6.2. Simulation Result at NCsim from Cadence to Test the Functionality

It is good to mention that buffers with equal sizes were utilized at the input and output

interface for all implementations in order to achieve electrically equivalent input and

output loading conditions. The approach of inserting buffers to isolate fan-in from

fan-out is compatible with standard techniques in the literature.

Figure 6.3. Buffer Insertion [15]

Buffer insertion separates large fan-in from large CL with buffers, and it reduces CL

on large fan-in gates [15]. All three organization was proven correct as a result of

functional simulations.

56



6.2 Verification of Synthesis Method

[2] uses 100 MHz frequency and 90nm TSMC library. So to verify the synthesis

method, this work was repeated by the author, and all the results were approximately

the same as the values presented in the article. The following table shows the com-

parison synthesis result for m = 20 [2] and Genus synthesis solution report.

Table 6.1. Synopsys Design Compiler and Genus synthesis Solution for m = 20

TSMC 90 nm at 100 MHz

Power (mW) Area (µm2)

Synopsys Design Compiler (paper reported) 3.893 17871

Genus Synthesis Results 2.842 24332.881

Figure 6.4 shows the RTL level of [2].

Figure 6.4. RTL Level in the Genus Synthesis Solution

There are two basic requirements for the flow to be executed on the Verilog design:

An Electronic Design Automation (EDA) tool and a standard cell library delivered

by ASIC manufacturers. Cadence Inc. is one of the most well-known corporations

that develop the EDA tool, and TSMC is an established manufacturing company that

provides standard cell libraries. The libraries include precise information about the
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specifications of the logic blocks, and they carry the wire models compatible with

EDA tools as well.

[4] and proposed implementations have been synthesized for a variety of bit lengths

GF (2163), GF (2268), and GF (2562) using TSMC 90nm process CMOS standard cell

library via Cadence Genus Synthesis Solution with 1.2 GHz clock frequency target.

Simulations have been done at the following characteristic conditions: 1.08V sup-

ply voltage, 125°C temperature, SS (Slow-Slow) process, and WCCOM corner. 0.2

activity factor is assumed by the tool at input nets. Leakage, dynamic power, area,

number of sequentials, inverters, buffers, tristates, and logic size were extracted from

synthesis, and simulation results were obtained for the compared hardware organi-

zations. The following figure shows the result of the RTL synthesis in the Genus

synthesis Solution environment.

Figure 6.5. RTL Level in the Genus Synthesis Solution for [4]
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6.3 Performance Verification

In order to present the result of the synthesis and simulation, data visualization has

been done to observe trends and patterns easily.

6.3.1 Critical Path Delay

Time slack is the period of time that an operation can be delayed past its earliest start

or earliest finish without limiting the execution. In this work, critical path delay is

calculated using time slack from Genus Synthesis Solution, and subtraction of clock

period from slack time is computed as a critical path delay.

Critical Path Delay = Clock Period− Slack T ime. (61)

The following bar chart shows the critical path slack for the proposed architecture re-

mains stable; however, for implementation [4], this parameter is varying by changing

the number of bits. This variation depends on y, which is the number of processing

elements in rows.
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Figure 6.6. Comparison of Critical Path Delay for Different Binary Field Size
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6.3.2 Power

Genus Synthesis Solution utilizes the following formula to compute the total power.

TotalPower = weight×Leakagepower+(1−weight)×Dynamicpower. (62)

Since, in many cases, the circuit is idle, to achieve the best result, the weight is set to

a value close to one. In this synthesis, weight is set as 0.99.
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Figure 6.7. Comparison of Total Power for Different Binary Field Size

The above bar chart compares the amount to total power between the proposed orga-

nization and [4]. It can be seen that the amount of total power is being reduced by

41%, 24%, and 25%, respectively, at three different binary fields size (162, 268, 562

bits).

The power dissipation in a circuit includes two distinct categories; leakage (static)

power and dynamic power.
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6.3.2.1 Leakage Power

The leakage power is defined as the power that is lost by the cell in a steady-state

condition after the vector is applied, and all transistors are stabilized. The leakage

power is often assumed in the library as a constant number.
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Figure 6.8. Comparison of Leakage Power for Different Binary Field Size for 1.2

GHz

The above graph shows that the proposed architecture reduced the leakage power

consumption by 27%, 9%, and 5%, respectively, at three different binary fields size

(162, 268, 562 bits).

As it is shown, as bit length keeps increasing, the leakage power for the proposed

organization yields more favorable results.
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The simulations were repeated for two other frequencies in order to more accurately

characterize critical design parameters such as leakage and Cdyn

Table 6.2. Leakage Power (mW )

[4] Proposed

Mult. Size

Freq (MHz)
100 800 1200 100 800 1200

162 0.395 0.400 0.567 0.289 0.370 0.412

268 0.991 1.210 1.239 0.792 1.016 1.131

562 4.681 5.373 5.410 3.382 4.785 5.126

The below table shows the percent of leakage power reduction.

Table 6.3. % Leakage Reduction

Mult. Size

Freq (MHz)
100 800 1200

162 27 8 27

268 28 16 9

562 28 11 5
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6.3.2.2 Dynamic Power

The dynamic power dissipation is defined as the power dissipated while a circuit is

actively switching at a targeted frequency; this frequency target is set at 1.2 GHz in

this thesis in order to (barely) meet speed-path requirements. However, two other

frequencies were characterized by simulations.
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Figure 6.9. Comparison of Dynamic Power for Different Binary Field Size

The above figure represents the amount of power dissipation in three different binary

fields size (162, 268, 562 bits), which is reduced by 40.96%, 24.41%, and 24.52%

respectively while comparing this thesis with [4]. Dynamic capacitance is an essen-

tial parameter that reveals the dynamic power characteristics of an implementation

running a certain activity.

Pdyn = C · V 2.fclk. (63)
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Therefore,

Pdyn

V 2
= Cdyn · fclk. (64)

Dynamic capacitance is essentially a property of circuit size and activity, whereas

voltage and frequency are operating conditions. If the dynamic capacitance is divided

into activity factor, the result will be the basic intrinsic parasitic capacitor in the im-

plementation. Therefore, knowing the dynamic capacitance is important to compare

two implementations.

The following table shows the synthesis result of three different frequencies,

Table 6.4. Dynamic Power (mW )

[4] Proposed

Mult. Size

Freq (MHz)
100 800 1200 100 800 1200

162 293.931 1177.590 1948.700 216.201 791.564 1150.105

268 697.360 3094.669 4180.772 590.516 2173.935 3160.085

562 2819.94 13653.479 18315.409 2548.596 10058.405 13824.866

if we try to estimate a linear equation for these curves using the best fitting line tech-

nique, we will come up with the following equations in which slope represents dy-

namic capacitance.
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Figure 6.10. Pdyn

V 2 vs. Frequency Curves for Size 162 Used to Extract Cdyn

Figure 6.11. Pdyn

V 2 vs. Frequency Curves for Size 268 Used to Extract Cdyn
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Figure 6.12. Pdyn

V 2 vs. Frequency Curves for Size 562 Used to Extract Cdyn

Table 6.5. Total Cdyn (nF )

Mult. Size [4] proposed

162 1.2559 0.7253

268 2.8908 1.9956

562 12.212 8.8349

Table 6.6. % Cdyn Reduction

Mult. Size % Cdyn reduction

162 42

268 31

562 28
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6.3.3 Area

The area falls into two categories, cell area and an estimate of the net area. The

following figure compares the total area for three different binary field sizes between

the proposed design and [4]. As can be seen, the total area reduced in all three binary

field sizes. The total area decreased by 24.75%, 13.76%, and 16.08%, respectively.
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Figure 6.13. Comparison of Total Area for Different Binary Field Size
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Table 6.7. Area (µm2)
[4] Proposed

Mult. Size

Freq (MHz)
100 800 1200 100 800 1200

162 1309224.011 1308303.909 1270924.749 985192.402 966790.354 957244.292

268 3131208.046 3138006.601 3133328.786 2700256.395 2649767.892 2623764.415

562 13868879.236 13587700.973 13589498.505 11638060.049 11321449.567 11357647.161

Table 6.8. % Area Reduction

Mult. Size

Freq (MHz)
100 800 1200

162 25 26 25

268 14 16 16

562 16 16 16

The cell area and net area comparison bar charts have been shown in the following

section. It is worth noting that the most substantial reduction occurs in the cell area

since the number of sequential instances is less in the proposed architecture, and this

fact is one of the advantages of the proposed design.
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6.3.3.1 Cell Area and Net Area
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Figure 6.14. Comparison of Cell Area for Different Binary Field Size
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Figure 6.15. Comparison of Net Area for Different Binary Field Size
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6.4 Net Report & Gate Level Details

Genus synthesis solution reports each net information in detail. The net report tables

show a summary of approximately 30000 lines of the net report for each circuit. This

information is calculated by using Cap-Table.

