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ABSTRACT 
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Seismic performance of structures designed in accordance with conventional force-

based design (FBD) codes can vary significantly since (1) estimation and distribution 

of earthquake loads are based on initial stiffness of members and (2) force reduction 

factors are based on the rough assumption that all members will yield 

simultaneously. In recent decades, attempts to predict the seismic performance of 

structures resulted in the development of several guidelines for evaluation and 

rehabilitation of existing buildings (e.g., FEMA 273/356, ASCE/SEI 41). On the 

contrary, currently there is no performance-based design (PBD) code. As a matter of 

fact, while seismic performance assessment of existing buildings is a difficult task 

alone due to wide range of variabilities involved in seismic design parameters; PBD 

of a new structure by conventional means is practically impossible as size and 

detailing of members are also unknown at the start of the design process, yielding in 

numerous alternative design solutions. Although it is possible to automate the PBD 

process by optimization methods, a large number of nonlinear analyses required 

during optimization process take excessive computational time.  
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In this study, a novel design-driven optimization technique called Capacity 

Controlled Search (CCS) is proposed for achieving time-efficient optimum design 

of steel structures under the FBD and PBD methodologies. The success of the 

proposed method is first numerically investigated and justified by comparing its 

performance with those of several metaheuristic techniques on FBD optimization 

problems featuring various 2-D and 3-D ordinary moment resisting steel frames. 

Later, the same steel frames are optimally designed by PBD approach using the CCS 

method. A comparison of optimally designed structures via FBD and PBD 

methodologies is then carried out in terms of design cost and seismic performance. 

Finally, a practical multi-objective optimization approach is adopted to form the 

trade-off relationship between design cost and seismic performance, and alternative 

performance-based design solutions are presented. 

The numerical results indicate the computational efficiency of the proposed 

optimization technique and suggest that more economical designs with predictable 

seismic performance can be produced for steel frames by the PBD approach than the 

conventional FBD. 

 

Keywords:  Performance Based Design, Structural Optimization, Multi-objective 

Optimization, Steel Frame Structures 
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ÖZ 

 

ÇELİK YAPILARIN ÇOK-AMAÇLI PERFORMANS TABANLI 

TASARIM OPTİMİZASYONU 
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Tez Yöneticisi: Prof. Dr. Oğuzhan Hasançebi 

Ortak Tez Yöneticisi: Prof. Dr. Ahmet Yakut 

 

 

Mayıs 2021, 101 sayfa 

 

Geleneksel kuvvet tabanlı tasarım standartlarına göre tasarlanan yapıların deprem 

performansları büyük farklılıklar gösterebilir. Bunun sebebi, deprem yüklerinin 

hesabının ve dağılımının, yapı elemanlarının rijitliklerinin ilk değerlerine bağlı 

olması ve deprem yükü azaltma katsayılarının tüm yapı elemanlarının aynı anda 

akmaya başlayacakları varsayımına dayanmasıdır. Son yıllarda, yapıların deprem 

performansını tahmin etme arayışı, mevcut yapıların performansını değerlendirmeye 

ve bu yapıların güçlendirilmesine yönelik kılavuzların geliştirilmesine olanak 

sağlamıştır (FEMA 273/356, ASCE/SEI 41). Öte yandan, hali hazırda yeni yapılar 

için performans tabanlı tasarım standardı bulunmamaktadır. Bunun esas sebebi, 

mevcut binaların deprem performansının değerlendirilmesi deprem tasarım 

parametrelerindeki sayısız değişkene bağlı olarak başlı başına zor bir iş iken, yeni 

bir yapının konvansiyonel yöntemlerle performans tabanlı tasarımının, tasarım 

başında tüm bu değişkenlere ek olarak yapı elemanlarının boyutları ve 

detaylandırmaları da belli olmadığından, pratik olarak neredeyse imkânsız olmasıdır. 

Optimizasyon yöntemleriyle her ne kadar performans tabanlı tasarım süreci 
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otomatize edilebilse de optimizasyon süresince gereken doğrusal olmayan analiz 

yöntemleri hesaplama sürelerini oldukça uzatmaktadır.  

Bu çalışmada CCS adında, tasarım odaklı, yenilikçi bir optimizasyon tekniği 

geliştirilmiş ve geliştirilen bu tekniğin performansı bazı üstsezgisel algoritmalarla 

kıyaslanmıştır. Daha sonra geliştirilen bu teknikle optimize edilen kuvvet tabanlı ve 

performans tabanlı yapı tasarımlarının maliyet ve deprem performansları yönünden 

bir karşılaştırılması sunulmuştur. Son olarak pratik bir çok-amaçlı optimizasyon 

yaklaşımı kullanılarak, bu yapıların tasarım maliyeti ve deprem performansı 

arasındaki takas eğrileri oluşturulmuş, alternatif performans tabanlı tasarım 

çözümleri sunulmuştur. 

Sayısal sonuçlar, geliştirilen tekniğin hesaplama verimliliğini ortaya çıkarırken; 

çelik çerçeve yapıların performans tabanlı tasarım yaklaşımıyla -geleneksel kuvvet 

tabanlı tasarım yaklaşımına kıyasla- daha ekonomik ve öngörülebilir deprem 

performansına sahip bir şekilde tasarlanabileceğine işaret etmektedir. 

 

Anahtar Kelimeler:  Performans Tabanlı Tasarım, Yapısal Optimizasyon, Çok-

amaçlı Optimizasyon, Çelik Çerçeve Yapılar 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Structural Optimization at a Glance 

With the world population approaching 8 billion, natural resources are rapidly being 

depleted and polluted. As far as the steel industry is concerned, numerous studies 

have been published investigating its impact on the environment caused by emitting 

various pollutants and consuming non-renewable energy sources (Burchart-Korol, 

2013; Di Schino, 2019; Olmez et al., 2016; Tongpool et al., 2010). Considering that 

about half of the total steel production is used in the construction industry (T. Wang 

et al., 2007) for buildings (64%) and infrastructure (36%) (Moynihan & Allwood, 

2012), engineers must adopt new ways to utilize steel more efficiently in the design 

of new structures, not only to reduce costs but also to preserve the nature. 

Traditionally, structural design is an iterative process where an engineer or a group 

of engineers, based on experience, engineering judgment, and some preliminary 

analyses, determines the initial design configuration. Then, this configuration is 

analyzed, and if necessary, it is modified to satisfy the design requirements and 

reduce the cost. Generally, this sequence is repeated several times only until an 

acceptable solution is achieved. Thus, the resultant design is often not a cost-efficient 

one. However, if this old school trial-and-error approach is replaced by optimization 

tools and reformulated as an optimization problem, the design process can be 

automated to deliver code-compliant, cost-efficient designs.  

An optimization problem has three fundamental elements. The first one is the 

objective function. In structural design optimization, the objective function is usually 

the structural weight, and it is tried to be minimized since the cost is directly 

associated with the amount of material used. The second element is the vector of 
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design variables. It defines the design configuration and may include one or more 

properties, such as member cross-sections, orientations of structural members, and 

joint locations. The third component consists of various constraints that must be 

satisfied. From the structural design point of view, constraints are the requirements 

imposed by design codes and construction practices.  

There are three models for structural design optimization: (1) topology optimization, 

which aims to find the best distribution of materials in a structure through deciding 

the existence of structural elements; (2) shape optimization, which seeks to find the 

best geometry of a given structural system by determining locations of joints; (3) 

size optimization, which aims to find the best distribution of cross-sections for 

members of a given structural system, either by assigning any arbitrary (real-valued) 

section properties to members (continuous sizing optimization) or by selecting them 

from a discrete set of predefined sections (discrete sizing optimization). 

In general, discrete sizing optimization is the only model applicable to steel frame 

structures since the topology and the shape are usually determined in the architectural 

design stage. Besides, the steel members must be selected and assigned from a set of 

commercially available steel profiles. 

Once the structural optimization model is determined and the resultant optimization 

problem is formulated accordingly, an optimization method is selected to solve this 

problem at hand. Optimization methods that are used for structural optimization 

problems can broadly be classified into two categories as traditional mathematical 

techniques and modern metaheuristic techniques (Saka et al., 2016). The 

mathematical techniques can further be divided into two subcategories as 

mathematical programming methods and optimality criteria methods. These 

techniques require gradient information to guide the search process, which in turn 

makes them impractical for handling discrete optimization problems. Moreover, the 

quality of the optimum solution (final design) obtained with these methods is highly 

dependent on the starting point (initial design) of the optimization process such that 

usually, the search process converges to a local optimum nearest to the starting point. 
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Hence, if the optimization process is initiated from a poor design point, it may end 

up in a poor local optimum, which is very far from the global one. Thus, these 

methods are less likely to reach a global (or near-global) optimum, especially for 

complex design problems where numerous local optimum solutions may exist. 

On the contrary, metaheuristics do not require gradient information or a good starting 

point. They can be applied to both discrete and continuous optimization problems. 

Given their inherent explorative capability all over the design space, they are also 

suitable for complex optimization problems. However, these techniques employ 

blind search strategies which are based on improving the best solutions obtained so 

far using random moves according to nature-inspired or swarm intelligence learning 

methodologies, and therefore they usually require a large number of function 

evaluations or response calculations, resulting in a slow convergence rate and an 

excessive amount of computing time. Even with the well-established algorithms of 

this category, depending on the size and complexity of the problem, at least several 

thousands of function evaluations are needed before reaching the global (or near-

global) optimum (Hasançebi et al., 2009, 2010). 

Several different strategies have been implemented to achieve a time-efficient 

optimization of large structures with metaheuristics. Some researchers (Hasançebi et 

al., 2011; Papadrakakis et al., 2003; Sarma & Adeli, 2001) adopted a parallel 

computing approach in which the computational work of structural analyses is 

distributed within a cluster of computers. Other researchers took advantage of 

artificial neural networks (ANNs) which are used to estimate structural response 

parameters of a structure, rather than implementing exact and time-consuming finite 

element analyses (Gholizadeh, 2015; Gholizadeh & Milany, 2016; A Kaveh et al., 

2008; Papadrakakis et al., 1998) or constraint violations (Kaveh et al., 2012). 

Unfortunately, the former approach requires costly hardware set-ups, and the latter 

requires a sufficiently large and diverse training set. The size of the training set will 

be inordinate or even impractical for large-scale problems with a question on the 

accuracy of approximation.  
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An alternative and probably more effective way to solve structural optimization 

problems is to use analysis and design data to guide the optimization process. Such 

algorithms are referred to as design-driven optimization techniques. Early examples 

of these techniques include the well-known fully stressed design (FSD) and its 

extensions: fully utilized design (FUD) and modified fully utilized design (MFUD) 

(Patnaik et al., 1998). These algorithms may also be considered as variants of 

optimality criteria as they utilize a simple stress ratio (Kazemzadeh Azad, 2014). 

Although having a fast convergence rate, the fully stressed design method and its 

extensions may have some disadvantages. For example, FSD can only handle stress 

constraints. On the other hand, FUD can handle both stress and displacement 

constraints by prorating the FSD by a factor determined based on the most violated 

displacement constraint, yet it usually leads to overdesign solutions since structural 

elements may have different efficiencies in controlling a displacement constraint. 

MFUD provides improvements over FUD by using the Integrated Force Method 

(IFM) to identify critical members for each violated displacement constraint and, 

unlike FUD, applies different prorating factors for each member.  

One of the recent extensions of FSD is the Fully Stressed Design Evolution Strategy 

(FSD-ES) (Ahrari & Atai, 2013; Ahrari & Deb, 2016), which combines the design-

driven deterministic approach of FSD with global search capabilities of ES. It has 

been shown that this method demonstrates superior performance in comparison to 

other techniques, producing the best results for some selected benchmark 

optimization problems in the literature. Displacement constraints in this method are 

also handled by the utilization of the unit load method. 

Another instance of the design-driven techniques is the fully constrained design 

(FCD) method (Flager et al., 2011), which utilizes the unit displacement method to 

map the global displacement constraint to each design variable in terms of strain 

energy density (SED). SED for each member is calculated and normalized by the 

highest SED to obtain SED ratios. Member stress and deflection constraints are also 

formulated as demand-to-capacity ratios. The optimization process is then guided 

based on the most critical constraint ratio of each design variable. It is important to 
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note that the numerical applications of MFUD, FSD-ES and FCD methods are 

limited to truss type structures. 

Apart from MFUD, FSD-ES and FCD, the principle of virtual work has been 

employed for structural optimization problems with displacement constraints in 

many other studies (Chan, 2001; Elvin et al., 2009; Kazemzadeh Azad et al., 2014; 

Kazemzadeh Azad & Hasançebi, 2015; Park & Park, 1997; Walls & Elvin, 2010). 

Among these studies, guided stochastic search (GSS) (Kazemzadeh Azad et al., 

2014; Kazemzadeh Azad & Hasançebi, 2015) is worth mentioning as it can handle 

multiple displacement constraints and is directly applicable (no sectional 

transformation) to discrete sizing optimization of both frame and truss type 

structures. In this method, the principle of virtual work is utilized to determine the 

displacement participation factor (DPF) of each member for all displacement 

constraints separately. When normalized by the volume, this factor gives a sensitivity 

index (SI) that represents the effectiveness of a member in satisfying a displacement 

criterion. Later, the search process is guided based on the SI values and information 

gathered from previous analyses and design calculations. 

Another attempt is to develop hybrid metaheuristic techniques, where two or more 

algorithms are combined to produce an effective hybrid method that improves the 

computational speed and the quality of the optimum solution as compared to the 

cases where the techniques are implemented alone (Ting et al., 2015). Hybrid 

metaheuristic techniques have recently found applications in structural optimization 

literature; particularly in optimum design of trusses (Cheng et al., 2016; Kaveh et al., 

2014; Kaveh & Ilchi Ghazaan, 2018; Kaveh & Mahdavi, 2015; Kaveh & Talatahari, 

2012).  Kazemzadeh Azad (2017) proposed several guided hybrid metaheuristic 

techniques, introducing a basic procedure based on member demand-to-capacity 

ratios for generating new candidate solutions, and reported significant computational 

savings particularly in the early stages of the optimization process. 
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1.2 An Overview of Performance Based Design  

In conventional Force Based Design (FBD) codes, a structure is expected to endure 

service loads under various load combinations without showing excessive 

deformations or vibrations. Under seismic forces, the structure is allowed to go 

through inelastic deformations (i.e., plastic hinging) up to an acceptable limit. This 

is provided by means of a strength (force) reduction factor applied on the elastic 

response spectrum. Undesired failure modes or hinge formations are avoided by a 

prescriptive capacity design approach to ensure the ductility of the system. Although 

conventional force-based design codes generally yield satisfactory designs, there are 

some major problems as summarized in Priestley et al. (2007): 

1. Period determination and distribution of design forces depend on initial 

stiffness estimates of structural members. 

