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DUDMap: 3D RGB-D mapping for
dense, unstructured, and dynamic
environment

Özgür Hastürk1 and Aydan M Erkmen2

Abstract
Simultaneous localization and mapping (SLAM) problem has been extensively studied by researchers in the field of
robotics, however, conventional approaches in mapping assume a static environment. The static assumption is valid
only in a small region, and it limits the application of visual SLAM in dynamic environments. The recently proposed state-
of-the-art SLAM solutions for dynamic environments use different semantic segmentation methods such as mask
R-CNN and SegNet; however, these frameworks are based on a sparse mapping framework (ORBSLAM). In addition,
segmentation process increases the computational power, which makes these SLAM algorithms unsuitable for real-time
mapping. Therefore, there is no effective dense RGB-D SLAM method for real-world unstructured and dynamic
environments. In this study, we propose a novel real-time dense SLAM method for dynamic environments, where 3D
reconstruction error is manipulated for identification of static and dynamic classes having generalized Gaussian dis-
tribution. Our proposed approach requires neither explicit object tracking nor object classifier, which makes it robust
to any type of moving object and suitable for real-time mapping. Our method eliminates the repeated views and uses
consistent data that enhance the performance of volumetric fusion. For completeness, we compare our proposed
method using different types of high dynamic dataset, which are publicly available, to demonstrate the versatility and
robustness of our approach. Experiments show that its tracking performance is better than other dense and dynamic
SLAM approaches.

Keywords
Dynamic mapping, visual SLAM, localization, 3D reconstruction

Date received: 9 February 2021; accepted: 21 April 2021

Topic Area: Vision Systems
Topic Editor: Antonio Fernandez-Caballero
Associate Editor: Shengyong Chen

Introduction

Simultaneous localization and mapping (SLAM) is to

produce a consistent map of environment and to estimate

the pose in the map using noisy range sensor measure-

ments. SLAM problem has been extensively studied by

researchers in the field of robotics. After the appearance

of Kinect, there are many solutions, which fuse the color

image and depth map. Visual SLAM produces a sparse

solution by relying on points matching, whereas direct

methods can produce a dense reconstruction by
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minimization of the photometric error. However, none of

the above methods addresses the problem of dynamic

objects in the environment.

Conventional approaches in mapping assume that the

environment is static. Although the static assumptions are

valid in a small region, change is inevitable when dynamic

elements exist or large-scale mapping is necessary. By

classifying dynamic content as outliers, a small fraction

can be managed. However, SLAM problem in highly

dynamic scenes is still not solved completely because there

is no suggested framework found in the literature.

Another biggest difficulty in robot navigation is unstruc-

tured environment. In unstructured environments, it is not

easy to find discrete geometries because of noisy edge or

plane. Significant research has been carried out for unstruc-

tured environments, especially in the field of autonomous

navigation, and a number of effective approaches have

been developed using laser range finder. However, there

is no effective RGB-D SLAM method for real-world

unstructured and dynamic environments.

In this study, we propose DUDMap (see https://www.

dropbox.com/s/lsexrz82ewdzo0w/DUDMAP_sample.

mp4?dl¼0): dense, unstructured, and dynamic mapping.

Our approach requires neither explicit object tracking and

object classifier nor purely geometric method in contrast to

recent approaches discussed by Yu et al.1 and Taneja et al.,2

which makes it robust to any type of moving object.

Furthermore, we assume a dynamic environment consisting

of static and dynamic classes having generalized Gaussian

distribution to detect dynamics. We reconstruct scene geo-

metry using signed distance function (SDF) instead of sur-

fels. This makes our method to easily create a dense final

mesh and such representation is useful in robotic applica-

tions because it defines the distance to surface.

The main contribution of this article is a novel and an

effective SDF-based SLAM algorithm that is resistant to

dynamics and also the following:

� We identify the dynamics using image registration

residual combining with Gaussian mixture model.

The number of dynamic objects does not limit our

approach because we do not employ any type of

moving object detection and tracking.

� Our method generates a final intense 3D mesh with-

out using semantic information or object classifier.

We eliminate repeated views and use only consistent

data for decreasing the required computational

power.

� We compare our method with other state-of-the-art

systems using TUM dataset,3 together with other

high dynamic datasets including Bonn,4 VolumeDe-

form,5 and CVSSP RGB-D dataset41 (used with per-

mission), which are publicly available, showing the

superior performance of our approach.

� To evaluate the outdoor performance of our method,

we use commercially available ZED camera for map

generation and dynamic filtering. Experiments illus-

trate that our method produces consistent result both

in indoor and outdoor applications. These are

demonstrations of real-world unstructured dynamic

environments of our approach.

The rest of this article is organized as follows. The sec-

ond section reviews state-of the-art visual SLAM methods

that attack the problem of dynamic environments. The third

section is devoted to the overall structure of our system by

giving details about proposed approaches for local key-

frame extraction and dynamic removal. The fourth section

shows the experiments conducted and gives the evaluation

result by comparing our method against other state-of-the-

art methods, whereas the fifth section provides concluding

remarks.

State-of-the-art methods

ORB-SLAM27 (latest version ORB-SLAM38), S-PTAM,9

and RTAB-Map10 are the best state-of-the-art feature-

based visual SLAM approaches in static environments.

