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ABSTRACT

NEGATIVE INFORMATION FUSION FOR GAUSSIAN PROCESS BASED
THREE-DIMENSIONAL EXTENDED TARGET TRACKING

Sür, Cem Gürkan
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Emre Özkan

May 2021, 114 pages

Extended target tracking refers to the estimation of extent of a target as well as its

position, kinematics, and orientation. In this thesis, we compare performances of

Gaussian process based extended target tracking methods. Additionally, we propose

a method that uses negative information fusion in three-dimensional point cloud data

to enhance extent estimates of the target. Wide-ranging simulations are carried out to

demonstrate the performance of the proposed algorithm. All simulations are carried

out on a modular environment to be able to easily integrate different scenarios and

compare the performances of the different methods. Results are obtained with both

simulated and real data to attain better performance comparisons.

Keywords: Extended Target Tracking, Gaussian Processes, Negative Information Fu-

sion
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ÖZ

GAUSS SÜREÇLERİ BAZLI ÜÇ BOYUTLU GENİŞLETİLMİŞ HEDEF
TAKİBİ İÇİN NEGATİF BİLGİ BİRLEŞTİRMESİ

Sür, Cem Gürkan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Emre Özkan

Mayıs 2021 , 114 sayfa

Genişletilmiş hedef takibi hedef boyutlarının yanı sıra konum, hız, yönelim bilgile-

rinin de bir arada kestirimine denir. Bu tezde, Gauss süreçleri tabanlı genişletilmiş

hedef takibi metotlarının performansları karşılaştırılmaktadır. Buna ek olarak, negatif

bilgi birleştirmesinin üç boyutlu nokta bulutu verilerinden daha iyi boyut kestirimi

yapılmasında kullanılması hakkında bir metot önerilmektedir. Önerilen algoritmanın

performansını göstermek için geniş kapsamlı benzetimler gerçekleştirilmiştir. Yapı-

lan tüm benzetimler modüler bir ortamda gerçekleştirilmiş olup, farklı senaryoların

kolayca entegre edilebilmesi ve farklı metotların performanslarının kolay bir şekilde

karşılaştırılması hedeflenmiştir. Hem temsili hem de gerçek veri setinden alınan so-

nuçlarla algoritmanın performans karşılaştırması daha iyi bir şekilde elde edilmiştir.

Anahtar Kelimeler: Genişletilmiş Hedef Takibi, Gauss Süreçleri, Negatif Bilgi Bir-

leştirmesi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Target tracking has many applications in both military and civil sectors such as air de-

fense, surveillance, robotics etc. Independent of where target tracking is used, main

motivation is estimating the trajectory of a target better using some sensor measure-

ments. In target tracking applications, point object assumption is very common. Point

object assumption essentially means that at most one measurement per scan from any

target can be obtained from a sensor. This assumption is quite valid when resolution

of the sensors are comparable with target size. However, sensors’ resolution increased

more and more in recent years. Furthermore, available computational power has also

increased over years. Thus, algorithms that make use of multiple measurements from

a target per scan are increasingly used. By utilizing multiple measurements, one can

obtain more information from the target, such as its size, shape etc. This informa-

tion can be further used for classification purposes. Extended Target Tracking (ETT)

(also known as Extended Object Tracking (EOT) in some fields) algorithms are used

for the estimation of the extent of the object jointly with the kinematics based on the

assumption of multiple measurements.

First methods for ETT assumed a known geometric shape to represent the target ex-

tent, such as a stick, rectangle or a circle [1, 2, 3]. Random matrix (RM) approach

(a.k.a. elliptical extend method) proposed by Koch [4] gained traction between these

methods. Then, star convex shape based random hypersurface model (RHF) was

proposed. Random hypersurface models are firstly used for extended target tracking

applications in [5] by Baum. A new random hypersurface model, namely Gaussian

1



process (GP) model, was introduced in [6]. Unlike the random matrix model which

represents shapes by ellipses, these models represented shapes by any star convex

shape. A detailed literature survey of the ETT can be found in [7].

In this thesis, the main aim is to integrate the Negative Information Fusion concept

with Extended Target Tracking with Gaussian Process (ETTGP) Algorithms to obtain

more robust and accurate extent estimates.

1.2 Proposed Methods and Models

In this thesis, estimation of the target extent is achieved by the utilization of Gaussian

Processes. Gaussian Processes is a common tool for machine learning applications

[8]. Integration of Gaussian Processes to ETT problem enables us to estimate random

star convex shaped objects as well as better accuracy compared to conventional meth-

ods such as RM and RHF models. The resulting algorithm is called ETTGP. Several

nonlinear Kalman filters and smoothers are utilized for inference in this study such as

Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Extended Kalman

Smoother (EKS), and Unscented Kalman Smoother (UKS). Firstly, two-dimensional

version of the ETTGP with Negative Information Fusion algorithm (ETTGP 2D) is

derived step by step. Then, a three-dimensional version of ETTGP with Negative

Information Fusion algorithm (ETTGP 3D) is proposed.

1.3 Topics Studied in the Thesis

Topics studied in the thesis are as follows:

• Utilization of ETTGP algorithms enabled the estimation of the extent of ran-

dom star shaped convex shapes along with the state kinematics in both 2D and

3D.

• Performances of different filters and smoothers such as EKF, UKF, EKS, UKS

in ETTGP 2D and 3D algorithms are compared.
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• Fusion of negative information with ETTGP algorithms enabled us to have bet-

ter state estimates.

• A method for ETTGP 3D with negative information fusion is proposed. Re-

sults of the proposed algorithm are compared with the existing ETTGP 3D

algorithms.

1.4 The Outline of the Thesis

Chapter 2 contains the necessary background. In the first part of Chapter 2 general

ETT problem in the literature is discussed. After that, Gaussian processes is covered

in detail. Then, negative information concept and benefits of negative information fu-

sion are explained. Inference techniques used in the thesis are explained in Chapter 3.

ETTGP algorithms for 2D and 3D are derived in Chapter 4. Simulation results along

with discussions are given in Chapter 5. Lastly, conclusions are given in Chapter 6.
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CHAPTER 2

BACKGROUND

2.1 Extended Target Tracking

2.1.1 Introduction

Extended target tracking simply refers to the estimation of the extent of a target along

with its position, kinematics, and orientation. There are many well-established meth-

ods in the extended target tracking literature, such as random matrix models, proposed

firstly in [4], and star convex shape based models proposed firstly in [5]. In this sec-

tion, basics of extended target tracking will be explained. Common definitions and

concepts are summarized at first. Then, target state, measurement, shape, and tar-

get dynamics are discussed concisely. At last, prevalent methods for extended target

tracking are briefly introduced.

2.1.2 Extended Target Modelling

Extended target modelling comprised of state representation, measurement modelling

and target dynamics as in standard target tracking application. However, it addition-

ally requires shape (or extent) modeling. In this section, our aim is to present basics

of extended target modeling.

In real life, every object, or target as referred in this study, has a spatial extent. Each

target we try to represent has an area for 2D applications or volume for 3D appli-

cations. Nevertheless, there is a very widespread assumption called point target as-

sumption in target tracking studies. This assumption stems from the fact that for
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many applications resolution of the sensor is not sufficiently high compared to the

target size to attain multiple measurements at a scan. However, resolution of the sen-

sors increases as the technology constantly evolves and progresses. As resolution of

the sensors becomes comparable to the target size, obtaining multiple measurements

at a scan becomes possible. To summarize, point target tracking and extended target

tracking can be defined as follows:

• Point Target Tracking: Target generates at most one, i.e., there might be

missed detections, measurement at a scan. The resolution of the sensor is not

sufficiently high compared to the target size.

• Extended Target Tracking: Target generates multiple measurements at a scan.

In other words, resolution of the sensor is sufficiently high compared to the

target size.

Having described the difference between point and extended target tracking, let us ex-

amine how to model an extended target tracking problem in the subsequent sections.

2.1.2.1 Target State Modelling

Extended target state models usually contain position, velocity, direction, and extent,

i.e., size and shape, of the target direction. Thus, extended target state can simply be

divided to three as follows:

• Position: Target position in 2D (x, y) or 3D (x, y, z).

• Kinematics: Parameters related to the motion of the target, e.g., orientation,

velocity, acceleration etc.

• Extent: Parameters related to the size and shape of the target.

Parameters utilized in extended target state depends highly on the application and

method. For instance, one angle is enough to represent orientation in a 2D extended

target tracking problem. However, in 3D orientation (or pose) of the object should be

represented with more angles.
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2.1.2.2 Measurement Modelling

In extended target tracking applications, we assume that multiple measurements at

each scan of the sensor is generated. Let Z =
{
z(i)
}n
i=1

denote the measurements

collected at a scan. Extended target measurements are modelled by the conditional

distribution, p(Z|x), given state x. This distribution is referred to as extended target

measurement likelihood in general. Aim of the measurement modelling is to express

both the number of measurements and distribution of the measurements over the ex-

tent of the target.

2.1.2.3 Shape Modelling

Shape modelling in extended target tracking depends highly on the specific applica-

tion. Complexity of the tracking problem and shape of the target we wish to track

affect shape modelling approach. These approaches can be summarized as follows:

1. Easiest approach is to neglect the extent information and using all available

measurements to update a point target. This method is useful if estimating only

the position and kinematics of the target is sufficient for the application.

2. Second approach is assuming a basic geometric shape such as stick, rectangle,

ellipse etc. This approach is useful when there is a sound prior knowledge

about the shape of the target. If the expected shape of the target is known, these

representations come in handy.

3. Most advanced approach is to have a flexible model which is able to represent a

variety of shapes. This method is the most accurate of all, but it is very complex

compared to other approaches.

These approaches are visualized in Fig. 2.1.
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Figure 2.1: Approaches for shape modelling

2.1.2.4 Target Dynamics

Target dynamics defines how the extended target state changes over time. For a

moving target, position, kinematics of the target, i.e., velocity, acceleration etc., and

changes in the extent over time that define the motion of the extended target can be

considered as target dynamics. In general, dynamics of the position and kinematics

of the target can be represented with standard models in point target tracking. Con-

stant velocity (CV), constant acceleration (CA), nearly constant velocity model, and

coordinated turn (CT) are few examples of these common methods. We assume that

target size and shape does not change over time if the target is a rigid object. Hence,

there is no dynamics involved. However, when the target makes a turn, the orientation

of the extent changes. Thus, orientation of the object should also be estimated.

2.1.3 Prevalent Methods in Extended Target Tracking

Widespread models used in extended target tracking algorithms is briefly explained

in this section.

2.1.3.1 Random Matrix Models

The random matrix (RM) model is first introduced in [4]. RM model extended target

state with a combination of target kinematics, xk, and extent matrix Xk. xk vector

contains target position, velocity, acceleration etc. whereas Xk is an n × n matrix

that represent extent of the target where n denotes dimension of the target. For a

2D target n = 2, whereas for a 3D target n = 3. Xk is assumed to be symmetric
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and positive-definite which implies target extent is represented by an ellipse. Each

measurement is assumed to be independent of one another. Measurement likelihood

for a single measurement, zk,l ∈ IRm, is modelled as

p(zk,l|xk, Xk) = N (zk,l; Ckxk, zXk +R), (2.1)

where Ck denotes the n × m measurement matrix, R denotes the measurement

noise covariance matrix and z is a scaling factor. Posterior distribution of xk can be

represented as

p(xk, Xk|Zk) ≈ p(xk|Zk)p(Xk|Zk),

= N (xk; mk|k, Pk|k)× IW(Xk; νk|k, Vk|k),
(2.2)

where estimated kinematics, xk, is Gaussian with mean mk|k and covariance Pk|k.

Inverse Wishart distribution with scalar degrees of freedom, ν, and parameter matrix

V is denoted with IW(Xk; νk|k, Vk|k).

2.1.3.2 Star Convex Shape Based Models

Random hypersurface models are firstly used for extended target tracking applications

in [5]. A new random hypersurface model, namely Gaussian process model, is intro-

duced in [6]. Unlike the random matrix model which represent shapes by ellipses,

these models represent shapes by any star convex shape. Definition of star convex

shapes is presented in Sec. 4.1.2. Both of these models have the following attributes:

• Extent of the target is expressed parametrically.

• Gaussian distribution is utilized to express uncertainties of the parameters in

the state vector.

• Nonlinear Kalman filters, e.g., EKF, UKF, are utilized for estimation.
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Random Hypersurface Models: Star convex shapes are represented via Fourier

series expansion in Random hypersurface models. A radius function, f(pk, φ), is

used for parametrisation where pk denotes shape parameter vector and φ denotes the

angle from the center of the target to the extent. A finite dimensional pk can be

expressed by Fourier series expansion [9]

f(pk, φ) = pkR(φ), where

pk =
[
a
(0)
k , a

(1)
k , b

(1)
k , . . . , a

(N)
k , b

(N)
k

]>
,

R(φ) =

[
1

2
, sin(φ), . . . , cos(Nφ), sin(Nφ)

]
,

(2.3)

where N is the number of Fourier coefficients. State vector xk can be expressed as

xk =
[
p>k , c>k , v>k

]>
, (2.4)

where ck denotes position of the center of the target and vk denotes kinematics. A

general measurement equation can be given as

zk = f(pk, φk) + ck + vk. (2.5)

Having derived the measurement equation in (2.5), a nonlinear filter such as EKF,

UKF can be applied for measurement update.

Gaussian Process Model: Star convex shapes are represented via Gaussian process

in this model unlike Fourier series expansion used in random hypersurface method.

GP model is covered extensively in the following section.
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2.2 Gaussian Processes

A Gaussian process (GP) is a stochastic process, i.e., a generalization of a probabil-

ity distribution to functions, that specifies a probability distribution in the function

space. In essence, Gaussian processes are generalizations of Gaussian probability

distributions [8].

A GP model is expressed as

f(u) ∼ GP(µ(u), k(u, u′)),

µ(u) = E[f(u)],

k(u, u′) = E[(f(u)− µ(u))(f(u′)− µ(u′))>],

(2.6)

where µ(u) is mean, k(u, u′) is the covariance function (kernel) and u is the input of

the function. One of the important characteristics of the GP is that it can be uniquely

defined by the mean and covariance function.

A meaningful way to interpret GP is to think about it as a collection of random vari-

ables, for which any finite number of them have a joint Gaussian distribution that is

consistent with the defined mean and kernel.

The joint distribution of the function evaluations, f(u1), ..., f(uN), at the inputs,

u1, ..., uN , are given as


f(u1)

...

f(uN)

 ∼ N (µ, K), where (2.7)

µ =


µ(u1)

...

