
DIFFERENTIAL-LINEAR CRYPTANALYSIS OF ASCON AND DRYGASCON

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ASLI BAŞAK CIVEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CYBER SECURITY

JUNE 2021

Approval of the thesis:

DIFFERENTIAL-LINEAR CRYPTANALYSIS OF ASCON AND
DRYGASCON

submitted by ASLI BAŞAK CIVEK in partial fulfillment of the requirements for
the degree of Master of Science in Cyber Security Department, Middle East
Technical University by,

Prof. Dr. Deniz ZEYREK BOZŞAHİN
Dean, Graduate School of Informatics

Assist. Prof. Dr. Cihangir TEZCAN
Head of Department, Cyber Security

Assist. Prof. Dr. Cihangir TEZCAN
Supervisor, Cyber Security Department

Examining Committee Members:

Assoc. Prof. Dr. Cengiz ACARTÜRK
Cognitive Science Dept., METU

Assist. Prof. Dr. Cihangir TEZCAN
Cyber Security Dept., METU

Prof. Dr. Ali Aydın SELÇUK
Computer Engineering Dept., TOBB ETÜ

Date: 14.06.2021

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Aslı Başak Civek

Signature :

iii

ABSTRACT

DIFFERENTIAL-LINEAR CRYPTANALYSIS OF ASCON AND
DRYGASCON

Civek, Aslı Başak

M.S., Department of Cyber Security

Supervisor: Assist. Prof. Dr. Cihangir TEZCAN

June 2021, 72 pages

Due to rapidly developing technology, devices have become smaller along with their

performance capacity and memory. If possible, existing NIST-approved encryption

standards should be used on these resource-constrained devices. When an acceptable

performance cannot be achieved in this way, there is a need for more lightweight algo-

rithms. Since taking individual measures leads to simplistic designs when designing

lightweight algorithms, ciphers can become more vulnerable to cryptographic attacks.

Hence some regulation is necessary. To satisfy this need, NIST has decided to start a

lightweight cryptography competition to select one or more lightweight algorithms.

In this study, we examined Second Round NIST Lightweight Cryptography Stan-

dardization Competition candidates to contribute to the course of the competition.

Then we focused on two different but structurally very similar cipher suites Ascon

and Drygascon to compare their security. We observed 2, 3, 3.5-round truncated

differential and 5-round differential-linear distinguishers that were given for Drygas-

con are erroneous. We present the corrected results and provide the longest practical

differential-linear distinguisher of Drygascon. After that, we compared the security

of Ascon and Drygascon. We observed that the practical data complexity of the two

iv

is very close. However, since Ascon has more rounds than Drygascon, we concluded

that Ascon might be more resistant against differential-linear cryptanalysis.

Keywords: lightweight cryptography, cryptanalysis, differential-linear analysis, nist

v

ÖZ

ASCON VE DRYGASCON ŞİFRELERİNİN DİFERANSİYEL-LİNEER
KRİPTANALİZİ

Civek, Aslı Başak

Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Cihangir TEZCAN

Haziran 2021 , 72 sayfa

Hızla gelişen teknoloji nedeniyle cihazlar performans kapasiteleri ve bellekleri ile

birlikte küçülmüştür. Mümkünse bu kaynak kısıtlı cihazlarda var olan NIST-onaylı

şifreleme standartları kullanılmalıdır. Bu şekilde kabul edilebilir bir performans sağ-

lanamadığında daha hafif algoritmalara ihtiyaç duyulmaktadır. Hafif-sıklet algoritma-

ları tasarlarken alınan önlemler tasarımları basitleştirebilmekte ve şifrelerin kriptog-

rafik saldırılara karşı daha zayıf hale gelmesine neden olabilmektedir. Bu nedenle

bazı düzenlemeler gereklidir. Bu ihtiyacı karşılamak adına NIST, bir veya daha fazla

hafif-sıklet algoritma seçmek için bir hafif-sıklet kriptografi yarışması başlatmaya ka-

rar vermiştir.

Bu çalışmada, yarışmanın gidişatına katkı sağlamak amacıyla İkinci Tur NIST Hafif

Kriptografi Standardizasyon Yarışması adaylarını inceledik. Ardından, güvenliklerini

karşılaştırmak için iki farklı ancak yapısal olarak çok benzer şifre paketi Ascon ve

Drygascon’a odaklandık. Drygascon için verilen 2, 3, 3.5 tur kesik diferansiyel ve

5-tur diferansiyel-lineer ayırt edicilerinin hatalı olduğunu gözlemledik. Düzeltilmiş

sonuçları sunuyor ve Drygascon için en uzun pratik diferansiyel-lineer ayırt ediciyi

vi

sağlıyoruz. Ardından Ascon ve Drygascon’un güvenliğini karşılaştırdık ve pratikteki

veri karmaşıklıklarının çok yakın seviyede olduğunu gözlemledik. Ancak, Ascon’un

tur sayısı Drygascon’dan daha fazla olduğundan, Ascon’un diferansiyel-lineer krip-

tanalize karşı daha dayanıklı olabileceği sonucuna vardık.

Anahtar Kelimeler: hafif sıklet kriptografi, kriptanaliz, diferansiyel-lineer analiz, nist

vii

to my mother

viii

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my thesis advisor Assist.

Prof. Dr. Cihangir TEZCAN who introduced me to cryptanalysis. Throughout the

thesis, he answered my endless questions patiently and helped me repeatedly without

hesitation when I have a hard time to understand some subjects. His fast correspon-

dence, understanding, and insight have been a great help for me during this study. I

am lucky to have him as not just my advisor, but my mentor.

I would also like to thank the academic personnel in the Department of Cyber Secu-

rity, but especially Assoc. Prof. Dr. Cengiz ACARTÜRK. He always helped me in

any matter and provided his guidance without hesitation whenever I needed it. His

wisdom, point of view, and enthusiasm for science have always broadened my per-

spective. It has been a great pleasure to be in his lectures.

I would like to thank Sebastian Riou for sharing some codes he used in his analysis

of Drygascon. Being able to review these codes helped me to advance this study.

I would like to thank my family for their support. But my special thanks go to my

mother. She was always there for me with her love and compassion. She always

lifted me whenever I was down and supported me in any matter. I am grateful for

everything she has done for me.

Last but not least, I would like to thank all my friends who taught me to be calm and

make fun of life. I am grateful for their love, patience, and support.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xii

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Cryptography and Cryptanalysis . 1

1.2 Lightweight Cryptography . 4

1.3 Ascon . 13

1.4 Drygascon . 14

1.5 Undisturbed Bits . 16

1.6 Differential Cryptanalysis . 17

1.6.1 Truncated Differential Cryptanalysis 19

1.7 Linear Cryptanalysis . 20

1.8 Differential-Linear Cryptanalysis 23

x

1.9 Our Contribution . 24

2 UNDISTURBED BITS . 27

3 ASCON . 31

3.1 Notation . 31

3.2 Permutation-Based Constructions 32

3.3 Properties of Ascon’s S-box . 33

3.4 General Structures of Ascon . 35

3.5 Differential-Linear Distinguishers of Ascon 38

4 DRYGASCON . 43

4.1 Gascon Permutation . 44

4.2 Differential-Linear Distinguishers of Drygascon 46

4.2.1 Comparison Between Ascon and Drygascon 56

5 CONCLUSIONS . 59

REFERENCES . 61

xi

LIST OF TABLES

TABLES

Table 1.1 Timeline of NIST’s lightweight cryptography competition process.