To increase the performance of such feature-based method

in dynamic environment, dynamic objects are considered

generally as spurious data, and dynamic object is removed

as outliers using RANdom SAmple Consensus (RANSAC)

and robust cost function. On the other hand, targeted

attempts are still being made to increase performance in

dynamic scenes. For instance, DVO-SLAM11 uses photo-

metric and depth errors instead of visual features. The joint

visual odometry scene flow12 proposes an efficient solution

to estimate the camera motion. However, odometry-based

methods either cannot recover from inaccurate image reg-

istration or lacks a loop closure detection approach inde-

pendent of pose estimate.

SDFs have long been studied to represent the 3D volumes

in computer graphics.13–15 Newcombe et al.38 proposed the

SDF-based RGB-D mapping by generating precise maps in

static environments. Elastic fusion (EF)16 is another method

based on SDF, which can work in small scenarios. CoFusion

(CF)17 is a contemporary method for reconstructing several

moving objects, however, it works with slow camera

motions only and its performance deteriorates significantly

with increasing camera speed. Static fusion (SF)18 simulta-

neously estimates the camera motion together with dynamic

segmentation of the image. However, it works only

sequences without having high dynamics at the beginning.

Palazzolo et al.4 propose refusion, where dynamics detection

is done using the residuals obtained from the registration on

SDF. This approach can create a consistent mesh of the

environment, however, highly dynamical change deterio-

rates mapping performance.

Some methods use motion consistency to validate

tracked points, where dynamic objects are segmented gen-

erally as spurious data since they conflict with the motion

consistency of background over consecutive frames. For
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instance, Wang and Huang19 segment dynamic objects

using RGB optical flow. Nevertheless, the algorithm is still

not robust enough for TUM high dynamic scenarios. Kim

and Kim20 propose to use the difference between depth

images to eliminate the dynamics in the scene. However,

this algorithm requires an optimized background estima-

tor suitable for parallel processing. Azartash et al.21 use

the image segmentation for discrimination of the moving

region from the static background. Experimental results

show that the accuracy remains almost the same in low

dynamic scenarios. Tan et al.22 use an adaptive RANSAC

for removing outliers. This method can work in dynamic

situations with a limited number of slowly moving

objects.

Other methods use classifiers to identify the dynamic

objects. Kitt et al.23 combine the motion estimation with

object detection; however, this method requires a clas-

sifier, which makes this method inapplicable to online

explorations. Bescos et al.24 propose DynaSLAM,

which combines a prior learning by mask region-

based convolutional neural network (R-CNN)25 and

multiview geometry to segment dynamic content. Mul-

tiview geometry consists of region growth algorithm,

which makes it unsuitable for real-time operation even

running on NVIDIA Titan GPU. Mask fusion26 also

uses mask R-CNN for semantic segmentation. DS

SLAM,27 RDS-SLAM,28 and semantic SLAM29 are

other semantic-based algorithms, which use the SegNet.1

Pose fusion,30 implemented on EF, uses open pose

CNN31 for human pose detection, which limits this

method in the nonhuman dynamic object scenes. Flow

fusion32 uses optical flow residuals with PWC-Net33 for

dynamic and static human objects. However, such

approaches are relying heavily on prior training meth-

ods. Therefore, if an unlearned dynamic occurs in cam-

era view, estimation results are bigger. Furthermore,

learning-based semantic information is time-consuming

with heavy computational burden.

In our work, we reconstruct our scene geometry using

SDF instead of surfels in contrast to EF and SF, and there-

fore, we can directly generate the mesh of the environment

using such representation without using object tracking and

object classifier. Moreover, a number of dynamic objects or

their speeds do not limit our approach.

Our proposed methodology

Preliminaries and notations

In our approach, we denote a 3D point as [X, Y, Z]2R3,

rotation of the camera, and translation R2SO(3), T2R3,

respectively. At time t, RGB-D frame contains an RGB

image and a depth map. The homogenous point X ¼
(x, y, z,1)T can be computed by assuming a pinhole camera

model with intrinsic parameters fx, fy, cx, and cy (focal

length and optical center) such as

x� cx

f x

z;
y� cy

f y

z; z; 1

" #T

(1)

The 3D point corresponding to a pixel is recon-

structed as

xf x

z
þ cx;

yf y

z
þ cy

� �T

(2)

In rigid body motion, the common representation matrix

H consisting of a 3� 3 rotation matrix and 3� 1 translation

vector T

H 4�4 ¼
R3�3 T 3�1

01�3 11�1

� �
(3)

is used in the transformation of a point ~X under motion as

X 0 ¼ H 4�4X (4)

The rotation matrix R has nine parameters and if we were

to estimate the camera motion, we have to solve these nine

parameters by forming a constrained optimization problem,

which can be very slow to implement. The Lie algebra allows

us lower dimensional linear space for rigid body motion rep-

resentation, making it popular in computer vision problems.

We use a Lie algebra SE(3) representation as twist coor-

dinates x as in the literature34 because the rigid motion has

six degrees of freedom while transformation matrix T has

12 parameters. Using the Lie algebra representation, rigid

body motion can be written as

x ¼

0 �!3

!3 0

!2 u1

�!1 u2

�!2 !1

0 0

0 u3

0 0

2
66664

3
77775 (5)

Figure 1 depicts the important steps of our proposed

method. We first apply a depth filter to eliminate significant

amounts of noise in raw depth images. To eliminate redun-

dant data in fusion process, we trim repeated camera views by

measuring the similarity ratio of RGB images. We then per-

form pose estimation and continue the process by detecting

the dynamic elements in the scene. The subsequent subsec-

tions provide the details of each block in our proposed system.

