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ABSTRACT

GREEN LOGISTICS APPLICATIONS
IN

TRANSPORTATION AND WAREHOUSING

Atashi Khoei, Arsham
Ph.D., Department of Industrial Engineering

Supervisor: Prof. Dr. Haldun Süral

Co-Supervisor: Assoc. Prof. Dr. Mustafa Kemal Tural

May 2021, 151 pages

Green logistics encompasses the efforts to observe and reduce the environmental im-

pacts of logistics activities. This thesis studies different problems in two subdivisions

of green logistics that are green transportation and green warehousing. To address

green transportation, we introduce different problems in the context of the planar fa-

cility location problem. We first consider an extension of the classical Weber problem,

named as the green Weber problem (GWP). The GWP decides on the location of a sin-

gle facility in the plane and the speeds of the vehicles serving the customers from the

facility within the customers’ deadlines so as to minimize the total amount of carbon

dioxide emitted in the whole distribution system. We also introduce time-dependent

congestion on roads which limits the vehicle speeds in different time periods and call

the resulting problem as the time-dependent green Weber problem (TD-GWP). We

formulate the GWP and TD-GWP as second order cone programming problems both

of which can be efficiently solved to optimality. Computational results compare the

resulting carbon dioxide emissions of the classical Weber problem with those of the

GWP and compare the GWP with the TD-GWP in terms of carbon dioxide emissions
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in different traffic congestion patterns. Then, we study the multi-facility green Weber

problem (MF-GWP), an extension of the classical multi-facility Weber problem, that

determines the locations of p facilities on the plane, p > 1, allocations of customers

to the facilities, and the speeds of the distribution vehicles so as to minimize the total

amount of carbon dioxide emitted from the vehicles. We formulate this problem as a

mixed-integer second order cone programming (MISOCP) problem. This formulation

turns out to be weak and therefore only small size instances can be solved to optimal-

ity within four hours. For larger size instances, a local search heuristic is proposed and

some well-known heuristics developed for the multi-facility Weber problem, namely

“location-allocation", “transfer follow-up", and “decomposition" are adapted for the

MF-GWP. The experimental results compare the proposed solution methods for the

MF-GWP in terms of solution quality and time. We also investigate how the total

amount of carbon dioxide emitted by distribution vehicles changes with respect to the

number of facilities located. To address green warehousing, we concentrate on energy

efficiency in the material handling systems of warehouses. The order picker forklifts,

in recent applications of the material handling systems, provide efficient utilization of

the limited storage space by their ability to move in narrow aisles and pick items from

high level racks in warehouses. Routing the order picker forklifts to pick ordered

items belongs to the operational decision making level and is done in high frequency.

We introduce and study the energy minimizing order picker forklift routing problem

(EMFRP) which aims to find an energy-efficient route for an order picker forklift to

pick a given list of items. A mixed-integer programming formulation and a dynamic

programming approach are developed to solve the EMFRP exactly. Since the exact

solution approaches are able to solve only small size instances to optimality within a

given time limit, we provide some tour construction and tour improvement heuristics

for the problem and integrate them into a single solution approach. Computational

results show that the proposed solution approach for the EMFRP finds high quality

solutions. Moreover, it is observed that significant energy savings can be achieved by

solving the EMFRP instead of the classical distance minimization problems.

Keywords: Green transportation, Green warehousing, Continuous location, Order

picking problem, Second order cone programming, Time-dependent congestion
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ÖZ

DEPOLAMA VE TAŞIMACILIKTA YEŞİL LOJİSTİK UYGULAMALARI

Atashi Khoei, Arsham
Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Haldun Süral

Ortak Tez Yöneticisi: Doç. Dr. Mustafa Kemal Tural

Mayıs 2021 , 151 sayfa

Yeşil lojistik, lojistik faaliyetlerin çevresel etkilerini gözlemleme ve azaltma çabala-

rını kapsar. Bu tez yeşil lojistiğin iki alt bölümü olan yeşil taşımacılık ve yeşil de-

polamada farklı problemleri incelemektedir. Yeşil taşımacılığı ele almak için, düz-

lemsel tesis yer seçimi problemi bağlamında farklı problemler ortaya koyuyoruz. İlk

başta, yeşil Weber problemi (YWP) olarak adlandırılan klasik Weber probleminin bir

uzantısını ele alıyoruz. YWP tüm dağıtım sisteminde salınan toplam karbondioksit

miktarını enazlamak için düzlemde tek bir tesisin konumuna ve bu tesisten müşte-

rilerin teslim süreleri içinde onlara hizmet veren araçların hızlarına karar verir. Ay-

rıca, farklı zaman dilimlerinde araç hızlarını sınırlayan zamana bağlı trafik yoğun-

luğunu dikkate alan zamana-bağlı yeşil Weber problemini (ZB-YWP) ele alıyoruz.

YWP ve ZB-YWP’nin ikisini de verimli şekilde optimal olarak çözülebilen ikinci

dereceden konik programlama olarak formüle ediyoruz. Bilgisayısal sonuçlar, klasik

Weber probleminde ortaya çıkan karbondioksit emisyonlarını YWP’ninkilerle karşı-

laştırır ve YWP’yi karbondioksit emisyonları açısından farklı trafik sıkışıklığı model-

ler dahilinde ZB-YWP ile karşılaştırır. Sonra, klasik çok tesisli Weber probleminin bir

vii



uzantısı olan, düzlemde p sayıda, p > 1, tesisin konumlarını, müşterilerin atamala-

rını ve dağıtım araçlarının hızlarını araçlardan yayılan toplam karbondioksit miktarını

enazlamak için belirleyen, çok-tesisli yeşil Weber problemini (ÇT-YWP) inceliyoruz.

Bu problemi, karma tamsayılı ikinci dereceden konik programlama (KTİDKP) prob-

lemi olarak formüle ediyoruz. Bu formülasyonun zayıf olmasından dolayı sadece kü-

çük boyutlu örnekler dört saat içinde optimal olarak çözülebilmektedir. Daha büyük

boyutlu örnekler için, yerel arama sezgisel yöntemi geliştirilmiş ve çok tesisli Weber

problemi için kullanılan bazı iyi bilinen sezgisel yöntemler, yani "yerseçimi-atama",

"transfer takibi" ve "ayrıştırma" ÇT-YWP için uyarlanmıştır. Bilgisayısal deneyler,

ÇT-YWP için önerilen çözüm yöntemleri çözüm kalitesi ve zamanı açısından karşı-

laştırır. Ayrıca, dağıtım araçlarından kaynaklı toplam karbondioksit salınım miktarı-

nın bulunan tesis sayısına göre nasıl değiştiği gözlemlenir. Lojistikte yeşil depolamayı

ele almak için depoların malzeme taşıma sistemlerinde enerji verimliliğine odaklanı-

yoruz. Sipariş toplayıcı forkliftler, dar koridorlarda hareket etme ve depolarda yüksek

raflardan ürün alma kabiliyetleri ile, malzeme taşıma sistemlerinin yeni uygulamala-

rında sınırlı depolama alanından verimli bir şekilde yararlanılmasını sağlar. Sipariş

toplayıcı forkliftlerin sipariş edilen ürünleri toplamak için yönlendirilmesi operasyo-

nel karar düzeyine aittir ve yüksek sıklıkta yapılır. Sipariş toplayıcı forkliftin belirli

bir ürün listesini toplaması için enerji açısından verimli bir yol bulmayı amaçlayan,

enerjiyi enazlayan sipariş toplayıcı forklift rotalama problemini (EEFRP) tanıtıyor ve

inceliyoruz. EEFRP’yi optimal olarak çözmek için bir karma tamsayı programlama

formülasyonu ve bir dinamik programlama yaklaşımı geliştirilmiştir. Kesin çözüm

yaklaşımları yalnızca küçük boyutlu örnekleri (belirli bir süre içinde) optimal olarak

çözebildiğinden dolayı bu problem için bazı tur oluşturma ve tur iyileştirme sezgisel-

leri öneriyoruz ve bunları tek bir çözüm yaklaşımına entegre ediyoruz. Bilgisayısal

sonuçlar, EEFRP için önerilen çözüm yaklaşımının yüksek kaliteli çözümler buldu-

ğunu göstermektedir. Ayrıca klasik mesafe enazlayan problemler yerine EEFRP’nin

çözülmesinin önemli ölçüde enerji tasarrufu sağlayabileceğini ortaya koyuyoruz.

Anahtar Kelimeler: Yeşil taşımacılık, Yeşil depolama, Düzlemsel yerseçimi, Sipariş

toplama problemi, İkinci dereceden konik programlama, Zamana bağlı trafik yoğun-

luğu
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Green Weber Problems

Distribution and transportation related activities are growing all over the world, es-

pecially in urban areas, due to a continuous increase in the demand of goods and

services (The Population Division of the Department of Economic and Social Affairs

of the United Nations 2014). However, sending vehicles to customers and deliver-

ing/picking goods in distribution and transportation logistics result in a significant

amount of CO2 emissions affecting citizens’ quality of life and the climate. Thus, the

importance of green freight transportation in city logistics has been growing to reduce

the harmful effects of CO2 emission (Demir et al. 2014b).

Logistics activities conducted all over the world account for 5.5% – 13% of over-

all greenhouse gas (GHG) emissions (World Economic Forum (2009)) (90% of this

is due to transportation activities). These emissions result from energy consumption

due to inter-facility distribution activities as well as intra-facility activities such as ma-

terial handling and storage activities. Transportation is a large contributor to global

emissions of CO2 and accounts for 23% of all CO2 emissions from fossil fuel com-

bustion. Besides, 40% of road transportation emissions is due to freight transportation

(OECD (2010)).

Green logistics encompasses the efforts to observe and reduce the environmental im-

pacts of logistics activities (Piecyk et al. 2015). Because of the global air pollution

and climate change, interest in sustainability and green logistics has been growing

and studies on the reduction of GHG emissions resulting from logistics activities in

distribution systems have become of great value. In particular, the importance of
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taking environmental considerations into account when deciding on facilities’ loca-

tions and designing distribution systems has been increasing (Dukkanci et al. 2019).

In this thesis, we introduce extensions of the Weber problem so that CO2 emission

amounts are managed by setting the vehicle speeds during the delivery operations of

a distribution system.

The Weber problem corresponds to locating a single facility or a number of facilities

on the plane so as to minimize the sum of the weighted Euclidean distances between

the facilities and the customers (Drezner & Hamacher 2002). It is assumed that it is

always possible to go directly from the facilities to any customer. The applications

of the Weber problems can be exemplified by locating warehouses or facilities for a

distribution system in which the demands are delivered directly to the customers. The

delivery activities in such distribution systems result in a large amount of energy and

fuel consumption and increase the emissions of greenhouse gases (GHG).

A standard approach for solving the single- facility Weber problem is the Weiszfeld

method (Weiszfeld & Plastria 2009) which is a simple closed form iterative formula.

Several studies investigate the convergence of the Weiszfeld method, (see, for ex-

ample, Chandrasekaran & Tamir 1989, Katz 1974, Kuhn 1973), and a number of

modifications have been developed, (see, for example, Vardi & Zhang 2001), since its

first introduction by Weiszfeld in 1937.

The multi-facility Weber problem, also referred as the planar p-median problem (Brim-

berg & Drezner 2013) and the multi-source Weber problem (Brimberg et al. 2000),

is a classical facility location problem in the literature. It aims to locate a fixed num-

ber of facilities on the plane, allocate customers to the facilities so as to minimize

a weighted sum of Euclidean distances between the facilities and the allocated cus-

tomers. Several solution approaches are proposed for this problem (see, Brimberg

et al. 2008, for a review). In the literature, high quality solutions are obtained by dif-

ferent approaches such as the ones proposed by Brimberg & Drezner (2013), Cooper

(1964), Drezner et al. (2015), Drezner et al. (2016), and Drezner & Salhi (2017).

The “location-allocation” heuristic proposed by Cooper (1964) is a main ingredient

in several solution approaches proposed for the multi-facility Weber problem and sev-

eral other location-allocation problems. Brimberg & Drezner (2013) propose the so
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called “transfer follow-up” heuristic for the multi-facility Weber problem. In (Drezner

et al. 2015), the solution approaches are based on the heuristics previously proposed

in the literature as well as the newly developed variable neighborhood search and

genetic metaheuristics. In (Drezner et al. 2016) propose a constructive heuristic to

find good starting solutions, a “decomposition” approach, and a neighborhood search

algorithm based on limited distance median problem. In (Drezner & Salhi 2017), ef-

ficient neighborhood reduction schemes are proposed to be used within the heuristics

and metaheuristics proposed in the literature.

In this thesis, we consider several extensions of the classical Weber problems that aim

to minimize the total amount of CO2 emission originating from the distribution activ-

ities. First, we consider an extension of the single-facility Weber problem, called as

the green Weber problem (GWP), which in addition to the location of the single facil-

ity also determines the speeds of the vehicles serving the customers from the facility

so as to minimize the total amount of CO2 emitted in the whole distribution system.

It is assumed that the customers have deadlines and the vehicles serving a customer

must arrive at the location of the customer no later than its deadline. We also consider

a time-dependent version of the problem, named as the time-dependent green We-

ber problem (TD-GWP), in which the vehicle speeds are limited due to congestion.

Moreover, we consider an extension of the classical multi-facility Weber problem,

the multi-facility green Weber problem (MF-GWP), that determines the locations of

a fixed number of facilities on the plane and the speeds of the vehicles serving the

customers within their deadlines so as to minimize the total amount of CO2 emission

originating from the distribution vehicles. The solutions of the GWP, TD-GWP and

MF-GWP can be used for the strategic level decision of locating facilities for a dis-

tribution system prior to making tactical and operational level decisions such as how

to route the vehicles. To the best of our knowledge, such extensions of the Weber

problem have not been considered before in the literature. Most of the studies in the

literature related with carbon (or GHG) emission issues in distribution systems as-

sume that the facility locations are fixed and mainly deal with tactical and operational

level decisions.

Related studies in the literature can be broadly classified into two groups in terms of

the objective function used. In the first group, the objective (or a part of the objective)
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is the minimization of the amount of energy consumed by the distribution vehicles,

where energy consumption of a vehicle is computed as the load of the vehicle mul-

tiplied with the distance traveled. In the second group, the objective function to be

minimized includes the amount of CO2 emitted by the vehicles. The CO2 emission

in several studies is calculated by one of the available vehicle emission models (see

e.g., Demir et al. 2011) directly or after some simplification, e.g., approximation or

discretization. Another classification of the studies in this area can be done based

on the decision-making level, where some studies include strategic level decisions

such as the determination of the facility locations and some others include tactical

and operational level decisions such as fleet sizing and routing decisions.

In one of the early studies on vehicle routing in the context of green logistics, Kara

et al. (2007) introduce the energy minimizing vehicle routing problem (EMVRP),

where the objective is to minimize the total amount of energy consumption of the

capacitated vehicles. They propose a mixed integer programming formulation for the

EMVRP. Xiao et al. (2012) develop a fuel consumption rate (FCR) formulation to

be used in the objective function of the capacitated vehicle routing problem (CVRP).

Their fuel consumption formulation, similar to the one in (Kara et al. 2007), is depen-

dent on the distance traveled and the vehicle load. They propose a simulated anneal-

ing metaheuristic with problem-based modifications which turns out to be efficient on

CVRP benchmark instances.

Bektaş & Laporte (2011) introduce an extension of the vehicle routing problem with

time windows (VRPTW) named as the pollution routing problem (PRP) in which a

part of the objective function is the minimization of the total amount of fuel emis-

sion (multiplied with some constant) of the vehicles. They use the comprehensive

modal emission model (CMEM) provided by Barth et al. (2005) in emission calcu-

lations according to which the fuel consumption of a distribution vehicle depends on

a number of factors such as speed, distance traveled, curb weight, load, and vehicle

and road characteristics. The authors ignore a part of the fuel consumption formula

for simplification purposes which may result in inaccurate emission values for low

speed levels. They provide a mixed integer linear programming formulation based on

the discretization of the speeds and solve instances with up to 20 customers within

three hours. Demir et al. (2012) also consider the PRP and propose an adaptive large
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neighborhood search (ALNS) algorithm for its solution along with a speed optimiza-

tion algorithm. In another study (Demir et al. 2014a), the same authors consider a

bi-objective version of the PRP, where the first objective is the minimization of the

total amount of fuel emission and the second one is the minimization of the drivers’

wages and propose an ALNS algorithm as a solution approach. Saka (2013) pro-

vides a mixed integer second order cone programming formulation for the PRP for

the first time with continuous speed variables. This formulation also, as reported, can

only solve small size instances to optimality in the given time limits. A matheuristic

approach is proposed by Kramer et al. (2015) for the PRP in which a local search

heuristic, speed optimization algorithm, and optimization over a set partitioning for-

mulation are integrated.

In the literature, only a few studies involving strategic level decisions (e.g., location

decisions) exist that take the emission of the distribution vehicles into consideration.

As the most relevant studies in the literature, we can refer to the ones in the contexts

of location routing problem and facility location problem. Chen et al. (2018) consider

two objectives in the location-routing problem with full vehicle loads. The first one

sums up the total fixed vehicle and facility opening costs and variable operational

costs. The second one encompasses the total CO2 emission associated with trans-

portation activities, opening facilities, and demand processing activities in facilities.

The bi-objective problem is solved by the well-known NSGA-II evolutionary algo-

rithm enhanced with the tabu search heuristic. Speed decisions are ignored and no

explicit emission model from the literature is used in this study.

Koç et al. (2016) investigate the impact of depot location, fleet composition, and rout-

ing on emissions in city logistics. They use the CMEM in emission calculations and

consider different zones with different speed limits for the vehicles. The objective

function contains the fixed facility opening cost, the variable traveling cost, and the

fuel emission cost which depends on different speed zones the vehicles travel. In the

provided formulation for the exact solution approach, the emission of a vehicle trav-

eling between two nodes are implicitly given to the model and no zone information is

explicitly stated. An ALNS solution approach combined with the simulated annealing

metaheuristic and a cheapest path (in terms of cost) calculation heuristic is developed.

The cheapest path heuristic is proposed to overcome the difficulty of finding the path

5



with the lowest cost between two nodes which depends on the vehicle type, its load,

and the distance traveled within each speed zone.

The green capacitated location routing problem is considered with two objectives

by Toro et al. (2017). In this study, one of the objective functions minimizes the

economic aspects in the problem including fixed facility costs and variable traveling

costs. The other one minimizes the emissions of the vehicles. In the emission cal-

culations, the speeds of the vehicles are assumed to be constant and consequently

the corresponding objective function depends on the vehicles’ traveled distances and

loads. The epsilon constraint method is used to solve the bi-objective problem where

the economic objective is posed as a constraint.

A capacitated facility location problem with two objectives is studied by Harris et al.

(2014). The objectives minimize the total facility fixed costs and variable allocation

costs, and the total CO2 emissions due to running facilities and transportation activ-

ities. The amount of CO2 emitted due to any potential facility and any allocation of

customers to facilities are predefined as parameters. The authors use a hybrid evolu-

tionary multi-objective algorithm as the solution approach. Xifeng et al. (2013) study

a multi-objective uncapacitated facility location problem with fixed costs for the fa-

cilities on a network. The objectives in this study are: 1) minimizing total cost, i.e.,

the sum of fixed facility costs and variable allocation costs, 2) maximizing the mini-

mum customer service reliability which is dependent on the customer’s deadline, its

distance from the facility, and the speed of the vehicle, and 3) minimizing the total

CO2 emission. The effect of vehicle’s speed on the CO2 emission is ignored and the

emission of a vehicle is computed by considering the emission for empty and fully

loaded vehicles (both of which do not depend on the speed of the vehicle) and using

the load over capacity fraction and the distance. After transforming multiple objec-

tives into a single one by taking all but the emission objectives into the constraints,

the authors use a greedy heuristic as the solution approach. The authors provide a set

of solutions depicting the trade-offs between the total cost of the distribution system

and the other objectives.

We provide a summary of the studies with emission or energy considerations reviewed

in this section of the thesis in Table 1.1. In this table, the column titled as “Ref.” lists
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the studies’ references. The columns titled as “Obj. Fun.” and “Emis. Model” explain

the type of the objective function used and the emission model considered in the study,

respectively. The next two columns show whether or not the location and routing

decisions are made in the problem, respectively. The column titled as “Traffic Cong.”

indicate whether traffic congestion limiting the speed of vehicles is considered in the

study or not. The next three columns specify whether the load, speed, and distance

are taken as parameters or variables, respectively. The columns “Formul.” and “Sol.

App.” detail the type of the mathematical programming formulation and type of the

solution approach provided for the considered problem in the study. The last column

of the table gives the number of facilities to be located in the considered problem.

There are a few studies involving only location (but no routing) decisions in the lit-

erature dealing with emission minimization. These studies, however, do not use any

comprehensive emission model from the literature and do not take the effects of the

vehicles’ speed on emissions into account. The routing problems involving emission

considerations studied in the literature, on the other hand, are already hard to solve

with the fixed facility locations. Therefore, as one of the first green logistics studies

that makes facility location decisions, this thesis does not consider routing decisions.

Instead, we assume that the vehicles are sent directly to the customers as in the clas-

sical Weber problems.

For the GWP and the TD-GWP, we propose second order cone programming formu-

lations for their solution and show that both problems are polynomial-time solvable.

The MF-GWP, on the other hand, is an NP-hard problem and is much more difficult

to solve. Due to the Euclidean distances and the emission model used, the MF-GWP

is a nonlinear optimization problem. In this thesis, we first propose a mixed integer

second order cone programming (MISOCP) formulation for the MF-GWP. As this

formulation is weak, we try to strengthen it by adding some symmetry breaking con-

straints. Still, only small size instances are solved to optimality by the strengthened

MISOCP formulation within four hours. To be able to solve larger-size instances,

we propose a local search heuristic, and adapt “location-allocation”, “transfer follow-

up”, and “decomposition” heuristics from the literature to the studied problem. In the

heuristics, the SOCP formulation of the single facility case and the MISOCP formu-

lation of the multiple facility case are used as subproblems.
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ş

&
L

ap
or

te
(2

01
1)

Fu
el

an
d

E
m

is
si

on
C

os
t

+
D

riv
er

C
os

t

C
M

E
M

X
V

ar
V

ar

(D
is

c.
)

Pa
ra

m
M

IL
P

E
xa

ct
fo

rD
is

cr
et

iz
ed

Fo
rm

ul
at

io
n

(u
p

to
20

no
de

s)

-

D
em

ir
et

al
.(

20
12

)
Fu

el
an

d
E

m
is

si
on

C
os

t

+
D

riv
er

C
os

t

C
M

E
M

X
V

ar
V

ar

(D
is

c.
)

Pa
ra

m
M

IL
P

M
et

a
(A

L
N

S)
fo

r

D
is

cr
et

iz
ed

Fo
rm

ul
at

io
n

-

D
em

ir
et

al
.(

20
14

a)
Fu

el
an

d
E

m
is

si
on

C
os

t&
D

riv
er

C
os

t
C

M
E

M
X

V
ar

V
ar

(D
is

c.
)

Pa
ra

m
M

IL
P

M
et

a
(A

L
N

S)
fo

r

B
i-

ob
je

ct
iv

e
an

d
SO

-

K
ra

m
er

et
al

.(
20

15
)

Fu
el

an
d

E
m

is
si

on
C

os
t&

D
riv

er
C

os
t

C
M

E
M

X
V

ar
V

ar
Pa

ra
m

M
IL

P
M

at
he

ur
is

tic
(L

S
&

SO
&

M
IL

P)
-

C
he

n
et

al
.(

20
18

)
To

ta
lS

C
N

C
os

t&
E

m
is

si
on

X
X

V
ar

Pa
ra

m
M

IL
P

N
SG

A
_I

I&
T

S
M

ul
ti

K
oç

et
al

.(
20

16
)

D
ep

ot
an

d
V

eh
ic

le
C

os
t

+
Fu

el
an

d
E

m
is

si
on

C
os

t

C
M

E
M

X
X

X
V

ar
V

ar
Pa

ra
m

M
IN

L
P

A
L

N
S

M
ul

ti

To
ro

et
al

.(
20

17
)

To
ta

lS
C

N
C

os
t&

L
oa

d
×

D
is

ta
nc

e
X

X
V

ar
Pa

ra
m

Pa
ra

m
M

IL
P

E
ps

ilo
n

C
on

st
ra

in
tf

or

B
i-

ob
je

ct
iv

e
(u

p
to

30
no

de
s)

M
ul

ti

H
ar

ri
s

et
al

.(
20

14
)

L
oc

at
io

n
an

d
A

llo
ca

tio
n

C
os

t&

L
oc

at
io

n
an

d
A

llo
ca

tio
n

E
m

is
si

on

X
Pa

ra
m

M
IL

P
H

yb
ri

d
E

vo
lu

tio
na

ry

fo
rB

i-
ob

je
ct

iv
e

M
ul

ti

X
if

en
g

et
al

.(
20

13
)

C
os

t&
C

us
to

m
er

Se
rv

ic
e

&
L

oa
d
×

D
is

ta
nc

e

X
Pa

ra
m

Pa
ra

m
Pa

ra
m

M
IL

P
E

ps
ilo

n
C

on
st

ra
in

tf
or

M
ul

ti-
ob

je
ct

iv
e

M
ul

ti

A
ta

sh
iK

ho
ei

et
al

.(
20

17
)

E
m

is
si

on
C

M
E

M
X

X
Pa

ra
m

V
ar

V
ar

SO
C

P
E

xa
ct

(1
00

0
no

de
s

in

a
co

up
le

of
se

co
nd

s)

Si
ng

le

A
ta

sh
iK

ho
ei

et
al

.(
20

20
)

E
m

is
si

on
C

M
E

M
X

Pa
ra

m
V

ar
V

ar
M

IS
O

C
P

E
xa

ct
&

H
yb

ri
d

H
eu

ri
st

ic
s

M
ul

ti
∗

SC
N

:S
up

pl
y

C
ha

in
N

et
w

or
k,

V
ar

:
V

ar
ia

bl
e,

Pa
ra

m
:

Pa
ra

m
et

er
,D

is
c.

:
D

is
cr

et
iz

ed
,M

IL
P:

M
ix

ed
-i

nt
eg

er
L

in
ea

rP
ro

gr
am

,M
IN

L
P:

M
ix

ed
-i

nt
eg

er
N

on
lin

ea
rP

ro
gr

am
,S

O
C

P:
Se

co
nd

O
rd

er
C

on
e

Pr
og

ra
m

,

M
IS

O
C

P:
M

ix
ed

-i
nt

eg
er

Se
co

nd
O

rd
er

C
on

e
Pr

og
ra

m
,M

et
a

:M
et

ah
eu

ri
st

ic
,S

A
:S

im
ul

at
ed

A
nn

ea
lin

g,
SO

:S
pe

ed
O

pt
im

iz
at

io
n,

T
S

:T
ab

u
Se

ar
ch

8



The contributions of this study are as follows. First, different versions of green Weber

problems are considered which may find uses in areas where the classical Weber prob-

lems are applicable and emission or energy consumption considerations are prevalent.

The multi-facility Weber problem is a well-known problem in the literature studied

for many years without taking the CO2 emission or energy consumption point of view.

This study is one of the first studies dealing with emission minimization in the context

of a facility location problem. In the following paragraph, several application areas

of the MF-GWP are exemplified where emission or energy consumption consider-

ations can be integrated into planar facility location problems. An application area

is detailed in Section 3.4 as an illustrative example within the context of an assem-

bly line system where the stations are fed by dedicated rail-guided vehicles. Second,

the MF-GWP is formulated as an MISOCP problem without any approximation of

the emission model and without any discretization of the speed values. Most of the

studies in the literature that use the emission model considered in this study approxi-

mate the emission model by ignoring one of its terms and discretize the speed values

to handle the nonlinearity, (see, for example, Bektaş & Laporte 2011, Demir et al.

2014a). Third, a local search method is proposed for the MF-GWP as a matheuristic

which employs a strengthened and reduced-size MISOCP formulation by restricting

the possible locations of the facilities, fixing some binary variables, and reducing the

big-M values used in the MISOCP formulation. Fourth, some well-known heuristics

developed for the multi-facility Weber problem are adapted for the MF-GWP. The

adapted versions are all matheuristics and use SOCP techniques. However, the orig-

inal versions of the heuristics employ different techniques and do not directly solve

nonlinear optimization problems using off-the-shelf solvers. We give some exam-

ples of our contributions when adapting these well-known heuristics. In the transfer

heuristic, when dealing with the empty facilities and selecting customers that are to be

transfered, we take the emission amounts into account. In the decomposition heuris-

tic, we apply the proposed local search method to solve the resulting smaller-size

problems. Finally, we compare all solution methods proposed for the MF-GWP in

terms of solution quality and computational time and show that within a fixed com-

putational time, even though the location-allocation heuristic is able to make more

replications, the improvement heuristics considered, i.e., transfer or transfer followed

by decomposition, usually find better solutions even with less number of replications.