Table was adapted from https://csrc.nist.gov/Projects/lightweight-cryptography 8

Table 1.2 The eliminated algorithms in the first round of NIST’s Competition . 11

Table 1.3 The eliminated algorithms in the second round of NIST’s competition 12

Table 1.4 The finalist algorithms of NIST Lightweight Cryptography Compe-

tition . 13

Table 1.5 Best known analyses of the GASCONC5R11 permutation 15

Table 2.1 NIST Second Round Lightweight Cryptography Competition Can-

didates that have 5-bit S-Boxes which are Ascon, Drygascon and Isap . . . 28

Table 2.2 NIST Second Round Lightweight Cryptography Competition Can-

didates that have 3-bit and 4-bit S-Boxes 28

Table 2.3 Undisturbed bits of 16 Second Round Candidates that we have

picked to analyze. The ciphers that have the same S-boxes were repre-

sented as their S-box names. Namely Ascon, Photon, and Gift. 29

Table 2.4 Probability one truncated differential distinguishers of some algo-

rithms that were submitted into NIST’s lightweight cryptography compe-

tition. Round numbers represent the minimum one that is used in their

permutations. 30

Table 3.1 Notation that is used in description of Ascon and Drygascon 31

xii

https://csrc.nist.gov/Projects/lightweight-cryptography

Table 3.2 5-bit S-box of Ascon . 33

Table 3.3 DDT of Ascon’s Sbox . 34

Table 3.4 LAT of Ascon’s Sbox . 35

Table 3.5 Constants of Ascon. While p12 and p6 are used for Ascon-128, p12

and p8 are used for Ascon128-a. 37

Table 3.6 2-round truncated probability one truncated differential with the

combination of 2-round linear approximation with bias 2−8 in hexadec-

imal notation. They were used for building 4-round differential-linear dis-

tinguisher by [Tezcan, 2020]. 40

Table 4.1 3 round probability one truncated differential that was reported wrongly

for GASCONC5R11 by [Riou, 2019] . 47

Table 4.2 3.5 round probability one truncated differential where the interme-

diate differences are reported wrongly [Tezcan, 2020]. 48

Table 4.3 2-round truncated probability one truncated differential with the

combination of 3-round Type-I linear approximation with a bias of 2−15.

Since the differential part is wrong, this 5-round distinguisher [Tezcan,

2020] is also wrong. 49

Table 4.4 Corrected results for 2-round probability one truncated differential

of GASCONC5R11. The wrong one was reported by [Tezcan, 2020] and

was used to build a 5-round differential-linear distinguisher. 51

Table 4.5 Corrected results of 3-round probability one truncated differential

of GASCONC5R11 that was reported wrongly by [Riou, 2019]. 52

Table 4.6 Corrected results of 3.5-round probability one truncated differential

of GASCONC5R11 that was reported wrongly by [Tezcan, 2020]. Despite

the middle rounds, S4 is same with Tezcan’s. 53

xiii

Table 4.7 2-round probability one truncated differential with the combina-

tion of 3-round linear approximation that we used for building a 5-round

differential-linear distinguisher. The input difference was changed into

0x0000008000000000. 54

Table 4.8 2-round truncated probability one truncated differential with the

combination of 3-round Type-I linear approximation with bias 2−15 that

we found to build 5-round differential-linear distinguisher. 55

Table 4.9 4-round Type-I linear approximation with bias 2−60, hexadecimal

notation. 56

Table 4.10 2-round Type-II linear approximation with bias 2−8 in hexadecimal

notation. We used that to build a 4-round differential-linear distinguisher. . 57

Table 4.11 Comparison of Ascon128 and Drygascon-128 57

xiv

LIST OF FIGURES

FIGURES

Figure 3.1 Illustration of Sponge Construction. The figure was taken from

[Jean, 2016] . 32

Figure 3.2 The duplex sponge mode for Ascon v1.2 authenticated encryp-

tion, figure is from its official website https://Ascon.iaik.tugraz.at/images/

aead_encrypt.pdf . 36

Figure 3.3 Substitution layer of Ascon. Figure was taken from the cipher’s

official websitehttps://ascon.iaik.tugraz.at/images/state_vertical_small.

png . 37

xv

 https://Ascon.iaik.tugraz.at/images/aead_encrypt.pdf
 https://Ascon.iaik.tugraz.at/images/aead_encrypt.pdf
https://ascon.iaik.tugraz.at/images/state_vertical_small.png
https://ascon.iaik.tugraz.at/images/state_vertical_small.png

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

CAESAR Competition for Authenticated Encryption: Security, Applica-

bility, and Robustness

DES Data Encryption Standard

DESL Lightweight Data Encryption Standard

GE Gate Equivalent

ID Identification Number

IoT Internet of Things

ISO International Organization for Standardization

LWC Lightweight Cryptography

NIST National Institute of Standards and Technology

RFID Radio Frequency Identification

SHA Secure Hashing Algortihm

TDEA Triple Data Encryption Algorithm

xvi

CHAPTER 1

INTRODUCTION

1.1 Cryptography and Cryptanalysis

Today the point where technology has come makes life easier in many ways. But

although being advantageous, it brings some security concerns. Because since the

communication carries through in an insecure channel, the data could be captured

or altered by third parties. Although the risks seem to be greater today, the privacy

of the data is actually not a new issue. It has existed since the beginning of written

communication. Therefore, thousands of years ago, the science of cryptology was

born to provide secure communication in an insecure channel. It is not just used for

confidentiality, but integrity, limiting unauthorized access to private information, and

non-repudiation.

Today, cryptography tries to achieve confidentiality by using some collection of op-

erations and algorithms called cryptosystem. Cryptosystem includes an encryption

algorithm, namely the cipher. Then the private data, namely the plaintext, is compli-

cated by passing it through this algorithm with some secret information called secret

key. In this way, plaintext becomes a random-looked sequence called ciphertext for

protecting it from adversaries. According to [Shannon, 1949], an encryption algo-

rithm should include confusion and diffusion steps to obscure the relation between

ciphertext, plaintext, and the secret key. It is important that cipher algorithms are

publicly available. What matters is keeping the key secret. Because according to

Shannon, the system already is accessible by the adversaries through bribes, burglary,

and blackmail. Therefore it should be approached with the assumption that the enemy

already knows the system [Shannon, 1949].

1

The security of a cryptosystem is based on keeping the key secret. The secret key

can be used both for encryption and decryption if this is a symmetric cryptosystem.

But asymmetric cryptosystems use different keys for these processes. Also, there are

keyless algorithms like hash functions, which take arbitrary-length input bits and turn

them into fixed-size output bits. Those hash functions are used in areas like generating

digital signatures, message authentication codes, and many more.

Symmetric cryptosystems use the same key or closely related keys for encryption

and decryption. They contain encryption primitives such as block ciphers and stream

ciphers. Block ciphers basically divide the input into b − bit blocks, encrypt each of

them with a secret key and provide b − bit ciphertext blocks. Then various modes

of operations can be used to combine these output blocks. Stream ciphers operate on

small input blocks, and sometimes these blocks can be small as a single bit. They

transform these bits in a timely manner by using their state.

Block ciphers, a type of symmetric cryptosystem, can be categorized as Substitution

Permutation Network (SPN) and Feistel Network. SPN and Feistel Network have

some layers to provide confusion and diffusion for the cipher. The combination of

these layers can be called a round, and a cipher depends on applying this round r

times. SPN contains a key addition layer, a substitution layer that provides confusion,

and a permutation (linear) layer that provides diffusion to the b − bit block input. A

subkey is determined in each round by using a key scheduling algorithm that pro-

cesses the secret key. But in Feistel Network, b − bit block input is divided into two

parts. And while a round function with a key material is applied on one part, the

output is XORed with the other part. Then the places of these parts are changed with

a swap operation.

Block ciphers can be converted into hash functions, stream ciphers, and permutation-

based constructions like sponge functions [Bertoni et al., 2007]. Sponge constructions

[Bertoni et al., 2007] use fixed-permutations as primitives. Block ciphers can be used

as iterative permutations in sponge functions if their secret keys are fixed. Because

unlike block ciphers, sponge functions do not include a key-scheduling algorithm.

Instead, they use a limited-length initial state that includes the secret key. By using

this state, the message with the desired length can be encrypted.

2

Sponge constructions can be used in different ways. One of the ways to use sponge

construction is Duplex construction [Bertoni et al., 2011]. Although some processes

in duplex construction are applied differently, the security of both construction de-

pends on the security of the used permutation. Therefore the security of this permu-

tation should be thoroughly analyzed when used in these constructions.