µ(uN)

 , and K =


k(u1, u1) . . . k(u1, uN)

...
...

k(uN , u1) . . . k(uN , uN)

 .
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2.2.1 Gaussian Process Regression

Gaussian process regression is a non-parametric method for learning of a regression

function given some noisy observations. It is commonly used for learning unknown

functions using some training data. Consider the following measurement model

z = f(u) + e, where e ∼ N (0, R), (2.8)

where z is a noisy measurement, u is the training input and e is the measurement

noise. Our aim is to find out the function values, f , [f(uf1) . . . f(uf
N f )]

>, at desired

test inputs, uf , [uf1 . . . u
f
N f ]
>, given a set of measurements, z , [z1 . . . zN ]>, and

respective inputs u , [u1 . . . uN ]>.

GP model given in (2.7) alongside the measurement model given in (2.8) leads to

joint distribution

z

f

 ∼ N
0,

K(u,u) + IN ⊗R K(u,uf )

K(uf ,u) K(uf ,uf )

 , (2.9)

where K(u,uf ) =


k(u1, u

f
1) . . . k(u1, u

f
N f )

...
...

k(uN , u
f
1) . . . k(uN , u

f
N f )

 .

IN is defined as N × N identity matrix, and ⊗ is the Kronecker product. Mean

function is set to zero for simplicity. Derivation of the GP regression for an arbitrary

mean function is simple from this specific case [8].

The conditional distribution p(f |z) is given as

p(f |z) ∼ N (Az, P ), where

A = K(uf ,u)K−1y ,

P = K(uf ,uf )−K(uf ,u)K−1y K(u,uf ),

Ky = K(u,u) + IN ⊗R.

(2.10)
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2.2.2 Recursive Gaussian Process Regression

In order to perform GP regression, complete measurement vector, z, and the covari-

ance matrix, Ky, is needed. In target tracking applications, the main aim is to obtain

the posterior density p(f |z1:k) at time k with measurements obtained sequentially.

Thus, GP regression does not offer an answer for this online estimation problem. Fur-

thermore, the computational complexity of GP regression method increases cubically

with the number of measurements that makes it inappropriate for online applications.

Hence, one needs an efficient recursive algorithm that will update the posterior den-

sity with only new measurements.

In order to unravel this problem, an approximation of the GP is proposed in [10, 11].

In this method, GP model is represented at a finite collection of basis points. Another

recursive method that is similar to [10] is presented in [6]. We will utilize the method

in [6] in this study.

To reiterate, aim of this method is to derive a formulation for the posterior density

p(f |z1:N) which can be applied recursively. Therefore, the posterior can be repre-

sented as follows by iterative application of the Bayes’ law

p(f |z1:N) ∝ p(zN |f , z1:N−1)p(f |z1:N−1),

∝ · · · p(zk|f , z1:k−1) · · · p(f)︸ ︷︷ ︸
p(f |z1:k)

. (2.11)

In this step, we assume that f provides the sufficient statistics for zk. With this as-

sumption, zk conditioned on f are independent of all the previous measurements

p(zk|f , z1:k−1) ≈ p(zk|f). (2.12)

Note that this assumption is exact if the inputs of zk are a subset of the inputs of f .

Aside from that, if the distance between the inputs of zk and f are sufficiently small in

comparison to the length scale of the kernel, this approximation is quite reasonable.

With the aforementioned assumptions, it is now possible to use recursive Bayesian

inference for f given measurements, measurement likelihood and the initial prior

densities. Joint distribution of the measurement zk and f is obtained by using the

GP definition in (2.9) as follows
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zk
f

 ∼ N
0,

K(uk, uk) +R K(uk,u
f )

K(uf , uk) K(uf ,uf )

 . (2.13)

Thus, the joint distribution in (2.13) alongside (2.10) leads to the following likelihood

and prior densities

p(zk|f) = N (zk;H
f
kf , R

f
k),

p(f) = N (0, P f
0 ), where

H f
k = H f (uk) = K(uk,u

f )[K(uf ,uf )]−1,

Rf
k = Rf (uk) = k(uk, uk) +R

−K(uk,u
f )[K(uf ,uf )]−1K(uf , uk),

P f
0 = K(uf ,uf ).

(2.14)
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2.3 Negative Information Fusion

Negative information phrase refers to the case that there is no object detected within

a sensor’s field of view although a detection is expected. Possible reasons of negative

information are as follows:

• The object may be out of range.

• The object may be occluded by another object.

• The measurement may be false due to sensor failure.

Examples for the first two negative information cases above are visualized in Fig.

2.2. In this scenario, vehicles have a sensor that can obtain multiple measurements

per scan. Blue cones in Fig. 2.2 show the field of view of the sensors. There are

two vehicles, T1 and T2, in field of view of the V1, thus two sets of measurements are

obtained. For V2, there are no objects to be detected as can be clearly seen from the

figure. Thus, we have negative information. In V3 case, measurements for T2 is not

obtained since T2 is occluded by T1.

The first two cases must be distinguished from the last one to be able to employ

negative information correctly. An accurate sensor model is a necessity for utilizing

negative information. One needs to model the measurement process and sensor char-

acteristics precisely so that false negatives does not cause misinformation and lead to

inaccurate results. Then, carefully obtained negative information can be fused with

measurements in a Bayesian structure to obtain improved estimates. Lack of mea-

surements from a sensor conveys information about where the target cannot be. One

can obtain better extent estimates by combining positive and negative measurements

considering the sensor to the target geometry.

Negative information in sensor data fusion is discussed with some examples in [12,

13]. In [14], negative information is utilized in Markov localization. Negative infor-

mation fusion is used in star-convex shaped target tracking in [15]. A novel method

utilizing angular and radial constraints to represent negative information is proposed

in [16].
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Figure 2.2: Negative information example
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CHAPTER 3

INFERENCE TECHNIQUES

Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are used in

ETTGP 2D and ETTGP 3D algorithms for inference. Before explaining the details

of the ETTGP algorithms, it is appropriate to exhibit the basics of these filters. In

order to establish the basis for EKF and UKF, Kalman filter is explained firstly. It

is paramount to understand KF since EKF and UKF are nonlinear extensions of it.

Moreover, Kalman smoother (KS), Extended Kalman smoother (EKS), Unscented

Kalman smoother (UKS) are discussed briefly in this chapter.

3.1 Kalman Filter

3.1.1 Introduction

Rudolf Emil Kalman published his prominent paper [17] that describes a recursive

solution to the linear filtering problem in 1960. Due to its some important properties,

which we will discuss later, Kalman filter was used extensively ever since. It pro-

vides a way to compute states of a process along with covariances efficiently. One

of the important properties of the Kalman filter is that it minimizes mean squared

error. It assumes the state-space model is linear with additive Gaussian process and

measurement noises. With these assumptions, Kalman filter is an optimal filter.

This introduction includes a description and some discussion of the Kalman filter

equations. It is important to explain the intricacies of the Kalman filter since other

filters used in this study (EKF, UKF etc.) are also based on Kalman filter theory.
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3.1.2 Kalman Filter Equations

In List of Abbreviations, notation for Kalman filter is given. The state-space model

of the system can be written as

xk+1 = Fxk +Buk+1 + qk,

zk+1 = Hxk+1 + rk+1,
(3.1)

where qk (process noise) and rk+1 (measurement noise) are i.i.d. (independent iden-

tically distributed) and defined as

qk = N (0, Q),

rk+1 = N (0, R),
(3.2)

where Q is the process noise covariance and R is the measurement noise covariance.

Kalman filter uses this state-space model to predict the states for the next time inter-

val. Furthermore, it uses the measurements to correct the prediction to obtain better

estimates. This process continues recursively. Kalman filter algorithm is mainly di-

vided into two steps, namely time update (prediction) and measurement update steps.

In the following subsections, time update and measurement update steps are dis-

cussed.

3.1.2.1 Time Update (Prediction)

First one is the time update (prediction) step, which uses previously estimated states

and the linear state-space model to predict the next state along with the state estimate

covariance

x̂k+1|k = Fxk+1|k +Buk+1,

Pk+1|k = FPk|kF
T +Q.

(3.3)
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3.1.2.2 Measurement Update

Second one is the measurement update step, that use the current measurements along

with assumed statistics of the measurement noise of the model to correct the state

estimate. In the measurement update step, innovation covariance and Kalman gain

are calculated that are used in updating the mean and covariance of the posterior

density of the states. Measurement update equations are given as

ỹk+1 = zk+1 −Hx̂k+1|k,

Sk+1 = HPk+1|kH
T +R,

Kk+1 = Pk+1|kH
TS−1k+1,

x̂k+1|k+1 = x̂k+1|k +Kk+1ỹk+1,

Pk+1|k+1 = (I −Kk+1H)Pk+1|k.

(3.4)

These two steps are repeated for every sample: k = 1, 2, . . . , K.

In order to have a deep understanding of Kalman filter, let’s investigate innovation

(measurement) residual and Kalman gain concepts.

Innovation residual is the difference between the true measurement (zk) and esti-

mated measurement (Cx̂k|k−1). This residual is multiplied with the Kalman gain (Kk)

and added to the predicted estimate (x̂k|k−1) to correct the state estimates. Thus, we

can interpret that innovation residual acts as a correction mechanism to compensate

for the differences between predicted and true measurements.

Kalman gain acts as a correction factor in the update step. Its equation may not seem

very intuitive. Let us look at each term of the equation. Sk is the estimated covariance

of the measurements. If Sk is large, it means that measurements are not very reliable.

Thus, one can expect as Sk increases Kk should decrease. It means that correction

due to the measurements will be small since measurements are not trusted. Pk|k−1

is the estimated state covariance. If Pk|k−1 is large, it means that states can vary a

lot. Hence, we need bigger Kk to correct the estimates using measurements. The last

term, CT , is needed for the transition from observations to states.
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3.2 Kalman Smoother

Consider the estimation of state, E[x(t − τ)|Zt
0], given measurements up to time t,

Zt
0

• If τ < 0, it is called prediction.

• If τ = 0, it is called filtering.

• If τ > 0, it is called smoothing.

Main difference between filtering and smoothing can be visualized in Fig. 3.1. Green

bars in Fig. 3.1 denote the measurements.

Figure 3.1: Demonstration of the difference between filtering and smoothing

Thus, smoothing (or retrodiction) can be defined as the estimation of the state at

time k based on the prior measurements up to time t > k, x̂(k|t) = E[x(k)|Zt].

Smoothing types can be simply summarized as follows [18]:

1. Fixed Point Smoothing: k is fixed and t = k + 1, k + 2, . . .

2. Fixed Interval Smoothing: Data interval is up to N (t = N ) and k = 0, 1, . . .,

N .

3. Fixed Lag Smoothing: k is varying and t = k + L where L is the defined lag.
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Smoothing types can be visualized in Fig. 3.2.

Figure 3.2: Visualization of different smoothing types

Kalman Smoother, also known as Rauch-Tung-Striebel-smoother (RTS), is intro-

duced in 1965 [19]. Smoothing is the estimation of states at a desired time k based on

the available information up to time T where T > k. Thus, Kalman smoother needs

the whole Kalman filter estimates as an input. Kalman smoother is a backwards al-

gorithm. Starting from the last time step, it estimates the smoothed states recursively.

In List of Abbreviations, notation for Kalman smoother is given. Kalman Smoother

equations [20] can be summarized as

m−k+1 = Fkmk,

P−k+1 = FkPkF
T
k +Qk,

Ck = PkF
T
k [P−k+1]

−1,

ms
k = mk + Ck[m

s
k+1 −m−k+1],

P s
k = Pk + Ck[P

s
k+1 − P−k+1]C

T
k .

(3.5)
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3.3 Extended Kalman Filter

3.3.1 Introduction

Many practical problems encountered in real life are nonlinear and/or not Gaussian.

In order to make use of the Kalman Filter theory, linear approximations are utilized.

Extended Kalman Filter (EKF) [18] is one of these methods that exploit Taylor Series

approximation for linearization in dynamic and/or measurement equation. EKF is

widely used in the literature due to its effectiveness compared to its complexity. In

the subsequent chapters details of EKF are given.

3.3.2 Extended Kalman Filter Equations

The state-space model of the system can be written as

xk+1 = f(xk) + qk,

zk+1 = h(xk+1) + rk+1,
(3.6)

where xk ∈ Rn is the state vector, zk ∈ Rm is the measurement vector, qk (process

noise) and rk+1 (measurement noise) are i.i.d. (independent identically distributed)

and defined as

qk = N (0, Qk),

rk+1 = N (0, Rk+1),
(3.7)

where Q is the process noise covariance and R is the measurement noise covariance.

For the sake of simplicity, it is assumed that there is no control input, and noises are

additive with zero mean.

EKF approximates the density of xk given the measurements z1:k with a Gaussian

density as
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p(xk|z1:k) ≈ N(xk|mk, Pk). (3.8)

In List of Abbreviations, notation for Extended Kalman filter is given. EKF is com-

posed of two main parts namely time update (prediction) and measurement update

steps as in Kalman filter. Details of time and measurement update steps are given in

subsequent sections.

3.3.2.1 Time Update (Prediction)

In the time update step, predicted state estimate, x̂k+1|k, and predicted covariance

matrix Pk+1|k are calculated as

x̂k+1|k = f(x̂k|k),

Jk =
∂f

∂x

∣∣∣∣
x̂k|k

,

Pk+1|k = JkPk|kJ
>
k +BQB>,

(3.9)

where Jk is the Jacobian of the dynamic model function f(·) evaluated at the last state

estimation x̂k|k.

3.3.2.2 Measurement Update

Innovation, z̃, innovation covariance matrix, S, and Kalman gain, K, are computed

in measurement update step of the EKF firstly. After that, using aforementioned

variables above; updated state estimate, x̂k+1|k+1, and covariance matrix, Pk+1|k+1,

are calculated as
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z̃k+1 = zk+1 − h(x̂k+1|k),

Hk+1 =
∂h

∂x

∣∣∣∣
x̂k+1|k

,

Sk+1 = Hk+1Pk+1|kH
>
k+1 +R,

Kk+1 = Pk+1|kH
>
k+1S

−1
k+1,

x̂k+1|k+1 = x̂k+1|k +Kk+1z̃k+1,

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k.

(3.10)

Time and measurement updates are repeated recursively throughout estimation.

3.4 Extended Kalman Smoother

Extended Kalman Smoother (EKS) [21] is related to Kalman Smoother in the way

EKF and KF are related. Fk, state transition matrix, in Kalman smoother equations is

replaced with Jk, Jacobian. Thus, EKS equations can be given simply as

m−k+1 = f(mk, k),

P−k+1 = JkPkJ
T
k +Qk,

Ck = PkJ
T
k [P−k+1]

−1,

ms
k = mk + Ck[m

s
k+1 −m−k+1],

P s
k = Pk + Ck[P

s
k+1 − P−k+1]C

T
k .