Some of the terms in the tables are discussed here.

Load:

The load of a net refers to the wires that can carry power to other devices further along

the circuit.

Wire Deliver:

The wire deliver refers to the wires that deliver power from the source to a system.

Wire Capacity:

The wire capacity is determined by how much energy it can dissipate and in continu-

ous operation, whether it causes problems or not.

Wire Load Resistor:

More wire load resistance results in more heat dissipation.

Since the number of D flip flops is decreased with the proposed topology, the number

of loads for the clock signal is reduced in all the three different binary field sizes. The

wire capacity of design in [4] for input A in these different field size is lower than

the proposed design since input A needs to provide data for the processing elements

in each row (y) and input A propagates through all design via D flip flops but in the

proposed it needs to provide the values to all of the m gates. Net report details will

be discussed in the following sections.

There are clear benefits of the proposed AOP hardware organization. An advantage of

the proposed scheme is the reduced register count (D flip-flop), which directly affects

the area and power dissipation. Each implementation also has a somewhat distinct

internal signal fan-out profile, which also influences the final power dissipation and

area.
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6.4.1 Net Report for AOP Multipliers over GF (2162)

Table 6.9. Net Report for AOP Multipliers over GF (2162)

Structure Type of net Load
Wire

Deliver

Wire

Capacity

(fF )

Wire Load

Resistor

(kΩ)

[4]

Input A after Buffer 2 1 33 0.100

Input B 1 1 270.2 0.821

Internal Net 1 1 3.4 0.010

CLK 352 1 0 0

Enable 2 1 538.7 1.636

This work

Input A after buffer 1 1 268.6 0.816

Input B 1 1 270.2 0.821

Internal Net 1 1 3.4 0.010

CLK 243 1 0 0

Enable 2 1 538.7 1.636

The wire capacity and resistor values for input B are equal for both designs. At the

proposed model, wire capacity and wire load resistor is the same for both input A and

B since it provides data once and at the same time to m gates.
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6.4.2 Gate Level Details for AOP Multipliers over GF (2162)

Table 6.10 and 6.11 indicate the number of D flip flops is decreased in the proposed

approach, and it can be implicit that for both organizations, it is possible to use a tri-

state buffer with high enable. The tri-state buffer is used in this circuit as they allow

multiple logic devices to be attached to the same wire or bus without damage or loss

of data [65]. Tri-state buffers are used as an insertion buffer in the input and output

interface of the circuit.

Table 6.10. Gate Level Details for AOP Multipliers over GF (2162) based on [4]

Gate Instances
Area

(µm2)

Leakage

Power

(mW )

Internal

Power

(mW )

2-Input AND 26406 93160.368 0.030 17.030

3-State Buffer 326 2300.256 0.001 0.520

D flip flop

sync clear, single output

3097 41519.621 0.017 53.282

D flip flop

single output

54279 689386.723 0.453 1411.582

2-input exclusive OR 26243 185170.608 0.066 93.471

Table 6.11. Gate Level Details for AOP Multipliers over GF (2162) Proposed Orga-

nization

Gate Instances
Area

(µm2)

Leakage

Power

(mW )

Internal

Power

(mW )

2-Input AND 26406 93160.368 0.029 11.198

3-state buffer 163 1150.128 0.000 0.371

3-state buffer (higher

driving strength)

163 1495.166 0.001 0.432

D flip-flop 39609 531014.098 0.339 904.533

2-Input exclusive OR 163 1150.128 0.000 0.678

3-Input exclusive OR 13040 156417.408 0.043 32.062
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6.4.3 Net Report for AOP Multipliers over GF (2268)

Table 6.12. Net Report for AOP Multipliers over GF (2268)

Structure Type of net Load
Wire

deliver

Wire

Capacity

(fF )

Wire Load

Resistor

(kΩ)

[4]

Input A after Buffer 34 1 57.7 0.175

input B 269 1 444.8 1.351

Internal Net 1 1 3.4 0.010

CLK 156020 1 0 0

Enable 2 1 5 0.015

This work

Input A after buffer 1 1 443.1 1.346

Input B 1 1 444.8 1.351

Internal Net 1 1 3.4 0.010

CLK 405 1 0 0

Enable 2 1 887.8 2.696

As can be argued from the table, the load of the clock increased significantly; how-

ever, the advantage of the proposed work is that the number of clocks does not in-

crease as much as the [4] architecture.
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6.4.4 Gate Level Details for AOP Multipliers over GF (2268)

Table 6.13. Gate Level Details for AOP Multipliers over GF (2268) based on [4]

Gate Instances
Area

(µm2)

Leakage

Power

(mW )

Internal

Power

(mW )

Non-inverting buffer 1 14.818 0.000 0.007

3-State buffer 269 1898.064 0.001 0.449

3-State buffer

(higher driving strength)

269 1898.064 0.001 0.418

Clock buffer

with balanced fall/rise

time

51 575.770 0.001 0.173

D flip flop 15333 216379.296 0.133 346.169

D flip flop

sync clear, single output

72092 966494.189 0.365 1270.414

D flip flop

single output

64880 824027.904 0.0533 1622.969

D flip flop

single output (higher

driving strength)

1832 24560.525 0.017 38.873

Inverter 1884 3988.051 0.001 0.383

Inverter

(higher driving strength)

8 22.579 0.000 0.003

Scan D flip flop 1883 29230.186 0.012 47.005

2-Input Exclusive NOR 16947 119578.032 0.044 50.528

2-Input exclusive OR 52993 373918.608 0.134 104.482

One of the crucial details derived from Table 6.13 is that the proposed organization

used the exclusive NOR gate rather than the AND gates.
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Table 6.14. Gate Level Details for AOP Multipliers over GF (2268) proposed

Gate Instances
Area

(µm2)

Leakage

Power

(mW )

Internal

Power

(mW )

2-Input AND 72092 254340.576 0.078 29.223

3-State buffer 269 1898.064 0.001 0.619

Non-inverting buffer 269 3985.934 0.004 1.222

D flip flop async

clear and set

108945 1460560.248 0.927 3179.091

2-input exclusive OR 269 1898.064 0.001 1.115

3-input exclusive OR 35777 429152.270 0.117 88.471

6.4.5 Net Report for AOP Multipliers over GF (2562)

Table 6.15. Net Report for AOP Multipliers over GF (2562)

Structure Type of net Load
Wire

deliver

Wire

Capacity

(fF )

Wire Load

Resistor

(kΩ)

[4]

Input A after Buffer 1 1 3.4 0.100

Input B 563 1 929 2.822

Internal Net 1 1 3.4 0.010

CLK 675037 1 0 0

Enable 2 1 5 0.015

This work

Input A after buffer 1 1 16.6 0.050

Input B 1 1 3.4 0.0100

Internal Net 1 1 3.4 0.010

CLK 477424 1 0 0

Enable 515 1 850.0 2.581

As it can be seen, the load of "enable net" in the proposed architecture is more than

[4], since the proposed architecture is utilizing the inverting clock buffer with balance

fall or rising edge.
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6.4.6 Gate Level Details for AOP Multipliers over GF (2562)

Table 6.16. Gate Level Details for AOP Multipliers over GF (2562) based on [4]

Gate Instances
Area

(µm2)

Leakage

Power

(mW )

Internal

Power

(mW )

Non-Inverting Buffer 1 13.406 0.000 0.006

3-state Buffer 563 3972.528 0.001 0.857

3-state Buffer

(higher driving strength)

563 3972.528 0.002 0.851

Clock buffer

with balanced fall/raise

time

2337 14840.885 0.020 2.937

D flip flop 24209 341637.408 0.209 539.335

D flip flop

sync clear

316406 4241865.398 1.604 5573.297

D flip flop async

clear and set

330025 4191581.520 2.705 82.96.830

D flip flop, single output 3271 50776.387 0.050 80.719

Inverter 1127 2385.634 0.001 0.183

Inverter

(highest driving

strength)

12 33.869 0.000 0.005

Inverter

(higher driving strength)

2815 7945.056 0.010 1.386

Inverter

(higher driving strength)

3 16.934 0.000 0.004

Scan D flip flop 1126 17479.123 0.007 26.819

2-input Exclusive NOR 25335 178763.760 0.065 73.852

2-input exclusive OR 289382 2041879.392 0.730 623.103
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In [4], scan D-flip flop is used, for which a multiplexer is added at the input of the

flip flop with D input and SI input (Figure 6.17). In this design, the Genus synthesis

solution used scan D flip flop instead of generic D flip flop. The synthesizer found

it useful to use a multiplexer followed by a flip-flop when trying to map the code to

the netlist. The multiplexer was useful in a larger multiplier because it can cause area

saving, but it can cause speed loss [66].

