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A B S T R A C T   

The exploitation of coal releases large amounts of contaminants into the environment. However, the featured 
pollutants of coal utilization as well as the scope and degree of their impact remain to be revealed. To identify the 
featured-element of coal contamination in a complex environment, a typical coal resource city was selected, and 
the major elements, 18 trace elements, as well as δ13C, δ15N, and δ34S in the fine road dust and certain source 
materials were analyzed. Through multiple analysis methods, the featured-element was determined step-by-step: 
firstly, elements with enrichment coefficients greater than two in road dust were focused: Zn, Hg, Pb, Cu, Cd, and 
Cr; secondly, difference analysis showed a significant difference (p < 0.05) of Hg and Cu concentration at 
different distance from the coal-fired power plant, making Hg and Cu the only candidates for the featured- 
element; finally, through coal-related source materials determination, Cu was not qualified as a featured- 
element. Therefore, Hg was the only left element to be considered as the featured-element. To be more 
convincing, more analyses were performed to support Hg as the featured-element: cluster analysis and isotope 
monitoring indicated Hg in road dust could originate from coal combustion; X-ray photoelectron spectroscopy 
was also conducted, where the forms of Hg in road dust with possible source materials were compared, and the 
presence of HgO and Hg only in the road dust near the power plant indicated the impact of the power plant on 
the surrounding dust. Through the health risk assessment, it was found that Hg in the road dust had no health 
risk, though the study area still had Pb, Cr, and As risks, which were not closely related to the pollutants released 
by coal-related sources.   

1. Introduction 

Coal is one of the main energy sources in the world, especially for the 
fast-growing developing economies (British Petroleum, 2019). Coal- 
smoke air pollution is the dominant type of air pollution in China 
(Kan et al., 2009). The trace elements produced by coal utilization could 
enter the ecological circulation system in various forms along with flue 
gas, fly ash, coal gangue, and other substances (Nielsen and Livbjerg, 
2002; Tang et al., 2013). Even though the electrostatic precipitator and 
other emission reduction facilities have been installed, such possible 
pollution is still inevitable (Scala and Clack, 2008). Coal-fired power 
plants emit a large number of toxic trace elements into the environment, 
among which highly volatile elements can remain in the air for a long 

time and spread locally and globally (Driscoll et al., 2013), impacting 
both the ecological environment and climate change. The emissions may 
also be accompanied by particles settling to the ground and further enter 
the circulation process of the surface ecosystem. Low volatile trace el-
ements, on the other hand, are enriched in the coal ash, which falls into 
the road dust along with coal ash during truck transportation or settles 
from the air nearby (LeGalley and Krekeler, 2013). 

It is necessary to study the road dust in cities with coal development 
industries. One reason is the consideration of health. The inhalation, 
ingestion, and dermal contact of road dust pose a high potential health 
risk to humans (Tian et al., 2019; Žibret et al., 2013). Even extremely 
low concentrations of certain trace elements such as Pb, Cd, Hg, and As 
would cause mutagenic, teratogenic, and carcinogenic effects (Abdul 
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et al., 2015). Trace elements such as Cd, Cr, and Pb in road dust are 
widely found to have extremely high health risks to adults as well as 
children (Bourliva et al., 2016; Krupnova et al., 2020). The other reason 
is the urgent need for precise source appointment and recognition of 
featured contaminants, which is a significant prerequisite for contami-
nation control. 

Some previous source identifications of road dust were often done 
only through some intuitive cluster analysis or primary component 
analysis (Aminiyan et al., 2018; Najmeddin et al., 2018; Prichard et al., 
2009). In those researches, the enrichment of multiple trace elements in 
road dust was generally or coarsely attributed to coal-burning, steel 
smelting, etc. (Duzgoren-Aydin et al., 2006; Sahu et al., 2016). The 
drawback of such method is the obscureness of the major pollution 
source, as well as the lack of knowledge regarding the migration 
pathway of the source pollutants. 

On the other hand, there are some other researches with more 
improved and comprehensive methods. Scholars started to explore the 
featured-elements that distinguish one specific contamination source 
from other sources, which can reflect the distribution and levels of 
pollutants emitted by a certain type of industrial activities. These 
featured-elements are usually referred to as “specific chemical tracers” 
emitted by a single specific source (Viana et al., 2009), “indicator 
element” highly correlated with a certain point source (Zhao et al., 
2013), or “anomalies elements” near the pollution source, which expo-
nentially decrease with the increase of the distances (Teran et al., 2020). 
Although it is not uniformly defined as featured-elements, it has been 
used to identify and quantify the contribution of traffic, steelworks, and 
other sources to ambient particulate matter. 