(3.11)

3.5 Unscented Kalman Filter

Unscented Kalman filter (UKF) is another nonlinear filtering method that is widely

used. UKF was proposed by Julier et al., in 1995 [22]. UKF is widely applied to many

real life problems of signal estimation and target tracking since then. UKF utilizes set

of points, so-called sigma points, to approximate the nonlinear function unlike EKF’s

one point, i.e., mean of the Gaussian, approximation. Mean and covariance infor-

mation after nonlinear transformation is transferred by Unscented Transform (UT).
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Main advantage of the UKF is the ability to procure higher order moments as op-

posed to EKF. Furthermore, Hessian and Jacobian matrices, needed in EKF, are not

used which makes it easy to implement and less error prone. In order to understand

UKF properly, firstly we discuss the UT.

3.5.1 Unscented Transformation

Unscented Transformation (UT) is a method that utilized for calculating the statistics

of a random variable which goes through a nonlinear transformation. UT concept is

based on the idea that “It is easier to approximate a probability density than it is to

approximate an arbitrary nonlinear function or transformation” [23]. Firstly, a set of

sigma points are specifically chosen in a way that their mean and covariance are m

and P . After that, nonlinear transformation is applied to each sigma point. Lastly,

statistics of the transformed sigma points are calculated to have an estimate of the

transformed mean and covariance.

In List of Abbreviations, notation for Unscented Kalman filter is given.

A total of 2n+ 1 sigma points (denoted by X) are calculated from the columns of the

matrix η
√
P as follows

X(0) = m,

X(i) = m + [η
√
P ]i for i = 1, . . . , n,

X(i) = m− [η
√
P ]i for i = n+ 1, . . . , 2n,

(3.12)

with the weights

W(0)
m =

λ

η2
,

W(0)
c =

λ

η2
+ (1− α2 + β),

W(i)
m =

1

2η2
for i = 1, . . . , 2n,

W(i)
c =

1

2η2
for i = 1, . . . , 2n,

(3.13)
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where Wm denote weights for the mean, Wc denote weights for the covariance, P

is a positive semi-definite matrix such that P = SS>, η =
√
n+ λ, λ is a scaling

parameter defined as λ = α2(n+ κ)− n, and α ≥ 0, β ≥ 0, κ are scalar constants.

A discrete-time nonlinear system can be described as

xk+1 = f(xk,uk) + qk,

zk+1 = h(xk+1,uk + 1) + rk+1,
(3.14)

where xk ∈ Rn, uk ∈ Rv, and zk ∈ Rp are, respectively, state variables, inputs,

and observed measurements at time step k; the estimated mean and estimation error

covariance are m and P ; f and h are vectors consisting of nonlinear state transition

functions and measurement functions; qk ∼ N(0, Qk) is the Gaussian process noise

at time step k; rk+1 ∼ N(0, Rk+1) is the Gaussian measurement noise at time step

k + 1; and Qk and Rk+1 are covariances of qk and rk+1.

3.5.2 Unscented Kalman Filter Equations

Simple steps for UKF can be summarized as below:

1. Compute Sigma Points

2. Assign corresponding weights to each sigma point

3. Transform sigma points through non-linear function

4. Compute the Gaussian from transformed sigma points

5. Compute mean and variance of the new Gaussian.

Assume the initial estimated mean and the initial estimation error covariance are m0

and P0,

Details of UKF algorithm is given in a prediction step and an update step, as in Algo-

rithms 1 and 2.
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Algorithm 1 UKF Time Update (Prediction)
1: Sigma points calculation

Xk−1 =
[
mk−1 · · ·mk−1︸ ︷︷ ︸

2n+1

]
+ η

[
0n,1

√
Pk−1 −

√
Pk−1]. (3.15)

2: Dynamic model function evaluation at the sigma points

X̂k = f(Xk−1). (3.16)

3: State mean prediction

m−k =
2n∑
i=0

W(i)
m X̂i,k. (3.17)

4: Covariance prediction

P−k =
2n∑
i=0

W(i)
c (X̂i,k −m−k )(X̂i,k −m−k )> +Qk−1. (3.18)

3.6 Unscented Kalman Smoother

Unscented Kalman (Rauch–Tung–Striebel, RTS) smoother (UKS) is proposed in [24].

UKS approximates the density of xk given the measurements z1:T with a Gaussian

density as

p(xk|z1:T ) ≈ N(xk|xks, Pks). (3.27)

Given the measurements up to time T where T > k, UKS recursively estimate the

states at time k in a backwards manner. Details of UKS algorithm is given in Algo-

rithm 3.
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Algorithm 2 UKF Measurement Update
1: Sigma points prediction

X−k =
[
m−k · · ·m−k︸ ︷︷ ︸

2n+1

]
+ η

[
0n,1

√
P−k −

√
P−k ] . (3.19)

2: Measurement model function evaluation at the sigma points

Y−k = h(X−k ). (3.20)

3: Measurement prediction

y−k =
2n∑
i=0

W(i)
m Y−i,k. (3.21)

4: Innovation covariance estimation

Pỹkỹk =
2n∑
i=0

W(i)
c

(
Y−i,k − y−k

)(
Y−i,k − y−k

)>
+Rk. (3.22)

5: Cross-covariance estimation

Pxkyk =
2n∑
i=0

W(i)
c

(
X−i,k −m−k

)(
Y−i,k − y−k

)>
. (3.23)

6: Kalman gain estimation

Kk = PxkykP
−1
ỹkỹk

. (3.24)

7: Updated (a posteriori) state estimation

mk = m−k +Kk

(
yk − y−k

)
. (3.25)

8: Updated (a posteriori) covariance

Pk = P−k −KkPỹkỹkK
>
k . (3.26)
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Algorithm 3 Unscented Kalman Smoother

1: Calculate the matrix of sigma points of x̃k = (xTk , q
T
k )T :

X̃k =
[
m̃k · · · m̃k︸ ︷︷ ︸

2n+1

]
+
√
c
[
0n,1

√
P̃k −

√
P̃k], where (3.28)

m̃k =

mk

0

 , P̃k =

Pk 0

0 Qk

 . (3.29)

2: Dynamic model function evaluation at the sigma points

X̃k+1 = f(X̃x
k, X̃

q
k). (3.30)

3: State mean and covariance prediction

m−k+1 =
2n∑
i=0

W(i−1)
m X̃i,k+1, (3.31)

P−k+1 =
2n∑
i=0

W(i−1)
c (X̃i,k+1 −m−k+1)(X̃i,k+1 −m−k+1)

>. (3.32)

4: Cross covariance calculation

Ck+1 =
2n∑
i=0

W(i−1)
c (X̃x

i,k+1 −m−k+1)(X̃i,k+1 −m−k+1)
>. (3.33)

5: Smoother gain calculation

Dk = Ck+1[P
−
k+1]

−1. (3.34)

6: Smoothed mean and variance estimation

ms
k = mk +Dk

(
ms

k+1 −m−k+1), (3.35)

P s
k = Pk +Dk

(
P s
k+1 − P−k+1)D

T
k . (3.36)
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CHAPTER 4

EXTENDED TARGET TRACKING USING GAUSSIAN PROCESSES

Necessary literature for the derivations of ETTGP 2D and ETTGP 3D algorithms such

as Extended Target Tracking, Gaussian Processes, Negative Information Fusion and

inference techniques are extensively discussed in the previous chapters. In this chap-

ter, all the aforementioned concepts are fused to construct ETTGP 2D and ETTGP

3D algorithms.

Firstly, brief introductions for the algorithms are given. After that, extent models

for 2D and 3D objects are discussed. GP Modelling for object extents are explained

in the subsequent parts. Then, state space models utilized for the algorithms are

discussed. Process and measurement model parts of the ETTGP 2D and ETTGP

3D filters are described later. After that, negative measurement models for ETTGP

2D and ETTGP3D are introduced. Then, inference models are explained. Lastly,

overviews of UKF Ng. ETTGP 2D and 3D Algorithms are given.

4.1 ETTGP 2D Algorithm

4.1.1 Introduction

ETTGP 2D is an extended target tracking algorithm that utilizes Recursive Gaussian

process regression to learn the shape (extent) of the target alongside kinematics [6].

ETTGP 2D algorithm is flexible enough to represent many shapes without the need

of parameter tuning thanks to attractive analytical properties of Gaussian processes.
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4.1.2 Extent Model for 2D Objects

Targets are generally modelled as point sources that generate one measurement per

scan in traditional target tracking applications. However, we will assume that sensor

resolution is sufficiently high in comparison to target’s size so that multiple measure-

ments along the extent of the target are generated. Target extent can be modelled in

a simple manner using simple geometric shapes (stick, rectangle, ellipse etc.). Nev-

ertheless, we chose to describe the extent via star convex shapes to represent various

shapes more accurately.

Definition: A set S(xk) is called star convex if each vector from any point to the

center is contained in S(xk).

Note that convex sets are subsets of star convex sets by definition. Assuming we have

a star-convex shaped target, which is not a very restrictive assumption, target extent

can be represented via a radial function r = f(θ) in polar coordinates as shown in

Fig. 4.1.

Figure 4.1: Representation of 2D shapes with radial function r = f(θ). (a) Target

shape, (b) Radial function

Based on this representation, the measurement equation can be written as

zk,l = xck + p(θk,l)f(θk,l) + ek,l, (4.1)

where k denotes time index, xck is the target position, {zk,l}nkl=1 are the nk mea-

surements at time k, {θk,l}nkl=1 denote the angles which measurements originated,

ek,l ∼ N (0, R) is the measurement noise with zero mean and covariance R, and
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p(θk,l) represents the orientation vector defined as

p(θk,l) ,

cos(θk,l)

sin(θk,l)

 . (4.2)

It is essential to emphasize that by defining star convex shape as in (4.1), xck and f(θ)

will not be unique. Same contour can be expressed by various pairs of xck and f(θ).

Star convex shapes are used for target tracking applications firstly in [5]. In this work,

unknown radial function, f(θ), is parametrized by Fourier series expansion. Fourier

series expansion is a prominent choice for periodic signals. Nonetheless, it has some

flaws in a stochastic setup. Thus, GP is chosen to model the radial function instead

of Fourier series expansion. GP is a probabilistic model that enables the specification

of the posterior density of the radial function naturally. Moreover, GP is utilized in

spatial domain rather than frequency domain unlike Fourier series expansion. Uncer-

tainty of extent representation is preserved due to local learning of the radial function.

Thus, it is possible to use the uncertainty for gating and association.

In Sec. 4.1.4, unknown radial function will be augmented with target position and

kinematics to derive the state space model which makes possible simultaneous esti-

mation of extent and kinematics.

4.1.3 GP Modelling for Target Extent

Gaussian processes are extensively discussed in Sec. 2.2. In ETTGP 2D algorithm,

our aim is to learn target extent online via Gaussian process. Input of the GP is

chosen as polar angle, θ = u, whereas output is the radius of extent, r = y, at the

corresponding angles. Chosen mean and covariance functions of GP are explained in

the following subsections.

4.1.3.1 Mean Function

The mean function, µ(θ), is chosen to be constant but unknown for this study. µ(θ) =

r can be thought as the mean radius of the target extent.
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f(θ) ∼ GP (r, k(θ, θ′)), where r ∼ N (0, σ2
r). (4.3)

Mean function in (4.3) can also be modelled as a zero mean GP by integrating out r

f(θ) ∼ GP (0, k(θ, θ′) + σ2
r). (4.4)

4.1.3.2 Covariance Function

Covariance function selection is an important aspect of GP modelling. Functions

that will be learned via GP is governed by covariance function. There are various

covariance functions that are utilized in the literature, however we chose to progress

with the most common choice squared exponential covariance function [8]

k(θ, θ′) = σ2
fe
− |θ−θ

′|2

2l2 . (4.5)

σ2
f is the prior variance of the function amplitude and l represents the length scale of

the functions we wish to learn. Squared exponential kernel results in higher correla-

tions for f(θ) and f(θ′) if angles θ and θ′ are close to each other.

In order to make f(·) periodic in terms of θ, (4.5) are updated as

k(θ, θ′) = σ2
fe
− sin2 |θ−θ′|

l2 . (4.6)

Lastly, the effect of mean function described in Sec. 4.1.3.1 is added to covariance

function which results in

k(θ, θ′) = σ2
fe
− sin2 |θ−θ′|

l2 + σ2
r . (4.7)

The derived covariance function is shown in Fig. 4.2. The covariance function has

periodicity of 2π since k(θ, θ′) = k(θ + 2π, θ′). Note that, radius for different angles

is guaranteed to be positively correlated, and correlation increases with decreasing
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angular distance. Moreover, this approach enables to model a variety of object sizes

since we consider r to be a random variable.

Figure 4.2: Covariance function vs angle

4.1.4 State Space Model

An augmented state space model will be derived in this section. Firstly, let us define

state variables

xk , [x̄Tk (xk
f )T ]T , where

x̄k , [(xk
c)T ψk (xk

∗)T ]T ,
(4.8)

where x̄k denotes target state, xk
f denotes states for extent estimation, xk

c is the target

position, ψk is the orientation, and xk
∗ denote kinematics of the target (velocity and

angular velocity). Having defined the state variables in (4.8), following augmented

state space model can be written

xk+1 = Fxk + wk, wk ∼ N (0, Qk),

zk,l = hk,l(xk) + ek,l, ek,l ∼ N (0, Rk,l),

x0 ∼ N (µ0, P0).

(4.9)
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Details for representation of target state and extent is presented in the subsequent

sections.

4.1.4.1 Extent Model

Structure derived in (2.14) allows us to perform recursive regression on the following

state space model

xf
k+1 = xf

k,

zk = H f (uk) xf
k + ef

k, ef
k ∼ N (0, Rf (uk)),

xf
0 ∼ N (0, P f

0 ),

(4.10)

where xfk = f = [f(uf1) . . . f(uf
N f )]

> is the extent state. Furthermore, assuming that

the extent of the target changes over time, this state space model can be modified as

follows to incorporate dynamical behavior

xf
k+1 = F f xf

k + wk, wk ∼ N (0, Qf ), (4.11)

with

F f = eγT I, Qf = (1− e2γT )K(uf ,uf ). (4.12)

γ ≥ 0 can be considered as a forgetting factor. As γ increases importance given to

former measurements decreases and vice versa. With γ = 0, all measurement have

the equal importance. It is important to note that choice of dynamics, F f and Qf , in

(4.12) guarantees the stationary covariance K(uf ,uf ) to be irrespective of γ since

P = F fP (F f )T +Qf =⇒ P = K(uf ,uf ). (4.13)

The augmented state space model in Sec. 4.1.4 is constructed with the extent model

and process model in Sec. 4.1.4.2.
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4.1.4.2 Process Model

Target state x̄k = [(xk
c)T , ψk, (xk

∗)T ]T is represented with a linear state space

model as

x̄k+1 = F̄ x̄k + w̄k, w̄k ∼ N (0, Q̄),

x̄0 ∼ N (µ̄0, P̄0).
(4.14)

Thus, the augmented target dynamics is constructed together with the extent model in

(4.11)

xk+1 = Fxk + wk, wk ∼ N (0, Q),

x0 ∼ N (µ0, P0),
(4.15)

where

xk =

x̄k

xf
k

 , F =

F̄ 0

0 F f

 , Q =

Q̄ 0

0 Qf

 ,
µ0 =

µ̄0

µf
0

 , P0 =

P̄0 0

0 P f
0

 , P f
0 = K(uf ,uf ).

