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ABSTRACT
Compact photonic elements that control both the diffraction and interference of light offer superior performance at ultra-compact dimen-
sions. Unlike conventional optical structures, these diffractive optical elements can provide simultaneous control of spectral and spatial
profiles of light. However, the inverse design of such a diffractive optical element is time-consuming with current algorithms, and the designs
generally lack experimental validation. Here, we develop a neural network model to experimentally design and validate SpliCons; a special type
of diffractive optical element that can achieve spectral splitting and simultaneous concentration of broadband light. We use neural networks
to exploit nonlinear operations that result from wavefront reconstruction through a phase plate. Our results show that the neural network
model yields enhanced spectral splitting performance for phase plates with quantitative assessment compared to phase plates that are opti-
mized via the local search optimization algorithm. The capabilities of the phase plates optimized via the neural network are experimentally
validated by comparing the intensity distribution at the output plane. Once the neural networks are trained, we manage to design SpliCons
with 96.6% ± 2.3% accuracy within 2 s, which is orders of magnitude faster than iterative search algorithms. We openly share the fast and
efficient framework that we develop in order to contribute to the design and implementation of diffractive optical elements that can lead to
transformative effects in microscopy, spectroscopy, and solar energy applications.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0042532

I. INTRODUCTION

Miniaturized optical elements is an advancing research field
aimed to reduce the size, weight, and cost of optical systems while in
the meantime enhancing the performance in a variety of application
areas such as controlling the phase, polarization1 and absorption2

of light beams in a medium that provides superior performance
in spectroscopy,3 sensing,4 solar energy harvesting,5 wavelength
demultiplexing,6 particle tracking,7 imaging,8 image classification,9
and quantum computing applications.10 One of the promising opti-
cal elements is phase plates, which provide control over intensity,
polarization, and phase distribution of light with a high degree
of freedom.11–15 Their outperforming functionalities are especially
required in spectrally splitting broadband light as conventional
lenses lack control in the spectral domain.14–16 However, during
the designing of the phase plates, a high number of optimization

parameters result in a long computation time that seriously hampers
their implementation.17

Spectral and spatial dispersion of broadband light finds diverse
application areas such as microscopy, digital imaging,18 projec-
tion,19 and solar energy.20,21 With the rise in energy demand, intel-
ligent conversion of solar energy is becoming more of a neces-
sity to be addressed fundamentally. The laterally arranged solar
cell system has a strong potential in the generation of electricity
and incorporates holographic phase plates to achieve spectral split-
ting of broadband light.22,23 Unlike conventional diffractive optical
elements that are generally designed for one task, SpliCons pro-
vide simultaneous spectral splitting and concentration of light.15

These multi-functional structures can be optimized with iterative
approaches. Still, iterative optimization requires immense compu-
tational resources and limits the application of SpliCons due to
small numbers of controlled parameters that can yield reduced
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performance. Instead of iterative approaches, the inverse design of
SpliCons can decrease the optimization time. However, the inverse
design presents several major challenges compared to the iterative
one: (i) phase plates in each frequency of the broadband range are
needed, (ii) combination of these phase plates will still require inter-
mediate phase plates to obtain the desired intensity distribution, and
(iii) a one-to-many mapping problem.24 One-to-many mapping is a
big problem because a data point may be associated with multiple
labels instead of a single class.25,26 Thus, spectrally splitting and con-
centrating the light using the inverse design is still an unaddressed
challenge. The neural network architecture of deep learning could
figure out the one-to-many mapping problem faced in the inverse
design of SpliCons and provide fast and accurate control over light
beams.

Deep learning is a powerful machine learning technique
that can perform time-consuming operations using a multilay-
ered neural network within shorter time scales. This technique has
shown great success in various optics and photonics tasks such as
microscopy,27–29 imaging,30–33 wavelength demultiplexing,17 meta-
surface design,34,35 reconstruction of ultra-short pulses,36 image
classification,37 beam splitting,38 and laser-assisted surface machin-
ing.39,40 Moreover, deep learning understands the Fourier transform
function by using neural neurons having a single layer with a linear
transfer function.41

In this study, we develop, for the first time, a neural net-
work model to reconstruct phase patterns for spectrally splitting and
spatially concentrating the broadband light and verify our designs
experimentally using a spatial light modulator (SLM). In the training
procedure of the neural networks, we use a set of known inten-
sity distributions of diffraction patterns and their associated phase
plates, where diffraction patterns serve as the input and phase plates
that structure light are given as the output. The results indicate our
neural network generates phase patterns for spectrally splitting and
spatially concentrating light with high accuracy within a few seconds
using a single graphics processing unit (GPU). Our network does
not require a manual parameter search to optimize the performance
of SpliCons and is openly available (see our framework as well as
the dataset in the supplementary material) to the community to fur-
ther accelerate the transformation from uni-functional conventional
structures to multi-functional diffraction optical elements.