2. Even if initial stiffness is precisely known, the distribution of seismic 

forces based on initial stiffness is irrational as different structural 

members cannot be forced to yield simultaneously. 

3. Unique force reduction factors (based on ductility capacity) consider 

structural type and material but do not reflect the geometry of different 

structural systems. 

Consequently, the protection against earthquake damage changes significantly, even 

for the structures designed under the same code regulations. This is especially 

important if the questions about the life-cycle cost of a structure are concerned, e.g., 

under a particular seismic hazard, how much damage will occur? how much will be 

the repair cost? for how long the structure will be out of service, and what will be 

the associated cost? etc. These questions resulted in the emergence of a new design 

approach called the Performance Based Design (PBD) more than two decades ago. 

SEAOC Vision 2000 (1995), ATC-40 (1996), and FEMA-273 (1997) are the first 

guidelines which introduced the performance concepts into structural engineering. 

While SEAOC Vision 2000 was used for analysis and design for new buildings, and 

ATC-40 and FEMA-273 were introduced for seismic evaluation and rehabilitation 
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of existing buildings, both of them were later superseded by FEMA-356, ASCE 41-

06, ASCE 41-13, and ASCE 41-17, respectively.  

These guidelines suggest performance objectives for quantifying the seismic 

protection of existing structures. A performance objective is a pairing of a hazard 

level with a target structural performance level and a nonstructural performance 

level. A building is considered to attain a certain performance level, only if all its 

structural and nonstructural components satisfy the corresponding requirements of 

the related performance level (ASCE 41-13). 

Mainly, there are three structural performance levels to define the post-earthquake 

damage state of a structure: immediate occupancy (IO), life safety (LS), and collapse 

prevention (CP). Immediate Occupancy is the damage state where a structure is safe 

to occupy, as it retains fundamentally all its pre-earthquake strength and stiffness. 

Life Safety level states that a structure is safe to occupy only after some structural 

repairs. Structural elements may suffer extensive damage, yet some protection 

margin is preserved against partial or total collapse. Life-threatening injury risk in 

this performance level is very low. Collapse Prevention level foresees significant 

loss in strength and stiffness of the lateral force-resisting system and poses partial 

collapse risk. The structure still supports the gravity loads but is on the verge of 

collapse and generally irreparable. Severe injury and life loss risk exist.  

There are also performance levels defined for nonstructural components of a building 

as operational, position retention, and life safety levels. Operational level is the 

damage state where nonstructural components, after an earthquake, are expected to 

perform as the pre-earthquake state. Position Retention level states that the normal 

use of the structure might be interrupted, and some cleanup might be required. In 

general, building equipment functions properly if the utility service is provided. The 

risk of life-threatening injury caused by nonstructural damage is considered to be 

very low. Life Safety level is defined such that nonstructural components may be 

damaged, but the damage poses no threat to life safety. In some cases, nonstructural 
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performance may not be considered if reducing life-threatening risks might require 

the evaluation of structural components only (ASCE 41-13). 

Performance evaluations of force-controlled and displacement-controlled structural 

components are processed separately. While force-controlled members are subject 

to some strength checks, deformation-controlled members are expected to meet 

specific plastic deformation limits corresponding to different performance levels. On 

the other hand, nonstructural components are subject to certain drift and strength 

limitations.  

Reliable estimation of the engineering demand parameters in PBD requires using 

nonlinear analysis tools. In optimization studies, nonlinear static procedure (NSP), 

also known as pushover analysis, has usually been preferred over nonlinear dynamic 

procedure (NDP) for practical reasons. One reason behind this is that pushover 

analysis estimates seismic demands directly from the earthquake design spectrum, 

thus avoiding complications related to selection and scaling of ground motion 

records required for NDP (Reyes & Chopra, 2011). Secondly, NSP requires much 

less execution time in comparison to NDP. On the other hand, conventional pushover 

analysis, which has a single invariant lateral load pattern proportionate to 

fundamental mode shape, may provide misleading results if (1) higher-mode effects 

are significant or (2) a structure suffers from considerable stiffness degradation under 

seismic action such that its dynamic characteristics are altered, and initial lateral load 

pattern based on elastic mode shape becomes invalid. Many different variants of 

pushover analysis have been proposed to extend the application of pushover analysis 

to such cases mostly through the utilization of multi-modal and adaptive load 

patterns (Chopra et al., 2004; Chopra & Goel, 2002; Elnashai, 2001; Gupta & 

Kunnath, 2000; Hernández-Montes et al., 2004; Kaatsız & Sucuoglu, 2014; Kalkan 

& Kunnath, 2006; Kreslin & Fajfar, 2012; Reyes & Chopra, 2011; Soleimani et al., 

2017; Sucuoglu & Günay, 2011). Nonetheless, none have been proven to be 

universally applicable, and standardized as a reliable alternative to NDP. In fact, 

some of these procedures are more complicated than NDP and contradicts with the 

original purpose of NSP, being a simple method for checking potential weaknesses 
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of new or existing structures (Baros & Anagnostopoulos as cited in Kreslin & Fajfar, 

2012). 

In recent ASCE 41-13 and ASCE 41-17 guidelines, the use of pushover analysis 

method is limited to structures without significant higher-mode effects and stiffness 

degradation, and a lateral load pattern proportional to fundamental mode shape in 

the direction under consideration is recommended. 

Currently, there is no building code with a complete performance-based design 

approach. All of the performance-based guidelines discussed earlier in this section 

are either for evaluation and rehabilitation purposes of existing buildings or merely 

design recommendations. Over the last two decades, many researchers have shown 

increasing interest in adopting these guidelines to the design of new buildings under 

structural optimization framework.  

In the next section, a critical review of the state-of-the-art in performance-based 

design optimization (PBDO) of steel moment frames is outlined. 

1.3 PBDO of Steel Moment Frame Structures: A Critical Review of the 

State-of-the-Art 

As discussed previously in the preceding section, currently, there is no performance-

based design code in practice. On the other hand, there is a consensus on the 

performance-based optimum design methodology for steel moment frame structures 

in the literature. This methodology considers two stages of design checks. In the first 

stage, the serviceability of structure under non-seismic load combinations is verified 

by linear static analysis. Then in the next stage, the seismic performance of the 

structure under a particular seismic hazard or a set of hazard levels is assessed by 

nonlinear analysis tools. 

The vast majority of PBDO studies shown in Table 1.1 adopted inter-story drift ratio 

(IDR) as the only performance parameter to measure seismic performance and 

disregarded plastic deformation limits. This, to a certain extent, can be justified 
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because inter-story drift is a good measure of both structural and nonstructural 

damage since it is closely related to plastic rotation demands in beam-column 

connections (FEMA-350). From the optimization point of view, the main tendency 

for incorporating only the inter-story drift (or any other global performance criterion) 

lies in the fact that it significantly reduces the computational burden during the 

optimization process. Instead of satisfying performance constraints separately for 

each structural component in a story, their performance is handled roughly as a whole 

by limiting the inter-story drift.  

 

Table 1.1 An overview of studies on PBDO of steel moment frames 

# Publication 
Analysis 

Method 

Performance 

Parameter 

Objective 

Function(s) 

Optimization 

Algorithms 

1 
Liu et al. 

(2005) 

Pushover 

(height-wise) 
IDR 

Weight vs. 

Max. IDR 
MOGA 

2 
Fragiadakis et al. 

(2006) 

Pushover 

(1st Mode) 
IDR 

Weight vs. 

LCC 
ESMO 

3 
A. Kaveh et al. 

(2010) 

Pushover 

(height-wise) 
Roof Drift Weight ACO 

4 
A. Kaveh et al. 

(2012) 

Pushover 

(1st Mode) 
IDR 

Weight vs. 

LCC 
NSGA-II 

5 
Gholizadeh et al. 

(2012) 

Pushover 

(height-wise) 
IDR Weight 

GA, ACO, 

HS, PSO 

6 
Li et al. 

(2012) 

Pushover 

(MMPA) 
IDR 

Weight vs. 

LCC 
ASA 

7 
Gholizadeh & 

Moghadas (2014) 

Pushover 

(height-wise) 
IDR Weight QPSO, IQPSO 

8 
A. Kaveh & 

Nasrollahi (2014) 

Pushover 

(height-wise) 
Roof Drift Weight CSS 

9 
K. Mohammadi & 

Ghasemof (2015) 

Pushover 

(1st Mode) 
Local EDPs Weight UDT method 

10 
Gholizadeh 

(2015) 
Pushover 

(height-wise) 
IDR Weight MFA 

11 
Liang et al. 

(2015) 

Pushover 

(MPA) 
IDR 

Weight vs. 

Roof Drift 

NSGA-II, MOPSO, 

MGSO, MOHPSO 

12 
Gholizadeh & 
Milany (2016) 

NTHA IDR Weight 
DEO, ECBO, 

ECBO-II, PSO 

13 
Gholizadeh & 

Baghchevan (2017) 

Pushover 

(height-wise) 
IDR 

Weight vs. 

Max. IDR 
CMOFA 

14 
Mokarram & 
Banan (2018) 

Pushover 
& NTHA 

IDR 
Weight vs. 

LCC 
FC-MOPSO 

15 
Gholizadeh & 

Fattahi (2019) 
IDA Roof Drift 

Weight vs. 

ODI 
MO-UDP 

16 
Wang et al. 

(2020) 
NTHA 

Local EDPs, 
IDR 

Weight 
UDT method 

(two-fold strategy) 

17 
Degertekin et al. 

(2020) 

Pushover 

(height-wise) 
IDR Weight SBO 
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The inter-story drift limits given in FEMA-273 and FEMA-356 for expected damage 

states based on structural type and material have been frequently used in PBDO 

studies. However, FEMA-356 underlines that these limits are only illustrative and 

do not supersede member or component level performance limits. In fact, a design 

based solely on the inter-story drift limits cannot guarantee that member/component 

performance limits are satisfied as well. Plastic rotation demands can vary 

significantly from one member to another even under the same inter-story drift ratio 

(Eom et al., 2013). 

The major challenge of PBDO problems is extremely long and sometimes 

prohibitive computation time associated with the large number of nonlinear analyses 

performed during the optimization process by metaheuristic techniques. It is not 

surprising that numerical examples in most studies are limited to planar models, 

which can significantly reduce the size of the optimization problem. Similarly, 

pushover analysis is almost always the preferred method of analysis for evaluating 

structural performance since its alternative, NDP, is much more time-consuming. 

However, it should be noted that planar models are more suitable for regular plan 

buildings, and the application of pushover analysis has some limitations as discussed 

in the previous section. 

Unlike metaheuristics, design-driven search techniques have only a very limited 

number of applications in the PBDO problems because most of these techniques are 

based on the virtual work principle (see Ch. 1.1) and thus not applicable to 

performance-based design optimization (PBDO) problems, where structural 

performance is assessed by nonlinear analysis tools. However, some design-driven 

optimization algorithms based on uniform deformation theory (UDT) are presented 

for PBDO problems in the literature. Mohammadi and Ghasemof (2015) developed 

a UDT-based optimization technique for PBDO of planar steel frames with member 

level performance objectives. This technique utilizes imaginary cross-sections to 

turn the discrete sizing optimization problem into a continuous one where the plastic 

section modulus is the only design variable. These sections are modified and 

transformed into the nearest discrete section to approach a more uniform deformation 
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distribution gradually at each iteration step. The results demonstrate a much higher 

convergence rate compared to several metaheuristics. However, in its proposed state, 

the algorithm has no strategy for handling displacement constraints, making it 

impractical for real design scenarios. Wang et al. (2020) proposed another 

optimization algorithm based on UDT and imaginary cross-sections. Although this 

method takes displacement constraints into account, the numerical examples are 

limited to planar frames only. Besides, since this method requires transforming the 

imaginary sections into real discrete sections at the end of the optimization, it is 

questionable whether a feasible solution can be found in terms of geometric 

(constructability) constraints, especially for space frames, which have much complex 

connections. 

In a multi-objective performance-based design optimization (MOPBDO) problem, 

the cost and performance of a design are treated as two competing objectives. 

Generally speaking, in structural optimization problems, there exists almost an 

infinite number of feasible design alternatives in the search space. Some of these 

designs are inferior to others in terms of both cost and performance. When these 

inferior designs are eliminated, the remaining set of designs are mathematically 

referred to as the pareto optimal set. Any design in a pareto optimal set is superior to 

another by either cost or performance but not both, implying that there is always a 

trade-off between cost and performance from one design to another (non-

dominancy). However, finding the pareto optimal set in multi-objective optimization 

problems is not an easy task, and for complex problems it is only an approximation 

formed by a set of non-dominated solutions retrieved during the optimization process 

(near pareto optimal set). For a decision maker, the meaning of pareto optimal set is 

a list of alternatives from which one can choose among the cost-efficient designs 

with varying performance levels.  

Performance related objective function of the MOPBDO problems is generally 

chosen as maximum inter-story drift ratio (Gholizadeh & Baghchevan, 2017; Liu et 

al., 2005) or life-cycle cost as an implicit function of inter-story drift ratio 

(Fragiadakis et al., 2006; Ali Kaveh et al., 2012; Mokarram & Banan, 2018). In these 
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studies, life-cycle cost (LCC) function and drift ranges (corresponding to damage 

states given in ATC-13) are based on the work by Wen & Kang (2001a, 2001b), and 

the cost ratios (damage factors) expressed as a percentage of the replacement cost 

are taken from ATC-13. 

Cost ratios can be determined by empirical studies on the field data collected after 

earthquakes or by expert opinion. They may show significant variations depending 

on the site or location. They provide approximate estimations of the replacement 

costs and are especially useful when more accurate information is not available (Hill 

& Rossetto, 2008). It should also be noted that while the damage states and the 

corresponding cost ratios are discrete, the inter-story drift ratios can assume any 

values, making the LCC predictions even less accurate. Some researchers adopted 

fuzzy-decision theory to make the cost ratios continuous over the range of inter-story 

drift index (Li et al., 2012; Zou et al., 2007).  