Researches on contaminant issues and source identification in coal 
mine area mainly involve two aspects: one for the features and patterns 
of the release and migration of toxic elements during coal mining, coal 
combustion, and coal gangue leaching (Elswick et al., 2007; Tang et al., 
2013); the other for the distribution characteristics of trace element in 
sink reservoirs (soil, dust, and sediment, etc.) (Bhuiyan et al., 2010; Liu 
et al., 2017). The methodology of featured-element determination 
included both the above two aspects to have a comprehensive and deep 
insight into the impact of trace elements to the surrounding 
environments. 

Therefore, in this study, road dust samples were collected from a 
typical coal resource city, and analyzed the 18 trace elements in both the 
possible source materials and road dust. There are three major objec-
tives: (i) reveal the characteristics of the enrichment of the trace ele-
ments, as well as their distribution pattern in the studied city, along with 
the comparison with other cities in China and all over the world; (ii) 
explore the pipeline of determining the featured-element of coal 
exploitation using multiple analyses at different dimensions: enrichment 
factors investigation, source material determination, cluster analysis, 
isotope monitoring, and chemical speciation exploration; (iii) assess the 
health risk of trace elements in road dust on humans. 

2. Materials and methods 

2.1. Samples collection 

This research was conducted in Huainan City, which has a large 
number of coal mines and coal-fired power plants that resulted in 
dominant pollution in recent years. The wind direction in the study area 
is mainly southeast. The TJA coal-fired power plant was selected as the 
sampling center because of its non-negligible and representative impacts 
on the surroundings. 

Forty mixed road dust samples were collected from eight different 
directions centered on TJA plant: east by north (E1, E2, E3, E4, E5, and 
E6), northeast (NE1, NE2, NE3), south (S1, S2, S3, S4, S5, and S6), 
southeast (SE1, SE2, SE3, SE4, SE5, and SE6), west by south (W1, W2, 
W3, W4, W5, and W6), southwest (SW1, SW2, SW3, SW4, SW5, and 
SW6), north (N1, N2, and N3) and northwest (NW1, NW2, and NW3), 

together with an extra dust sample (DC) near the entrance of the coal- 
fired power plant (Fig. 1). For sample details please refer to Supple-
mentary Table S1 and our previous study on black carbon in road dust 
(Liu et al., 2020). 

At each sampling point, eight sampling squares were located (fenced 
by four rulers, with an area of 0.5 square meters), and then road dust 
from these squares was collected and mixed as one sample. Then, repeat 
the above steps twice for every two meters distance. Use plastic brushes 
to collect road dust samples and store them in polyethylene bags. Then, 
all dust samples were sieved through 200 mesh (no grinding) to remove 
waste and coarse particles, and obtain fine road dust (<75 μm). Lastly, 
coal-related sources (feed coal, bottom ash, and fly ash from TJA power 
plant, as well as coal gangue used for paving), three roadside soils from 
green belt near-site ES4, and 28 reference suburban soils were also 
sampled. 

2.2. Analysis of element 

Divided the samples into four even groups, and set three replicates in 
each group (0.2 g per sample). Three even groups were used for the 
measurement of As, Hg, and Se by Atomic Fluorescence Spectropho-
tometer (AFS-9130). The detailed digestion methods refer to Liu et al. 
(2018). The fourth group of samples was used for the digestion of other 
elements. Added 8 mL HNO3, 2 mL H2O2, 3 mL HF and 4 mL HClO4 to 
the Teflon digestion vessels containing the samples, and diluted with 5% 
HNO3. Used the Inductively-Coupled Plasma Mass Spectrometer (ICP- 
MS X Series II, Thermo Scientific, Bremen, Germany) to test Be, Cd, Pd, 
Re, Rh, Tl, U, and used the Inductively Coupled Plasma-Optical Emission 
Spectrometer (ICP-OES, Perkin Elmer Optima, 2100DV) to test Ca, Si, Al, 
Fe, Mg, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn. 

The soil certified reference materials GBW07405, GBW07403, and 
coal reference material ZMB1121 (National Center of Standard Mate-
rials of China) were selected to ensure data precision. The recovery rates 
of the measured elements in the reference materials were between 
90.7% and 112%, except for Tl (73.5 ± 6.9%), Be (78.8 ± 3.2%), Se 
(117 ± 5.6%), and U (123 ± 9.4%). The standard curves were linear (R2 

greater than 0.99, n = 6), demonstrating the accuracy and consistency of 
the analytical technique for element determination. Standard solutions 
were tested for every tenth sample, and each sample was tested three 
times to verify the stability and accuracy of the instrument. The blank 
sample and duplicate samples were processed, and the relative standard 
deviations (RSD) of three replicates of each sample were calculated. The 
result showed that the RSD of all elements was 0.2% ~ 17.3%, except for 
Be (43%) and U (32%). 