Depth smoothing and feature matching

Commercially available RGB-D cameras usually produce

invalid depth measurements. In addition, there exist signif-

icant amounts of noise in raw depth images. In this study, we

use a depth adaptive bilateral filtering42 method because it

modifies the weighting to account for variation of intensity.

Figure 2 depicts the original depth image, smoothed image,

and filtered image, respectively. In addition, we change the

zero values in the original depth images by neighboring 5 �
5 pixel mean value in smoothing process.

Hastürk and Erkmen 3



SDF fusion is an averaging process, therefore, it is

important not to use redundant data in the fusion process

because small error makes the SDF model as unclear. To

eliminate redundant camera views, we perform similarity

ratio test based on feature matching. A typical feature

matcher consists of the following steps: extracting local

feature, matching features using nearest-neighbor

approach, and selecting good correspondences.

In the literature, scale-invariant feature transform

(SIFT) is being proposed for extracting keypoints and

widely used in different applications. SIFT feature-

matching works well for scaled images but fails some cases

such as faces with pose changes.36 Application of feature

matching method FLANN with SIFT descriptor overcomes

such disadvantages of SIFT. In similarity analysis, we use

FLANN-based feature matching with SIFT descriptor and

we use RATIO37 to select good correspondences that com-

pare the lowest feature distance and the second lowest fea-

ture distance for recognizing good ones. Similarity ratio of

the VolumeDeform “boxing” sequence is depicted in Fig-

ure 3. Since the ratio is not high, which indicates low

degree similarity, all the frames are included in the map-

ping process. On the other hand, BONN dataset “crowd2”

sequence is a high dynamic sequence having 895 frames. If

80% similarity threshold is utilized, 78 frames are skipped,

which results in 8.7% decrease in computational time.

Absolute translational error increases only 2.2%, while

rotational relative pose error increases by 0.3%. In low

dynamic sequences, the number of similar frames will be

higher, which decreases the unnecessary computational

power. This is the novel enhancement we provide to exist-

ing methods in the literature for the betterment of the per-

formance. We use the 80% similarity threshold.

Pose estimation

We can represent the geometry using SDF. To reconstruct

the scene, we fuse incrementally RGB-D data into SDF and

geometry is stored in voxel grid (see Figure 4 for SDF

calculation). First, camera pose is estimated using SDF,

Figure 1. Our proposed scheme.

Figure 2. (a) Original image, (b) smoothed image, and (c) filtered image.
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Figure 3. VolumeDeform boxing sequence similarity ratio.
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and SDF is updated based on newly computed camera pose.

In the literature, most of the volumetric fusion techniques,

for example, KinectFusion13 use synthetic depth images

and align them using iterative closest point. However, we

use the camera pose directly on the SDF because SDF

encrypts the 3D geometry of the environment.

Assuming independent and identical distributed pixels

with Gaussian noise in depth values, the likelihood of

observing a depth image is

p DjR; Tð Þ ¼
Y
i;j

e
� Rxi;jþTð Þ2
� �

(6)

To find the camera poses that maximize this likelihood,

we define a pose error function as

Ep R; Tð Þ ¼
X

i;j

 Rxi;j þ T
� �2

(7)

A rigid-body motion can be described in Lie algebra

with the 6D twist coordinates x ¼ !1; !2; !3; u1; u2; u3ð Þ.
If we rewrite the error function (7), then it becomes

Ep xð Þ ¼
X

i;j

 i;j x̂
� �2

(8)

 i;j xð Þ ¼  Rxi;j þ T
� �

(9)

If image registration is correct with the 3D model, the

projected colors should be consistent as well. We incorpo-

rate this condition by adding an extra term. Since there is no

absolute reference of the image for comparison, color value

stored in the voxels is used. Using color intensities of the

pixels and corresponding voxels, the error function

becomes

Ec xð Þ ¼
X

i;j

V I x̂
� �
� I pið Þ

� �2

(10)

The joint error function is given in equation (11) with u
intensity contribution with respect to the depth

E xð Þ ¼ Ep x̂
� �
þ Ec x̂

� �
(11)

and start by linearizing  around initial pose estimate x̂
using Jacobian matrix

Figure 4. Illustration of SDF calculation and zero SDF function on
the surface (grids represent the voxel border). SDF: signed dis-
tance function.

Algorithm 1. Pose estimation algorithm.