Different from the above approaches, Gholizadeh & Fattahi (2019) used a modified 

version of the overall Park-Ang damage index (Ghosh et al., 2011), as the 

performance criterion of the MOPBDO problem. Basically, this index was formed 

by the ratio of inelastic demand-to-capacity ratio of the roof displacement plus the 

absorbed hysteretic energy.  

While designing a new structure in accordance with PBD methodology, through 

nonlinear structural analysis, not only global demand parameters such as inter-story 

drift ratios or roof displacements are estimated, but also the local engineering 

demand parameters (EDP) such as plastic rotations of deformation-controlled 

members and stresses in force-controlled members are obtained, which provides 

valuable information to assess the performance of the structure more accurately. 

Similarly, more accurate LCC estimations can be made if these local EDPs are 

explicitly considered rather than abovementioned approximations based only on 

global demand parameters.  

In the light of the discussions in this section, the following conclusions can be 

derived: 
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1) A reliable performance-based design methodology cannot be established 

considering only a single performance parameter, such as inter-story drift. 

Rather, local performance parameters such as plastic rotations must also be 

considered during the design stage. 

2) Metaheuristics might be impractical to use for computationally expensive 

PBDO problems due to their slow convergence rates.  

3) The use of a design-driven optimization algorithm is recommended for 

PBDO problems due to their relatively fast and improved convergence 

abilities, yet the algorithm employed must handle not only the local stress 

and deformation constraints but also the global displacement and geometric 

constraints effectively if the real design applications are targeted. 

4) In MOPBDO problems, a more meaningful cost-performance trade-off 

relationship can be established if the hierarchy among alternative designs are 

determined by consideration of the local performance parameters and the 

distribution of the damage over the entire structure. 

1.4 Aim and Scope of the Thesis 

The objectives of this study can be summarized as below: 

1) Developing a fast and efficient design-driven optimization algorithm that can 

be applied effectively to solve optimum design problem of steel structures 

according to both FBD and PBD methodologies.  

2) Providing a cost and seismic performance comparison of optimally designed 

structures under FBD and PBD methodologies. 

3) Presenting the cost-performance trade-off relationship among the alternative 

designs under MOPBDO framework.  

The organization of the chapters is as follows: 

Chapter 2 presents a mathematical formulation for the discrete sizing optimization 

of steel frame structures designed according to conventional FBD and PBD 
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methodologies. Therein, the design constraints and load combinations are also 

provided with reference to related design codes and guidelines. In Chapter 3, a novel 

design-driven optimization method called Capacity Controlled Search (CCS) is 

proposed by presenting its working mechanism and detailed algorithm. In Chapter 

4, the performance of the CCS algorithm is numerically investigated by solving 

several optimum FBD problems featuring various 2D and 3D ordinary moment 

resisting steel frames and compared with those of two well-established metaheuristic 

search techniques in terms of computational efficiency, quality of the optimum 

solution, and reliability of the solutions obtained in individual runs. In Chapter 5, the 

same steel frames from the previous chapter are this time optimized according to 

PBD methodology. Then, a comparison of optimally designed structures under 

conventional FBD and PBD methodologies is presented in terms of design cost and 

seismic performance. Chapter 6 describes a simplified approach for MOPBDO by 

the CCS technique and presents the alternative PBD solutions obtained by this 

approach. Finally, Chapter 7 concludes the thesis by providing key findings in this 

study and recommendations for future research. 
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CHAPTER 2  

2 PROBLEM FORMULATION 

2.1 Design Variables and Objective Function 

The total construction cost of a steel structure depends on a number of cost items, 

including material, manufacturing, transportation, and erection costs. Even though 

the minimum design weight of a structure does not guarantee the lowest cost of a 

structure, it is a common practice in structural optimization to minimize the structural 

weight since it is a good measure of the material cost.  

As remarked in the previous chapter, the discrete sizing optimization refers to the 

case where the design variables (member sizes) are selected from a predefined set of 

sections often referred to as discrete set or section pool. Hence, before optimum 

design process is initiated, it is necessary to prepare a section pool where discrete 

sections are sorted in ascending or descending order of some sectional properties, 

such as cross-sectional area or moment of inertia, etc. In a section pool each discrete 

section is designated by a different sequence (index) number that varies between 1 

to total number of discrete values in the section pool. For instance, if there are 82 

discrete sections in the section pool, each discrete section is assigned to a different 

sequence number between 1 and 82. For a design variable, the selection of a discrete 

value from the section pool is carried out in conjunction with sequence numbers. 

That is to say, once a selection is carried out for a design variable, the cross-sectional 

properties of each section become available from the section pool. 

For a steel structure with N members, assuming that the steel members are grouped 

into Ng design variables (members groups) for the purpose of practicality and 

constructability, the optimization problem concerning the minimum weight design 

of a steel structure can be stated as follows: 
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The objective is to find a vector of design variables I,  

 

𝑰𝑻 =  [𝐼1, 𝐼2, … , 𝐼𝑁𝑔
]                                         (2.1) 

 

which minimizes the weight (W) of a structure, 

 

𝑊 =  ∑ 𝛾𝑖𝐴𝑖
𝑁𝑔

𝑖=1
∑ 𝐿𝑗

𝑁𝑚
𝑗=1                                       (2.2) 

 

In Equations (2.1) and (2.2), the design variable vector I holds the sequence numbers 

of Ng member groups from the section pool, which is usually constructed from 

selected AISC standard wide-flange steel sections, i and Ai are the unit weight and 

area of a standard section adopted for a member group i respectively, Nm is the total 

number of members in group i, and Lj is the length of the member j of the group i. 

The design constraints consist of a set of behavioral requirements imposed according 

to provisions of a selected design code as well as geometrical restrictions. The design 

constraints of steel structures according to FBD and PBD methodologies are 

formulated separately in the subsequent sections of this chapter.  

2.2 Design Constraints of FBDO Problem 

In compliance with LRFD methodology in ANSI/AISC 360-10 design code, the 

following strength requirements are considered for the design of the structural steel 

members: 

 

(1) For members subjected to combined axial load and bending: 

 

𝑔1 = (
𝑃𝑟

𝑃𝑐
)

𝑗
+  

8

9
(

𝑀𝑟𝑥

𝑀𝑐𝑥
+  

𝑀𝑟𝑦

𝑀𝑐𝑦
)

𝑗

− 1.0 ≤ 0     𝑓𝑜𝑟 (
𝑃𝑟

𝑃𝑐
)

𝑗
 ≥ 0.2     (2.3)  
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𝑔1 = (
𝑃𝑟

2𝑃𝑐
)

𝑗
+  (

𝑀𝑟𝑥

𝑀𝑐𝑥
+  

𝑀𝑟𝑦

𝑀𝑐𝑦
)

𝑗

− 1.0 ≤ 0     𝑓𝑜𝑟 (
𝑃𝑟

𝑃𝑐
)

𝑗
 < 0.2                (2.4) 

 

(2) For members subjected to shear: 

 

𝑔2 =
 𝑉𝑟,𝑗

𝑉𝑐,𝑗
− 1  ≤ 0                                          (2.5) 

 

where Pr, Mr, and Vr are the required axial, flexural, and shear strength demands 

calculated using LRFD load combinations, respectively; Pc, Mc, and Vc are the axial, 

flexural, and shear strength capacities determined in accordance with AISC 360-10 

LRFD provisions, respectively; x and y are the subscripts which represent the strong 

and the weak axis of bending for a member, respectively; subscript j = 1, 2, …, Nt 

denotes the jth member of the structure, where Nt is the total number of structural 

members.  

For the deflection of beams subjected to reduced live load, the traditional “1/360” 

limit in practice is adopted and formulated as a design constraint as follows:  

 

𝑔3 =  𝛿𝑗 −  
𝐿𝑗

360
 =  

360𝛿𝑗

𝐿𝑗
− 1 ≤ 0                                  (2.6) 

 

where 𝛿𝑗 and Lj are the calculated deflection in a beam and its corresponding length, 

respectively; the subscript j = 1, 2, …, Nb denotes the jth member of the structure, 

where Nb is the total number of beam elements. 

In compliance with ASCE 7-10 design load specifications, the inter-story drift under 

seismic action is limited as follows: 

 

𝑔4 =  
∆𝑖

∆𝑎
 − 1 ≤ 0, 𝑤ℎ𝑒𝑟𝑒  ∆𝑖 =  

𝐶𝑑𝛿𝑥𝑒

𝐼𝑒
                                (2.7) 

 



 

 

20 

In Equation (2.7), i and a represent the drift of the ith story and its allowable design 

story drift, respectively; xe is the maximum difference between the horizontal 

displacements of vertically aligned points at the top and bottom of a story along any 

of the edges of the structure and is determined by the elastic analysis as; Cd  and Ie 

are the deflection amplification factor and the importance factor, respectively. The 

subscript i = 1, 2, …, Ns denotes the ith story, where Ns is the total number of stories. 

It should be noted that steel members require special connection requirements. If 

these requirements are disregarded during the design phase, the resulting design will 

not be practical from the constructability point of view. Hence, it is crucial that the 

following geometric constraints (Figure 2.1) are considered for the connections 

between different members: 

   

(1) For column-to-column connections: 

 

𝑔5 =
 ℎ𝑢𝑝𝑝𝑒𝑟

𝑐  

ℎ𝑙𝑜𝑤𝑒𝑟
𝑐 − 1 ≤ 0                                       (2.9) 

 

(2) For beams connecting to column flange: 

 

𝑔6 =
𝑏𝑓

𝑏 

𝑏𝑓
𝑐 − 1 ≤ 0                                          (2.10) 

 

(3) For beams connecting to column web:  

 

𝑔7 =
𝑏𝑓

𝑏 

(ℎ𝑐− 2𝑡𝑓
𝑐)

− 1 ≤ 0                                        (2.11) 

 

where h, bf, and tf are the section depth, flange width, and flange thickness of the 

doubly symmetric steel section assigned to a structural element, respectively; and the 

superscripts b and c denote the corresponding beam and column element, 

respectively. 
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Figure 2.1. Geometric (constructability) constraints  

 

The following load combinations are considered for the numerical examples in this 

study, as specified in ASCE 7-10, Section 2.3: 

(1) 1.4D 

(2) 1.2D + 1.6L 

(3) 1.2D + 1.0L ± 1.0E 

(4) 0.9D ± 1.0E 

where D, L, and E represent the dead, live, and earthquake loads, respectively. 

2.3 Design Constraints of PBDO Problem 

As previously discussed, the PBD methodology requires two stages of design checks. 

In the first stage, it is checked and ensured that all constraints given in the previous 

section for the FBD methodology are satisfied under non-seismic load combinations 

only. On the other hand, the second stage design constraints are introduced to ensure 

a satisfactory seismic performance of a structure under a specified hazard level or a 

g5 

g6 

g7 
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set of hazards. Only the second stage design constraints are presented in this section 

to avoid repetition.  

In this study, the pushover analysis method with a lateral load pattern based on 

fundamental mode shape in the direction under consideration is conducted to assess 

the seismic performance of the structures. All the design constraints in this section 

are accordingly adapted from ASCE 41-13. 

The deformation-controlled members of steel moment-resisting frames (SMRFs) are 

subject to the following constraint: 

𝑔1 =  
(𝜃𝑝)𝑗

(𝜃𝑎)𝑗
− 1 ≤ 0                                       (2.12) 

 

where p is the plastic rotation of a hinge at the target displacement, and a is the 

corresponding allowable plastic rotation for the targeted performance level (IO, LS, 

or CP); the subscript j = 1, 2, …, Nh denotes the hinge j, where Nh is the total number 

of hinges defined on the deformation-controlled members. 

The members subjected to compressive forces in the excess of 50% of its axial load 

carrying capacity are designated as force-controlled members, and they must satisfy 

the following constraint: 

 

𝑔2 =  (
𝑃𝑡

𝑃𝐶𝐿
+ 

𝑀𝑡𝑥

𝑀𝐶𝐿𝑥
+  

𝑀𝑡𝑦

𝑀𝐶𝐿𝑦
)

𝑗

− 1 ≤ 0                           (2.13) 

 

where Pt and Mt are the axial load and bending moment capacities at the target 

displacement, respectively; PCL and MCL are the lower bound compressive and 

flexural strengths, respectively; x and y are the subscripts which represent the strong 

and the weak axis of bending for a member, respectively; the subscript j = 1, 2, …, 

Nf denotes the jth force-controlled member of a structure where Nf is the total number 

of the force-controlled members.  



 

 

23 

The following constraint on the inter-story drift is also considered for limiting 

damage to nonstructural components at the target displacement: 

 

𝑔3 =  
∆𝑖

∆𝑎
− 1 ≤ 0                                                  (2.14) 

 

In Equation (2.14), i and a represent the drift of the ith story and its allowable 

design story drift, respectively; i is the maximum difference between the horizontal 

displacements of vertically aligned points at the top and bottom of a story at the target 

displacement. The subscript i = 1, 2, …, Ns denotes the ith story, where Ns is the total 

number of stories. 

In nonlinear static analysis, the actions caused by seismic forces are considered under 

the following combination of gravity loads (QG), as specified in ASCE 41-13, 

Section 7.2: 

𝑄𝐺 = 𝑄𝐷 + 𝑄𝐿                                         (2.15) 

 

where QD and QL are the actions caused by dead loads and live loads, respectively. 

QL is taken equal to 25% of the unreduced live load in accordance with ASCE 7-10 

but cannot be taken less than the actual live load. 

2.4 Penalized Objective Function 

The objective function given in Equation (2.2) refers to the unconstrained objective 

function of the problem at hand. However, in the case where the solution space is 

restricted by design constraints, this function should be modified in a way to handle 

problem constraints as well. Usually, this is achieved through the use of penalty 

functions where the designs violating the problem constraints are penalized and their 

objective functions are calculated using the following equation: 
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∅ = 𝑊[1 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(�⃗�)] = 𝑊[1 + 𝑟(∑ max (0, 𝑔𝑗
𝑁𝑐
𝑗=1 ))]            (2.16) 

 

In Equation (2.16),  and W represents the penalized (constrained) objective function 

and the unconstrained objective function, respectively; the subscript j = 1, 2, …, Nc 

denotes the jth normalized design constraint, where Nc is the total number of 

constraints on the design. The penalty coefficient r is used to adjust the intensity of 

penalization as a whole. This parameter can be either set to a static value, which is 

usually taken as 1.0 or adjusted dynamically during the  course of optimization 

process. In this study, the former approach is adopted. 
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CHAPTER 3  

3 CAPACITY CONTROLLED SEARCH TECHNIQUE 

In this chapter, a novel design-driven optimization technique called Capacity 

Controlled Search (CCS) is introduced for discrete sizing optimization problems of 

frame type structures with single or multiple displacement constraints. In the 

following sections, first, the working mechanism of this technique is explained, and 

then its detailed algorithm is presented.  