(4.16)

Target state dynamics are chosen as constant velocity model

F̄ =

1 T

0 1

⊗ I3, Q̄ =

T3 3 T
2

2

T
2

2
T

⊗

σ2
q 0 0

0 σ2
q 0

0 0 σ2
ψ

 . (4.17)

4.1.4.3 Measurement Model

Each measurement obtained from the extent of the target is associated with an angle

in global coordinate frame, θGk,l, depending on their relative position to the target

position, xck,
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θGk,l(x
c
k) = ∠ (zk,l − xck). (4.18)

Measurements can also be represented in local coordinate frame as follows

θLk,l(x
c
k, ψk) = θGk,l(x

c
k)− ψk. (4.19)

Representations in (4.18) and (4.19) can be visualized in Fig. 4.3 where xG/yG

xL/yL denote basis vectors of global and local coordinate frames respectively.

Figure 4.3: Representation of a single measurement in global and local coordinate

frames in ETTGP 2D algorithm

With the angle representation in (4.19), we can simply define the relationship between

target state and a single measurement as follows

zk,l = xck + pk,l(x
c
k)f
(
θLk,l(x

c
k, ψk)

)
+ ēk,l,

ēk,l ∼ N (0, Rk,l).
(4.20)

Orientation vector, pk,l(x
c
k), is formulated as follows by combining (4.2) and (4.18)
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pk,l(x
c
k) =

zk,l − xck
‖zk,l − xck‖

. (4.21)

At this point, it is paramount to emphasize that the radial function we aim to learn

using GP, f(θLk,l(x
c
k, ψk)), takes angles in local coordinate frame as inputs. Moreover,

note that θk,l is a function of xck and ψk.

Measurement equation for ETTGP algorithm can be formulated as follows by utiliz-

ing (2.14) discussed in Sec. 2.2.

zk,l = xck + pk,l(x
c
k)
[
H f
(
θLk,l(x

c
k, ψk)

)
xf
k + ef

k,l

]
+ ēk,l,

= xck + H̃l (x
c
k, ψk) xf

k︸ ︷︷ ︸
=hk,l(xk)

+ pk,l(x
c
k)e

f
k,l + ēk,l︸ ︷︷ ︸

=ek,l

,

= hk,l(xk) + ek,l, ek,l ∼ N (0, Rk,l),

(4.22)

where

H̃l (x
c
k, ψk) = pk,l H

f
(
θLk,l(x

c
k, ψk)

)
,

hk,l(xk) = xck + H̃l (x
c
k, ψk) xf

k,

Rk,l = pk,l R
f
k,l p>k,l +R,

pk,l = pk,l(x
c
k), Rf

k,l = Rf
(
θLk,l(x

c
k, ψk)

)
.

(4.23)

Note that measurement noise in (2.14) is excluded since measurement noise, R, is

already included in (4.23).

4.1.4.4 Negative Measurement Model

Negative Information Fusion concept is extensively discussed in Sec. 2.3. In this al-

gorithm, negative measurement model introduced in [16] will be utilized. From now

on, we will assume that if the target is in the range of the sensor there will be some

measurements. To simply put, there will be no missed detections. By assuming so,

we will incorporate negative information into the measurement model to obtain better
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extent estimates. In this study, we will consider sensors that can measure distance as

well as the angle from the sensor to the measurement source. These sensors, e.g.,

RADAR and LIDAR, are widely used in target tracking applications. We will utilize

the angular and radial constraints on the measurements to derive a negative informa-

tion update which sharpens the accuracy of state estimates. Note that all equations

in this section is given for time instant k. For notational simplicity, index k in the

variables are dropped.

Consider three realizations of the extent for given measurements in Fig. 4.4.[16]

When we only pay regard to measurements, Case 1, case 2, and case 3 are all plau-

sible since they all accurately explain {zl}nl=1. Nevertheless, if we account also for

negative measurements it is clear that case 2 and case 3 are not feasible realizations.

Assuming the target is in the field of view of the sensor, we would expect measure-

ments scattered throughout the extent of the target. However, in case 2 one can ob-

serve that measurements are only collected from a small part of the extent. Thus,

realization in case 2 is not plausible. As we will define later, it violates the angular

constraint. In case 3, we can observe that measurements are obtained from the upper-

most part of the extent. However, in reality we would expect exact the opposite since

the uppermost part of the extent is occluded by the target itself. As we will define

later, case 3 violates the radial constraint.

Figure 4.4: Demonstration of different extent realizations

In Fig. 4.7, angular and radial constraints are visualized. Angular constraint basi-

cally imposes limitation on the angular extent of the object whereas radial constraint

restricts the radial distance between the sensor and visible parts of the target.
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Pseudo Measurements for Angular Constraint : Angular extent of a target is

related to minimum and maximum angles with respect to sensor position, ωmin and

ωmax, as shown in Fig. 4.5. ωmin and ωmax can be simply found by the geometric

relation between measurements and sensor position. Given a set of measurements,

the angle from the sensor to the each measurement is calculated. Thus, minimum and

maximum of these angles are ωmin and ωmax respectively. Let hmin and hmax denote

the minimum and maximum angles calculated from the extent state x. ϑmin and ϑmax

denote the noisy measurements of these quantities.

ϑmin = hmin(x) + rmin,

ϑmax = hmax(x) + rmax,
(4.24)

where x is the state, hmin and hmax are nonlinear functions that generate minimum

and maximum angles calculated from the extent, rmin and rmax are noises with ∼
N (0, Rϑ). Note that pseudo angular measurements are functions of state. These

pseudo angular measurements are compared with the actual minimum ad maximum

angles calculated from the set of measurements.

Figure 4.5: Demonstration of angular constraints imposed by negative information

Deriving analytical expressions for the nonlinear mappings are troublesome since xk

can represent any arbitrary shape. Hence, they will be calculated numerically.
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Vectors from the sensor to the basis points i = 1, . . . , N , vi, can be expressed as

vi = [x+ ri cos(θi + ψ)− sx y + ri sin(θi + ψ)− sy]T , (4.25)

where s = [sx, sy]
T denote the sensor coordinates. Now, we can easily find the

minimum and maximum angles, hmin and hmax from hi.

hi = arctan

(
y + ri sin(θi + ψ)− sy
x+ ri cos(θi + ψ)− sx

)
. (4.26)

where hi denote the nonlinear mappings for i = 1, . . . , N . After that, ϑmin and ϑmax

are used as pseudo angular measurements for additional measurement update step to

improve extent estimation. This update step gets rid of the low likelihood realizations

like case 2 in Fig. 4.4.

Demonstration of pseudo angular measurement generation is given in Fig. 4.6.

Figure 4.6: Demonstration of pseudo angular measurement generation
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Pseudo Measurements for Radial Constraint : Radial distance between sensor

and the target can be a filtering factor as we observed in case 3 in Fig. 4.4. In

order to set a radial constraint, let us define the unit vectors, ûl, from sensor to the

measurements {zl}nl=1

ûl =
zl − s

‖zl − s‖ . (4.27)

Consider lines, gl, that extend from s in the direction of ûl. Each of the lines are

checked to see if they intersect with the extent represented by state x. Assume a

subset of the obtained measurements, m ≤ n, {zj}mj=1, intersects with the extent. For

the newly formed subset of measurements, radial distance between the sensor and the

measurements, dj , can be written as

dj = ‖zj − s‖. (4.28)

Measurement model for the pseudo measurements that represent radial distance can

be specified as

dj = hj(x) + rj, (4.29)

where hj denote nonlinear mappings which calculate the radial distance estimate be-

tween sensor and the extent represented by state x along ûl, dj denote the noisy mea-

surements of these quantities. rj represent measurement noise for radial constraint

with∼ N (0, Rd). Note that pseudo radial measurements are functions of state. These

pseudo radial measurements are compared with the actual distances calculated from

the set of measurements.

Similar to the angular constraints case, vectors from sensor to the basis points i =

1, . . . , N , vi, can be calculated as in (4.25). From theseN vectors, five closest vectors

in the direction of ûl are chosen for each measurement. Among these vectors, radial

distance from the sensor to the basis points are calculated. The closest basis point is

chosen to find hj for each measurement j = 1, . . . ,m

hj(X) =

∣∣∣∣∣∣
x+ rj cos(θj + ψ)− sx
y + rj sin(θj + ψ)− sy

∣∣∣∣∣∣ . (4.30)
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Figure 4.7: Demonstration of constraints imposed by negative information

After that, {dj}mj=1 are used as pseudo measurements for additional measurement up-

date step to improve extent estimation. This update step eliminates the low likelihood

realizations like case 3 in Fig. 4.4.

Demonstration of pseudo radial measurements generation is given in Fig. 4.8.

4.1.5 Inference

Kalman filter based inference techniques can be applied to state space model for-

mulated in (4.9) to compute posterior density of the state vector. In order to update

posterior density recursively, we need to concatenate all measurements at an instant,

{zk,l}nkl=1, as follows

zk =
[
z>k,1, . . . , z>k,nk

]>
,

hk(xk) =
[
hk,1(xk)

>, . . . , h>k,nk(xk)
]>
,

Rk = diag [Rk,1, . . . , Rk,nk ] .

(4.31)
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Figure 4.8: Demonstration of pseudo radial measurements generation

With this modification, we obtain the following state space model

xk+1 = Fxk + wk, wk ∼ N (0, Q),

zk = hk(xk) + ek, ek ∼ N (0, Rk),

x0 ∼ N (µ0, P0).

(4.32)

Using this structure, we can use a nonlinear filtering technique for state estimation.

In this study, EKF discussed in Sec. 3.3 and UKF discussed in Sec. 3.5 are applied

for inference.

4.1.6 UKF Ng. ETTGP 2D Algorithm’s Overview

UKF Ng. ETTGP 2D Algorithm’s overview is given in Algorithm 4. First four steps

of the Algorithm 4 correspond to the UKF ETTGP 2D algorithm. Steps 6-10 corre-

spond to the pseudo angular measurements update. Remaining steps correspond to
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the pseudo radial measurements update. It is important to emphasize that, this algo-

rithm consist of three measurement update steps with different types of measurements

namely spatial measurements, pseudo angular measurements, and pseudo radial mea-

surements. There are in total n︸︷︷︸
Spatial

+ 2︸︷︷︸
Pseudo Angular

+ m︸︷︷︸
Pseudo Radial

measurements. Al-

gorithm 4 is visualized in Fig. 4.9.

Algorithm 4 UKF Ng. ETTGP 2D Overview
1: Perform UKF prediction as in Algorithm 1.

2: Calculate weights of sigma points as in (3.13).

3: Calculate sigma points as in (3.19).

4: Perform measurement update as in (3.20) together with (4.22) and (4.23).

5: Perform pseudo angular measurements update as in Steps 6-10.

6: Calculate minimum and maximum angles from sensor to the measurements, ωmin

and ωmax.

7: Calculate weights of sigma points as in (3.13).

8: Calculate sigma points as in (3.19).

9: Calculate minimum and maximum angle estimates from the extent, ϑmin and

ϑmax, using (4.24) and (4.26).

10: Perform measurement update with minimum and maximum angle estimates as in

(3.21) − (3.26) together with (4.24) and (4.26).

11: Perform pseudo radial measurements update as in Steps 12-17.

12: Construct the measurement set for radial constraint implementation using (4.27).

13: Calculate minimum and maximum angles from sensor to the measurements, ωmin

and ωmax.

14: Calculate sigma points as in (3.19).

15: Calculate weights of sigma points as in (3.13).

16: Calculate minimum radial distance estimates using (4.28) − (4.30).

17: Perform measurement update with minimum radial distance estimates as in (3.21)

− (3.26) together with (4.28) − (4.30).
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Figure 4.9: Overview of UKF Ng. ETTGP 2D Algorithm
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4.2 ETTGP 3D Algorithm

4.2.1 Introduction

ETTGP 3D is an extended target tracking algorithm that utilizes Recursive Gaussian

process regression to learn the shape (extent) of the target alongside kinematics [25].

ETTGP 3D algorithm is flexible enough to represent many shapes without the need

of parameter tuning thanks to attractive analytical properties of Gaussian processes.

In this section, we will derive a negative measurement update step to improve extent

estimates.

4.2.2 Extent Model for 3D Objects

Target shape in 3D is represented using spherical coordinates with a radial func-

tion, r = f(θ, φ), where θ and φ are azimuth and elevation angle respectively. Az-

imuth angle, θ ∈ [−π, π], is the angle from x-axis to y-axis whereas elevation angle,

φ ∈ [−π
2
, π
2
], is the angle from the x-y plane to the z axis as shown in Fig. 4.10. Cor-

responding output of the radial function, r, is the distance from the center of the target

to the point on the extent specified by the pair (θ, φ). By this representation, we are

able to define the boundary of a 3D object. It is necessary to note that star convex as-

sumption defined in Sec. 4.1.2 is also valid for 3D extent representation. To simplify

the notation, from here on out we define the spherical angle pair as ξ , (θ, φ).

In Sec. 4.2.4, unknown radial function will be augmented with target position and

kinematics to derive the state space model which makes possible simultaneous esti-

mation of extent and kinematics.

4.2.3 GP Modelling for Object Extent

Gaussian processes are extensively discussed in Sec. 2.2. In ETTGP 3D algorithm,

our aim is to learn target extent online via Gaussian process. Input of the GP is

chosen as angle pair, (θ, φ) = u, in spherical coordinates whereas output is the radius

of extent, r = y, at the corresponding angle pairs. Chosen mean and covariance
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Figure 4.10: Representation of 3D shapes with radial function r = f(θ, φ) in spheri-

cal coordinates

functions of GP are explained in the following subsections.