Input : Joint error function

Output : Pose 

1: begin
2: Initialize parameters

3: Calculate Jacobian 

4: Initialize non-negative correction factor as Grammian 

of Jacobian 

5: while (pose difference) > 0.001 or iteration # <5 do
6: Find increment for ( + ( )) =

7: Update pose with increment

8: if objective function is minimum
9: return pose

10: else
11: Update correction factor

12: Increment iteration number

13: end

Figure 5. Inconsistency map of two images (EPFL RGB-D
pedestrian dataset sequence frame 250 and 278).
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Jp xð Þ ¼
@ i;j x̂

� �
@x̂

@ x̂
� �
@

@ x̂
� �
@
¼

0 u3

�u3 0

u2 �u1

�u2 1

u1 0

0 0

0 0

1 0

0 1

2
6664

3
7775

(12)

In equation (12),
@ i;j x̂ð Þ
@x̂

is computed numerically by

evaluating the gradient. After computing the Jacobian

Jc xð Þ by following a similar procedure, we adopt to

use Levenberg–Marquardt algorithm because Gauss–

Newton cannot calculate the best optimal estimate,

resulting in nonminimum function value. Levenberg–

Marquardt algorithm can handle this problem in the

form of

Aþ lI½ �D ¼ �b (13)

where l is the non-negative correction factor updated at

each iteration. In our case, A matrix and b vector become

A ¼ Ap þ Ac

b ¼ bp þ bc

Ap ¼
X

i

J p;i
T Jp;i

Ac ¼
X

i

J c;i
T J c;i

bp ¼
X

i

J d;i  i;j x̂
� �

bc ¼
X

i

J c;i V I x̂
� �
� I pið Þ

� �

2
6666666666666666664

3
7777777777777777775

(14)

Algorithm 1 summarizes the pose estimation

process.

We solve equation (14) iteratively until difference

(x k þ 1ð Þ � x kð ÞÞ is small enough or maximum itera-

tion number is reached. To increase real-time perfor-

mance, we conduct all calculations on the GPU in

parallel since vectors b and matrices A are independent

of each other.

Figure 6. (a) RGB image, (b) reconstruction error, and (c) dynamic label image.

Algorithm 2. Dynamic labeling algorithm.

Input : Depth image, prior segmentation from residual error, initial 

label class 

Output : Segmented depth image with label

1: Initialize parameters

2: Find maximal cliques

3: Construct k-neighborhoods

4: Partition into parallel threads

5: do each EM iteration

6: for each neighborhood of the subgraph do in parallel
7: E-step 

8: M-step 

9: end for
10: Update parameters

11: while Likelihood increment < threshold

12: return Label set

Algorithm 3. DUDMap.

Input : Depth image, RGB image

Output : Artificial camera view, mesh (optional)  

1: Initialize parameters for sensor, camera tracking, SDF

2: if frame number = initial frame 

3: Initialize poses as identity
4: for i N (number of pixel)

5: Initialize labels as static
6: end for
7: Pose estimation using matrix exponential

8: else
9: RGB similarity check 

10: Pose estimation using matrix exponential 

11: Generate label set 

12: Re-pose estimation using matrix exponential 

with label set 

13: Volume integration 

14: Update parameters

15: while Frame number < total number of frame

16: Extract mesh

17: return Final mesh
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Signed distance function representation and 3D
reconstruction

We use the discrete voxel grid to represent the SDF.

Signed-distance value is calculated by trilinear interpola-

tion of eight neighboring pixels. We project each voxel

onto the image plane instead of ray casting because this

process is suitable for parallel processing since each voxel

is independent of its neighbors. Since the operation has to

be carried out for each voxel, GPU is used for this opera-

tion. Finally, we implement marching cubes algorithm35 to

extract the triangle mesh. In RGB-D mapping approaches,

storing the SDF in a 3D grid requires a large amount of

memory. Therefore, we use a special memory allocation

technique proposed by Nießner et al.39 In this technique,

we only allocate the voxels in required areas, which enable

to scan the large areas with limited memory.

Dynamic detection

Let Im and Is be the instantaneous image of the generated model

and source, respectively. The error in color map denoted by ec as

ec ¼ I s m � I sj j (15)

If the images Im and Is are accurately registered and if

there is no change in the geometry, the resulting error

would be zero (Figure 5). In general, minimizing equation

(15) results in a sufficient image registration. SDF repre-

sents the distance to the nearest surface, and therefore, we

select to use SDF as an error function. The error in the

depth can be written as

ep x̂
� �
¼
XN

i¼1

��� i x̂
� �����2

(16)

In equation (16), N is the pixel number,  is the SDF,

and x̂ is the matrix exponential multiplied by the 3D

point corresponding to the i’th pixel pi, computed using

equation (1).

After performing an initial registration using equation

(15), we compute for each pixel and its residual as defined

in equation (17)

ri ¼
��� i x̂
� �����2

(17)

Table 1. TUM dataset—translational RPE (RMSE, cm/s).

Mapping type Dense Map Sparse map

CNN utilization No CNN Segmentation CNN

Dynamic Sequence VO-SF12 EF40 CF17 RF4 SF18 ORBSLAM8 DUDMap MF26
DS-

SLAM1
Dyna-

SLAM24
Semantic
SLAM29

RDS-
SLAM28

Low Sit static 2.4 0.9 1.1 2.1 1.1 1 1.5 1.7 0.8 1.3 0.9 1.2
Low Sit xyz 5.7 1.6 2.7 3.8 2.8 — 3.7 4.6 — — — —
High Walk stat 10.1 26.0 22.4 1.7 1.3 78 2.6 3.9 1.0 0.9 1.0 2.2
High Walk xyz 27.7 24.0 32.9 11.8 12.1 42.6 10.3 9.7 3.3 2.1 2.2 4.3
High Walk half 33.5 20.5 40.0 6.4 20.7 32.7 4.7 9.3 3.0 2.9 2.8 4.8
Mean error All sequences 15.9

18.4a
14.6
17.9a

19.82
24.1a

5.2
5.5a

7.6
8.8a

30.9a 4.6
4.8a

5.8
6.2a

2.0a 2.4a 2.3a 3.2a

VO-SF: visual odometry scene flow; EF: elastic fusion; SF: static fusion; CF: CoFusion; RMSE: root mean square error; CNN: convolutional neural
network; RPE: relative pose error.
a Mean value excluding sit/xyz, all methods are given with corresponding paper in the reference set.