3.1 The Working Principle of CCS  

The main idea behind the CCS technique lies in the effective utilization of structural 

components while resisting design loads. A structural component is locally subjected 

to stress and displacement constraints to ensure safety and serviceability 

requirements. In addition, every structural component contributes -with varying 

levels- in satisfying a global displacement criterion, such as inter-story drift or roof 

drift.  

In the absence of a global displacement criterion, a fully stressed design or in a 

broader sense, a fully utilized design, where each structural component is used at its 

utmost member strength and/or displacement capacity, generally results in cost-

efficient designs. However, in practical design applications, there are often global 

displacement criteria that must be satisfied by an acceptable design.  

As discussed in the first chapter, the design-driven optimization techniques in the 

literature rely on the use of unit load method for determining the efficiency of 

structural elements to satisfy a global displacement criterion. Although these 

algorithms have proved to be very effective in structural sizing optimization 

problems, their use is limited to only conventional force-based design problems. The 
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fact that nonlinear force-deformation models are used to define the behavior of a 

structural component in a performance-based design problem, does prevent the use 

of unit load method and its variants for such problems.  

The CCS technique, on the other hand, can be applied to both force-based and 

performance-based design problems with or without displacement constraints. It 

does not require any pre-analysis such as unit load method to determine the 

efficiency of structural elements in satisfying displacement criteria, but rather 

assumes a probabilistic approach to retreat from an infeasible search direction. 

In the CCS method, ideally, the design process is initiated by assigning the largest 

available section sizes to all member groups (design variables). Then, this initial 

design configuration is analyzed under all design load combinations, and the 

maximum demand-to-capacity ratio (DCR) for each member group is determined by 

considering both local stress and displacement (deflection, plastic rotation) 

constraints. The design variables to be modified are selected probabilistically based 

on DCR values in a way such that the member group with the lowest DCR has the 

highest chance for selection and vice versa. The rationale here is to push the member 

groups with low DCRs to their limits by selecting somewhat smaller sections for 

them in order to achieve a uniform demand distribution within the structure as much 

as possible. Indeed, at the beginning of the optimization process, most member 

groups are likely to have low DCR values because initially the member groups are 

assigned to the largest available section sizes. Hence, most of the design variables, 

if not all, are selected and modified in the early stages of the optimization process, 

leading to an effective explorative search of the design space. However, as the 

iterations continue and the better solutions are produced in the course of 

optimization, DCRs of member groups will increase. Accordingly, a lesser number 

of design variables will be chosen and modified, implying that the exploitative 

capability of the algorithm will increase gradually while the explorative capability is 

slowly reduced.  
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Once the selection phase is completed, selected design variables are perturbed based 

on some probabilistic rules. A member group with a DCR higher than 1.0 means that 

it fails to satisfy a design constraint and a stronger section must be assigned. On the 

other hand, if its DCR is less than unity, a smaller section can be assigned to provide 

economy. However, as previously argued, some structural components with lesser 

utilization ratio might have a predominant effect on the global displacement criterion 

such that even a stronger section might need to be assigned for such members. 

Likewise, changing the sizes of some member groups in indeterminate structural 

systems may lead to overall force distributions such that not only the changed 

member groups are affected by this redistribution but also the unchanged member 

groups. For instance, for a member with a DCR greater than unity, when the size of 

a different member group is changed, the member in consideration (although not 

changed) may now be subjected to lesser loads, resulting in a DCR less than 1.0. For 

these reasons, The CCS technique employs a simple probabilistic approach (via  

parameter, which will be introduced in the next section) while deciding whether a 

stronger or smaller section will be assigned to a member group. In this approach, a 

member group with a DCR value greater than 1.0 is given a greater chance to be 

assigned to a stronger section; yet the possibility that the group might be assigned to 

a smaller section still exists but with a lesser probability. Conversely, a member 

group with a DCR value less than 1.0 is given a higher chance to pick a smaller 

section, but a stronger section might also be assigned with a reduced possibility. The 

selection and perturbation phases are repeated over a predefined number of iterations 

or a termination criterion for the optimization algorithm is satisfied. 

The terms “stronger” and “smaller” sections used in the CCS algorithm require 

particular attention and explanation. It is important to emphasize that to implement 

the CCS algorithm all available steel sections in a section pool (discrete set)  are 

sorted in ascending order of cross-sectional areas. It is relatively easy to define “the 

smaller section”, because it simply corresponds to a section with a lesser cross-

sectional area amongst any given two sections. However, when it comes to defining 

a stronger section, this identification may not be that straightforward because 
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multiple failure modes are usually available for structural members. For example, 

one member may fail under shear forces, another member may fail under bending in 

the stronger axis or weak axis, or local buckling mechanisms may be observed. If in 

an optimization process the evaluations of designs are not carried out internally using 

an integrated finite element method, rather an external structural analysis software is 

used, then such information may not always be made available by the software or it 

may be uneasy to derive from the analysis results which mechanism actually caused 

the failure of the structural member under consideration. In such cases, it is not 

possible to define the stronger section without making gross assumptions. One may 

think to choose a section having a larger cross-sectional area and moment of inertias 

in both bending axes than the currently assigned one, which in turn eliminates the 

need for identifying the failure mode. However, by doing so the sections in between 

will be omitted even though they might have adequate strength as well depending on 

the failure mode. On the other hand, it is still plausible to assume a correlation 

between the cross-sectional area and moment of inertias in about both axes of 

bending. This simplifies and transforms the definition of “stronger section” into 

“larger section” at the cost of discarding smaller sections with adequate strength 

depending on the failure mode. However, the probabilistic perturbation scheme of 

CCS mentioned previously will also take part in here to detect the “smaller but still 

stronger” sections by preserving a chance to pick smaller sections for member groups 

with DCRs greater than unity (i.e., failing a strength/displacement constraint).  

The CCS algorithm also utilizes a basic stagnation control strategy based on uphill 

move to avoid being stuck at a local optimum solution. If the best solution is not 

improved over a predetermined number of iterations, the algorithm starts a stagnation 

escape period (SEP). In SEP, the elitism rule that the design transition is only allowed 

to better solutions is suspended temporarily and the transition to a non-improving 

solution (uphill move) is allowed provided that it has a penalized weight (constrained 

objective function value) not more than a predefined ratio () of the penalized weight 

of the elite design. Once the elite design is replaced with a non-improving design, 

candidate designs are generated from this non-improving design (temporary elite 
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design), and the elitism rule is activated again. Whenever a solution better than the 

temporary elite design is generated, it replaces the temporary elite design, and hence 

the following designs are produced from this new temporary elite design. On the 

other hand, if a solution better than the elite design is located, it replaces the elite 

design; and SEP is terminated immediately. If no improvement is achieved within 

the SEP, another SEP loop is started but this time uphill move is performed with 

reference to the last temporary elite design of the previous SEP. 

The CCS algorithm also takes advantage of the well-known upper-bound strategy 

(UBS) (Kazemzadeh Azad et al., 2013) to reduce the computational burden of 

structural analyses required during the optimization process. It should be noted that 

the proposed CCS algorithm implements a strict elitism rule, in which a candidate 

design could beat and replace the current design only if it is better than the latter, and 

thus is very suitable for UBS. The UBS suggests that candidate designs with 

structural weights greater than the objective function value (penalized weight, ) of 

the elite design have no chance to improve the elite design and hence such designs 

can automatically be skipped without a need to perform time-consuming structural 

analyses for them. That is to say, every design generated in the course of optimization 

is first checked for its structural weight, and the structural analysis is implemented 

only if its structural weight is lower than the objective function () of the elite design; 

otherwise, this design is eliminated without performing structural analysis, which in 

turn leads to considerable savings in computational time of the algorithm. In the 

present study, the basic UBS approach is further improved such that not only the 

weight but also the constraints (e.g., geometric constraints) that can be calculated 

without a need for structural analysis are used to calculate the penalized weight of a 

candidate design prior to the structural analysis, called pre-analysis objective 

function. A candidate design is analyzed only if its pre-analysis objective function is 

lower than the objective function of the elite design. This way even more candidate 

designs can be eliminated without performing structural analysis and substantial 

computational savings can be achieved. It is also possible to implement the UBS 

dynamically during different phases of structural analyses. For example, after 
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determining local response constraints (e.g., stresses, deflections, etc.) first, the 

penalized weight of a candidate design weight is updated and checked whether it is 

still able to improve the elite design. If it is not, later phases of structural analyses 

like determining story drift ratios or hinge states (if it is PBDO) can be skipped to 

avoid unnecessary computations. This version of UBS proposed within the context 

of this study is referred to as improved upper-bound strategy (iUBS).  

3.2 CCS Algorithm 

In the previous section, the idea behind the CCS method has been elaborated. In this 

section, the detailed algorithm of CCS is provided. 

 

Step 1: Initiation 

The steel sections in discrete sets (section pools) are sorted in ascending order of 

their cross-sectional areas prior to optimization. The initial design is ideally formed 

by assigning the largest available sections to each member group. Then, this initial 

design is analyzed, and its penalized weight is calculated. The DCR of each member 

group is also recorded for the selection phase. The iteration number is set to 1. 

 

Step 2: Selection 

Based on the DCR of each member group, the variables to be perturbated for 

generating a candidate design is selected by the following probabilistic formula: 

 

𝑚𝑎𝑥(𝑃𝑚𝑖𝑛,  |1 − 𝐷𝐶𝑅𝑖|𝑢) ≥ 𝑅𝑎𝑛𝑑𝑖                           (3.1) 

 

If the above inequality is satisfied for a design variable, then it is selected for 

perturbation. In this equation, Pmin is the minimum selection probability; u is the 

uniformity coefficient; the subscript i = 1, 2, …, Ng, denotes the ith member group 
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(design variable), where Ng is the total number of member groups. Randi is a 

uniformly distributed random number between 0 and 1.  

 

Step 3: Perturbation 

Perturbation of a design variable is conducted by stochastically assigning a new steel 

section within a search neighborhood. The width of a search neighborhood can be 

defined according to one of the following three schemes: 

 

1. Constant search neighborhood width (nwc): 

 

𝑛𝑤𝑐,𝑖 = 𝑟𝑜𝑢𝑛𝑑(√𝑁𝑠𝑒𝑐,𝑖 − 1 )                               (3.2) 

 

2. Linearly decreasing search neighborhood width (nwd): 

 

𝑛𝑤𝑑,𝑖 = 𝑛𝑤𝑐,𝑖 − (𝑛𝑤𝑐,𝑖 − 1)(𝑖𝑡𝑒𝑟 𝑖𝑡𝑒𝑟𝑚𝑎𝑥⁄ )                  (3.3) 

 

3. Adaptive search neighborhood width (nwa):  

 

𝑛𝑤𝑎,𝑖 =  𝑛𝑤𝑐,𝑖(𝑚𝑖𝑛(1, 𝑎𝑏𝑠(1 − 𝐷𝐶𝑅𝑖))
𝜌

)                    (3.4) 

𝑛𝑤𝑚𝑖𝑛 ≤ 𝑛𝑤𝑎,𝑖                                          (3.5) 

 

In Equations (3.2)-(3.5), Nsec,i is the number of available sections in the section pool 

associated with the member group i; DCRi is the maximum demand-to-capacity ratio 

of the ith member group under all load combinations; iter and itermax are the current 

iteration number and a predefined maximum iteration number, respectively;  is a 

parameter used to adjust the rate of reduction in the search neighborhood width; and 

nwmin is the minimum search neighborhood width. Figure 3.1 illustrates the change 

in normalized nwa with respect to varying levels of DCR.  
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Figure 3.1. Adaptive search neighborhood width 

 

A new section within the search neighborhood (nwx, i) is then assigned to a selected 

member group by the following formulas: 

 

𝐼𝑖
𝑖𝑡𝑒𝑟+1 = 𝐼𝑖

𝑖𝑡𝑒𝑟 +  𝑟𝑜𝑢𝑛𝑑 (𝛽 ∙ 𝑚𝑎𝑥 (1, 𝑎𝑏𝑠(𝑅𝑎𝑛𝑑𝑛𝑖) ∙ 𝑛𝑤𝑥,𝑖))        (3.6) 

𝛽 = 𝑠𝑖𝑔𝑛((𝐷𝐶𝑅𝑖 − 1)(𝜏 − 𝑅𝑎𝑛𝑑𝑖))                          (3.7) 

 

where Ii is the sequence (index) number of the steel section currently assigned to the 

selected design group;  is a probabilistic parameter which decides whether a larger 

or smaller section will be assigned to the selected design group;  is a constant used 

to adjust  Randni is a normally distributed random number with zero mean and 

standard deviation of one; Randi is a uniformly distributed random number between 

0 and 1.  

 

Step 4: Analysis & Evaluation 

The pre-analysis penalized weight (objective function) of the candidate design is 

calculated. If this value is higher than the objective function value of the elite design, 
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the candidate is automatically rejected; otherwise, it is allowed to go through the 

structural analysis phase to obtain the force and deformation responses, and the final 

penalized weight of the candidate design is calculated. If the candidate design has a 

lower penalized weight than that of the elite design, it replaces the current design 

and becomes the new elite design. Otherwise, it is rejected. 

 

Step 5: Stagnation Control 

If the best solution is not improved over a predetermined number of iterations, SEP 

is initiated. If an ongoing SEP is active and the best solution is improved in the 

previous step, SEP is terminated. 