Table 6.17. Gate Level Details for AOP Multipliers over GF (2562) proposed

Gate Instances
Area

(µm2)

Leakage

Power

(mW )

Internal

Power

(mW )

Non-inverting buffer 4504 12712.090 0.005 2.296

3-state buffer 1126 7945.056 0.002 1.894

Clock buffer

(balance rise/fall time)

5 45.864 0.000 0.014

Inverting clock buffer

(balance rise/fall time)

4504 19068.134 0.016 3.559

D flip flop

single output

477424 6063666.739 4.084 10859.333

Inverter

(higher driving strength)

562 8327.491 0.015 2.296

Inverter 563 1589.011 0.001 0.219

2-Input NOR 316406 893024.294 0.142 54.224

2-Input exclusive NOR 17453 123148.368 0.44 45.810

2-Input exclusive NOR

(higher driving strength)

563 3972.528 0.003 0.804

2-Input exclusive OR 563 3972.528 0.001 1.921

3-Input exclusive OR 59115 709096.248 0.200 198.957

3-Input exclusive OR

(higher driving strength)

89517 1073774.318 0.611 221.067
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Figure 6.16. Scannable Flip Flops [16]

In the proposed architecture for 562-bit length, since the circuit has a tapering clock

path, it is advantageous to use equal rise and fall delay time to maintain the initial

duty cycle and to ensure that there is no clock signal overlap due to any difference

in propagation delays. This overlapping clock signal becomes more critical when

dealing with very high-speed ASIC designs. These buffers are known as a clock or

balance buffers and have different attributes from the normal buffers in the standard

cell library. It is necessary to correctly use balance buffers or inverters during a clock

tree synthesis, especially when addressing the requirements of high-speed clocking

(small clock pulse width) in a large clock tree [67].

Figure 6.17. Clock Buffer [16]
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Additionally, the Genus synthesis solution uses XNOR and inverters instead of AND

gate for [4], and for proposed architecture, it uses NOR gates. Figure 6.18 indicates

the implementation of the AND function using NOR gates.

Figure 6.18. AND Implementation via NOR Gates

6.5 Benchmarking against Literature

The following table shows the result of synthesis for the recent state of the art and

proposed architecture through in-depth details.

Table 6.18. Synthesis Results from Compared Organizations for AOP Multipliers

over GF (2m) in 90 nm

m Structure y1

Critical

path

Delay

(ps)

Leakage

Power

(mW )

Dynamic

Power

(mW )

Total Area

(µm2)
Latency2

162
[4] 16 806.1 0.567 1948.133 1270924.749 15

This Work Not Applicable 767.5 0.412 1150.105 957244.292 7

268
[4] 31 721 1.239 4180.772 3133328.786 15

This Work Not Applicable 767.5 1.131 3160.085 2623764.415 7

562
[4] 63 720 5.410 18315.409 13589498.505 15

This Work Not Applicable 816.2 5.126 13824.866 11357647.161 8

1 y is the number of processing elements in rows.

2The number of clock cycles to compute a multiplication.

Genus Synthesis Solution optimizes power dissipation by using smaller library com-

ponents and tries to meet the timing requirement at the same time. It achieves target

frequency with some accuracy and reliability, and it is expected that users will not

always have the same critical path delay.
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Table 6.19. Synthesized Component Types from Compared Organizations for AOP

Multipliers over GF (2m) in 90 nm

m Structure Sequential Tristate Logic Inverter Buffer

162
[4] 57376 326 52649 0 0

This Work 39609 326 39609 0 0

268
[4] 156020 538 69940 1892 52

This Work 108945 538 108138 0 0

562
[4] 675037 1126 314717 7527 1

This Work 477424 1126 483617 0 0

As discussed in the previous chapter, the theoretical number of registers was expected

to reduce 50% in the proposed organization. It can be observed that in practice, the

number of sequentials reduced by about 30% on the average. Additionally, a lower

number of logic elements in this work are because of a reduction in the number of

XORs. The total number of AND and XOR gates in Table 5.2 corresponds to the

number of logic instances in Table 6.19, as expected.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, the existing state of the art GF (2m) multiplier algorithm based on

AOP is studied. An alternative hardware organization is proposed to optimize power

and area, compared to the previous systolic array design approaches. The proposed

scheme moves away from distributing reduction, multiplication, and accumulation

steps to systolic processing elements, but separates these steps into distinct stages.

The proposed architecture has been implemented for a variety of bit lengthsGF (2162),

GF (2268), and GF (2562) along with state of the art systolic array recently reported

in the literature. Equally sized buffers were utilized at the input and output interface

for both implementations in order to achieve electrically equivalent input and output

loading conditions. Both designs were implemented in structural Verilog HDL at the

register transfer level (RTL). The resulting implementation thus achieves power and

area reductions for the same frequency, compared to the best known previous AOP

implementation in the literature. Among the three relevant and different bit lengths

compared, on the average 25%, 17%, and 18% reduction in leakage, dynamic power,

and the area is achieved, respectively, with 1.2 GHz target frequency.

7.2 Future Work

The following ideas can be studied in the future:

1. The digital system can reduce the power consumption at different design flow

steps, and the digital IC implementation includes the following steps:
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(a) RTL Design and Verification,

(b) Synthesis,

(c) Physical (place and route),

(d) Sign off.

In this thesis, RTL design and verification for the last state of the art and pro-

posed is done by NC sim, and synthesis is done via Genus Synthesis solution.

The place and route and sign off steps can be done in the future by Innovous

for a physical implementation and Assura for physical verification, which are

other powerful tools from Cadence [58].

2. As AOP multiplication can be used as a core of trinomial and pentonomial

circuits for future work, it would be good to try the proposed approach as the

core of these circuits and analyze against best implementations in the literature

for trinomial/pentonomial circuits.

3. Low power design of multipliers on the other basis may be investigated.

4. As multiplication is utilized for division and inverse circuits, such circuits could

be added to the analysis.

5. Further study can be carried out on the design of Nano-Electro-Mechanical

(NEM) relays as energy-saving devices for finite field multipliers. Newly pro-

posed NEM relay technology render ultra-low-power IC’s [68],[69]. The relay

is an ideal switch as it possesses ideal on or off switching behavior and zero off-

state leakage current, so its supply voltage can be decreased to close to zero in

theory. This technology can, therefore, possibly overcome CMOS technology’s

energy-efficiency limits [70].
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Appendix B

SAMPLE LOG FILE OF GENUS SYNTHESIS SOLUTION

Cadence Genus(TM) Synthesis Solution.

Copyright 2016 Cadence Design Systems, Inc.

All rights reserved worldwide.

Cadence and the Cadence logo are

registered trademarks and Genus

is a trademark

of Cadence Design Systems, Inc.

in the United States and other countries.

Version: 16.12-s027_1, built Wed Oct 05 2016

Options: -legacy_ui

Date: Sat Sep 12 20:09:04 2020

Host: energy (x86_64 w/Linux 2.6.32-431.el6.x86_64)

(6cores*12cpus*Intel(R) Xeon(R)

CPU X5650 @ 2.67GHz 12288KB)

(16312764KB)

OS: CentOS release 6.5 (Final)

Checking out license: Genus_Synthesis

Loading tool scripts...

Finished loading tool scripts (7 seconds elapsed).

WARNING: This version of the tool is 1438 days old.

legacy_genus:/> rm $DESIGN

can’t read "DESIGN": no such variable

(Sat Sep 12 20:09:33 +0300 2020)...

Sat Sep 12 20:09:33 +0300 2020

Setting attribute of message ’LBR-30’: ’max_print’ = 0

Setting attribute of message ’LBR-31’: ’max_print’ = 0
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Setting attribute of message ’LBR-40’: ’max_print’ = 0

Setting attribute of message ’LBR-41’: ’max_print’ = 0

Setting attribute of message ’LBR-72’: ’max_print’ = 0

Setting attribute of message ’LBR-77’: ’max_print’ = 0

Setting attribute of message ’LBR-162’: ’max_print’ = 0

Info : Enabled hdl_track_file_row_column attribute.

: Setting this attribute to ’true’ can have an

impact on the run time. Use this attribute only

when filename, line number, and column information

are needed in reports.

Setting attribute of root

’/’: ’hdl_track_filename_row_col’ = true

Setting attribute of root

’/’: ’lp_power_unit’ = mW

Setting attribute of root

’/’: ’init_lib_search_path’ = /home/shima/proj_library

/Meher_162_909090/genus_labs/work

/../libraries/TIMING/CUSTOM /

home/shima/proj_library/

Meher_162_909090/

genus_labs/work/../libraries/

TIMING/STDCELL /home/shima/proj_library/

Meher_162_909090/

.

.

.

Warning : An attribute is used before

it is defined. [LBR-511]

: The library level attribute

default_operating_conditions on line 5153111 is

defined after

at least one cell definition. The attribute will

be ignored. (File /home/shima/proj_library

/Meher_162_909090

/genus_labs/work/../libraries/TIMING/STDCELL/

tcbn90lphpwc_ccs.lib)

Warning : An attribute is used before it

is defined. [LBR-511]

: The library level attribute

default_wire_load_selection
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on line 5153112 is defined after

at least one cell definition.