2.3. Stable isotope analysis 

The Elemental Analyzer-Stable Isotope Mass Spectrometer (Vario 
ISOTOPE Cube-Isoprime, Elementar) was used to determine the total 
carbon (TC), total nitrogen (TN), total sulfur (TS), δ13C, δ15N, and δ34S 
values in the samples. The values of δ13C, δ15N, and δ34S, were calcu-
lated with the following formula: 

δ13Corδ15Norδ34Ssample(‰) = [(Rsample/Rstandard) − 1] × 1000 

where R stands for the ratio 13C/12C or15N/14N or 34S/32S. Vienna 
Pee Dee Belemnite (V-PDB), Atmospheric air nitrogen (N2-atm), and 
CDT (Canyon Diablo Troilite) were used as the isotope standards for 
carbon, nitrogen, and sulfur, respectively. The analytical precision was 
± 0.2‰, ±0.3‰, and ± 0.2‰ for δ13C, δ15N, and δ34S, respectively, 
based on the analysis of the standards. 

2.4. X-ray photoelectron spectroscopy (XPS) analysis 

In this experiment settings, ESCALAB 250 (Thermo-VG Scientific) 
was used to analyze the chemical state and surface chemistry of Zn, Hg, 
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Pb, Cu, Cd, and Cr in the collected samples. The chemical state of the 
dust samples and their composition were studied using a mono-
chromated Al K α X-ray source (1487 eV) at 150 kV, 20 Ma, at a selected 
area of 0.5 × 0.5 mm2. The spectra of particles were found greater than 
1100 eV at the resolution of 1 eV. 

2.5. Data analysis 

First, perform a normal distribution test on the data, and take the 
logarithm of the data that does not conform to the normal distribution. 
Then, use t-test and ANVOA to perform difference analysis. For the data 
that still does not conform to the normal distribution after conversion, 
Mann Whitney and Kruskal-Wallis test was selected instead. For corre-
lation analysis, Spearman’s correlation analysis was adopted. Used Py-
thon to perform cluster analysis (applied the hierarchical clustering 
algorithm on the normalized data matrix). 

The Enrichment Factors (EF) were calculated based on the average 

background elemental values in the suburban topsoil (Table 2). 
Aluminum was regarded as the normalizing element. EF lower than two 
indicates no significant enrichment, value between 5 ~ 20 indicates 
significant enrichment, 20 ~ 40 indicates high enrichment, and above 
40 indicates extreme enrichment (Barbieri, 2016). The calculation for-
mula is as follows: 

EF =
Ci(dust)/CAl(dust)

Ci(soil)/CAl(soil)

where Ci (dust) represents the average value of element i in the dust, 
CAl (dust) represents the average value of Al in the dust, Ci (soil) rep-
resents the average value of element i in soil, and Ci (soil) represents the 
average value of Al in soil. 

The non-carcinogenic and carcinogenic risks of road dust were 
assessed by estimating the exposure hazards of three main pathways 
(direct ingestion, inhalation, and dermal contact) (USEPA, 1986). The 
average daily dose (ADD) for trace elements through these three 

Fig. 1. The map of sampling sites.  

Table 1 
Trace element concentrations (mg/kg) and EF in road dusts. AVG: average value, M: median, SD: standard deviation.   

All road dust (n = 40)  Industrial (n = 7)  Residential (n = 23)  Agricultural (n = 6)  Commercial (n = 4)   