 

Step 6: Termination 

If a termination criterion is satisfied (i.e., reaching a predefined maximum iteration 

number, etc.), the iterations are stopped. Otherwise, the iteration number is increased 

by 1, and the steps 2-6 are repeated. 
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CHAPTER 4  

4 VERIFICATION OF THE CCS TECHNIQUE 

4.1 Numerical Examples 

The performance of the proposed CCS algorithm is numerically investigated by 

solving four optimum design problems featuring various 2D and 3D ordinary 

moment-resisting steel frames (OMRSF) in accordance with conventional FBD 

methodology. The optimum designs produced using the CCS algorithm are also 

compared with those of two metaheuristic search techniques, namely Adaptive 

Dimensional Search (ADS) (Hasançebi & Kazemzadeh Azad, 2019) and 

Exponential Big Bang – Big Crunch (EBB-BC) (Hasançebi & Kazemzadeh Azad, 

2012), which are deliberately chosen from the literature based on their successful 

performance reported for this class of problems. Besides, the effect of different 

search neighborhood schemes (nwc, nwd, and nwa) on the performance of CCS 

algorithm is also scrutinized. These variants of CCS algorithm are denoted as CCS1, 

CCS2, and CCS3, respectively. 

The optimization algorithms are coded in MATLAB R2019a, while structural 

analysis and design of structural models are carried out via SAP2000 v21.02 through 

open application programming interface (OAPI). The optimization runs are 

performed on a PC with Intel i5-6500, 4-core, 3.2 GHz processor, and 16 GB DDR4 

Ram operating at 2133 MHz frequency.  

The parameter set of ADS, EBB-BC and CCS algorithms used in this study is 

presented in Table 4.1. Population size () parameter in ADS and EBB-BC 

algorithms is set to 50 for the first three numerical examples, and 100 for the fourth 

example. Stagnation control parameters ( and SEP) used in ADS algorithm for 

uphill move are taken from Hasançebi & Azad (2015). The termination criterion for 
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all algorithms is determined as one of the following conditions, whichever is satisfied 

first: (a) the maximum number of iterations (itermax) is reached, (b) if no 

improvement is achieved during a predefined number of iterations (iterni).  

 

Table 4.1 Algorithm parameters for ADS, EBB-BC, and CCS 

Algorithm Parameters 
Stagnation 

Control 
Termination 

ADS 

 = 50  

(for Example 4,  = 100) 

SDR0 = 0.25  

SDRmax = 0.5 

SDRmin = 1/Ng,  = 0.98 

Uphill move 

 = 1.02  

SEP = 20 

itermax = 1000 

iterni = 100 

EBB-BC 

 = 50  

(for Example 4,  = 100) 

 = 1,  = 1 

Not 

applicable 

itermax = 1000 

iterni = 100 

CCS 

 = 1 

Pmin = 0.02, u = 2,  = 3 

 = 0.8  

(for Example 2,  = 0.7) 

nwmin = 3 (CCS3 only) 

Uphill move 

 = 1.05  

SEP = 30 

itermax = 1000 

iterni = 150 

 

In all design examples, the material properties of the steel are set as follows: modulus 

of elasticity (E) = 29000 ksi (~ 200 GPa), yield strength (Fy) = 50 ksi (~ 344.74 

MPa), and unit weight () =  lb/ft3 (~ 76.97 kN/m3). In order to size the member 

groups, a single section pool consisting of 170 AISC standard wide-flange steel 

sections is used. It should be noted that actually, the complete AISC standard wide-

flange steel profile list consists of 297 sections. While forming the section pool, 

however, some of these sections are eliminated because they are found uneconomical 

based on their high cross-sectional area and low moment of inertia properties.  

The design loads considered for all numerical examples are given in Table 4.2. The 

earthquake loads are calculated and applied in accordance with the equivalent lateral 

load procedure in ASCE 7-10. The amplified story drift is limited to 2% of story 

height. The structural elements are sized in accordance with the provisions of AISC 
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360-10 design specifications. The design constraints and design load combinations 

are imposed as described in detail in Chapter 2. 

 

Table 4.2 Design loads and seismic coefficients 

Load 

Type 

Example       

1 & 2 

Example 3 & 4 

Inner Beams Outer Beams 

Dead Load 24 kN/m 24 kN/m 12 kN/m 

Live Load 12 kN/m 12 kN/m 6 kN/m 

Seismic Coefficients for BSE-1N 

Ss (g) S1 (g) TL (sec) Site Class 

2.29 0.869 8  D 

Fa Fv SDS = 2/3FaSs SD1 = 2/3FvS1 

1 1.5 1.5267 0.869 

 

4.1.1 Example 1: 28-member planar OMRSF 

The first test problem is a planar 4-story, 3-span OMRSF consisting of 28 structural 

elements grouped into 6 independent sizing variables (Figure 4.1). All structural 

members are oriented such that their strong axes coincide with the major axis of 

bending. 

 

 

Figure 4.1. 28-member planar OMRSF and grouping of structural elements 
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Table 4.3 provides a summary of the optimization statistics obtained for this 

example. It should be noted that since both the CCS and the two metaheuristics 

employed here are stochastic methods, each optimization algorithm is run 10 times 

independently to derive statistically meaningful data for a sound comparison of the 

methods. In Table 4.3, the design weight (W) represents the structural weight of the 

best feasible design obtained during a run under consideration, while the analysis 

number refers to the total number of structural analyses performed before reaching 

this optimum solution. Amongst 10 independent runs, the best and the worst runs 

denote the ones which resulted in minimum and maximum design weights for a steel 

frame, respectively. In case the minimum weight design is located by multiple runs 

of an algorithm, the one with the lowest number of structural analyses is recorded as 

the best run. The best run of each algorithm is highlighted by using bold font in the 

table. The statistical indicators of 10 runs; that is, mean, standard deviation (SD) and 

coefficient of variation (CV) are also presented in the table for each algorithm. 

Finally, the computational savings gained through the use of improved upper bound 

strategy (iUBS) is provided in the last row. This value is simply the ratio of the 

number of candidate designs rejected without being analyzed to the total number of 

candidate designs generated throughout the best run. 

The results indicate that the minimum design weight of this frame reached in this 

study is 93.64 kN, and all the algorithms manage to find this solution in one of the 

ten runs. This solution is presented in Table 4.4 with sectional designations attained 

for each member group. The number of structural analyses required to obtain this 

solution appears to be 688 in ADS, 577 in EBB-BC, 326 in CCS1, 102 in CCS2, and 

199 in CCS3. It follows that all three variants of the CCS algorithm outperform ADS 

and EBB-BC metaheuristic techniques in terms of the number of structural analyses 

performed. The CCS variant with adaptive neighborhood width scheme (nwa), 

namely CCS3, demonstrates the best overall performance as it exhibits the lowest 

mean (95.32 kN) and coefficient of variation (0.02) among all the algorithms. The 

variation of the best feasible design throughout the optimization process in the best 

run of each algorithm is depicted in Figure 4.2. 
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Table 4.4 Optimum design for 28-member planar OMRSF 

 

 

 

Figure 4.2. Optimization histories for 28-member planar OMRSF 

 

The demand-to-capacity ratios (DCRs) for each member group of the optimum 

design and inter-story drift ratios in terms of constraint ratios (i.e., max = 1.0) are 

provided in Table 4.5 and Table 4.6, respectively. It can be concluded that the 

sectional designations for member groups 2, 3 and 4 are controlled by the 

corresponding DCR values, which are very close to 1.0. Similarly, the sectional 

Group Sections

1 W24x55

2 W21x44

3 W24x68

4 W16x45

5 W24x55

6 W14x34

W (kN) 93.64
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designations for member groups 5 and 6 are controlled by inter-story drift constraint 

at the 3rd story, which is also very close to 1.0. It should be noted that the elevation 

level grouping of the members of the frame is implemented separately for every two 

stories (Figure 4.1). Resultantly, the sectional designations of the drift-controlled 

members are governed by the greater of the drift ratios in the stories under 

consideration. It should be underlined that the sectional designations of some 

member groups might also be controlled by geometric constraints defined for beam-

to-column and column-to-column connections. For example, the section depth of the 

lower floor columns cannot be less than the upper floor columns on the same vertical 

line, as previously presented in Chapter 2.  

 

Table 4.5 DCRs for 28-member planar OMRSF 

 

 

Table 4.6 Inter-story drift constraints for 28-member planar OMRSF 

 

Group DCR

1 0.8863

2 0.9892

3 0.9883

4 0.9884

5 0.7795

6 0.8111

Mean 0.9071

SD 0.0874

CV 0.0964

Story IDR

1 0.6747

2 0.9324

3 0.9845

4 0.6924

Mean 0.8210

SD 0.1388

CV 0.1691
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4.1.2 Example 2: 54-member planar OMRSF 

The second test problem is a planar 6-story, 4-span OMRSF consisting of 54 

structural elements grouped into 15 independent sizing variables (Figure 4.3). All 

structural members are oriented such that their strong axes coincide with the major 

axis of bending. 

 

 

Figure 4.3. 54-member planar OMRSF and grouping of structural elements 

 

For this frame, the results of the independent runs obtained by each optimization 

method are summarized in Table 4.7 along with statistical evaluations. In Table 4.8, 

the best feasible design produced for the steel frame in the best run of each algorithm 

is presented with sectional designations attained for each member group. The 

variation of the best feasible design throughout the optimization process in the best 

run of each algorithm is depicted in Figure 4.4.  
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Similar to previous example, CCS algorithms show superior performance over its 

metaheuristic counterparts. Considering the best runs of the algorithms, the CCS2 

and CCS3 provide slightly lighter designs than ADS and EBB-BC algorithms while 

performing a significantly fewer number of structural analyses. The CCS3 again 

provides the most consistent results having the lowest mean (298.72 kN) and 

coefficient of variation (0.01) amongst all CCS variants. The CCS3 reaches the 

optimum solution only after 396 analyses, which is about 88.1% and 72.7%  less 

than EBB-BC (3341 analyses) and ADS (1452 analyses), respectively. 

 

Table 4.8 Optimum designs for 54-member planar OMRSF 

 

 

 

 

Group ADS EBB-BC CCS₁ CCS₂ CCS₃

1 W21x44 W24x68 W16x36 W24x55 W24x55

2 W24x55 W24x55 W21x50 W24x55 W24x55

3 W10x26 W10x26 W10x26 W10x26 W10x26

4 W27x94 W27x84 W27x94 W21x83 W21x83

5 W21x83 W24x84 W27x94 W24x84 W24x84

6 W24x84 W24x84 W24x84 W24x84 W24x84

7 W24x62 W24x84 W24x55 W18x55 W18x60

8 W30x99 W27x94 W30x108 W30x108 W30x108

9 W30x90 W30x90 W30x99 W30x90 W30x90

10 W16x45 W16x45 W16x36 W18x50 W16x50

11 W30x90 W27x84 W30x90 W30x90 W30x90

12 W24x84 W24x84 W30x90 W24x84 W24x84

13 W6x15 W8x24 W6x15 W6x15 W6x15

14 W24x84 W24x84 W24x84 W24x84 W24x84

15 W24x84 W24x84 W24x84 W24x84 W24x84

W (kN) 293.90 296.03 299.01 293.26 293.68

# Analyses 1452 3341 511 881 396
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Figure 4.4. Optimization histories for 54-member planar OMRSF 

 

The demand-to-capacity ratios (DCRs) for each member group of the optimum 

designs produced by each algorithm and inter-story drift ratios in terms of constraint 

ratios (i.e., max = 1.0) are provided in Table 4.9 and Table 4.10, respectively. It can 

be concluded that the sectional designations of the member groups with DCRs close 

to 1.0 are controlled by the corresponding DCR values. On the other hand, the 

sectional designations of the majority of the remaining member groups are controlled 

by inter-story drift limitations. It should be remembered that the elevation level 

grouping of the structural members is implemented separately for every two stories 

(Figure 4.3). Resultantly, the sectional designations of the drift-controlled members 

are governed by the greater of the drift ratios in the stories under consideration. As 

previously elaborated, it should be noted that the sectional designations of some 

member groups might be controlled by geometric constraints.  
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Table 4.9 DCRs for 54-member planar OMRSF 

 

 

Table 4.10 Inter-story drift constraints for 54-member planar OMRSF 

 

 

 

Group ADS EBB-BC CCS₁ CCS₂ CCS₃

1 0.8555 0.7096 0.8683 0.9028 0.9014

2 0.8884 0.8112 0.8091 0.8306 0.8341

3 0.9574 0.9217 0.9748 0.9538 0.9543

4 0.9489 0.9968 0.9661 0.9939 0.9974

5 0.9988 0.9812 0.8882 0.9930 0.9958

6 0.9892 0.9960 0.9893 0.9883 0.9884

7 0.9655 0.7942 0.9528 0.9650 0.9072

8 0.9956 0.9998 0.9982 0.9636 0.9604

9 0.9972 0.9796 0.9680 0.9694 0.9677

10 0.8480 0.8717 0.8942 0.7728 0.7968

11 0.7556 0.8611 0.8184 0.7723 0.7760

12 0.6818 0.6681 0.6771 0.6717 0.6722

13 0.9657 0.6591 0.9467 0.9317 0.9406

14 0.5919 0.5808 0.5689 0.5776 0.5776

15 0.4926 0.4983 0.4873 0.4887 0.4888

Mean 0.8621 0.8219 0.8538 0.8517 0.8506

SD 0.1556 0.1598 0.1530 0.1570 0.1545

CV 0.1805 0.1945 0.1791 0.1844 0.1816

Story ADS EBB-BC CCS₁ CCS₂ CCS₃

1 0.5211 0.5165 0.5364 0.5527 0.5499

2 0.8901 0.8474 0.9405 0.9502 0.9474

3 0.9996 0.9763 0.9965 0.9908 0.9935

4 0.9620 0.9203 0.8710 0.8854 0.8894

5 0.9519 0.8995 0.8863 0.9058 0.9053

6 0.6768 0.6622 0.6787 0.6620 0.6624

Mean 0.8336 0.8037 0.8182 0.8245 0.8246

SD 0.1749 0.1618 0.1597 0.1602 0.1613

CV 0.2098 0.2013 0.1952 0.1943 0.1956
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4.1.3 Example 3: 160-member OMRSF 

The third test problem is a 4-story (h = 3.5 m) OMRSF (Figure 4.5a) consisting of 

160 structural elements grouped into 12 independent sizing variables. The members 

are grouped both on plan and elevation levels to satisfy practical fabrication 

requirements. The plan-level member grouping is performed such that the columns 

are grouped into four sizing variables as corner columns (CG1), two side columns 

(CG2, CG3) inner columns (CG4), and the beams are grouped into two sizing 

variables as inner beams (IB) and outer beams (OB) (Figure 4.5b). The elevation-

level member grouping is carried out such that the structural members have the same 

sections in every two stories along the height of the frame. Accordingly, there are 4 

beam groups and 8 column groups in this example, resulting in 12 independent sizing 

variables for the entire structure. The orientations of the column groups are displayed 

in Figure 4.5b, whereas the beams are placed such that their strong axes coincide 

with the major axis of bending.  