4.2.3.1 Mean Function

The mean function, µ(ξ), is chosen to be constant but unknown for this study. µ(ξ) =

r can be thought as the mean radius of the target extent.

f(ξ) ∼ GP (r, k(ξ, ξ′)), where r ∼ N (0, σ2
r). (4.33)

Mean function in (4.33) can also be modelled as a zero mean GP by integration out r

f(ξ) ∼ GP (0, k(ξ, ξ′) + σ2
r). (4.34)

49



4.2.3.2 Covariance Function

Covariance function selection is an important aspect of GP modelling. Functions

that will be learned via GP is governed by covariance function. There are many

covariance functions that are utilized in the literature, however we chose to progress

with the most common choice squared exponential covariance function [8].

k(ξ, ξ′) = σ2
fe
− d

2(ξ,ξ′)
2l2 , (4.35)

σ2
f is the prior variance of the function amplitude and l represents the length scale of

the functions we wish to learn. Squared exponential kernel results in higher correla-

tions for f(ξ) and f(ξ′) if angle pairs ξ and ξ′ are close to each other that if they are

apart as desired. Notice that unlike (4.5), Euclidean Distance is not used to represent

relative proximity of two angle pairs. Euclidean Distance may lead to inaccurate re-

sults at some specific points for spherical coordinate representation. To illustrate an

inaccuracy, consider angle pairs ξ =
(
0,−π

2

)
and ξ′ =

(
π,−π

2

)
. Both of these angle

pairs represent the lower pole of a sphere, yet Euclidean distance for these two angle

pairs is π. In order to quantify the relative distance between two angle pairs on a

sphere, the angle of the shortest arc connecting these two pairs is a far better choice.

The angle of the shortest arc between two angle pairs can be formulated as

d(ξ, ξ′) = arccos
(

cos(φ) cos(φ′) cos(θ) cos(θ′) + sin(φ) sin(φ′)

+ cos(φ) cos(φ′) sin(θ) sin(θ′)
)
.

(4.36)

Lastly, the effect of mean function described in Sec. 4.2.3.1 is added to covariance

function as in (4.7) to obtain final kernel.

ktot(ξ, ξ
′) = k(ξ, ξ′) + σ2

r ,

= σ2
fe
− d

2(ξ,ξ′)
2l2 + σ2

r .
(4.37)
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4.2.4 State Space Model

The augmented state space model will be derived in this section. Firstly, let us define

state variables

xk , [x̄Tk (xk
f )T ]T , where

x̄k , [(xk
c)T vTk qTk ]T ,

(4.38)

where x̄k denotes target state, xk
f denotes states for extent estimation, xk

c is the

target position, vk denote velocity of the target, and qk denote the unit quaternions,

qk = [q0k q1k q2k q3k]
> where ‖qk‖ = 1, used for representing orientation of the tar-

get in 3D. Orientation representation is addressed extensively in Sec. 4.2.4.2. State

space model for ETTGP 3D is given as

xk+1 = Fxk + wk, wk ∼ N (0, Qk),

zk,l = hk,l(xk) + ek,l, ek,l ∼ N (0, Rk,l),

x0 ∼ N (µ0, P0).

(4.39)

Details for representation of target state and extent is presented in the subsequent

sections.

4.2.4.1 Extent Model

Structure derived in (2.14) allows us to perform recursive regression on the following

state space model

xf
k+1 = xf

k,

zk = H f (uk) xf
k + ef

k, ef
k ∼ N (0, Rf (uk)),

xf
0 ∼ N (0, P f

0 ),

(4.40)

where xfk = f = [f(uf1) . . . f(uf
N f )]

> is the extent state. Furthermore, assuming
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extent of the target changes over time, this state space model can be modified as

follows to incorporate dynamical behavior

xf
k+1 = xf

k + wk, wk ∼ N (0, Qf
k), (4.41)

with

Qf
k =

(
1

λ
− 1

)
P f
k|k, (4.42)

where P f
k|k denotes covariance of the estimated target extent. This model keeps the

same mean for predicted density with estimated density whereas covariance is scaled

with a factor λ < 1 as

λP f
k+1|k = P f

k|k. (4.43)

This extent representation results in a maximum entropy distribution as described in

[26]. Using this model to represent extent dynamics, we might correct erroneous

extent estimations.

Augmented state space model in Sec. 4.2.4 is constructed with the extent model and

process model in Sec. 4.2.4.2.

4.2.4.2 Process Model

Target state x̄k = [(xk
c)T , vTk , qTk ]T is represented with a linear state space model

as

x̄k+1 = F̄ x̄k + w̄k, w̄k ∼ N (0, Q̄),

x̄0 ∼ N (µ̄0, P̄0).
(4.44)

Thus, the augmented target dynamics model is constructed together with the extent

model in (4.41)
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xk+1 = Fxk + wk, wk ∼ N (0, Q),

x0 ∼ N (µ0, P0),
(4.45)

where

xk =

x̄k

xf
k

 , F =

F̄ 0

0 F f

 , Q =

Q̄ 0

0 Qf

 ,
µ0 =

µ̄0

µf
0

 , P0 =

P̄0 0

0 P f
0

 , P f
0 = K(uf ,uf ).

(4.46)

Target state dynamics are chosen as constant velocity model

F̄ =

F̄c 0

0 F̄q

 , F̄c =

1 T

0 1

⊗ I3, F̄q = I4,

Q̄ =

Q̄c 0

0 Q̄q

 , Q̄c =

T3 3 T
2

2

T
2

2
T

⊗ σ2
cI3, Q̄q = σ2

q I4.

(4.47)

where σ2
c denote variance of process noise for the target center.

Rotational Motion Model : Orientation representation in 3D is a challenging task

since there are many singularities and constraints present [27]. The simplest approach

would be using so-called Euler angles (yaw, pitch, roll). However, inherent singular-

ities in this model prevent consistent representation of orientation. Unit quaternions

that have four components to represent orientation unlike Euler Angles, offer an ef-

ficient solution. The unit quaternion model is free of singularities, but it necessitates

a nonlinear constraint ‖qk‖ = 1, i.e., norm of the quaternions must be 1. Norm con-

straint in unit quaternion model calls forth for careful execution in orientation estima-

tion.

Due to the recently mentioned reasons, we model the orientation with a different ap-

proach. In order to represent orientation, a reference orientation that uses unit quater-

53



nions and an error vector with three component are utilized. This representation en-

ables us to employ and EKF to estimate error vector. Aforementioned representation

is known as a Multiplicative EKF (MEKF) [28] in the literature. Using MEKF, we

guarantee that the norm constraint in the unit quaternion representation is satisfied

while global orientation is robustly represented.

Now, we will obtain a constant velocity (CV) model for orientation estimation. [29]

is referred for unit quaternion basics.

Unit quaternions, q ∈ R4, are described as

q , [q̄>q4]
> = [q0 q1 q2 q3]

>, (4.48)

where ‖q‖ = 1. Rotation matrix,RL
G(q), transforms the orientation of the target w.r.t.

local frame to global frame as

RL
G(q) = (q2

4 − q̄>q̄)I3 + 2q̄q̄> − 2q4[q̄×], (4.49)

where [q̄×] defined as the following cross product matrix

[q̄×] =


0 −q3 q2

q3 0 −q1
−q2 q1 0

 . (4.50)

From this point on, we will utilize the following property

R(q)R(p) = R(q� p), (4.51)

where R(q) and R(p) denote rotation matrices with given unit quaternions q and p,

� is defined as the quaternion product

q� p =

q4p̄ + p4q̄− q̄× p̄

q4p4 − q̄>p̄.

 (4.52)
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The property in (4.51) comes in handy since consecutive rotations can be expressed

as a quaternion product described in (4.52). Using this convenience, we can represent

orientation of the target as

q = δq(a)� qref , (4.53)

where δq(·) denotes deviation from reference and qref denotes reference orientation.

Rodrigues Parametrization is utilized to define δq(a) as

δq(a) =
1√

4 + |a|2

a

2

 , (4.54)

where a ∈ R3 is the error (or deviation) vector. Dynamics of the error vector can be

written as in [30]

ȧ =

(
I3 +

1

4
aa> +

1

2
ā×
)
ω, (4.55)

where angular rate of local coordinate frame w.r.t. global coordinate frame is defined

as ω , [ωx ωy ωz]
>. Assuming a takes small values, the quadratic term in (4.55) can

be ignored

ȧ ≈
(
I3 +

1

2
ā×
)
ω. (4.56)

A constant velocity model can be utilized in the following model based on [26] ȧ

ω

 =

(I3 + 1
2
ā×
)
ω

03x1

+

03

I3

α, (4.57)

where rotational acceleration vector is denoted as α. Rotational acceleration vector

is modeled as zero mean white Gaussian noise with covariance

cov[α(t),α(t′)] = δ(t− t′)Σα,

Σα = σ2
αI3.

(4.58)
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Note that, the dynamic model in (4.57) is nonlinear. Thus, we need to linearize the

model firstly. Consider the following equations

ẋr = f(xr) +Bα, where

xr , [a>ω>]>.
(4.59)

Now, let us substitute Taylor series approximation of f(·)

f(xr) ≈ f(x̂r) + Ark(x
r − x̂r), where

Ark =
d

dx̂r
f(xr)

∣∣∣∣
xr=x̂r

k|k

.
(4.60)

Previous posterior, x̂rk|k , [â>k|k ω̂>k|k]
>, is chosen as the linearization point since

it is the best possible estimate. It is important to emphasize reference orientation

is corrected by the estimated error vector after each measurement update step using

quaternion product given in (4.52). Then, the error vector is reset to zero, âk|k = 0, to

complete the process. In UKF and UKF Ng. implementations, reference orientation

correction and error vector reset steps are applied after each prediction as suggested

in [31] as well as after each measurement update.Thus, (4.60) becomes

f(xr) = Arkx
r, where

Ark =

1
2
[−ω̂k|k×] I3

03 03

 . (4.61)

Derived linearized system is as follows

ẋr = Arkx
r +Bα. (4.62)

Lastly, we discretize (4.62) to obtain a linear Gaussian model for representation of
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orientation dynamics

xrk+1 = F r
kxrk + wr

k, where

wr
k ∼ N (0, Qr

k),

F r
k = exp(ArkT )N (µ0, P0),

Qr
k = GkΣαG

>
k ,

Gk =

(∫ T

0

exp(Arkτ)dτ

)
B.

(4.63)

xrk , [a>k ω>k ]> denotes rotational dynamics state, F r
k denotes dynamic model func-

tion, Qr
k denotes process noise covariance, and T denotes sampling time. Remark

that F r
k and Qr

k are time varying since they change with each new linearization point.

Details of the matrices F r
k and Gr

k are given in Appendix C of [25].

4.2.4.3 Measurement Model

Each measurement obtained at time k from the extent of the target is associated with

an angle pair in the global coordinate frame, ξk,l, depending on their relative position

to the target position, xck, as follows

zk,l = xck + p(ξk,l)f(ξk,l) + ēk,l,

ēk,l ∼ N (0, R̄).
(4.64)

xck denotes target center, ξk,l denotes the spherical angle pair from which measurement

originated, p(ξk,l) denotes the unit length vector in the direction of ξk,l, f(·) denotes

the radial function, and lastly ēk,l denotes measurement noise.

It is important to emphasize that spherical angle pairs, ξk,l, are not readily available.

They can be represented as a function of measurements, zk,l, and orientation of the

target. Hence, we first need to represent measurements in the local coordinate frame.

Firstly, the center of the coordinate frame is translated to xck. Then, coordinate frame

is rotated according to the pose of the target. These successive transformations are

presented in the following equation. These transformations are depicted in Fig. 4.11.
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zLk,l (x
c
k,qk) = RL

G(qk)︸ ︷︷ ︸
Rotation

(zk,l − xck)︸ ︷︷ ︸
Translation

, (4.65)

where RL
G(q) defined as the rotation matrix from global to local coordinate frame

using unit quaternions as

RL
G(q) =


1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2(q21 + q22)

. (4.66)

Note that zLk,l (x
c
k,qk) will not be explicitly used in measurement update equations.

However, spherical angle pairs, ξk,l, that will be used in measurement update equa-

tions are obtained by conversion of zLk,l into the spherical coordinates.

Figure 4.11: Representation of a single measurement in spherical coordinate system

w.r.t. global and local coordinate frames in ETTGP 3D algorithm

With the help of local measurement representation in (4.65), we can simply define the

relationship between target state and a single measurement as
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zk,l = xck + pk,l(x
c
k)f
(
ξLk,l(x

c
k,qk)

)
+ ēk,l,

ēk,l ∼ N (0, Rk,l),
(4.67)

where orientation vector, pk,l(x
c
k), can be formulated as

pk,l(x
c
k) =

zk,l − xck
‖zk,l − xck‖

. (4.68)

Finally, measurement equations for ETTGP 3D algorithm can be formulated as fol-

lows by utilizing (2.14) discussed in Sec. 2.2.

zk,l = xck + pk,l(x
c
k)
[
H f (ξk,l(x

c
k,qk)) xf

k + ef
k,l

]
+ ēk,l,

= xck + H̃l (x
c
k,qk) xf

k︸ ︷︷ ︸
=hk,l(xk)

+ pk,l(x
c
k)e

f
k,l + ēk,l︸ ︷︷ ︸

=ek,l

,

= hk,l(xk) + ek,l, ek,l ∼ N (0, Rk,l),

(4.69)

where

H̃l (x
c
k,qk) = pk,l H

f (ξk,l(x
c
k,qk)) ,

hk,l(xk) = xck + H̃l (x
c
k,qk) xf

k,

Rk,l = pk,l R
f
k,l p>k,l +R,

pk,l = pk,l(x
c
k), Rf

k,l = Rf (ξk,l(x
c
k,qk)) .

(4.70)

Note that measurement noise in (2.14) is excluded since measurement noise, R, is

already included in (4.70).

4.2.4.4 Negative Measurement Model

Negative measurement model for ETTGP 3D algorithm follows similar process to

ETTGP 2D algorithm which discussed extensively in Sec. 4.1.4.4. In this section, we

will expand negative information fusion concept to obtain better 3D extent estimates.

Similarly, we will assume that if the target is in the range of the sensor there will be
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some measurements. To simply put, there will be no missed detections. By assuming

so, we will incorporate negative information into the measurement model to obtain

better extent estimates. In this study, we will consider sensors that can measure dis-

tance as well as angle from the sensor to the measurement source. These sensors,

e.g., RADAR and LIDAR, are widely used in 3D target tracking applications. We

will update the angular and radial constraints to accommodate third dimension on the

measurements to derive a negative information update which sharpens the accuracy

of state estimates. Note that all equations in this section is given for time instant k.

For notational simplicity, index k in the variables are dropped.