Table 2. TUM dataset—translational RPE (RMSE, �/s).

Mapping type Dense Map Sparse map

CNN utilization No CNN Segmentation CNN

Dynamic Sequence VO-SF12 EF40 CF17 RF4 SF18 ORBSLAM8 DUDMap MF26
DS-

SLAM1
Dyna-

SLAM24
Semantic
SLAM29

RDS-
SLAM28

Low Sit static 0.7 0.3 0.4 0.6 0.4 0.3 0.4 0.5 0.3 0.3 0.3 0.3
Low Sit xyz 1.4 0.6 1.0 1.3 0.9 — 1.2 1.3 — — — —
High Walk stat 1.7 4.8 4.0 1.1 0.4 6 0.6 0.8 0.3 0.3 0.3 0.5
High Walk xyz 5.1 4.8 5.6 2.7 2.7 7.9 2.3 2.0 0.8 0.7 0.6 0.9
High Walk half 6.7 6.4 13 3.0 5.0 7.2 2.3 3.4 0.8 0.8 0.7 1.9
Mean error All sequences 3.1

3.6a
3.4
4.1a

4.8
5.8a

2.2
1.9a

1.9
2.1a

5.4a 1.4
1.4a

1.6
1.7a

0.6a 0.5a 0.48a 1.2a

VO-SF: visual odometry scene flow; EF: elastic fusion; SF: static fusion; CF: CoFusion; RMSE: root mean square error; CNN: convolutional neural
network.
a Mean value excluding sit/xyz, all methods are given with corresponding paper in the reference set.

Hastürk and Erkmen 7



The residual obtained after image registration is used as

for dynamic detection (Figure 6). Our aim is to compute the

binary labeling for each element according to occurred

changes. For example, li ¼ 0 indicates consistency and li
¼ 1 shows the presence of change in corresponding voxel i.

If h(d) be the histogram of the image, our problem is in

the form of binary classification problem using a dynamic

label threshold. Then, probability density function can be

defined as the combination of two density functions related

class label as

p Dð Þ ¼
X2

i¼1

Pipi Djlið Þ (18)

using class conditional densities and prior probabilities. To

calculate an estimate of dynamic change, we maximize p(l|D)

l� ¼ argmax
l L Djlð Þf g (19)

where L Djlð Þ is the log likelihood of the two-component

mixture and it can be written as

Table 3. TUM dataset—translational ATE (RMSE, cm).

Dynamic Sequence VO-SF12 EF40 CF17 RF4 SF18 ORBSLAM8 DUDMap MF26
DS-

SLAM1
Dyna-

SLAM24
Semantic
SLAM29

RDS-
SLAM28

Low Sit static 33 0.8 1.1 0.9 1.3 0.9 1 2.1 0.7 1.1 0.8 0.8
Low Sit xyz 11 2.2 2.7 4 4 — 2.6 3.1 — — — —
High Walk stat 33 29 55 1.7 1.4 36 1.8 3.5 0.8 0.7 0.8 2
High Walk xyz 87 91 69 9.9 12 92 7.4 10 2.5 1.6 1.6 5.7
High Walk half 74 64 80 11 39 65 7.1 11 3 3 2.5 8
Mean error All sequences 48

56.8a
37
46a

41
51a

5.4
5.9a

12
13.4a

48.4a 4.0
4.3a

5.9
6.7a

1.8a 1.6a 1.4a 4.1a

VO-SF: visual odometry scene flow; EF: elastic fusion; SF: static fusion; CF: CoFusion; ATE: absolute trajectory error; RPE: relative pose error; RMSE:
root mean square error.
aMean value excluding sit/xyz, all methods are given with corresponding paper in the reference set.

Figure 7. Flowchart of the proposed algorithm,DUDMap.
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L D; lð Þ ¼
XL�1

x¼0

h dð Þln p Djlð Þ (20)

The final log-likelihood function is in the form of

L D;U ; lð Þ ¼
X2

i¼1

XL�1

d¼0

h dð Þui dð Þln Pipi djlið Þf g

p djlð Þ ¼ H yð Þ 2

rc

ffiffiffiffiffiffi
2p
p e

�
y2

2rc
2

(21)

In equation (21), u(d) is the indication of static or

dynamic component.

After dynamic label identification and updating the label

grid (Algorithm 2), a second pose estimation and registra-

tion are performed using newly obtained label set (Algo-

rithm 3). However, we must filter out dynamic labels that

originated from noise. We compare the SDF value of new

observation with the previous static reconstruction and

compute the difference dL. Applying a threshold q, we

obtain the label grid such that

li ¼ dynamic if dL > q (22)

Figure 7 shows the overall flowchart of our proposed

methodology including RGB similarity check, pose estima-

tion, and dynamic detection.

Experiments

Our proposed method is able to operate in dynamic envir-

onments without requiring any dynamic object detection

and tracking. Our experiments support our main claims,

which are as follows:

� Robustness to dynamic elements regardless of their

quantity and speed of change in the environment.