 

 

 

Figure 4.5. 160-member OMRSF, (a) 3D-view (b) plan view 

 

(b) (a) 
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For this frame, the results of the independent runs obtained by each optimization 

method are summarized in Table 4.11 along with statistical evaluations. In Table 

4.12, the best feasible design produced for the steel frame in the best run of each 

algorithm is presented with sectional designations attained for each member group. 

The variation of the best feasible design throughout the optimization process in the 

best run of each algorithm is depicted in Figure 4.6.  

In line with the observations in the previous two problems, the superior performance 

of the CCS algorithms over the two metaheuristics employed is also observed in this 

example, mainly in terms of convergence rate. Considering the best runs of the 

algorithms, the CCS1 and CCS3 provide slightly lighter designs than ADS and EBB-

BC algorithms, yet they require a significantly fewer number of structural analyses 

to approach the optimum solution. The CCS3 reaches the optimum solution only after 

412 analyses, which is about 74.9% and 90.7% less than EBB-BC (1641 analyses) 

and ADS (4454 analyses), respectively. Moreover, the CCS3 provides the most 

consistent results having the lowest mean (1116.44 kN) and coefficient of variation 

(0.03) amongst all CCS variants. 

The demand-to-capacity ratios (DCRs) for each member group of the optimum 

designs produced by each algorithm and inter-story drift ratios (for both orthogonal 

directions) in terms of constraint ratios (i.e., max = 1.0) are provided in Table 4.13, 

Table 4.14, and Table 4.15, respectively. It can be concluded that the sectional 

designations of the member groups are mainly controlled by inter-story drift 

limitations under earthquake loading in y-direction for all of the presented optimum 

designs. It should be remembered that the elevation level grouping of the structural 

members is implemented separately for every two stories. Resultantly, the sectional 

designations of the drift-controlled members are governed by the greater of the drift 

ratios in the stories under consideration. Again, it should be noted that the sectional 

designations of some member groups might also be controlled by geometric 

constraints. 
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Table 4.12 Optimum designs for 160-member OMRSF 

 

 

 

Figure 4.6. Optimization histories for 160-member OMRSF 

 

 

Stories Group ADS EBB-BC CCS₁ CCS₂ CCS₃

IB W33x130 W30x90 W33x118 W33x118 W30x108

OB W14x30 W24x55 W24x55 W21x50 W24x55

CG1 W40x149 W24x62 W18x60 W14x38 W18x50

CG2 W24x62 W18x60 W18x65 W30x90 W21x62

CG3 W40x221 W36x245 W40x199 W40x249 W40x221

CG4 W40x221 W40x328 W40x268 W40x244 W40x268

IB W24x62 W27x84 W21x62 W24x84 W24x68

OB W21x50 W18x46 W21x50 W21x50 W21x50
CG1 W30x90 W21x68 W18x50 W14x34 W16x36

CG2 W24x55 W18x46 W18x50 W24x62 W21x50

CG3 W40x221 W30x173 W40x221 W40x192 W30x191

CG4 W40x221 W40x268 W40x244 W40x221 W40x268

1078.29 1089.38 1072.45 1096.79 1059.70

4454 1641 723 790 412

3-4

W (kN)

1-2

# Analyses
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Table 4.13 DCRs for 160-member OMRSF 

 

 

Table 4.14 Inter-story drift constraints for 160-member OMRSF (x-dir.) 

 

 

Table 4.15 Inter-story drift constraints for 160-member OMRSF (y-dir.) 

 

Stories Group ADS EBB-BC CCS₁ CCS₂ CCS₃

IB 0.6786 0.8056 0.7570 0.7003 0.7911

OB 0.9691 0.9893 0.9906 0.9713 0.9700

CG1 0.5675 0.9944 0.8567 0.9548 0.9309

CG2 0.9144 0.9527 0.9379 0.8076 0.9691

CG3 0.7315 0.5855 0.6907 0.6430 0.6784

CG4 0.8490 0.6340 0.7510 0.7689 0.7135

IB 0.9715 0.7454 0.8357 0.7057 0.8213

OB 0.9929 0.8909 0.9227 0.9870 0.9428
CG1 0.5864 0.5957 0.5921 0.7816 0.7537

CG2 0.7569 0.8795 0.7647 0.7092 0.8642

CG3 0.5043 0.5332 0.5092 0.6092 0.4848

CG4 0.6453 0.5432 0.5679 0.6515 0.5439

0.7640 0.7625 0.7647 0.7742 0.7886

0.1652 0.1708 0.1469 0.1264 0.1548

0.2162 0.2240 0.1921 0.1633 0.1963

1-2

3-4

Mean

SD

CV

Story ADS EBB-BC CCS₁ CCS₂ CCS₃

1 0.4663 0.4219 0.4180 0.4302 0.4455

2 0.9367 0.7996 0.8066 0.8180 0.7913

3 0.9803 0.9757 0.9102 0.9398 0.9236

4 0.8487 0.9059 0.9330 0.8506 0.8521

Mean 0.8080 0.7758 0.7670 0.7597 0.7531

SD 0.2029 0.2137 0.2070 0.1954 0.1837

CV 0.2511 0.2755 0.2699 0.2572 0.2439

Story ADS EBB-BC CCS₁ CCS₂ CCS₃

1 0.9049 0.8217 0.8936 0.8873 0.8613

2 0.9937 0.9921 0.9764 0.9745 0.9898

3 0.9933 0.9965 0.9896 0.9949 0.9983

4 0.7878 0.7666 0.8164 0.6887 0.7126

Mean 0.9199 0.8942 0.9190 0.8864 0.8905

SD 0.0844 0.1020 0.0697 0.1210 0.1162

CV 0.0917 0.1140 0.0759 0.1366 0.1305
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4.1.4 Example 4: 584-member OMRSF 

The fourth test problem is an 8-story (h = 3 m) space OMRSF (Figure 4.7a) 

consisting of 584 structural elements grouped into 24 independent sizing variables. 

The members are grouped both on plan and elevation levels to satisfy practical 

fabrication requirements. The plan-level member grouping is performed such that 

the columns are grouped into four sizing variables as corner columns (CG1), two side 

columns (CG2, CG3) inner columns (CG4), and the beams are grouped into two sizing 

variables as inner beams (IB) and outer beams (OC) (Figure 4.7b). The elevation-

level member grouping is carried out such that the structural members have the same 

sections in every two stories along the height of the frame. Accordingly, there are 8 

beam groups and 16 column groups in this example, resulting in 24 independent 

sizing variables for the entire structure. The orientations of the column groups are 

displayed in Figure 4.7b, whereas the beams are placed such that their strong axes 

coincide with the major axis of bending.  

For this frame, the results of the independent runs obtained by each optimization 

method are summarized in Table 4.16 along with statistical evaluations. In Table 

4.17, the best feasible design produced for the steel frame in the best run of each 

algorithm is presented with sectional designations attained for each member group. 

The variation of the best feasible design throughout the optimization process in the 

best run of each algorithm is depicted in Figure 4.8.  

Unlike previous examples, none of the CCS variants manage to reach a better 

solution than its metaheuristic counterparts. The optimum design obtained by the 

most successful variant of CCS in this example, CCS3, is 4878.14 kN, which is 

182.31 kN (3.88%) heavier than the optimum design obtained by ADS (4695.83 kN), 

and only 0.79 kN (0.016 %) heavier than the optimum design found by EBB-BC 

(4877.35 kN). On the other hand, the CCS3 reaches the optimum solution with 

significantly less computational effort; namely only after 875 analyses, which is 

about 70.2% and 83.9% less than EBB-BC (2935 analyses) and ADS (5462 

analyses), respectively. When the mean design weights are compared, it is seen that 
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the CCS3 (5027.66 kN) is 6.3% lighter than EBB-BC (5363.18 kN) and is only 

slightly heavier (0.2%) than the ADS (5017.51 kN).   

 

 

 

 

 

Figure 4.7. 584-member OMRSF, (a) 3D-view (b) plan view 

(a) 

(b) 
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Table 4.17 Optimum designs for 584-member OMRSF 

 

 

Stories Group ADS EBBBC UUSS₁ UUSS₂ UUSS₃

IB W33x130 W33x130 W36x135 W30x116 W33x118

OB W30x90 W24x68 W24x76 W24x68 W24x62

CG1 W33x118 W40x149 W40x149 W44x248 W36x210

CG2 W40x192 W40x298 W40x268 W40x268 W40x298

CG3 W36x160 W44x248 W40x268 W40x324 W40x298

CG4 W40x328 W40x328 W40x362 W40x328 W40x397

IB W30x116 W30x108 W30x116 W27x114 W30x99

OB W24x84 W27x84 W24x76 W24x68 W24x68

CG1 W24x104 W27x84 W30x191 W30x173 W27x161

CG2 W40x192 W40x268 W40x221 W40x244 W40x268

CG3 W30x191 W36x245 W36x527 W40x268 W33x263

CG4 W40x298 W40x298 W36x280 W33x387 W40x328

IB W30x90 W30x90 W30x90 W30x90 W30x90

OB W24x62 W24x55 W24x76 W24x68 W24x55

CG1 W24x104 W18x60 W24x94 W27x94 W24x104

CG2 W40x192 W40x221 W36x245 W36x230 W40x221

CG3 W27x161 W33x201 W40x192 W30x173 W30x191

CG4 W40x268 W40x268 W30x357 W33x387 W40x298

IB W21x50 W18x55 W21x57 W24x62 W24x55

OB W21x50 W18x40 W18x35 W18x40 W21x44

CG1 W24x104 W18x60 W24x104 W24x104 W10x33

CG2 W24x131 W40x199 W27x146 W27x146 W30x173

CG3 W24x117 W24x103 W21x68 W30x116 W27x258

CG4 W40x221 W40x268 W30x326 W36x230 W33x201

4695.83 4877.35 5197.90 5045.58 4878.14

5462 2935 454 746 875# Analyses

3-4

5-6

1-2

7-8

W (kN)
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Figure 4.8. Optimization histories for 584-member OMRSF 

 

The demand-to-capacity ratios (DCRs) for each member group of the optimum 

designs produced by each algorithm and inter-story drift ratios (for both orthogonal 

directions) in terms of constraint ratios (i.e., max = 1.0) are provided in Table 4.18, 

Table 4.19, and Table 4.20, respectively. Similar to the previous example, the 

sectional designations of the member groups are mainly controlled by inter-story 

drift limitations under earthquake loading in y-direction for all of the presented 

optimum designs. It should be remembered that the elevation level grouping of the 

structural members is implemented separately for every two stories. Resultantly, the 

sectional designations of the drift-controlled members are governed by the greater of 

the drift ratios in the stories under consideration. It should be emphasized that the 

sectional designations of some member groups might be controlled by geometric 

constraints, as previously discussed.  
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Table 4.18 DCRs for 584-member OMRSF 

 

 

 

 

 

 

Stories Group ADS EBB-BC CCS₁ CCS₂ CCS₃

IB 0.5543 0.5657 0.5380 0.6237 0.5851

OB 0.4940 0.6220 0.5571 0.5659 0.7643

CG1 0.8144 0.6546 0.6767 0.4435 0.4634

CG2 0.9174 0.5571 0.6001 0.5990 0.5372

CG3 0.9274 0.7396 0.8311 0.6814 0.7438

CG4 0.8654 0.8424 0.7732 0.8032 0.7072

IB 0.6373 0.6810 0.6682 0.6600 0.7030

OB 0.5591 0.5927 0.5941 0.6273 0.6593

CG1 0.7848 0.7926 0.4949 0.4945 0.4925

CG2 0.7663 0.5258 0.5694 0.4966 0.4549

CG3 0.7881 0.6637 0.3992 0.5510 0.5498

CG4 0.7541 0.7389 0.7986 0.5908 0.6692

IB 0.6837 0.7072 0.6911 0.6958 0.6926

OB 0.7354 0.8850 0.5556 0.5864 0.9031

CG1 0.5981 0.7268 0.5426 0.6167 0.5792

CG2 0.6211 0.5716 0.4772 0.5030 0.4864

CG3 0.6372 0.5786 0.6643 0.6002 0.5919

CG4 0.6600 0.6493 0.5779 0.4942 0.5926

IB 0.9251 0.7445 0.8183 0.7258 0.8578

OB 0.6156 0.8089 0.9843 0.7183 0.8902

CG1 0.5151 0.5696 0.5477 0.5425 0.6832

CG2 0.5365 0.4006 0.5042 0.4861 0.4420

CG3 0.5798 0.5622 0.6437 0.6081 0.4119

CG4 0.5642 0.4895 0.4408 0.5582 0.5654

0.6889 0.6529 0.6228 0.5947 0.6261

0.1325 0.1157 0.1364 0.0867 0.1374

0.1924 0.1772 0.2190 0.1457 0.2194

1-2

3-4

CV

5-6

7-8

Mean

SD
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Table 4.19 Inter-story drift constraints for 584-member OMRSF (x-dir.) 

 

 

Table 4.20 Inter-story drift constraints for 584-member OMRSF (y-dir.) 