In Fig. 4.12, angular and radial constraints are visualized. Angular constraint basi-

cally imposes limitation on the angular extent of the object whereas radial constraint

restricts the radial distance between the sensor and visible parts of the target.

Figure 4.12: Demonstration of radial constraint imposed by negative information

Pseudo Measurements for Angular Constraint : Angular extent of a target is

related to the minimum and maximum angle pairs with respect to sensor position,

60



ξmin , (θmin, φmin) and ξmax , (θmax, φmax) , as shown in Fig. 4.13. ξmin and

ξmax can be simply found by the geometric relation between measurements and sen-

sor position. Given a set of measurements, spherical angle pairs from the sensor to

each measurement is calculated. Thus, minimum and maximum of these angle pairs

are ξmin and ξmax respectively. Let hmin and hmax denote the minimum and maxi-

mum angle pairs calculated from the extent state x. εmin and εmax denote the noisy

measurements of these quantities.

εmin = hmin(x) + rmin,

εmax = hmax(x) + rmax,
(4.71)

where x is the state, hmin and hmax are nonlinear functions that generate minimum

and maximum angles calculated from the extent, rmin and rmax are noises with ∼
N (0, Rε). Note that pseudo angular measurements are functions of state. These

pseudo angular measurements are compared with the actual maximum and minimum

angle pairs calculated from the set of measurements.

Figure 4.13: Demonstration of angular constraints imposed by negative information

Deriving analytical expressions for the nonlinear mappings are troublesome since x

can represent any arbitrary 3D shape. Hence, they will be calculated numerically.

Vectors from sensor to the basis points i = 1, . . . , N , vi, can be expressed as
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vi ,
[
vx,i, vy,i, vz,i

]T
= xc +RG

L (q)bi − s, where

RG
L (q) , RL

G(q)T ,

s , [sx, sy, sz]
T ,

bi , [bi,x, bi,y, bi,z]
T ,

(4.72)

where xc is the position estimate, RG
L (q) is the rotation matrix from local to global

frame, s denote the sensor coordinates, bi denote the ith basis angle coordinates in

local coordinate frame. Now, we can easily find the minimum and maximum angle

pairs calculated from the extent, hmin and hmax from hi.

hi =

arctan

(
vy,i
vx,i

)
, arctan

 vz,i√
v2x,i + v2y,i

 . (4.73)

where hi denote the nonlinear mappings for i = 1, . . . , N . After that, εmin and εmax

are used as pseudo measurements for additional measurement update step to improve

extent estimation. Demonstration of pseudo angular measurement generation is given

in Fig. 4.14.

Pseudo Measurements for Radial Constraint : In order to set a radial constraint,

let us define the unit vectors, ûl, from sensor to the measurements {zl}nl=1

ûl =
zl − s

‖zl − s‖ . (4.74)

Consider lines, gl, that extend from s in the direction of ûl. Each of the lines are

checked to see if they intersect with the extent represented by state x. Assume a

subset of the obtained measurements, m ≤ n, {zl}mj=1, intersects with the extent. For

the newly formed subset of measurements, radial distance between the sensor and the

measurements, dj , can be expressed as

dj = ‖zj − s‖. (4.75)
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Figure 4.14: Demonstration of pseudo angular measurement generation

Measurement model for the pseudo measurements that represent radial distance can

be specified as

dj = hj(x) + rj, (4.76)

where hj denote nonlinear mappings which calculate radial distance estimate between

sensor and the extent represented by state x along ûl, dj denote the noisy measure-

ments of these quantities. rj represent measurement noises with ∼ N (0, Rd). Note

that pseudo radial measurements are functions of state. These pseudo radial mea-

surements are compared with the actual distances calculated from the set of measure-

ments.

Similar to the angular constraints case, vectors from sensor to the basis points i =

1, . . . , N , vi, can be calculated as in (4.72). From theseN vectors, five closest vectors

in the direction of ûl are chosen for each measurement. Among these vectors, radial

distance from the sensor to the basis points are calculated. The closest basis point is

chosen to find hj for each measurement j = 1, . . . ,m

hj(x) =
∣∣xc +RG

L (q)bj − s
∣∣ . (4.77)
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After that, {dj}mj=1 are used as pseudo measurements for additional measurement

update step to improve extent estimation.

4.2.5 Inference

Inference for ETTGP 3D algorithm follows the same process as in ETTGP 2D al-

gorithm. For the sake of completeness, the procedure is repeated in this section.

Kalman filter based inference techniques can be applied to state space model formu-

lated in (4.39) to compute the posterior density of the state vector. In order to update

posterior density recursively, we need to concatenate all measurements at an instant,

{zk,l}nkl=1

zk =
[
z>k,1, . . . , z>k,nk

]>
,

hk(xk) =
[
hk,1(xk)

>, . . . , h>k,nk(xk)
]>
,

Rk = diag [Rk,1, . . . , Rk,nk ] .

(4.78)

With this modification, we obtain the following state space model

xk+1 = Fxk + wk, wk ∼ N (0, Q),

zk = hk(xk) + ek, ek ∼ N (0, Rk),

x0 ∼ N (µ0, P0).

(4.79)

Using this structure, we can use a nonlinear filtering technique for state estimation. In

this study, EKF discussed in Sec. 3.3 and UKF discussed in Sec. 3.5 are applied for

inference just like ETTGP 2D algorithm. Details of the required recursions for EKF

are given in Appendices of [6].

4.2.6 UKF Ng. ETTGP 3D Algorithm Overview

UKF Ng. ETTGP 3D algorithm’s overview is given in Algorithm 5. First four steps

of the Algorithm 5 correspond to the UKF ETTGP 3D algorithm. Steps 6-10 cor-

respond to the pseudo angular measurements update. Remaining steps correspond
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to the pseudo radial measurements update. It is important to emphasize that, this

algorithm consist of three measurement update steps with different types of mea-

surements namely spatial measurements, pseudo angular measurements, and pseudo

radial measurements. There are in total n︸︷︷︸
Spatial

+ 2︸︷︷︸
PseudoAngular

+ m︸︷︷︸
PseudoRadial

measure-

ments. Algorithm 5 is visualized in Fig. 4.15.

Algorithm 5 UKF Ng. ETTGP 3D Overview
1: Perform UKF prediction as in Algorithm 1.

2: Calculate weights of sigma points as in (3.13).

3: Calculate sigma points as in (3.19).

4: Perform measurement update as in (3.20) together with (4.69) and (4.70).

5: Perform pseudo angular measurements update as in Steps 6-10.

6: Calculate minimum and maximum angle pairs from sensor to the measurements,

ξmin and ξmax.

7: Calculate weights of sigma points as in (3.13).

8: Calculate sigma points as in (3.19).

9: Calculate minimum and maximum angle pair estimates from the extent, εmin and

εmax, using (4.71) − (4.73).

10: Perform measurement update with minimum and maximum angle pair estimates

as in (3.21) − (3.26) together with (4.71) − (4.73).

11: Perform pseudo radial measurements update as in Steps 12-17.

12: Construct the measurement set for radial constraint implementation using (4.74).

13: Calculate minimum and maximum angle pairs from sensor to the measurements,

ξmin and ξmax.

14: Calculate sigma points as in (3.19).

15: Calculate weights of sigma points as in (3.13).

16: Calculate minimum radial distance estimates using (4.75) − (4.77).

17: Perform measurement update with minimum radial distance estimates as in (3.21)

− (3.26) together with (4.75) − (4.77).
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Figure 4.15: Overview of UKF Ng. ETTGP 3D Algorithm
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CHAPTER 5

SIMULATION RESULTS AND DISCUSSIONS

In this chapter, simulations conducted for ETTGP 2D and ETTGP 3D algorithms are

discussed. Simulated measurements are generated in MATLAB using a ETTGP sce-

nario generation framework. This framework enabled us to conduct combinations of

different simulations easily. By utilizing such a framework, we aim to compare differ-

ent types of extended target tracking algorithms in a controlled environment. Figures

and performance metrics are automatically generated and stored in .tex format, and

simulations are easily repeatable. Details of this simulation environment will be ex-

plained in Sec. 5.1.1 and Sec. 5.2.1. Furthermore, necessary parameters for simula-

tions are presented in this chapter such as GP parameters (prior variance, length scale

etc.), object parameters (object type, dimensions), sensor parameters (sampling rate,

standard deviation of measurement noise etc.), and lastly motion parameters (motion

type, duration, velocity etc.). Moreover, we additionally conducted experiments us-

ing real data by using Kitti data set [32] for ETTGP 3D algorithms to demonstrate

the effectiveness of the proposed algorithm. Finally, results of the simulations and

discussions regarding results are given.

5.1 ETTGP 2D Simulation Results and Discussions

In this section, ETTGP 2D Scenario Generation Framework is discussed firstly. After

that, parameters used in the ETTGP 2D simulations are given. Performance mea-

sures, IoU and RMSE, and scenario visualizations given later. Lastly, comments

regarding the performance of different ETTGP 2D estimators such as EKF, UKF,

Unscented Kalman Filter with Negative Information Fusion (UKF Ng.) EKS, UKS
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and Unscented Kalman Smoother with Negative Information Fusion (UKS Ng.) are

presented.

5.1.1 ETTGP 2D Framework

In this section, ETTGP 2D Scenario Generation Framework is introduced firstly.

Framework mainly consists of three blocks as given in Fig. 5.1.

• Initialization: This block takes motion, object, GP and sensor parameters as

inputs. These four inputs are defined as a class in MATLAB and different types

of models can be incorporated to the framework easily. Using the input classes

and some scenario specific parameters, initialization block performs necessary

operations for simulation start-up.

• Monte Carlo Runs: This block takes initialization block’s outputs and perform

Monte Carlo runs for a number of different estimation algorithms. The block

is designed to be flexible in a way that many algorithms can be comparatively

ran. Moreover, online figures for observing target trajectory and estimators’

output are plotted. RMSE and IoU metrics, which will be discussed later, are

also estimated and saved by this block.

• Performance Evaluator: This block is used for post-processing the results we

obtained from Monte Carlo runs block. Our aim is to store the results of the

simulations, i.e., figures and tables, in an easily publishable format. For this

purpose, different figures are plotted and saved in a Latex format by utilizing

matlab2tikz package provided in [33]. Furthermore, tables for RMSE results

of different algorithms are generated in a .tex format by utilizing latexTable

function provided in [34].

There are 24 possible simulation configurations that are combinations of different

target shapes, motion models and sensor models. Object, sensor and motion model

types are given in Table 5.1. One can extend the framework by adding different

types of motion models, object types and sensor models with seamless integration.

Note that abbreviations in the parentheses will be used in the following figures’ and
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Figure 5.1: Schematic of ETTGP 2D framework

tables’ captions. For instance, when scenario O2 −M3 − S1 is referred, it means that

rectangle moving in accordance with coordinated turn model is tracked by a sensor

that generates uniform measurements along the extent of the object. In a similar

manner, scenario O3 −M2 − S2 refers to an isosceles triangle moving in accordance

with constant velocity model which tracked by a LIDAR sensor that generates partial

measurements along the extent of the object.

Table 5.1: Simulation configurations for ETTGP 2D algorithms

Object Type Motion Model Sensor Type

Ellipse (O1) Still (M1) Uniform (S1)

Rectangle (O2) Constant Velocity (M2) LIDAR (S2)

Isosceles Triangle (O3) Coordinated Turn (M3)

Plus Shaped (O4)

Parameter set in Table 5.2 are used in the ETTGP 2D simulations unless otherwise

specified.
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Table 5.2: Parameter set used in ETTGP 2D simulations

Abbreviation Explanation Value Unit

r GP Mean 0 m

σr GP Mean Std. Dev. 0.5 m

σf GP Prior Std. Dev. 2 m

l GP Length Scale π/4 -

γ Forgetting Factor for Extent 10−4 -

σz Std. Dev. for Measurement Noise 0.02 m

T Sampling Time 0.5 s

v Velocity 0.4 m/s

σq Std. Dev. of Process Noise for Position 0.03 m

σqψ Std. Dev. of Process Noise for Orientation 0.003 rad

α UT Parameter 1√
n

-

β UT Parameter 2 -

κ UT Parameter 1 -

n State Dimension 56 -

N Number of Basis Points for Extent Estimation 50 -

nk Number of Measurements per Instant 20 -

σw Std. Dev. for Angular Constraint’s Noise 0.00175 rad

σd Std. Dev. for Radial Constraint’s Noise 0.1 m

5.1.2 Performance Measures

Performances of the ETTGP 2D algorithms for extent estimation are calculated by

the widely used Intersection over Union (IoU) measure

IoU(Sgt, Ŝ) =
area(Sgt ∩ Ŝ)

area(Sgt ∪ Ŝ)
, (5.1)

where Sgt denotes ground truth target shape and Ŝ denotes the shape estimated by the

algorithm. IoU is calculated by dividing the area of the intersection of the shapes to
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the union of the shapes. By this definition, IoU ∈ [0, 1]. IoU = 1 means the perfect

estimation whereas IoU = 0 means estimates are entirely false. It is paramount to

emphasize that IoU metric determines the quality of the kinematics estimates as well

as extent. If extent of the target is erroneously estimated, IoU measure will be low.

Even if we assume that the extent estimates are perfect, if kinematics of the target is

erroneously estimated, IoU measure will again be low.

Performances of the ETTGP 2D algorithms for kinematics estimation are calculated

by the widely used Root Mean Square Error (RMSE) measure

RMSE =

√
1

n
Σn
i=1(x̄k − x̄k,gt)2, (5.2)

where x̄k denotes kinematics estimates and x̄k,gt ground truth kinematics.

It is paramount to emphasize that GP modelling of the extent does not impose a

unique center representation of the target. Thus, IoU results are more informative

than RMSE results for representation of a target.

5.1.3 Computation Time

Compared ETTGP 2D algorithms utilized different inference techniques such as EKF,

UKF, and UKF Ng. Estimates are recursively updated as new measurements obtained

in each time step. Since all algorithms are recursive, computational complexity does

not increase over time. Computational complexity only depends on the number of the

measurements at a scan and the size of the state vector.

Simulations are run in MATLAB 2020b on a laptop with AMD Ryzen 5 PRO 4650U

2.10 GHz CPU with 16 GB of RAM. Computation time for a step of the algorithms

are found as 2.02 ms for EKF ETTGP, 62.5 ms for UKF ETTGP and 85.5 ms for

UKF Ng. ETTGP model on average. Note that algorithms are not computationally

optimized with any method.
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RMSEx RMSEy RMSEψ IoU

EKF 0.2193 0.1412 0.0219 0.9029

UKF 0.2091 0.1324 0.0218 0.9021

UKF Negative 1.1608 0.8817 0.6062 0.8327

EKS 0.2141 0.1399 0.0195 0.9092

UKS 0.2063 0.1301 0.0197 0.9084

UKS Negative 1.1584 0.8664 0.5927 0.8564

Table 5.3: Performances of ETTGP 2D algorithms for scenario O2 −M3 − S1

5.1.4 Results and Discussions

In this section, results for ETTGP 2D algorithms are given. Firstly, detailed results

for three scenarios, O2−M3− S1, O2−M3− S2, and O3−M3− S2, are discussed.