� That approach requires no explicit object tracking,

object classifier and generate a consistent a dense

model of the environment.

The experiments were conducted on a workstation com-

puter Intel i7 running at 3.20 GHz and a GeForce 1070

GPU using Ubuntu 16.04. Our default parameters have

been determined empirically so that a sensitivity analysis

is performed on change of parameters.

Figure 8. ATE/RPE of TUM fr3/walking static sequence. ATE:
absolute trajectory error; RPE: relative pose error.

Figure 9. Mesh of TUM fr3/walking static sequence.

Figure 10. ATE/RPE of TUM fr3/walking halfsphere sequence.
ATE: absolute trajectory error; RPE: relative pose error.

Figure 11. Mesh of TUM fr3/walking halfsphere sequence.
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TUM RGB-D dataset

In this dataset, walking sequences are highly dynamic and

complex because moving objects cover almost all camera

views. Sitting sequence is low dynamic and there exists a

person sitting and moving their arms. In this dataset, the

evaluation is performed through the metrics proposed by

Sturm et al.3 as translational, rotational relative pose error

(RPE), and translational absolute trajectory error (ATE).

Obtained results of dense visual SLAM methods are listed

in Tables 1 to 3. In the TUM dataset, the ground-truth

trajectory is obtained from a high-accuracy motion-

capture system with eight high-speed tracking cameras

(100 Hz). Therefore, quantitative evaluation is possible

regarding the accuracy of pose estimation. However, TUM

dataset has no exact 3D model of the environment, there-

fore, we can evaluate the 3D reconstruction performance

Figure 12. Scene reconstruction of fr3/walking xyz sequence.

Table 4. TUM dataset—execution time.

Method Semantic GPU Dynamic label Time for per frame (ms)

ORBSLAM3 — — — 22–30
DS-SLAM SegNet P4000 38 ms Feature extraction: >9.3

Consistency check: >29
Segmentation: >38
Total: >75 ms

Intel i7-8750 CPU only 2582 ms Total: >2600 ms27

DynaSLAM Mask R-CNN Tesla M40 200 ms Multiview geometry: >200
Background inpaint: >120

RDS-SLAM SegNet RTX 2080Ti 30 ms Total: >300 ms
DUDMap — GTX 1070 8.4 ms Similarity check: <7.1

Pose estimation: <10.3
Dynamic label: <8.4
Total: <50 ms

Elastic fusion — GTX 780Ti — <66 ms
Mask fusion GTX TitanX 200 ms <60 ms
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Figure 13. Relative translational error (walking-xyz) of our
method.
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results of our method qualitatively. Qualitative results are

shown in Figures 9, 11, and 12. Figure 12 also shows the

scene reconstruction result of fr3/walking xyz sequence

obtained using EF, DynaSLAM, and DS-SLAM.

As given in Table 1, our proposed scheme achieves an

average translation RPE of 0.045 m/s, which is consider-

ably lower than other dense methods such as VOSF, EF,

SF, and mask fusion. Our aim is to develop a dense RGB-D

SLAM algorithm without using high computational power

in dynamic environments. According to Tables 1 to 3, our

method achieves smaller relative and translational error

than other dense methods. For all high dynamic sequences,

our method reaches the lowest RPEs except for the “fr3/

walk stat” sequence. In a highly dynamic scene, our pro-

posed method produces better results for the following

reasons:

EF is not capable of dynamics in the sequences. Hence,

dynamic object deteriorates the 3D mesh and pose estima-

tion. CF works well for slow camera motions but its per-

formance deteriorates noticeably when the speed of the

camera increases. SF works sequences with limited

dynamics at the beginning, and therefore, it produces large

Figure 14. Comparison of estimated trajectories of TUM fr3/walking xyz sequence. (a) DynaSLAM: Sparse, mask R-CNN; (b) DS-
SLAM: Sparse, SegNet CNN; (c) Semantic SLAM: Sparse, Blitznet CNN; (c) RDS-SLAM: Sparse, mask R-CNN/SegNet; (d) pose fusion:
Dense, open pose CNN; (e) flow fusion: Dense, Pwc.Net CNN; (f) Refusion: Dense, no CNN; (g) Static fusion: Dense, no CNN; (h)
DUDMap: Dense, no CNN; (i) Elastic fusion: Dense, no CNN; (j) ORBSLAM3: Sparse, no CNN; (k) VO-SF: Dense, no CNN. VO-SF:
visual odometry scene flow.
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errors on a highly dynamic environment. In general, exist-

ing high dynamics in the scene leads to blurry motion in the

image, resulting inconsistent mesh.

In addition, according to Tables 1 to 3, there is no doubt

that semantic-based visual SLAM methods have better

results in ATE and RPE criteria. However, such method

does not provide a dense model and it is relying heavily on

the prior result from the learning techniques. If an

unlearned condition exists in the camera view, the estima-

tion result is highly influenced.

Table 4 compares the execution time of our proposed

method with semantic-based SLAM algorithms. Most of

the modern segmentation-based SLAM methods are built

on ORBSLAM, therefore, it is included in timing analysis.

The execution time data are obtained from the correspond-

ing published papers. DynaSLAM has a good tracking per-

formance, however, mask R-CNN makes this method

unsuitable for real-time operation.

