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Abstract. Buckling is a structural instability that load carrying capacity of a structural element 

may suddenly decrease. This sudden change in the load carrying capacity may cause catastrophic 

failures. Therefore, determination of the first buckling and collapse loads of structural elements 

is essential. FE analyses and structural testing are used to determine buckling characteristics of 

a structural element. However, in early design stages, FE analyses are time consuming and 

structural testing is costly. In this paper, artificial neural network tool is used to reduce 

computational effort to determine buckling loads of integrally stiffened structural panels in early 

design stages. Moreover, Latin Hypercube Sampling (LHS) methodology is used to reduce the 

number of required FE analyses to generate database that artificial neural network is based on. 

Mean errors and fit performance model results are compared to determine accuracy of the neural 

network results. 

1.  Introduction 

 

Load carrying capacity of a structural element may suddenly decrease due to a structural instability 

called buckling. This sudden change in the load carrying capacity may cause catastrophic failures due 

to insufficient strength of entire structure. Therefore, determination of the first buckling and collapse 

loads of structural elements is essential. FE analyses and structural testing are used to determine buckling 

characteristics of a structural element. However, in early design stages, FE analyses are time consuming 

and structural testing is costly.  

 

Any change in the structural geometry such as stringer height, thickness or spacing, affects buckling 

characteristics of structural elements. These changes result in increased computational time and cost in 

design. Response surface models, neural networks, cubic spline fits can be used to reduce computational 

time and to optimize the number of analyze points [1]. 

 

Artificial Neural Network is a computation tool that can classify and recognize patterns and provide 

accurate predictions for given inputs by learning from the previous data [2]. Furthermore, it is widely 

used in the industry for structural optimization purposes. As an example, artificial neural network was 

used on stiffened composite panels to reach optimum load carrying capacity and weight and reduce time 

consumed for analysis [3]. Furthermore, optimization of a compression member was achieved by use of 
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artificial neural network. An analytical method was applied to determine load-displacement relation of 

different types of columns and the data generated was used to train neural network [4]. Also, design 

optimization of anisotropic laminated composites was achieved by developing artificial neural network 

and it was stated that use of the neural network leads to accurate enough solutions and decrease the time 

required for analysis in design process [5]. In another study thin-walled structures were optimized by 

developing a neural network. In this study, FE analysis results were used to train the neural network [6].  

 

Artificial Neural Network was also used to create analysis tools for buckling and collapse loads of 

structural panels. In literature, post-buckling strength of a thin rectangular plate was obtained by creating 

a neural network as a function of initial imperfections [7]. Furthermore, post-buckling optimization was 

achieved by artificial neural network and utilized for stiffened panels [8]. In another study buckling load 

prediction of composite stiffened panels working under shear load was obtained by developing an 

artificial neural network [9].  

 

Latin Hypercube Sampling (LHS) is a method of sampling that can be used to produce input values 

for estimation of expectation of functions of output variables [10]. LHS is commonly used design-of-

experiment technique for design problems which consist of more than 2 variables. The selected design 

points are distributed so that they cover all design space but do not intersect each other. Therefore, LHS 

is used as a tool to reduce number of required FE analyses by covering the whole design space. 

 

In this paper, an artificial neural network tool is used to reduce computational effort required to 

determine buckling loads of integrally stiffened structural panels in early design stages. Also, the panel 

mass is predicted in order not to design each trial panel in CAD (Computer-Aided Design) to determine 

the panel mass data. Moreover, the Latin Hypercube Sampling methodology is used to reduce the 

number of required FE analyses to generate the results database that artificial neural network is based 

on. Mean errors and fit performance model results are compared to determine accuracy of the neural 

network results. Finally, accuracy of artificial neural network based on the full design space solutions 

and based on design points selected by LHS are compared and represented for the first buckling, collapse 

load and mass predictions of integrally stiffened panels under compressive loads. 