Then, performance measures for other scenarios such asO3−M3−S1,O2−M2−S1,

O2 −M2 − S2 etc. are presented. Unless otherwise specified, sensor is located at the

origin, (0,0), for all scenarios.

In Fig. 5.2 results of a sample run from scenario O2 −M3 − S1 are given whereas in

Fig. 5.3, results of the orientation estimation averaged from 100 MC runs in scenario

O2−M3−S1 are given. Then, IoU estimates averaged from 100 MC runs in scenario

O2 − M3 − S1 are shown in Fig. 5.4. Lastly, performance measures are given in

Table 5.3. In scenario O2 − M3 − S1, all algorithms successively track the target.

Orientation and IoU estimates of UKF Ng. are lower than EKF and UKF. Note that

measurements are uniformly generated along the extent of the target in this scenario.

In uniform sensor case, sensor to target geometry leads to wrong angular and radial

constraints. Since, measurements are obtained throughout the extent, there cannot

be negative information. Hence, results for uniform sensor case is not meaningful

for UKF Ng. algorithm. IoU estimates are more erroneous at the start and end of

the coordinated turn motion as expected. Note that since extent estimates are pretty

accurate for all filters, IoU improvements from smoothers are marginal. Similarly,

RMSE errors in smoothers are quite close to filters.

In Fig. 5.5, results of a sample run from O2−M3−S2 are given. In Fig. 5.6, orienta-
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Figure 5.2: A sample run from O2 −M3 − S1 Scenario
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Figure 5.3: Orientation estimation in O2 −M3 − S1 Scenario
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Figure 5.4: IoU results in O2 −M3 − S1 Scenario

tion estimates averaged from 100 MC runs in scenario O2 −M3 − S2 are given. IoU

estimates averaged from 100 MC runs in scenario O2−M3−S2 are given in Fig. 5.7.

Lastly, performance measures are given in Table 5.4. In this scenario, measurements

are obtained via LIDAR from observed parts of the target. At first, measurements

are only obtained from left and bottom side of the target. Pseudo angular measure-

ments in UKF Ng. algorithm limits the angular extent of the target. Hence, UKF Ng.

algorithm outperforms EKF and UKF thanks to negative information fusion. Further-

more, orientation estimation of UKF Ng. is significantly better compared to other

algorithms especially in coordinated turn part. For all algorithms, IoU estimates be-

come better as scenario progresses since measurements from the unobserved parts of

the target obtained. It is important to emphasize that both IoU and RMSE estimates

of smoothers are considerably better than filters. Smoothers estimate the coordinated

turn motion part of the scenario better than filters. This is expected since smoothers

use all the available information in the scenario.

In Fig. 5.8, results of a sample run from O3 −M3 − S2 are given. In Fig. 5.9, ori-

entation estimates averaged from 100 MC runs in scenario O3 −M3 − S2 are given.
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Figure 5.5: ETTGP 2D a sample run from scenario O2 −M3 − S2
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Figure 5.6: Orientation estimation in scenario O2 −M3 − S2
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Figure 5.7: IoU estimations in scenario O2 −M3 − S2

RMSEx RMSEy RMSEψ IoU

EKF 0.4691 0.4053 0.3439 0.5853

UKF 0.4943 0.4399 0.3521 0.5851

UKF Negative 0.2227 0.4013 0.1103 0.7838

EKS 0.4049 0.3515 0.3336 0.6958

UKS 0.4302 0.3824 0.3471 0.6964

UKS Negative 0.2156 0.3926 0.1088 0.8049

Table 5.4: Performances of ETTGP 2D algorithms for scenario O2 −M3 − S2
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IoU estimates averaged from 100 MC runs in scenario O3 −M3 − S2 are given in

Fig. 5.10. Lastly, performance measures are given in Table 5.10. In this scenario,

measurements are obtained via LIDAR from observed parts of the target similar to

the previous scenario. In the scenario, an isosceles triangle shaped target moves in

accordance with coordinated turn model. At first, measurements are only obtained

from right and bottom side of the target. Pseudo angular measurements in UKF Ng.

algorithm limits the angular extent of the target. Hence, UKF Ng. algorithm outper-

forms EKF and UKF thanks to negative information fusion. Furthermore, orientation

estimation of UKF Ng. is better compared to other algorithms. For all algorithms,

IoU estimates become better as scenario progresses since measurements from the un-

observed parts of the target obtained. It is important to emphasize that IoU estimates

of smoothers are considerably better than filters. Smoothers estimate the coordinated

turn motion part of the scenario better than filters. This is expected since smoothers

use all the available information in the scenario.
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Figure 5.8: ETTGP 2D a sample run from scenario O3 −M3 − S2

In Tables 5.5, 5.6, 5.7, 5.8, and 5.9 performance metrics for 100 MC runs are given.
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Figure 5.9: Orientation estimation in scenario O3 −M3 − S2
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Figure 5.10: IoU estimations in scenario O3 −M3 − S2
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RMSEx RMSEy RMSEψ IoU

EKF 0.2592 0.0953 0.0175 0.9037

UKF 0.2394 0.0845 0.0164 0.9021

UKF Negative 1.4849 0.3652 0.3178 0.8145

EKS 0.2521 0.0878 0.0144 0.9086

UKS 0.2362 0.0793 0.0130 0.9072

UKS Negative 1.4273 0.3592 0.3139 0.8238

Table 5.5: Performances of ETTGP 2D algorithms for scenario O2 −M2 − S1

RMSEx RMSEy RMSEψ IoU

EKF 0.6073 0.2571 0.0559 0.2820

UKF 0.6463 0.2895 0.0591 0.2761

UKF Negative 0.1202 0.5422 0.2772 0.6781

EKS 0.6052 0.2425 0.0544 0.2912

UKS 0.6357 0.2779 0.0578 0.2863

UKS Negative 0.1013 0.5273 0.2676 0.6941

Table 5.6: Performances of ETTGP 2D algorithms for scenario O2 −M2 − S2

This results are similar to the discussions regarding the scenarios O2 − M3 − S1,

O2 − M3 − S2, and O3 − M3 − S2. UKF Ng. outperforms EKF and UKF in all

LIDAR scenarios. It is paramount to emphasize that, when the target type is chosen

as isosceles triangle, e.g. Tables 5.8, 5.10, UKF Ng. performs substantially better than

EKF and UKF. Angular and radial constraints in UKF Ng. results in a better extent

estimation since isosceles triangle does not possess two-line symmetry as rectangle

does.
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RMSEx RMSEy RMSEψ IoU

EKF 0.1033 0.0381 0.0272 0.9262

UKF 0.0966 0.0377 0.0271 0.9264

UKF Negative 0.5663 0.1407 0.1238 0.8651

EKS 0.0867 0.0297 0.0233 0.9399

UKS 0.0811 0.0293 0.0231 0.9401

UKS Negative 0.5657 0.1396 0.1186 0.8750

Table 5.7: Performances of ETTGP 2D algorithms for scenario O3 −M2 − S1

RMSEx RMSEy RMSEψ IoU

EKF 0.3498 0.2321 0.1066 0.1545

UKF 0.3016 0.2661 0.0945 0.1588

UKF Negative 0.1712 0.1825 0.0617 0.4938

EKS 0.3247 0.1960 0.1014 0.1596

UKS 0.2877 0.2286 0.0921 0.1603

UKS Negative 0.1623 0.1620 0.0545 0.5067

Table 5.8: Performances of ETTGP 2D algorithms for scenario O3 −M2 − S2

RMSEx RMSEy RMSEψ IoU

EKF 0.1021 0.0539 0.0290 0.9264

UKF 0.0958 0.0513 0.0288 0.9266

UKF Negative 0.3934 0.3323 0.1355 0.8808

EKS 0.0884 0.0481 0.0246 0.9400

UKS 0.0835 0.0469 0.0244 0.9401

UKS Negative 0.3804 0.3171 0.1306 0.8960

Table 5.9: Performances of ETTGP 2D algorithms for scenario O3 −M3 − S1
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RMSEx RMSEy RMSEψ IoU

EKF 0.4761 0.8789 0.1474 0.3097

UKF 0.5335 0.9637 0.1690 0.2991

UKF Negative 0.3003 0.4693 0.1158 0.6367

EKS 0.4656 0.8575 0.1459 0.4235

UKS 0.5271 0.9366 0.1635 0.4185

UKS Negative 0.2936 0.4625 0.1132 0.6791

Table 5.10: Performances of ETTGP 2D algorithms for scenario O3 −M3 − S2

RMSEx RMSEy RMSEψ IoU

UKF Ng. 0.2053 0.3273 0.1088 0.7970

UKF Ng. Ang. 0.4387 0.3653 0.0908 0.7434

UKF Ng. Rad. 0.5934 0.9932 0.1123 0.4546

Table 5.11: Individual effects of angular and radial constraints on the performances

for scenario O2 −M3 − S2

Individual Effects of Angular and Radial Constraints: Individual effects of an-

gular and radial constraints are demonstrated with a sample run in Fig. 5.11 for

scenario O2 −M3 − S2. In Fig. 5.12, orientation estimates averaged from 100 MC

runs are given. IoU estimates averaged from 100 MC runs are given in Fig. 5.13.

Lastly, performance measures are given in Table 5.11.

UKF Ng. abbreviation corresponds to the derived UKF Ng. ETTGP 2D algorithm.

UKF Ng. Ang. consists of only angular constraints, radial constraints are left out.

Similarly, UKF Ng. Rad. consists of only radial constraints. UKF Ng. Rad. under-

performs compared to UKF Ng. and UKF Ng. Ang. Extent estimation of UKF Ng.

Rad. is quite erroneous since angular constraints does not limit the angular extent of

the target. UKF Ng. and UKF Ng. Ang. have similar angular extent estimations.

However, UKF Ng. outperforms UKF Ng. Ang. in IoU estimation as can be seen

from Table 5.11.
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Figure 5.11: Individual effects of angular and radial constraints in scenarioO2−M3−
S2
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Figure 5.12: Orientation estimations in scenario O2 −M3 − S2
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Figure 5.13: IoU estimations in scenario O2 −M3 − S2
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5.2 ETTGP 3D Simulation Results and Discussions

In this section, ETTGP 3D Scenario Generation Framework is discussed firstly. After

that, parameters used in the ETTGP 3D simulations are given. Performance measures,

IoU and RMSE, and scenario visualizations given later. Lastly, comments regarding

the performance of different ETTGP 3D estimators such as EKF, UKF, and UKF Ng.

are presented.

5.2.1 ETTGP 3D Framework

In this section, ETTGP 3D Scenario Generation Framework is presented. Framework

for ETTGP 3D algorithm is quite similar to the ETTGP 2D algorithm. However,

for the sake of completeness and indicating deviations from ETTGP 2D framework,

framework is again discussed. ETTGP 3D Framework mainly consists of three blocks

as given in Fig. 5.14.

• Initialization: This block takes motion, object, GP and sensor parameters as

inputs. These four inputs are defined as a class in MATLAB and different types

of models can be incorporated to the framework easily. Using the input classes

and some scenario specific parameters, Initialization block performs necessary

operations for simulation start-up.

• Monte Carlo Runs: This block takes Initialization block’s outputs and perform

Monte Carlo runs for a number of different estimation algorithms. The block

is designed to be flexible in a way that many algorithms can be comparatively

ran. Moreover, online figures for observing target trajectory and estimators’

output are plotted. RMSE and IoU metrics, which will be discussed later, are

also estimated and saved by this block.

• Performance Evaluator: This block is used for post-processing the results we

obtained from Monte Carlo runs block. Our aim is to store the results of the

simulations, i.e., figures and tables, in an easily publishable format. For this

purpose, different figures are plotted and saved in a Latex format by utilizing

matlab2tikz package provided in [33]. Furthermore, tables for RMSE results
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of different algorithms are generated in a .tex format by utilizing latexTable

function provided in [34].

Figure 5.14: Schematic of ETTGP 3D Framework

There is a variety of simulation configurations that are combinations of different 3D

target shapes, motion models and sensor models. Object, sensor and motion model

types are given in Table 5.12. One can extend the framework by adding different

types of motion models, object types and sensor models with seamless integration.

Note that abbreviations in the parentheses will be used in the following figures’ and

tables’ captions. For instance, when scenario O2 −M3 − S2 is referred, it means that

rectangular prism moving with coordinated turn is tracked by a LIDAR sensor that

generates partial measurements over the surface of the object.

Table 5.12: Simulation configurations for ETTGP 3D algorithms

Object Type Motion Model Sensor Type

Ellipsoid Still Uniform

Rectangular Prism Constant Velocity (CV) LIDAR

Cone Coordinated Turn (CT)

Parameter set in Table 5.13 are used in ETTGP 3D simulations unless otherwise spec-
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ified.

Table 5.13: Parameter set used in ETTGP 3D simulations

Abbreviation Explanation Value Unit

r GP Mean 0 m

σr GP Mean Std. Dev. 0.2 m

σf GP Prior Std. Dev. 1 m

l GP Length Scale π/8 -

σz Std. Dev. for Measurement Noise 0.03 m

T Sampling Time 0.1 s

v Velocity 5 m/s

σc Std. Dev. of Process Noise for Center 0.2 m

σq Std. Dev. of Process Noise for Quaternions 0.01 rad

λ Scaling factor for Extent Dynamics 0.99 -

α UT Parameter 1√
n

-

β UT Parameter 2 -

κ UT Parameter 1 -

n State Dimension 174 -

N Number of Basis Points for Extent Estimation 162 -

nk Number of Measurements per Instant 20 -

σw Std. Dev. for Angular Constraint’s Noise 0.005 rad

σd Std. Dev. for Radial Constraint’s Noise 0.1 m

5.2.2 Performance Measures

Performances of the ETTGP 3D algorithms for extent estimation are calculated by

the widely used Intersection over Union (IoU) measure

IoU(Sgt, Ŝ) =
volume(Sgt ∩ Ŝ)

volume(Sgt ∪ Ŝ)
, (5.3)

where Sgt denotes ground truth target shape and Ŝ denotes the shape estimated by
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the algorithm. IoU is calculated by dividing the volume of intersection of two shapes

to union of the shapes. By this definition, IoU ∈ [0, 1]. IoU = 1 means the perfect

estimation whereas IoU = 0 means estimates are entirely false. It is paramount to

emphasize that IoU metric determines the quality of the kinematics estimates as well

as extent. If the shape of the target is erroneously estimated, IoU measure will be low.