The attribute will be ignored. (File /home/shima/proj_library/Meher_162_909090/

genus_labs/work/../libraries/TIMING/

STDCELL/tcbn90lphpwc_ccs.lib)

Warning : An attribute is used before

it is defined. [LBR-511]

: The library level attribute

default_wire_load on line 5153113 is

defined after at least one cell definition.

The attribute will be ignored.

(File /home/shima/proj_library/

Meher_162_909090/

genus_labs

/work/../libraries/TIMING/STDCELL/

tcbn90lphpwc_ccs.lib)

Message Summary for Library tcbn90lphpwc_ccs.lib:

*************************************************

Could not find an attribute in the library. [LBR-436]: 1021

Missing a function attribute in the output pin definition. [LBR-518]: 1

An attribute is used before it is defined. [LBR-511]: 3

An unsupported construct was detected in this library.

[LBR-40]: 1

*************************************************

Info : Created nominal operating condition. [LBR-412]

: Operating condition ’_nominal_’ was

created for the PVT values (1.000000, 1.080000, 125.000000)

in library ’tcbn90lphpwc_ccs.lib’.

: The nominal operating condition represents

either the nominal PVT values if specified in the

library source,

or the default PVT values (1.0, 1.0, 1.0).

Warning : Unusable clock gating integrated cell. [LBR-101]

: Clock gating integrated cell name

: ’CKLHQD20’

: To use the cell in clock gating

, Set cell attribute ’dont_use’
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false in the library.

Warning : Unusable clock gating

integrated cell. [LBR-101]

: Clock gating integrated

cell name: ’CKLHQD24’

Warning : Unusable clock gating integrated cell. [LBR-101]

: Clock gating integrated cell name: ’CKLNQD20’

.

.

.

Setting attribute of root ’/’: ’library’ =

tcbn90lphpwc_ccs.lib

According to lef_library, there are total 9 routing layers

[ V(4) / H(5) ]

Library has 470 usable logic and 282 usable

sequential lib-cells.

Setting attribute of root ’/’:

’lef_library’ = /home/shima/proj_library/

Meher_162_909090/

genus_labs/work/../libraries/LEF/

STDCELL/tcbn90lphp_9lmT2.lef

According to cap_table_file,

there are total 9

routing layers [ V(4) / H(5) ]

Warning : Wire parameter is missing. [PHYS-15]

: ’WIDTH’ parameter is missing

for layer ’M10’ [line 283 in file

/home/shima/proj_library

/Meher_162_909090/genus_labs/work/../

libraries

/cln90_1p09m_top2_typical.ict.captable]

: Check the parameter in

technology section.

Warning : Cap table has more layers than lef.
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[PHYS-27]

: Lef ’tcbn90lphp_9lmT2.lef’ has ’9’

routing

layers, cap table

’cln90_1p09m_top2_typical.ict.captable’

has ’10’ layers. Use lef layers

Setting attribute of root ’/’: ’cap_table_file’ = /home/shima/proj_library

/Meher_162_909090

/genus_labs/work/../

libraries/

cln90_1p09m_top2_typical.ict.captable

Freeing libraries in memory ( tcbn90lphpwc_ccs.lib )

Info : Created nominal operating condition. [LBR-412]

: Operating condition ’_nominal_’

was created for the PVT values

(1.000000, 1.080000, 125.000000) in library

’tcbn90lphpwc_ccs.lib’.

Warning : Unusable clock gating integrated cell. [LBR-101]

: Clock gating integrated cell name: ’CKLHQD20’

Warning : Unusable clock gating integrated cell. [LBR-101]

: Clock gating integrated cell name: ’CKLHQD24’

Warning : Unusable clock gating integrated cell. [LBR-101]

: Clock gating integrated cell name: ’CKLNQD20’

Warning : Unusable clock gating integrated cell. [LBR-101]

: Clock gating integrated cell name: ’CKLNQD24’

Warning : Library cell has no output pins defined. [LBR-9]

: Library cell ’DCAP’ must have an output pin.

.

.

.

: Library cell ’GDCAP10’ must have an output pin.

Library has 470 usable logic and 282

usable sequential lib-cells.

Setting attribute of root ’/’: ’library’ =

tcbn90lphpwc_ccs.lib

According to lef_library, there are

total 9 routing layers [ V(4) / H(5) ]
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Warning : Cap table has more layers than lef. [PHYS-27]

: Lef ’tcbn90lphp_9lmT2.lef’

has ’9’ routing layers, cap table ’cln90_1p09m_top2_typical.ict.captable’

has ’10’ layers. Use lef layers

Setting attribute of root ’/’: ’lef_library’ = /home/shima/proj_library/Meher_162_909090/

genus_labs/work

/../libraries/LEF/STDCELL/tcbn90lphp_9lmT2.lef

According to cap_table_file, there are total 9

routing layers [ V(4) / H(5) ]

Warning : Wire parameter is missing. [PHYS-15]

: ’WIDTH’ parameter is missing for layer

’M10’ [line 283 in file /home/shima/proj_library/

Meher_162_909090/genus_labs/work/../

libraries/cln90_1p09m_top2_typical.ict.captable]

Warning : Cap table has more layers

than lef. [PHYS-27]

: Lef ’tcbn90lphp_9lmT2.lef’ has ’9’

routing layers,

cap table ’cln90_1p09m_top2_typical.ict.captable’

has ’10’ layers. Use lef layers

Setting attribute of root ’/’:

’cap_table_file’ = /home/shima/proj_library

/Meher_162_909090/

genus_labs/work/../libraries/

cln90_1p09m_top2_typical.ict.captable

Info : Elaborating Design. [ELAB-1]

: Elaborating top-level block

’Structure1’ from file ’/home/shima/proj_library

/Meher_162_909090/genus_labs/

work/../rtl/Structure1.v’.

Warning : Undriven module input port. [ELABUTL-127]

: Undriven bits of port ’D’

of instance ’Register19’ of module

’Register’ in file ’/home/

shima/proj_library

/Meher_162_909090/genus_labs/work/../
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rtl/Structure1.v’ on line 186, column 21.

: Use the ’hdl_undriven_signal_value’

attribute to control

treatment of undriven input port

during elaboration.

Info : Done Elaborating Design. [ELAB-3]

: Done elaborating ’Structure1’.

Info: Checking for source rtl...

Info: Check completed for source rtl...

/designs/Structure1

Statistics for commands executed by read_sdc:

"create_clock" - successful 1 , failed 0 (runtime 0.00)

"current_design" - successful 1 , failed 0 (runtime 0.00)

"get_clocks" - successful 1 , failed 0 (runtime 0.00)

"get_ports" - successful 1 , failed 0 (runtime 0.00)

"set_clock_transition" - successful 1 , failed 0 (runtime 0.00)

Total runtime 0

Setting attribute of root

’/’: ’leakage_power_effort’ = high

Warning : Total power has skewed contributions

from leakage and dynamic power. [POPT-502]

: With ’lp_power_optimization_weight’

set to 0.99, the total power of ’CKND2D0’

is being computed as:

Total Power = (Leakage Power * 0.99) + (Dynamic Power * (1 - 0.99))

Leakage Power: 0.0000004875 mW

Dynamic Power: 0.0019000000 mW

Total Power: 0.0000194826 mW

Leakage Power is contributing 2.48% to

the Total Power.

: Dynamic power is typically

calculated/specified for some ’active period’.

For combination of

leakage and dynamic power

lp_power_optimization_weight must specify

the percentage

of overall time for which the design is not

in the ’active
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period’ but in ’idle mode’, i.e. no dynamic

power but only

leakage power is consumed.

For a reasonable

optimization across dynamic and

leakage power,

leakage contribution is expected to be above

5% and below 95%. A contribution of less than 5% will

result in limited leakage optimization and

contribution of more than 95% will result

in limited dynamic optimization. Adjust ’lp_power_optimization_weight’ so tha

t leakage contribution

comes to an intermediate value if you

intend both optimizations to occur.

Setting attribute of design ’Structure1’: ’lp_power_optimization_weight’ = 0.99

Setting attribute of design ’Structure1’:

’lp_default_toggle_rate’ = 0.20000

Setting attribute of root ’/’: ’

syn_generic_effort’ = medium

legacy_genus:/> syn_generic

Info : Deleting instances

not driving any primary outputs. [GLO-34]

: Deleting 162 hierarchical instances.

: Optimizations such as constant

propagation or redundancy removal could

change the connections so a hierarchical

instance does not drive any primary

outputs anymore. To see the list of

deleted hierarchical instances,

set the ’information_level’

attribute to 2 or above.

If message is truncated set message attribute

’truncate’ to false to see the complete list.

To prevent this optimization, set the

’delete_unloaded_insts’ root/subdesign

attribute to ’false’ or ’preserve’

instance attribute to ’true’.

.
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.

.