Cryptography aims to provide secure communication in an insecure channel. But

even though the communication seems obscure and random in plain sight after cryp-

tographic operations, it is still possible to obtain information from it. This can be

achieved via analyzing the cryptosystem and finding a repeating pattern on it. This is

called cryptanalysis, and it aims to obtain information about the secret key, plaintext,

or system by finding a statistical weakness in the cipher. Since the enemy may have

knowledge about the system, the vulnerabilities in it should be analyzed and taken

countermeasures at an early stage. In order to that, the algorithm must be public

so it can take more analysis. And that way, the system can be more secure against

adversaries. For this reason, competitions are held from time to time to select an

encryption standard for different purposes. These competitions can last for a couple

of years. During this time, candidate algorithms are open to the public and reviewed

by cryptanalysts. As a result of this, the most optimal algorithms that can maintain a

threshold between security, speed, and cost are selected and standardized. Advanced

Encryption Standard (AES) [Nechvatal et al., 2001] can be given as an example of

these competitions.

Rijndael [Daemen and Rijmen, 2002] is the winner of the AES competition that was

held between 1997 and 2000. It was standardized in 2001 as AES cipher and it has

continued to receive analyses since. It is a symmetric-key algorithm that uses SPN as

a primitive. It has a block size of 128-bit and three different key sizes with minimum

security of 128-bit. It can be used as 10, 12, 14 rounds with the key sizes of 128,

192, or 256 bits respectively. It is still frequently used as a strong encryption stan-

dard today, even used for protecting classified information 1. To achieve reasonable

security and performance, it should be used in all systems that require cryptographic

operations if it is possible.

1 https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/cnss15fs.pdf

3

1.2 Lightweight Cryptography

With the rapidly developing technology, there has been an increase in the produc-

tion and use of constrained devices such as radio frequency identification devices

(RFID), automotive systems, mobile tokens, medical implants, smart grid, sensor

networks, distributed control systems, cyber-physical systems, and internet of things

(IoT). These devices are generally interconnected and communicate wirelessly with

one another. Some of these devices may not be able to use existing cryptographic

standards effectively. Since the standardized algorithms were designed for environ-

ments like server/desktop most of the time, they may not meet the needs of some of

these constrained devices. Or the constrained devices may not serve up acceptable

performance criteria when they used them. So more lightweight designs were needed

for those types of devices, nearly for 20 years.

Since the academia could not keep up with this need and did not receive such a re-

quest, they started working on the subject approximately 10 years after this require-

ment began. This led the industry to come up with solutions of its own by developing

algorithms that were not carefully advanced or adequately analyzed. This approach

caused some disasters.

An example would be the attacks performed on Mifare Classic 1k, a frequently used

contactless smart card produced by NXP Semiconductors. It has wide usage areas

such as public transportation, university identification number (ID) cards, electronic

toll collection. To provide its security, the company used the Crypto1 cipher that was

developed by its own team. Although the company has not disclosed the algorithm it

uses to the public, the structure of the design [Nohl et al., 2008] and the communica-

tion layer [Garcia et al., 2008] have been discovered by academicians using reverse

engineering. Later they showed that the weaknesses in its initial design led to the

card being cloned. That can be done via a side-channel attack, which is an attack

type that aims to implementation of a system, rather than the cipher algorithm. For

this attack to work, it is enough to accomplish wireless interaction with the card for a

few minutes [Meijer and Verdult, 2015]. The other method is brief eavesdropping of

the card’s communication [Tezcan, 2017] then applying an offline brute force attack.

Brute force attack, or exhaustive search, basically means trying every possible key

4

that can be used on the system to obtain something intelligible. Although the newer

versions have been hardened against that, the key should be randomly generated and

the default one should not be used for the card to be secure.

Another example is the one for recovering the secret keys of car locks that use a

lightweight Keeloq algorithm. Keeloq is a block cipher designed for hardware. It is

used for keyless entry in places like cars, garages, apartment doors. This algorithm,

which many famous car companies use, has been given many attacks in the literature.

One of them is a type of side-channel attack called differential power analysis attack.

For this attack, [Paar et al., 2009] stated that cloning a remote is possible from only

ten power traces. Then they demonstrated that the secret key of the receiver and the

remote transmitter can be obtained with a practical key recovery attack within a few

minutes.

A similar example would be the attack that is done to Tesla Model S key fob [Wouters

et al., 2019]. In this attack, researchers analyzed and performed reverse engineering

to Passive Keyless Entry and Start systems used in this key fob. And they found out

the system uses a 40-bit key for both the unlock and start of the car. Then they showed

that the key fob could be cloned in seconds.

National Institute of Standards and Technology (NIST) is a non-regulatory organiza-

tion within the United States Department of Commerce2. Its researchers can develop

guidelines and standards with the help of the government, academia, and industry

when no acceptable standard exists. It organized competitions before to choose the

AES [Nechvatal et al., 2001] and Secure Hashing Algorithm-3 (SHA-3) [Dworkin,

2015]. In order to avoid greater disasters, NIST launched a project for lightweight

cryptography in 2013. It aimed to analyze how existing NIST-approved algorithms

work on constrained devices and if it is necessary to initiate a new standardization pro-

cess. Then, it held two workshops in 2015 and 2016 in order to understand the needs

of the industry, design principles of current lightweight cryptography algorithms, and

the requirements of target devices. In 2017, NIST published a report [McKay et al.,

2016]. One of the issues covered in this report was the examination of the lightweight

algorithms that have been developed so far.

2 https://www.nist.gov/director/pao/nist-general-information

5

According to report that is published by NIST [McKay et al., 2016], some lightweight

designs [Biryukov and Perrin, 2018] emerged over the time. Some of these designs

were developed by simplifying existing ones such as Lightweight Data Encryption

Standard (DESL) [Leander et al., 2007], while others were made from scratch, such

as PRESENT [Bogdanov et al., 2007]. In these lightweight designs, some mea-

sures were taken to meet the sufficient performance and limited memory require-

ments needed for constrained devices. These measures were the usage of smaller

key sizes, simpler key schedules, minimal implementations, simpler rounds, smaller

block sizes. Although these features increased performance, they also cause some

security weaknesses. For example,

• While having smaller block sizes like 64 bits instead of 128 bits (e.g., PRESENT)

helps save memory, it increases some attack risks like key recovery and plain-

text recovery.

• Having smaller key sizes under the 112 bits (e.g., PRESENT-80, Enocoro-

80 [Watanabe et al., 2008], Trivium [De Canniere, 2006]) not only increases

the efficiency but also some attack risks like key recovery. The minimum rec-

ommended key size by NIST is currently 112 bits [Barker and Roginsky, 2011].

• Simpler rounds with 4-bit S-boxes over 8-bit ones were preferred in lightweight

designs to save the area (e.g., PRESENT). Or instead of using complex lin-

ear layers in the hardware designs, recursive Maximum Distance Separable

(MDS) matrices (e.g., PHOTON [Guo et al., 2011]), or bit permutations (e.g.,

PRESENT) were used. It was observed that this situation forces the iteration to

be kept more to provide security.

• While using simpler key schedules decreases the power consumption, latency

and helps to save the memory, it could lead to some key-related attack risks.

So, the designs made so far have not been successful in eliminating the need for

lightweight cryptography. Because besides it was difficult to provide a single stan-

dard for all types of IoT devices; it was not an easy task to embed these algorithms

into an IoT device. Furthermore, the design choices made did not only increase the

performance but the attack possibility.

6

One of the other issues covered in this report [McKay et al., 2016] was the study

of the applicability of the current NIST-approved algorithms like AES [Daemen and

Rijmen, 1999] and Triple Data Encryption Algorithm TDEA [Barker and Mouha,

2017] that were approved by NIST on constrained devices. Furthermore, the needs

of the target devices were also analyzed. According to this study, they came to the

following conclusions:

• Most microcontrollers owned by IoT devices have a few simple instruction sets

and limited memory to be cost-effective. In such an environment, even simple

operations can cause too many instructions to be executed. On account of this,

trying to run today’s NIST-approved algorithms in IoT systems may lead to

too many cycles to be executed. Therefore, applications could run too slow

than intended, or their energy-consumption could be too high. So, powerful

cryptographic systems like AES can be too demanding for IoT sensors that

work with limited computational power and battery.