II. METHODS
A. Experimental setup

The setup for spectral splitting and spatially concentrating the
broadband light is presented in Fig. 1(a). The broadband light source

from a tungsten–halogen fiber-coupled light source (360–2600 nm,
optical power of 7 mW, and optical power noise of 0.3%) first passes
through an aspheric condenser lens (f: 16 mm). Next, a linear polar-
izer adjusts the polarization direction of the light so that it is aligned
with the SLM modulation axis. Then, the light is reflected by a mir-
ror and is incident on the SLM (operating between 420 and 1100 nm,
Holoeye Pluto-NIR-011 phase-only reflective LCOS, frame rate of 60
Hz). The SLM is placed at a small angle to the transmitted light from
the mirror and acts as a pixel-wise phase controller object. The SLM
that we use here has pixel dimensions of 8 × 8 μm2 with a total of
1920 × 1080 pixels. Due to the long optimization duration of a
phase plate to concentrate and spectrally split the broadband light,
we grouped pixels of the SLM to a matrix size of 64 × 36 to reduce
the number of optimized parameters. Each SLM pixel adds, at max-
imum, 2.28π phase shift with 0.23π phase steps to the incident light.
A phase plate generated by the SLM in the setup controls the phase
of the broadband light. The SLM-modulated light passes through a
plano–convex lens (f = 200 mm) and is collected by the CCD camera
(Allied vision, Guppy Pro F-125; the spectral response of the camera
chip is given in Ref. 42). The color-CCD camera pixel dimensions
are 3.75 × 3.75 μm2 with a total of 1292 × 964 pixels. Our exper-
imental setup shows 0.3% noise that includes back-reflections by
the equipment, stray light, the light source noise (0.2%), the CCD
camera quantification instability, and variation of experiment con-
ditions. In our iterative optimization algorithm, we have targeted the
beam of light between 420 and 535 nm (blue band) to the right spot
and the light between 560 and 875 nm (red band) to the left spot at
the diffraction plane, see Fig. 1.

B. Generation of dataset
While developing a neural network for experimentally spectral

splitting and spatially concentrating the broadband light, we gen-
erated a dataset using the setup in Fig. 1(a). The data collection
procedure is as follows: first, we start with all SLM pixels having
zero phase shift. The SLM pixels are grouped by 30 × 30 forming
a superpixel, and totally, 64 × 36 superpixels exist. The phase of a
superpixel is scanned from 0 to 2.28π with a 0.23π phase step. In the
meantime, we capture intensity distribution using a color camera.
Later, we alter phase shift values of all SLM pixels sequentially and
then collect intensity distributions by using a color camera for each
phase value of each SLM pixel. In order to perform iterative opti-
mization, we write the phase value on the SLM that gives the highest
intensity summation on red and blue target pixels. With this exper-
imental configuration, we obtained 33 796 phase plates [Fig. 1(b)]

FIG. 1. (a) Schematic of the setup for
the spectral splitting and spatially con-
centrating the broadband light: C, con-
denser lens; P, linear polarizer; M, mirror
(an SLM); L, lens with f = 200 mm; and
a CCD camera. (b) Phase patterns that
are written on the SLM surface. (c) Inten-
sity distributions measured via the CCD
camera.
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and corresponding intensity distributions [Fig. 1(c)] formed on the
CCD camera. The experimental dataset is collected within 1.7 h that
is used for training the neural network only once. After the training,
neural network generation of a phase plate for an intensity distribu-
tion of interest reduces to 2 s via the neural network. Considering
the modeling duration of a neural network, we reduced the SLM
pixel size, resulting in a total number of pixels of 36 × 64. In a simi-
lar manner, we reduced the size of intensity distributions to a matrix
size of 36 × 64. Here, we use percentage differential change (PDC) as
a metric to indicate the percentage increase in intensity at the target
plane. PDCx(λ) at a pixel position of x for the color band wavelength
λ is calculated via Eq. (1). Ix

i (λ) and Ix
f (λ) are the initial and final

intensities at the pixel position of x and color band wavelength λ,
respectively,

PDCx(λ) = 100∗ Ix
f (λ) − Ix

i (λ)
Ix

i (λ)
. (1)

C. Neural network model
Diffraction of light is expressed by the Fresnel–Kirchhoff

diffraction integral, which makes it a suitable problem that can be
addressed using convolutional neural network (CNN) layers. The
relation between one pixel of the intensity distribution and one pixel
of the phase plate depends on many parameters. One pixel of the
phase plates has a contribution to each pixel at the target plane.14

Moreover, when the input wavelength of the phase plate changes,
the intensity distribution changes, and there is no explicit pattern
between intensity on a target and the input wavelength. Thus, in our
neural network model, we employed CNN layers to mimic relations
between intensity distributions of formed diffraction patterns and
corresponding phase patterns.