9



The applicability of this study is beyond this particular setting where delivery is car-

ried out by trucks. For example, in aviation, emission models similar to the one used

in this study, (see e.g., Aktürk et al. 2014, Senzig & Cumper 2013), exist and solution

approaches proposed here or their extensions/modifications can be utilized in locat-

ing facilities to serve customers with helicopters through direct shipments or finding

the locations of launch points where drones make direct deliveries to the customers.

Moreover, energy consumption functions of different types of robots consist of terms

that are similar to the terms of the fuel consumption formulation used in this study

(Gürel et al. 2019, Tokekar et al. 2011). Therefore the solution methods proposed

in this paper can be used, for example, to determine meeting location(s) for a group

of autonomous mobile robots for battery replacement or recharging by tanker(s) (Ze-

browski et al. 2007). In this case, all mobile robots have the same fixed or variable

deadline and their speeds can be controlled to ensure arrival to the location on or

before the deadline and to optimize energy consumptions. Moreover, in assembly-

line design, where the feeding of stations are done directly via rail-guided vehicles

(RGVs) from depots, one may minimize the energy consumption of RGVs by control-

ling their speed. For this problem, the feeding of a station is done periodically within

a given deadline by a designated RGV. We will show an illustrative example about

this problem in Section 3.4. Moreover, we will argue in the same section that several

emission or energy consumption formulations employed in the literature are “similar”

to the one used in this study. Therefore the solution approaches proposed herein can

be employed directly or after some problem specific modifications in related planar

facility location problems where deliveries are made by direct shipments.

1.2 Energy Minimizing Order Picker Forklift Routing Problem

Warehousing, as an important segment of logistics, incorporates several technology-

driven operations such as material handling and packaging. In nowadays technology

of material handling systems, picking the orders or materials in some warehouses

are done by high-tech order picker forklifts. The order picker forklifts are used

in picker-to-part material handling systems and in applications where pallet trucks,

rolling ladders, and other piece-picking methods were traditionally used. The order
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picker forklifts with their maneuverability in very narrow aisles and high level picking

capabilities enable the warehousing systems to utilize the limited storage space more

efficiently. Moreover, since an operator performs the picking tasks on the forklift,

there is no need for any additional equipment or operator. These technology-driven

advantages of the order picker forklifts make them widely used in industries that aim

sustaining efficiency in warehouses.

Routing the order picker forklifts in warehouses to pick the listed orders is an oper-

ational decision which may be done several times a day. The high frequency of this

job in warehouses results in high energy consumption. Performing the order pick-

ing tasks in an energy-efficient manner can yield a significant reduction in the energy

consumption in warehouses. This will in turn reduce the CO2 emission resulting from

warehousing operations and hence promote sustainability in all dimensions, i.e., en-

vironmental, social, and economical. In this paper, given a list of items to be picked,

we aim to find an energy-efficient route for an order picker forklift. To the best of our

knowledge, there is no study in the literature with explicit evaluation of the energy

consumption of the order picker forklifts.

The logistics industry accounts for 13% of all greenhouse gas emissions worldwide

(World Economic Forum (2016)). Most of the emissions (and costs) for manufactur-

ing companies are due to supply chain activities with transportation having the largest

share (Waltho et al. 2019). In recent years, there has been a significant increase in the

number of studies that aim to reduce the CO2 emission originating from transporta-

tion activities in logistics (Bektaş et al. 2019). In addition to CO2 emission resulting

from transportation between facilities or between facilities and customers, the energy

consumption inside the facilities also accounts for a huge amount of CO2 emission

(Rüdiger et al. 2016). Warehousing operations are among the main contributors to the

intra-facility energy consumption. Of the greenhouse gas emissions produced by the

logistics industry, warehousing activities has a share of 11% (Bartolini et al. 2019). In

this paper, our focus is on green warehousing (GW) which refers to all efforts used to

reduce the impacts of warehousing operations on the environment and the society. In

recent studies on GW, energy saving methods, environmental impacts of warehouses,

and green warehousing management are the most considered topics (Bartolini et al.

2019). The sources of energy consumption in warehouses are discussed by Fichtinger
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et al. (2015). Material handling, as an intra-facility activity, accounts for a significant

proportion of energy consumption in warehouses (Freis et al. 2016). Therefore, the

environmental assessment of material handling systems along with other relevant pro-

cesses can provide significant sustainability benefits.

Considering different material handling equipment used in warehouses, e.g., convey-

ors, automated guided vehicles, and forklifts, most of the energy is consumed by fork-

lifts (Anand et al. 2014). Facchini et al. (2015) develop a decision support tool that

takes the forklift type (internal combustion engine or electric motor) and the storage

configuration (stackable units or with storage racks) of a warehouse into account to

minimize the CO2 emission resulting from order picking operations. The study mea-

sures the energy consumption due to lifting, lowering, and transporting movements

of each forklift type to collect the listed orders in corresponding storage configura-

tion. Note that no routing decision is made in this study. The authors only provide

some calculations based on average values to suggest the forklift type for each storage

configuration ignoring the effects of acceleration, deceleration, and friction forces.

A simulation approach is developed by Facchini et al. (2016) to select the best forklift

type among the liquid petroleum gas (LPG) and electric forklifts in terms of emis-

sions. In this simulation model, greenhouse gas emissions are evaluated based on the

energy consumption considering the technical characteristics of each forklift type.

The energy consumption of the forklifts is measured, without any routing optimiza-

tion, according to the average horizontal and vertical movements and the average

time spent for material handling. Using simulation on a numerical example where the

weights of the listed orders and the characteristics and capacities of the forklifts are

known, the authors observe that electric forklifts should be preferred with low- and

medium-weight orders for a lower carbon emission. Note that the forklifts used in the

two studies discussed above are not the order picker forklifts that we consider herein.

The order picking problem deals with finding the best route of an order picker that

starts from a depot location, picks the ordered items, and brings them to the depot

location. In the order picking problem literature, the target of most of the models is

not to improve the environmental performance of the system (e.g., carbon footprint or

CO2 emissions) but to reduce the travel distance and / or time (Facchini et al. 2015,
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Cortés et al. 2017). In general, the order picking problem is formulated as the trav-

eling salesman problem (TSP) in the literature. In some of the studies, the trade-off

between the energy consumption and travel time is assessed. For example, Makris

et al. (2006) develop a TSP-based routing algorithm to analyze the trade-off between

energy consumption and travel time of the order pickers. They, however, ignore the

effects of load, acceleration, and deceleration in the energy consumption evaluation.

An order batching and picking optimization with energy consumption minimization is

studied by Ene et al. (2016). The authors use genetic algorithm to solve their problem

and obtain significant energy savings with efficient batching and routing solutions.

However, the energy consumption evaluation is done based on constant energy con-

sumption per unit time, instead of an exact calculation. Moreover, load, acceleration,

deceleration, and friction forces are not taken into account in the energy consumption

evaluation. Rojanapitoon & Teeravaraprug (2018) consider total distance minimiza-

tion and energy consumption minimization as two separate objectives. The objectives

are then weighted resulting in a single-objective problem. Up to 7.7% saving in en-

ergy consumption is reported in this study. However, in the computation of the energy

consumption of the order picker, vertical movements, acceleration, and deceleration

are not considered.

The classical order picking problem with travel distance or time minimization ob-

jective has been widely studied in the literature (Roodbergen 2001, De Koster et al.

2007, Masae et al. 2020). De Koster & Ven der Poort (1998) present a study on com-

parison of optimal and heuristic solution approaches for the order picking problem.

Since the order picking problem can be represented as a TSP (Scholz et al. 2016),

some solution approaches have been borrowed from the TSP literature (Charkhgard

& Savelsbergh 2015, Makris & Giakoumakis 2003, Theys et al. 2010). Theys et al.

(2010) consider the routing problem of order pickers in multi-parallel-aisle system

and use a state-of-the-art heuristic for TSP, the Lin-Kernighan-Helsgaun algorithm,

to get outperforming solutions. They obtain solutions that are up to 47% better than

the ones provided by the existing order picking problem heuristics for the multiple-

block warehouse test instances.

Çelik & Süral (2019) provide a complexity analysis of the order picker problem in

parallel aisle warehouses with multiple blocks and propose a heuristic called merge-
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and-reach. In this heuristic, the warehouse is divided into several single-block parts

and each part is considered as a subproblem. The subproblems are solved using a

dynamic programming approach that was proposed earlier by Ratliff & Rosenthal

(1983). After merging the solutions of the subproblems, the 3-opt local search is

applied for possible improvements. The authors, argue that their solution approach

outperforms the state-of-the-art heuristics in the literature in terms of both solution

quality and robustness.

For the order picking problem, a metaheuristic is proposed by Santis et al. (2018).

The proposed approach, namely FW-ACO, integrates the Floyed-Warshall (FW) al-

gorithm and ant-colony optimization (ACO) metaheuristic. In the first stage of this

solution approach, the shortest path connecting each pair of item locations is iden-

tified using the FW algorithm, while the shortest route for an order picker is found

by the ACO in the second stage using the distance matrix provided by the FW algo-

rithm. It is observed that the performance of the proposed approach is effective for

small size instances (e.g., with 20 orders) and can be made effective for larger size

instances (e.g., with 50 orders) when the parameters for the ACO are well tuned.

In this thesis, we study the energy minimizing order picker forklift routing problem

(EMFRP), where an order picker forklift starts its tour at the depot and is to pick

all of the ordered items one by one and bring them all at once to the depot in the

most energy-efficient manner. To the knowledge of the authors, this is the first study

that considers specifically the high-tech order picker forklifts in the context of the

order picking problem. Moreover, in the energy consumption calculations, the effects

of load, acceleration, deceleration, and friction forces are all taken into account in

addition to the effects of horizontal and vertical moves.

The order picker forklifts are able to carry up to a couple of tonnes of load and reach

to higher than 10 meters. When a number of orders have to be picked from different

locations in a warehouse, an operator rides the forklift to the locations of the items

and pick them by hand after adjusting the height of the fork to the height of the item.

Note that the order picker forklifts are able to move when their fork are lifted (no need

to lower the fork to move). This provides significant energy savings when going from

one location to another one that have similar (possibly the same) heights. Figure 1.1
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shows how an operator performs the order picking tasks using an order picker forklift.

In Figure 1.1a, the operator has already picked some items and is riding the forklift

(while its fork is lowered) to the location of the next item. In Figure 1.1b, the operator

has adjusted the fork’s height to the rack of the item, picked the item and is locating it

on the fork of the order picker. In Figure 1.1c, the operator is riding the order picker

forklift to the location of the next item while its fork is lifted (preventing undesirable

energy consumption due to lowering and lifting the fork). In Figure 1.1d, the operator

is locating the picked item on the fork. The energy consumption of an order picker

forklift is due to its horizontal and vertical moves while carrying variable amounts

of load on its tour. When going from the location of one item to the next one, an

amount of energy is needed to move the forklift horizontally to the location of the

next item. Also, an amount of energy is needed to lift or lower the fork to the level

of the next item to be picked, while the operator is on the fork. In this study, the total

energy consumption of the order picker forklift through its complete tour is aimed to

be minimized. To this end, the energy consumption of horizontal and vertical moves

of the forklift during the tour is obtained by means of work and force calculations.

We provide a mixed-integer (linear) programming (MIP) formulation to solve the

EMFRP, which has some characteristics of the classical TSP formulations and is not

able to solve large size problem instances in reasonable time. We adapt a dynamic

programming algorithm for the EMFRP as well, which can solve instances with up

to 25 items within twenty minutes. To be able to solve larger size instances of the

EMFRP, TSP-based construction and improvement heuristics, such as nearest neigh-

bor, 2-opt, and 3-opt algorithms, and newly developed construction and improve-

ment matheuristics are used as heuristic approaches. These heuristics are integrated

into a single solution approach for the EMFRP. Several sets of computational exper-

iments, on instances generated based on warehouse schemes found in the literature,

are performed using the MIP formulation, the dynamic programming approach, and

the proposed solution approach. The experimental results show that the dynamic pro-

gramming approach beats the MIP formulation for small size instances. According

to the results, savings in both energy and time are achieved with the solutions of the

EMFRP, when compared with the solutions of the classical order picking problem

with distance minimization objective.
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(a) (b)

(c) (d)

Figure 1.1: An operator riding the order picker forklift when its fork is lowered (a) or

lifted (c) and picking items (b,d)
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1.3 The Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 studies the green Weber prob-

lem (GWP) and the time-dependent green Weber problem (TD-GWP) and provides

exact solution approaches for them by the second order cone programming formula-

tions. The computational experiments with extensive analysis on the solutions of the

GWP and the TD-GWP are also given in the same chapter. The multi-facility ver-

sion of the GWP, i.e., the multi-facility green Weber problem (MF-GWP), is studied

in Chapter 3. In this chapter, we face the challenges for solving the MF-GWP with

the mixed-integer second orer cone programming formulation exactly. The heuristic

solution methods for the MF-GWP are then proposed in the same chapter. More-

over, we provide the computational results of different solution approaches for the

MF-GWP. Chapter 4 introduces the energy minimizing order picker forklift routing

problem (EMFRP) that focuses on energy efficiency in the material handling systems

in warehouses. In this chapter, for the EMFRP, we provide a mixed-integer program-

ming formulation and a dynamic programming approach for solving it exactly, and

heuristic solution approaches to be able to solve larger size instances. Then, the ex-

perimental results are discussed to compare the solution approaches and to provide

new insights into routing order picker forklifts in more energy-efficient ways in ware-

houses. Finally, Chapter 5 concludes the thesis and outlines some future research

directions.
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CHAPTER 2

TIME-DEPENDENT GREEN WEBER PROBLEM (TD-GWP)

We consider an extension of the classical Weber problem, named as the green Weber

problem (GWP), in which the customers have one-sided time windows. The GWP

decides on the location of the single facility in the plane and the speeds of the vehi-

cles serving the customers from the facility within the one-sided time windows so as

to minimize the total amount of carbon dioxide emitted in the whole distribution sys-

tem. We also introduce time-dependent congestion which limits the vehicle speeds

in different time periods and call the resulting problem as the time-dependent green

Weber problem (TD-GWP). In the TD-GWP, the vehicles are allowed to wait during

more congested time periods. We formulate the GWP and TD-GWP as second order

cone programming problems both of which can be efficiently solved to optimality.

We show that if the traffic congestion is non-increasing, then there exists an optimal

solution in which the vehicles do not wait at all. Computational results are provided

comparing the locations of the facility and the resulting carbon dioxide emissions of

the classical Weber problem with those of the GWP and comparing the GWP with the

TD-GWP in terms of carbon dioxide emissions in different traffic congestion patterns.

2.1 The Green Weber Problem (GWP)

We assume that the amount of CO2 emitted by a vehicle is proportional to its fuel

consumption which is aligned with the related literature (see e.g., Demir et al. 2011).

As the fuel consumption model, we use the comprehensive modal emission model

(CMEM), suggested by Barth et al. (2005), for heavy-good vehicles. For a review

and comparison of different vehicle emission models, the reader is referred to Demir
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et al. (2011). According to the CMEM, the amount of fuel consumed in liter, f , by a

vehicle which travels a distance of z km at a speed of v km/h and with a load of L kg

is given by

f = λkNV
z

v
+ λwγαz + λγαLz + λβγv2z, (2.1)

where λ, k,N, V, w, γ, α, and β are the fuel consumption parameters depending on

the vehicle type and the road conditions. Introducing new parameters α1 = λkNV ,

α2 = λwγα, α3 = λγα, and α4 = λβγ, the fuel consumption equation can be

rewritten as follows.

f = α1
z

v
+ α2z + α3Lz + α4v

2z (2.2)

Note that the fuel consumption function given in (2.2) is a convex function of v and

is minimized when the speed of the vehicle is equal to (α1/2α4)
1/3. Higher or lower

speeds than this optimal speed results in higher fuel consumption rate per unit dis-

tance traveled. Figure 2.1 shows the fuel consumption rate in liter per 100 km with

respect to speed in km/h for a particular vehicle type with no load according to Equa-

tion 2.2 and is obtained by using the parameter values in Table 2.1 taken from (Demir

et al. 2012). As it can be seen from Figure 2.1, below the speed of 55.2 km/h, the

fuel consumed by the vehicle per unit distance traveled decreases as the speed in-

creases. Above the speed of 55.2 km/h, the fuel consumed per unit distance traveled

increases with the speed. Note that the optimal speed, i.e., the speed at which the

fuel consumption rate is the smallest, may change from vehicle to vehicle, but for a

particular vehicle, it is independent of the load, i.e., constant. Changing the load of

the vehicle from L1 kg to L2 kg shifts the fuel consumption rate curve by the amount

λγα(L2 − L1).

We assume as in Bektaş & Laporte (2011), Demir et al. (2011) that the amount of CO2

emitted in kg by a vehicle is proportional to the amount of fuel consumed in liters.

Assuming that 1 liter of gasoline contains c kg of CO2, we obtain that the amount of

CO2 emitted in kg, C, by a vehicle traveling a distance of z km at a speed of v km/h

and with a load of L kg is equal to

C = c
(
α1
z

v
+ α2z + α3Lz + α4v

2z
)
. (2.3)
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Table 2.1: Values of the parameters used in the fuel consumption calculations

Notation Description Values

λ Constant 3.09636× 10−5

k Engine friction factor (kilojoule/revolution/liter) 0.2

N Engine speed (revolution/second) 33

V Engine displacement (liter) 5

w Vehicle curb weight (kilogram) 6350

γ Constant 2.77778× 10−3

α Constant 9.81× 10−2

L Vehicle’s maximum load (kilogram) 3650

β Constant 1.64865

Figure 2.1: Fuel consumption in liter per 100 km as a function of the vehicle speed
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In the remaining part of this section, after introducing second order cone program-

ming (SOCP), we formulate the GWP and TD-GWP as SOCP problems showing that

both problems can be solved in polynomial time.

2.1.1 Second Order Cone Programming

An SOCP problem is a convex optimization problem of the form

min
x∈Rn

eTx (2.4)

subject to

‖Aix+ bi‖ ≤ cTi x+ di i = 1, 2, . . . ,m, (2.5)

where, x ∈ Rn is the vector of decision variables, and e ∈ Rn, Ai ∈ Rni×n, bi ∈
Rni , ci ∈ Rn, di ∈ R are the problem parameters. The constraints in (2.5) are called

as the second order cone constraints. SOCP problems generalize linear programming

(LP) problems as any linear inequality αTx ≤ β can be written as a second order

cone constraint in the fashion ‖0x + 0‖ ≤ −αTx + β. Similar to LP problems,

SOCP problems can be solved in polynomial time. Several efficient and numerically

stable implementations are available for the solution of SOCP problems. The reader

is referred to the survey papers (Alizadeh & Goldfarb 2003, Lobo et al. 1998) for an

overview of second order cone programming, algorithms, and application areas.

2.1.2 An SOCP Formulation of the GWP

In the GWP, we assume that there are n customers and customer i has a time limit `i.

The time limits are taken as hard, therefore the vehicle(s) dispatched from the facility

for customer i, should arrive at the location of the customer no later than `i. The

aim of the GWP is to find the location of the facility and determine the speeds of the

vehicles sent to the customers so that the total fuel emission cost in the distribution

system is minimized. The weight of customer i, wi, represents the number of vehicles

sent to the customer. For convenience, we refer all the vehicles sent to customer

i as vehicle i. Letting I = {1, 2, . . . , n}, we formulate the GWP as the following
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nonlinear optimization problem.

(GWP-NLP1)

min
z,v∈Rn,(x,y)∈R2

c
∑
i∈I

wi

(
α1
zi
vi

+ α2zi + α3Lzi + α4v
2
i zi

)
(2.6)

subject to

zi ≥ ‖(x, y)− (ai, bi)‖ ∀i ∈ I (2.7)

`ivi ≥ zi ∀i ∈ I (2.8)

vi ≥ 0 ∀i ∈ I (2.9)

The objective function of (GWP-NLP1) minimizes the total amount of CO2 emission

in kg in the distribution system. The variables are the location (x, y) of the facility,

the speed vi of the vehicle i, and the distance zi between the facility and the customer

i. The constraints and the objective function make sure that zi = ‖(x, y) − (ai, bi)‖
for every customer i ∈ I in an optimal solution. Constraints in (2.8) enforce that the

vehicles arrive no later than the time limits for all the customers. Constraints in (2.9)

are the non-negativity constraints for the speed variables.

The formulation (GWP-NLP1) in its current form is not an SOCP formulation. We

introduce a new variable ti for every customer i ∈ I that represents the time it takes

for vehicle i to reach customer i. Note that ti = zi/vi for each i ∈ I if zi is nonzero

and ti = 0 if zi = 0. Using the equation vi = zi/ti, we rewrite (GWP-NLP1) without

the speed variables as follows

(GWP-NLP2)

min
z,t∈Rn,(x,y)∈R2

c
∑
i∈I

wi

(
α1ti + α2zi + α3Lzi + α4

z3i
t2i

)
(2.10)

subject to

zi ≥ ‖(x, y)− (ai, bi)‖ ∀i ∈ I (2.11)

`i ≥ ti ∀i ∈ I (2.12)

ti ≥ 0 ∀i ∈ I (2.13)

Note that the constraints (2.8) and (2.9) in formulation (GWP-NLP1) are replaced by

the constraints (2.12) and (2.13) in (GWP-NLP2).

Introducing new variables gi, i ∈ I and linearizing the objective function, the GWP
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is formulated as

(GWP-SOCP)

min
z,t,g∈Rn,(x,y)∈R2

c
∑
i∈I

wi (α1ti + α2zi + α3Lzi + α4gi) (2.14)

subject to

zi ≥ ‖(x, y)− (ai, bi)‖ ∀i ∈ I (2.15)

git
2
i ≥ z3i ∀i ∈ I (2.16)

`i ≥ ti ∀i ∈ I (2.17)

ti, gi ≥ 0 ∀i ∈ I (2.18)

Note that the objective function and the constraints (2.17) and (2.18) in (GWP-SOCP)

are linear. The constraints (2.15) consist of second order cone constraints. We will

show that the GWP can be formulated as an SOCP problem by showing that the

constraints (2.16) can be written as second order cone constraints.

In (GWP-SOCP), zi ≥ 0 is implied by (2.15). Consider the constraints git2i ≥
z3i , ti, gi, zi ≥ 0. This set of constraints is equivalent to git2i zi ≥ z4i , ti, gi, zi ≥ 0

which can be written as gizi ≥ u2i , uiti ≥ z2i , ui, ti, gi, zi ≥ 0 after introducing the

new variable ui. The latter set of constraints is then equivalent to
∥∥∥( ui

(gi−zi)/2
)∥∥∥ ≤

(gi + zi)/2,
∥∥∥( zi

(ui−ti)/2
)∥∥∥ ≤ (ui + ti)/2, ui, ti, gi, zi ≥ 0 consisting of second order

cone constraints.

Note that in formulations (GWP-NLP1) and (GWP-NLP2), the variables vi and ti, re-

spectively, cannot take the value zero as otherwise the objective function value would

be undefined. This issue, however, is naturally resolved in (GWP-SOCP). Also note

that if zi is zero, then ti is forced to zero by the objective function in (GWP-SOCP)

and if zi is nonzero, then ti is forced to take a nonzero value by (2.16) which implies

a nonzero speed vi.

In the next section, we introduce the time-dependent green Weber problem and show

that it can also be formulated as an SOCP problem and hence can be efficiently solved

to optimality as well.
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2.2 The Time-dependent Green Weber Problem (TD-GWP)

We assume that due to congestion, within certain time periods the vehicle speeds are

limited. We considerM time periods and the vehicle speeds cannot exceed Vm during

the mth time period, m ∈ M = {1, 2, . . . ,M}. The length of the mth time period is

denoted by Pm > 0. In the TD-GWP, the decisions to be made are the location of the

facility and the speed of each vehicle in each time period. The aim of the TD-GWP

is again to minimize the total amount of CO2 emission in the distribution system

under hard one-sided time windows. We define the following decision variables:

(x, y) represents the coordinates of the facility, zmi denotes the distance traveled by

vehicle i in the mth time period, zi denotes the total distance traveled by vehicle i,

tmi stands for the active time of vehicle i in the mth time period, and ti represents

the total active time spent by vehicle i. In a time period, we allow the vehicles to

wait, and the waiting times are not considered in the computation of the active times.

Let δi ∈ M represent the index of the last time period containing `i. We have that∑δi−1
m=1 Pi < `i ≤

∑δi
m=1 Pi.

The TD-GWP can be formulated as

(TD-GWP-SOCP)

min c
∑
i∈I

M∑
m=1

wi

(
α1t

m
i + α2z

m
i + α3Lz

m
i + α4

(zmi )3

(tmi )2

)
(2.19)

subject to
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zi ≥ ‖(x, y)− (ai, bi)‖ ∀i ∈ I (2.20)

`i ≥ ti ∀i ∈ I (2.21)

Vmt
m
i ≥ zmi ∀i ∈ I,∀m ∈M (2.22)

Pm ≥ tmi ∀i ∈ I,∀m ∈M (2.23)

zi =
M∑
m=1

zmi ∀i ∈ I (2.24)

ti =
M∑
m=1

tmi ∀i ∈ I (2.25)

tmi = 0, zmi = 0, if m > δi ∀i ∈ I (2.26)

`i −
δi−1∑
m=1

Pi ≥ tδii ∀i ∈ I (2.27)

tmi , z
m
i ≥ 0 ∀i ∈ I,∀m ∈M (2.28)

The objective function (2.19) minimizes the total amount of CO2 emission in kg in

the distribution system, i.e., the sum of CO2 emission of vehicles traveling in different

time periods. The constraints (2.20) and the objective function enforce that zi =

‖(x, y) − (ai, bi)‖ for every customer i ∈ I in an optimal solution. Time limits of

customers are satisfied by constraints (2.21). Constraints in (2.22) ensure that the

speeds of vehicles do not exceed the speed limit in the corresponding time period.

Constraints (2.23) indicate that the active time of each vehicle in each time period is

not more than the length of the time period. Constraints (2.24) and (2.25) are used

to calculate the total distance traveled and total active time spent for each vehicle,

respectively. Constraints in (2.27) limit the active time of vehicle i in time period

δi, i.e., tδii , by the maximum amount of active time that the vehicle i is allowed to

travel in time period δi. Constraints in (2.26) force tmi and zmi to zero whenever m is

greater than δi and hence together with (2.27) make sure that each vehicle reaches its

customer within its time limit. Constraints (2.28) are the non-negativity constraints.

Note that the constraints in (2.21) are redundant as they are implied by (2.23), (2.25),

(2.26), and (2.27). Moreover constraints (2.25) are also not necessary in the formula-

tion as there is no ti in the objective function.

Similar to (GWP-NLP2), the objective function of the formulation (TD-GWP-SOCP)
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contains the nonlinear terms (zmi )3/(tmi )2. By introducing new variables gmi , the non-

linear terms can be linearized similar to what we have in (GWP-SOCP). The con-

straints gmi (tmi )2 ≥ (zmi )3 can then be written as SOCP constraints as discussed pre-

viously.

2.2.1 The TD-GWP with Non-decreasing Congestion

In this section, we assume that there is non-decreasing congestion during the delivery

times. This may be reasonable in real life if all the deliveries are expected to be

completed early in the morning before the morning traffic peak time.

The notation used earlier will be followed, that is, there areM time periods and during

the mth time period which has length Pm > 0, the vehicle speeds cannot exceed Vm

for every m ∈ M = {1, 2, . . . ,M}. Moreover, we have a congestion pattern that is

non-decreasing, i.e., V1 ≥ V2 ≥ · · · ≥ Vm.

We will show that under these conditions, there exists an optimal solution of (TD-

GWP-SOCP) in which none of the vehicles waits on its way during the delivery.

Consider an optimal solution tmi , zmi , zi, ti, i ∈ I,m ∈ M , x, y of (TD-GWP-SOCP)

from which the optimal values of the speeds at each time period for each vehicle

vmi , i ∈ I,m ∈M is obtained from vmi = zmi /t
m
i , if tmi 6= 0.

Assume thatm is the first time period in which vehicle i waits in the optimal solution,

i.e., m is the smallest positive integer such that tmi < Pm, and there exists an index

n > m such that tni > 0. Let us take the smallest such n and let v∗ be the speed level

at which the fuel consumption rate is the smallest, i.e., v∗ = (α1/2α4)
1/3. If Vm ≥ v∗

and tmi 6= 0, then we have that vmi = v∗. If the speed at time period n is different

from v∗, we can then increase the active time in time period m (by decreasing the

active time in time period n), go at the optimal speed for more, and reduce the fuel

consumption. As the current solution is optimal, it should be that vni = v∗ as well. On

the other hand if Vm ≤ v∗ and tmi 6= 0, then we have that vmi = Vm by the convexity

of the fuel consumption rate function. In this case if vni is less than Vm, then we can

again increase the active time in time period m, and reduce the fuel consumption.

Therefore vni has to be equal to vmi as vni ≤ Vn ≤ Vm.
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We now claim that if the first time period in which the vehicle i waits in the optimal

solution is m, then the speed is the same for all the time periods with non-zero active

times after and including time periodm. To prove this, let us assume that the first time

period after time period m with a different speed value is n, i.e., assume that in time

periods m through n− 1 with non-zero active times, the speed is v and at time period

n, it is vn 6= v. v is either equal to v∗ in which case the vehicle can drive more at time

period m at the optimal speed and reduce fuel consumption, or v is different from v∗.