 

 

Story ADS EBB-BC CCS₁ CCS₂ CCS₃

1 0.2898 0.2671 0.2746 0.3006 0.2582

2 0.5256 0.5301 0.5575 0.5726 0.5467

3 0.6546 0.6544 0.6401 0.6888 0.7115

4 0.7134 0.6885 0.6899 0.7220 0.7575

5 0.7583 0.7607 0.6971 0.7415 0.8162

6 0.7303 0.7915 0.6823 0.6717 0.7798

7 0.7412 0.8482 0.8079 0.6668 0.7713

8 0.7092 0.7042 0.7652 0.6111 0.6397

Mean 0.6403 0.6556 0.6393 0.6219 0.6601

SD 0.1494 0.1720 0.1548 0.1319 0.1725

CV 0.2333 0.2624 0.2421 0.2120 0.2613

Story ADS EBB-BC CCS₁ CCS₂ CCS₃

1 0.8523 0.8102 0.7885 0.7760 0.7559

2 0.9975 0.9768 0.9707 0.9912 0.9986

3 0.9971 0.9831 0.9832 0.9989 0.9958

4 0.9930 0.9774 0.9878 0.9692 0.9895

5 0.9970 0.9951 0.9839 0.9918 0.9824

6 0.8794 0.9736 0.8567 0.8215 0.8752

7 0.9971 0.9941 0.9918 0.9932 0.9773

8 0.7689 0.7979 0.7736 0.6997 0.7112

Mean 0.9353 0.9385 0.9170 0.9052 0.9107

SD 0.0839 0.0780 0.0888 0.1126 0.1094

CV 0.0897 0.0832 0.0968 0.1244 0.1202



 

 

59 

4.2 Summary 

The results of all four example problems presented in this chapter indicate that the 

CCS3, which utilizes adaptive search neighborhood width (nwa), is the most efficient 

CCS variant in terms of the quality of the optimum solution obtained, consistency of 

the results, and the convergence rate.  

It is also shown that the proposed CCS algorithm, can successfully be applied to 

sizing optimization problems of steel frame structures with displacement constraints, 

and it provides substantial computational savings (~65-90%) while producing 

optimum designs comparable to the metaheuristics, if not the better. 

It should also be noted that the number of structural analyses required for ADS, EBB-

BC, and CCS for the presented examples are reduced significantly through 

implementation of iUBS (~45-95%). The effect of iUBS is much more pronounced 

for complex structural models as there are more connections and equally increased 

number of geometrical constraints. Therefore, a higher number of candidate designs 

are eliminated without being analyzed when iUBS rather than UBS is employed, 

because the former considers not only the weight but also geometrical constraints for 

pre-analysis evaluation of a candidate design, while the latter considers only the 

weight, as explained before.  
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CHAPTER 5  

5 PERFORMANCE BASED DESIGN OPTIMIZATION 

In this chapter, the numerical examples are presented for performance-based design 

optimization of steel frames. The steel frames that were introduced in the previous 

chapter are again sized for minimum weight; albeit using PDB methodology this 

time. The CCS algorithm, which is proposed and evaluated in the previous chapters, 

is used for the optimization of these frames. The study also aims to carry out a 

comparison between optimally designed structures under conventional force-based 

design and performance-based design approaches in terms of cost and seismic 

performance. 

5.1 Performance Based Design using SAP2000 OAPI 

In the current version of SAP2000v21.02, there is no OAPI function to retrieve 

plastic hinge deformations and acceptance criteria for varying performance levels. 

On the other hand, these data are required and essential for the CCS algorithm since 

the optimization process is guided by this algorithm based on the evaluation of 

DCRs. A workaround to this problem is to export all the required data to MS Excel 

by using the database tables feature of SAP2000. After that, one can import this data 

from the excel file to any computing platform (such as MATLAB in this study) and 

calculate the corresponding DCRs for each design group. The optimization process 

can then proceed as projected. Nevertheless, the exporting and importing sequences 

are computationally intensive tasks which can take a significant amount of time 

especially for structural models with a large number of hinges. It should also be noted 

that the number of saved states during analysis directly affects the time of export 

from SAP2000 and processing time of imported data in MATLAB. Decreasing the 
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number of saved states, on the other hand, may result in missing the optimum designs 

in between two consecutive pushover steps, if any. 

5.2 Numerical Examples 

The same steel design examples (1-3) from the previous chapter are used for the 

performance-based design optimization studies. The basic performance objective 

equivalent to new building standards (BPON) given in ASCE 41-13 guidelines is 

adopted. BPON foresees a Life Safety (LS) structural performance level and Position 

Retention non-structural performance level under BSE-1N hazard level; and 

Collapse Prevention (CP) structural performance level under BSE-2N hazard level 

while non-structural performance is not considered. BSE-2N corresponds to 

Targeted Maximum Considered Earthquake (MCER) and can be thought of as a 

seismic hazard with 2% probability of exceedance in 50 years. (2%/50-year). BSE-

1N, on the other hand, corresponds to design earthquake level and can be taken as 

2/3 of MCER (ASCE 41-13). 

In order to evaluate seismic performance of the steel frames, pushover analysis with 

a lateral load pattern reflecting the fundamental mode shape in the direction under 

consideration is used. In all the examples, the structures are pushed under this load 

pattern until the roof displacement reaches 5% of the building height. The number 

of saved states is set to 100 for the first two examples, and to 50 for the third example. 

The determination of the target displacement for pushover analysis is performed in 

accordance with ASCE 41-13 requirements. The plastic hinges are defined at the 

start and the end node of each structural element. Modeling parameters and 

acceptance criteria of the hinges are also determined in accordance with ASCE 41-

13. 

At the target displacements corresponding to BSE-1N and BSE-2N hazard levels, 

plastic hinge rotation constraints of the deformation-controlled members and 

strength constraints of the force-controlled members are considered for the 
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performance-based design. In addition, at BSE-1N hazard level, an inter-story drift 

limit of 2% of the story height is considered for each story in accordance with BPON 

requirements for the position retention non-structural performance level. Gravity 

loads and seismic coefficients are taken as given for the conventional force-based 

design in Chapter 4, Table 4.2. All details related to design constraints and load 

combinations are taken as previously presented in Chapter 2. 

For all three examples, the CCS3 algorithm is employed, in which the only change 

to default algorithm parameters given in Table 4.1 is made for  such that it is taken 

as 0.8 for the first example and 0.7 for the second and third examples. For all the 

examples, SEP and iterni parameters are taken as 50 and 150, respectively. The 

maximum number of iterations parameter, itermax,  is set to 500 for the first and third 

examples, and to 1000 for the second example. Ten independent optimization runs 

are performed for each example while the initial design is defined by assigning the 

largest available sections for each member group. The best run results are presented 

and used for comparison with the optimum designs produced according to FBD 

approach in the previous chapter in terms of cost and seismic performance. 

5.2.1 Example 1: 28-member planar OMRSF 

Table 5.1 presents and compares the optimum designs of the 28-member planar 

OMRSF produced according to PBD and FBD methodologies. Table 5.2 shows the 

number of structural elements satisfying various performance levels under BSE-1N 

and BSE 2-N hazard levels in accordance with the BPON. In addition, the maximum 

inter-story drift ratios for both designs at the corresponding target displacements are 

also provided in the table. It should be noted that although the pushover load is 

applied in one direction (+x) only, while Table 5.2 is being formed, the effect of the 

loading in the (-x) direction is also considered by taking advantage of the 

symmetrical plan and member grouping of the structural model. The results show 

that the optimum design of the frame produced according to PBD methodology is 

5.64% lighter than the one produced according to FBD methodology. While the 
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former complies with all BPON requirements, the latter fails to satisfy BPON 

requirements since it has two structural members deforming beyond CP level at BSE-

1N and BSE-2N hazard levels.  

 

Table 5.1 Optimum PBD and FBD for Example 1  

 

 

Table 5.2 Comparison of optimum PBD and FBD for Example 1. 

 

 

The hinge states at the target displacements corresponding to BSE-2N hazard level 

for optimum PBD and FBD are also illustrated in Figure 5.1. It is apparent that the 

optimum PBD yields in more homogeneous distribution of the inelastic deformation 

demands over the entire structure than does the optimum FBD. The pushover 

capacity curves for both designs are depicted in Figure 5.2. The variation of the best 

feasible design throughout the optimization process with PBD methodology is 

shown in Figure 5.3. 

Group PBD FBD

1 W21x50 W24x55

2 W18x40 W21x44

3 W21x83 W24x68

4 W12x35 W16x45

5 W21x57 W24x55

6 W12x26 W14x34

W (kN) 88.36 93.64

# Analysis 215 199

Hazard
               Design            

P. Level
PBD FBD PBD FBD

IO 22 24 12 21

LS 6 2 16 5

CP 0 0 0 0

> CP 0 2 0 2

IDRmax (%) 2.00 1.75 - -

BSE-1N BSE-2N
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Figure 5.1. Hinge states (BSE-2N) for optimum PBD (top) and FBD (bottom) for 

Example 1 

 

 

Figure 5.2. Pushover capacity curves of optimum PBD and FBD for Example 1 
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Figure 5.3. Optimization history for Example 1 (PBD) 

 

5.2.2 Example 2: 54-member planar OMRSF 

Table 5.3 presents and compares the optimum designs of the 54-member planar 

OMRSF produced according to PBD and FBD methodologies. Since the structural 

plan of the frame is asymmetric, two cases of pushover analysis are considered in 

which the lateral load pattern is applied in opposite directions. Table 5.4 shows the 

number of structural elements satisfying various performance levels under BSE-1N 

and BSE 2-N hazard levels in accordance with the BPON. In addition, the maximum 

inter-story drift ratios for both designs at the corresponding target displacements are 

also provided in the table. The results show that the optimum design of the frame 

produced according to PBD methodology is 1.43% lighter than the one produced 

according to FBD methodology. While the former complies with all BPON 

requirements, the latter fails to satisfy BPON requirements since it has multiple 

members deforming beyond CP level at BSE-1N and BSE-2N hazard levels.  

The hinge states at the target displacements corresponding to BSE-2N hazard level 

for optimum PBD and FBD are also illustrated in Figure 5.4-5.5. Similar to previous 
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example, it can be observed that the optimum PBD results in more homogeneous 

distribution of the inelastic deformation demands over the entire structure than does 

the optimum FBD. The pushover capacity curves for both designs are depicted in 

Figure 5.6. The variation of the best feasible design throughout the optimization 

process with PBD methodology is shown in Figure 5.7. 

 

Table 5.3 Optimum PBD and FBD for Example 2 

 

 

Table 5.4 Comparison of optimum PBD and FBD for Example 2 

 

Group PBD FBD

1 W16x26 W24x55

2 W16x26 W24x55

3 W10x26 W10x26

4 W30x90 W21x83

5 W27x84 W24x84

6 W24x84 W24x84

7 W16x40 W18x60

8 W40x149 W30x108

9 W30x90 W30x90

10 W16x31 W16x50

11 W30x90 W30x90

12 W30x90 W24x84

13 W6x20 W6x15

14 W24x84 W24x84

15 W24x84 W24x84

W (kN) 289.48 293.68

# Analysis 220 396

Hazard
               Design            

P. Level
PBD FBD PBD FBD

IO 40 44 30 35

LS 14 7 21 15

CP 0 0 3 0

> CP 0 3 0 4

IDRmax (%) 2.00 1.95 - -

BSE-1N BSE-2N
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Figure 5.4. Hinge states (BSE-2N) for optimum PBD (top) and FBD (bottom) for 

Example 2 (+x loading) 

 

 

Figure 5.5. Hinge states (BSE-2N) for optimum PBD (top) and FBD (bottom) for 

Example 2 (-x loading) 
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Figure 5.6. Pushover capacity curves of optimum PBD and FBD for Example 2 

 

 

Figure 5.7. Optimization history for Example 2 (PBD) 
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5.2.3 Example 3: 160-member OMRSF 

Table 5.5 presents and compares the optimum designs of the 160-member OMRSF 

(Example 3) produced according to PBD and FBD methodologies. Since the 

structural plan and grouping of structural elements are symmetrical about both lateral 

directions, two cases of pushover analysis are considered only in which the lateral 

load pattern is applied in either (+x) or (+y) direction. Table 5.6 shows the number 

of structural elements satisfying various performance levels under BSE-1N and BSE 

2-N hazard levels in accordance with the BPON. In addition, the maximum inter-

story drift ratios for both designs at the corresponding target displacements are also 

provided in the table. It should be noted that although the pushover load is applied 

only in (+x) and (+y) directions, while Table 5.6 is being formed, the effect of the 

loading in the reverse directions are also considered by taking advantage of the 

symmetrical plan and member grouping of the structural model.  

 

Table 5.5 Optimum PBD and FBD for Example 3 

 

Stories Group PBD FBD

IB W24x84 W30x108

OB W24x55 W24x55

CG1 W21x62 W18x50

CG2 W30x116 W21x62

CG3 W40x215 W40x221

CG4 W36x300 W40x268

IB W24x84 W24x68

OB W18x35 W21x50

CG1 W18x35 W16x36

CG2 W18x46 W21x50

CG3 W40x192 W30x191

CG4 W33x201 W40x268

1020.39 1059.70

405 412

W (kN)

1-2

3-4

# Analysis
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Table 5.6 Comparison of optimum PBD and FBD for Example 3 

 

 

The results show that the optimum design of the frame produced according to FBD 

fails to meet BPON requirements as inter-story drift constraints are violated at BSE-

1N hazard level; and four structural elements deform beyond collapse prevention 

level in BSE-2N hazard. On the other hand, the optimum design of the frame 

produced according to PBD methodology, while satisfying all BPON requirements, 

is 3.71% lighter than its FBD counterpart.  

The hinge states at the target displacements corresponding to BSE-2N hazard level 

for optimum PBD and FBD are also illustrated in Figure 5.8-5.9. It can be concluded 

that the optimum PBD results in more homogeneous distribution of the inelastic 

deformation demands over the entire structure than does the optimum FBD.  

The pushover capacity curves for both designs are depicted in Figure 5.10. The 

variation of the best feasible design throughout the optimization process with PBD 

methodology is shown in Figure 5.11. 

 

 

 

 

 

Hazard
               Design            

P. Level
PBD FBD PBD FBD

IO 144 146 102 108

LS 16 14 58 44

CP 0 0 0 4

> CP 0 0 0 4

IDRmax (%) 2.00 2.77 - -

BSE-1N BSE-2N
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Figure 5.8. Hinge states (BSE-2N) for optimum PBD (top) and FBD (bottom) for 

Example 3 (+x loading) 
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Figure 5.9. Hinge states (BSE-2N) for optimum PBD (top) and FBD (bottom) for 

Example 3 (+y loading) 
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Figure 5.10. Pushover capacity curves of optimum PBD and FBD for Example 3 

 

 

Figure 5.11. Optimization history for Example 3 (PBD) 
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5.3 Summary 

The numerical examples presented in this chapter indicate that optimally designed 

structures according to PBD methodology can be more economical than those 

optimally designed according to FBD methodology. In general, the PBD 

methodology leads to lighter design weights up to around 5% in comparison, while 

the designs are mainly governed by the maximum inter-story drift ratio which is 

basically defined for limiting damage to non-structural components. It can be 

concluded that more economical designs could be produced if performance 

constraints for structural members were considered alone. 