EF Concentration Concentration         

AVG AVG AVG SD AVG SD AVG SD AVG SD  

AVG AVG AVG SD AVG SD AVG SD AVG SD 
As 1.02 12 20 20 11 2.8 9.5 2.8 9 1.3 
Be 0.6 0.98 1 0.21 0.94 0.17 1.2 0.29 0.93 0.16 
Cd 2.9 0.64 0.53 0.21 0.72 0.5 0.2 0.041 1.1 0.3 
Co 0.4 2.94 3.4 1.8 3.2 1.3 2.6 2 1.3 1.1 
Cr 2.3 83 59 17 55 46 34 6.3 360 530 
Cu 4.2 57 53 28 67 99 15 4.9 65 33 
Hg 6.1 0.26 0.27 0.16 0.19 0.2 0.07 0.03 0.97 0.9 
Mn 1.3 431 410 46 410 50 410 59 640 410 
Ni 1.5 23 20 5.3 19 7.3 17 4 55 61 
Pb 4.5 71 60 33 92 210 19 3.7 42 10 
Pd 1.1 1.4 1.2 0.21 1.4 0.12 1.4 0.08 1.4 0.09 
Re 1.2 20 20 1.3 20 1.4 20 0.73 19 1.2 
Rh 1.2 0.18 0.18 0.003 0.19 0.003 0.18 0.003 0.18 0.002 
Se 0.5 1.2 1.8 1.3 1.2 1.3 0.8 0.52 1.1 0.4 
Tl 0.9 0.2 0.21 0.057 0.21 0.061 0.2 0.043 0.17 0.027 
U 1.2 1.3 1.4 0.31 1.3 0.37 0.93 0.13 1.1 0.044 
V 1.2 32 34 5.7 31 4.7 34 5.9 29 3.8 
Zn 13 828 790 1200 1100 2000 90 9.1 270 52  
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pathways are given as following equations: 

ADDing =
C × IngR × EF × ED

BW × AT
× 10− 6 (1)  

ADDinh =
C × InhR × EF × ED

PEF × BW × AT
(2)  

ADDdermal =
C × SA × AF × ABF × EF × ED

BW × AT
× 10− 6 (3)  

HI =
∑

HQ =
∑ADD

RfD
(4)  

CRinh = C ×

(
InhRc×EDc×EF

BWc
+ InhRa×EDa×EF

BWa

)

PEF × ATca
× SFinh (5) 

where ADDing, ADDinh and ADDdermal represent the ADD for inges-
tion, inhalation, and dermal contact, respectively; HQ (hazards quo-
tient) represents the risk of different exposure routes; HI (hazard index) 
represents the sum of the risks of the three exposure pathways; CRinh is 
inhaled carcinogenic risk. ABF stands for absorption factor (the ABF of 
As is 0.03, the ABF of other elements are 0.001); RfD is the reference 
dose (mg kg− 1 day− 1), which is an estimation of the maximum 
permissible risks to human population through daily exposure during a 
lifetime (USEPA, 2011). SFinh represents the carcinogenic slope factor 
(mg kg− 1 day− 1)− 1 of inhalation exposure (USEPA, 2009). The RfD and 
SFinh of each element are listed in Table 3. The detailed description of 

the definition and values of other parameters for children and adults 
applied to Eqs. (1) - (5) are given in Supplementary Table S2 (Li et al., 
2001; USDOE, 2011; USEPA, 2001, 2002, 2011; Zheng et al., 2010). 

CRinh lower than 10− 6 can be regarded as negligible, 10− 6 ~ 10− 4 

means tolerable risk, higher than 10− 4 means potential high risk to 
humans (Ferreira-Baptista and De Miguel, 2005; USEPA, 2001). HI ≤ 1 
indicates no adverse health risk, and HI greater than 1 indicates likely 
adverse health effects (USEPA, 2011). 

3. Results and discussion 

3.1. Enrichment and distribution of trace elements in road dust 

Table 1 shows the average concentration and EF of trace elements in 
all road dust. Among the 18 trace elements investigated, the trace ele-
ments with an average EF greater than two included: Zn (13) > Hg (6.1) 
> Pb (4.5) > Cu (4.2) > Cd (2.9) > Cr (2.3), which served as the can-
didates of the featured-element due to their high concentration. Fig. 2 
shows the comparison of the enrichment coefficient (EC) (to make data 
representation comparable, EC here was defined as the ratio of the 
concentration of element in road dust to that in the upper crust (Rudnick 
and Gao, 2003)) of these six elements in road dust from cities heavily 
affected by coal-fired power plant and other types of cities around the 
world. 

Compared with other five cities affected by coal-fired power plants, 
the EC of Zn and Hg in this study were relatively higher: Zn was only 
lower than that of sites near power plant in Guangzhou, and the Hg was 

Table 2 
Elements and stable isotopes in road dusts and possible sources.  