The neural network model developed for spectrally splitting
and spatially concentrating the broadband light is presented in
Fig. 2(a). Using the aforementioned data generation protocol with
the experimental setup, we fine-tuned the hyper-parameters and
meta-parameters of this model. This model includes 8 CNN lay-
ers with a filter size of 9 × 9 and 32 filters. The CNN layers in the
model are same-padded for keeping the size of feature maps invari-
ant. After each CNN layer, an activation function of the rectified
linear unit (ReLU) is presented to reveal nonlinear relations between
the intensity distributions and the phase plates. A ReLU activation
function has an output of 0 if the input is less than 0; otherwise,
the ReLU activation function gives a raw output. After the fourth
CNN layer, down-sampling of the feature maps is performed with a
max-pooling operation at each CNN layer. After each max-pooling
operation, the number of parameters and computation load in the
network is reduced. A fully connected layer with a size of 25 344
and a ReLU activation function are used after flattening operation.
Then, we reshaped generated feature maps of the intensity distribu-
tions to match the size of the phase patterns. For the classification of
the phase values of the phase patterns, we used a softmax activation
function. It is a more generalized logistic activation function used
in the output layer of a neural network for multi-label classification.
Our batch size is selected as 32 for the smooth optimization of model
weights. We call the network that we develop Spectral Splitter and
Concentrator Network (SpliConNet).

Using the versatile setup that we construct for training and
testing SpliCons, we collect 33 796 camera images for training the

FIG. 2. (a) Neural network model that is trained for experimentally spectral splitting
and spatially concentrating the broadband light. (b) Training and validation accu-
racies of the neural network model with experimental data as a function of epochs,
indicating that our model does not result in overfitting.

SpliConNet framework and use normalized intensity distributions
in our model. We call Keras and TensorFlow open-source libraries,
which provide tools of artificial neural networks in addition to GPU
computing operation. We used the ADAM optimizer in Tensor-
Flow to minimize the categorical cross-entropy loss function over
the training samples. Training of the model is completed in less
than an hour using the TensorFlow library on a NVIDIA Quadro
P5000 GPU. The latency of each training epoch is around 5 s.
Once the training is completed, we test our model with a valida-
tion dataset, which is 10% of the input dataset that is not part of
the training set. The validation set prevents overfitting of the net-
work model to the training set [Fig. 2(b)]. After training, it takes
only a few seconds to generate a phase plate for the desired intensity
distribution.

III. RESULTS AND DISCUSSION
We carried out comprehensive experiments in order to both

concentrate and spectrally split the broadband light using a SpliCon
and the experimental setup shown in Fig. 1(a). With the setup, we
scan pixels of a phase plate to concentrate red and blue bands of the
broadband light source on two targets. The phase plate that allows
us to disperse the broadband light is presented in Fig. 3(a), and it is
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FIG. 3. SpliCon that spectrally splits and concentrates two frequency bands. (a) Iteratively optimized phase pattern to split the broadband light into two bands on two regions.
(b) Iteratively obtained intensity distribution of the broadband light on the colorful CCD camera. [(c) and (d)] The intensity distributions of the broadband light for the red
channel (between 560 and 875 nm) and blue channel (between 420 and 535 nm). (e) SpliConNet-based phase pattern. (f) SpliConNet-based intensity distribution of the
broadband light on the CCD camera. [(g) and (h)] SpliConNet-based intensity distributions of the broadband light channels. Colors of the figures indicate color bands of the
broadband light. PDC is the percentage differential increase in intensity described in Eq. (1).

the ground-truth phase plate. Using this ground-truth phase plate,
we obtained intensity distribution of the light source, as shown in
Fig. 3(b). This image is our ground-truth image to test the neural
network model. This procedure is performed only once and takes
about 2 h. In Fig. 3(b), we provide the intensity distribution of the
broadband light that is split and concentrated into two separate
regions. The red band is concentrated on the left of the target plane
[Fig. 3(c)] and the blue band is concentrated on the right of the target
plane [Fig. 3(d)].

Our goal is to use a neural network model to determine a func-
tion of the phase values of the phase pattern, ϕ = f(I, w), where I
is the intensity of the wavefront shaped light and f is a neural net-
work model parametrized by a set of weights w. With the created
data during the optimization of a phase plate, we trained the model
in Fig. 2(a). The model includes CNN layers to express function f in
terms of weight w. Accuracies of the training and validation through
epochs reach around 96.6% ± 2.3% [Fig. 2(b)]. With the results of
this figure, we concluded that the weights of the neural network
model are well-optimized, and the model lacks over-fitting as we
reached similar accuracies with training and validation datasets. We
test the performance of our neural network for splitting and concen-
trating the broadband light. When we reconstruct a phase pattern
for the ground-truth CCD image [Fig. 3(b)] by using weights of the
neural network, we obtain a similar phase pattern [Fig. 3(e)] with
the phase pattern obtained by the experimental study [Fig. 3(a)].
Agreement between these phase plates reaches up to 94.9%, and this
value depends on the accuracy of the model, which is affected by
the initialization of weights for the model. We saw 97.7% ± 2.7%
mean correlation between the reconstructed phase plates with all

intensity distributions in the dataset and the ground-truth phase
plates.