• Since most IoT systems are battery-powered and some, such as medical im-

plants, cannot replace their batteries, it is crucial that their batteries last long

enough. Not to mention devices that need stinted power from the environment

to operate, like RFID tags. So, cryptographic algorithms that use small amounts

of gate equivalents (GEs) and that have few timing and power requirements will

be a better suit for such devices. Of course, it is sometimes possible to design

these devices to use existing strong cryptographic algorithms. However, since

this will require adding more memory and gates, this will increase the total cost

quite much for devices that are produced in high volumes such as smart cards.

• Latency is an important topic for IoT systems that need to perform data ex-

change in a short time, like real-time automotive applications. So, this situation

can be taken into account when designing the algorithm.

• Even though most of the time there is no need to produce too much data in a

short time in IoT systems, still moderate throughput is expected most of the

time. And it should also be taken into account that some IoT devices may need

to communicate with devices in the high-end spectrum.

7

• Most importantly, since attackers may get physical access to the device, it may

lead to side-channel analysis. Even though ciphers are secure, measuring the

properties such as power consumption may cause attackers to capture the key.

Therefore, the cryptographic algorithms for constrained devices should be de-

signed as side-channel resistant.

As a result, NIST recommends implementing AES to the constrained devices if it is

possible [McKay et al., 2016]. And well-analyzed lightweight algorithms are needed

for constrained devices that cannot use existing standards and require simpler designs.

Therefore, with the report [McKay et al., 2016] that was published in 2017, it was

announced that a competition will be held to satisfy this need. The timeline of this

process is presented in Table 1.1.

Table 1.1: Timeline of NIST’s lightweight cryptography competition process. Table

was adapted from https://csrc.nist.gov/Projects/lightweight-cryptography

Date Event

July 20/21, 2015 First Workshop

August 11, 2016 Publication of NISTIR 8114 draft

October 17/18, 2016 Second Workshop

October 31, 2016 End of public comment period to Draft NISTIR 8114

March 28, 2017 NISTIR 8114 Report is published.

April 26, 2017 Profiles for standardization is published.

June 16, 2017 Public comments received.

May 14, 2018 Evaluation Criteria and requirements.

of the process is published.

May 14, 2018 Federal Register Notice is published.

June 28, 2018 Public comment period to the requirements ended.

August 27, 2018 Federal Register Notice is published.

August 27, 2018 Evaluation Criteria and Submission Requirements

for the process is published.

January 4, 2019 Early submission deadline for initial comments

February 25, 2019 Submission deadline

March 29, 2019 Amendment Deadline

April 18, 2019 Round 1 Candidates were announced.

August 30, 2019 Round 2 Candidates were announced.

October 7, 2019 NISTIR 8268 is published.

November 4/6, 2019 Third Workshop

October 19/21, 2020 Fourth Workshop

March 29, 2021 Finalist were announced.

8

https://csrc.nist.gov/Projects/lightweight-cryptography

NIST has not decided yet whether the winning algorithm should be a sole or a port-

folio. The industry prefers the winner to be a single algorithm because then it will be

sufficient for them to embed a single algorithm instead of many algorithms into their

devices. In this way, they will be able to reduce the cost by saving memory. However,

the academicians prefer it to be a portfolio because in that way, the initial algorithm

could quickly be replaced with the other one in case of a significant weakness appears

on it. And since IoT devices are different than each other and one standard may not

be met with all of them, the best approach might be different lightweight ciphers for

different purposes.

NIST published a call for submission document [NIST, 2018] for the candidates af-

ter decided to start a competition. According to this document, they stated that the

submission packets should include a cover sheet, specification of the algorithm, intel-

lectual property statements, source codes, and their test vectors compatible with the

specification. They wanted [NIST, 2018] candidate algorithms to meet Authenticated

Encryption with Associated Data (AEAD), an optional hash function, implementa-

tion, and design requirements. According to requirements, AEAD algorithms had to

provide a minimum of 128-bit key security while the nonce is unique. Hash functions

had to resist known attacks, able to process all byte-string inputs, and provide a min-

imum of 256-bit outputs. And both the AEAD algorithms and the hash functions had

to have better performance than current standards in the constrained devices. And

participants had to take countermeasures against side-channel attacks for their algo-

rithms.

The first 57 candidate algorithms are submitted early in 2019. NIST briefly evaluated

them under the criteria of if they fulfilled the requirements of the [NIST, 2018]. As a

result of this, 56 of them were accepted to the first round in April 2019 [Turan et al.,

2019]. NIST had decided to evaluate the candidate algorithms under the criteria of

maturity of the submission packets, side-channel resistance, cost, performance, third-

part security analysis [NIST, 2018]. In the cost part, the algorithms were going to be

compared in terms of GE, memory, and energy that they required. In the performance

part, they were going to be compared in terms of latency, power consumption, and

throughput.

9

For the performance part, some benchmarks were done for both hardware and soft-

ware. Software benchmarks are listed below:

• NIST published its benchmarking framework to utilize the performance of all

candidate algorithms on microcontrollers [NIST, 2021].

• Most of the second-round candidates were evaluated for efficiency for 8-bit and

32-bit embedded structures, especially AVR/ARM [Weatherley, 2021].

• The benchmarks of speed and memory usage on MCUs for the candidates were

presented in [Sebastian Renner and Mottok, 2020].

• Optimization strategies of some of the algorithms were analyzed on a RISC-V

architecture. And some optimized implementations were offered [Fabio Cam-

pos and Viguier, 2020].

• Some benchmarks for Intel, AMD, ARM Cortex-A, Qualcomm processors

were presented in [ECRYPT, 2019].

These benchmarks mostly include both the reports and programming codes for further

analysis. Hardware benchmarks are listed below:

• Benchmarks of Field Programmable Gate Array (FPGA) for round 2 candidates

are given in [Kamyar Mohajerani and Gaj, 2020].

• Application Specific Integrated Circuit (ASIC) implementations benchmark of

round 2 candidates are given in [Mustafa Khairallah and Chattopadhyay, 2020].

On the security part, NIST asked the cryptography community to analyze these ci-

phers. In this way, it was going to be possible to detect cryptographically weak al-

gorithms at an early stage and confirm the security of those that do not have known

weaknesses. Based on this outcome, NIST was going to be able to eliminate the

candidate algorithms in each round to select the winner in the end. This is also the

reason why we carried out this study; to contribute to the course of the competition by

analyzing the security of some of the candidate algorithms and providing our results.

10

NIST asked the cryptography community to analyze the security, performance, and

implementation of these algorithms for four months instead of twelve months. Be-

cause it wanted this competition to be completed in a shorter time than other compe-

titions like AES and SHA-3. These previous competitions were taken a long time to

complete; four years for AES and five years for SHA-3. Therefore it decided to focus

on promising algorithms in the first phase. At the end of the first round, 24 algorithms

were eliminated. They can be seen in Table 1.2.

Table 1.2: The eliminated algorithms in the first round of NIST’s Competition

State Cipher Source

Round 1 Bleep64 [Driscoll, 2018]

Round 1 CiliPadi [Z’aba et al., 2019]

Round 1 CLAE [Liu et al., 2019]

Round 1 CLX [Wu and Huang, 2019a]

Round 1 FlexAEAD [do Nascimento and Xexéo, 2019]

Round 1 Fountain [Zhang, 2019a]

Round 1 GAGE and InGAGE [Otte, 2019]

Round 1 HERN and HERON [Ye et al., 2019]

Round 1 LAEM [Han Sui, 2019]

Round 1 Lilliput-AE [Adomnicai et al., 2019]

Round 1 Limdolen [Mehner, 2019]

Round 1 Qameleon [Avanzi et al., 2019]

Round 1 Quartet [Zhang, 2019b]

Round 1 REMUS [Iwata et al., 2020]

Round 1 Shamash and Shamashash [Penazzi and Montes, 2019]

Round 1 SIMPLE [Gueron and Lindell, 2019]

Round 1 SIV-Rijndael256 [Guo and Iwata, 2019]

Round 1 SIV-TEM-PHOTON [Zhenzhen Bao, 2019]

Round 1 SNEIK [Hashing, 2019]

Round 1 Sycon [Sarkar et al., 2019]

Round 1 Thank Goodness It’s Friday (TGIF) [Iwata et al., 2019]

Round 1 Triad [Isobe et al., 2019]

Round 1 TRIFLE [Nilanjan et al., 2019]

Round 1 Yarará and Coral [Miguel Montes, 2019]

They were eliminated for various reasons [Turan et al., 2019]. NIST favored algo-

rithms with well-understood design principles, and they did not consider algorithms

as secure if current analysis methods could not be applied. Some algorithms were

eliminated for not getting enough analysis by the cryptography community. Some

were eliminated because they did not have the structure and security they claimed.