In the latter case with v 6= v∗, v has to be smaller than v∗ and vn cannot be larger than

v as otherwise we would increase the speed v towards v∗ without violating the speed

limits and decrease the fuel consumption. So, we have that vn is smaller than v. Now,

similarly the vehicle can drive more in time period m at the speed v and reduce the

fuel consumption as the fuel consumption rate at speed v is smaller than that at speed

vn. We have thus proven that including and after the time period in which the vehicle

waits in the optimal solution for the first time, all the speeds have to be the same in all

periods having non-zero active times. The optimal solution of (TD-GWP-SOCP) can

easily be turned into one in which no vehicle waits just by shifting all active times to

the earlier time periods without changing the speeds.

2.3 Illustrative Example

In this section, an illustrative example is presented. The solutions of the Weber prob-

lem (WP) and the GWP, and the solutions of the GWP and the TD-GWP are com-

pared.

Consider an instance of the Weber problem with four customers in the plane, namely

customer 1, 2, 3, and 4. The coordinates of the customers are (0, 0), (1000, 0), (0, 1000),

and (1000, 1000) in kilometers as seen in Figure 2.2. We assume identical unit

weights for all customers, i.e., w1 = w2 = w3 = w4 = 1. The optimal location

of the facility for the corresponding WP is given by (500, 500) which is the center of

the square in Figure 2.2. Thereafter, we assign a time limit of `4 hours to customer 4,

i.e., the vehicle 4 should arrive at the location of customer 4 on or before `4. For the

other customers, no time limit is imposed, i.e., `1 = `2 = `3 = ∞. We first consider

different `4 values to see its impact on total amount of CO2 emission in kg in the
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Figure 2.2: An instance of the Weber problem with four customers

distribution system and the optimal location of the facility. The following parameters

are obtained by using the values from Table 2.1:

α1 = 3.66350068 l/h,

α2 = 5.33605218× 10−2 l/km,

α3 = 8.40323179× 10−6 l/km/kg,

α4 = 1.08968703× 10−5 lh2/km3,

L = 3650 kg, ∀i ∈ I,
c = 2.32 kg/l.

When the time limit `4 is imposed on customer 4, the resulting GWP was solved by

CPLEX 12.6 IBM (2012) using the formulation (GWP-SOCP). Different values (in

hours) were used for `4: 10, 8, 6, 4, and 1 in addition to `4 =∞. As the time limit of

customer 4 is tightened, the optimal solution of the GWP gets closer to customer 4.

This is to prevent vehicle 4 from speeding too much to satisfy the corresponding time

limit and consuming excessive amount of fuel. The optimal facility locations of the

GWP for different `4 values can be seen in Figure 2.3. Note that the optimal facility

location of the Weber problem corresponds to the case with `4 =∞.
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Figure 2.3: Locations of the facilities obtained by the GWP for different `4 values in

the illustrative example

We now compare the total amount of CO2 emission of the solutions of the WP and the

GWP. Note that as the solution of the WP does not take the time limits into account,

it does not change as `4 is changed. However, when the solution of the WP is used

as the location of the facility, vehicle 4 may need to speed up to reach customer 4 on

time. This will increase the total amount of CO2 emission of the solution of the WP

in comparison with that of the solution of the GWP.

In Table 2.2, the rows with the headers WP and GWP refer to the values obtained

by solving the WP and the GWP, respectively, for different `4 values. Columns with

the header “CEM” give the total amount of CO2 emission in kg and columns with

the header v4 give the speed of vehicle 4 (v4) in km/h resulted from the solutions of

the WP and the GWP. The last row designates the percent deviation (%dev) of the

total amount of CO2 emission and the speed of vehicle 4 obtained by solving the WP

from those by solving the GWP, i.e., %dev = 100×(the result of the WP - the result

of the GWP)/the result of the GWP. As it is seen in the table, the solutions of the

GWP improve on the solutions of the WP with respect to both cost and speed v4 for

every `4 value. The percent deviations of CEM and v4 increase as `4 gets smaller. For
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Table 2.2: Comparison of the solutions of the WP and the GWP in the illustrative

example

`4 = 10 `4 = 8 `4 = 6 `4 = 4 `4 = 1

CEM v4 CEM v4 CEM v4 CEM v4 CEM v4

WP 1215 70 1249 88 1341 118 1634 177 2708 707

GWP 1210 64 1226 72 1253 80 1298 90 2150 101

%dev 0.4 8.6 1.9 18.2 6.6 32.2 20.6 49.2 610 595

instance, when `4 is taken as 6 and the facility is located based on the solution of the

WP, the vehicle 4 needs to travel at a speed of 118 km/h to reach customer 4 on time

resulting in a total amount of CO2 emission of 1341 kg in the distribution system. On

the other hand, with the same `4 value, if the location of the facility is determined by

the solution of the GWP, then the speed of vehicle 4 turns out to be 80 km/h resulting

in a total amount of CO2 emission of 1253 kg. Note that in both cases, all the other

three vehicles travel at the optimal speed, i.e., v∗ =55.2 km/h, as no time limit is

imposed on them.

Figure 2.4 illustrates the changes in the total amount of CO2 emission resulting from

the WP and the GWP and the percent deviations as the time limit `4 changes. The

left vertical axis stands for the total amount of CO2 emission in kg and the right one

for the percent deviation. It can be seen from the figure that the percent deviations

increase as `4 gets smaller, i.e., the rate of increase of CEM per one unit decrease in

`4 is more for the WP than the GWP.

We now consider two congestion patterns, one with 2 time periods and the other with

3. In the case of 2 time periods, the problem is referred to as TD-GWP-2. We assume

that the length of the first time period (P1) is one fourth of the corresponding time

limit of customer 4, e.g., P1 = 2.5 h when `4 =10 h and P1 = 1 h when `4 =4 h,

during which due to limited congestion, it is assumed that V1 = 110 km/h. In the

second time period, there is a speed limit of V2 = 40 km/h due to a heavier traffic

congestion.
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Figure 2.4: Total amounts of CO2 emission of the solutions of the WP and the GWP

together with the percent deviations as `4 changes in the illustrative example

In the case of 3 time periods, the problem is referred to as TD-GWP-3. It is assumed

that the lengths of both the first and the second time periods, P1 and P2, are one fourth

of the time limit `4 of customer 4. In the first, second, and the third time periods, it

is assumed that there is a speed limit of V1 = 110 km/h, V2 = 40 km/h, and V3 = 30

km/h, respectively.

In Table 2.3, the row with the header GWP refers to the results with no traffic conges-

tion. Different `4 values are considered. In the row with the header TD-GWP-2, the

results of the solutions of TD-GWP-2 are shown for different `4 values. The results

of TD-GWP-3 are displayed in the row with the header TD-GWP-3. The solutions

are compared in terms of the total amount of CO2 emission (CEM) in the distribution

system and the maximum speed at which vehicle 4 travels. The rows with the header

%dev include the percent deviations of the displayed results of TD-GWP-2 from the

GWP and of TD-GWP-3 from TD-GWP-2, respectively, from top to bottom.

It can be seen from Table 2.3 that the heavier the traffic congestion, the higher the

value of the maximum speed of vehicle 4 and the more the total amount of CO2
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Table 2.3: Comparisons of the solutions of the GWP and TD-GWP-2; and TD-GWP-

2 and TD-GWP-3 in the illustrative example

`4 = 10 `4 = 8 `4 = 6 `4 = 4

CEM v14 CEM v14 CEM v14 CEM v14

GWP 1210 64 1226 72 1253 80 1298 90

TD-GWP-2 1288 81 1317 88 1359 95 1407 100

%dev 6.4 26.6 7.4 22.2 8.5 18.8 8.4 11.1

TD-GWP-3 1399 90 1443 97 1498 103 1561 108

%dev 8.6 11.1 9.6 10.2 10.2 8.4 11.0 8.0

emission in the distribution system. As an example, consider the case with `4 = 8. If

there is no congestion at all, then the total amount of CO2 emission in the system is

1226 kg and v14 =72 km/h. In the scenario with two time periods and V1 = 110 km/h

and V2 = 40 km/h, the total amount of CO2 emission increases to 1317 kg and v14 to

88 km/h resulting in percent deviation values of 7.4% and 22.2%, respectively. These

increases are mainly due to the increased congestion in the second time period. In the

highest congestion scenario, i.e., three time periods with V1 = 110 km/h, V2 = 40

km/h, and V3 = 30 km/h, the total amount of CO2 emission further increases up to

1443 kg and the highest speed of vehicle 4 to 97 km/h resulting in a percent deviation

of 9.6% and 10.2%, respectively, with respect to the solution of TD-GWP-2.

2.4 Computational Experiments

In this section, our aim is to compare the total amount of CO2 emission in large

scale randomly generated distribution systems with and without traffic congestion.

We generate two sets of instances. In the first set, there are 500 customers in the

distribution system and in the second one 1000 customers.

For the first set of instances, we consider a square with side length of 234 km. Cus-
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Figure 2.5: Locations of the customers in the 500 customer case

tomers with identical unit weights are distributed in this square in 4 groups. Each

group consists of 125 customers located uniformly at random in the corresponding

area as shown in Figure 2.5. Five problem instances each with a total of 500 cus-

tomers are generated and the resulting SOCP problems are solved by CPLEX 12.6

IBM (2012) on a server with 3.20 GHz speed and 16Gb RAM. For each instance, it

took CPLEX less than a second to solve it. For the GWP, we use the total amount

of CO2 emission parameters mentioned in Section 2.3 and consider a time limit of

1 hour for the customers in group 4 with a speed limit of 110 km/h for all vehicles.

No time limit is imposed for the customers in the other groups. In TD-GWP-2, the

length of the first time period is taken as one fourth of `4, i.e., P1 = 15 minutes,

during which the vehicles have a speed limit of V1 = 110 km/h and for the second

time period the speed limit is taken as V2 = 40 km/h. For the TD-GWP-3, we take

the length of both the first and second time periods as P1 = P2 = 15 minutes. The

speed limit in the first, second, and third time periods are taken as 110km/h, 40km/h,

and 30km/h, respectively.

34



Table 2.4: Comparison of 4 problems with respect to the average total amounts of

CO2 emission over 5 instances in the 500 customer case

WP GWP TD-GWP-2 TD-GWP-3

CEM 30631 28221 33077 37021

%dev -8.5 17.2 11.9

Table 2.5: Comparison of 4 problems with respect to the average of the average speeds

of the vehicles over 5 instances in different time periods in the 500 customer case

Average of average speed (%dev from optimal speed)

Time Periods WP GWP TD-GWP-2 TD-GWP-3

1 63.5 (15.4) 57.2 (3.8) 58.1 (5.4) 62.8 (14.0)

2 ↓ ↓ 40.0 (27.4) 40.0 (27.4)

3 ↓ ↓ ↓ 30.0 (45.6)

In Table 2.4, the total amounts of CO2 emission resulting from the solutions of dif-

ferent problems are given. The last row of the table depicts the percent deviation of

the average total amount of CO2 emission of a problem from that of the problem in

the previous column. Note that the value in the column with the header WP refers to

the average total amount of CO2 emission resulting from locating the facility as the

solution of the WP and imposing the time limits as in the GWP. It can be seen from

Table 2.4 that when there is no congestion, locating the facility based on the solution

of the GWP instead of that of the WP results in about 8.5% reduction in the average

total amount of CO2 emission. As the congestion increases, the average total amount

of CO2 emission increases as well from the solution of the GWP in the direction of

the solution of the TD-GWP-3.

Table 2.5 shows the average of the average speeds of all vehicles over 5 instances

in different time periods for different problems. First column refers to the 3 time

periods. Note that the first time period of the WP and the GWP corresponds to the

union of the first, second, and the third time periods of TD-GWP-3, and the second

35



Table 2.6: Comparison of 3 problems with respect to the average amounts of CO2

emission over 10 instances in the 1000 customer case

Average CEM (%dev from previous problem)

Time Limit Type GWP TD-GWP-2 TD-GWP-3

TL1 40161 41385 (3.0) 41984 (1.5)

TL2 38837 40931 (5.4) 41594 (1.6)

time period of TD-GWP-2 corresponds to the union of the second and third time

periods of TD-GWP-3 (a down arrow was used in Table 2.5 to indicate this). For

each problem, the corresponding absolute value of the percent deviation from the

optimal speed v∗ is given in parenthesis. It is seen that in the GWP, a lower speed is

required on average for the vehicles to satisfy the time limits of the customers when

compared with the WP. Imposing time dependent traffic congestion and speed limit

in the second time period, the resulting average speed for the vehicles increases in the

first time period of TD-GWP-2 which is to satisfy the customers’ time limits. For the

TD-GWP-3, the average speed of the vehicles in the first time period is even higher

due to more restriction of the speed in the third time period. It can be concluded that

more restriction of the speed of vehicles in congested time periods results in a higher

average speed in the first time periods. Successively, we see higher deviations from

the optimal speed in cases of higher traffic congestion corresponding to an increased

total amount of CO2 emission.

For the second set of instances, 1000 customers are uniformly generated at random

in a square region with side length of 234 km. All customers are again assumed to

have identical unit weights. Two types of time limits are imposed. For the first one,

which we call as TL1, the time limit for each customer in the north east quarter of the

region is obtained by di/100 where di is the distance of customer i to the center of

the region. No time limit is imposed on the customers located in the other quarters.

For the second one, referred to as TL2, the time limit for all customers in the north

east quarter of the region is taken as 1.5 h. Similarly, for the other customers, no

time limit is imposed. For the GWP, and the first time periods of the TD-GWP-2 and
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Table 2.7: Comparison of 3 problems with respect to the average of the average speeds

of the vehicles over 10 instances in different time periods in the 1000 customer case

under the time limit type TL1

Average of average speed (%dev from optimal speed)

Time Periods GWP TD-GWP-2 TD-GWP-3

1 59.1 (7.3) 62.4 (13.2) 64.7 (17.4)

2 ↓ 40.0 (27.4) 40.0 (27.4)

3 ↓ ↓ 30.0 (45.6)

Table 2.8: Comparison of 3 problems with respect to the average of the average speeds

of the vehicles over 10 instances in different time periods in the 1000 customer case

under the time limit type TL2

Average of average speed (%dev from optimal speed)

Time Periods GWP TD-GWP-2 TD-GWP-3

1 57.4 (4.2) 59.1 (7.3) 61.2 (11.0)

2 ↓ 40.0 (27.4) 40.0 (27.4)

3 ↓ ↓ 30.0 (45.6)

TD-GWP-3 which have both 1 h length, the speed limit of 110 km/h is considered.

For the second time periods of TD-GWP-2 and TD-GWP-3, the speed limit is taken

as V2 = 40 km/h. The length of the second time period of TD-GWP-3 is considered

to be 1 h and the speed limit for the third time period of TD-GWP-3 is chosen as

30 km/h. For the computational experiments, 10 instances with 1000 customers are

generated for the GWP, TD-GWP-2, and TD-GWP-3.

In Table 2.6, the average total amounts of CO2 emission resulting from the solutions

of the three problems are given together with the percent deviations from solution of

the problem in the previous column in parenthesis.

The average total amounts of CO2 emission of the solutions of the TD-GWP-2 are
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more than those of the GWP due to the speed limit of 40 km/h imposed in TD-GWP-

2 after 1 h. Similarly, the increase in the average total amounts of CO2 emission of

the solutions of TD-GWP-3 with respect to those of TD-GWP-2 are due to the speed

limit imposed in the third time period of TD-GWP-3.

Table 2.7 and Table 2.8 show the average of the average speeds of all the vehicles

over 10 instances in different time periods for the time limit types TL1 and TL2,

respectively. Similar to Table 2.5, absolute values of the percent deviations from

the optimal speed are given in parenthesis. It is observed that the average speeds of

the vehicles in the first time period are higher in the more congested traffic patterns

resulting in higher average total amounts of CO2 emission.

When the solution times of the instances are examined, it is observed that they are all

less than a second for the instances with 500 customers and less than three seconds

for the instances with 1000 customers. As SOCP problems are efficiently solvable,

large scale instances can be solved in reasonable times.

The congestion patterns considered in the computational experiments are non-decreasing.

By the result in Section 2.2.1, we know that for each instance, there exists an optimal

solution in which no vehicle waits on its way. When we examine the optimal solutions

of the instances, we see that no vehicle waits in any solution. This can be attributed

to the tight time limits imposed in the instances and low speed limits imposed in the

second and third time periods.

2.5 Concluding Remarks

The GWP is an extension of the classical Weber problem and it determines the lo-

cation of the single facility in the plane and the speeds of the vehicles serving the

customers such that the total CO2 emission in the distribution system is minimized.

The customers have hard time limits and the vehicles serving the customers must

finish their service on or before the time limits. This chapter provides an SOCP for-

mulation for the GWP in which if there is no time limit or all time limits are relaxed

enough, the optimal facility location of the GWP corresponds to that of the WP. This

is one of the few studies in the literature that optimizes the vehicle speeds without
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using any discretization. This chapter also introduces the TD-GWP with SOCP for-

mulation, in which time-dependent congestion limits the vehicle speeds in different

time periods. Due to the second order cone programming formulation of the intro-

duced problems, instances with 1000 customers are solved within a couple of seconds

in this study. In the computational experiments, it is shown that locating the facility

based on the solution of the WP (without taking the time limits into account) instead

of the GWP results in a higher total CO2 emission amounts in the distribution sys-

tem. Also, as expected, it is seen that the higher the traffic congestion, the higher the

total-fuel emission cost in the distribution system.
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CHAPTER 3

MULTI-FACILITY GREEN WEBER PROBLEM (MF-GWP)

Locating facilities to satisfy the demands of customers is a strategic decision for a

distribution system. In this article, we study the multi-facility green Weber problem

(MF-GWP), an extension of the classical multi-facility Weber problem, that consid-

ers environmental concerns in a distribution system in the context of a planar facility

location problem. In the MF-GWP, the vehicles are sent directly from the facilities

to the assigned customers to satisfy their demands. Each customer has a deadline

and the vehicles serving the customer must arrive at the location of the customer no

later than the deadline. The MF-GWP determines the locations of p facilities on the

plane, p > 1, allocations of customers to the facilities, and the speeds of the distri-

bution vehicles so as to minimize the total amount of carbon dioxide emission in the

distribution system. We formulate this problem as a mixed integer second order cone

programming (MISOCP) problem. This formulation turns out to be weak and there-

fore only small size instances can be solved to optimality within four hours. For larger

size instances, a local search heuristic is proposed and some well-known heuristics de-

veloped for the multi-facility Weber problem, namely “location-allocation”, “transfer

follow-up”, and “decomposition” are adapted for the MF-GWP. We use second order

cone programming and the proposed MISOCP formulation as subproblems within the

heuristics. For example, the local search heuristic uses a strengthened and reduced-

size MISOCP formulation and is itself employed within the decomposition heuristic.

We provide our computational experiments to compare the proposed solution methods

in terms of solution quality and time. The results show that within a fixed computa-

tional time, even though the location-allocation heuristic is able to make more repli-

cations, the improvement heuristics considered, i.e., transfer or transfer followed by

decomposition, usually find better solutions while using less number of replications.
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We also investigate how the total amount of carbon dioxide emitted by distribution

vehicles changes with respect to the number of facilities located. Moreover, we show

the applicability of the MF-GWP within an assembly line system as an illustrative

example, where the stations are fed by dedicated rail-guided vehicles.

3.1 Problem Description and Notation

The multi-facility green Weber problem (MF-GWP) is an extension of the classical

multi-facility Weber problem. In the MF-GWP, there are n customers on the plane to

be served from p facilities. Let I = {1, 2, . . . , n} and J = {1, 2, . . . , p}. We assume

that the facilities are uncapacitated. Each customer has to be served by one facility.

However, a facility can serve more than one customer. The locations of the customers

are known and are denoted by (ai, bi) ∈ R2, i ∈ I . We denote by G the vector of the

locations of the customers, i.e., G(i) = (ai, bi). Assuming that customer i is served

by facility j, the demand of customer i is satisfied by sending wi > 0 vehicles directly

from facility j to customer i, each carrying a load Li. For convenience, by “vehicle

i”, we mean all vehicles sent to customer i. Each customer has a hard deadline and

vehicle i has to arrive at the location of customer i on or before the deadline `i. We

denote byL the vector of the deadlines of the customers, i.e.,L(i) = `i. The decisions

to be made in the MF-GWP are the locations (xj, yj), j ∈ J of the facilities and the

speeds vi, i ∈ I of the vehicles to be sent to the customers from the facilities; and

the objective is to minimize the total amount of CO2 emitted by the vehicles in the

distribution system.

Denoting the distance between the facility and customer i by zi, i ∈ I , and the time it

takes vehicle i to reach customer i by ti, i ∈ I , we can use Equation (2.3) to calculate

the amount of CO2 emitted by vehicle i as

Ci = cwi

(
α1ti + α2zi + α3Lizi + α4

z3i
t2i

)
, (3.1)

which is obtained from (2.3) by replacing the speed variable by zi/ti and multiplying

the expression by the number of vehicles serving customer i, wi.

Note that the MF-GWP with p = 1 is called as the green Weber problem (GWP). The

GWP is introduced and studied in Chapter 2 where it is formulated as a second order
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cone programming (SOCP) problem in Section 2.1.2. In this respect, we use the same

techniques to handle the nonlinearity in 3.1 while using this equation in the objective

function of the MF-GWP with the mixed-integer second order cone programming

(MISOCP) formulation provided in the next section.

3.2 Solution Approaches for the MF-GWP

The MF-GWP is NP-hard since it is a generalization of the NP-hard classical multi-

facility Weber problem Megiddo & Supowit (1984). To show this, consider an in-

stance of the multi-facility Weber problem with the objective function
∑n

i=1 βizi,

where each βi is a rational number. We will reduce this to an instance of the MF-

GWP. Assume that in the MF-GWP, all the deadlines are infinity, all the vehicles are

of the same type, and all the loads are identical. Then the objective function of the

MF-GWP becomes
∑n

i=1wiζzi, where ζ is the amount of CO2 emitted by a vehicle

per unit distance traveled. We need to set the values of wi’s so that the instance of the

classical multi-facility Weber problem reduces to an instance of the MF-GWP. To do

this, we find positive multiplier m so that βim/ζ is a positive integer for every i. We

let wi = βim/ζ and hence obtain m
∑n

i=1 βizi=
∑n

i=1wiζzi.

Next, we discuss the solution methods we propose for the MF-GWP. We first show

that the MF-GWP can be formulated as an MISOCP problem which is an SOCP prob-

lem with the additional restriction that some or all of the variables are integer-valued.

This formulation is only able to solve small size instances to optimality within four

hours. To solve larger size instances, ideas from the well-known heuristics developed

for the multi-facility Weber problem are utilized in addition to a newly developed

local search heuristic.

3.2.1 An MISOCP Formulation for the MF-GWP

In order to formulate the MF-GWP, the notation described in Section 3.1 is used.

We use αi1, α
i
2, α

i
3, and αi4 to denote the parameters used in the emission model for

vehicle i. In other words, the vehicles do not need to be homogeneous. Moreover,

we introduce a binary variable hij for every i ∈ I, j ∈ J which takes the value 1 if
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and only if customer i is served by facility j. The distance between customer i and

facility j is denoted by qij, i ∈ I, j ∈ J . We also use auxiliary variables gi, i ∈ I

to linearize the objective function as is done in the SOCP formulation of the GWP in

Section 2.1.2.

An MISOCP formulation of the MF-GWP is given below.

(MF-GWP-MISOCP)

min c
∑
i∈I

wi
(
αi1ti + αi2zi + αi3Lizi + αi4gi

)
(3.2)

subject to

qij ≥ ‖(xj, yj)− (ai, bi)‖ ∀i ∈ I, j ∈ J (3.3)

zi ≥ qij −Mi(1− hij) ∀i ∈ I, j ∈ J (3.4)∑
j∈J

hij = 1 ∀i ∈ I (3.5)

git
2
i ≥ z3i ∀i ∈ I (3.6)

`i ≥ ti ∀i ∈ I (3.7)

hij ∈ {0, 1} ∀i ∈ I, j ∈ J (3.8)

ti, gi ≥ 0 ∀i ∈ I (3.9)

The objective function (3.2) of (MF-GWP-MISOCP) minimizes the total amount of

CO2 emission in kg in the distribution system. Constraints (3.3) and (3.4) and the

objective function (3.2) make sure that if hij = 1, then zi = ‖(xj, yj) − (ai, bi)‖
for customer i and facility j in an optimal solution. Constraints (3.5) make sure

that each customer is served by exactly one facility. Constraints (3.6) arise when the

terms z3i /t
2
i , i ∈ I are taken to the constraints by linearizing the objective function.

Constraints (3.7) enforce that the vehicles arrive no later than the deadlines for all

the customers. Constraints (3.8) are used to force that hij is a binary variable for

each i ∈ I, j ∈ J . Constraints (3.9) are the non-negativity constraints. Note that the

non-negativity of each qij, i ∈ I, j ∈ J and each zi, i ∈ I are implied by constraints

(3.3)-(3.5).

For each customer i and facility j, the big-M value Mi in (3.4) can be taken as the

maximum distance between customer i and the other customers. This is because the
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facility locations will be in the convex hull of the locations of the customers in the

optimal solution.

The objective function (3.2) and constraints (3.4), (3.5), (3.7), and (3.9) are linear,

constraints (3.3) are SOCP constraints, while constraints (3.6) can be rewrittten as

SOCP constraints as discussed in Section 2.1.2).

There are some issues with the formulation (MF-GWP-MISOCP). Firstly, the formu-

lation is weak due to the big-M values in constraints (3.4). Secondly, the formulation

is highly symmetric. Consider a set of facility locations. The facility locations can

be assigned to the location variables (xj, yj)’s by permuting the facility indices. Each

permutation results in almost the same solution where the only difference is the labels

of the facilities. This symmetry inflates the size of the branch-and-bound tree. To re-

duce the symmetry in the formulation, we propose the following symmetry breaking

(SB) constraints whose effect is to be investigated in Section 3.3.

x1 ≤ x2 ≤ · · · ≤ xp. (3.10)

The SB constraints (3.10) ensure that the leftmost facility is called as facility 1, the

second leftmost facility is called as facility 2 and so on.

The above MISOCP formulation can be extended in several ways. For example, by

introducing the inequalities viti ≤ zi ≤ viti, one can enforce that the speed of vehicle

i takes a value in the interval [vi, vi]. By adding constraints (xj, yj) ∈ Pj , where Pj is

any MISOCP-representable set, e.g., the union of finitely many polytopes or a disk,

one can restrict the possible location of facility j. Moreover, the capacities of the

facilities can be restricted by adding the constraints
∑

i∈I wiLihij ≤ σj , where σj

denotes the capacity of facility j. The three types of constraints discussed in this

paragraph are all used in the illustrative example discussed in Section 3.4.

3.2.2 Heuristics for the MF-GWP

The MISOCP formulation (MF-GWP-MISOCP) proposed for the MF-GWP has some

weaknesses (discussed at the end of Section 3.2.1) and therefore it is only able to solve

small size instances to optimality within four hours (see Section 3.3). To be able to

solve larger instances of the MF-GWP, we propose several heuristics in this section.
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3.2.2.1 Alternate Location-allocation Heuristic

The alternate location-allocation (ALA) heuristic is proposed by Cooper Cooper (1964)

to solve multi-facility location-allocation problems. The heuristic starts with given

initial facility locations and alternates between the following allocation and location

steps until convergence is achieved.

1. (Allocation Step) Given the locations of the facilities, assign each customer to

a facility optimizing the considered objective.

2. (Location Step) Given the allocations of the customers to the facilities, find the

optimal locations of the facilities optimizing the considered objective.

The ALA heuristic is a descent heuristic, i.e., the objective function value never in-

creases during the algorithm. The solution obtained, however, is highly dependent on

the initial facility locations. Therefore, a common practice is to run the ALA heuris-

tic several times, i.e., doing several replications, with different sets of initial facility

locations and taking the best solution obtained.

In the context of the MF-GWP, in the allocation step, each customer is assigned to

the closest facility as this results in the minimum CO2 emission. In the location

step, with known allocations, p green Weber problems are solved using the SOCP

formulation (GWP-SOCP) given in Section 2.1.2. In our implementation, the initial

facility locations are randomly generated from the convex hull of the locations of the

customers. The steps of the ALA heuristic are shown in Algorithm 1.

The inputs of Algorithm 1 are the vector of the customers’ locations, G, the number

of facilities to be located, p, the vector of initial facility locations, X0, and the vector

of the customers’ deadlines, D. Steps 5 and 6 in Algorithm 1 are the allocation and

location steps, respectively. Even though G and D do not appear explicitly in the

algorithm, G is used in both steps 5 and 6, and D is used in step 6. The outputs of the

algorithm are the final locations of the facilities, X , and the vector of allocations of

the customers, H .
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Algorithm 1 Alternate Location-allocation Heuristic
1: procedure LOCATION-ALLOCATION(G, p, X0, D)

2: k = 0

3: while There is an improvement in the objective function value do

4: k ← k + 1

5: Allocate customer i to the closest facility considering the locations in

Xk−1 and let H(i) be the index of the facility customer i is allocated to, for each

i ∈ I . . Allocation Step

6: Locate facility j by solving (GWP-SOCP) (see Section 2.1.2) using only

the customers allocated to facility j and let the solution be the jth component of

Xk, for each j ∈ J . . Location Step

7: end while

8: X ← Xk

9: end procedure

3.2.2.2 Local Search

Given any set of initial facility locations (xj, yj), j ∈ J , the aim of the local search

(LS) is to search for a better solution in a small neighbourhood of the current solution.