2.  Design of Experiment 

 

Design of experiment (DOE) is a general methodology to select the optimum number of parameters 

required to reach sufficiently accurate results in respectively short period of time. DOE methodologies 

analyze input data and clarify the outliers, then identify data points which are appropriate to current 

experiment and therefore improve the quality of the outputs which are taken from the experiment. 

Therefore, choosing appropriate design of experiment methodology to create a design space is essential 

in early design stages. 

 

Design space consists of several parameters. Those are variables of design space called factors, 

definitions of factors called levels, regression parameters and errors (Measurement errors etc.). In 

Equation 1, the design problem definition is given. Design matrix is 𝑋𝑛×𝑝  (factor), vector of regression 

parameters is 𝛽𝑝×1, vector of observations is 𝑦𝑛×1 and error vector is 𝜖𝑛×1 [11]. 

 

𝑦 = 𝑋𝛽 + 𝜖          (1) 

 

Statistical error consists of two parts. The first one is the pure error and the second one is the error 

coming from the response surface model. Since FE analyses cannot be held without being input 

dependent, FE analyses errors are assumed as pure error. Furthermore, these errors can be negligible or 

can be calculated with uncertainty quantification. Hence, 𝜖 can be assumed as model error for FEA case 

and model is appropriate for experiment if model error is sufficiently low [12]. 
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DOE methods create response surfaces to determine the effect of each factor on the response without 

replicating the experiment. There are several strategies to develop a design of experiment methodology. 

Typical experiment starts with an initial guess and guessed combinations of factors and their levels. The 

way to guess these factor combinations properly is nothing but design of experiment methodologies 

[12].  

 

Classical and modern design of experiment approaches exist in the literature. Laboratory experiments 

are typical examples of classical DOE’s, while computer-based experiments generally involve modern 

DOE techniques. There are two main differences between classical and modern DOE approaches [13]: 

 

1. There is no random error in computer experiments while there is in laboratory experiments, 

2. Probability density functions used in experiments are different in computer and laboratory 

experiments. 

 

In the absence of repeatability, putting the sample points at the extremes of parameter space is the 

methodology for classical DOE approaches since this methodology is more reliable. Therefore, classical 

DOE techniques are suitable for experiment designs such as central composite design, full-factorial or 

fractional-factorial designs. Furthermore, possible design parameters are distributed uniformly between 

upper and lower bound in classical DOE methodologies. In the presence of repeatability which comes 

from deterministic computer simulations, modern DOE techniques were developed. In order to get the 

response trend precisely, space filling methods such as quasi-Monte Carlo sampling, orthogonal array 

sampling and Latin hypercube sampling are developed and employed to the modern DOE techniques. 

Besides, uniform and non-uniform probability distributions such as Gaussian or Weibull exist for design 

parameters in modern DOE methodologies [13]. 

 

In order to overcome, problems of modern DOE approaches such as non-uniform level of factor 

requirements or computational cost due to increase in simulation points, design of experiment problem 

should have a suitable sampling approach. The Latin Hypercube Sampling (LHS) ensures that the entire 

range of each input variable is completely covered without regard to which single variable or 

combination of variables might dominate the computer simulation response. This means that, a single 

sample will provide useful information when some input variables dominate certain responses while 

other input variables dominate other responses. By sampling over entire range, each variable has the 

opportunity to show up as important, if it indeed is important. Moreover, LHS is more efficient than 

simple random sampling in large range of conditions [14]. 

 

In this paper, full factorial approach is used to generate design space. Moreover, Latin Hypercube 

Sampling methodology is used to determine sub-spaces which are 30% 60% and 90% of the full factorial 

design space which will be compared by the accuracy later with full factorial design space. 