11

The first round of the competition was completed in 2019 [Turan et al., 2019] and 32

algorithms made it to the second round. 18 of them had permutation-based construc-

tions, 13 of them had block cipher mode of operation-based constructions, and one of

them was a stream cipher. These algorithms can be seen in Table 1.3. We present our

cryptanalysis results of these ciphers in Chapter 2.

Table 1.3: The eliminated algorithms in the second round of NIST’s competition

State Cipher Construction Source

Round 2 ACE Permutation-based [Aagaard et al., 2019a]

Round 2 COMET Block cipher [Gueron et al., 2019]

Round 2 DryGascon Permutation-based [Riou, 2019]

Round 2 ESTATE Block cipher [Chakraborti et al., 2020]

Round 2 ForkAE Block cipher [Andreeva et al., 2019]

Round 2 Gimli Permutation-based [Bernstein et al., 2017]

Round 2 HYENA Block cipher [Chakraborti et al., 2019]

Round 2 KNOT Permutation-based [Zhang et al., 2019]

Round 2 LOTUS-LOCUS Block cipher [Avik Chakraborti, 2019]

Round 2 mixFeed Block cipher [Chakraborty and Nandi, 2019a]

Round 2 ORANGE Permutation-based [Chakraborty and Nandi, 2019b]

Round 2 Oribatida Permutation-based [Bhattacharjee et al., 2021]

Round 2 Pyjamask Block cipher [Goudarzi et al., 2020]

Round 2 SAEAES Permutation-based [Naito et al., 2019]

Round 2 Saturnin Block cipher [Jirotka, 2016]

Round 2 SKINNY Block cipher [Beierle et al., 2020]

Round 2 SPIX Permutation-based [AlTawy et al., 2019b]

Round 2 SpoC Permutation-based [AlTawy et al., 2019a]

Round 2 Spook Permutation-based [Bellizia et al., 2020]

Round 2 Subterranean 2.0 Permutation-based [Daemen et al., 2020b]

Round 2 SUNDAE-GIFT Block cipher [Banik et al., 2019a]

Round 2 WAGE Permutation-based [Aagaard et al., 2019b]

The important thing for the second-round algorithms to make it to the final was their

performance analysis. Therefore, NIST asked competitors to optimize their algo-

rithms for different platforms. Then after these measurements and the third-party

analysis, 10 of them made it to the finals in March 2021. They were Ascon, ISAP,

Photon-Beetle, Xoodyak, TinyJambu, Elephant, GIFT-COFB, Grain128-AEAD, Ro-

mulus, Sparkle. Six of them are permutation-based, three of them are block cipher-

based ciphers and one of them is a stream cipher. They can be seen in Table 1.4.

12

Table 1.4: The finalist algorithms of NIST Lightweight Cryptography Competition

State Cipher Construction Source

Finalist ASCON Permutation-based [Dobraunig et al., 2016]

Finalist Elephant Block cipher [Dobraunig and Mennink, 2019]

Finalist GIFT-COFB Block cipher [Banik et al., 2019b]

Finalist Grain-128AEAD Stream cipher [Hell et al., 2019]

Finalist ISAP Permutation-based [Dobraunig et al., 2020]

Finalist PHOTON-Beetle Permutation-based [Bao et al., 2019]

Finalist Romulus Block cipher [Iwata et al., 2020]

Finalist SPARKLE Permutation-based [Beierle et al., 2019]

Finalist TinyJambu Permutation-based [Wu and Huang, 2019b]

Finalist Xoodyak Permutation-based [Daemen et al., 2020a]

In this work, we performed some cryptanalysis for former round 2 candidates. But we

mainly focused on Ascon and Drygascon. While Drygascon eliminated in the second

round, Ascon made it to the finals. The competition is expected to last 2 more years

and the winner algorithm is to be standardized around 2023.

1.3 Ascon

Ascon [Dobraunig et al., 2016] is a cipher suite that provides authenticated encryp-

tion with associated data and hashing functionality. It was a primary choice in the

lightweight applications category of the CAESAR (Competition for Authenticated

Encryption: Security, Applicability, and Robustness) competition that was held be-

tween 2014 and 2019. It was selected as one of the finalists in the NIST’s Lightweight

Cryptography competition.

Ascon consists of ciphers Ascon-128 and Ascon-128a that are permutation-based

structures. Both versions provide 128-bit security and use the same 320-bit permu-

tation that is defined on 64-bit words but with different round numbers. Its mode of

operation is based on the monkeyDuplex construction [Bertoni et al., 2012], which

is a type of Duplex construction [Bertoni et al., 2011] with doubled initialization and

finalization functions. So its security depends on the uniqueness of a nonce. Detailed

information about the structures of Ascon will be given in Chapter 3.

13

Ascon is being analyzed since 2014 when it was first submitted to the CAESAR com-

petition [Bernstein, 2013]. There are currently more than 80 analyses and about 35

publications against its permutation, mode of operation, and implementation. Out of

numerous published analyses, the best attack is a cube-like recovery attack which was

performed to 7 of 12 rounds of Ascon’s permutation [Li et al., 2017]. The other key

recovery attacks that perform better than exhaustive search were a zero-sum attack

for 11 rounds, a zero-correlation attack for 5 rounds, a differential attack for 4 rounds

all provided by [Dobraunig et al., 2016]. And there are also a integral attack for 7

rounds [Todo, 2015], a truncated differential attack for 5 rounds [Tezcan, 2016], a

linear attack for 4 rounds [Dobraunig et al., 2015b], differential-linear attacks for 5

rounds provided by both [Dobraunig et al., 2015a] and [Tezcan, 2020].

In this work, we studied the 4-round truncated differential distinguisher [Tezcan,

2016] and 4-round differential-linear cryptanalysis [Tezcan, 2020] of Ascon. Then

we performed a similar analysis for Drygascon. The reason we did that was to com-

pare their security because they are structurally similar cipher suites. Since Ascon

had numerous analysis and still seems to be secure, we wanted to see if the changes

in its permutation that made it Drygascon is better.

1.4 Drygascon

Drygascon [Riou, 2019] is a cipher suite that provides AEAD and hashing functional-

ity. It was selected as a second-round candidate in NIST’s Lightweight Cryptography

competition. It did not make it to the final round.

Drygascon has two instances: Drygascon-128, and Drygascon-256. But the primary

submission was Drygascon-128. It is a permutation-based construction and it uses

GASCON permutation as a primitive, which is a generalized variant of Ascon. The

GASCON’s aim was to increase the Ascon’s 128-bit security. But it differs from

Ascon with some of its features. Unlike Ascon, the round numbers of Drygascon-128

are 11 instead of 12. It uses Ascon’s 5x5 S-boxes but represents it in little-endian.

Besides, its linear layer differs from Ascon. In addition to the 2-different rotations,

the rotation function is also different in the linear layer. And its constants are not

14

related to the total number of rounds. It uses a new construction DrySponge as a

mode of operation, which was based on Duplex Sponge construction [Bertoni et al.,

2011]. But the combining of the input with the state and the extraction of output from

the state is different in DrySponge than the Duplex Sponge construction. Detailed

information about the structures of Drygascon will be given in Chapter 4.

There is not much security analysis that was given to the GASCON permutation in the

literature. But the designer stated that since GASCON is similar to the permutation

of Ascon, the same cryptanalysis methods can be applied with some modifications

[Riou, 2019]. They provided their own analysis by presenting linear approximations

and a 3-round probability one truncated differential distinguisher [Riou, 2019]. They

claimed that the best achievable probability one truncated differential for Drygascon-

128 is 3-round. But Tezcan refutes that claim by providing 3.5-round probability one

truncated differential distinguisher [Tezcan, 2020]. Tezcan also presented a 3-round

subspace trail, and a 5-round differential-linear distinguisher [Tezcan, 2020]. The

known analyses with the total encryption time can be seen in Table 1.5.