For this purpose, we draw circles around the current facility locations and allow each

facility to move within the circle drawn around it resulting in a reduced search space.

To do this, we add the following set of constraints to the formulation (MF-GWP-

MISOCP).

‖(xj, yj)− (xj, yj)‖ ≤ rj, j ∈ J. (3.11)

Addition of constraints (3.11) makes the formulation (MF-GWP-MISOCP) stronger

by

1. restricting the possible locations of the facilities,

2. allowing one to replace the Mi’s in constraint set (3.4) with Mij’s for different

customer-facility pairs, and use smaller big-M values,

3. allowing the possibility of fixing some binary variables in advance (which also

reduces the size of the formulation).
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Figure 3.1: Illustration of the steps of the ALA heuristic followed by the LS heuristic

In reference to the second item above, in the implementation of the LS, we take the

value of Mij as

min{Mi, ‖(ai, bi)− (xj, yj)‖+ rj}, (3.12)

which is an upper bound on the distance between the location of customer i and the

new location of facility j.

In reference to the third item above, hij is fixed to 0 if there exists another facility j′

such that

‖(ai, bi)− (xj, yj)‖ − rj > ‖(ai, bi)− (xj′ , yj′)‖+ rj′ (3.13)

holds true. The inequality (3.13) implies that the closest possible distance between

the location of customer i and the new location of facility j is strictly greater than the

maximum possible distance between the location of customer i and the new location

of facility j′. In this case, customer i has no chance to be allocated to facility j in the

new solution. In addition, if the inequality (3.13) holds true for every j different from

j′, then we fix hij′ to 1 as well.
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Figure 3.1 illustrates the LS heuristic on a test instance with n = 49 customers and

p = 3 facilities. The indices of the facilities are displayed in the figure to trace the

location changes. The initial locations of the facilities, generated from the convex hull

of the customers’ locations uniformly at random, are displayed by the squares. Then,

this initial solution is improved by the ALA heuristic resulting in the new solution

displayed by the triangles. Lastly, we use the LS heuristic (with a fixed constant

radius for all circles) to further improve the solution of the ALA heuristic yielding the

final solution represented by the crosses. As seen in Figure 3.1, in the implementation

of the LS, we first draw 3 circles around the facility locations obtained by the ALA

heuristic and improve the ALA solution. Afterwards, we continue drawing circles

around the new solutions until no improvement is obtained. Note that once a new

solution is obtained by the LS, one can also use the ALA heuristic on the new solution,

instead of continuing with the LS, to move it to a new local optimal solution.

In each iteration of the LS, an MISOCP problem is solved. If the search space, i.e.,

the total area searched inside the circles, is small, then it may not be possible for the

LS to escape from the current local solution. If the search space is increased, then the

MISOCP formulation will take longer to solve, but it will be more likely for the LS

to move from the local solution to an improved solution. Depending on how much of

the search space the user would like to cover, we propose a way to choose the radii of

the circles in Section 3.3.

As solving MISOCP problems are expensive, the LS is likely to be more beneficial

if it is applied after some other solution method, like the ALA heuristic, or if it is

used within other heuristics as a subroutine. We next describe two other improve-

ment heuristics for the MF-GWP, namely “transfer” and “decomposition”, which aim

to improve the local solution obtained by the ALA. We will argue that the LS can

naturally be used within the decomposition heuristic.

3.2.2.3 Transfer

The transfer heuristic, proposed in Brimberg & Drezner (2013), aims to improve the

solution of the ALA heuristic, called as the initial solution here, by reallocating a

customer to its second nearest facility. Following the reallocation, the ALA heuristic
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is run on the new solution starting with the Location Step to get to a hopefully new

local solution. After the reallocation, the obtained solution may be worse at first, but

the final solution found by the ALA heuristic may still be a better solution (than the

initial solution).

If the transfer heuristic succeeds to find a better solution than the initial solution in

the first trial, then the procedure stops and the solution is updated. Otherwise, taking

the initial solution, another customer is selected to be transferred to its second nearest

facility in the second trial. The trials continue until an improvement is observed or

at most a fixed number, say NT , of trials are made. The customers are selected by

the following procedure. For every customer i, the difference between its distance

from the closest (currently allocated) facility and its distance from the second closest

facility is calculated and called as ∆i. The original version of the transfer heuristic is

applied to the customers one by one in the order of non-decreasing ∆i values.

We next explain how we implement the transfer heuristic for the MF-GWP which in-

cludes several modifications on the original approach. First, for the given solution, the

algorithm checks if there are any empty facilities, i.e., facilities serving no customer.

Assume that there are k ≥ 1 such facilities. We then compute, for each non-empty

facility j, the total amount of CO2 emitted from the vehicles departing from it, called

as ej . k facilities having the largest ej values are determined and from each such fa-

cility a single customer causing the highest CO2 emission is selected and reallocated

to one of the empty facilities. So, in this initial step, we do k many transfers at the

same time. After all the transfers, initially the Location Step of the ALA heuristic

is applied as a result of which the empty facilities become non-empty and each of

them (possibly) gets closer to one of the facilities that cause a high amount of CO2

emission. This may result in other reallocations of the customers during the following

steps of the ALA heuristic and therefore may lead to a further reduction in the total

amount of CO2 emitted in the distribution system.

Second, after handling the empty facilities if there are any, the customers that are to

be transferred to their second nearest facilities are selected. In this step, in addition

to the ∆i values used in the original approach, we also take the speeds of the vehicles

sent to the customers into account. Our aim here is that if vehicle i is emitting a
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Algorithm 2 Transfer Heuristic Part 1
1: procedure TRANSFER(G, p, X0, D, NT , N ′T )

2: Let Z be the index set of the empty facilities.

3: Let ej be the total amount CO2 emitted from vehicles departing from facility

j, j ∈ J \ Z.

4: Let jz, z ∈ Z be the indices of the |Z| facilities with the highest emission

values.

5: For each z ∈ Z, select among the customers served by facility jz the one that

causes the highest amount of CO2 emission and reallocate it to facility z.

6: Call the ALA heuristic starting with the Location Step and let X1 denote the

set of locations of the facilities in the returned solution.

7: X ← X1.

8: for i← 1 to n do

9: Let d1i be the distance of customer i to its closest facility.

10: Let d2i be the distance of customer i to its second closest facility.

11: Let ∆i = d2i − d1i .
12: end for

13: Sort ∆i’s in non-decreasing order and let r1i , i ∈ I be the rank of customer i

in the sorted list. Denote by S, the set of indices i of customers with r1i ≤ N ′T .

14: For each i ∈ S, compute wivi and let r2i be the rank of customer i when the

N ′T customers are ordered according to non-increasing values of wivi.

15: Sort r1i × r2i ’s where i ∈ S in non-decreasing order and let r3i be the rank of

customer i in the ordered list.
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Algorithm 2 Transfer Heuristic Part 2
16: for k ← 1 to NT do

17: Reallocate customer i having r3i = k to its second closest facility.

18: Call the ALA heuristic starting with the Location Step and let Xk+1

denote the set of locations of the facilities in the returned solution.

19: if The the solution is not improved then

20: Return the transfered customer to its original facility (i.e., take the

locations of the facilities given in X1 and allocate each customer to its closest

facility.).

21: else

22: X ← Xk+1.

23: break

24: end if

25: end for

26: end procedure

high amount of CO2 due to its speed, a small decrease in this speed may result in a

significant reduction in the emission. For this purpose, we first rank the customers in

the order of non-decreasing values of ∆i and let r1i denote the rank of customer i. We

then rank all the customers with r1i values less than or equal to N ′T , where NT ≤ N ′T ,

in the order of non-increasing wi × vi values and let r2i denote the resulting rank

of customer i. Finally we rank the customers in non-decreasing r1i × r2i values and

denote by r3i the resulting rank of customer i. The customers are transferred one after

another in the order of non-decreasing r3i values. For ease of reference, the notation

specific to the transfer heuristic is summarized in Table 3.1.

The details of the proposed transfer heuristic are given in Algorithm 2. The inputs of

the algorithm are the vector of the customers’ locations, G, the number of facilities to

be located, p, the vector of initial facility locations, X0, the vector of the customers’

deadlines, D, the maximum number of trials that will be made, NT , and an integer

N ′T satisfying NT ≤ N ′T . Here N ′T is a parameter used to make sure that a customer

with rank r1i > N ′T will not be considered in any of the trials. If N ′T is taken as n,

then this parameter can be dropped from the algorithm.

52



Table 3.1: Notation used in the transfer heuristic

Notation Description

NT Maximum number of trials in each repetition

d1i Distance of customer i to its closest facility

d2i Distance of customer i to its second closest facility

∆i Difference between distance from closest and second closest facility for

customer i, i.e., ∆i = d2i − d1i
r1i Rank of customer i when all customers are ordered in non-decreasing ∆i

values

N ′T Number of candidate customers for transfer

r2i Rank of candidate customer i when the candidate customers are ordered

in non-increasing wi × vi values

r3i Rank of candidate customer i when the candidate customers are ordered

in non-decreasing r1i × r2i values

repmax Maximum number of repetitions
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In Algorithm 2, the empty facilities are handled between Steps 2 and 7. The r1i values

are computed between Steps 8 and 13. The r2i values are computed in Step 14 and the

order of the customers that will be transferred one after another is determined in Step

15. Finally between Steps 16 and 25, trials are made until an improving solution is

found or a maximum number NT of trials is reached. The output of the algorithm is

the final locations of the facilities, X , and the vector of allocations of the customers

(which is not explicitly stated in the algorithm).

Each call of Algorithm 2 is called a repetition. In the implementation of the transfer

heuristic in our computational experiments, repetitions continue until no improve-

ment is obtained or a maximum number of repetitions is reached (whichever occurs

first). Therefore, we take the maximum number of repetitions of Algorithm 2, denoted

by repmax, as a parameter in our computational experiments reported in Section 3.3.

3.2.2.4 Decomposition

The decomposition heuristic, proposed in Drezner et al. (2016), is an improvement

heuristic. It aims to improve a given initial solution by decomposing the set of cus-

tomers into smaller groups. This is done by selecting a predetermined p̂ < p number

of facilities and taking the union of the customers allocated to these facilities. A

smaller size (reduced) problem is solved with an exact or a heuristic approach by

considering only these customers and as a result the selected p̂ facilities are relocated

(the locations may remain the same as well). If no improvement is obtained, then

another trial is performed with another set of p̂ facilities. Trials continue until some

stopping criterion is met.

We apply the decomposition heuristic for the MF-GWP in the following way. After

p̂ facilities are selected, we use the LS to solve the reduced problem as an MIS-

OCP problem by drawing circles only around the selected facilities. As solving an

MISOCP problem is expensive, we take the p̂ value as 2 in our computational experi-

ments. In each iteration of the LS, if any improvement is observed, we apply the ALA

heuristic on the new solution. Trials continue by selecting a new pair of facilities until

exactly ND many trials are made.
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Table 3.2: Notation used in the decomposition heuristic

Notation Description

p̂ Number of facilities selected for the decomposition heuristic

β Ratio of the area of the reduced search space to that of the original search

space

s(j1, j2) Number of potential customers whose allocations may change when the

decomposition is applied for the facilities j1 and j2

ND Maximum number of trials

In the decomposition heuristic, the pairs of facilities are selected in the following way.

First, a common value, r, is determined as the radii of the circles. Then for each pair

of facilities j1 < j2, a score s(j1, j2) is computed. For each customer of facility j1

(j2), if it has a chance to be assigned to facility j2 (j1) in the reduced problem, then

the value of s(j1, j2) is increased by 1. More formally, assuming that customer i is

originally assigned to facility j1, if

‖(ai, bi)− (xj2 , yj2)‖ − r ≤ ‖(ai, bi)− (xj1 , yj1)‖+ r (3.14)

holds true, then customer i’s allocation may change in the solution of the reduced

problem, and hence s(j1, j2) is increased by 1. After their computation, we sort the

s(j1, j2) values in non-increasing order, and in the first trial, the pair of facilities j1

and j2 having the largest s(j1, j2) value is selected. Then the pair of facilities with

the second largest s(j1, j2) value is selected and trials continue until ND trials are

made. The idea behind using such a scoring function is as follows. If the number

of customers that are close to the border of a pair of facilities is higher, the chance

of improving the solution of the reduced problem may be greater as a slight change

in the locations of the facilities may lead to a change in the allocations of more cus-

tomers. Changes in the allocations, in turn, result in another change in the locations

of the facilities followed by possibly reallocations of more customers during the steps

of the ALA heuristic which is performed after the decomposition. Once the ALA

heuristic converges to a local solution, another decomposition trial is performed by

choosing the next pair of facilities. For ease of reference, the notation specific to the
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decomposition heuristic is summarized in Table 3.2.

Algorithm 3 Decomposition Heuristic
1: procedure DECOMPOSITION(G, p, X0, D, r, ND)

2: For each pair of facilities j1 < j2, compute the score of the pair s(j1, j2).

3: Sort the scores in non-increasing order and let jk1 and jk2 be the pair of facili-

ties having the kth largest score.

4: for k ← 1 to ND do

5: Take the locations of the facilities given in Xk−1 and allocate each cus-

tomer to its closest facility.

6: Let Gk be the set of customers served by facilities jk1 and jk2 .

7: Solve the reduced problem with the customers inGk as an MISOCP prob-

lem by drawing circles with radii r around facilities jk1 and jk2 .

8: Let the solution be Xk.

9: if Xk−1 6= Xk then

10: Call the ALA heuristic and update Xk.

11: end if

12: end for

13: X ← Xk.

14: end procedure

The details of the proposed decomposition heuristic is presented in Algorithm 3. The

inputs of the algorithm are the vector of the customers’ locations, G, the number of

facilities to be located, p, the vector of initial facility locations, X0, the vector of the

customers’ deadlines, D, the radii of the circles, r, and the maximum number of trials

that will be made, ND.

In Algorithm 3, the scores are computed for each pair of facilities in Step 2 and are

sorted in Step 3. After selecting a pair of facilities, the reduced problem is solved

in Step 7. If the locations of the facilities change, then the ALA heuristic is called

in Step 10. The algorithm stops when ND decomposition trials are performed. The

output of the algorithm is the final locations of the facilities, X , and the vector of

allocations of the customers (which is not explicitly stated in the algorithm).
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3.3 Computational Results

In this section, we compare the exact and heuristic solution methods for the MF-GWP

in terms of solution quality and time. The results of the computational experiments

are presented on test instances generated from three data sets taken from the literature.

These data sets are

1. the Lozano data set with n = 49 customers (Lozano et al. 1998),

2. the Ruspini data set with n = 75 customers (OR Library), and

3. the Bongartz data set with n = 287 customers (Bongartz et al. 1994).

In addition to the customer locations, wi values are also provided in these data sets.

In the Ruspini data set, each wi is equal to 1. In the Bongartz data set, wi’s are integer

but not all the same. In the Lozano data set, however, the wi values are fractional and

add up to 1. We solve the instances of the Lozano data set with the original wi values

as well. Note that one can also multiply the wi’s in the Lozano data set by a suitable

number, say θ, to turn them into integers which inflates the objective function values

by θ but does not change the optimal solution.

The computational experiments are run on a computer with 3 GHz speed and 16Gb

RAM. Heuristics are coded in C++ while CPLEX 12.6 IBM (2012) with default pa-

rameters is used to solve the MISOCP problems.

The values of the parameters used in the emission calculations are the same as those

provided in Section 2.3 assuming that the vehicles are homogenous.

To compare the performances of the proposed algorithms with that of the exact so-

lution method, i.e., the MISOCP formulation given in Section 3.2.1, we first solve

small size instances.

3.3.1 Small Size Instances

The small size instances are generated from the Lozano data set by taking a subset of

the customers and fixing the number of facilities to be located. For each customer i,
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the big-M value in the MISOCP formulation, Mi, is taken as the maximum distance

between customer i and the other customers. The instances are solved under three

different deadline settings:

1. no deadline (no DL),

2. wide deadlines (wide DL), and

3. tight deadlines (tight DL).

For the no deadline setting, the deadlines are taken as infinity. For the other settings,

the deadlines, i.e., the di values, are determined as follows. First, the instance with

n = 30 customers and p = 3 facilities is solved with the MISOCP formulation

without imposing any deadlines and the best solution obtained within 4 hours is taken.

Denoting by ti the time it takes vehicle i to reach customer i in the MISOCP solution

obtained, di is taken as ti × δi, where δi is chosen uniformly at random from the

interval [0.75, 1.25] for the wide deadlines setting, and from the interval [0.5, 1] for

the tight deadlines setting.

The run time of the solver on solving an instance is limited to 4 hours, i.e., 14400

seconds.

In the first set of computational experiments, the instances are solved using the MIS-

OCP formulation with and without the SB constraints given in (3.10) under no dead-

line setting and the results are given in Table 3.3. The gap values for unsolved in-

stances are the relative optimality gaps returned by CPLEX at the termination when

the 4 hour time limit is reached. While the MISOCP formulation without the SB

constraints is able to solve only 3 of the 8 instances to optimality within 4 hours, the

formulation with the SB constraints is able to solve 5 of them to optimality. With the

addition of the SB constraints, the computational times to solve the instances with

n = 20 and p = 3, n = 25 and p = 2, and n = 30 and p = 2 decreased from 694

seconds to 512 seconds, from 62 seconds to 38 seconds, and from 2098 seconds to

1602 seconds, respectively. Moreover, instances with n = 20 and p = 4 and n = 25

and p = 3 are solved within 11920 and 8455 seconds, respectively, after the intro-

duction of the SB constraints. These two instances are not solvable without the SB
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Table 3.3: Performance of the MISOCP formulation in solving small size instances

with and without the SB constraints

Instance WO SB Constraints With SB Constraints

n p Time (s) GAP (%) Time (s) GAP (%)

20 3 694 0.0 512 0.0

20 4 14400 18.2 11920 0.0

20 5 14400 45.8 14400 37.8

25 2 62 0.0 38 0.0

25 3 14400 2.7 8455 0.0

25 4 14400 46.9 14400 43.6

30 2 2098 0.0 1602 0.0

30 3 14400 39.3 14400 32.0

constraints within 4 hours. As the SB constraints are effective in reducing the compu-

tational times, they are always included in the MISOCP formulation in the following

experiments.

In the second set of experiments, the performance of the MISOCP formulation is

evaluated under three deadline settings. The results are displayed in Table 3.4. It can

be seen from the table that the instances become easier to solve as the deadlines get

tighter. While the MISOCP formulation is able to solve only 5 instances to optimality

within 4 hours under no deadline setting, it is able to solve 7 instances to optimality

under wide deadlines setting. The only instance that is unsolvable within 4 hours

under wide deadlines setting is the instance with n = 25 and p = 4 for which the

relative optimality gap at the termination is 10.4%. All of the instances are solved

to optimality under tight deadlines setting. The decrease in the computational times

(given in seconds in the table) is also notable as the deadlines get tighter. As an

example, the instance with n = 30 and p = 2 is solved within 1602 seconds, 158

seconds, and 22 seconds under no deadline setting, wide deadlines setting, and tight

deadlines setting, respectively.

For the instances that are solved to optimality within 4 hours, the (optimal) objective
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Table 3.4: Performance of the MISOCP formulation in solving small size instances

under different time limit settings

Instance No DL Wide DL Tight DL

n p OFV Time v̄ OFV Time v̄ OFV Time

20 3 2.020 512 62.7 2.154 58 69.4 2.207 41

20 4 1.636 11920 58.4 1.704 868 63.2 1.740 470

20 5 NA 14400 58.3 1.392 3951 62.5 1.415 1844

25 2 3.435 38 95.4 4.675 10 125.4 6.289 9

25 3 2.711 8455 59.4 2.736 182 68.8 2.837 105

25 4 NA 14400 NA NA 14400 66.5 2.284 4473

30 2 4.799 1602 86.7 6.440 158 123 8.829 22

30 3 NA 14400 61.1 3.972 4458 68.2 3.994 648

function values (OFV) in kg and the average speeds of the vehicles (v̄) in km/h are

also given in Table 3.4. The total CO2 emission in the distribution system increases

as the deadlines get tighter. This is expected, as in order to arrive at the customer

on time, the vehicles may need to speed up resulting in higher emissions. Under no

deadline setting, all the vehicles travel at the optimal speed, i.e., 55.2 km/h. As the

deadlines get tighter, the average speeds of the vehicles increase. For example, for

the instance with n = 25 and p = 3, the average speed increases from the optimal

speed to 59.4 km/h under wide deadlines setting and further increases to 68.8 km/h

under tight deadlines setting.

We compare the performances of the ALA heuristic, the local search (LS) heuris-

tic, and the MISOCP formulation (with the SB constraints) on the generated small

size instances under no deadline setting. For the LS heuristic which aims to improve

the solution of the ALA heuristic, four alternatives are considered to see the effects

of variable fixing and the use of smaller big-M values on the computational perfor-

mances:

1. LS with no tuning, i.e., with standard big-M values and no variable fixing,

(ALA-LS-N),
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2. LS with the use of smaller big-M values (ALA-LS-M),

3. LS with variable fixing (ALA-LS-F), and

4. LS with both variable fixing and the use of smaller big-M values (ALA-LS-B).

In the LS heuristic, we choose the radius of each circle r in such a way that the ratio

of the search area of the reduced search space to that of the original search space is

equal to a predetermined constant β, i.e.,

β =
p× πr2

Original Area
.

For the ALA heuristic and the alternatives of the LS heuristic, 10 replications are per-

formed. In each instance, the same 10 initial solutions each consisting of randomly

generated p facility locations are used for the heuristics to be able to make a fair com-

parison. For the alternatives of the LS heuristic, β is taken as 0.2. Each iteration of the

LS heuristic is given a 1 hour time limit. If the best solution found by CPLEX within

1 hour is not an improving solution, then the LS heuristic terminates. In Table 3.5,

the average computational time and the average percent deviation (% dev) from the

best solution out of 10 replications are displayed for the heuristics. Note that for each

instance, the best solution will be the solution obtained by the MISOCP formulation

if it is able to find the optimal solution within 4 hours. Otherwise, the best solution

is obtained by taking the solution of the MISOCP formulation (not necessarily the

optimal solution) and the heuristics’ solutions for all 10 replications into account.

When the computational times of the heuristics are examined in Table 3.5, it can be

seen that the ALA heuristic is the fastest one as expected. For the alternatives of

the LS heuristic, ALA-LS-B is the fastest and ALA-LS-N is the slowest one. The

variable fixing is more effective in reducing the computational time than the use of

smaller big-M values. The best results for the LS heuristic are obtained by using

smaller big-M values in addition to variable fixing.

When the average percent deviations are examined, it can be seen that the solutions

found within 4 hours by the MISOCP formulation for the instances with n = 20 and

p = 5 and n = 25 and p = 4 are not optimal as the percent deviations of these

solutions are 1.6 and 4.8, respectively. That is, the best solutions for these 2 instances

are obtained by the heuristics. Moreover, the solutions found by the ALA heuristic
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Table 3.5: Performances of the MISOCP formulation, the ALA heuristic, and the LS

heuristic with different alternatives

Instance Time (s) (Deviation (%))

n p Exact ALA ALA-LS-N ALA-LS-M ALA-LS-F ALA-LS-B

20 3 512 (0.0) 0.5 (4.5) 135.4 (3.4) 20.3 (3.4) 3.5 (3.4) 1.4 (3.4)

20 4 11920 (0.0) 0.4 (4.6) 515.7 (1.8) 284.0 (1.8) 5.1 (1.8) 3.2 (1.8)

20 5 14400 (1.6) 0.5 (3.8) 1449.6 (1.0) 30.2 (1.0) 5.8 (1.0) 4.1 (1.0)

25 2 38 (0.0) 0.6 (1.7) 147.5 (0.0) 30.2 (0.0) 3.9 (0.0) 2.2 (0.0)

25 3 8455 (0.0) 0.5 (6.4) 6319.9 (1.2) 1394.6 (1.2) 17.1 (1.2) 8.1 (1.2)

25 4 14400 (4.8) 0.6 (9.3) 5769.8 (9.1) 2178.4 (6.1) 47.1 (5.1) 16.0 (5.1)

30 2 1602 (0.0) 0.4 (2.6) 1798.4 (0.2) 98.2 (0.0) 33.6 (0.0) 8.3 (0.0)

30 3 14400 (0.0) 0.5 (2.5) 6130.8 (1.1) 4383.4 (0.5) 229.0 (0.5) 11.0 (0.5)

are successfully improved by the LS heuristics as the average percent deviation values

are smaller for the LS heuristics.

Table 3.6 displays the number of times (out of 10 replications) each heuristic finds

the best solution. For the instance with n = 20 and p = 3, the ALA heuristic finds

the optimal solution in only one replication. The alternatives of the LS heuristic are

able to improve the ALA solutions and find the optimal solution in 6 replications.

For the instances which are not solved to optimality within 4 hours by the MISOCP

formulation, the values in parenthesis in Table 3.6 represent the number of times

(out of 10 replications) each heuristic finds a solution which is at least as good as

the solution provided by the MISOCP formulation. For the instance with n = 20 and

p = 5, while the ALA heuristic is able to find the best solution in only one replication,

it finds solutions that are at least as good as the solution of the MISOCP formulation

in 5 replications. For the instance with n = 25 and p = 2, all 4 alternatives of the LS

heuristic find the best solution (which is optimal) in all replications.

We investigate the effect of the value of β on the solution quality and time of the LS

heuristic on the Lozano instance with n = 49 and p = 4. As the β values, we use 0.05

and 0.1 resulting in the radii values of 6.3 and 8.9, respectively. For both beta values,

the same five initial solutions each consisting of randomly generated 4 facility loca-
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Table 3.6: Comparison of the ALA heuristic and alternatives of the LS heuristic in

terms of the number of times the best solution is found

Instance # of Times Best (No Worse Than Exact) Solution Found

n p ALA ALA-LS-N ALA-LS-M ALA-LS-F ALA-LS-B

20 3 1 6 6 6 6

20 4 1 6 6 6 6

20 5 1 (5) 6 (9) 6 (9) 6 (9) 6 (9)

25 2 2 10 10 10 10

25 3 3 9 9 9 9

25 4 3 (3) 3 (3) 4 (4) 5 (5) 5 (5)

30 2 0 7 9 9 9

30 3 2 (2) 3 (3) 4 (4) 4 (4) 4 (4)

Table 3.7: Performance of the LS heuristic with different β values for the problem

instance with n = 49 and p = 4

Rep. β ALA OFV ALA t LS # Iter. LS OFV LS t % Imp.

1 0.05 8.229 0.7 2 8.223 60.1 0.1

2 0.05 8.685 1.6 1 8.685 3.6 0.0

3 0.05 7.775 1.5 2 7.750 18.7 0.3

4 0.05 9.548 0.7 7 8.682 42.5 9.1

5 0.05 8.655 0.8 7 7.802 21.2 9.9

1 0.10 8.229 0.7 2 8.223 1950.5 0.1

2 0.10 8.685 1.6 3 8.659 5553.7 0.3

3 0.10 7.775 1.5 2 7.750 518.7 0.3

4 0.10 9.548 0.7 6 8.657 9457.5 9.3

5 0.10 8.655 0.8 6 7.750 608.7 10.5
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tions are used. In other words, 5 replications are made with each beta value. In each

replication, first, the random solution is improved by the ALA heuristic. Then the LS

heuristic is run on the ALA solution. If an improved solution is found, then the LS

heuristic is repeatedly run (with the same r value) on the newly obtained solution until

no improvement is observed. The results of this computational experiment are given

in Table 3.7. Here, the objective function values (in kg) obtained by the ALA and the

LS heuristics are given in columns titled as “ALA OFV” and “LS OFV”, respectively.

The column “% Imp.” displays the average percent improvement obtained over the

ALA objective function value by the LS heuristic. The computational time (in s) of

the ALA and the LS heuristics are given in columns titled as “ALA t” and “LS t”,

respectively. The column “LS # Iter.” displays the number of LS iterations, i.e., the

number of times circles are drawn around the facility locations, until no improvement

is obtained.

When Table 3.7 is examined, it can be seen that the computational time of each of the

replications increases by a factor of at least 27 when β is increased from 0.05 to 0.1. In

contrast, we do not see such a huge increase in percent improvement values when β is

increased. For each beta value, the percent improvement values are close to 10 in two

replications. In the other replications, the percent improvement values are very small.

It can be seen from the table that in its current form, the LS heuristic is expensive as

even when β is equal to 0.05 the computational time of it is much larger than that of

the ALA heuristic. For this purpose, in the following experiments, instead of using

the LS heuristic by itself, we use it as a subroutine in the decomposition heuristic as

discussed in Section 3.2.2.4.