Sample Zn Hg Pb Cu Cr Cd Al δ15N δ13C δ34S TC TN TS   

mg/kg g/kg ‰ %  

Road dust (n = 40) AVG 830 0.26 71 57 83 0.64 20 4.9 − 15.1 4.7 6.5 0.21 0.16  
MIN 72 0.027 16 9.8 26 0.13 12 − 4.3 − 24.1 − 11.9 2.3 0.06 0.006  
MAX 8700 2.3 1000 490 1300 1.8 36 14.7 − 7.4 19.7 12 0.49 1.8  
M 230 0.14 35 35 45 0.62 19 5.04 − 15.7 5.1 6.8 0.2 0.02  
Roadside soil (n = 3) AVG 84 0.069 21 21 55 0.24 44 1.11 − 21.9 NA 1 0.13 NA  
Coal gangue (n = 3) AVG 250 0.25 43 33 130 0.56 21 9.68 − 21.7 7.4 3.2 0.39 0.32  
Feed coal (n = 3) AVG 260 0.053 34 35 26 0.7 28 NA − 23.8 3.4 11 NA 0.48  
Bottom ash (n = 3) AVG 85 0.55 12 15 15 0.35 12 NA − 23.3 1.6 1.4 NA 0.05  
Fly ash (n = 3) AVG 56 1.2 20 22 17 0.49 10 NA − 23.4 − 0.9 0.71 NA 0.04  
Suburban soil (n = 28) AVG 76 0.051 19 16 43 0.26 23 1.99 − 23.3 NA 0.66 0.15 NA  

AVG: average value, M: median, MIN: minimum, MAX: maximum, NA: not applicable. 

Table 3 
The results of health risk assessment.  

Index Group  Zn Hg Pb Cu Cd Cr As 

HQing Children AVG 3.53E-02 1.12E-02 2.58E-01 1.82E-02 8.24E-03 3.53E-01 5.13E-01   
MAX 3.69E-01 1.00E-01 3.82E + 00 1.58E-01 2.27E-02 5.47E + 00 2.81E + 00  

Adults AVG 4.73E-03 1.51E-03 3.47E-02 2.44E-03 1.11E-03 4.74E-02 6.88E-02   
MAX 4.95E-02 1.34E-02 5.12E-01 2.12E-02 3.04E-03 7.34E-01 3.76E-01 

HQinh Children AVG 9.89E-07 1.10E-06 7.21E-06 5.07E-07 2.31E-07 1.04E-03 1.43E-05   
MAX 1.03E-05 9.83E-06 1.07E-04 4.41E-06 6.36E-07 1.61E-02 7.84E-05  

Adults AVG 4.45E-07 4.97E-07 3.24E-06 2.28E-07 1.04E-07 4.68E-04 6.46E-06   
MAX 4.66E-06 4.42E-06 4.80E-05 1.99E-06 2.86E-07 7.25E-03 3.53E-05 

HQderm Children AVG 2.86E-04 2.60E-04 2.79E-03 9.82E-05 1.34E-03 3.44E-02 6.09E-02   
MAX 2.99E-03 2.32E-03 4.13E-02 8.55E-04 3.68E-03 5.33E-01 3.33E-01  

Adults AVG 7.30E-04 6.65E-04 7.13E-03 2.51E-04 3.41E-03 8.78E-02 1.55E-01   
MAX 7.64E-03 5.92E-03 1.05E-01 2.18E-03 9.39E-03 1.36E + 00 8.50E-01 

HI Children AVG 3.56E-02 1.15E-02 2.61E-01 1.83E-02 9.57E-03 3.89E-01 5.74E-01   
MAX 3.72E-01 1.02E-01 3.86E + 00 1.59E-01 2.64E-02 6.02E + 00 3.14E + 00  

Adults AVG 5.46E-03 2.17E-03 4.18E-02 2.69E-03 4.52E-03 1.36E-01 2.24E-01   
MAX 5.71E-02 1.94E-02 6.18E-01 2.34E-02 1.24E-02 2.10E + 00 1.23E + 00 

CRinh  AVG   3.68E-09  5.03E-09 4.31E-06 2.25E-07   
MAX   5.44E-08  1.38E-08 6.68E-05 1.23E-06 

RfDing   3.00E-01 3.00E-04 3.50E-03 4.00E-02 1.00E-03 3.00E-03 3.00E-04 
RfDinh   3.00E-01 8.57E-05 3.52E-03 4.02E-02 1.00E-03 2.86E-05 3.01E-04 
RfDderm   6.00E-02 2.10E-05 5.25E-04 1.20E-02 1.00E-05 5.00E-05 1.23E-04 
SFinh     4.20E-02  6.30E + 00 4.20E + 01 1.51E + 01  
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only lower than that of sites from Yuanping, a major coal transportation 
hub between the south of Shanxi and northern China (Li and Liao, 
2018). Compared with other types of cities, the EC of Zn in road dust in 
this study was lower than that in industrial city in Northern Spain 
(Avilés) (Ordóñez et al., 2003), central China (Zhuzhou) (Li et al., 2013) 
and Northwest China (Baoji) (Wang et al., 2014). For Hg, except Zhuz-
hou and Avilés, Hg in road dust was also lower than metropolis in 
Eastern China (Shanghai), northwestern China (Xi’an) (Han et al., 
2006), the capital of China (Beijing) (Tanner et al., 2008), a major in-
dustrial center of Russia (Chelyabinsk) (Krupnova et al., 2020), as well 
as the oil capital of Iran (Ahvaz) (Najmeddin et al., 2018). All these 
indicated that, besides coal exploitation, certain industries and complex 
factors also have significant impact on heavy metals like Zn and Hg. 