3.  Artificial Neural Network 

 

A feed forward neural network with Levenberg-Marquardt backpropagation training algorithm which 

consists of layers which have artificial neurons which are interconnected to other neurons, is used in this 

study. A neuron and a neural network samples are shown in Figure 1. 
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Figure 1. A Neuron (Left) and a Neural Network (Right) Models [15] 

 

In this study, “Network/Data Manager Window” of the MATLAB tool has been used to develop the 

ANN. A neural network with 48 neurons is selected as layer architecture. Inputs are panel length, panel 

width, skin thickness, stringer thickness, stringer height and number of stringers whereas outputs are the 

first buckling load, collapse load and mass. In Figure 2, generic view of a neural network with 48 neurons 

(hidden layers) is shown.  

 

 

                     
 

    Figure 2. Generic View of Neural Network with 48 Neurons 

 

Determination of the number of neurons in hidden layers is one of the most important aspects for 

neural network analysis. In order to obtain optimum number of neurons, trial and error approach is 

applied and errors for each neuron number is investigated for each output value. The mean error versus 

number of neurons for one of the output parameters is given in Figure 3 as an example. 

 
             Figure 3. Mean Error vs Number of Neurons Study 
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In Figure 3, as the number of neurons increases mean error decreases. However, after 50 neurons, mean 

error starts to increase which means that optimum neuron number for the database given is around 40-

50. In other words, the best fitted artificial neural network for the database given consists of 40-50 

artificial neurons. Therefore, as shown in Figure 3, it is a wise choice to select number of neurons 

between 40 and 50. When the computational time of the neural network is investigated, it is decided that 

48 neurons give both quick and accurate results. Finally, initialization and training parameters of the 

neural network are shown in Table 1. 

 

Table 1. Training Parameters of the Neural Network 

 

Number of Neurons 48 

Training Ratio 0.90 

Validation Ratio 0.05 

Test Ratio 0.05 

Maximum Failure 5000 

Epochs 5000 

4.  Geometry and Database Descriptions 

 

In order to create the database of structural analyses results required to train the neural network, a design 

space is determined and tested utilizing a FE analysis tool. Then, the first buckling loads, collapse loads 

and mass data are collected to generate the database. Geometric dimensions of the integrally stiffened 

panels are tabulated in Table 2. 

 

Table 2. Geometric Dimensions of Integrally Stiffened Panels 

 

PANEL DIMENSIONS 

LENGTH (mm) 350, 400, 450 

WIDTH (mm) 350, 400, 450 

STRINGER HEIGHT (mm) 15, 20, 25 

STRINGER THICKNESS (mm) 1.5, 1.75, 2.0 

SKIN THICKNESS (mm) 1.5, 1.75, 2.0 

NUMBER OF STRINGERS 3, 4, 5 
 

All geometric dimensions in Table 2 are used as input columns for neural network analyses. In order 

to generate the database, 729 design points (all possible combinations of geometric variables – full 

factorial approach) are used; the respective geometries are developed and analyzed using the general 

static solver of ABAQUS. In the analyses, elastic and plastic material properties of Aluminum 7050 are 

used and nonlinear geometry option is activated. Boundary conditions of the panels are determined such 

as the panel is in a displacement-controlled test machine. In Figure 4, initial, buckled and collapsed 

views of an example integrally stiffened panel are shown respectively.    
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Figure 4. Initial, Buckled and Collapsed Views of an Example Integrally Stiffened Panel 

Respectively 

5.  Results 

 

In order to validate the neural network, a database which is described in Section 4 is used. The neural 

network is trained by using 100% (full factorial approach), 90%, 60% and 30% of the design points 

which are selected utilizing LHS. The LHS approach creates the values of distribution function not by 

generating random numbers dispersed in chaotic way in the design interval but by assigning them certain 

fix values. The interval is divided into several layers of the same width, and the “x” values are assigned 

via the inverse transformation for the distribution function values corresponding to the center of each 

layer. By using reasonably high number of layers, the selected quantity x will have the proper probability 

distribution [17]. Then, the neural network results are compared with respective FE analyses results. 