Info : Synthesizing. [SYNTH-1]

: Synthesizing ’Structure1’

to generic gates using ’medium’ effort.

Info : Partition Based Synthesis

execution skipped. [PHYS-752]

: Design size is less than

the threshold size ’300000’ for

distributed generic optimization to kick in.

.

.

.

Info : Optimizing RTL. [RTLOPT-1]

: Optimizing RTL in

’Structure1’ using ’medium’ effort.

Info : Done optimizing RTL. [RTLOPT-2]

: Done optimizing RTL in ’Structure1’.

Setting attribute of root ’/’

: ’pbs_stage_start_elapsed_time’ = 313

Setting attribute of root ’/’:

’pbs_stage_start_st_time’ = 75

Info : Done synthesizing. [SYNTH-2]

: Done synthesizing

’Structure1’ to generic gates.

Warning : Total power has skewed

contributions from leakage and dynamic power. [POPT-502]

: With ’lp_power_optimization_weight’

set to 0.99, the total power of ’CKND2D0’

is being computed as:

Total Power =

(Leakage Power * 0.99) + (Dynamic Power * (1 - 0.99))

Leakage Power: 0.0000004875 mW

Dynamic Power: 0.0019000000 mW

Total Power: 0.0000194826 mW

Leakage Power is contributing 2.48% to the Total Power.

Info : Mapping. [SYNTH-4]
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: Mapping ’Structure1’ using ’medium’ effort.

Mapper: Libraries have:

Library based partitioning cannot be

done as either there is a single library

or there are no cells to partition.

domain _default_: 470 combo usable

cells and 282 sequential usable cells

leakage powergroup of combo usable

cells (no_value: 470) sequential usable cells

(no_value: 282)

Info : Partition Based Synthesis

execution skipped. [PHYS-752]

: Design size is less than

the partition threshold ’300000’ for

distributed mapping optimization to kick in.

.

.

.

Warning : Total power has skewed

contributions from leakage and dynamic power.

[POPT-502]

: With ’lp_power_optimization_weight’

set to 0.99, the total power of ’CKND2D0’

is being computed as:

Total Power =

(Leakage Power * 0.99) + (Dynamic Power * (1 - 0.99))

Leakage Power: 0.0000004875 mW

Dynamic Power: 0.0019000000 mW

Total Power: 0.0000194826 mW

Leakage Power is contributing 2.48%

to the Total Power.

Mapper: Libraries have:

domain _default_:

470 combo usable cells and 282 sequential usable cells

leakage powergroup of

combo usable cells (no_value: 470) sequential usable cells (no_value: 282)

Multi-threaded constant propagation [1|0] ...

Setting attribute of root ’/’:

’super_thread_servers’ = localhost localhost
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localhost localhost

localhost localhost localhost

localhost

Library loading done successfully

on server ’localhost_1_0’.

Multi-threaded Virtual Mapping

(8 threads per ST process, 8 of 12 CPUs usable)

Distributing super-thread jobs: tristate_buffer

Sending ’tristate_buffer’ to server ’localhost_1_0’...

Sent ’tristate_buffer’ to server ’localhost_1_0’.

Received ’tristate_buffer’ from server ’localhost_1_0’. (634 ms elapsed)

Distributing super-thread jobs:

Register My_AND My_AND_3 My_AND_7

My_AND_15 My_AND_16 My_AND_8

My_AND_17 My_AND_1 My_AND_4

My_AND_11 My_AND_9 My_AND_10

My_AND_2 My_AND_5 My_AND_13

My_AND_12 My_AND_6 My_AND_14

Sending ’Register’ to server ’localhost_1_0’...

Sent ’Register’ to server ’localhost_1_0’.

Sending ’My_AND’ to server ’localhost_1_1’...

Sent ’My_AND’ to server ’localhost_1_1’.

Sending ’My_AND_3’ to server ’localhost_1_2’...

Sent ’My_AND_3’ to server ’localhost_1_2’.

Sending ’My_AND_7’ to server ’localhost_1_3’...

Sent ’My_AND_7’ to server ’localhost_1_3’.

Sending ’My_AND_15’ to server ’localhost_1_4’...

Sent ’My_AND_15’ to server ’localhost_1_4’.

Sending ’My_AND_16’ to server ’localhost_1_6’...

Sent ’My_AND_16’ to server ’localhost_1_6’.

Sending ’My_AND_8’ to server ’localhost_1_5’...

Sent ’My_AND_8’ to server ’localhost_1_5’.

Sending ’My_AND_17’ to server ’localhost_1_7’...

Sent ’My_AND_17’ to server ’localhost_1_7’.

Received ’Register’ from server ’localhost_1_0’. (292 ms elapsed)

Sending ’My_AND_1’ to server ’localhost_1_0’...

Sent ’My_AND_1’ to server ’localhost_1_0’.

Received ’My_AND_1’ from server ’localhost_1_0’. (189 ms elapsed)

Sending ’My_AND_4’ to server ’localhost_1_0’...

Sent ’My_AND_4’ to server ’localhost_1_0’.
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Received ’My_AND_4’ from server ’localhost_1_0’. (264 ms elapsed)

Sending ’My_AND_11’ to server ’localhost_1_0’...

Sent ’My_AND_11’ to server ’localhost_1_0’.

Received ’My_AND’ from server ’localhost_1_1’. (815 ms elapsed)

Sending ’My_AND_9’ to server ’localhost_1_1’...

Sent ’My_AND_9’ to server ’localhost_1_1’.

Received ’My_AND_7’ from server ’localhost_1_3’. (831 ms elapsed)

Sending ’My_AND_10’ to server ’localhost_1_3’...

Sent ’My_AND_10’ to server ’localhost_1_3’.

Received ’My_AND_3’ from server ’localhost_1_2’. (858 ms elapsed)

Sending ’My_AND_2’ to server ’localhost_1_2’...

Sent ’My_AND_2’ to server ’localhost_1_2’.

Received ’My_AND_11’ from server ’localhost_1_0’. (225 ms elapsed)

Sending ’My_AND_5’ to server ’localhost_1_0’...

Sent ’My_AND_5’ to server ’localhost_1_0’.

Received ’My_AND_10’ from server ’localhost_1_3’. (568 ms elapsed)

Sending ’My_AND_13’ to server ’localhost_1_3’...

Sent ’My_AND_13’ to server ’localhost_1_3’.

Received ’My_AND_9’ from server ’localhost_1_1’. (596 ms elapsed)

Sending ’My_AND_12’ to server ’localhost_1_1’...

Sent ’My_AND_12’ to server ’localhost_1_1’.

Received ’My_AND_17’ from server ’localhost_1_7’. (1376 ms elapsed)

Sending ’My_AND_6’ to server ’localhost_1_7’...

Sent ’My_AND_6’ to server ’localhost_1_7’.

Received ’My_AND_8’ from server ’localhost_1_5’. (1403 ms elapsed)

Sending ’My_AND_14’ to server ’localhost_1_5’...

Sent ’My_AND_14’ to server ’localhost_1_5’.

.

.

.

’localhost_1_2’. (434 ms elapsed)

Received ’My_AND_52’ from server ’localhost_1_7’. (450 ms elapsed)

Received ’My_AND_37’ from server ’localhost_1_1’. (295 ms elapsed)

Received ’My_AND_53’ from server ’localhost_1_3’. (312 ms elapsed)

Distributing super-thread jobs:

Register_94 Register_92 Register_84

Register_66 Register_64 Register_62

Register_82 Register_60 Register_58

Register_90 Register_80 Register_78
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Register_88 Register_76 Register_74

Register_72 Register_86 Register_70

Register_68 My_XOR_11 My_AND_59 My_XOR

My_AND_67 My_AND_60 My_XOR_14 My_AND_65

My_XOR_12 My_AND_61 My_AND_70

My_AND_68 My_AND_62 My_AND_71 My_AND_66

My_XOR_13 My_AND_63 My_XOR_7

My_XOR_16 My_XOR_4 My_XOR_15 My_XOR_1

My_AND_69 My_AND_58 My_AND_57 My_AND_56

My_AND_55 My_XOR_17 My_XOR_8 My_XOR_5

My_XOR_2 My_XOR_3 My_XOR_10 My_AND_54

My_XOR_6 My_AND_64 My_XOR_9

Sending ’Register_94’ to server ’localhost_1_0’...

Sent ’Register_94’ to server ’localhost_1_0’.

Sending ’Register_92’ to server ’localhost_1_1’...

Sent ’Register_92’ to server ’localhost_1_1’.

Sending ’Register_84’ to server ’localhost_1_2’...

Sent ’Register_84’ to server ’localhost_1_2’.

Sending ’Register_66’ to server ’localhost_1_3’...

Sent ’Register_66’ to server ’localhost_1_3’.

Sending ’Register_64’ to server ’localhost_1_4’...

Sent ’Register_64’ to server ’localhost_1_4’.

Sending ’Register_62’ to server ’localhost_1_5’...