The concentrations of each element in various functional areas (in-
dustrial, residential, agricultural, and commercial) are shown in Table 1. 
The concentration of Zn, Hg, Pb, Cu, Cd, and Cr in agricultural areas was 
the lowest among different functional areas. Zn, Pb, and Cu showed the 
highest concentration in residential areas. The concentrations of Hg and 
Cr were the highest in commercial areas. Through the difference anal-
ysis, these six elements showed significant differences (p < 0.05) among 
different functional areas, indicating different types of anthropogenic 
activities could exert different influences on them. However, the same 
problem also existed in this study regarding the layout of functional 
areas just as in many other cities around the world: the residential and 

commercial areas were very close to the power plant, and the impact of 
the power plant could not be ruled out. 

To study the impact of the power plant on the surrounding envi-
ronment, the differences of the elements in the road dust at different 
distances from the power plant were further explored. The results 
showed that among the six trace elements, only Hg and Cu had this 
pattern where the element concentrations in road dust samples closer to 
the power plant were significantly higher than those far away, though 
not strictly linear or exponential (Fig. 3): the concentration of Hg in road 
dust at 1 km distance away from power plants was significantly higher 
(p ≤ 0.001) than those at 6 km and 10 km; for Cu, the most significant 
difference was found at distance 2 km vs. 6 km. In addition, the differ-
ences of elements in road dust from different directions from the power 
plant were also explored. According to the results, none of the six ele-
ments showed significant differences in different directions, indicating 
that the enrichment distribution of these elements had no direct rela-
tionship with the direction from the power plant. 

After the above difference analysis of the element concentration at 
different distances from the power plant, Hg and Cu were the only two 
possible candidates of the featured-element in road dust that affected by 
coal exploitations. 

Fig. 2. The enrichment coefficients of trace 
elements in road dust from cities around the 
world (Christoforidis and Stamatis, 2009; 
Das et al., 2020; Duzgoren-Aydin et al., 
2006; Ferreira-Baptista and De Miguel, 2005; 
Han et al., 2006; Hu et al., 2011; Krupnova 
et al., 2020; LeGalley and Krekeler, 2013; Li 
and Liao, 2018; Li et al., 2013; Najmeddin 
et al., 2018; Ordóñez et al., 2003; Rasmussen 
et al., 2001; Sahu et al., 2016; Tanner et al., 
2008; Wang et al., 2014; Wei et al., 2009; 
Žibret et al., 2013).   

Fig. 3. The distribution of Hg and Cu around coal power plant.  
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3.2. Source material analysis to screen out more candidate featured- 
elements 

If the concentrations of some elements in road dust are higher than 
the possible source material, it implies that the influence of these source 
materials on the elements in road dust is limited. Based on this, we 
analyzed the element concentration in road dust as well as in possible 
source materials. As shown in Table 2, the concentrations of Zn in bot-
tom ash and fly ash are significantly lower than in road dust, and Zn in 
coal gangue and feed coal has comparable median value of concentra-
tion with road dust. For Pb and Cu, their concentrations in any possible 
source substances in this study were all lower than those in road dust. 
These facts indicated that the enriched Zn, Pb, and Cu in road dust were 
more related with other sources. On the other hand, the average con-
centration of Hg in road dusts was moderately lower than in bottom ash, 
fly ash, and coal gangue for road paving. The mean concentrations of Cd 
and Cr in road dusts were lower than those in feed coal and coal gangue 
used for paving, respectively. 

To conclude, through this source material analysis, Cu was screened 
out from the featured-element candidates due to the limited influence of 
possible coal-related source materials on the Cu concentration in road 
dust. Combined with the previous summary, Hg was the only element 
left that was qualified for the featured-element. Nevertheless, we did a 
few more analyses as follows at different dimensions to better support 
and demonstrate this argument. 

3.3. Cluster analysis and evidence for source identification of studied 
elements 

The cluster results of all elements in road dusts are shown in Fig. 4. 