We now compare the performances of the ALA heuristic, the transfer heuristic, and

the decomposition heuristic on the Lozano data set with n = 49 customers and with

different number of facilities p = 3, . . . , 10. Each replication of the ALA heuristic

starts with a randomly generated initial solution. The solution obtained by the ALA

heuristic, called as the ALA solution, is then taken as the initial solution of the trans-

fer heuristic. Therefore the transfer heuristic can be considered to contain 2 stages,

namely the ALA stage and the transfer stage. Similarly, the solution obtained by the

transfer heuristic, called as the transfer solution, is taken as the initial solution for

the decomposition heuristic. This is how we implement the decomposition heuristic
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Table 3.8: Average computational time spent in different stages over 10 replications

for the problem instances with n = 49

p Av. ALA t Av. TR t Av. DE t Av. Total t

3 0.93 5.57 36.04 42.54

4 0.90 6.23 55.58 62.70

5 1.32 7.54 8.11 16.97

6 1.30 7.97 7.59 16.86

7 1.39 7.44 7.58 16.41

8 1.76 9.35 5.51 16.62

9 1.74 10.11 6.37 18.23

10 1.84 9.00 5.81 16.66

from now on and therefore we say that the decomposition heuristic consists of the

ALA stage, the transfer stage, and the decomposition stage. As we move from the

randomly generated solution to the ALA solution and then to the transfer solution, and

finally to the decomposition solution, the objective function value never increases.

For each instance, 10 replications are performed with different randomly generated

initial solutions. The parameters NT and N ′T used in the transfer stage are taken as 10

and 20, respectively. We take the maximum number of repetitions in the transfer stage

as 4. After the transfer stage, we apply the decomposition stage with ND equal to 3.

The β value in the decomposition stage is taken as 0.15. To determine the customers’

deadlines, the instance with p = 3 without any customer deadline is solved using the

decomposition heuristic for 10 replications. Taking ti from the best solution obtained

among the 10 replications, di is calculated as ti × δi, where δi is chosen uniformly at

random from the interval [0.5, 1] for each customer i. The obtained di values are used

in all instances.

In Table 3.8, the average (over 10 replications) computational time spent in each stage

(columns 2, 3, and 4), as well as the average total solution time (column 5), i.e., the

sum of the computational times spent in the ALA, transfer, and the decomposition

stages, are given. The table shows that the ALA stage is the fastest and the average
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Table 3.9: Objective function values of the best solutions in different stages and aver-

age percent improvements obtained with respect to the solution of the previous stage

over 10 replications for the problem instances with n = 49

p
Av. ALA

%imp
Min ALA

Av. TR

%imp
Min TR

Av. DE

%imp
Min DE

3 53.41 9.88 2.30 9.88 0.25 9.88

4 52.67 7.77 2.98 7.75 0.61 7.75

5 60.15 6.49 2.78 6.48 0.27 6.48

6 51.52 5.49 6.80 5.35 1.88 5.35

7 51.79 4.95 5.77 4.77 2.15 4.73

8 53.58 4.35 3.01 4.33 2.18 4.30

9 54.02 3.96 4.58 3.92 2.03 3.91

10 54.49 3.77 4.66 3.71 3.02 3.69

computational time spent in the ALA stage increases with p. A similar increase in

the average computational time can be more or less seen in the transfer stage. For the

decomposition stage, the average computational times are the highest when p is 3 or

4. This can be attributed to the larger size reduced problems solved when p is small.

Note, however, that for larger size instances (see Section 3.3.2), we did not observe

such a behaviour in the decomposition stage.

Table 3.9 shows the objective function value of the best solution found (over 10 repli-

cations) in all stages and the average percent improvement in the objective function

value as we move from one stage to the next. The columns titled as “Av. ALA %imp”,

“Av. TR %imp”, and “Av. DE %imp” show the average percent improvement (over

10 replications) of the objective function value as we go from the random initial so-

lution to the ALA solution, from the ALA solution to the transfer solution, and from

the transfer solution to the decomposition solution, respectively. The columns titled

as “Min ALA”, “Min TR”, and “Min DE” show the objective function value of the

best solution found in the ALA, transfer, and decomposition stages, respectively. In

the table, bold values indicate that the best solution found by a stage improves upon

that found by the previous stage.
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Figure 3.2: Amount of CO2 emission of the distribution system with respect to the

number of facilities for the problem instances with n = 49
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Examining Table 3.9, we can observe that the best solution found during the ALA

stage is improved by the transfer heuristic in most of the instances. On the other

hand, in half of the instances, the best solution found during the transfer stage is

improved by the decomposition heuristic. Note that the instances in which the de-

composition improves the best transfer solution are the instances with the larger p

values. Compared to the average percent improvements during the transfer stage,

the improvements during the decomposition stage are smaller. Consider the problem

instance with p = 6. Here, the average percent improvement the transfer stage has

obtained on the ALA solutions is 6.80 and the best transfer solution (which has an

ofv of 5.35) is better than the best ALA solution (which has an ofv of 5.49). While

the decomposition stage has obtained a 1.88% improvement on the transfer solutions

on average, it has found no better solution than the best transfer solution. In another

instance with p = 8, the best solution of the decomposition stage (which has on ofv

of 4.30) is better than that of the transfer stage (which has on ofv of 4.33).

For the problem with n = 49, when we investigate the amount of CO2 emitted in

the distribution system with respect to the number of facilities that are opened, it

can be seen that the marginal reduction in the CO2 amount for each increase in the

number of facilities decreases as p gets larger (See Figure 3.2). A decision maker can

compare the cost of opening an additional facility with the marginal reduction in the

CO2 amount emitted in the distribution system to determine the number of facilities

that will be opened.

3.3.2 Medium and Large Size Instances

We provide the results of our computational experiments on instances generated from

the Ruspini and Bongartz data sets by taking all of the customers, i.e., n = 75 for

the former and n = 287 for the latter, and different p values. For the Ruspini and

Bongartz data sets, the number of facilities, p, is taken from the sets {3, 4, . . . , 15}
and {3, 4, . . . , 10, 15, 20, 25, 30}, respectively. For these instances, we determine the

β value by keeping the product of β and the number of customers, n, in different

instances approximately the same as the product 0.15 × 49 we had for the instances

with n = 49.
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Similar to the last experiment done in Section 3.3.1, we compare three solution meth-

ods, namely the ALA heuristic, the transfer heuristic, and the decomposition heuristic,

where the transfer heuristic has two stages (the ALA stage and the transfer stage) and

the decomposition heuristic has three stages (the ALA stage, the transfer stage, and

the decomposition stage).

For each data set, to determine the customers’ deadlines, the instance with p = 3

without any customer deadline is solved using the decomposition heuristic for 10

replications. Taking ti from the best solution obtained from the 10 replications, `i is

set to ti × δi, where δi is chosen uniformly at random from the interval [0.5, 1] for

each customer i. Once the deadlines are determined for a data set, they are used in all

the instances generated from that data set.

In the computational experiments, 10 replications are performed for each instance in

each data set. The parameters NT and N ′T used in the transfer stage are set to 10 and

20, respectively, and the maximum number of repetitions in the transfer stage is taken

as 2 for each instance of each data set. The decomposition parameters ND and β are

taken as 3 and 0.10, respectively, for the instances of the Ruspini data set and as 2 and

0.025, respectively, for the instances of the Bongartz data set.

We first report the computational results for the instances of the Ruspini data set. In

Table 3.10, the average (over 10 replications) computational time spent in each stage

(columns 2,3,4) and the average total solution time (column 5) are given. It can be

seen from the table that as p gets larger, the average time spent in each stage increases

in general. Note that the increase in the average time spent in the decomposition stage

is less regular. Moreover, while the ALA stage is the fastest stage, the average time

spent in the decomposition stage constitutes the biggest portion of the average total

solution time.

Table 3.11 shows the objective function values of the best solution found (over 10

replications) in all stages and the average percent improvement in the objective func-

tion values as we move from one stage to the next. The column titles are the same as

those in Table 3.9. Similarly, the bold values indicate that the best solution found by

a stage improves upon that found by the previous stage.
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Table 3.10: Average computational time spent in different stages over 10 replications

for the problem instances with n = 75

p Av. ALA t Av. TR t Av. DE t Av. Total t

3 0.8 4.4 5.6 10.7

4 0.9 5.0 22.4 28.3

5 1.2 6.7 28.5 36.4

6 1.4 7.4 53.7 62.5

7 1.5 8.0 58.2 67.7

8 2.1 6.9 65.9 74.9

9 1.8 6.8 64.6 73.2

10 2.7 10.3 65.2 78.2

11 3.5 12.5 66.0 82.0

12 3.7 15.2 73.1 91.9

13 3.5 18.4 67.3 89.3

14 4.3 19.3 54.0 77.7

15 5.0 26.9 74.2 106.1
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Table 3.11: Objective function values of the best solutions in different stages and

average percent improvements obtained with respect to the solution of the previous

stage over 10 replications for the problem instances with n = 75

p
Av. ALA

%imp
Min ALA

Av. TR

%imp
Min TR

Av. DE

%imp
Min DE

3 76.4 756.5 1.3 756.5 0.0 756.5

4 67.1 528.2 6.5 417.9 18.3 417.9

5 78.8 364.9 2.4 364.9 7.6 364.9

6 82.4 317.5 1.7 317.5 8.5 317.1

7 88.0 282.5 12.9 282.1 0.3 282.0

8 76.9 260.4 7.8 260.4 0.7 260.4

9 81.7 256.2 14.9 239.7 1.4 239.5

10 68.8 239.6 13.8 225.2 1.0 225.1

11 79.6 232.4 20.5 204.3 1.0 204.3

12 79.9 251.7 22.3 195.3 1.5 195.3

13 79.5 223.8 19.2 189.4 0.9 187.9

14 75.7 232.4 25.3 176.4 0.6 175.9

15 75.1 214.9 27.6 171.5 1.2 171.4
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Examining Table 3.11, we can observe that the best solution found during the ALA

stage is improved by the transfer heuristic in 9 out of 13 instances. On the other hand,

in 7 of the instances, the best solution found during the transfer stage is improved (by

a small amount) by the decomposition heuristic. Compared to the average percent

improvements during the transfer stage, the improvements during the decomposition

stage are much smaller.

Note that the customer locations in the Ruspini data set are clustered into 4 groups.

For this reason, if a random initial facility location falls outside of the clusters, it may

remain empty in the ALA solution. The issue with the empty facilities are handled

during the transfer stage, and therefore we observe huge average percent improve-

ments by the transfer heuristic over the ALA solution for large p values. In the Bon-

gartz data set, however, the customer locations are scattered on the plane and therefore

the facilities are not likely to remain empty in the ALA solution. For this data set,

the improvements obtained during the transfer stage will be mainly due to customer

transfers to non-empty facilities.

Figure 3.3 displays how the amount of CO2 emission changes as the number of facil-

ities, p, increases. In this figure, we observe a huge decrease in the amount of CO2

emission when p is increased from 3 to 4. This is in accordance with our expectations

as there are 4 clusters of customers in this data set. In general, the marginal decrease

in the emission amount as p is increased by 1 gets smaller as p gets larger.

As an additional experiment, for the instance with p = 10 of the Ruspini data set, 500

replications are performed. Figure 3.4 displays the histograms of the objective func-

tion values of the ALA, transfer, and decomposition solutions. The histogram clearly

shows how the ALA solutions are improved by the transfer heuristic, and how the

transfer solutions are improved by the decomposition heuristic. In this experiment,

the average percent improvement of the transfer heuristic on the ALA solutions is

equal to 14.8; and the the average percent improvement of the decomposition heuris-

tic on the transfer solutions is equal to 1.3.

We report the computational results for the instances of the Bongartz data set. For

these computational experiments, during each trial of the decomposition stage, a time

limit of 2 minutes is imposed on the reduced MISOCP problem and the best solution
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Figure 3.3: Amount of CO2 emission of the distribution system with respect to the

number of facilities for the problem instances with n = 75
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Figure 3.4: Histograms of the objective function values of the ALA, transfer, and

decomposition solutions for 500 replications for the instance with p = 10 of the

ruspini data set.
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Table 3.12: Average computational time spent in different stages over 10 replications

for the problem instances with n = 287

p Av. ALA t Av. TR t Av. DE t Av. Total t

3 2.8 8.4 240.9 252.1

4 5.0 11.8 241.5 258.3

5 6.5 15.2 242.5 264.2

6 9.8 18.2 243.5 271.5

7 11.9 28.4 244.3 284.6

8 14.9 30.4 243.8 289.1

9 19.6 34.9 243.6 298.1

10 21.7 48.5 242.3 312.5

15 53.2 91.3 250.8 395.3

20 94.7 102.4 253.2 450.3

25 200.1 288.2 259.4 747.7

30 244.1 394.9 289.9 928.9

obtained within the time limit is taken as the solution of the reduced problem. In

Table 3.12, the average (over 10 replications) computational time spent in each stage

(columns 2,3,4) and the average total solution time (column 5) are given. It can be

seen from the table that as p gets larger, the average time spent in the ALA and the

transfer stages increases. The increase in the average time spent in the decomposition

stage is less notable because of the imposed time limit.

Table 3.13 shows the objective function values of the best solutions found (over 10

replications) in all stages and the average percent improvement in the objective func-

tion values over 10 replications as we move from one stage to the next. Examining

Table 3.13, we can observe that the best solution found during the ALA stage is im-

proved by the transfer heuristic in 9 out of 12 instances. On the other hand, in 8 of the

instances, the best solution found during the transfer stage is improved by the decom-

position heuristic. As an example, consider the instance with p = 3. For this example,

the best solution found by the ALA, transfer, decomposition heuristics have objective

function values of 5895.5, 5704.9, and 5597.5, respectively. Note that the average per-
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Table 3.13: Objective function values of the best solutions in different stages and

average percent improvements obtained with respect to the solution of the previous

stage over 10 replications for the problem instances with n = 287

p
Av. ALA

%imp
Min ALA

Av. TR

%imp
Min TR

Av. DE

%imp
Min DE

3 98.2 5895.5 1.3 5704.9 1.7 5597.5

4 96.8 5454.3 1.1 5378.6 2.1 5236.7

5 94.9 5001.8 1.2 4910.4 3.8 4740.1

6 88.3 4858.1 1.2 4549.7 6.4 4370.7

7 94.3 4068.0 1.2 4068.0 4.8 4061.3

8 89.9 3909.0 0.9 3909.0 1.8 3786.9

9 89.6 3698.9 4.3 3674.4 3.4 3674.4

10 93.5 3437.4 1.4 3437.4 0.8 3437.4

15 94.2 3021.5 3.2 2947.2 1.4 2821.1

20 89.9 2708.3 3.3 2569.6 1.3 2569.6

25 94.7 2016.0 2.1 1981.0 0.4 1981.0

30 92.7 2082.8 5.4 1958.4 1.5 1912.3

cent improvements obtained by the transfer heuristic on the ALA solutions are much

smaller for this data set when compared with the Ruspini data set. This is because, in

none of the replications, except one for p = 30, an empty facility is returned by the

ALA heuristic. On the other hand, the average percent improvements obtained by the

decomposition heuristic on the transfer solutions are notable.

We investigate the performances of the ALA, transfer, and decomposition heuristics

when the total computational time is fixed. Here, we want to observe whether or

not the best solution found by doing more replications of the ALA heuristic will be

able to beat those found by doing less replications of the transfer and decomposition

heuristics within a fixed time. Similarly, we want to compare the performances of

the transfer and decomposition heuristics when the computational time is fixed. We

present the computational results for the instances of the Ruspini and Bongartz data

sets, where the total computational time for each instance is fixed to 10 and 60 min-
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Table 3.14: Best Objective function value found by different heuristics for the prob-

lem with n = 75 and fixed 10 minutes solution time

ALA TR DE

p # rep. Min OFV # rep. Min OFV # rep. Min OFV

3 951 756.5 (0.0) 126 756.5(0.0) 39 756.5(0.0)

4 726 417.9 (0.0) 93 417.9(0.0) 24 417.9(0.0)

5 512 364.9 (0.0) 80 364.9(0.0) 19 364.9(0.0)

6 433 317.1 (0.0) 66 317.1(0.0) 15 329.9(4.1)

7 373 282.0 (0.0) 68 282.0(0.0) 12 282.0(0.0)

8 306 260.4 (0.0) 63 260.8(0.2) 8 260.4(0.0)

9 251 239.6 (0.0) 58 239.7(0.0) 7 240.4(0.3)

10 219 229.9 (2.2) 45 225.1(0.0) 7 225.1(0.0)

11 188 225.9(10.6) 35 204.3(0.0) 8 204.3(0.0)

12 167 211.0 (9.9) 34 192.0(0.0) 7 195.3(1.7)

13 148 197.1 (5.8) 29 186.3(0.0) 5 190.0(2.0)

14 127 194.6 (9.3) 24 178.0(0.0) 6 180.3(1.3)

15 119 205.6(19.9) 20 171.5(0.0) 4 174.3(1.6)

77



Table 3.15: Best objective function value found by different heuristics for the problem

with n = 287 and fixed 60 minutes solution time

ALA TR DE

p # rep. Min OFV # rep. Min OFV # rep. Min OFV

3 749 5597.5 (0.0) 221 5597.5 (0.0) 12 5597.5(0.0)

4 556 5020.6 (1.6) 170 4942.1 (0.0) 12 4942.4(0.0)

5 414 4492.7 (0.0) 135 4492.7 (0.0) 10 4532.0(0.9)

6 317 4258.0 (3.5) 104 4114.9 (0.0) 12 4200.4(2.1)

7 250 3938.2 (0.1) 83 3933.9 (0.0) 10 4084.0(3.8)

8 192 3723.1 (3.4) 64 3600.1 (0.0) 12 3813.4(5.9)

9 154 3525.2 (0.0) 54 3608.3 (2.4) 11 3696.4(4.9)

10 126 3497.2 (4.0) 43 3366.7 (0.1) 10 3362.3(0.0)

15 57 2910.6 (7.0) 21 2720.9 (0.0) 8 2844.7(4.5)

20 30 2424.7 (0.6) 13 2490.4 (3.3) 6 2410.3(0.0)

25 21 2270.1(16.5) 8 1948.7 (0.0) 5 1981.0(1.7)

30 13 2073.1(21.0) 6 1949.1(13.8) 4 1713.0(0.0)
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utes, respectively. In Tables 3.14 and 3.15, the columns under the title “ALA”, “TR”,

and “DE” show the results when the instances are solved using only the ALA heuris-

tic, transfer heuristic (which has 2 stages), and decomposition heuristic (which has 3

stages), respectively. For each instance and each heuristic, the replications continue

until the fixed computational time is reached. The columns titled as “# rep.” give

the number of replications performed by the corresponding heuristic within the fixed

computational time. The columns titled as “Min OFV” give the objective function

value of the best solution found by the corresponding heuristic among the replica-

tions performed within the fixed computational time. Note that, next to the objective

function values of the best solutions found, we also report the percent deviation of

the “Min OFV” from the best solution found by all the heuristics in parenthesis. The

bold values in both tables indicate that the best solution for an instance is found by

the corresponding heuristic. Note that the best solution can be found by more than

one heuristic.

We first analyze the results for the Ruspini data set given in Table 3.14. It can be seen

from the table that the ALA heuristic finds the best solution in 7 instances. These

instances are the ones with small p values. The transfer heuristic is able to find the best

solution in all but 2 instances. For these 2 instances, the percent deviations from the

best solution found are very small. Similar to the ALA heuristic, the decomposition

heuristic finds the best solution in 7 instances. Note, however, that for large p values

the percent deviations for the decomposition heuristic are much smaller than those for

the ALA heuristic. When averages of the percent deviations of the “Min OFV” from

the best solutions found over all 13 instances are computed, it can be seen that the

transfer heuristic has the smallest value which is 0.02, the decomposition heuristic

has the second smallest value which is 0.85, and the ALA heuristic has the largest

value which is 4.44.

Consider the results of the computational experiments for the instance with p = 11

in Table 3.14. Within 10 minutes, 188 replications of the ALA heuristic is performed

resulting in the minimum objective function value of 225.9 kg. Within the same

computational time, 35 replications of the transfer heuristic and 8 replications of the

decomposition heuristic are performed resulting in the best objective function value

of 204.3 kg for both. This shows that one can prefer a smaller number replications
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of the transfer or decomposition heuristic over a larger number of replications of the

ALA when especially p is large.

We next analyze the results for the Bongartz data set given in Table 3.15. Here,

the ALA, transfer, and decomposition heuristics find the best solution in 3, 8, and

4 instances, respectively, within the 60-minute fixed computational time. While the

relative performance of the ALA heuristic gets worse as p increases, it becomes better

for the decomposition heuristic for larger p values. The averages of the percent devi-

ations of the “Min OFV” from the best solutions found over all 12 instances are 4.81,

1.63, and 1.98 for the ALA, transfer, and decomposition heuristics, respectively.

From Tables 3.14 and 3.15, it can be concluded that the transfer heuristic has the

overall best performance when the computational resources are fixed. Moreover, the

decomposition heuristic may be an alternative to the transfer heuristic when the num-

ber of facilities is large.

3.4 Application Areas of the MF-GWP and an Illustrative Example

In Section 1.1, we described some application areas of the MF-GWP without going

into the details. In this section, we show that several emission or energy consump-

tion formulae in the literature resemble the one in (2.2) and therefore the solution

approaches, in particular the MISOCP formulation proposed in Section 3.2, can be

employed directly or after some problem specific modifications in order to tackle

different planar facility location problems with emission or energy consumption con-

sierations where deliveries are made by direct shipments.

The formula in (2.2) contains terms of the form
z

v
, z, and zv2 which constitute the ob-

jective function of (GWP-NLP1) in Section 2.1.2. Thereby, the formulations (GWP-

SOCP) in Section 2.1.2 and (MF-GWP-MISOCP) in Section 3.2.1 are obtained by

linearizing techniques applied on the objective function of (GWP-NLP1) and rewrit-

ing the resulting constraints as SOCP constraints. These techniques can be also used

to handle similar nonlinear terms found in different fuel and energy consumption and

emission formulations. For example, for any integer k, one can show that an objec-

tive function containing terms of the form zvk (multiplied with non-negative constants
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for k ∈ Z/{−1, 0}) can be recast as an SOCP formulation after linearization. The

three terms we have in (2.2) are terms of the form zvk with k = −1, 0 and 2, re-

spectively. We next discuss some fuel and energy consumption formulae from the

literature where the terms in each formula are all of the form zvk.

Aktürk et al. use in their study a fuel consumption formula for aircrafts which in-

cludes terms of the form
z

v3
,
z

v2
, zv, and zv2, see Equation (2) in Aktürk et al. (2014).

The technical report written by Senzig and Cumper Senzig & Cumper (2013) fea-

tures three fuel consumption formulae for helicopters each containing terms of the

form
z

v
, z, zv, and zv2. In Tokekar et al. (2011), Tokekar et al. use an energy con-

sumption formulation for car-like robots that contains terms of the form
z

v
, z, and zv.

The study in Gürel et al. (2019) employs an energy consumption formula for material

handling robots that is of the form

µzvγ, (3.15)

where µ is a constant that depends on the type of the robot, its load, and frictional

forces and γ ≥ 1 is a constant that represents the relation between the speed and the

energy consumption of the robot. In all these mentioned areas, one can face with

problems similar to the one studied in this paper, and therefore the proposed solution

approaches may find use after problem specific adaptations. We next give another

application area involving the use of rail-guided vehicles (RGVs) within an assembly

line system, where we modify the MISOCP formulation proposed in this study in

accordance with the specifications of the problem. Moreover, we carry out some

computational experiments on an illustrative example and discuss the results.

Consider an assembly line where the feeding tasks are performed by a number of

RGVs (not necessarily homogeneous) delivering the parts directly from certain loca-

tions, namely depots, to the stations. Each station is fed by a dedicated RGV within a

given deadline and at a certain frequency. The deadlines naturally arise as a function

of the load of the RGVs and the cycle time of the assembly line. If in each trip, an

RGV carries a load that can satisfy the demand of a station for two cycles, then the

deadline of the station would be twice the cycle time of the assembly line. The energy

consumption of each RGV depends on its speed, load, and distance to the station it

feeds. The aim of the MF-GWP here is to find the optimal locations of the depots

while determining the speeds of the RGVs so as to minimize the total amount of en-
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ergy consumed by all RGVs. Figure 3.5 shows a schematic diagram of an assembly

line where the boxes and circles represent the stations and their feeding points, re-

spectively. The rectangular area in the middle is where the depots are allowed to be

established. It is assumed that the RGVs serve the stations loaded and come back to

the depots empty. Therefore the speed of an RGV when it is loaded may be different

from the one when it is empty. We take the energy consumption of an RGV as in

(3.15) with γ = 3, i.e., µzv3. For this application, the MF-GWP is reformulated with

some problem specific modifications. In this reformulation, we use some of the previ-

ously defined variables and parameters which are not redefined here. We assume that

station i is served by RGV i and µei and µli are constant coefficients differentiating

the energy consumption for the empty and loaded moves of RGV i, respectively. We

denote by σj the capacity of depot j and by λi the sum of the loading time of the

RGV i at the depot and the unloading time at station i. ti represents the time it takes

RGV i to go from depot to station i and τi represents the time it takes RGV i to come

back to the depot. wi and Li represent the delivery frequency, and the load of RGV i,

respectively. Moreover, we assume that the speed of RGV i is restricted to be in the

interval [vi, vi]. We next give a mixed-integer nonlinear programming formulation for

this problem which can be rewritten as an MISOCP problem by using the techniques

described in Sections 2.1.2 and 3.2.

min
∑
i∈I

µeiwi
z4i
τ 3i

+
∑
i∈I

µliwi
z4i
t3i

(3.16)

subject to

82



qij ≥ ‖(xj, yj)− (ai, bi)‖ ∀i ∈ I, j ∈ J (3.17)

zi ≥ qij −Mi(1− hij) ∀i ∈ I, j ∈ J (3.18)∑
j∈J

hij = 1 ∀i ∈ I (3.19)

σj ≥
∑
i∈I

wiLihij ∀j ∈ J (3.20)

(xj, yj) ∈ Pj ∀j ∈ J (3.21)

viti ≥ zi ≥ viti ∀i ∈ I (3.22)

viτi ≥ zi ≥ viτi ∀i ∈ I (3.23)

`i ≥ τi + ti + λi ∀i ∈ I (3.24)

hij ∈ {0, 1} ∀i ∈ I, j ∈ J (3.25)

ti, τi ≥ 0 ∀i ∈ I (3.26)

The objective function (3.16) minimizes the total energy consumption of RGVs con-

sidering their moves from depots to the stations and back from stations to the depots.

Constraints (3.17)-(3.19) are the same as (3.3)-(3.5) in (MF-GWP-MISOCP). Con-

straints (3.20) are the capacity constraints on depots. Constraints (3.21), which are

linear in the considered instance, restrict the possible location of facility j to the

depots area. Constraints (3.22) and (3.23) enforce the speed limits on RGVs. Con-

straints (3.24) make sure that the deadlines of the stations are respected. Note that,

one can also add the SB constraints, i.e., x1 ≤ x2 ≤ · · · ≤ xp, in order to reduce the

symmetry inherent in this formulation. Moreover, if two depot locations, say depots

j1 and j2, are to be well-separated, a constraint of the form xj2 − xj1 ≥ constant can

be added to the formulation.

We now provide the details of the illustrative example given in Figure 3.5. The co-

ordinates of the feeding points of the stations and the corners of the depots area are

given in the Appendix. For each i, the frequency wi, in 1
hour

, of the deliveries to sta-

tion i is generated uniformly at random from the interval [10, 80]. For each i, λi and

`i are taken as 30 and 3600/wi seconds, respectively. We assume that vi = 0.2m/s

and vi = 2.0m/s for each RGV i. The constants µei and µli are chosen as 1 and 2,

respectively, for every i. We assume that the loads of the RGVs are all the same, i.e.,

Li = L for all i. Solving this problem instance with 3 uncapacitated depots yields the
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Figure 3.5: The layout of the assembly line system

Figure 3.6: Solution of the uncapacitated problem
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Figure 3.7: Solution of the capacitated problem with intersecting rails

solution shown in Figure 3.6, where the locations of the depots and the allocations of

the stations to the depots are depicted. We next consider an identical capacity of 330L

for each depot and solve the problem together with the capacity constraints given in

(3.20). In this case, we obtain the solution given in Figure 3.7, where the total energy

consumption of the RGVs increased by 2.5% with respect the solution of the unca-

pacitated case. Note that, this solution is not applicable since there are intersecting

rails. One can handle this by adding problem specific constraints enforcing that the

rails must not intersect. When we add the following constraints

h11 ≥ h21 ≥ · · · ≥ h91, (3.27)

to our formulation, we obtain the solution shown in Figure 3.8. For this solution, we

observe a 7.5% increase in the energy consumption of the RGVs when it is compared

with the solution of the uncapacitated problem. Note that in all three cases, it took

CPLEX less than 3 seconds to arrive at the optimal solution.