Sent ’Register_62’ to server ’localhost_1_5’.

Sending ’Register_82’ to server ’localhost_1_6’...

Sent ’Register_82’ to server ’localhost_1_6’.

Sending ’Register_60’ to server ’localhost_1_7’...

Sent ’Register_60’ to server ’localhost_1_7’.

Received ’Register_92’ from server ’localhost_1_1’. (170 ms elapsed)

Sending ’Register_58’ to server ’localhost_1_1’...

Sent ’Register_58’ to server ’localhost_1_1’.

Received ’Register_94’ from server ’localhost_1_0’. (240 ms elapsed)

Sending ’Register_90’ to server ’localhost_1_0’...

Sent ’Register_90’ to server ’localhost_1_0’.

Received ’Register_58’ from server ’localhost_1_1’. (602 ms elapsed)

Sending ’Register_80’ to server ’localhost_1_1’...

Sent ’Register_80’ to server ’localhost_1_1’.

Received ’Register_66’ from server ’localhost_1_3’. (766 ms elapsed)

Sending ’Register_78’ to server ’localhost_1_3’...

Sent ’Register_78’ to server ’localhost_1_3’.
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Received ’Register_60’ from server ’localhost_1_7’. (720 ms elapsed)

.

.

.

’localhost_1_1’. (768 ms elapsed)

Received ’My_XOR_6’ from server ’localhost_1_5’. (512 ms elapsed)

Distributing super-thread jobs:

Register_131 Register_127 Register_119

Register_103 Register_71 Register_69

Register_101 Register_67 Register_65

Register_117 Register_99 Register_63

Register_61 Register_97 Register_59

Register_125 Register_115 Register_95

Register_93 Register_113 Register_91

Register_89 Register_129 Register_123

Register_111 Register_73 Register_75

Register_77 Register_79 Register_81

Register_83 Register_87 Register_85

Register_109 Register_121 Register_107

Register_105 My_AND_83 My_AND_81 My_AND_77

My_AND_74 My_AND_89 My_AND_82 My_AND_73

My_AND_72 My_AND_80 My_AND_88 My_AND_84

My_AND_78 My_AND_87 My_AND_75 My_AND_79

My_AND_85 My_AND_86 My_AND_76

Sending ’Register_131’ to server ’localhost_1_0’...

Sent ’Register_131’ to server ’localhost_1_0’.

Sending ’Register_127’ to server ’localhost_1_1’...

Sent ’Register_127’ to server ’localhost_1_1’.

Sending ’Register_119’ to server ’localhost_1_2’...

Sent ’Register_119’ to server ’localhost_1_2’.

.

.

.

Received ’Register_117’ from server ’localhost_1_0’. (405 ms elapsed)

Sending ’Register_95’ to server ’localhost_1_0’...

Sent ’Register_95’ to server ’localhost_1_0’.

Received ’Register_115’ from server ’localhost_1_1’. (473 ms elapsed)

Sending ’Register_93’ to server ’localhost_1_1’...
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Sent ’Register_93’ to server ’localhost_1_1’.

Received ’Register_125’ from server ’localhost_1_5’. (543 ms elapsed)

Sending ’Register_113’ to server ’localhost_1_5’...

Sent ’Register_113’ to server ’localhost_1_5’.

Received ’Register_59’ from server ’localhost_1_3’. (614 ms elapsed)

Sending ’Register_91’ to server ’localhost_1_3’...

Sent ’Register_91’ to server ’localhost_1_3’.

Received ’Register_97’ from server ’localhost_1_2’. (745 ms elapsed)

Sending ’Register_89’ to server ’localhost_1_2’...

Sent ’Register_89’ to server ’localhost_1_2’.

Received ’Register_61’ from server ’localhost_1_6’. (878 ms elapsed)

Sending ’Register_129’ to server ’localhost_1_6’...

Sent ’Register_129’ to server ’localhost_1_6’.

.

.

.

Sending ’Register_168’ to server ’localhost_1_0’...

Sent ’Register_168’ to server ’localhost_1_0’.

Sending ’Register_166’ to server ’localhost_1_1’...

Sent ’Register_166’ to server ’localhost_1_1’.

Sending ’Register_162’ to server ’localhost_1_2’...

Sent ’Register_162’ to server ’localhost_1_2’.

Sending ’Register_154’ to server ’localhost_1_3’...

Sent ’Register_154’ to server ’localhost_1_3’.

Sending ’Register_138’ to server ’localhost_1_4’...

Sent ’Register_138’ to server ’localhost_1_4’.

Sending ’Register_136’ to server ’localhost_1_6’...

Sent ’Register_136’ to server ’localhost_1_6’.

Sending ’Register_152’ to server ’localhost_1_5’...

Sent ’Register_152’ to server ’localhost_1_5’.

Sending ’Register_134’ to server ’localhost_1_7’...

Sent ’Register_134’ to server ’localhost_1_7’.

Received ’Register_166’ from server ’localhost_1_1’. (171 ms elapsed)

Sending ’Register_132’ to server ’localhost_1_1’...

Sent ’Register_132’ to server ’localhost_1_1’.

Received ’Register_168’ from server ’localhost_1_0’. (229 ms elapsed)

.

.

.
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Sending ’Register_189’ to server ’localhost_1_0’...

Sent ’Register_189’ to server ’localhost_1_0’.

Sending ’Register_191’ to server ’localhost_1_1’...

Sent ’Register_191’ to server ’localhost_1_1’.

Sending ’Register_193’ to server ’localhost_1_2’...

Sent ’Register_193’ to server ’localhost_1_2’.

Sending ’Register_195’ to server ’localhost_1_3’...

Sent ’Register_195’ to server ’localhost_1_3’.

Sending ’Register_197’ to server ’localhost_1_4’...

Sent ’Register_197’ to server ’localhost_1_4’.

Sending ’Register_199’ to server ’localhost_1_5’...

Sent ’Register_199’ to server ’localhost_1_5’.

Sending ’Register_187’ to server ’localhost_1_6’...

.

.

.

’localhost_1_3’. (244 ms elapsed)

Received ’My_AND_120’ from server ’localhost_1_7’. (547 ms elapsed)

Distributing super-thread jobs:

Register_242 Register_240 Register_238

Register_236 Register_234 Register_232

Register_230 Register_228 Register_226

Register_224 Register_222 Register_220

Register_218 Register_216 Register_214

Register_212 Register_210 Register_208

Register_206 My_XOR_41 My_AND_142 My_AND_139

My_XOR_42 My_XOR_43 My_AND_141 My_XOR_36 My_AND_138

My_AND_135 My_AND_136 My_AND_134 My_AND_143

My_XOR_51 My_XOR_50 My_AND_129 My_XOR_46

My_AND_140 My_AND_131 My_AND_130 My_AND_132

My_XOR_52 My_XOR_48 My_XOR_44 My_XOR_45

My_XOR_39 My_XOR_38 My_AND_126 My_AND_127

My_AND_128 My_XOR_53 My_XOR_49 My_AND_137

My_XOR_47 My_AND_133 My_XOR_40 My_XOR_37

Sending ’Register_242’ to server ’localhost_1_0’...

Sent ’Register_242’ to server ’localhost_1_0’.

Sending ’Register_240’ to server ’localhost_1_1’...

Sent ’Register_240’ to server ’localhost_1_1’.

Sending ’Register_238’ to server ’localhost_1_2’...
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Sent ’Register_238’ to server ’localhost_1_2’.

Sending ’Register_236’ to server ’localhost_1_3’...

Sent ’Register_236’ to server ’localhost_1_3’.

Sending ’Register_234’ to server ’localhost_1_4’...

Sent ’Register_234’ to server ’localhost_1_4’.

Sending ’Register_232’ to server ’localhost_1_6’...

Sent ’Register_232’ to server ’localhost_1_6’.

Sending ’Register_230’ to server ’localhost_1_5’...

Sent ’Register_230’ to server ’localhost_1_5’.

Sending ’Register_228’ to server ’localhost_1_7’...

Sent ’Register_228’ to server ’localhost_1_7’.

Received ’Register_240’ from server ’localhost_1_1’. (160 ms elapsed)

Sending ’Register_226’ to server ’localhost_1_1’...

Sent ’Register_226’ to server ’localhost_1_1’.

Received ’Register_242’ from server ’localhost_1_0’. (216 ms elapsed)

Sending ’Register_224’ to server ’localhost_1_0’...

Sent ’Register_224’ to server ’localhost_1_0’.

Received ’Register_226’ from server ’localhost_1_1’. (588 ms elapsed)

Sending ’Register_222’ to server ’localhost_1_1’...

Sent ’Register_222’ to server ’localhost_1_1’.

Received ’Register_228’ from server ’localhost_1_7’. (660 ms elapsed)

Sending ’Register_220’ to server ’localhost_1_7’...

Sent ’Register_220’ to server ’localhost_1_7’.