 

Fit performance model shown in Equation 2 is used to validate the neural network results [16]. In 

Equation 2, 𝑡 indicates target value and 𝑑𝑚 indicates neural network results. Target values are computed 

by FE analyses. 

 

       𝐹𝐼𝑇 =  100 (1 − (
𝛴(𝑡−𝑑𝑚)2

𝛴(𝑡−𝑚𝑒𝑎𝑛(𝑡))
2)

1/2

)                                                      (2) 

 

 

In Figures 5, 6 and 7, prediction fit values are compared with input data percentages for the collapse 

load, the buckling load and the mass predictions separately. 

 

 

 

 
 

Figure 5. Collapse Load Prediction Fits versus Input Data Percentage 
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Figure 6. Buckling Load Prediction Fits versus Input Data Percentage 

 

 

 

 
 

Figure 7. Mass Prediction Fits versus Input Data Percentage 

 

 

 

As shown in Figures 5, 6, and 7, as the number of inputs creating the database increases, the error of 

neural network predictions decreases. Therefore, it can be stated that to obtain accurate results from a 

neural network, the training database should be as large as possible. In buckling predictions, accuracy 

drops significantly as the database shrinks. That can be explained by the fact that buckling load has a 

discontinuity trend since it is a structural instability and artificial neural network creates a non-

parametric response surface model. Therefore, determination of the first buckling loads essentially 

requires a large database in order to give more accurate results. However, results also show that even 

30% of the full database gives fit values higher than 80%. This proves the accuracy of the design point 

selections via Latin Hypercube Sampling. When collapse load and mass predictions are investigated, 

the neural network is quite accurate even when 30% of the full database is used. This could be explained 

by the fact that mass and collapse load have nearly stable responses to any change in the geometry. 

 

Next, ten random samples from the database are selected to show the accuracy of the neural network 

predictions in a detailed sense. Example structural panel dimensions are given in Table 3.  
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Table 3. Sample Structural Panel Dimensions 

 
  PANEL DIMENSIONS (mm) 

  WIDTH LENGTH 
STRINGER 

H. 
SKIN T. 

STRINGER 
T. 

STRINGER 
# 

EX
A

M
P

LE
 P

A
N

EL
 #

 
1 350 350 20 2 2 3 

2 350 350 25 2 2 3 

3 350 350 15 2 1.75 3 

4 400 350 20 1.5 1.5 3 

5 400 350 20 2 2 3 

6 400 350 25 2 2 3 

7 450 350 15 1.5 1.5 3 

8 450 350 20 1.5 1.5 3 

9 450 350 25 1.5 1.5 3 

10 450 350 15 1.5 2 3 

 

The FE analysis results and neural network predictions of sample panels are compared in Table 4, 5, 

6 and 7 for 100%, 90%, 60% and 30% of the design points. 

 

Table 4. Comparison of Analysis and Neural Network Results for 100% of the Input Data  
 

  ANALYSIS RESULTS (N) NEURAL NETWORK RESULTS (N) ERRORS (%) FIT VALUES (%)  

  F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS  

EX
A

M
P

LE
 P

A
N

EL
 #

 