For the solution of the uncapacitated problem, the average speed of the loaded and

empty RGVs turn out to be 0.88m/s and 1.03m/s, respectively. On the other hand,

for the final solution obtained for the capacitated problem, these values are found as

0.93m/s and 1.09m/s, respectively.
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Figure 3.8: Solution of the capacitated problem with no intersecting rails

3.5 Concluding Remarks

In this chapter, we provided an MISOCP formulation for the multi-facility green We-

ber problem, a facility location problem with environmental considerations. After

investigating some features of the formulation, we develop heuristic solution meth-

ods to solve larger problem instances in reasonable time. The proposed solution ap-

proach combines a local search heuristic, and modified versions of the transfer and

decomposition heuristics as the improvement stages following the location-allocation

procedure. The computational results show the effect of each stage on improving

the solution quality. The results also indicate that within a fixed computational time,

even though the location-allocation heuristic is able to make more replications, the

improvement heuristics considered, i.e., transfer or transfer followed by decomposi-

tion, usually find better solutions using less number of replications. We also investi-

gate how the total amount of CO2 emitted by the distribution vehicles changes with

respect to the number of facilities located. Such considerations are helpful when the

number of facilities is not fixed a priori.
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Table 3.16: Coordinates and deadlines of the stations in the illustrative example

Station x y Deadline (s)

1 6 45 124.1

2 21 45 189.5

3 39 45 48.0

4 51 45 46.8

5 57 45 360.0

6 69 45 58.1

7 84 45 80.0

8 99 45 73.5

9 114 45 120.0

10 132 28.5 116.1

11 117 12 97.3

12 102 12 46.2

13 87 12 75.0

14 72 12 80.0

15 54 12 76.6

16 39 12 171.4

17 33 12 156.5

18 21 12 112.5

19 15 12 45.6

20 3 12 59.0

Table 3.17: Coordinates of the corners of the depots area in the illustrative example

Corner x y Position

1 0 27 Southwest

2 0 30 Northwest

3 120 30 Northeast

4 120 27 Southeast
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CHAPTER 4

ENERGY MINIMIZING FORKLIFT ROUTING PROBLEM (EMFRP)

The material handling systems used in warehouses involve important operations such

as the usage of order picker forklifts. These order picker forklifts provide a more

efficient utilization of the limited storage space by their ability to move in narrow

aisles and pick items from high level racks. Routing the order picker forklifts to pick

ordered items belongs to the operational decision making level and is done in high

frequency. Therefore, finding an energy-efficient route for an order picker forklift can

yield significant savings in the energy consumption in warehouses and the resulting

CO2 emission. In this paper, we introduce and study the energy minimizing order

picker forklift routing problem (EMFRP) which aims to find an energy-efficient route

for an order picker forklift to pick a given list of items. To our knowledge, this is the

first study that considers the high-tech order picker forklifts in the context of the order

picking problem. We calculate the forklift’s energy consumption in both horizontal

and vertical moves considering the effects of friction forces, the acceleration and de-

celeration of the forklift, and its load. A mixed integer programming formulation and

a dynamic programming approach are developed to solve the EMFRP exactly. Since

exact solution approaches are only able to solve small size instances to optimality

(within a given time limit), we provide some tour construction and tour improvement

heuristics for the problem and integrate them into a single solution approach. Compu-

tational results show that the proposed solution approach finds high quality solutions.

Moreover, it is observed that significant energy savings can be achieved by solving

the EMFRP instead of the classical distance minimization problem.
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4.1 Notation and Problem Description

In this section, we provide the notation, problem description, and methodology used

to evaluate the amount of energy consumed in a tour of an order picker forklift. Given

the locations of a number of ordered items, the EMFRP deals with finding the most

energy-efficient tour of the forklift that starts from the depot location, picks the or-

dered items from their locations, and brings them to the depot location. The assump-

tions of the EMFRP are:

- all of the ordered items are to be picked in a single tour and the features of the items

are such that their mass and volume do not violate the specifications of the forklift,

- the order picker forklift can be ridden horizontally while its fork is not lowered to

the floor,

- the constant speed of the order picker forklift in every horizontal movement is iden-

tical and the constant vertical speed of the fork in every lifting and lowering action

is identical (these constant speeds are achieved after acceleration),

- there is no due time for bringing the ordered items to the depot location.

Some inputs of the EMFRP regarding the ordered items to be picked are: the number

of items to be picked, n; the horizontal distance between each pair of items i and

j, dij; the height of the location of item i, hi; and the mass of item i, li. The other

parameters used in formulating the EMFRP are described in Section 4.2.1.

Now we provide some calculations to recognize the energy consumption of every

movement of the order picker forklift while going from an item location to the next

one in detail. We will use these calculations in the next section to come up with an

MIP formulation in order to find an order picking tour that minimizes the total energy

consumption of the order picker forklift.

We use the basic physics formulations Meriam & Kraige (2012) for energy consump-

tion calculations in each horizontal and vertical movement of the order picker forklift.

Unless otherwise stated, in all the statements in this thesis, the units are meter (m) for

distance/displacement, second (s) for time, m/s for speed, m/s2 for acceleration and
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deceleration, Newton (N ) for force, kilogram (kg) for mass, and joule (J) for work

and energy amount.

Suppose that an object at rest having mass mi is to be moved from location i to

location j, where dij represents the horizontal distance between them. We assume

that the object accelerates uniformly until it reaches a speed of vx after a distance

of da and travels at this speed until it is dd close to its destination. After this point,

it decelerates uniformly until it stops at location j. Moreover, the horizontal kinetic

friction coefficient is assumed to be equal to µ during this travel.

For this purpose, first an acceleration force F a
x is needed to make the object reach the

speed of vx after a distance of da beating the kinetic frictional force meanwhile. This

force can be computed as

F a
x = mia

+
x +migµ, (4.1)

where a+x represents the acceleration which is given by a+x = v2x/ (2da).

Once the object reaches the speed of vx, it moves at constant speed until it is dd close

to its destination. In this part of the travel, to beat the kinetic frictional force, an

amount of force F c
x is needed which is given by

F c
x = migµ. (4.2)

When the object is dd close to its destination, an amount of force F d
x is needed to stop

the object. F d
x can be calculated as

F d
x = mia

−
x −migµ, (4.3)

where a−x is the deceleration of the object that can be computed as a−x = v2x/ (2dd).

Thereby, the amount of energy/work, Wx, required for a horizontal movement of an

object having mass mi from location i to location j is obtained by multiplying the

needed forces by the corresponding distances as in the following equation.

Wx = da
(
mia

+
x +migµ

)
+ (dij − da − dd) (migµ) + dd

(
mia

−
x −migµ

)
= mi

(
v2x + gµ (dij − 2dd)

)
(4.4)

Suppose that an object at rest having mass mi is to be moved from location i to

location j, where hij = hj − hi represents the vertical distance between them. Here

hi and hj represent the heights of locations i and j, respectively. We assume that

hij is positive and dij = 0, and therefore only an upward movement is to take place.
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We assume that the object accelerates uniformly until it reaches a speed of vy after a

distance of hua and travels at this speed until it is hud close to its destination (note that

hud is a function of the other parameters). After this point, it decelerates uniformly

until it stops at location j. Moreover, the kinetic frictional force during this vertical

movement is assumed to be equal to Fr.

For this purpose, first an acceleration force of F a
y is needed to make the object reach

the speed of vy after height of hi + hua beating the gravity force and the kinetic fric-

tional force meanwhile. F a
y can be calculated as

F a
y = mi

(
a+y + g

)
+ Fr, (4.5)

where a+y represents the acceleration that is given by a+y = v2y/ (2hua) and g represents

the gravitational acceleration.

Once the object reaches the speed of vy, an amount of force F c
y is needed to keep it

moving at constant speed until it is hud close to its destination. F c
y can be computed as

F c
y = mig + Fr. (4.6)

When the object is hud close to its destination, eliminating the lifting force makes the

object stop after displacement of hud = miv
2
y/ (2 (mig + Fr)). Thereby, the required

energy/work, W u
y , for lifting an object with mass mi from location i (lower) to lo-

cation j (higher) is obtained by multiplying the needed forces by the corresponding

displacements as given in the following equation.

W u
y = hua

(
mia

+
y +mig + Fr

)
+ (hij − hua − hud) (mig + Fr)

= hua
(
mia

+
y

)
+ hij (mig + Fr)− hud (mig + Fr) = hij (mig + Fr) (4.7)

Finally, suppose that an object at rest having mass mi is to be moved from location

i to location j, where hij is negative and dij = 0, and therefore only a downward

movement is to take place. We assume that the object accelerates uniformly by gravity

until it reaches the speed of vy after a distance of hda and travels at this speed until it

is hdd close to its destination (note that hda is a function of the other parameters). After

this point, it decelerates uniformly until it stops at location j.

With no external force, the object reaches the speed of vy by the gravity force after

displacement of hda = miv
2
y/ (2 (mig − Fr)). After the object reaches the speed of
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vy, an amount of force F ′cy is needed to keep the speed constant that is given by

F ′cy = mig − Fr. (4.8)

Once the object is hdd close to its destination, a deceleration force of F ′dy is needed to

make the object stop at location j beating the gravity force. This deceleration force is

given by

F ′dy = mi

(
a−y + g

)
− Fr, (4.9)

where a−y = v2y/
(
2hdd
)
.

Thereby, the amount of energy/work, W d
y , required for moving an object having mass

mi from location i (higher) to location j (lower) is obtained by multiplying the needed

forces by the corresponding distances as

W d
y = hdd

(
mia

−
y +mig − Fr

)
+
(
h′ij − hda − hdd

)
(mig − Fr)

= hdd
(
mia

−
y

)
+ h′ij (mig − Fr)− hda (mig − Fr) = h′ij (mig − Fr) , (4.10)

where h′ij represents the absolute height difference between location i and location j,

i.e., h′ij = |hij|.

Equations 4.4, 4.7, and 4.10 give the amount of energy consumption resulting from

moving an object horizontally, upward, and downward, respectively. We use these

calculations in the exact and heuristic solution methods proposed for the EMFRP in

Sections 4.2 and 4.3.

4.2 Exact Solution Approaches for the EMFRP

In this section, we provide two exact solution approaches for the EMFRP where the

energy consumption calculations presented in the previous section are used. First, we

propose an MIP formulation for the EMFRP which has some characteristics of the

classical TSP formulations. Note that the EMFRP is different from the classical TSP,

since the energy consumption resulting from a travel from one location to another de-

pends on the locations that are previously visited due to the dependence of the energy

consumption on the load carried by the order picker forklift. With the MIP formula-

tion, small size instances of the EMFRP can be solved easily by any MIP solver. We
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then propose a dynamic programming solution approach that is an adaptation of the

Bellman-Held-Karp algorithm that is developed for the TSP.

4.2.1 An MIP Formulation

In this section, we present an MIP formulation for the EMFRP. We first give the

necessary notation to formulate the EMFRP. We denote by n the number of items to

be picked and by I = {0, 1, 2, . . . , n} the set of all location indices where 0 represents

the depot and other indices represent the items. When we say item i, we refer to the

item that is in location i. The parameters of the EMFRP are as follows.

Lf : The sum of masses of the fork and operator.

Lt: The sum of masses of the forklift and operator.

li: The mass of item i ∈ I \ {0}.

dij: The horizontal distance between location i ∈ I and location j ∈ I .

hij: The vertical height difference between location i ∈ I and location j ∈ I , i.e.,

hij = hj − hi.

h′ij: The absolute vertical height difference between location i ∈ I and location j ∈
I , i.e., h′ij = |hj − hi|.

aij: Binary parameter that is equal to 1 if and only if the horizontal distance between

location i ∈ I and location j ∈ I is greater than 0.

vx: The horizontal speed of the forklift.

vy: The vertical speed of the fork.

g: The gravitational acceleration.

µ: The horizontal kinetic friction coefficient.

Fr: The constant kinetic friction force in vertical moves of the fork.

The variables used to formulate the EMFRP are as follows.
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xij: Binary variable taking the value 1 if and only if the forklift travels to location

j ∈ I right after location i ∈ I .

fij: Energy consumption of the horizontal move from location i ∈ I to location j ∈ I
if xij = 1 (0 otherwise).

uij: Energy consumption of the vertical move from location i ∈ I to location j ∈ I
if xij = 1 (0 otherwise).

qi: Total mass of the items on the forklift right after leaving location i ∈ I .

After introducing the necessary parameters and variables, we next provide an MIP

formulation for the EMFRP.

(EMFRP-MIP)

min
∑
i∈I

∑
j∈I

fij +
∑
i∈I

∑
j∈I

uij (4.11)

subject to∑
j∈I

xij = 1 ∀i ∈ I (4.12)

∑
i∈I

xij = 1 ∀j ∈ I (4.13)

qj +M(1− xij) ≥ qi + lj ∀i, j ∈ I, j 6= 0 (4.14)

fij +M ′
ij(1− xij) ≥ aij(qi + Lt)

(
v2x + gµ (dij − 2dd)

)
∀i, j ∈ I (4.15)

uij +M ′′
ij(1− xij) ≥ h′ij(qi + Lf )g + hijFr ∀i, j ∈ I (4.16)

xij ∈ {0, 1} ∀i, j ∈ I (4.17)

qi ≥ 0 ∀i ∈ I (4.18)

fij, uij ≥ 0 ∀i, j ∈ I (4.19)

The objective function of (EMFRP-MIP) minimizes the total amount of energy con-

sumed by the order picker forklift through its complete tour. The constraints in (4.12)

and (4.13) make sure that the forklift visits every location exactly once. Constraints

in (4.14) make the value of qj which is the total mass of the items on the forklift right

after picking item j equal to the sum of the mass of item j and the total mass of the

items on the forklift right after picking item i in case xij = 1 in an optimal solu-
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tion. This set of constraints prevents the presence of subtours as well. Constraints in

(4.15) and (4.16) are used to obtain the amount of energy consumed by the forklift

in horizontal and vertical moves, respectively, when traveling to location j right af-

ter location i. Constraints in (4.17) are used to force that xij is a binary variable for

each i ∈ I, j ∈ J . Constraints in (4.18) and (4.19) are the non-negativity constraints

for the mass and energy variables. We can take the values of M , M ′, and M ′′ in

(EMFRP-MIP) as

M =
∑
i∈I

li,

M ′
ij = aij (M + Lt)

(
v2x + gµ (dij − 2dd)

)
,

M ′′
ij = h′ij (M + Lf ) + hijFr.

Here, M is equal to sum of the loads of the items. This value for M makes qj and

qi independent of each-other in constraints (4.14) if xij = 0. Values for M ′
ij and M ′′

ij

are taken in such a way that fij and uij will be equal to zero in constraints (4.15) and

(4.16), respectively, if xij = 0.

4.2.2 A Dynamic Programming Solution Approach

The EMFRP has some characteristics of the TSP. In this section, we adapt a dy-

namic programming (DP) solution approach, namely the Bellman-Held-Karp algo-

rithm Bellman (1962), Held & Karp (1962), that is originally proposed for the TSP

to the EMFRP. The Bellman-Held-Karp algorithm runs in O (2nn2) time to solve the

TSP. We implement this solution method on the EMFRP as follows. Let 0 be the

starting point of the tour, i.e., location of the depot. For any pair of items (i, j), let

Eij (Q) denote the amount of energy consumed by the forklift to travel from location

i to location j with load Q. For any subset of the items S and for any t ∈ S, let

opt (S, t) denote the minimum amount energy consumed by the forklift to start from

the depot and pick the items in S \ {t} and then finally pick the item t. We have

opt (S, t) = min
j∈S\{t}

(opt (S \ {t}, j) + Ejt (QS − qt)) . (4.20)

where QS =
∑

s∈S qs.

Thereupon, if we let N denote the set of all items to be picked, then the optimal value
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of the EMFRP is

E∗ = min
t∈N

(opt (N, t) + Et0 (QN)) . (4.21)

Observe that for all j ∈ N we have opt ({j}, j) = E0j(0). Starting with these values,

the recursive equation (4.20) is used to build the values opt (S, t) for all S ⊆ N and

t ∈ S, working our way through sets with two elements, then sets with three elements,

and step by step up to the full set N . Once we have the values of opt (N, t) for all

t ∈ N , we use (4.21) to find E∗. This algorithm runs for the EMFRP in O (2nn2)

time, too.

We coded this DP solution approach in C++ and show its performance on solving

different instances of the EMFRP in Section 4.5.

4.3 Heuristic Solution Approaches for the EMFRP

The exact solution approaches proposed for the EMFRP in the previous section are

unable to solve large size problem instances to optimality as is shown in Section

4.5. In this section, we propose some heuristic algorithms for the EMFRP to obtain

good quality solutions for larger size instances. The considered heuristics mainly fall

into two groups; namely, tour construction heuristics and tour improvement heuris-

tics. The construction algorithms are used to obtain good quality initial solutions

(routes) which are then improved by the improvement heuristics. Some of the pro-

vided approaches in this section are mainly developed for the TSP in the literature

and we adapt them for the EMFRP. In addition, two matheuristic approaches, one

construction and one improvement heuristic, are also developed for the EMFRP. Fi-

nally, we bring all these heuristics together to propose a single solution approach for

the EFMRP.

4.3.1 Tour Construction

In our computational experiments with the heuristics, the initial tour of the order

picker forklift is constructed using different methods. One way to construct the initial

tour is by randomly generating the sequence of the items to be picked. In addition,
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two other construction heuristics are proposed in our study; one is an adaptation of

the nearest neighbor heuristic proposed for the TSP in the literature and the other is

a matheuristic called as DP-Construction algorithm developed for the EMFRP where

the presented DP algorithm is used as a subroutine.

4.3.1.1 TSP-based Nearest Neighbor Algorithm

This construction algorithm is based on the nearest neighbor algorithm proposed for

the TSP in the literature. Here, we construct a tour of the forklift in a greedy manner.

Starting at the depot location, we first move to the item location which results in

the lowest energy consumption for the forklift. Any time determining the next item

location to visit, among the items that are not picked yet, the one resulting in the

least energy consumption is chosen. For each travel from an item location to another

one, the energy consumption of the forklift is evaluated based on the calculations

given in Section 4.1 considering the horizontal and vertical moves, as well as load,

acceleration, deceleration, and friction forces. After determining the last item to pick,

the tour is completed by returning at the depot location. The obtained solution (tour)

is then taken as the initial solution for the improvement heuristics.

4.3.1.2 DP-Construction Algorithm

The DP-Construction algorithm is a matheuristic that is used as an alternative tour

construction algorithm. The method is initialized with an incomplete tour that starts

and ends at the depot location. The middle part of this incomplete tour is detached

and the detached items together with some new items are added to the middle part to

make the incomplete tour grow. To determine the ordering of the items that are to be

added to the incomplete tour, the DP approach is used as an optimization tool. The

incomplete tour turns into a complete one once all the items are added at which point

the algorithm stops.

The steps of the DP-Construction algorithm are displayed in Figure 4.1. In the first

step, K items that are closest (in terms of horizontal + vertical distance) to the depot

location are taken and the DP algorithm is run to determine the ordering of these items
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(see Figure 4.1a) . Then, the beginning and ending parts of the incomplete tour, called

shortly as “BP” and “EP”, respectively, each with
(
K−C

2

)
items ((K − C) items in

total), are fixed and the remaining C items that are in the middle of the incomplete

tour are detached (see Figure 4.1b). A set of items including the detached C items

and (K − C) new items that are closest to the depot location is formed (Figure 4.1c).

A version of the EMFRP is solved by the DP algorithm to optimally insert these K

items into the middle of the incomplete tour to make it grow. Note that when solving

the DP algorithm, the starting point of the forklift is taken as the location of the last

item in BP and the ending point of the forklift is taken as the location of the first item

in EP. Moreover, the forklift starts its tour with all the items that are in BP. According

to the solution of the DP algorithm, BP and EP are extended with additional
(
K−C

2

)
items each and C items are detached from the middle of the new incomplete tour (see

Figure 4.1d). The steps of the algorithm continue in the same manner with deleting

C items from the middle, using the DP algorithm considering a subset of K items,

and enlarging the incomplete tour until no item remains unvisited. Figures 4.1e and

4.1f show how the final subset of the items is composed and how the complete tour is

constructed after solving the last DP, respectively. Note that, the last DP may be run

with a subset including less than K items.

In the remaining part of the thesis, we abbreviate this algorithm as “DP-Const”. Note

that as the optimization routine, one can also use the proposed MIP formulation.

After some experiments, we decided to use the DP algorithm due to its superior per-

formance (see Section 4.5.2 for the details).

4.3.2 Tour Improvement

In this section, we describe some improvement algorithms which take as input a given

solution (tour) and aim to improve it.

4.3.2.1 TSP-based Improvement Algorithms

As the EMFRP has some characteristics of the TSP, we adapt two widely-used im-

provement algorithms from the TSP literature, i.e., 2-opt and 3-opt algorithms (see
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Figure 4.1: The steps of the DP-Construction algorithm, (a) in the 1st step, K closest

items to the depot location are taken (b) after the DP algorithm is run, C items are

detached from the middle of the incomplete tour, (c) in the second step, detached C

items together with new K−C items form the new subset, (d) after the DP algorithm

is run, C items are detached from the middle of the incomplete tour, (e) in the third

step, detached C items together with new K − C items form the new subset, (f) tour

construction is completed.
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(a) (b)

Figure 4.2: The initial tour (a) and a neighboring tour (b) obtained by removing the

dashed arcs from (a) in the 2-opt algorithm

Nilsson (2003) for more detail). In the 2-opt heuristic, two non-adjacent arcs are

deleted from a given initial tour. Then two new arcs are added to generate a neighbor-

ing tour. The objective function value, i.e., the energy consumption of the forklift, of

this new tour is evaluated. Among the initial tour and all neighboring tours, the best

one in terms of the objective function value is taken. If the new tour is different than

the starting tour, then it is taken as the starting tour and the steps are repeated. The

algorithm stops when no better neighboring tour is found. Figure 4.2 presents how

a neighboring tour (see Figure 4.2b) is obtained from a given tour (see Figure 4.2a)

using the 2-opt algorithm.

In the 3-opt algorithm, the neighboring tours are obtained by removing three arcs from

the initial tour and reconnecting the tour by adding three arcs. The neighboring tour

resulting in the least energy consumption is determined among all possible ones and if

this is an improving tour, iterations are repeated. Figure 4.3 depicts how neighboring

tours (see Figures 4.3b-4.3h) are obtained from a given tour (see Figure 4.3a) using

the 3-opt algorithm.

Given an initial tour, one neighboring tour is obtained by deleting two non-adjacent

arcs in the 2-opt algorithm (see Figure 4.2). On the other hand, in the 3-opt algorithm,

seven neighboring tours are obtained when three non-adjacent arcs are deleted (see

Figure 4.3) and three neighboring tours are obtained when two adjacent arcs together

with one arc that is not adjacent to both are deleted. Given an initial tour, the set of all

neighboring tours obtained by 2-opt operations is a subset of the set of all neighboring

tours obtained by 3-opt operations. Therefore, the 3-opt algorithm is likely to be

computationally more expensive, but is expected to result in better solutions. Note
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Figure 4.3: The initial tour (a) and the neighboring tours (b)-(h) obtained by removing

the dashed arcs from (a) in the 3-opt algorithm

that same neighboring tour may be obtained by deleting different sets of arcs in the

3-opt algorithm. Therefore, we pay special attention in our implementation of the

3-opt algorithm in order to avoid generating the same neighboring solution more than

once.

Note that, the descriptions we give for the 2-opt and 3-opt algorithms are for the

classical TSP where a tour and its reverse tour have the same objective function value.

For the EMFRP, a tour and its reverse tour may have different objective function

values. Therefore, when applying the 2-opt and 3-opt algorithms in the context of the

EMFRP, we evaluate the objective function value of the reverse tour as well for every

neighboring tour as is done in the literature before (see e.g., Tachibana & Adachi

(2014)).

After some preliminary experiments with the 2-opt and 3-opt algorithms, the results

of which will be presented in Section 4.5.1, we came to the conclusion to employ a

hybrid application of the 2-opt and 3-opt algorithms, where the latter is applied on

the solution of the former. The hybrid application of the 2-opt and 3-opt algorithms

is called as the “2&3-opt” algorithm in our solution approach.
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4.3.2.2 DP-Improvement Matheuristic

In this section, we discuss a matheuristic developed for the EMFRP as an alternative

improvement algorithm that is called the DP-Improvement algorithm. This algorithm

is based on optimizing smaller parts of a given solution (tour) by solving a version of

the EMFRP using the DP algorithm. Given an initial tour, the DP-Improvement al-

gorithm selects a subset of K ′ consecutively visited items and determines the optimal

ordering of these items by solving the DP. Note that in this process, only the orderings

of the items that are in the selected subset are subject to change. The orderings of all

other items are kept the same.

We implement the DP-Improvement algorithm as follows (see Figure 4.4). Given an

initial tour (see Figure 4.4a), the first subset is selected to be consisting of the first

K ′ items in the tour (see the dashed lines in Figure 4.4b). After finding the optimal

ordering of the items in this subset keeping the ordering of the other items the same

(see Figure 4.4c), we update the tour and move on to select the next subset of the

items. This selection is done by shifting (or rotating) the previously selected subset

by K ′ − C ′ items. In other words, in the current tour, the K ′ items that come after

the first K ′ − C ′ items form the second subset (see Figure 4.4d). After the orderings

of the items in this new subset are optimally determined (see Figure 4.4e), the current

tour is updated and the third subset is formed by the K ′ items that come after the first

2(K ′−C ′) items in the current tour (see Figure 4.4f). Figure 4.4g shows how the fifth

subset is selected and Figure 4.4h displays the step of the algorithm where the last K ′

items form the subset. Note that in this step, to keep the size of the subset equal

to K ′, we may shift (or rotate) the previously selected subset by less than K ′ − C ′

items. After this step, we obtain the new tour in Figure 4.4i (this is the end of the

first iteration). If this new tour improves upon the initial tour given in Figure 4.4a,

the iterations of the DP-Improvement algorithm continue. Otherwise, the algorithm

stops. In the remaining part of the thesis, we abbreviate this algorithm as “DP-Imp”.
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Figure 4.4: The steps of the DP-Improvement algorithm, (a) a given initial tour, (b)

first subset is formed by selecting the first K ′ picked items, (c) the DP is run to

optimally reinsert the selected items, (d) the selected subset is rotated by K ′ − C ′

items to form the second subset, (e) the DP is run to optimally reinsert the selected

items in the second subset, (f) the selected subset is rotated by K ′ −C ′ items to form

the third subset, (g) fifth subset is formed, (h) last subset is formed, (i) the solution

obtained at the end of the first iteration
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4.4 Illustrative Example

In this section, we present an illustrate example to compare the solutions of the EM-

FRP and the distance minimization problem in terms of the energy consumption of

the order picker forklift. In Figure 4.5, the black cells show the locations of the items

to be picked and the cell that is in the southwest corner of the warehouse shows the

location of the depot where the order picker forklift starts and finishes its tour. In Fig-

ure 4.5a, two values are written in each black cell; the first one referring to the mass

of the item in kg and the second one to the height of the location of the item inm. The

distance between neighboring cells is assumed to be 1m. To go from the end point of

an aisle to a neighboring aisle, the forklift travels a distance of 5m. Other parameters

are as follows: sum of masses of the fork and operator (Lf ): 150kg, sum of masses

of the forklift and operator (Lt): 2500kg, forklift’s horizontal speed (vx): 2.0m/s,

fork’s vertical (lifting/lowering) speed (vy): 0.3m/s, horizontal deceleration distance

of the forklift (dd): 0.5m, gravitational acceleration (g): 9.81m/s2, horizontal kinetic

friction coefficient (µ): 0.05, and vertical constant friction force (Fr): 30N .

We first solve the order picking problem by minimizing the total horizontal distance

traveled by the forklift and display the resulting solution in Figure 4.5b, where the

number in each cell refers to the order the corresponding item is picked. This so-

lution is obtained in less than one second when we use the solver CPLEX and an

MIP formulation obtained from (EMFRP-MIP) by changing the objective function to

the sum of the horizontal distances traveled and removing the constraints (4.15) and

(4.16). For this tour, the energy consumption of the order picker forklift is computed

as 633, 842 joule. We then solve the order picking problem by minimizing the to-

tal horizontal and vertical distances traveled by the forklift and display the resulting

solution in Figure 4.5c. This solution is also obtained in one second and the energy

consumption of the order picker forklift is computed as 588, 879 joule for this tour.

Finally, we solve the EMFRP and obtain the solution displayed in Figure 4.5d. In

this case, it takes the same solver about 5 minutes to solve the problem and the en-

ergy consumption of the forklift turns out to be 571, 818 joule. By the solution of the

EMFRP, we obtain a %10 saving in energy consumption compared to the solution of

the total horizontal distance minimization problem and a %3 saving compared to the
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Figure 4.5: (a) an instance with 14 items, (b) solution of the horizontal distance min-

imization problem, (c) solution of the horizontal + vertical distance minimization

problem, (d) solution of the EMFRP
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solution of the total horizontal and vertical distances minimization problem.