.

.

.

Global mapping target info

==========================

Cost Group ’Clk’ target slack: 14 ps

Target path end-point (Pin: Register277/Q_reg[162]/d)

Multi-threaded Technology Mapping (8 threads per ST process, 8 of 12 CPUs usable)

Distributing super-thread jobs: tristate_buffer_1

Sending ’tristate_buffer_1’ to server ’localhost_1_0’...

Sent ’tristate_buffer_1’ to server ’localhost_1_0’.

Received ’tristate_buffer_1’ from server ’localhost_1_0’. (152 ms elapsed)

Distributing super-thread jobs: Register_352

Sending ’Register_352’ to server ’localhost_1_0’...

Sent ’Register_352’ to server ’localhost_1_0’.
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Received ’Register_352’ from server ’localhost_1_0’.

(245 ms elapsed)

Distributing super-thread jobs: My_XOR_160

Sending ’My_XOR_160’ to server ’localhost_1_0’...

Sent ’My_XOR_160’ to server ’localhost_1_0’.

Received ’My_XOR_160’ from server ’localhost_1_0’.

(409 ms elapsed)

Distributing super-thread jobs: Register_350

Sending ’Register_350’ to server ’localhost_1_0’...

Sent ’Register_350’ to server ’localhost_1_0’.

Received ’Register_350’ from server ’localhost_1_0’.

(284 ms elapsed)

Distributing super-thread jobs: My_XOR_159

Sending ’My_XOR_159’ to server ’localhost_1_0’...

Sent ’My_XOR_159’ to server ’localhost_1_0’.

Received ’My_XOR_159’ from server ’localhost_1_0’.

(408 ms elapsed)

Distributing super-thread jobs: Register_348 Register_347

Sending ’Register_348’ to server ’localhost_1_0’...

Sent ’Register_348’ to server ’localhost_1_0’.

Sending ’Register_347’ to server ’localhost_1_1’...

Sent ’Register_347’ to server ’localhost_1_1’.

Received ’Register_348’ from server ’localhost_1_0’.

(298 ms elapsed)

Received ’Register_347’ from server ’localhost_1_1’.

(404 ms elapsed)

Distributing super-thread jobs: Register_351 My_XOR_157 My_XOR_158

Sending ’Register_351’ to server ’localhost_1_0’...

Sent ’Register_351’ to server ’localhost_1_0’.

Sending ’My_XOR_157’ to server ’localhost_1_1’...

Sent ’My_XOR_157’ to server ’localhost_1_1’.

Sending ’My_XOR_158’ to server ’localhost_1_2’...

Sent ’My_XOR_158’ to server ’localhost_1_2’.

Received ’Register_351’ from server ’localhost_1_0’. (282 ms elapsed)

Received ’My_XOR_158’ from server ’localhost_1_2’. (492 ms elapsed)

Received ’My_XOR_157’ from server ’localhost_1_1’. (634 ms elapsed)

Distributing super-thread jobs:

Register_349 Register_342 Register_345

Register_343 Register_344

Sending ’Register_349’ to server ’localhost_1_0’...
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Sent ’Register_349’ to server ’localhost_1_0’.

Sending ’Register_342’ to server ’localhost_1_1’...

Sent ’Register_342’ to server ’localhost_1_1’.

.

.

.

Sending ’Register_72’ to server ’localhost_1_0’...

Sent ’Register_72’ to server ’localhost_1_0’.

Sending ’Register_78’ to server ’localhost_1_1’...

Sent ’Register_78’ to server ’localhost_1_1’.

Sending ’Register_84’ to server ’localhost_1_2’...

Sent ’Register_84’ to server ’localhost_1_2’.

Sending ’Register_82’ to server ’localhost_1_3’...

Sent ’Register_82’ to server ’localhost_1_3’.

Sending ’Register_92’ to server ’localhost_1_4’...

Sent ’Register_92’ to server ’localhost_1_4’.

Sending ’Register_74’ to server ’localhost_1_5’...

Sent ’Register_74’ to server ’localhost_1_5’.

Sending ’Register_66’ to server ’localhost_1_6’...

Sent ’Register_66’ to server ’localhost_1_6’.

Sending ’Register_58’ to server ’localhost_1_7’...

Sent ’Register_58’ to server ’localhost_1_7’.

Received ’Register_78’ from server ’localhost_1_1’. (306 ms elapsed)

Sending ’Register_68’ to server ’localhost_1_1’...

Sent ’Register_68’ to server ’localhost_1_1’.

Received ’Register_68’ from server ’localhost_1_1’. (314 ms elapsed)

Sending ’Register_70’ to server ’localhost_1_1’...

.

.

.

Received ’My_AND_4’ from server ’localhost_1_2’. (1942 ms elapsed)

Received ’My_AND_8’ from server ’localhost_1_5’. (1852 ms elapsed)

Distributing super-thread jobs: tristate_buffer

Sending ’tristate_buffer’ to server ’localhost_1_0’...

Sent ’tristate_buffer’ to server ’localhost_1_0’.

Received ’tristate_buffer’ from server ’localhost_1_0’. (153 ms elapsed)

Global mapping status

=====================
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Group

Tot Wrst

Total Weighted Leakage

Operation Area Slacks Power

-------------------------------------------------------------------------------

global_map 1453910 -26 1162683

Worst cost_group: Clk, WNS: -26.2

Path: Register0/Q_reg[0]/CP --> Register21/Q_reg[0]/D

Cost Group Target Slack Clock

--------------------------------------------------

Clk 14 -26 500

Global incremental target info

==============================

Cost Group ’Clk’ target slack: -26 ps

Target path end-point (Pin: Register277/Q_reg[162]/D (DFQD4/D))

Global incremental optimization status

======================================

Group

Tot Wrst

Total Weighted Leakage

Operation Area Slacks Power

-------------------------------------------------------------------------------

global_incr 1436038 -70 1020828

Worst cost_group: Clk, WNS: -70.5

Path: Register0/Q_reg[0]/CP --> Register21/Q_reg[0]/D

Cost Group Target Slack Clock

--------------------------------------------------

Clk -26 -70 500

Setting attribute of root ’/’:

’pbs_stage_start_elapsed_time’ = 2220

Setting attribute of root ’/’:

’pbs_stage_start_st_time’ = 1029

Info : Done mapping. [SYNTH-5]
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: Done mapping ’Structure1’.

Info : Incrementally optimizing. [SYNTH-7]

: Incrementally optimizing ’Structure1’ using ’medium’ effort.

Info : The given (sub)design is already uniquified. [TUI-296]

: /designs/Structure1.

: Try running the ’edit_netlist uniquify’

command on the parent hierarchy of this (sub)design,

if there exists any.

Uniquify netlist ...

Done

Swap or remap avoided cells ...

Done

hi_fo_buf 1437669 -70 -1449705 0 0

Worst cost_group: Clk, WNS: -70.5

Path: Register0/Q_reg[0]/CP --> Register21/Q_reg[0]/D

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

hi_fo_buf 163 ( 21 / 21 ) 8.76

Group

Tot Wrst Total - - DRC Totals - -

Total Weighted Neg Max Max Leakage

Operation Area Slacks Slack Trans Cap Power

-------------------------------------------------------------------------------

init_delay 1437669 -70 -1449705 0 0 1008453

Worst cost_group: Clk, WNS: -70.5

Path: Register0/Q_reg[0]/CP --> Register21/Q_reg[0]/D

incr_delay 1456746 -8 -172242 0 0 1038252

Worst cost_group: Clk, WNS: -8.3

Path: Register0/Q_reg[0]/CP --> Register21/Q_reg[0]/D

incr_delay 1462691 -4 -1548 0 0 1048553

Worst cost_group: Clk, WNS: -4.8

Path: Register242/Q_reg[1]/CP --> Register280/Q_reg[1]/D

Trick Calls Accepts Attempts Time(secs)

113



-----------------------------------------------------------

crit_upsz 1239 ( 1141 / 1141 ) 78.96

fopt 1728 ( 1304 / 1471 ) 105.34

init_tns 1462691 -4 -1548 0 0 1048553

Worst cost_group: Clk, WNS: -4.8

Path: Register242/Q_reg[1]/CP --> Register280/Q_reg[1]/D

incr_tns 1463151 0 0 0 0 1048732

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

setup_dn 489 ( 326 / 326 ) 145.17

The inst ’pbs_iopt_n_1’ is selected as pbs candidate.

The instance cnt is: ’54643’.

The inst ’pbs_iopt_n_0’ is selected as pbs candidate.

The instance cnt is: ’57528’.

Info : Connection established with super-threading

server. [ST-110]

: The server ’localhost_1_8’ is forked process ’19885’ on this host.

: The tool is entering super-threading mode

and has established a connection

with a CPU server process.

This is enabled by the root attributes

’super_thread_servers’

or ’auto_super_thread’.

Info : Connection established with super-threading server. [ST-110]

: The server ’localhost_1_9’ is forked process ’19886’ on this host.