Table 1.5: Best known analyses of the GASCONC5R11 permutation

Method Rounds Time Source

Truncated Differential 3.5/11 1 [Tezcan, 2020]

Truncated Differential 3/11 1 [Riou, 2019]

Subspace Trail 3/11 1 [Tezcan, 2020]

Differential-Linear 5/11 261.28 [Tezcan, 2020]

Linear 3/11 275 [Riou, 2019]

In this work, we compare the security of Ascon and Drygascon. For Ascon, there is a

4-round differential-linear distinguisher that was turned into 4 and 5-round differential-

linear attacks [Tezcan, 2020]. In a similar manner, Drygascon had a 5-round theoret-

ical differential-linear distinguisher without practical results [Tezcan, 2020]. There-

fore we aimed to find the practical results of this 5-round distinguisher to compare

their security.

15

1.5 Undisturbed Bits

In this work, we analyzed the S-boxes of some candidates on NIST’s competition to

see if they contain any undisturbed bits. S-boxes, or substitution boxes, are non-linear

components of symmetric-keyed algorithms that provide confusion for the cipher.

Undisturbed bits can be used for building longer and sometimes more preferable dif-

ferentials in truncated, improbable, and impossible cryptanalysis. They were first

used in cryptanalysis in [Tezcan, 2014] and these bits could be seen as probability

one truncated differential for an S-box. And according to [Tezcan et al., 2014] every

bijective 3x3 S-box have undisturbed bits. Undisturbed bits are defined as follows:

Definition 1 "For a fixed input difference, an output bit is called undisturbed if its

difference remains invariant." [Tezcan, 2014]

Undisturbed bits are actually the linear structures of S-boxes and that fact was shown

in [Makarim and Tezcan, 2014] later on. Linear structures could be defined like this:

Definition 2 "For a nonzero vector α ∈ F n
2 , if an n x m S-box S has a nonzero vector

b ∈ Fm
2 such that b.S(x) ⊕ b.S(x ⊕ α) has the same value c ∈ F2 for all x ∈ F n

2 ,

then we say that S has a linear structure." [Evertse, 1987]

This feature has been used in several studies in the literature. Tezcan used this to

extend the 7-round improbable differential attack of Present to 13-round [Tezcan,

2014]. Then they provided the first 7-round improbable differential cryptanalysis for

SERPENT by using undisturbed bits [Tezcan et al., 2014]. They also found the undis-

turbed bits of Ascon-128 and used that to build 3.5-round probability one truncated

differentials [Tezcan, 2016]. And then they used that to attack 4 and 5 rounds of

Ascon-128, in terms of truncated, improbable [Tezcan, 2016] and differential-linear

cryptanalysis [Tezcan, 2020]. Last but not least, they found the undisturbed bits of

Drygascon-128 and used that to provide 3.5-round probability one truncated differen-

tials and 5-round differential-linear distinguishers for it [Tezcan, 2020]. And in this

study, we use it to build probability one truncated differentials for some algorithms

that were submitted to the NIST’s competition.

16

1.6 Differential Cryptanalysis

The purpose of designing a cipher is to protect data by making it appear random to

the adversary. If it is possible to find a relationship between plaintext, ciphertext, or

key this purpose cannot be fulfilled. Differential cryptanalysis [Biham and Shamir,

1991] aims to observe how a fixed input difference affects the output difference. If

the difference in the output can be observed with high probability, that can be used

to discover a property of a cipher with the aim of extracting the secret key. It was

introduced as a theoretical attack on Data Encryption Standard (DES) cipher, which

is a block cipher with a Feistel Network structure. Even though it is mostly applied

on block ciphers, it can also be used to analyze stream ciphers and even the hash

functions. In this study (Chapter 2), we perform differential cryptanalysis for some

algorithms that were submitted to the NIST’s competition.

Differential cryptanalysis is a chosen-plaintext attack, which means the attackers can

request the encryption of N plaintexts that they determined and capture the cipher-

texts that correspond to them. In chosen plaintext attacks, some conditions can be

set for the requested plaintexts. These conditions usually include that the plaintext

pairs have some differences. These differences are a fixed value of the XOR of the

two plaintexts. Then all plaintext pairs with these differences are encrypted sepa-

rately with the same key, and an inference is made using the corresponding ciphertext

differences. In this way, the secret key is tried to be determined fully or partially.

The plaintexts can be random as long as they satisfied the given difference condition.

This attack type is feasible in real life due to scenarios such as attackers being able to

capture the device.

Differential cryptanalysis is a statistical attack, like almost all other cryptanalysis

methods. In statistical attacks, an insecure communication channel is listened to cap-

ture some data like ciphertexts or in some cases, corresponding plaintexts. However,

since the internal values or secret key cannot be known, a statistical weakness is

sought in the cipher. In other words, the aim is to distinguish the whole or reduced

version of the cipher from a random permutation. The special condition that provides

that is called the distinguisher. Extending the distinguisher is possible to turn it into

a cryptanalytic attack to capture the whole or part of the secret key.

17

In this work, we focused on SPN-based ciphers to analyze. That means we analyzed

the permutation of the ciphers who have a non-linear substitution layer that provides

confusion and a linear layer that provides diffusion. Since the permutations we ana-

lyzed use S-boxes for confusion, we will explain finding a differential distinguisher

in that means only.

Differential Cryptanalysis aims to observe how a fixed input difference affects the

output difference. When a difference p1⊕ p2 = α is introduced on the input, the key

addition layer does not have any effect due to the (p1⊕α)⊕(p2⊕α) = (p1⊕p2) = α.

And the permutation layer only changes the location of the bits, therefore this does

not have any effect either. However in substitution layer, since the values S(p1 ⊕ α)

and the S(p2 ⊕ α) are unknown, the exact value of S(p1 ⊕ α) ⊕ S(p2 ⊕ α) cannot

be known also. But analyzing the S-box will give the probabilistic values of these

occurrences. Difference Distribution Table (DDT) [Biham and Shamir, 1991] can be

used for accomplish that.

In DDT, for every possible (x, y) input pairs with difference x ⊕ y = i and corre-

sponding output pairs with difference S(x) ⊕ S(y) = j are formed the table as the

ij-th entry. ij-th entry represents the occurrence of how many times the input dif-

ference i is observed with the output difference j. For an nxn S-box, dividing this

value ij to the size of the DDT, which is 2n, gives the probability of this occurrence.

Therefore DDT helps to decide which values are convenient for building a distin-

guisher statistically. In this table, the highest value besides the first entry is called

differential uniformity [Nyberg, 1993] and an attacker could find a good trail if this

value would be higher. The best achievable differential uniformity is 2 theoretically

for an S-box since the input pairs (x, y) and (y, x) provide the same difference. This

property of the functions is called almost perfect nonlinear (APN). While for an odd

n there are known such S-boxes, for an even n, Dillon presented an example where

n = 6 [Browning et al., 2010]. For n = 4 it could be seen that there is no such S-box

by checking every possible 4x4 S-boxes. Finding a 2-uniform S-box where n = 8 is

still an open problem.

For finding a distinguisher with good probability in differential cryptanalysis, DDT

can be used. The high occurrence values in DDT can be selected as a starting point.

18

Selecting input difference α and corresponding output difference β from DDT gives

the probabilistic value for the substitution layer. Then the linear layer is applied to

the output difference β with probability one. Since the difference β is diffused by the

linear layer, some bits will become active. For the next round, it is decided which

bits should remain active. This selection gives the new input value for the next round.

This process is repeated for several rounds. And then a theoretical distinguisher can

be determined by multiplying the probabilities in each round since these probabilities

are assumed to be independent.

For verifying a distinguisher in practice, the selected input difference α is used for

the plaintext pairs. Then the plaintext p1 is randomly generated. And its pair p2

is produced by flipping some of the bits of p1 in such a way that the difference is

going to be p1 ⊕ p2 = α. Then p1 and p2 are separately encrypted with the same

key throughout r rounds. Then it is checked if the corresponding ciphertext pairs is

c1⊕ c2 = β. This operation is repeated for N data. Since this is actually a binomial

distribution, N must be chosen such that the expected value E = N · p > 1 will be

large enough, where p is the total probability. Then it is counted how many times

the selected output difference β is observed. That observation gives the practical

probability of this occurrence. This experiment can be repeated with a convenient

number of different keys to get the average value of these probabilities.