The elements could be categorized into five classes: (1) Pb and Re; (2) 
Co, Hg, Cu, U, C, Ca, and Mg; (3) Pd and Rh; (4) Si, Ti, V, Al, and Be; (5) 
As, Mn, Cr, Ni, Cd, N, Fe, Se, and Zn. Among them, class 1 and class 2 are 
more likely to originate from industrial sources such as coal-fired power 
plants, because Pb and Hg are found primarily sourced from coal-fired, 
stationary industrial emissions and waste incineration (Chiaradia and 
Cupelin, 2000; Driscoll et al., 2013; Bi et al., 2018); class 3 and class 5 
are primarily derived from transportation pollutants, with the minor 
difference that class 3 from vehicle catalytic converters, because plat-
inum group elements are substantially impacted by traffic flow condi-
tions (Mathur et al., 2011), while class 5 from tire wear and components 
corrosion, because a number of researches reported that enriched Zn, Ni, 
Cu, and Cr are possibly derived from tire and brake wear (Amato et al., 
2014); class 4 is mostly impacted by natural sources (Shi and Lu, 2018). 

According to the cluster analysis of sampling sites, DC and E1 stood 
out for highly unique features. Firstly, samples from these two sites had 
substantially more mixed coal ash which was even visible to human 
eyes. Secondly, with respect to element enrichment, road dust from 
these two sites had significantly lower Pd, Rh (typical elements released 
from automobile catalytic converters), and higher Hg compared to all 
other sampling sites, with the EF of Hg as high as 13. The significantly 
lower Pd, Rh, and higher Hg indicated that these two sampling sites 
suffered less from traffic flow than urban arterial roads, and were 
severely affected by coal-fired power plants. 

3.4. Isotopic evidence for source identification of studied elements 

Correlations of isotopes (δ13C, δ15N, and δ34S) and trace elements 
could be an indicator of the impact of coal exploitation on these ele-
ments. δ13C, δ15N, and δ34S have a large variation of concentration in 

Fig. 4. Cluster analysis of elements and sampling sites.  
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road dust, with the ranges as − 24.1‰ ~ − 7.4‰, − 4.3‰ ~ 14.7‰ and 
− 11.9‰ ~ 19.7‰, respectively (Table 2). Correlation analysis of 
isotope and multiple elements showed δ13C was positively correlated 
with Ca and Mg, and δ34S was only positively correlated with Si and Rb 
(p < 0.05). For δ15N, it was found positively correlated with all six el-
ements whose EF were higher than two (Zn, Hg, Pb, Cu, Cd, and Cr) (p <
0.05). Besides, these six elements were also observed positively corre-
lated with each other (R greater than 0.5, p < 0.05). These facts implied 
that these elements might be homologous in road dust. 

By observing Hg alone, the relationship between δ13C, δ15N, and the 
EF of Hg is visualized in Fig. 5. The ranges of δ13C and δ15N in most 
samples were from − 20‰ to − 10‰ and 2‰ to 10‰, respectively. 
Previous studies find that the δ13C values for coal combustion are from 
− 24.9‰ to − 21‰ (Gleason and Kyser, 1984; Widory, 2006), and the 
δ15N from coal-fired power plants and natural gas combustion are 6‰ ~ 
13‰ and 2.9‰ ~ 15.4‰, respectively (Heaton, 1990; Widory, 2007). In 
the figure, the high enrichment of δ13C in road dust is speculated to 
originate from the carbonate carbon in dust (Kunwar et al., 2016). The 
δ15N tends to be a better indicator of Hg influenced by coal than δ13C, 
where the sampling sites far away from the coal power plant generally 
had lower Hg and δ15N, while the closer sites had higher Hg and δ15N. 
Also the δ15N concentrations in the closer sites were within the range of 
coal produced side products. This correlation between δ15N and Hg 
partly demonstrated the argument of Hg as the featured-element of coal 
exploitation. 

3.5. Speciation analysis of Hg 

The X-ray photoelectron spectroscopy (XPS) spectra of Hg in possible 
source materials and three selected road dust samples (S1, S2, and S4) 
were analyzed to investigate some clues from their chemical speciation 
of Hg (Fig. 6). The XPS spectra of Hg had only one peak in road dust (S2 
and S4), feed coal, and coal gangue used for paving. Although their peak 
shapes were similar, there were large variations of the positions of the 
peaks as well as Hg concentration among these samples (Fig. 6(a)). For 
road dust S1, soil, fly ash, and bottom ash, the XPS spectra of Hg had 
double peaks, among which, the S1 road dust sample shared similar 
peak shapes with fly ash and bottom ash, possibly because of the prox-
imity of S1 to the power plant (Fig. 6(b)). Five Hg species can be iden-
tified in the three road dust samples: HgS at 102.2 eV, HgSO4 at 102.8 
eV, HgCl2 at 103.4 eV and 106.3 eV, Hg at 104 eV, and HgO at 104.8 eV 

(Hao et al., 2018; Humbert, 1986; Hutson et al., 2007; Lin et al., 2019; 
Wang et al., 2010; Zhao et al., 2014). 