If a lightweight semantic segmentation such as Seg.Net

is used, as in DS-SLAM and RDS-SLAM, the required time

for per frame for segmentation decreases from 200 ms to 30

ms. However, an unlearned dynamics in the camera field-

of-view results in pose error, leading to moving object to be

mapped as a static object. Our method without using any

semantic label criteria runs almost constant rate regardless

of moving object type and speed. In addition, our method

does not require high-end graphic units.

Figure 12 shows that a person remains in the model

because the model built has artifact in the “walking xyz”

sequences. This situation also occurs in “walking half-

sphere” (Figure 11) and “walking static”(Figure 9)

sequences because the camera is tracking a person initially,

and finally, the camera never looks again, hence, it is not

Figure 15. RGB-D image and mesh of VolumeDeform boxing sequence of our proposed method.

Figure 16. Mesh of BONN moving obstructing box sequence.

Table 5. BONN dataset—translational RPE (RMSE, cm/s).

Dynamic Sequence RF4 SF18 DynaSLAM24 DUDMap

High Balloon
tracking2

0.32 0.37 0.19 0.27

High Obstruction box 0.34 0.33 0.54 0.17

SF: static fusion; RPE: relative pose error; RMSE: root mean square error.

Table 6. VolumeDeform dataset results.

Dynamic Sequence
Trans, RPE

RMSE (cm/s)
Trans, RPE
RMSE (�/s)

Trans, ATE
RMSE (cm)

High Boxing 0.32 0.37 0.19
High Sunflower 0.34 0.33 0.54

ATE: absolute trajectory error; RPE: relative pose error; RMSE: root
mean square error.
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Figure 17. RGB-D image and final mesh of the CVSSP “dog” sequence.

Figure 18. RGB-D image and final mesh of the “outdoor-1” sequence.
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possible to identify that the voxels are free. Figure 13

also confirms such a case. It is clear that translational

error is higher at the beginning when the camera tracks

the person.

Figure 8 and 10 depict the ATE/RPE of TUM “fr3/walk-

ing static" and "fr3/walking halfsphere” sequences. In addi-

tion, Figure 14 shows the estimated trajectory result of fr3/

walking xyz sequence obtained by the state-of-the-art visual

SLAM system. Trajectory results are consistent with

Tables 1 to 3. Semantic-based visual SLAM methods

except pose fusion and flow fusion have better results in

ATE and RPE criteria. Our proposed method can compete

with semantic SLAM and RDS-SLAM, however, Dyna-

SLAM and DS-SLAM have the best estimate. However,

our method has the best result among the dense and

CNN-free methods.

Bonn RGB-D dynamic dataset

We compare methods on the dynamic scenes of Bonn data-

set published by Palazzolo et al.4 This dataset has a variety

of sequences. For example, “moving_obstructing_box”

scene assesses the kidnapped camera problem, where the

camera is moved to a different location, whereas

“balloon_tracking” has uniformly colored balloon having

no features on it. Figure 16 shows the resulting mesh of

BONN moving obstructing box sequence.

Table 5 presents that DynaSLAM outperforms the other

methods in balloon tracking. However, it has poor perfor-

mance on the obstructing box scene. Since DynaSLAM is

the combination of neural network and geometric

approach, the available semantic information on scene

helps to increase the performance.

VolumeDeform dataset

VolumeDeform is an RGB-D dataset for the purpose of

real-time nonrigid reconstruction and is used for evaluation

of the nonrigid object reconstruction algorithms at real-

time rates.5 Since dynamic datasets for evaluating

RGB-D SLAM method with exact trajectory are limited,

this dataset is used to measure the elimination capability of

our method to handle dynamic parts in the scene. Figure 15

illustrates the moving object elimination capability of the

proposed method by using VolumeDeform boxing

sequence. In addition, results of pose error and trajectory

error are listed in Table 6.

CVSSP RGB-D dataset

“CVSSP dynamic RGB-D dataset has RGB-D sequences of

general dynamic scenes captured using the Kinect V1/V2

and two synthetic sequences.”6 This dataset is designed for

nonrigid reconstruction. “Dog” sequence is selected

because there exists little clearly distinct geometry in the

environment with nonrigid dynamic object. In this

sequence, the dynamic part is the movement of the arm

of the person and the head of the dog. The exact value of

the trajectory and reference 3D model of the environment

are not provided, therefore, we evaluated the 3D mesh

result qualitatively. As the frame number increases, our

proposed method successfully eliminates dynamic in the

frame (Figure 17).

Outdoor mapping performance

We used the ZED camera in a hand-held setup for acquiring

RGB-D images. We captured the frame in a resolution of

1280 � 720 with a rate of 30 fps. To measure the 3D

mapping performance of our proposed approach, default

camera properties and standard settings are used without

calibration or lens distortion correction. The voxel size of

0.01 m with a minimum of 0.3-m depth sensor setting is

used. Our method successfully created the mesh of the

environment with some distortions. For instance, 0.01-

mm voxel size results in coarse map especially in missing

wire grid fence and part of the fence door (Figure 18).

Using smaller voxel size increases the mapping perfor-

mance helps to maintain grid fence as in Figure 19. If an

autonomous robot is flying around thin branches, telephone

lines, or chain link fencing, a detailed map is required to

avoid from the collision because those are the main colli-

sion areas for outdoor autonomous drones.