1 217981.0 99161.0 0.8 216011.6 98469.7 0.8 0.9 0.7 0.4 99.1 99.3 99.6 

1
0

0
%

 O
F IN

P
U

T D
A

TA
 

2 229107.2 108370.0 0.8 230738.3 107863.8 0.8 0.7 0.5 1.1 99.3 99.5 98.9 

3 163305.2 81181.0 0.8 160251.9 79567.4 0.8 1.9 2.0 0.8 98.1 98.0 99.2 

4 127200.8 48556.0 0.7 126165.2 50527.0 0.7 0.8 4.1 0.3 99.2 95.9 99.7 

5 210629.5 89451.0 0.9 208376.0 91645.8 0.9 1.1 2.5 0.2 98.9 97.5 99.8 

6 215654.8 97623.0 1.0 214609.4 97916.9 1.0 0.5 0.3 0.7 99.5 99.7 99.3 

7 113672.8 41475.0 0.8 115719.3 41432.4 0.8 1.8 0.1 0.9 98.2 99.9 99.1 

8 124977.4 45062.0 0.8 126577.0 43519.0 0.8 1.3 3.4 0.2 98.7 96.6 99.8 

9 132130.8 46793.0 0.8 132090.6 48362.6 0.8 0.0 3.4 0.8 100.0 96.6 99.2 

10 125648.6 50911.0 0.8 126220.3 52041.5 0.8 0.5 2.2 1.6 99.5 97.8 98.4 

 

Table 5. Comparison of Analysis and Neural Network Results for 90% of Input Data  

 
  ANALYSIS RESULTS (N) NEURAL NETWORK RESULTS (N) ERRORS (%) FIT VALUES (%)  

  F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS  

EX
A

M
P

LE
 P

A
N

EL
 #

 

1 217981.0 99161.0 0.8 218602.7 100926.5 0.8 0.3 1.8 0.0 99.4 98.1 100.0 

9
0

%
 O

F IN
P

U
T D

A
TA

 

2 229107.2 108370.0 0.8 240976.8 121537.3 0.9 5.2 12.2 1.3 94.5 87.7 98.7 

3 163305.2 81181.0 0.8 149974.3 76787.3 0.8 8.2 5.4 0.6 92.1 94.7 99.4 

4 127200.8 48556.0 0.7 124356.8 44670.7 0.7 2.2 8.0 0.5 98.0 92.1 99.5 

5 210629.5 89451.0 0.9 213132.0 79805.4 0.9 1.2 10.8 0.2 98.5 89.4 99.8 

6 215654.8 97623.0 1.0 224335.1 98835.6 1.0 4.0 1.2 0.3 95.7 98.6 99.7 

7 113672.8 41475.0 0.8 115186.1 39454.9 0.8 1.3 4.9 1.1 98.4 95.3 98.9 

8 124977.4 45062.0 0.8 125664.8 46360.2 0.8 0.5 2.9 0.5 99.2 97.0 99.5 

9 132130.8 46793.0 0.8 129550.8 45387.2 0.8 2.0 3.0 0.5 98.3 97.1 99.5 

10 125648.6 50911.0 0.8 126192.3 44547.2 0.8 0.4 12.5 0.0 99.3 87.6 100.0 
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Table 6. Comparison of Analysis and Neural Network Results for 60% of Input Data 

 
  ANALYSIS RESULTS (N) NEURAL NETWORK RESULTS (N) ERRORS (%) FIT VALUES (%)  

  F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS  

EX
A

M
P

LE
 P

A
N

EL
 #

 

1 217981.0 99161.0 0.8 219395.3 101609.9 0.8 0.6 2.5 0.5 99.2 97.3 99.6 

6
0

%
 O

F IN
P

U
T D

A
TA

 

2 229107.2 108370.0 0.8 225407.4 103066.8 0.8 1.6 4.9 0.7 98.5 95.4 99.1 

3 163305.2 81181.0 0.8 157919.7 84002.8 0.8 3.3 3.5 1.3 96.8 96.2 98.5 

4 127200.8 48556.0 0.7 133067.5 53176.1 0.7 4.6 9.5 1.8 95.3 90.2 98.0 

5 210629.5 89451.0 0.9 222533.7 97969.6 0.9 5.7 9.5 1.1 94.2 90.2 98.7 

6 215654.8 97623.0 1.0 226138.0 100957.9 1.0 4.9 3.4 2.0 95.0 96.3 97.8 

7 113672.8 41475.0 0.8 119391.4 38085.8 0.8 5.0 8.2 1.0 94.9 92.1 98.8 

8 124977.4 45062.0 0.8 133338.9 46475.9 0.8 6.7 3.1 0.0 93.2 96.6 99.8 

9 132130.8 46793.0 0.8 138049.8 52206.1 0.8 4.5 11.6 0.1 95.4 88.1 99.9 

10 125648.6 50911.0 0.8 130186.5 51524.3 0.8 3.6 1.2 0.0 96.3 98.5 99.9 

 