Info : Connection established with super-threading server. [ST-110]

: The server ’localhost_1_10’ is forked process ’19887’ on this host.

Info : Connection established with super-threading server. [ST-110]

: The server ’localhost_1_11’ is forked process ’19888’ on this host.

Info : Connection established with super-threading server. [ST-110]

: The server ’localhost_1_12’ is forked process ’19889’ on this host.

Info : Connection established with super-threading server. [ST-110]

: The server ’localhost_1_13’ is forked process ’19890’ on this host.

Info : Connection established with super-threading server. [ST-110]

: The server ’localhost_1_14’ is forked process ’19891’ on this host.

Distributing super-thread jobs:

{pbs_iopt_n_0 ./.pbs_energy_14060/
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pbs_iopt_n_0.etf} {pbs_iopt_n_1 ./.pbs_energy_14060/pbs_iopt_n_1.etf}

Sending ’pbs_iopt_n_0 ./.pbs_energy_14060/

pbs_iopt_n_0.etf’ to server

’localhost_1_0’...

Sent ’pbs_iopt_n_0 ./

.pbs_energy_14060/pbs_iopt_n_0.etf’

to server ’localhost_1_0’.

Sending ’pbs_iopt_n_1

./.pbs_energy_14060/

pbs_iopt_n_1.etf’ to server ’localhost_1_8’...

Sent ’pbs_iopt_n_1

./.pbs_energy_14060/pbs_iopt_n_1.etf’

to server ’localhost_1_8’.

Received ’pbs_iopt_n_0 ./.pbs_energy_14060/pbs_iopt_n_0.etf’

from server ’localhost_1_0’.

(209481 ms elapsed)

Received ’pbs_iopt_n_1

./.pbs_energy_14060/

pbs_iopt_n_1.etf’ from server

’localhost_1_8’. (260449 ms elapsed)

Start - Partition:

pbs_iopt_n_1 Slack: 0.4

TNS: 0 Cell-Count: 54643

Cell-Area: 572809 Init-Memory: 787.87

Done - Partition: pbs_iopt_n_1

Slack: 0.8 TNS: 0 Cell-Count:

54643 Cell-Area: 517503 Peak-Memory

: 830.90 Elapsed: 251

Start - Partition: pbs_iopt_n_0

Slack: 0.4 TNS: 0 Cell-Count: 57528 Cell-Area: 627493 Init-Memory: 807.87

Done - Partition: pbs_iopt_n_0

Slack: 1.4 TNS: 0 Cell-Count: 57365

Cell-Area: 568290 Peak-Memory: 853.65

Elapsed: 199

hi_fo_buf 1348332 0 0 0 0 843660

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------
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Group

Tot Wrst Total - - DRC Totals - -

Total Weighted Neg Max Max Leakage

Operation Area Slacks Slack Trans Cap Power

-------------------------------------------------------------------------------

init_delay 1348332 0 0 0 0 843660

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

init_tns 1348332 0 0 0 0 843660

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

Group

Tot Wrst Total - - DRC Totals - -

Total Weighted Neg Max Max Leakage

Operation Area Slacks Slack Trans Cap Power

-------------------------------------------------------------------------------

init_power 1348332 0 0 0 0 843660

p_rem_inv 1348274 0 0 0 0 843564

p_merge_bi 1347939 0 0 0 0 843043

glob_power 1346214 0 0 0 0 839977

power_down 1342579 0 0 0 0 837499

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

p_rem_buf 1141 ( 0 / 163 ) 1.45

p_rem_inv 2 ( 2 / 2 ) 0.06

p_merge_bi 1 ( 1 / 1 ) 0.55

glob_power 4 ( 2 / 4 ) 19.67

power_down 14451 ( 654 / 654 ) 284.85

Group
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Tot Wrst Total - - DRC Totals - -

Total Weighted Neg Max Max Leakage

Operation Area Slacks Slack Trans Cap Power

-------------------------------------------------------------------------------

init_delay 1342579 0 0 0 0 837499

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

init_tns 1342579 0 0 0 0 837499

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

init_delay 1342579 0 0 0 0 837499

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

Group

Tot Wrst Total - - DRC Totals - -

Total Weighted Neg Max Max Leakage

Operation Area Slacks Slack Trans Cap Power

-------------------------------------------------------------------------------

init_power 1342579 0 0 0 0 837499

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

init_area 1342579 0 0 0 0 837499

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

Local DRC optimization status

=============================

Group

Tot Wrst Total - - DRC Totals - -

Total Weighted Neg Max Max Leakage

Operation Area Slacks Slack Trans Cap Power
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-------------------------------------------------------------------------------

init_drc 1342579 0 0 0 0 837499

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

Local DRC optimization status

=============================

Group

Tot Wrst Total - - DRC Totals - -

Total Weighted Neg Max Max Leakage

Operation Area Slacks Slack Trans Cap Power

-------------------------------------------------------------------------------

init_drc 1342579 0 0 0 0 837499

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

Trick Calls Accepts Attempts Time(secs)

-----------------------------------------------------------

# Incremental Optimization Runtime Summary:

.

.

.
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Done incrementally optimizing.

##>===== Cadence Confidential (Iopt-Logical) =====

##>ST Summary (2 partitions in total):

##>----------------------------------

##>PARTITION 1 0

##>----------------------------------

##>PRE_WNS 0 0

##>PRE_TNS 0 0

##>PRE_CNT 54643 57528

##>PRE_PORT_CNT 15414 15397

##>PRE_AREA 572809 627493

##>----------------------------------

##>POST_WNS 0 1

##>POST_TNS 0 0

##>POST_CNT 54643 57365

##>POST_PORT_CNT 15414 15397

##>POST_AREA 517503 568290

##>----------------------------------

##>I:Misc 259 208

##>Total Elapsed 259 208

##>==================================

##>Main Thread Summary:

##>--------------------------------------------------------

##>STEP Elapsed Insts Area Memory

##>--------------------------------------------------------

##>I:Initial 6 110804 1175789 1550

##>I:Launch ST 34 - - 2002

##>I:Distributed 297 - - 2002

##>I:Cleanup 1005 111985 1080084 1162

##>I:Misc 0

##>--------------------------------------------------------

##>Total Elapsed 1010

.

.

.

Info : Done incrementally optimizing. [SYNTH-8]

: Done incrementally optimizing ’Structure1’.
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============================================================

Generated by: Genus(TM) Synthesis Solution 16.12-s027_1

Generated on: Sep 12 2020 09:11:35 pm

Module: Structure1

Technology libraries: tcbn90lphpwc_ccs 150.000000

physical_cells

Operating conditions: _nominal_

Interconnect mode: global

Area mode: physical library

============================================================

Timing

--------

Clock Period

-------------

Clk 500.0

Cost Critical Violating

Group Path Slack TNS Paths

-----------------------------------

Clk 1.1 0 0

default No paths 0

-----------------------------------

Total 0 0

Instance Count

--------------

Leaf Instance Count 111985

Sequential Instance Count 57376

Combinational Instance Count 54609

Hierarchical Instance Count 692

Warning : Potential error generating

clock gating report. [RPT_CG-12]

: ’lp_insert_clock_gating’

root attribute is set to ’false’.

: The ’report clock_gating’

command depends on the ’lp_insert_clock_gating’

attribute. Set it to ’true’ before calling this command.
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Area

----

Cell Area 1080084.499

Physical Cell Area 0.000

Total Cell Area (Cell+Physical) 1080084.499

Net Area 262494.360

Total Area (Cell+Physical+Net) 1342578.859

Power

-----

Leakage Power 0.849 mW

Dynamic Power 3173.997 mW

Total Power 3174.845 mW

Max Fanout 57376 (Clk)

Min Fanout 0 (PE1_1/P17[0])

Average Fanout 1.9

Terms to net ratio 2.9140

Terms to instance ratio 3.0116

Runtime 2105.561769 seconds

Elapsed Runtime 3799 seconds

Genus peak memory usage 2001.43

Innovus peak memory usage no_value

Hostname energy

Leakage Leakage Internal Internal

Type Instances Area Area % Power (mW) Power % Power (mW) Power %

-----------------------------------------------------------------------------------

sequential 57376 736541.971 68.2 0.488 57.5 2315.295 89.0

inverter 330 1954.512 0.2 0.003 0.3 0.454 0.0

buffer 1304 23922.662 2.2 0.043 5.1 32.310 1.2

tristate 326 2300.256 0.2 0.001 0.1 0.545 0.0

logic 52649 315365.098 29.2 0.313 36.9 251.552 9.7

physical_cells 0 0.000 0.0 0.000 0.0 0.000 0.0

-----------------------------------------------------------------------------------

total 111985 1080084.499 100.0 0.849 100.0 2600.155 100.0

=============================================

PBS_iopt Index: 0.90 PBS_overall Index: 0.90

=============================================

Normal exit.
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