1.6.1 Truncated Differential Cryptanalysis

Truncated differential cryptanalysis [Knudsen, 1994] is a special case of differential

cryptanalysis and it is introduced by Knudsen in 1994. In this case, there is no need

to fully specify the differences, only fixing some bits in the input and output differen-

tial is enough. With the usage of the undisturbed bits, truncated differentials can be

propagated as probability one for some rounds throughout the cipher. In this work,

we present probability one truncated differential distinguishers for some algorithms

that were submitted to the NIST’s competition (Chapter 2). Then we analyze As-

con and Drygascon by the combination of their probability one truncated differential

distinguishers with a linear approximation.

19

1.7 Linear Cryptanalysis

In this study, we used linear cryptanalysis to analyze differential-linear distinguishers

of Ascon-128 and Drygascon-128. Linear cryptanalysis was presented as a theoretical

attack on DES cipher. Then it was applied as a practical attack on DES. It was intro-

duced by Matsui [Matsui, 1993]. It has been used to analyze various block ciphers

since then.

Linear cryptanalysis is a known-plaintext attack. Also, [Matsui, 1993] stated that

when given the right conditions it can be applied as a ciphertext-only attack on DES.

One of these conditions explained as plaintexts to be in form of English words in

ASCII representation. But since this is a special case, we will focus on the known-

plaintext version of this analysis when explaining it.

In a known-plaintext attack, the adversary can gather N plaintexts and corresponding

ciphertexts. Unlike chosen-plaintext attacks, attackers are not allowed to make any

choice about the conditions of the plaintexts. This attack type is feasible in real life

due to scenarios such as attackers are being able to capture the device, guess some

blocks of the plaintexts, or trick the key holder to encrypt a document that they know.

Linear cryptanalysis tries to find a connection between plaintext bits, subkey bits,

ciphertext bits and then obtain a linear expression of the cipher. In this technique, the

goal is to approximate the mechanism of the set of cipher with a linear expression

using modulo-2 bitwise linear operation. This linear expression is in that form:

P [k1, k2, . . .]⊕ C[l1, l2, . . .] = K[j1, j2, . . .] (1)

In this equation (1), the values k, l, j represent the fixed bit locations, namely masks.

And P,C,K represent the plaintext bits, ciphertext bits, and key bits respectively.

The equation (1) can have a high or low probability of appearance, but either way,

this means that the cipher is catastrophically weak. For a randomly selected data set,

the equation (1) should hold around 1/2. If it holds with high or low probability than

that, it points out the cipher is not producing random data. The deviation from 1/2 is

used for linear cryptanalysis and this property is called linear probability bias.

20

For randomly chosen plaintexts and corresponding ciphertexts, if the expression (1)

holds with probability p, then the bias is |p − 1/2|. The greater bias leads to the

better applicable linear cryptanalysis, and the lesser bias means the more plaintext is

required to distinguish the cipher from a random permutation.

The p = 1 or p = 0 reveals the cipher mechanism and means that cipher has a

significant weakness. While p = 0 indicates a linear relationship and can be specified

as p > 1/2, p = 1 indicates an affine relationship and can be specified as p < 1/2 .

The affine function is the complement of a linear function in mod-2 addition systems

and the term linear covers both of them.

The practice in linear cryptanalysis is to find out the expression (1). To be able to

determine the subkey bits, the expression (1) can be reformulated as expression (2).

P [k1, k2, . . .]⊕ C[l1, l2, . . .]⊕
∑
K = 0 (2)

Since the subkey bits,
∑
K are unknown but fixed, the results of the value

∑
K are

going to be 0 or 1. This will be determined when attacking the key. If the result of∑
K is "0", the bias of (2) will have the same sign. If not, bias will have the opposite

sign.

Building highly linear expressions is done by using the S-box, the cipher’s non-linear

component, and constructing a linear approximation table (LAT). In LAT, to construct

linear approximations between input and the output bits, the nonlinearity character-

istics of the S-box are enumerated. The procedure for that as follows: for an S-box

that have size of kxl, the linear relations m.x = m1x1 ⊕ m2x2 ⊕ . . . ⊕ mkxk and

n.y = n1y1 ⊕ n2y2 ⊕ . . . ⊕ nlyl should be considered for all inputs and the outputs,

where 0 ≤ m ≤ 2k−1 and 0 ≤ n ≤ 2l−1 . In here, m1 and n1 are most significant bits.

m1,m2, . . . ,mk represent the masked bits of the input. And n1, n2, . . . , nl represent

the masked bits of the output. The kl-th element of the table gives the relation be-

tween them, in terms of occurrence possibility. Then the elements of the table should

be divided into 2k to have the probability p that holds the expression. After that, p

should be computed for all rounds with the ε = |p − 1/2| bias. By concatenation of

the highest bias ε for all rounds, the expected bias probability can be computed. With

21

the cancellation of midpoints, results of high biased linear expressions can be derived

which involve only plaintext bits and the corresponding ciphertext bits. This could be

done by using Piling-up Lemma [Matsui, 1993].

(Piling-up Lemma [Matsui, 1993]) Let Xi (1≤ i ≤ n) be indepen-

dent random variables whose values are 0 with probability pi or 1 with

probability 1-pi. Then the probability that X1 ⊕X2 ⊕ . . .⊕Xn = 0 is

1/2 + 2n−1

n∏
i=1

(pi − 1/2)

To be able to perform this operation automatically, a software called lineartrails [Do-

braunig et al., 2015a] can be used with implementing the permutation algorithm of

the cipher into the tool. This heuristic tool was presented in 2015 to find good linear

characteristics for primitives of the SPN-structured ciphers. It was used to analyze

some of the algorithms in the CAESAR competition. It works with the guess-and-

determine approach. To build characteristics suitable for different attack types, it

holds 3-different types of linear characteristics to search for.

• Type-I: In this type, there are no restrictions for finding characteristics. The

active bits are allowed to be on any bits of the permutation. Therefore it may

not be used for attacking sponge-constructions like Ascon. However, it can still

give an idea about the resistance of the cipher against linear cryptanalysis.

• Type-II: In this type, the active bits must be in the outer part of the state at the

end of the characteristic, and other bits should not contain any masks. It can be

used for key recovery attacks on sponge constructions.

• Type-III: This type is similar to the Type-II characteristics. But it targets the

encryption phase.

In this study, we used linear cryptanalysis to analyze and build differential-linear

distinguishers for Ascon-128 and Drygascon-128. We used linear characteristics that

were provided by [Dobraunig et al., 2016] and [Riou, 2019]. We also used lineartrails

tool [Dobraunig et al., 2015a] to find linear characteristics of Drygascon.

22

1.8 Differential-Linear Cryptanalysis

In this study, we used differential-linear cryptanalysis to analyze differential-linear

distinguishers of Ascon-128 and Drygascon-128. Differential-linear cryptanalysis

was introduced by [Langford and Hellman, 1994] in 1994 and it is a combination

of the two main techniques differential cryptanalysis [Biham and Shamir, 1991] and

linear cryptanalysis [Matsui, 1993]. Although it uses shorter characteristics, it might

provide better distinguishers for some ciphers. The idea is dividing the cipher E into

two parts: E0 and E1; namely E = E0 ◦ E1. In E0 part, a truncated differential

λI → λo with probability p = 1 is found. And in E1 part, a linear approximation

∇I → ∇o with probability 1/2 + q is found, where q is represented as the bias. Then

the combination of E0 and E1 is used to find an efficient distinguisher for the cipher

E. In this combination note that the masked input bits of the linear approximation

should match the zero-difference in the output bits of truncated differentials.

For distinguishing cipher E from a random permutation, a suitable number of plain-

text pairs with input difference λI is used. After the permutation of each pair, it is ob-

served if the corresponding ciphertexts have the same parity of the mask∇o. Namely

parity((c1 � ∇o)) ⊕ parity((c2 � ∇o)) = parity((c1 ⊕ c2) � ∇o) == 0, where

c1, c2 are a ciphertext pair. After this condition is checked with a suitable number of

data, if the probability is approximately 1/2, it can be said that the cipher behaves

randomly. If not, the distinguisher could be turned into a key recovery attack.