Table 7. Comparison of Analysis and Neural Network Results for 30% of Input Data  
 

  ANALYSIS RESULTS (N) NEURAL NETWORK RESULTS (N) ERRORS (%) FIT VALUES (%)  

  F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS F_COLLAPSE F_BUCKLE MASS  

EX
A

M
P

LE
 P

A
N

EL
 #

 

1 217981.0 99161.0 0.8 200429.5 75127.8 0.8 8.1 24.2 2.6 91.6 75.7 97.6 

3
0

%
 O

F IN
P

U
T D

A
TA

 

2 229107.2 108370.0 0.8 241288.0 84072.8 0.8 5.3 22.4 0.4 95.1 77.5 99.4 

3 163305.2 81181.0 0.8 139575.2 61345.9 0.8 14.5 24.4 0.5 85.1 75.5 99.7 

4 127200.8 48556.0 0.7 132331.5 52765.6 0.7 4.0 8.7 3.1 96.4 91.5 97.2 

5 210629.5 89451.0 0.9 204519.4 73205.1 0.9 2.9 18.2 0.1 96.7 81.7 99.8 

6 215654.8 97623.0 1.0 211537.5 79375.1 1.0 1.9 18.7 0.6 97.7 81.2 99.7 

7 113672.8 41475.0 0.8 126740.6 35880.5 0.8 11.5 13.5 1.0 88.9 86.4 98.7 

8 124977.4 45062.0 0.8 126522.4 44919.9 0.8 1.2 0.3 2.8 99.1 99.5 96.9 

9 132130.8 46793.0 0.8 132330.3 65258.8 0.8 0.2 39.5 1.2 99.8 60.7 98.5 

10 125648.6 50911.0 0.8 139751.1 54046.6 0.8 11.2 6.2 1.1 89.2 94.0 98.7 

 

As shown in Table 4, 5, 6 and 7, prediction accuracy increases as the database enlarges. Also, there 

is a significant decrease in the accuracy of buckling load as the database shrinks. However, even 30% 

of the full database gives accurate results for the collapse load and the mass predictions. 

6.  Conclusions 

 

In this study, an artificial neural network is trained to determine the first buckling load, the collapse load 

and the mass of an integrally stiffened panel in early design stages. Latin Hypercube Sampling 

methodology is employed to examine whether time spent for FE analyses used to create the neural 

network training database can be reduced by choosing design points that generate the database in an 

efficient way. To generate the database integrally stiffened panels are designed and analyzed by a 

commercial FE analysis tool. The database includes the first buckling load, the collapse load and the 

mass data with respect to six geometric variables which are the panel length, the panel width, the stringer 

height, the stringer thickness, the skin thickness and the number of stringers. It was shown in this study 

that the total time spent for generating a database can significantly be reduced by employing Latin 

Hypercube Sampling methodology. Accuracy of the neural network predictions are determined by fit 

performance model. According to the results, the accuracy is high in prediction of collapse load and 
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mass, due to the fact that those parameters have more continuous and predictable curves. However, the 

buckling load prediction accuracy decreases as the database shrinks due to nature of the buckling 

phenomenon itself. Therefore, determination of the buckling load essentially requires higher number of 

inputs. 

 

Overall, the artificial neural network combined with the design of experiment methodologies is a 

useful tool to predict load carrying capacities of structural elements in early design stages. Effective 

selection of design points can reduce the computational effort. Moreover, it can be used as a conceptual 

design tool to design integrally stiffened structural panels that has an optimum weight and optimum load 

carrying capacity at once. 
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