For the S1 sample, which was the closest to the power plant, the Hg 
XPS spectra peak shape was very similar to fly ash and bottom ash. 
Components analysis showed the composition of S1 shared the same 
substances as S2 and S4, but also exclusively included HgO and Hg. 
Emission from coal combustion was speculated to be the source of HgO 
and Hg in S1 sample, because based on the analysis of the form of Hg in 
possible source materials, only bottom ash and fly ash had both Hg and 
HgO. 

3.6. Health risk assessment 

The highly toxic components in road dust, such as HgCl2 and HgO, 
made it necessary to estimate the health risk of trace elements in road 
dust. Table 3 lists the results of health risk estimation caused by three 
exposure pathways of road dust. From the table, the average values of 
HQing, HQinh, and HQderm of trace elements in all road dust samples are 
lower than 1, indicating that the average values of elements in road dust 
are at safe levels. However, it is worth noting that the HQing for children 
was larger than 1 for Pb in E3 samples, Cr in SW1 and SW3 samples, and 
As in NW1 and N1 samples. Previous studies also find children to have 
an especially higher risk of oral ingestion of trace elements exposure in 
road dust (Keshavarzi et al., 2015). The risk levels of element ingestion 
for children were in the order of As > Cr > Pb > Zn > Cu > Hg > Cd. The 
reason for the outstanding exposure risk of As could be that the ab-
sorption factor of As was 0.03, and the other elements were 0.001 when 
calculated (USEPA, 2001). 

Different from some researches which concluded oral ingestion as 
the main route of exposure to road dust (Liu et al., 2014; Zheng et al., 
2013), this study found that dermal contacts could also be a significant 
route for adults. The sum of the exposure risks of all elements in children 
was ranked as HQing > HQderm > HQinh, which was consistent with many 
researches, where they believed that the risk of inhalation was very low 
and could be ignored (Mohmand et al., 2015; Wang et al., 2016). 
However, for adults, the order of the sum of exposure risks of all ele-
ments was: HQderm > HQing > HQinh. The HQderm of Cr in the SW3 
sample, as well as the HQderm of As in E1 sample, were both larger than 
1, indicating that these sampling locations had potential health risks of 
element exposure. 

Hazard index (HI) indicated the total risk of elements, and the risk 

Fig. 5. Distribution of δ13C, δ15N, and the EF of Hg in road dusts. The coal produced δ13C (− 24.9‰ ~ − 21‰) and δ13N (6‰ ~ 13‰) values refer to Gleason and 
Kyser (1984), Widory (2006, 2007) and Heaton (1990). 
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level order for children was As > Cr > Pb > Zn > Cu > Hg > Cd, and for 
adults As > Cr > Pb > Zn > Cd > Cu > Hg. Although the average HI 
value for all elements was smaller than 1, the HI of Pb, Cr, and As in 
some sampling sites were larger than 1, and these elevated elements had 
potential neurological and developmental health effects (Siegel, 2002). 
For carcinogenic risk estimation, because only inhalation may cause 
cancer, this study only considers the risk of inhalation. Only Cr in road 
dust had CRinh average value larger than 10− 6, though As in certain 
samples also had CRinh larger than 10− 6. However, the CRinh values of all 
elements were all smaller than 10− 4. It could be concluded that the 
carcinogenic risks through inhalation of Cr and As were in an acceptable 
range, and other elements had no such risk (Lanphear et al., 2005). 

4. Conclusion 

Trace elements whose EF higher than two were focused among 18 
trace elements in road dust around coal-fired power plant. Based on the 
difference analysis of distance from the power plant and source material 
composition analysis, Hg was found the only element to be qualified as 
the featured-element of coal contamination. The evidence from cluster 
analysis, isotope monitoring, and XPS observation further supported 
that Hg could be the featured-element driven by coal ash particulate 
diffusion. Through the health risk assessment, Hg had no health risk. 
Some sampling sites had certain non-carcinogenic exposure risks of Pb, 
Cr, and As, and the inhaled carcinogenic risk of Cr and As was within an 
acceptable range. Coal utilization is a common pollutant output source 
in the world, which should not be ignored or overstated. This study 
intends to provide a model for addressing accurate source appointment 
of multi-elements in complex environments, and hopefully would be 
applied to more cases in the future. 
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