In the second sequence, we captured the frame in a

resolution of 1280� 720 with a rate of 10 fps using default

camera properties. The voxel size of 0.02 m and maximum

depth of 16 m settings are used in this sequence. As can be

seen from Figure 20, the final mesh has no artifact of the

walking person in the scene. However, the result of EF has

traces of the walking person.

Figure 19. (a, b) Outdoor-1 sequence grid fence mapping result.
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Sensitivity analysis

In this section, the sensitivity of the proposed methodology

to the voxel size and the contribution weight of the intensity

with respect to the depth are examined (see Table 6). In

addition, the required time for per image is analyzed. The

fr3/walking static xyz dataset is selected for the error and

timing analysis because, in this sequence, camera is track-

ing a person at the beginning, and finally, camera never

revisits again, which results in artifact in resulting mesh. In

addition, most of the state-of-the-art system use this

sequence for performance analysis.

According to Table 7, in all cases, using larger voxel

dramatically decreases the required calculation time, which

makes that the proposed scheme is more suitable for real-

time applications. However, using larger voxel increases

the absolute translational error. Using larger ratio of the

Table 7. TUM “fr3/walking static” sequence translational ATE
error (RMSE, cm).

Voxel size (m) Weight (u)
Translational

ATE error (cm)
Mean time for
per frame (ms)

0.005 0.01 1.05 230
0.01 0.01 1.77 116
0.02 0.01 1.67 76
0.05 0.01 2.16 62
0.005 0.025 0.74 231
0.01 0.025 0.79 116
0.02 0.025 1.06 77
0.05 0.025 0.90 62
0.005 0.04 0.69 230
0.01 0.04 0.81 115
0.02 0.04 0.77 76
0.05 0.04 0.95 62

ATE: absolute trajectory error; RMSE: root mean square error.

Figure 20. RGB-D image and final mesh of the “outdoor-2” sequence: (a) DUDMap and (b) elastic fusion.
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intensity information with respect to the depth information

decreases the RMSE error, however, such situation is not

valid for all cases. Therefore, utilization of application-

specific constant increases the performance of the proposed

scheme.

Conclusion

Visual SLAM has been studied over the last years. The

research efforts have addressed SLAM problem. However,

most of the approaches assume a stationary environment.

Our proposed method, SDF-based dynamic mapping

approach, can operate in environments, where high

dynamics exist without depending on moving objects. In

addition, a static object is moved, and the corresponding

voxels are removed successfully from the mesh.

After performing a complete evaluation of our proposed

method for several sequences of the TUM, Bonn, and Volu-

meDeform datasets, our method has an improved pose esti-

mation capability even though there exist dynamic

elements in the scene.

SDF is generally straightforward to split into indepen-

dent tasks that may run in parallel, however, memory

requirements are used for storing a given SDF volume

scales cubically with the grid resolution. Hence, special

care has to be taken for efficient memory usage considering

the performance. In addition, the SDF encodes surface

interfaces at subvoxel accuracy through interpolation, how-

ever, sharp corners and edges are not straightforward to

extract from an SDF representation. Improvement using

adaptive variable voxel size and implementing feature-

preserving surface extraction on sharp corners is left for

future work.

Given rising interest in developing visual odometry and

SLAM algorithms for very dynamic environments, it is

clear that a new RGB-D dataset containing fast and slow

camera motions and varying degrees of dynamic elements

would be greatly appreciated by researchers if made

available.
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6. Dai A, Nießner M, Zollhöfer M, et al. BundleFusion: real-

time globally consistent 3D reconstruction using on-the-fly

surface reintegration. ACM Trans Graph 2017; 36(3): 1–18.

7. Mur-Artal R and Tardós JD. ORB-SLAM2: an open-source

slam system for monocular, stereo, and RGB-D cameras.

IEEE Trans Robot 2017; 33: 1255–1262.

8. Campos C, Elvira R, Rodrı́guez JJG, et al. ORB-SLAM3: an

accurate open-source library for visual, visual-inertial and

multi-map SLAM. http://arxiv.org/abs/2007.11898. (2020)

(Accessed : 09 January 2021)

9. Pire T, Fischer T, Castro G, et al. S-PTAM: stereo parallel

tracking and mapping. Rob Auton Syst 2017; 93: 27–42.

10. Labbe M and Michaud F. Appearance-based loop closure

detection for online large-scale and long-term operation.

IEEE Trans Robot 2013; 29: 734–745.

11. Kerl C, Sturm J, and Cremers D. Dense visual SLAM for

RGB-D cameras. In: IEEE/RSJ International Conference on

Intelligent Robots and Systems, Tokyo, Japan, 3–7 Nov.

2013, pp. 2100–2106, Piscataway, NJ: IEEE, doi: 10.1109/

IROS.2013.6696650.

12. Jaimez M, Kerl C, Gonzalez-Jimenez J, et al. Fast odometry and

scene flow from RGB-D cameras based on geometric clustering.

In: 2017 IEEE International Conference on Robotics and Auto-

mation (ICRA), Singapore, 29 May–3 June 2017, pp. 3992–3999.

Piscataway, NJ: IEEE, doi: 10.1109/ICRA.2017.7989459.

13. Ma Y, Soatto S, Kosecka J, et al. An invitation to 3D vision:

from images to geometric models. New York, NY: Springer

Verlag, 2003.
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