With the reconstructed phase plate, we obtained a high cor-
relation between the ground-truth CCD image [Fig. 3(b)] and the
neural network-based CCD image [Fig. 3(f)], reaching up to 97.7%
± 0.3% accuracy. The result that we obtain is limited by the setup
noise of 0.3%. Therefore, the method that we develop succeeds in
reaching the ground truth with unprecedented accuracy. With this
neural network model, we obtained excess 62.2% enhancement in
the red light band [Fig. 3(g)] and 61.0% enhancement in the blue
light band [Fig. 3(h)] on the targets, respectively. We observe less
than 4.8% error in enhancement values of the light bands with the
neural network compared to the experimental results. Considering
the experimental setup noise of 0.3%, the error we obtained in the
CCD images is well in the expected regime.

In Fig. 4, we present variation of the intensities for two dis-
tinct frequency bands. Ground-truth results refer to color bands
intensities of the iteratively obtained CCD image. SpliConNet in the
same figure corresponds to color bands intensities of the CCD image
attained via SpliConNet developed. As shown in Fig. 4, we observe
excellent agreement between the ground truth and the SpliConNet
optimized intensity patterns.

Neural networks can better understand the fundamental sci-
ence and drive knowledge discovery in addition to generating use-
ful scientific output using comprehensive datasets. Identifying the
input variables that are relevant for estimating the underlying func-
tion can assist researchers in better understanding the output of
the problem. However, this may not provide information about
the underlying physics. We think that physics-informed neural
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FIG. 4. The output intensity patterns of the SpliCons for (a) red and (b) blue fre-
quency bands that are optimized iteratively (ground-truth) and via SpliConNet. The
cross-sectional views are obtained at y = 480 pixel along where color bands are
concentrated.

networks can be more beneficial in understanding the underlying
physics.43,44

Optimizing a phase plate for broadband light is quite a time-
consuming process. When the number of optimization parameters,
the number of the operating wavelength, the number of pixels,
etc. increase, the computation load gets devastated. The number
of parameters that we can control here reaches up to 2.50 × 104,
and experimental optimization using iterative methods takes up to
2 h. The calculation of a broadband phase plate lasts ∼89 days on
a desktop PC, which is computationally unaffordable.14 Our neu-
ral network models infer phase patterns from intensity distribu-
tions obtained by the Fresnel–Kirchhoff integral without any need
for a prior mathematical model of the diffraction within a few sec-
onds. The current approach presented in this manuscript is embod-
ied by using a neural network architecture based on a data-driven
approach. Our neural network reveals hidden information between
the input and the output data. Thus, spectral and spatial character-
istics of broadband light do not affect the phase plate reconstruc-
tion capability of our neural network architecture. However, spa-
tial coherence plays a crucial role in shaping the wavefront when
a broadband light is used in measurements. The spatial coher-
ence of the sunlight will provide the means to employ our method
experimentally.45

With the transfer learning tool, we can significantly speed
up the training procedure of our neural network model when
new dataset is fed from different setup schemes to reconstruct
phase patterns for desired intensity distributions. Besides, we can
inverse-design phase plates using our neural networks when the
size of intensity distribution is up-scaled or down-scaled. Another
important feature of our neural network-based spatial light con-
centration is to control the spot size of modulated light. Fur-
ther iterative optimization of these phase plate designs yields
enhanced efficiencies, and we call this a hybrid technique that
constitutes the local search optimization algorithm and the neural
network model to improve reconstructed phase patterns of phase
plates.

IV. CONCLUSIONS
In this paper, we presented the design of SpliCons using a

neural network model. Our model shows high accuracy in recon-
structing phase patterns for spectrally splitting and spatially concen-
trating the broadband light. We obtained 97.7% accuracy in CCD
images and 94.9% accuracy in phase plates. Using a reconstructed
phase plate, we concentrate more than an excess of 61.0% light on
a target. We believe that the spectral and spatial control that we
achieve here will pave the way for advanced applications in hologra-
phy, microscopy, and information technologies in addition to solar
energy harvesting. We openly share the fast and accurate frame-
work that we developed in order to contribute to the design and
implementation of diffractive optical elements that will lead to trans-
formative effects in diverse fields that require spatial and spectral
control of light.

SUPPLEMENTARY MATERIAL

See the supplementary material for the SpliConNet architecture
and dataset.
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