Even if we assume that the shape estimates are perfect, if kinematics of the target is

erroneously estimated, IoU measure will again be low.

Performances of the ETTGP 3D algorithms for kinematics estimation are calculated

by the widely used Root Mean Square Error (RMSE) measure

RMSE =

√
1

n
Σn
i=1(x̄k − x̄k,gt)2, (5.4)

where x̄k denotes kinematics estimates and x̄k,gt ground truth kinematics.

It is paramount to emphasize that GP modelling of the extent does not impose a

unique center representation of the target. Thus, IoU results are more informative

than RMSE results for representation of a target.

5.2.3 Computation Time

ETTGP 3D algorithms which utilized different inference techniques such as EKF,

UKF, and UKF Ng. Estimates are recursively updated as new measurements obtained

in each time step. Since all algorithms are recursive, computational complexity does

not increase over time. Computational complexity only depends on the number of the

measurements at a scan and the size of the state vector.

Simulations are run in MATLAB 2020b on a laptop with AMD Ryzen 5 PRO 4650U

2.10 GHz CPU with 16 GB of RAM. Computation time for a step of the algorithms

is found as 30.4 ms for EKF ETTGP, 885.6 ms for UKF ETTGP and 1160 ms for

UKF Ng. ETTGP model on average. Note that algorithms are not computationally

optimized with any method.
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5.2.4 Results and Discussions for Simulated Data

In this section, results of simulated data for ETTGP 3D algorithms are given. Detailed

results for two scenarios, O2 −M2 − S2 and O2 −M3 − S2, are discussed. Sensor is

located at the origin, (0,0,0), for all scenarios.

In Fig. 5.15 results of a sample run from scenario O2 − M2 − S2 are given. IoU

estimates averaged from 50 MC runs in scenario O2 −M2 − S2 are shown in Fig.

5.20. Lastly, performance measures are given in Table 5.14. In Fig. 5.15, there are

three snapshots from different instances. Upper part of the figure is a snapshot from

the beginning of the tracking experiment. Middle part of the figure is approximately

from the half duration of the experiment whereas bottom part is from ending of the

experiment. UKF Ng. estimates the shape quite well compared to EKF and UKF

as can be seen from the Fig. 5.15. It is important to emphasize that, uncertainties

in EKF and UKF estimates grew as experiment progresses especially along z axis.

Furthermore, angular extent of the object is represented quite well in UKF Ng. as

opposed to EKF and UKF. This result is expected since there are no measurements

obtained from top and bottom sides of the target. Pseudo angular measurements in

UKF Ng. algorithm limits the angular extent of the target along the z axis. Moreover,

IoU estimates in Table. 5.14, indicates the superior performance of UKF Ng. to EKF

and UKF.

In Fig. 5.16 results of a sample run from scenario O2 −M3 − S2 are given. In Fig.

5.17, 5.18, and 5.19, projections onto X − Y , X − Z, and Y − Z planes are given

respectively. IoU estimates averaged from 50 MC runs in scenario O2 − M3 − S2

are shown in Fig. 5.21. Lastly, performance measures are given in Table 5.15. In

Fig. 5.16, it can be seen that UKF Ng. estimates the shape of the target quite well

compared to EKF and UKF in coordinated turn part. Notice that, estimated extents

by EKF and UKF grew as the target makes a turn. Moreover, UKF Ng. adapted to

the turn of object very well as opposed to EKF and UKF. Estimated target extent brim

over the true target shape for EKF and UKF algorithms as can be seen from Fig. 5.17,

5.18, and 5.19. Furthermore, IoU estimates in Table. 5.15, highlights the superior

performance of UKF Ng. to EKF and UKF.
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Figure 5.15: ETTGP 3D sample run from scenario O2 −M2 − S2
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Figure 5.16: ETTGP 3D sample run from scenario O2 −M3 − S2
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Figure 5.17: ETTGP 3D sample run from scenario O2 −M3 − S2 from (Top view)
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Figure 5.18: ETTGP 3D sample run from scenario O2 −M3 − S2 (Right view)
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Figure 5.19: ETTGP 3D sample run from scenario O2 −M3 − S2 (Front view)
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Figure 5.20: ETTGP 3D IoU estimations in scenario O2 −M2 − S2
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Figure 5.21: ETTGP 3D IoU estimations in scenario O2 −M3 − S2
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RMSEx RMSEy RMSEz IoU

EKF 0.4793 0.0282 0.1737 0.3204

UKF 0.4788 0.0276 0.1710 0.3198

UKF Ng. 0.6674 0.0969 0.0864 0.4375

Table 5.14: Performances of ETTGP 3D algorithms for scenario O2 −M2 − S2

RMSEx RMSEy RMSEz IoU

EKF 0.9173 0.5326 0.4614 0.2271

UKF 0.8884 0.4615 0.4167 0.2285

UKF Ng. 0.9526 0.3921 0.1446 0.3356

Table 5.15: Performances of ETTGP 3D algorithms for scenario O2 −M3 − S2

Individual Effects of Angular and Radial Constraints: Individual effects of an-

gular and radial constraints are demonstrated with a sample run in Fig. 5.22 for

scenario O2 −M3 − S2. IoU estimates averaged from 50 MC runs are given in Fig.

5.23. Lastly, performance measures are given in Table 5.16.

UKF Ng. abbreviation corresponds to the derived UKF Ng. ETTGP 3D algorithm.

UKF Ng. Ang. consists of only angular constraints, radial constraints are left out.

Similarly, UKF Ng. Rad. consists of only radial constraints. UKF Ng. Rad. under-

performs compared to UKF Ng. and UKF Ng. Ang. Extent estimation of UKF Ng.

Rad. is quite erroneous since angular constraints does not limit the angular extent of

the target. UKF Ng. and UKF Ng. Ang. have similar angular extent estimations.

However, UKF Ng. outperforms UKF Ng. Ang. in IoU estimation as can be seen

from Table 5.16.
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Figure 5.22: Individual effects of angular and radial constraints in scenarioO2−M3−
S2
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Figure 5.23: IoU estimations in scenario O2 −M3 − S2

RMSEx RMSEy RMSEz IoU

UKF Ng. 0.9232 0.4663 0.1317 0.3436

UKF Ng. Ang. 0.8812 0.4359 0.1929 0.3272

UKF Ng. Rad. 0.9741 0.3858 0.2497 0.2588

Table 5.16: Individual effects of angular and radial constraints on the performances

for scenario O2 −M3 − S2
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5.2.5 Results and Discussions for Real Data

Experiments with real data are conducted with Kitti data set. The data set consists

of several records of real-world traffic scenarios. Measurements are collected with

different types of sensors that are mounted on a ego vehicle. In the experiments,

measurements acquired by Velodyne HDL-64E lazer scanner are used. It is important

to emphasize that raw point cloud data is not preprocessed, e.g. ground removal,

association, in the experiments, rather labels provided within the data set are used.

The set of parameters that are used in real data experiments is same with Table 5.12.

Three different scenarios are chosen to demonstrate the effectiveness of the proposed

ETTGP 3D UKF Ng. algorithm. Scenario 1, 2, and 3 are visualized in Fig. 5.24,

5.25, and 5.26 respectively.

Figure 5.24: Visualization of Kitti data set scenario 1

In Fig. 5.24, yellow ellipse shows the car be tracked. The car consistently get away

from the ego vehicle that is moving in the same direction. Note that car is acceler-

ating during the experiment. Upper part of the Fig. 5.24 shows the beginning of the

tracking experiment whereas lower part of the figure shows the ending of the tracking
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experiment. Notice that measurements are only collected from the back and right side

of the car throughout the experiment. Thus, uncertainties in the unobserved section

of the car increase during the experiment.

Figure 5.25: Visualization of Kitti data set scenario 2

In Fig. 5.25, yellow rectangle shows the car be tracked. The car moves with a nearly

constant speed. Ego vehicle is stationary at sidewalk. Similar to the Fig. 5.24 , upper

part of the Fig. 5.25 shows the beginning of the tracking experiment whereas lower

part of the figure shows the ending of the tracking experiment. It is important to

emphasize that occlusions caused by pedestrians walking on the pavement and the

column of the building imposes challenges.

In Fig. 5.26, yellow rectangle shows the car be tracked. The car makes a half turn

with a nearly constant speed. Ego vehicle is stationary at red light. Similar to the

Fig. 5.24 and Fig. 5.25, upper part of the Fig. 5.26 shows the beginning of the

tracking experiment whereas lower part of the figure shows the ending of the tracking

experiment. This scenario is specifically chosen to examine the performance of the

proposed algorithm in a real life maneuvering scenario.

In Fig. 5.27, a sample run for Kitti scenario 1 is shown. In Fig. 5.27, there are

three snapshots from different instances. Upper part of the figure is a snapshot from

the beginning of the tracking experiment. Middle part of the figure is approximately
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Figure 5.26: Visualization of Kitti data set scenario 3

from the half duration of the experiment whereas bottom part is from ending of the

experiment. UKF Ng. estimates the shape quite well compared to EKF and UKF as

can be seen from the Fig. 5.27. It is important to emphasize that, extent estimates

of EKF and UKF grew erroneously as the experiment progresses. In this scenario,

movement of the target is mainly in y direction. Measurements are mostly obtained

from one side of the target. Extent along y direction is represented fairly well for

all algorithms. However, estimated extents brim over the true target extent for EKF

and UKF algorithms in x and z directions. Furthermore, angular extent of the object

is represented quite well in UKF Ng. as opposed to EKF and UKF. Pseudo angular

measurements in UKF Ng. algorithm limits the angular extent of the target along the

x and z directions.

In Fig. 5.28, a sample run for Kitti scenario 2 is shown. In Fig. 5.28, it can be seen

that UKF Ng. estimates the shape of the target quite well compared to EKF and UKF.

Notice that, extent estimates of EKF and UKF grew erroneously as the experiment

progresses especially in z direction.

In Fig. 5.29, a sample run for Kitti scenario 3 is shown. In Fig. 5.30, 5.31, and 5.32,

projections ontoX−Y ,X−Z, and Y −Z planes are given respectively. In Fig. 5.29,

it can be seen that UKF Ng. estimates the shape of the target quite well compared to

EKF and UKF. Notice that, extent estimates of EKF and UKF grew erroneously as

the experiment progresses. Estimated target extent brim over the true target shape for
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EKF and UKF algorithms as can be seen from Fig. 5.30, 5.31, and 5.32. Especially,

UKF Ng. performs much better extent estimation along z direction compared to EKF

and UKF algorithm as can be seen from Fig. 5.31 and 5.32.
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Figure 5.27: ETTGP 3D Kitti scenario 1 sample run
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Figure 5.28: ETTGP 3D Kitti scenario 2 sample run

103



Figure 5.29: ETTGP 3D Kitti scenario 3 sample run
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Figure 5.30: ETTGP 3D Kitti scenario 3 sample run (Top view)
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Figure 5.31: ETTGP 3D Kitti scenario 3 sample run (Right view)
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Figure 5.32: ETTGP 3D Kitti scenario 3 sample run (Front view)
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CHAPTER 6

CONCLUSIONS

In this thesis, performances of different ETTGP 2D and 3D algorithms are evalu-

ated. EKF, UKF, UKF Ng., EKS, UKS, and UKS Ng. are used for inference in

ETTGP algorithms for a variety of scenarios. Furthermore, a method for ETTGP

3D which utilizes negative information fusion is proposed. This method incorporates

measurements along with negative information to obtain better extent estimates. In

order to utilize negative information, angular and radial constraints are formulated as

pseudo measurements. These pseudo measurements are used in additional measure-

ment update steps. Significant improvements in extent estimation are achieved with

incorporated negative information.

In the thesis, extended target tracking problem is defined in detail firstly. Then, neces-

sary literature for deriving ETTGP algorithms are given such as Gaussian processes,

negative information fusion concept, and different inference techniques. ETTGP al-

gorithms for 2D and 3D are derived step by step in the subsequent chapter. Extent,

state space, and inference models for both algorithms are discussed in detail. In Ch.

5, ETTGP scenario generation framework is introduced. Results for a variety of sim-

ulations including both simulated and real data are given and elaborated.

Simulations are carried out on a modular environment called ETTGP scenario gen-

eration framework. The framework enabled us to conduct a variety of simulations

easily. By utilizing such a framework, we compared different types of extended tar-

get tracking algorithms in a controlled environment. Figures and performance metrics

were automatically generated and stored in .tex format.

A variety of simulations are conducted with different target shapes, motion models,
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and sensor models to compare ETTGP 2D algorithms’ performances. For uniform

sensor scenarios, UKF Ng. performs worse compared to EKF and UKF. In uniform

sensor case, sensor to target geometry leads to wrong angular and radial constraints.

Since, measurements are obtained throughout the extent, there cannot be negative

information. Hence, results for uniform sensor case is not meaningful for UKF Ng.

algorithm. However, results are shown that negative information fusion model, UKF

Ng., outperforms both EKF and UKF in LIDAR scenarios. Extent estimates are much

more accurate for UKF Ng. algorithm compared to other algorithms especially in the

sides that are not any measurements generated. In general, smoothers outperformed

filters. This is expected since smoothers utilized all the available information in the

scenario unlike filters.

Both simulated data and real data experiments are conducted to compare different

ETTGP 3D algorithms’ performances. The method proposed in the thesis, i.e., UKF

Ng. ETTGP 3D algorithm, outperformed EKF and UKF ETTGP algorithms in both

real and simulated data experiments. Same set of parameters are used for both sim-

ulated and real data experiments to demonstrate the robustness of the proposed al-

gorithm. IoU estimates of UKF Ng. ETTGP were substantially better than existing

algorithms.

Individual effects of angular and radial constraints are examined for both ETTGP

2D and ETTGP 3D algorithms. Radial constraints does not improve IoU estimation

alone. However, angular constraints significantly improves the IoU estimations alone.

Proposed UKF Ng. algorithm with both angular and radial constraints outperforms

both UKF Ng. Ang. and UKF Ng. Rad. Nonetheless, IoU results of UKF Ng. and

UKF Ng. Ang. are quite similar. Thus, one may omit radial constraints in order to

save computational resources in trade off slight performance increase.

As a future work, more simulations for different types of sensors, targets and mo-

tion models can be done to demonstrate the effectiveness of the proposed model.

Moreover, extension of the proposed measurement update to multi target tracking ap-

plications can be studied. With this study, multi sensor multi target scenarios can be

investigated to research the performance of the new model. Another future work can

be using the proposed measurement update in different ETTGP 3D algorithms.
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