Contrary to common expectation that FBD approach is generally conservative, it is 

shown that the optimum designs of the frames produced according to FBD 

methodology might fail to satisfy BPON requirements. On the other hand, the 

seismic performance of the frames optimally designed according to PBD 

methodology are ensured inherently as they are subject to performance constraints.  

From the optimization point of view, it is demonstrated that the CCS algorithm is 

also able to handle PBDO problems effectively. Considering the fact that performing 

numerous nonlinear analyses can take significant amount of time during 

optimization process, solving PBDO problems by only a few hundreds of analyses 

is a huge step-forward in terms of practicality. 
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CHAPTER 6  

6            MULTI-OBJECTIVE PERFORMANCE BASED DESIGN OPTIMIZATION 

6.1 A Practical Approach for MOPBDO 

Metaheuristic optimization techniques are often preferred for solving multi-objective 

optimization problems. There are basically two reasons behind this preference: (1) 

they are less susceptible to the continuity or shape of the Pareto front (2) most of the 

metaheuristic techniques are population-based approaches, and therefore multiple 

elements of the Pareto optimal set can be found in an iteration. On the other hand, as 

previously discussed, metaheuristics require a large number of objective function 

evaluations.  

The computational efficiency of the proposed CCS technique in solving single-

objective structural optimization problems has been demonstrated in the preceding 

chapters. A practical approach is adopted in this chapter to employ CCS technique 

for multi-objective optimization problems, without interfering its search mechanism.  

In general, metaheuristics and other optimization techniques that are based on 

stochastic search moves are run for a predefined number of times to get the best 

results within the search capability of the algorithms. While the best feasible design 

obtained during these runs is identified as the final or optimum design, other designs 

are eliminated. In this study, an archive system is introduced into CCS algorithm to 

record all these feasible design solutions found until all runs of the optimization 

process are completed. Then, non-dominated set of solutions are extracted from this 

archive by using any non-dominated sorting algorithm. Although the non-dominated 

set of solutions found by this procedure may not always be a good representation of 

the actual Pareto-optimal set, its implementation is quite simple. In addition, since 

this is an independent, post-processing procedure, one can define as many objectives 

as desired and can obtain different trade-off relationships featuring any two of these 
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objectives (e.g., design weight vs. maximum inter-story drift, design weight vs. a 

damage index, etc.). 

6.2 Numerical Examples 

For the numerical examples presented in the previous chapter, all the feasible designs 

located during the performance-based design optimization process are recorded in 

an archive. The cost-performance trade-off relationship among these designs are 

established considering design weight and a basic damage index defined as follows: 

 

𝐷𝐼 =  
𝑁𝑑

𝑁𝑇
                                          (6.1) 

 

In this equation, Nd and NT represent the number of damaged structural members and 

the total number of structural members, respectively. A member is considered as 

damaged if its structural performance is worse than the immediate occupancy level 

under the BSE-1N earthquake. On the other hand, the BSE-2N earthquake is not 

considered in the damage index since the examples are designed for collapse 

prevention building performance level for this hazard level and are assumed 

irreparable.  

For identification of the non-dominated set of solutions among N feasible designs 

(p) in the archive, the dominance degree approach for non-dominating sort (DDA-

NS) (Zhou et al., 2017) is adopted. The algorithm for DDA-NS is as follows:  

1. Construct a comparison matrix CNxN for each objective function, fk of the m-

dimensional multi-objective optimization problem (i.e., k = 1, 2, …, m). Each 

element of this matrix is determined by the following formula: 

 

𝐶𝑖𝑗
𝑘 = {

0, 𝑖𝑓 𝑓𝑘(𝑝𝑖) > 𝑓𝑘(𝑝𝑗) 𝑜𝑟 𝑖 = 𝑗 𝑜𝑟  𝑝𝑖 =  𝑝𝑗  

1,    𝑖𝑓 𝑓𝑘(𝑝𝑖) ≤ 𝑓𝑘(𝑝𝑗)                                        
        (6.2) 
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2. Construct the dominance degree matrix, DNxN by summing all comparison 

matrices as follows: 

𝐷 =  ∑ 𝐶𝑘𝑚
𝑘=1                                           (6.3) 

 

3. Calculate Dmax, the row vector containing the maximum value from each 

column of D. 

4. The designs corresponding to elements of Dmax which is less than m represent 

the non-dominated set of solutions in the archive. 

 

It is possible via this algorithm to obtain all non-dominated fronts simply by 

extracting the rows and columns corresponding to non-dominated solutions from the 

dominance degree matrix (D) found in Step 4 and then returning to Step 3, repeatedly 

until all non-dominated fronts are identified. The first front found by this algorithm 

will give the closest estimation to the actual Pareto front. 

6.2.1 Example 1: 28-member planar OMRSF 

For the 28-member planar OMRSF, all feasible designs with a design weight less 

than 200 kN identified throughout the ten runs of the PBDO process are illustrated 

in Figure 6.1. The non-dominated designs (ND) extracted using DDA-NS algorithm 

are illustrated in Figure 6.2. These solutions are presented in Table 6.1 as design 

alternatives for sizing of the frame.  

The best feasible design (i.e., minimum weight feasible design) is expected to have 

6 damaged structural members (IO to LS) under the design earthquake level (BSE-

1N). If this solution is assumed as the global optimum solution for the PBDO 

problem, the actual pareto front would consist of a maximum of 7 design points 

(probably less due to symmetrical plan and member grouping), which have a number 

of damaged members ranging from 0 to 6. It follows that the 4 non-dominated 
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solutions illustrated in Figure 6.2 may be considered as a good approximation of the 

actual pareto optimum set since these solutions cover the considered damage index 

range with even intervals, and with an acceptable distribution of design weights. 

 

 

Figure 6.1. Feasible design solutions for Example 1 

 

 

Figure 6.2. Non-dominated design solutions for Example 1 
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Table 6.1 PBD alternatives for Example 1 

 

 

6.2.2 Example 2: 54-member planar OMRSF 

For the 54-member planar OMRSF, all feasible designs identified throughout the ten 

runs of the PBDO process are illustrated in Figure 6.3. The non-dominated designs 

(ND) extracted using DDA-NS algorithm are illustrated in Figure 6.4. These 

solutions are presented in Table 6.2 as design alternatives for sizing of the frame.  

The best feasible design (i.e., minimum weight feasible design) is expected to have 

14 damaged structural members (IO to LS) under the design earthquake level (BSE-

1N). If this solution is assumed as the global optimum solution for the PBDO 

problem, the actual pareto front would consist of a maximum of 15 design points, 

which have a number of damaged members ranging from 0 to 14. It follows that the 

10 non-dominated solutions illustrated in Figure 6.4 may be considered as a fair 

approximation of the actual pareto optimum set since these solutions cover a 

significant portion of the considered damage index range (10 out of 15), with an 

acceptable distribution of design weights. 

 

Group ND-1 ND-2 ND-3 ND-4

1 W21x50 W21x50 W21x50 W21x50

2 W18x40 W18x40 W18x40 W18x40

3 W24x94 W24x84 W24x84 W21x83

4 W18x50 W14x43 W12x35 W12x35

5 W24x62 W24x62 W21x57 W21x57

6 W14x43 W12x35 W12x35 W12x26

W (kN) 98.27 93.12 90.48 88.36

Nd/NT 0/28 2/28 4/28 6/28
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Figure 6.3. Feasible design solutions for Example 2 

 

 

Figure 6.4. Non-dominated design solutions for Example 2 
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6.2.3 Example 3: 160-member OMRSF 

For the 160-member OMRSF, all feasible designs identified 3 throughout the ten 

runs of the PBDO process are illustrated in Figure 6.5. The non-dominated designs 

(ND) extracted using DDA-NS algorithm are illustrated in Figure 6.6. These 

solutions are presented in Table 6.3 as design alternatives for sizing of the frame.  

The best feasible design (i.e., minimum weight feasible design) is expected to have 

16 damaged structural members (IO to LS) under the design earthquake level (BSE-

1N). If this solution is assumed as the global optimum solution for the PBDO 

problem, the actual pareto front would consist of a maximum of 17 design points 

(probably less due to symmetrical plan and member grouping), which have a number 

of damaged members ranging from 0 to 16. It follows that the 7 non-dominated 

solutions illustrated in Figure 6.6 may be considered as a fair approximation of the 

actual pareto optimum set since these solutions cover a significant portion of the 

considered damage index range (7 out of 17), with an acceptable distribution of 

design weights. 

 

 

Figure 6.5. Feasible design solutions for Example 3 
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Figure 6.6. Non-dominated design solutions for Example 3 

 

6.3 Summary 

A practical approach is presented for defining performance-based design alternatives 

that have varying levels of seismic performance. The approach is based on using a 

simple damage index formed by the ratio of damaged members to all members, under 

design earthquake level. In this approach, an archive system which records all 

feasible designs found during all runs of optimization process is embedded in CCS 

algorithm. The non-dominated set of solutions is then extracted from this archive by 

DDA-NS algorithm.  
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CHAPTER 7  

7 CONCLUSION 

7.1 Summary and Concluding Remarks 

In this study, the performance-based design optimization of ordinary moment-

resisting steel frames is mainly investigated. The contributions of the study to the 

field of structural optimization lie in the following three points. First, a novel design-

driven optimization technique called Capacity Controlled Search (CCS) is 

introduced as a robust and time-efficient method for discrete sizing optimization of 

both conventional force-based design problems and performance-based design 

problems with/without displacement constraints. Secondly, a comparison of 

optimally designed ordinary moment-resisting steel frames under PBD and FBD 

methodologies is provided in terms of cost and seismic performance. Thirdly, a 

practical approach is proposed to deliver design alternatives under multi-objective 

optimization framework. 

In Chapter 4, the performance of the proposed CCS technique is compared with two 

metaheuristic search techniques, namely adaptive dimensional search (ADS) and 

exponential big bang-big crunch (EBB-BC) in terms of convergence characteristics 

of the algorithms. It is shown that the CCS technique provides computational savings 

up to ~65-90% in the implemented numerical examples while demonstrating 

consistent performance. The main advantages of CCS, apart from its simplicity and 

computational efficiency, can be listed as follows: (1) ability to handle displacement 

constraints, (2) ability to handle geometric constraints, and (3) being applicable to 

both FBDO and PBDO problems. In this study, the convergence characteristics of 

ADS, EBB-BC and CCS techniques are enhanced by the so-called improved upper 

bound strategy (iUBS), which in fact substantially reduce the computational burden 

of structural analyses required during the optimization process up to ~45-95% in the 
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presented numerical examples. In this approach, the penalized weight of a candidate 

design is calculated first using the weight and the constraints (e.g., geometric 

constraints) that can be calculated without a need for structural analysis. The 

candidate design is analyzed and re-evaluated only if its penalized weight is lower 

than the objective function of the elite design; otherwise, it is rejected automatically 

without performing a structural analysis since it has no way to be better than the elite 

design. It is also possible to implement the iUBS dynamically during different phases 

of structural analyses. For example, after determining local response constraints 

(e.g., stresses, deflections, etc.) first, the penalized weight of a candidate design is 

updated and checked whether it is still able to improve the elite design. If it is not, 

later phases of structural analyses like determining story drift ratios or hinge states 

(if it is PBDO) can be skipped to avoid unnecessary computations.  

In Chapter 5, it is shown that the structures that are designed optimally according to 

PBD methodology are lighter than those designed optimally according to 

conventional FBD methodology up to around 5%. It should also be noted that a 

specified level of seismic performance is ensured inherently by the PBD. The results 

indicate that the performance-based design methodology may offer some advantages 

in terms of economy and safety with respect to conventional force-based design. 

In Chapter 6, an archive system is employed, in which all feasible design solutions 

identified during PBDO runs are recorded for determining performance-based design 

alternatives. Then, the non-dominated designs are extracted from this archive by 

using DDA-NS algorithm as a post-process. The proposed approach, rather than 

finding the true pareto front, aims to determine the hierarchy among all recorded 

designs and present a set of design alternatives for decision makers. Since it is a post-

processing approach, it does not interfere the search process or slow down the 

convergence rate of the optimization technique. The main advantage of this approach 

is its scalability such that one can define as many objectives (design weight, inter-

story drift or multiple damage indices, etc.) as desired based on engineering 

preferences and extract non-dominated solutions from the archive accordingly. 
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Following remarks can be made based on this study: 

• CCS is a simple, robust, and fast design-driven optimization algorithm that 

can be applied to both FBDO and PBDO problems with/without 

displacement constraints. 

• CCS is able to produce cost-efficient, code-compliant designs by requiring 

only in scale of hundreds of structural analyses or response calculations, 

which is much less than that is required for metaheuristics. 

• iUBS is a simple and efficient procedure to reduce number of analyses 

required during optimization process and can be also applied in conjunction 

with many other optimization techniques with elitism approach. 

• Optimally designed steel moment frames under PBD methodology are 

inherently safer and can be more economical than those optimally designed 

by conventional FBD approach. 

• Despite the common expectation that FBD approach is generally 

conservative, optimum FBD of steel moment frame examples demonstrated 

inadequate seismic performance when evaluated in accordance with ASCE 

41-13. 

• Optimum PBD of steel moment frames is mainly governed by inter-story 

drift ratio constraints, which is in fact defined for limiting damage to non-

structural components. More economical designs can be produced by PBD 

approach if the damage to structural components is considered alone. 

7.2 Recommendations for Future Research 

Over the last two decades, there is a growing interest in PBD, especially under 

structural optimization framework. Nevertheless, the relevant studies in the field are 

still scarce, and a shift from conventional FBD to PBD is highly dependent on the 

research efforts. The findings in this study suggest that ordinary moment-resisting 

steel frames can be designed more economically and safely by PBDO approach than 

by FBDO approach. It is worthwhile to scrutinize economical aspects of PBDO on 
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different type of structures, such as braced steel frames and reinforced concrete 

structures. Finally, it is recommended that the performance of the existing design-

driven optimization techniques in conjunction with PBDO should be investigated. In 

this regard, developing simple and efficient optimization techniques will surely 

contribute to a widespread use of optimization tools in structural engineering design 

applications. 
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