4.5 Computational Experiments

We conduct several experiments on the instances generated considering the ware-

house configuration provided in Henn & Wäscher (2012). In Henn & Wäscher (2012),

a single-block warehouse with 10 two-sided aisles is considered which has the poten-

tial horizontal locations of 900 items. We generate the instances for the EMFRP as

follows. First of all, similar to what is done in Scholz et al. (2016), we generate one

group of instances considering all of the 10 aisles of the warehouse and another group

considering only a part of the warehouse consisting of the leftmost 5 aisles. For each

item, we randomly generate the horizontal locations of the items, the heights of the

items, and the masses of the items. The horizontal locations of the items are gen-

erated uniformly at random from the 450 and 900 potential locations for the 5-aisle

instances and 10-aisle instances, respectively. The heights of the items are generated

considering three settings (low (L), medium (M), and high (H) height difference set-

tings) from the integers in the intervals [1,4], [1,7], and [1,10] uniformly at random

for the settings L, M, and H, respectively. The masses of the items are also generated

considering three settings (low (L), high (H), and general (G)) from the integers in the

intervals [1,20], [21,40], and [1,40] uniformly at random for the settings L, H, and G,

respectively. We consider instances with n = 10, 15, 20, 25, 30, 40, 50, 75, 100 items.

For each n value and for each combination of height-mass settings, 10 instances are

generated at random. Therefore, we have in total 9 different combinations of height-

mass settings and 90 different instances for each value of n. The other parameters

needed for energy calculations are the same as those given in Section 4.4.

CPLEX 12.8 is used to solve the MIP formulations, where we set a time limit of 3

hours. The other solution approaches are coded in C++ where we also set the same

time limit. We propose a solution approach that contains both construction and im-

provement algorithms. First, 11 initial solutions are generated, 9 of which at random,

two of which by applying the two construction algorithms, i.e., the nearest neighbor

and DP-Const algorithms. We then apply the two improvement algorithms; namely,

2&3-opt algorithm and the DP-Imp algorithm, to improve the initial solutions. Note
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that the 2&3-opt algorithm is preferred over the 2-opt and 3-opt algorithms as a result

of some preliminary experiments. The implementation sequence of the improvement

algorithms and the parameters of DP-Const and DP-Imp algorithms are also deter-

mined after some preliminary experiments which are discussed in the next section.

4.5.1 Preliminary Experiments

The preliminary experiments are divided into four parts. In the first part, we aim

to choose among the 2-opt, 3-opt, and 2&3-opt heuristics. In the second part, the

parameters of the DP-Const algorithm are selected. In the third part, we decide on the

sequence of the two improvement heuristics considered. Finally, in the fourth part,

the parameters of the DP-Imp algorithm are selected.

4.5.1.1 Choosing among 2-opt, 3-opt, or 2&3-opt

We first provide, in Tables 4.1 and 4.2, the results of the preliminary experiments to

compare the performances of the 2-opt, 3-opt, and 2&3-opt heuristics. The 2&3-opt

heuristic is a hybrid approach where the 3-opt algorithm is applied after the 2-opt

algorithm. In these experiments, for each n value and for each height-mass setting,

there are 10 instances for each of which 11 initial solutions are generated (9 randomly,

1 by the nearest neighbor algorithm, and 1 by the DP-Const algorithm). For each

instance and each initial solution, the three improvement heuristics considered here

find a solution. For each instance, each improvement algorithm has a best found

solution which is the best of the 11 solutions found. For an instance, the overall best

solution, on the other hand, refers to the best found solution by all of these three

improvement heuristics. In Tables 4.1 and 4.2, the average solution time (Av. Time),

the average percent improvement (Av. %Imp.), the average percent deviation from

the overall best solution (Av. %Dev.), and the average deviation of the best solution

of the corresponding approach from the overall best (B. %Dev.) are given. Av. Time

refers to the average of the 990 solution times. Av. %Imp. refers to the average of

the 990 percent improvement values that the improvement stage of the heuristic has

provided over the given initial solutions. Av. %Dev. gives the average of the 990
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Table 4.1: Performances of the 2-opt, 2&3-opt, and 3-opt algorithms on 5-aisle in-

stances with different n values

2-opt 2&3-opt 3-opt

n
Av.

Time

Av.

%Imp.

Av. %Dev.

(B.%Dev.)

Av.

Time

Av.

%Imp.

Av. %Dev.

(B.%Dev.)

Av.

Time

Av.

%Imp.

Av. %Dev.

(B.%Dev.)

10 0.0 28.7 0.7 (0.0) 0.0 29.1 0.1 (0.0) 0.0 29.2 0.1 (0.0)

20 0.4 37.7 2.3 (0.1) 0.4 38.7 0.6 (0.0) 0.4 38.7 0.6 (0.0)

30 1.1 42.7 3.8 (0.7) 1.0 44.1 1.1 (0.0) 1.4 44.2 1.1 (0.0)

50 2.4 49.5 6.4 (2.3) 3.8 51.4 2.0 (0.2) 9.0 51.5 1.9 (0.2)

75 4.7 54.2 9.0 (3.4) 22.7 56.7 2.1 (0.3) 64.8 56.8 2.0 (0.3)

100 8.1 57.4 11.2 (4.0) 99.6 60.5 2.0 (0.2) 281.5 60.5 2.0 (0.3)

Av. 2.8 45.0 5.6 (1.8) 21.3 46.8 1.3 (0.1) 59.5 46.8 1.3 (0.1)

percent deviations of the objective function values of the found solutions from that

of the overall best solutions, while B. %Dev. shows the average of the 90 percent

deviations of the best objective function values of the instances from the overall best

solutions. The last rows in these tables give the average values for the corresponding

column.

Tables 4.1 and 4.2 show that in general, 3-opt heuristic provide the best tours in terms

of the energy consumption, while the 2-opt heuristic gives the worst ones. In terms

of solution time, the best heuristic is 2-opt while the 2&3-opt heuristic turns out to

be faster than the 3-opt heuristic. Since the solution quality of the 2&3-opt heuristic

is not significantly different from that of the 3-opt heuristic, and the solution time of

the 2&3-opt heuristic is significantly better than that of the 3-opt heuristic, we select

2&3-opt heuristic as an improvement algorithm to be used in the proposed solution

approach.

4.5.1.2 Selection of the parameters of the DP-Const algorithm

Here, we report a subset of our preliminary experiments performed to determine the

parameters of the proposed tour construction algorithm, the DP-Const algorithm. We
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Table 4.2: Performances of the 2-opt, 2&3-opt, and 3-opt algorithms on 10-aisle

instances with different n values

2-opt 2&3-opt 3-opt

n
Av.

Time

Av.

%Imp.

Av. %Dev.

(B.%Dev.)

Av.

Time

Av.

%Imp.

Av. %Dev.

(B.%Dev.)

Av.

Time

Av.

%Imp.

Av. %Dev.

(B.%Dev.)

10 0.0 26.5 0.8 (0.0) 0.0 27.0 0.1 (0.0) 0.0 27.1 0.1 (0.0)

20 0.4 35.9 2.0 (0.1) 0.4 36.7 0.6 (0.0) 0.5 36.8 0.5 (0.0)

30 1.1 40.8 3.2 (0.6) 1.0 42.0 1.0 (0.0) 1.4 42.1 0.8 (0.0)

50 2.5 46.7 5.6 (2.1) 4.0 48.6 1.6 (0.1) 9.3 48.6 1.5 (0.2)

75 4.9 51.7 8.1 (3.2) 23.4 54.2 1.8 (0.2) 65.2 54.3 1.8 (0.3)

100 8.2 54.7 10.6 (4.0) 100.9 57.8 2.0 (0.3) 282.8 57.9 1.9 (0.2)

Av. 2.8 42.7 5.1 (1.6) 21.6 44.4 1.2 (0.1) 59.9 44.5 1.1 (0.1)

denote byK the size of the subproblems and by C the number of items detached from

the incomplete tours. We take the parameters of the DP-Const algorithm as K and

S where S is equal to K − C. S represents the number of additional items whose

orderings are fixed in each step of the algorithm. The performance of the algorithm in

terms of the solution time and quality depends on these parameters and our aim is to

choose the parameter setting that offers the best performance. Note that the solution

time of the DP algorithm increases exponentially with the input size. Moreover, the

alternative construction algorithms, i.e., the nearest neighbor algorithm and random

initial tour, are quite fast. In order to be able to compete with them, we do not consider

values larger than 16 for the parameter K as larger values of K makes the DP-Const

algorithm relatively much slower. In our experiments, we take K as 16 and S as 4 or

6 and compare the performance of the DP-Const algorithm with the nearest neighbor

algorithm. These experiments are performed taking the warehouse with 5 aisles and

considering height-mass settings M-G, H-L, H-H, and H-G, a subset of instance sizes,

and generating 7 instances for each setting.

In Table 4.3, we summarize the results of our experiments with parameter settings

K−S : 16−4 and K−S : 16−6. In this table, the first column gives the number of

items n in the instances. For each of the parameter settings, the column titled as “DP-
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Table 4.3: Comparison of quality of solutions generated by DP-Const algorithm with

S = 4 and S = 6 with that of the nearest neighbor algorithm

K − S : 16− 4 K − S : 16− 6

n
Av. DP-Const

Time

Av. %Dev. of

Const. Sol.s

Av. DP-Const

Time

Av. %Dev. of

Const. Sol.s

20 0.5 -9.2 0.4 -8.7

25 0.8 -9.1 0.6 -8.1

30 1.2 -7.8 0.8 -7.7

40 1.9 -2.8 1.3 -2.3

50 2.5 2.7 1.7 3.3

75 4.2 8.9 2.9 9.9

100 5.8 18.4 3.9 19.2

Av. 2.4 0.2 1.7 0.8

Const Time” gives the average time spent for the initial solution generation by the

DP-Const algorithm for each instance in seconds. The columns titled as “Av. %Dev.

of Const. Sol.s” present the average percent deviation of the objective function values

of the solutions constructed by the DP-Const algorithm from those constructed by the

nearest neighbor algorithm. The last row in each table gives the average values for

the corresponding column.

From Table 4.3, we see that the average time spent for the initial solution generation

by the DP-Const algorithm increases with the decrease of the parameter S, as ex-

pected. A decrease in S leads to an increase in the number of optimization problems,

i.e., number of steps of the algorithm, solved during the DP-Const algorithm. Con-

sidering the columns corresponding to percent deviations, we can observe that the

objective function values of the initial solutions provided by the DP-Const algorithm

improve by decrease in S. Consequently, we decide to choose S as 4 to get better

solutions while spending little more time. Henceforth, in our final experiments, we

applied the DP-Const algorithm using the parameter setting K − S : 16 − 4. Note

that the DP-Const algorithm generates better initial solutions than the nearest neigh-
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bor algorithm when the sizes of the instances are small (n ≤ 40) and the nearest

neighbor algorithm performs better for larger size instances. Therefore, none of these

construction algorithms outperforms the other in general.

4.5.1.3 Determining the implementation sequence of the two improvement heuris-

tics

Once a tour construction algorithm constructs an initial tour, we use improvement

heuristics to improve this solution. For the EMFRP, we have in our hand two im-

provement heuristics; namely, the 2&3-opt algorithm and the DP-Imp algorithm. In

our implementation, we apply one of these improvement heuristics the first and the

other one the second in order to try to further improve the solution obtained by the

first improvement heuristic to get good quality solutions. Now we discuss our pre-

liminary experiments performed to determine which of the improvement heuristics to

apply the first and which one to apply the second.

The alternative in which the 2&3-opt algorithm is applied the first is called the “first”

sequence alternative and the alternative in which the DP-Imp algorithm is applied the

first is called the “second” sequence alternative. The experiments are done taking the

warehouse with 5 aisles and considering height-mass settings M-G, H-L, H-H, and

H-G, a subset of instance sizes, and generating 7 instances for each setting. More-

over, for each instance nine initial solutions are generated at random which are then

improved separately by the two sequence alternatives. We take different parameter

settings of the DP-Imp algorithm into account to be able to make a better compari-

son.

In Table 4.4, for each n value, we present the average percent deviations of the objec-

tive function values obtained by the first sequence alternative from those obtained by

the second alternative. The column titles refer to the parameter settings of the DP-Imp

algorithm. For each instance, each sequence alternative provides nine solutions one

of which gives a best objective function value. Inside the parentheses, we report the

average percent deviations of the best objective function values obtained by the first

sequence alternative from those obtained by the second alternative. Negative values

in the table mean that the first alternative is better on average. Therefore, we can con-
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Table 4.4: Average percent deviations of the objective function values of the solutions

obtained by the first sequence alternative from those of the second one with different

DP-Imp parameter settings and n values

Av. %Dev. (Best Sol. %Dev.)

n 16-4 16-6 18-4 18-6

20 -0.1 (0.0) -0.2 (0.0) -0.1 (0.0) -0.1 (0.0)

25 0.0 (-0.1) -0.1 (0.0) -0.1 (0.0) -0.1 (0.0)

30 -0.1 (0.0) -0.1 (0.0) -0.1 (0.0) -0.1 (0.0)

40 -0.2 (0.0) -0.2 (-0.1) -0.1 (-0.1) -0.3 (-0.1)

50 -0.1 (-0.1) 0.0 (-0.1) 0.0 (-0.1) -0.1 (-0.1)

75 0.0 (0.0) -0.2 (-0.1) -0.1 (0.0) 0.1 (0.2)

100 -0.1 (-0.3) 0.0 (-0.3) -0.2 (-0.4) -0.1 (-0.2)

Av. -0.1 (-0.1) -0.1 (-0.1) -0.1 (-0.1) -0.1 (0.0)

clude that the first sequence alternative, i.e., applying the 2&3-opt algorithm the first

and the DP-Imp algorithm the second, results in better solutions for all the parameter

settings considered for the DP-Imp algorithm.

4.5.1.4 Selection of the parameters of the DP-Imp algorithm

The last set of preliminary experiments in our study is performed to determine the

parameter setting of the proposed improvement algorithm, that is, the DP-Imp algo-

rithm. Similar to the DP-Const algorithm, there are two parameters in the DP-Imp

algorithm: K ′ which refers to the number of items in each subset on which the DP

is run and S ′ = K ′ − C ′ which refers to the number of items that are added to the

fixed part in each step. To determine the parameters of the DP-Imp algorithm, the

instances used in Section 4.5.1.3 are employed. For each instance, 9 random initial

solutions are generated and are improved first by the 2&3-opt algorithm. Then, the

proposed DP-Imp algorithm with four different parameter settings is applied on every

9 solutions obtained by the 2&3-opt algorithm for each instance.
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Table 4.5: Comparisons of the solutions obtained by the 2&3-opt algorithm with those

that are obtained after further improvement by the DP-Imp algorithm with K ′ − S ′ :

16− 4 parameter setting

n
Av. 2&3-opt

Time

Av. DP-Imp

Time

Av. 2&3-opt

%Imp.

Av. DP-Imp

%Imp.

Av. % of

Imp. Sol.s

Av. B.

%Dev.

20 0.0 1.1 46.3 0.3 29.2 0.0

25 0.0 1.5 50.6 0.3 30.9 -0.1

30 0.1 1.8 53.1 0.3 31.3 0.0

40 0.6 3.2 56.7 0.3 40.6 -0.1

50 1.8 3.7 60.5 0.2 29.2 -0.1

75 16.3 6.4 66.1 0.1 33.7 -0.1

100 79.6 8.3 70.5 0.1 27.1 -0.1

Av. 14.1 3.7 57.7 0.22 31.7 -0.08

In Tables 4.5-4.8, we summarize the results. The values in these tables come from

the average of values obtained for instances with number of items given in the first

column. In each table, the second column (Av. 2&3-opt Time) shows the average

time, in seconds, spent by the 2&3-opt algorithm while the third column (Av. DP-

Imp Time) gives the average time spent by the DP-Imp algorithm. The column titled

as “Av. 2&3-opt %Imp.” displays the average of percent improvement gained by

the 2&3-opt algorithm on the random initial solutions and the column “Av. DP-Imp

%Imp.” presents the average of percent improvement gained by the DP-Imp algorithm

over the solutions of the 2&3-opt algorithm. The penultimate column, titled as “Av. %

of Imp. Sol.s” provides the average of the percentage of the solutions of the 2&3-opt

algorithm that are further improved by the DP-Imp algorithm. Lastly, the column “Av.

B. %Dev.” gives the average of percent deviation of the best solution of each instance

obtained by the DP-Imp algorithm from that obtained by the 2&3-opt algorithm. The

average values of the columns are given in the last rows of the tables.

The second column in Table 4.5 refers to the average time spent by the 2&3-opt algo-

rithm and is copied to Tables 4.6-4.8 to make the comparison easier with the solution
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Table 4.6: Comparisons of the solutions obtained by the 2&3-opt algorithm with those

that are obtained after further improvement by the DP-Imp algorithm with K ′ − S ′ :

16− 6 parameter setting

n
Av. 2&3-opt

Time

Av. DP-Imp

Time

Av. 2&3-opt

%Imp.

Av. DP-Imp

%Imp.

Av. % of

Imp. Sol.s

Av. B.

%Dev.

20 0.0 0.7 46.3 0.3 28.5 0.0

25 0.0 1.1 50.6 0.3 30.6 -0.1

30 0.1 1.4 53.1 0.3 28.8 0.0

40 0.6 2.3 56.7 0.2 38.9 -0.1

50 1.8 2.4 60.5 0.2 26.4 -0.1

75 16.3 4.4 66.1 0.1 30.9 -0.1

100 79.6 5.6 70.5 0.1 25.0 -0.1

Av. 14.1 2.6 57.7 0.21 29.9 -0.08

Table 4.7: Comparisons of the solutions obtained by the 2&3-opt algorithm with those

that are obtained after further improvement by the DP-Imp algorithm with K ′ − S ′ :

18− 4 parameter setting

n
Av. 2&3-opt

Time

Av. DP-Imp

Time

Av. 2&3-opt

%Imp.

Av. DP-Imp

%Imp.

Av. % of

Imp. Sol.s

Av. B.

%Dev.

20 0.0 4.0 46.3 0.4 31.9 0.0

25 0.0 8.8 50.6 0.5 40.3 -0.1

30 0.1 10.8 53.1 0.4 39.9 0.0

40 0.6 16.4 56.7 0.4 49.0 -0.1

50 1.8 21.9 60.5 0.3 39.2 -0.1

75 16.3 35.3 66.1 0.2 39.9 -0.1

100 79.6 46.8 70.5 0.1 33.7 -0.1

Av. 14.1 20.6 57.7 0.31 39.1 -0.08
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Table 4.8: Comparisons of the solutions obtained by the 2&3-opt algorithm with those

that are obtained after further improvement by the DP-Imp algorithm with K ′ − S ′ :

18− 6 parameter setting

n
Av. 2&3-opt

Time

Av. DP-Imp

Time

Av. 2&3-opt

%Imp.

Av. DP-Imp

%Imp.

Av. % of

Imp. Sol.s

Av. B.

%Dev.

20 0.0 3.8 46.3 0.3 31.6 0.0

25 0.0 6.5 50.6 0.4 37.8 -0.1

30 0.1 8.5 53.1 0.4 38.2 0.0

40 0.6 11.5 56.7 0.3 46.2 -0.1

50 1.8 15.1 60.5 0.3 37.5 -0.1

75 16.3 23.2 66.1 0.1 35.8 -0.1

100 79.6 30.5 70.5 0.1 30.6 -0.1

Av. 14.1 14.2 57.7 0.28 36.8 -0.08

times of the DP-Imp algorithm for different parameter settings. When comparing

the third columns of the tables with each other, we observe an increase in the com-

putational time of the DP-Imp algorithm as K ′ increases and S ′ decreases. This is

expected because the total time spent in solving all the subproblems increases with

K ′ and the number of subproblems which increases as S ′ decreases. The average

percent improvement values obtained with the 2&3-opt algorithm over the random

initial solutions, which are given in the fourth columns of the tables, are quite high.

In practice, improving the solutions obtained by the 2&3-opt algorithm can be chal-

lenging and any small improvement would be desirable as it would reduce the energy

consumption of the forklift even further. When comparing the 5th and 6th columns

of the tables, one can observe that the values in these columns are the largest when

K ′ = 18. On the other hand, looking at the last columns of the tables, one can see that

the parameters of the DP-Imp algorithm used in our experiments all have the same

effect on improving the best solutions obtained by the 2&3-opt algorithm. Consider-

ing all discussed above, we choose K ′ − S ′ as 18 − 6, instead of 18 − 4 due to the

time advantage of the former, though the latter setting could also be selected if one

prefers solution quality over time. As a result, we apply the DP-Imp algorithm after
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the 2&3-opt algorithm with parametersK ′−S ′ : 18−6 in the following experiments.

So far, we have discussed the results of our preliminary computational experiments.

Through these experiments, we have selected the parameters of our algorithms and

have turned all tour construction and tour improvement algorithms into a single solu-

tion approach for the EMFRP. In this solution approach, for each instance we generate

9 random initial solutions, 1 initial solution by the nearest neighbor algorithm, and

one initial solution with the DP-Const algorithm. These 11 initial solutions are im-

proved first by the 2&3-opt algorithm. The resulting solutions are then improved by

the DP-Imp algorithm. Finally, we choose the best solution among these 11 solutions

for each instance. In the next section, we provide the results of our main experiments

comparing the proposed solution approach with the exact solution methods and com-

paring the EMFRP with the (horizontal+vertical) distance minimization problem in

terms of energy consumption and tour time of the order picker forklift.

4.5.2 Further Computational Experiments

In this section, we evaluate the proposed solution approach by comparing its perfor-

mance with the exact solution approaches. As a result of this comparison, we provide

a suggestion to the user to decide which solution method to use (the MIP formulation,

the DP, or the proposed approach) for different instance sizes. Moreover, we evaluate

the savings in energy consumption by employing the EMFRP instead of the (horizon-

tal+vertical) distance minimization (forklift routing) problem (HVDMFRP). We also

observe that in some height-mass settings, the value of solving EMFRP instead of the

distance minimization problem is much larger than in some other settings. Finally,

we will see that the solutions provided by the EMFRP also reduce the tour time of the

order picker forklift when compared with the solutions of the HVDMFRP.

We first provide the results of the experiments on solving the EMFRP by the MIP

formulation using the CPLEX solver. Table 4.9 provides the results for the 5-aisle

instances while Table 4.10 for the 10-aisle instances. In both tables, the columns cor-

respond to different n values and the rows correspond to height-mass settings. The

values in these tables give the average of solution times (in seconds) of 10 instances

for each size and setting, and the average (over 10 instances) relative MIP gap re-
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Table 4.9: Average solution times and relative MIP gaps when the 5-aisle instances

with different number of items (n) and height-mass settings are solved using the MIP

formulation

Average solution time in s (Gap%)

height-mass setting n = 10 n = 15 n = 20 n = 25 n = 30

L-L 0.3 6.3 1673.1 10133.4 (4.1) 10800 (9.2)

L-H 0.6 349.7 10800 (11.5) 10800 (18.4) 10800 (23.7)

L-G 0.4 56.3 9061.0 (4.5) 10800 (11.8) 10800 (16.5)

M-L 0.3 12.1 2827.3 (0.4) 10800 (5.8) 10800 (11.6)

M-H 1.1 3239.8 10800 (14.0) 10800 (21.1) 10800 (27.0)

M-G 0.4 274.1 10791.3 (6.7) 10800 (14.5) 10800 (18.6)

H-L 0.3 11.9 4397.1 (1.1) 10800 (7.8) 10800 (12.3)

H-H 1.6 2141.7 10800 (15.3) 10800 (22.5) 10800 (27.9)

H-G 0.5 104.4 10800 (8.5) 10800 (15.2) 10800 (18.9)

turned by CPLEX after the 3 hour time limit in parentheses. Note that non-existence

of the parentheses implies that the corresponding value is zero, i.e., all the instances

are solved to optimality within 3 hours.

Tables 4.9 and 4.10 show that none of the instances with n = 30 items can be solved

to optimality by CPLEX in 3 hours. Moreover, among both 5-aisle and 10-aisle

instances with n = 25 items, only 1 instance having the setting L-L is solved to

optimality within 3 hours. For the 5-aisle instances with n = 20 items, 10, 2, 8, 1,

and 8 instances are solved to optimality within 3 hours for the settings L-L, L-G, M-

L, M-G, and H-L, respectively. For the 10-aisle instances with n = 20 items, on the

other hand, 9, 3, 8, 1, and 7 instances are solved to optimality within 3 hours for the

settings L-L, L-G, M-L, M-G, and H-L, respectively. In general, the instances with

setting H for masses, i.e., high masses, take more time to solve. Besides, the increase

in the height differences of the items makes the problem slightly harder to solve.

In Table 4.11, the performance of the DP algorithm is presented and compared with

that of the MIP formulation. Here, for the instances with different number of items,
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Table 4.10: Average solution times and relative MIP gaps when the 10-aisle instances

with different number of items (n) and height-mass settings are solved using the MIP

formulation

Average solution time in s (Gap%)

height-mass setting n = 10 n = 15 n = 20 n = 25 n = 30

L-L 0.4 6.4 2711.4 (0.1) 9942.5 (4.4) 10800 (9.0)

L-H 1.0 344.3 10800 (10.3) 10800 (17.5) 10800 (22.7)

L-G 0.6 49.8 8351.7 (3.4) 10800 (11.4) 10800 (15.8)

M-L 0.3 9.8 2785.5 (0.6) 10800 (6.0) 10800 (11.3)

M-H 0.9 1555.8 10800 (13.0) 10800 (20.0) 10800 (26.2)

M-G 0.6 109.0 9839.0 (5.6) 10800 (13.6) 10800 (19.1)

H-L 0.4 12.7 5954.4 (0.9) 10800 (6.7) 10800 (12.4)

H-H 1.6 2655.7 10800 (14.9) 10800 (20.7) 10800 (27.1)

H-G 0.8 169.9 10800 (7.4) 10800 (14.2) 10800 (19.4)

the average (over 90 instances) solution time of the DP (in seconds) is given in the

column titled “Time”. For each instance, the column titled as “%Dev. of Time” gives

the average of the percent deviations of the computational times of the DP from that

of the MIP formulation (CPLEX). The columns titled as “%Dev. of OFV” show the

average percent deviation of the objective function values of the DP solutions from

the best solutions of the MIP formulation returned by CPLEX in 3 hours.

According to Table 4.11, all the 5-aisle and 10-aisle instances with 10, 15, 20 and 25

items can be solved optimally by the DP algorithm in 3 hours. On the other hand,

the DP algorithm cannot solve any instance with n = 30 items in 3 hours. Even

though the DP solution times increase very quickly as n increases, they are still much

better than the solution times of the MIP formulation for all instance sizes. For this

time advantage of the DP over the MIP formulation, the DP algorithm is used as the

optimization routine within the proposed DP-Const and DP-Imp algorithms.

Among the 61 5-aisle instances with 20 items that cannot be solved to optimality

within 3 hours by the MIP formulation, the DP algorithm gives a better solution in
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Table 4.11: Solution time of the DP, its percent deviation from the CPLEX time, and

the percent deviation of the objective function values of the DP solutions from those

of the CPLEX solution all on average for the 5- and 10- aisle instances with different

n values

5 aisles 10 aisles

n Time
%Dev.

of Time

%Dev. of

OFV
Time

%Dev.

of Time

%Dev. of

OFV

10 0.0 -98.7 0.00 0.0 -98.5 0.00

15 0.3 -97.1 0.00 0.3 -96.7 0.00

20 20.4 -98.5 -0.01 20.4 -97.7 -0.01

25 1175.8 -88.7 -0.12 1167.9 -88.7 -0.13

only 5 instances. This means that for the remaining 56 instances, the best solution re-

turned after 3 hours by CPLEX is indeed an optimal solution. Similarly, among the 89

5-aisle instances with n = 25 items that cannot be solved to optimality within 3 hours

by the MIP formulation, the DP returns a better solution in 22 instances. Therefore,

for the remaining 67 instances, the best integer solution returned by CPLEX after 3

hours is the optimal solution. For the 10-aisle instances with 20 and 25 items, the

DP algorithm provides better solutions than the MIP formulation for 3 out of 62 and

30 out of 89 instances that cannot be solved to optimality within 3 hours by the MIP

formulation, respectively.

Now, we evaluate the quality of the solutions returned by our proposed solution ap-

proach. For this purpose, for each instance, we determine the best solution over 11

solutions provided by the proposed approach. For each such best solution, we com-

pute the percent deviation of its objective function value from that of the MIP formu-

lation and the DP algorithm. Statistics about these percent deviations are provided in

Tables 4.12 and 4.13 for 5-aisle and 10-aisle instances, respectively. The values in

these tables show the average (over 10 instances) and the maximum (in parentheses)

of these percent deviations for different instance sizes and height-mass settings. Note

that the proposed solution approach always finds the optimal solution for instances
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Table 4.12: Solution quality of the proposed solution approach compared to exact

approaches in 5-aisle instances with different height-mass settings and different n.

Av. %Dev. of OFV from exact solution approach (max %Dev.)

n = 20 n = 25 n = 30

Setting DP CPLEX DP CPLEX CPLEX

L-L ∗ ∗ ∗ -0.05 (0.0) -0.13 (0.0)

L-H ∗ -0.03 (0.0) 0.04 (0.4) -0.10 (0.4) -0.30 (0.0)

L-G ∗ ∗ ∗ ∗ -0.17 (0.4)

M-L ∗ ∗ ∗ ∗ -0.09 (0.0)

M-H ∗ -0.01 (0.0) ∗ -0.25 (0.0) -0.48 (0.0)

M-G ∗ ∗ 0.05 (0.5) -0.13 (0.5) -0.02 (0.8)

H-L ∗ ∗ 0.11 (0.7) ∗ -0.24 (0.0)

H-H ∗ -0.01 (0.0) ∗ -0.19 (0.0) -0.30 (0.1)

H-G ∗ -0.03 (0.0) ∗ -0.15 (0.0) -0.24 (0.0)

∗ = 0.00(0.0)

with n less than or equal to 18. This is because a DP with 18 items is solved during

the DP-Imp algorithm. For this reason, the results are only provided for instances

with n greater than 18. In these tables, negative values show that the solutions found

by the proposed solution approach are better than the corresponding exact solution

approach on average.

Tables 4.12 and 4.13 show that for all the 5- and 10-aisle instances with 20 items,

the proposed solution approach is able to find the optimal solution. For the majority

of the instances with 25 items, the proposed approach finds the optimal solution and

most of the solutions found are better than those returned by CPLEX in 3 hours.

Finally, for most of the instances with 30 items, the proposed solution approach finds

better solutions than the MIP formulation, while the DP cannot return a solution in

3 hours. In summary, for small size instances, the solutions found by the proposed

solution approach are of high quality. We suggest the user to use the DP approach for

instances with up to 20 items and the proposed solution approach for larger instances.
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Table 4.13: Solution quality of the proposed solution approach compared to exact

approaches in 10-aisle instances with different height-mass settings and different n.

Av. %Dev. of OFV from exact solution approach (max %Dev.)

n = 20 n = 25 n = 30

Setting DP CPLEX DP CPLEX CPLEX

L-L ∗ ∗ ∗ -0.11 (0.0) -0.15 (0.0)

L-H ∗ ∗ ∗ -0.09 (0.0) -0.10 (0.0)

L-G ∗ ∗ 0.02 (0.2) -0.04 (0.2) -0.25 (0.3)

M-L ∗ ∗ 0.01 (0.1) -0.02 (0.1) -0.17 (0.2)

M-H ∗ ∗ 0.02 (0.1) -0.28 (0.0) -0.73 (0.0)

M-G ∗ -0.05 (0.0) ∗ -0.14 (0.0) -0.36 (0.0)

H-L ∗ ∗ ∗ -0.05 (0.0) -0.43 (0.0)

H-H ∗ -0.08 (0.0) ∗ -0.13 (0.0) -0.47 (0.0)

H-G ∗ ∗ ∗ -0.21 (0.0) -0.50 (0.0)

∗ = 0.00(0.0)
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For instances with 25 items, the solution time of the DP is about 20 minutes. On the

other hand, the proposed approach finds very good quality (mostly optimal) solutions

for these instances in less than 1.5 minutes.

In this part of the experimental results, we provide a set of analysis on the construc-

tion algorithms that are used within the proposed solution approach. Remember that,

3 different construction algorithms are utilized within the proposed approach to gen-

erate 11 initial solutions: 9 at random, 1 by the nearest neighbor algorithm, and 1 by

the DP-Const algorithm. Each initial solution constructed is then improved by the

improvement algorithms (first by the 2&3-opt algorithm and then by the DP-Imp al-

gorithm) to obtain the final solution. Here, we want to find out how often the best final

solution of each instance is obtained when different construction algorithms are used.

For this purpose, for each construction algorithm, we report in the first three columns

of Tables 4.14 and 4.15 the proportion of the times the initial solution constructed

results in the best solution (over 11 solutions) after the improvement algorithms are

applied for the 5- and 10-aisle instances, respectively, averaged over 90 instances.

The last column titled “Random, in total”, reports the proportion of the times any of

the 9 random initial solutions constructed results in the best solution (over 11 solu-

tions), averaged again over 90 instances. Moreover, we evaluate the time it takes for

our proposed approach to construct the initial solution and to bring it to the final solu-

tion when different construction algorithms are used (see the values in parentheses in

the tables). The values in the parentheses in the last column refer to the total solution

time of our proposed solution approach generating 9 random solutions and improving

all of them to obtain 9 final solutions. The average values of the columns are given in

the last rows of the tables.

When Tables 4.14 and 4.15 are examined, it can be seen that the solutions constructed

using the nearest neighbor algorithm and DP-Const algorithm result in the best solu-

tion with similar proportions on average (0.30 and 0.32 in the 5-aisle instances, and

0.32 and 0.32 in the 10-aisle instances, respectively). The proposed algorithm has

a higher chance of finding the best solution when the DP-Const algorithm is used to

generate the initial solutions for small size instances. On the other hand, for the larger

size instances, it has a higher chance of finding the best solution when the nearest

neighbor algorithm is used as the tour construction algorithm. Moreover, a solution
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Table 4.14: Average proportion of the times the initial solution constructed results in

the best solution and average solution times when different construction algorithms

are utilized for 5-aisle instances with different n.

Av. proportion resulting in best sol. (Av. Sol. Time)

n
Nearest

neighbor
DP-Const

Random,

on average

Random,

in total

20 0.71 (3.9) 0.71 (4.2) 0.65 (3.9) 0.98 (35.1)

25 0.44 (6.6) 0.60 (6.3) 0.51 (6.3) 1.00 (56.5)

30 0.33 (8.5) 0.37 (9.4) 0.32 (8.5) 0.91 (76.2)

40 0.27 (10.5) 0.22 (12.2) 0.18 (11.4) 0.90 (102.7)

50 0.13 (14.9) 0.14 (17.6) 0.12 (16.5) 0.86 (148.3)

75 0.11 (29.4) 0.09 (37.8) 0.09 (38.4) 0.81 (346.0)

100 0.13 (63.9) 0.11 (92.0) 0.09 (106.4) 0.76 (957.4)

Av. 0.30 (19.7) 0.32 (25.6) 0.28 (27.3) 0.89 (246.0)

generated by the nearest neighbor algorithm or DP-Const algorithm is more likely to

turn into the best solution than a solution generated at random. On the other hand,

when 9 random initial solutions are taken, they have a larger chance to get to the best

solution than a single nearest neighbor or the DP-Const solution (see the last column

of the tables). This observation signifies the importance of number of replications.

When the computational time of the proposed solution approach is examined (values

in the parentheses), it can be seen that the approach spends the least time when the

nearest neighbor algorithm is used. Even though the construction time of the DP-

Const is larger than that of the random construction, the proposed solution approach

does not spend more time (including the construction time) when the DP-Const is

used. This is because more effort is likely to be needed to improve a random initial

solution. Considering the solution quality and the computational time of the final

solutions obtained by using different construction algorithms, we suggest the user to

run the proposed approach first with 1 solution constructed with the nearest neighbor

algorithm. If the user has still some time, s/he can run the approach again by 1
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Table 4.15: Average proportion of the times the initial solution constructed results

in the best solution and average solution times when different constuction algorithms

are utilized for 10-aisle instances with different n.

Av. proportion resulting in best sol. (Av. Sol. Time)

n
Nearest

neighbor
DP-Const

Random,

on average

Random,

in total

20 0.82 (4.1) 0.88 (4.3) 0.75 (4.1) 1.00 (36.9)

25 0.42 (6.3) 0.50 (7.8) 0.51 (6.5) 0.99 (58.2)

30 0.36 (8.0) 0.42 (9.6) 0.29 (8.3) 0.92 (75.1)

40 0.21 (11.4) 0.24 (12.7) 0.17 (10.9) 0.89 (97.9)

50 0.17 (16.0) 0.13 (19.5) 0.10 (16.8) 0.81 (151.4)

75 0.09 (32.3) 0.02 (40.6) 0.10 (38.9) 0.89 (350.4)

100 0.20 (65.9) 0.04 (95.2) 0.09 (106.7) 0.76 (960.2)

Av. 0.32 (20.6) 0.32 (27.1) 0.29 (27.5) 0.89 (247.2)

solution constructed with the DP-Const algorithm. Having additional time, the user

can continue with replications by generating random initial solutions.

Now, we provide a comprehensive comparison between the solutions of the EM-

FRP and the HVDMFRP. In Tables 4.16 and 4.17, we present percent energy savings

obtained by using the EMFRP instead of the HVDMFRP for the 5- and 10-aisle in-

stances, respectively. The EMFRP instances with n = 30 are solved by the proposed

solution approach, while all the other instances of the the EMFRP and all the instances

of the HVDMFRP are solved to optimality by exact solution methods. The titles of

the columns give the number of items while those of the rows give the height-mass

settings of the instances. The values in the tables give the average (over 10 instances)

percent energy saving, and the least (among 10 instances) percent energy saving in

parentheses, when we use the solutions of the EMFRP instead of the HVDMFRP.

Tables 4.16 and 4.17 show that the solutions of the EMFRP can result in up to %30

energy savings compared to the solutions obtained by the HVDMFRP. Generally, we

can state that the larger the size of an instance the more energy savings we obtain by
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Table 4.16: Average percent energy savings when EMFRP is used instead of HVM-

FRP on 5-aisle instances with different n and height-mass settings

Average % energy saving

(min % energy saving among 10 instances)

Setting n = 10 n = 15 n = 20 n = 25 n = 30

L-L 2.3 (0.0) 3.0 (0.0) 3.6 (1.7) 3.9 (1.1) 4.0 (1.4)

L-H 3.8 (0.0) 6.0 (0.3) 7.2 (4.8) 8.1 (3.3) 9.0 (3.7)

L-G 3.4 (0.0) 4.6 (2.3) 6.2 (3.4) 6.6 (1.3) 7.4 (4.0)

M-L 3.7 (1.5) 6.4 (3.2) 8.3 (4.0) 7.6 (5.0) 11.7 (7.7)

M-H 6.4 (2.0) 11.3 (6.2) 14.1 (8.6) 15.0 (9.2) 22.2 (16.5)

M-G 5.8 (1.2) 9.3 (3.3) 11.9 (6.2) 12.1 (5.1) 18.2 (13.3)

H-L 5.3 (1.7) 7.4 (4.2) 12.8 (5.9) 13.3 (7.2) 18.0 (8.9)

H-H 9.9 (4.4) 12.4 (7.5) 21.4 (14.3) 23.5 (15.4) 30.2 (16.6)

H-G 8.7 (3.4) 11.0 (5.8) 18.2 (11.1) 19.7 (10.5) 26.0 (16.4)

Table 4.17: Average percent energy savings when EMFRP is used instead of HVM-

FRP on 10-aisle instances with different n and height-mass settings

Average % energy saving

(min % energy saving among 10 instances)

Setting n = 10 n = 15 n = 20 n = 25 n = 30

L-L 2.4 (0.0) 3.1 (0.0) 2.9 (1.3) 4.6 (2.4) 4.7 (0.9)

L-H 3.8 (0.2) 6.0 (0.8) 5.8 (3.9) 8.2 (4.8) 9.4 (4.4)

L-G 3.2 (0.0) 5.2 (1.1) 4.6 (1.3) 6.9 (4.0) 7.3 (2.8)

M-L 4.4 (0.0) 5.1 (2.1) 6.0 (1.6) 7.3 (3.5) 8.9 (5.0)

M-H 7.3 (1.7) 9.1 (5.2) 10.7 (3.7) 13.4 (7.4) 17.0 (10.9)

M-G 6.2 (1.7) 7.9 (4.1) 8.7 (3.3) 11.3 (3.8) 12.7 (5.7)

H-L 3.1 (0.0) 6.2 (2.5) 10.6 (4.3) 12.2 (5.4) 14.3 (10.3)

H-H 6.0 (0.0) 11.0 (4.8) 17.8 (8.6) 21.3 (12.0) 25.4 (19.4)

H-G 4.9 (0.0) 9.4 (4.9) 14.6 (5.9) 17.7 (8.8) 20.6 (14.6)
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the EMFRP. For all the instances with n = 15 (except the ones with setting L-L) and

more items, there is always some energy saving when the EMFRP is used.

In addition to the average percent energy saving values presented in the last two tables,

we now show the average (over 10 instances) energy consumption of the solutions of

the EMFRP and HVDMFRP for each height-mass setting and for different number of

items in Figure 4.6. In every part of this figure, which refer to 9 height-mass settings

of the instances, the vertical axes show the amount of energy consumption in kilo

joules, while the horizontal axes give the number of items in the instances.

Comparing different parts of Figure 4.6, we observe a higher difference in the energy

consumption of the solutions of the EMFRP and HVDMFRP as the height difference

of the items, the masses of the items, and the number of items increase. For example,

the difference in the energy consumption of the solutions of the EMFRP and HVDM-

FRP is higher when the height difference setting is medium compared to low, and

when it is high compared to medium, independent of the other settings. When the

mass setting of the items is high, the energy consumption of the solutions of both

problems are higher compared to the general and low settings, independent of the

other settings. Finally, independent of the height-mass setting of the instances, the

difference in the energy consumption obtained by two problems increases by the size

of the instances.

The next comparison between the solutions of the HVDMFRP and EMFRP we pro-

vide, is in terms of the total (sum of horizontal and vertical) travel distances (in me-

ters), total tour times (in seconds) (which ignores the operator’s picking time), and

the energy consumptions of the forklift (in joules). In Figure 4.7, we present the aver-

age percent deviation of the total travel distances, tour times, and energy consumption

values of the solutions of the EMFRP from those of the HVDMFRP. Similar to Figure

4.6, there are 9 subfigures for 9 height-mass settings of the instances with the number

of items in their horizontal axes. The vertical axes in these subfigures give the corre-

sponding average percent deviation values for the total travel distances (D), tour times

(T), and energy consumptions (E). The negative values signify that the corresponding

results of the solutions of the EMFRP are lower than those of the HVDMFRP.

By Figure 4.7, we can observe that the total travel distances of the solutions of the

127



200

400

600

800

1000

1200

10 15 20 25 30

LL

HVDMFRP EMFRP

200

400

600

800

1000

1200

10 15 20 25 30

LG

HVDMFRP EMFRP

200

400

600

800

1000

1200

10 15 20 25 30

LH

HVDMFRP EMFRP

200

400

600

800

1000

1200

10 15 20 25 30

ML

HVDMFRP EMFRP

200

400

600

800

1000

1200

10 15 20 25 30

MG

HVDMFRP EMFRP

200

400

600

800

1000

1200

10 15 20 25 30

MH

HVDMFRP EMFRP

200

400

600

800

1000

1200

10 15 20 25 30

HL

HVDMFRP EMFRP

200

400

600

800

1000

1200

10 15 20 25 30

HG

HVDMFRP EMFRP

200

400

600

800

1000

1200

10 15 20 25 30

HH

HVDMFRP EMFRP

Figure 4.6: Average energy consumption in kilo joule (in vertical axes) when the

HVMFRP and EMFRP are used to solve the 5-aisle instances with different height-

mass settings and different number of items (in horizontal axes)
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Figure 4.7: Average percent change (in vertical axes) in total horizontal and vertical

distances (D), total travel times (T), and total energy consumptions (E) of the forklift

when 5-aisle instances with different height-mass settings and different number of

items (in horizontal axes) are solved with the EMFRP instead of the HVMFRP
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EMFRP are higher compared to those of the HVDMFRP. On the other hand, the aver-

age tour times of the solutions of the EMFRP fall lower than those of the HVDMFRP

along with the average energy consumption values. These differences become more

remarkable, in general, by increase in the height difference, masses, and number of

items. In other words, applying the EMFRP instead of the HVDMFRP, results not

only in energy savings but also in time savings.

Finally, we present in Figure 4.8 the percent deviations of the horizontal distances

(H), vertical distances (V), and total distances (D) traveled by the forklift when the

solutions of the EMFRP are used instead of those of the HVDMFRP. Even though

the total travel distances and horizontal distances of the solutions of the EMFRP are

higher, the EMFRP solutions result in lower energy consumption by reducing the

amount of vertical moves significantly. This figure therefore shows us the source of

the energy savings obtained by the solutions of the EMFRP. In summary, the EMFRP,

when compared with the HVDMFRP, provides energy-efficient order picker forklift

tour by trading off some horizontal travel distance against vertical travel distance.

4.6 Concluding Remarks

Routing an order picker forklift to pick the ordered items belongs to the operational

decision making level and is done in high frequency resulting in high energy con-

sumption daily. Finding an energy-efficient route for an order picker forklift can yield

significant savings in the energy consumption in warehouses. This chapter studis the

EMFRP with MIP formulation that seeks the best tour of an order picker forklift, in

terms of energy consumption, which is routed to pick a list of items and gather them

in depot. In this study, the energy consumption of the forklift in its horizontal and ver-

tical moves is calculated in detail with the friction forces and the load on the forklift

as well as its acceleration and deceleration. The MIP formluation of the EMFRP has

some characteristics of the TSP while its computational time is highly dependent on

the instance settings other than the number of items (instance size). Similar to the MIP

formulation, the adapted TSP-based dynamic programming algorithm also can only

solve small instances in reasonable time. Therefore, some TSP-based heuristics, i.e.,

nearest neighbor algorithm, 2-opt and 3-opt algorithms, are adapted for the EMFRP.
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Figure 4.8: Average percent change (in vertical axes) in horizontal distances (H),

vertical distances (V), and total horizontal and vertical distances (D) of the forklift

when the instances with different height-mass settings and different number of items

(in horizontal axes) are solved with the EMFRP instead of the HVMFRP
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Moreover, two problem based algorithms, one for constructing an initial tour, other

for improving a given tour, are also developed to be integrated to the TSP-based algo-

rithms in order to come up with a single solution approach. The experimental results

show that the dynamic programming approach beats the MIP formulation in general

and the proposed heuristic approach provides near optimal results. They also point

out that for problem instances with at least 25 items, the proposed solution approach

can be preferred over the exact solution methods. According to the experiments that

compare the solutions of the EMFRP and total distance minimization problem, it can

be said that the solutions of the EMFRP does not only provide energy savings but also

time savings in the order picker forklifts’ tours.
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CHAPTER 5

CONCLUSION

In this thesis, Chapter 2 introduces extensions of the classical Weber problem (WP)

with CO2 emission concerns. First we provide the green Weber problem (GWP) as

an extension of the single-facility WP. The GWP determines the location of a single

facility in the plane and the speeds of the vehicles serving the customers that result in

the minimum total amount of CO2 emission in the distribution system. Here, the cus-

tomers are assumed to have hard one-sided time windows (deadlines) and the vehicles

serving the customers should finish their service on or before the time limits. When

there is no deadline or all deadlines are relaxed enough, the optimal facility location

of the GWP corresponds to that of the single-facility WP. To the knowledge of us, all

the studies in the literature that take the vehicle speeds into account assume that the

location of the facility is given a priori. Furthermore, this is one of the few studies

in the literature that optimizes the vehicle speeds without using any discretization.

Also, all exact solution approaches in the literature are able to solve small to medium

size problems. Due to the second order cone programming formulation of the GWP,

instances with 1000 customers are solved within a couple of seconds in our study. A

worst case complexity of the GWP, due to the SOCP formulation, is O(n3.5) Lobo

et al. (1998), where n is the number of customers. In the second problem considered,

namely the time-dependent green Weber problem (TD-GWP), time-dependent traffic

congestion on roads is introduced which limits the vehicle speeds in different time

periods. In the TD-GWP, the aim is again the minimization of the total amount of

CO2 emission in the distribution system. The vehicles are allowed to wait in certain

time periods in order to reduce the fuel-emission, but are not allowed to violate the

customers’ deadlines. This problem is again shown to be polynomial-time solvable

by formulating it as a second order cone programming problem.

133



Chapter 3, studies the multi-facility green Weber problem (MF-GWP), which is an

extension of the classical multi-facility Weber problem (MF-WP) with environmental

considerations. The MF-GWP is also a multi-facility variant of the GWP provided

in the second chapter. In the MF-GWP there are a number of customers with pre-

determined service deadlines that are to be satisfied by the vehicles (whose speeds

are to be optimized) sent from a number of facilities to be located with minimal CO2

emission objective. We first propose a mixed integer second order cone programming

(MISOCP) formulation for the MF-GWP and investigate the effects of the symmetry

breaking constraints and the deadlines of the customers on the solution times. Due to

the weakness of the formulation, we then develop heuristic solution methods to solve

larger problem instances in reasonable time. We propose a local search heuristic,

and modified versions of the transfer and decomposition heuristics as improvement

stages of the solution method. The MF-GWP and its extensions or modifications may

find uses in several different real life applications and therefore their solutions may

be used in reducing the CO2 emissions or energy consumption and enhancing the

sustainability and green logistics applications in practice. In this study, we give ap-

plications from different sectors including aviation and robotics, where the developed

solution methods can be employed by integration of problem specific modifications.

Moreover, an illustrative example is considered in an assembly line system where

the stations are fed by dedicated rail-guided vehicles (RGVs). For this problem, we

modify the MISOCP formulation of the MF-GWP where we also utilize speed limit,

capacity, and location constraints along with constraints preventing intersecting rails

within the formulation.

The manual or automated material handling systems used in warehouses involve im-

portant technology-driven operations such as the usage of high-tech order picker

forklifts. Order picker forklifts with their ability to allow order picking operations

in narrow aisles and from high-level racks make them widely used in warehouses.

Moreover, a single operator does the riding and the picking tasks resulting in no need

for additional equipment or operator. The ability to ride the forklift while the fork is

lifted provides energy efficiency when picking items of similar heights. Routing the

order picker forklift to pick ordered items belongs to the operational decision mak-

ing level and is done in high frequency resulting in high energy consumption daily.
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Therefore, finding an energy-efficient route for an order picker forklift can yield sig-

nificant savings in the energy consumption in warehouses. For this reason, in this

thesis, we studied the energy-minimizing order picker forklift routing problem. To

our knowledge, this is the first study that considers the order picker forklifts in the

context of the order picking problem. One of the contributions of this study to the lit-

erature is the detailed calculation of the forklift’s energy consumption in its horizontal

and vertical moves taking the friction forces, the load on the forklift, acceleration and

deceleration of the forklift into account. An MIP formulation is proposed for the

EMFRP which is not able to solve large size problem instances in reasonable time.

Moreover, we adapted a TSP-based dynamic programming algorithm for the EMFRP,

which solves instances with up to 25 items in less than 20 minutes. Some TSP-based

construction and improvement heuristics, i.e., nearest neighbor algorithm, 2-opt and

3-opt algorithms, are adapted for the EMFRP. Two problem based algorithms, one

for constructing an initial tour, other for improving a given tour, are also developed

both using the dynamic programming approach as the optimization tool in each step.

Finally, all construction and improvement heuristics are integrated to develop a single

solution approach. Several sets of experiments are performed with the MIP formula-

tion, dynamic programming approach, and proposed solution approach.

5.1 Major Findings

In our computational experiments in Chapter 2, it is shown that locating the facility

based on the solution of the single-facility WP (without taking the time limits into

account) instead of the GWP results in a higher total amount of CO2 emission in the

distribution system. Also, as expected, it is seen that the higher the traffic congestion,

the higher the total-fuel emission cost in the distribution system.

The computational results in Chapter 3 show the effect of each improvement stage of

the proposed solution approach on improving the solution quality. Moreover, the

results indicate that within a fixed computational time, even though the location-

allocation heuristic is able to make more replications, the improvement heuristics

considered, i.e., transfer or transfer followed by decomposition, usually find better

solutions using less number of replications. We also investigate how the total amount
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of CO2 emitted by the distribution vehicles changes with respect to the number of

facilities located. Such considerations are helpful when the number of facilities is not

fixed a priori. A major limitation of this study on MF-GWP is the applicability of the

solution methods to the planar facility location problems involving direct shipments.

Moreover, we are only able to solve small size instances of the MF-GWP to optimal-

ity. The results of the illustrative example in the same chapter show that the RGVs

prefer higher speeds when they are empty and lower speeds when they are loaded to

minimize their energy consumption.

The experimental results in Chapter 4 show that the dynamic programming approach

beats the MIP formulation in general and the proposed heuristic solution approach

provides near optimal results. They also point out that for problem instances with

at least 25 items, the proposed heuristic solution approach can be preferred over the

exact solution methods. According to the experiments that compare the solutions of

the EMFRP and total distance minimization problem, it can be said that the solutions

of the EMFRP does not only provide energy savings but also time savings in the order

picker forklifts’ tours.

5.2 Future Research Directions

As a future research direction in context of the GWP and TD-GWP, one can work on

finding iterative solution approaches (like an extension of the Weiszfeld procedure)

for these problems. Furthermore, location and routing decisions can be considered at

the same time in a distribution system.

For the MF-GWP, one can involve routing decisions along with the multi-facility lo-

cation decisions. This extension makes the problem even more complicated and is

left as a future research direction. In designing distribution networks, one cannot

ignore the economic aspects of the system. As in the bi-objective pollution routing

problem Demir et al. (2014a), the cost of the distribution system including the fixed

and variable costs of the facilities and the transportation cost can be considered as

another objective function in addition to the total amount of CO2 emitted in the distri-

bution system. Such multi-objective considerations are crucial and can be addressed
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in future studies.

As possible future research directions for the EMFRP, the problems of order batching

and order sequencing can be integrated to the EMFRP to achieve energy efficiency.

Along with these extensions, the variable speed of the forklift in its horizontal move-

ments as well as the variable lowering and lifting speeds of the fork can be considered

in cases where the due times exist. Consideration of a bi-objective version of the EM-

FRP, where the travel time or the customer waiting time (or some other objective) and

energy consumption minimization are simultaneously considered, would be another

future research direction.
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2019.

RESEARCH INTERESTS

• Sustainable Supply Chains

• Green Logistics

• Facility Location Problems

• Vehicle Routing Problems

• Second Order Cone Programming

PUBLICATIONS

Journal Articles

Atashi Khoei, A., Süral, H., & Tural, M. K. (2020). Multi-facility green Weber prob-

lem. Computers & Operations Research, 113, 104780.

Atashi Khoei, A., Süral, H., & Tural, M. K. (2017). Time-dependent green Weber

problem. Computers & Operations Research, 88, 316–323.

Atashi, A., & Abedzadeh, M. (2011). Capacitated Hub Location Problems with Wait-

ing Time at Hubs. In IEEE International Conference on Industrial Engineering and

Engineering, Singapore, 2011, 141–145.

International Conference Presentations

Atashi Khoei, A., Süral, H., & Tural, M. K. (2019). Energy minimizing forklift

routing problem. 1st EUROYoung Workshop, Seville, Spain.

Atashi Khoei, A., Süral, H., & Tural, M. K. (2019). Multi-facility green Weber prob-

lem. 2nd Conference of the EURO working group on sustainable supply chains,

Amsterdam, Netherlands.

150



Gürü, B., Tural, M. K. , Atashi Khoei, A. (2018). Energy Optimization of a Plug in

Electric Vehicle Along a Fixed Path. 2018 INFORMS Annual Meeting, Arizona,

United States Of America.

Atashi Khoei, A., Farham, M. S., & Tural, M. K. (2017). Energy minimizing p-

connected covering location problem. The XVIII Congress of the Portuguese Asso-

ciation of Operational Research, Valença, Portugal.

Atashi Khoei, A., Süral, H., & Tural, M. K. (2016). Low carbon Weber problems.

The 28th European Conference on Operational Research, Poznan, Poland.

151


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction and Literature Review
	Green Weber Problems
	Energy Minimizing Order Picker Forklift Routing Problem
	The Outline of the Thesis

	Time-dependent green Weber problem (TD-GWP)
	The Green Weber Problem (GWP)
	Second Order Cone Programming
	An SOCP Formulation of the GWP

	The Time-dependent Green Weber Problem (TD-GWP)
	The TD-GWP with Non-decreasing Congestion

	Illustrative Example
	Computational Experiments
	Concluding Remarks

	Multi-facility green Weber problem (MF-GWP)
	Problem Description and Notation
	Solution Approaches for the MF-GWP
	An MISOCP Formulation for the MF-GWP
	Heuristics for the MF-GWP
	Alternate Location-allocation Heuristic
	Local Search
	Transfer
	Decomposition


	Computational Results
	Small Size Instances
	Medium and Large Size Instances

	Application Areas of the MF-GWP and an Illustrative Example
	Concluding Remarks

	Energy minimizing forklift routing problem (EMFRP)
	Notation and Problem Description
	Exact Solution Approaches for the EMFRP
	An MIP Formulation
	A Dynamic Programming Solution Approach

	Heuristic Solution Approaches for the EMFRP
	Tour Construction
	TSP-based Nearest Neighbor Algorithm
	DP-Construction Algorithm

	Tour Improvement
	TSP-based Improvement Algorithms
	DP-Improvement Matheuristic


	Illustrative Example
	Computational Experiments
	Preliminary Experiments
	Choosing among 2-opt, 3-opt, or 2&3-opt
	Selection of the parameters of the DP-Const algorithm
	Determining the implementation sequence of the two improvement heuristics
	Selection of the parameters of the DP-Imp algorithm

	Further Computational Experiments

	Concluding Remarks

	Conclusion
	Major Findings
	Future Research Directions

	REFERENCES
	CURRICULUM VITAE