[Biham et al., 2002] showed that this technique is still possible when the masked bits

of the first round of linear approximation matches with the 1 difference at the end of

the truncated differential. They also showed that it is possible to construct the attack

when p is less than 1 and called it enhanced differential linear cryptanalysis. In this

case, the bias of this distinguisher can be calculated as approximately 2pq2 according

to Matsui’s Piling-up lemma [Matsui, 1993]. The data complexity of the attack is

θ(p−2q−4) chosen plaintexts approximately, where θ is the big O notation. But when

the probability one truncated differential is used for E0, the data complexity can be

calculated as approximately θ(q−4) chosen-plaintext and the bias is can be computed

as approximately 2q2. Note that these numbers do not include the success probability

and the used number of subkeys.

23

1.9 Our Contribution

In this work, we examined the NIST Lightweight Cryptography Competition second-

round candidates. We checked 16 of them that we specially selected to see if they

contain any undisturbed bits. Using their undisturbed bits, we found out how many

rounds of probability one truncated differentials that they have. We present our results

in Chapter 2 for future analysis.

Then we focused on two very similar cipher suites: Ascon and Drygascon. Ascon

made it to the finals, Drygascon was eliminated in the second round. Our goal was

to compare the security of the two against the current attacks. In this way, we would

see if the changes in the Ascon’s permutation made it better as Drygascon. For this

reason, we examined how differential-linear cryptanalysis against Ascon-128 could

impact the Drygascon-128. So we studied the existing differential-linear distinguish-

ers of Ascon-128 and Drygascon-128 [Tezcan, 2020]. For Ascon-128, there was a

4-round differential-linear distinguisher that was turned into 4 and 5-round key re-

covery attacks [Tezcan, 2020]. And for Drygascon-128 there was a 5-round theo-

retical differential-linear distinguisher [Tezcan, 2020]. While experimentally veri-

fying the distinguisher of Drygascon-128, we realized that the 2-round probability

one truncated differential distinguisher that was used in 5-round differential-linear

distinguisher was incorrect. When we examined the other probability one truncated

differential distinguishers, we realized that these were incorrect also. One of them

was provided by the designer, and covered 3-round of Drygascon [Riou, 2019]. The

other one was the improved version of this 3-round and covered 3.5-round of Dry-

gascon [Tezcan, 2020]. We think the reason for these erroneous analyses was that the

bits move in the opposite direction than described in linear layer [Riou, 2019]. We

corrected these results and verified the existence of a 3.5-round truncated differential,

but its middle rounds were diffused differently than the previous one [Tezcan, 2020].

We present our results in Chapter 4.

After corrected the existed differential distinguishers, we found a practical 5-round

differential-linear distinguisher by using a 3-round linear approximation that was pro-

vided by [Riou, 2019]. The theoretical bias of this linear approximation was 2−15. But

we achieved 2−7.96 bias by using 229 data for the whole 5-round distinguisher. Then

24

we found a different 3-round linear approximation by using a heuristic tool called

lineartrails [Dobraunig et al., 2015a]. Although the bias was the same as the previous

one, the practical results were surprisingly better. We achieved 2−5.34 bias by using

217 data. This is currently the longest differential-linear distinguisher that we know

of. We present our results in Chapter 4.

The results so far were contained 4-round and 5-round differential-linear distinguish-

ers of Ascon and Drygascon respectively. But that did not mean Ascon is better than

Drygascon since different types of linear approximations were used in these anal-

yses. The 4-round distinguisher of Ascon was contained a 2-round Type-II linear

approximation and the 5-round distinguisher of Drygscon was contained a 3-round

Type-I linear approximation. The reason was that it is necessary to use Type-II ap-

proximation to turn this kind of distinguisher into an attack, since the active bits at

the end of the distinguisher in the outer part. But this was not an issue for analyz-

ing Drygascon because the additional functions that were used in it changed its state.

Therefore Type-I approximations were used before to check only its resistance against

differential-linear cryptanalysis and we continued with this mindset. But since that

was not going to be a fair comparison, we found a 4-round practical differential-linear

distinguisher that contains a 2-round Type-II linear approximation for Drygascon. We

observed while the best results for Ascon was 2−1.68 in that matter, it was 2−1.69 in

Drygascon. These are very close results. But since the round numbers were 12 for

Ascon and 11 for Drygascon, we may say that Ascon might be more resistant against

differential-linear cryptanalysis.

25

26

CHAPTER 2

UNDISTURBED BITS

In this work, we analyzed the candidate algorithms in the Lightweight Cryptogra-

phy Competition organized by NIST to be able to find good distinguishers. We used

undisturbed bits to be able to provide longer truncated differential distinguishers for

the algorithms. There were 56 candidate algorithms in the beginning. When we

started this study, 24 of them had already been eliminated. So there were only 32

ciphers that would make sense to work on for us. These were the second round algo-

rithms and we decided to find their undisturbed bits to be able to provide probability

one truncated differentials as a beginning.

To be able to find undisturbed bits, the ciphers had to have structures that contain a

substitution layer and a linear layer. This situation reduced our workspace. Then, we

observed the S-boxes of the ciphers were of various sizes like 3-bit, 4-bit, 5 bit, 7 bit,

and 8 bit. We decided to focus on the ciphers that have 3-bit, 4-bit, and 5 bit S-boxes.

Because in this way, it was going to be easier to analyze their S-boxes. That choice

left us with 16 ciphers instead of 32. Those were Ascon, Drygascon, ISAP, Saturnin,

Spook, PHOTON-Beetle, ORANGE, Pyjamask, ForkAE, KNOT, Elephant, HyENA,

ESTATE, GIFT-COFB, LOTUS-AEAD and LOCUS-AEAD, SUNDAE-GIFT. Their

S-boxes can be seen in Table 2.1 and Table 2.2.

27

Table 2.1: NIST Second Round Lightweight Cryptography Competition Candidates

that have 5-bit S-Boxes which are Ascon, Drygascon and Isap

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 04 0b 1f 14 1a 15 09 02 1b 05 08 12 1d 03 06 1c

x 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 1e 13 07 0e 00 0d 11 18 10 0c 01 19 16 0a 0f 17

Table 2.2: NIST Second Round Lightweight Cryptography Competition Candidates

that have 3-bit and 4-bit S-Boxes

Cipher 0 1 2 3 4 5 6 7 8 9 a b c d e f

Elephant E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

Estate

Gift-Cofb

Hyena 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

Lotus-Locus

Sundae-Gift

ForkAE C 6 9 0 1 A 2 B 3 8 5 D 4 E 7 F

KNOT 4 A 0 7 B E 1 D 9 F 6 8 5 2 C 3

ORANGE C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

PHOTON-Beetle

Pyjamask 3-bit 1 3 6 5 2 4 7 0

Pyjamask 4-bit 2 D 3 9 7 B A 6 E 0 F 4 8 5 1 C

Saturnin 0 6 E 1 F 4 7 D 9 8 C 5 2 A 3 B

Spook 0 8 1 F 2 A 7 9 4 D 5 6 E 3 B C

We analyzed the whole 16 algorithms to get their undisturbed bits. We observed some

of the ciphers had the same S-boxes. Namely Ascon, Drygascon, and Isap were using

the same 5-bit S-boxes of Ascon. Estate, Gift-Cofb, Hyena, Lotus-Locus, Sundae-

Gift were using the same 4-bit S-boxes as GIFT. Orange and Photon-Beetle were

using the same 4-bit S-boxes as Photon. The analysis results are given in Table 2.3.

28

Table 2.3: Undisturbed bits of 16 Second Round Candidates that we have picked to

analyze. The ciphers that have the same S-boxes were represented as their S-box

names. Namely Ascon, Photon, and Gift.

Ciphers Input Difference Output Difference Ciphers Input Difference Output Difference

Ascon 00001 ?1??? Elephant 0001 ???1

Ascon 00010 1???1 Elephant 1000 ???1

Ascon 00011 ???0? Elephant 1001 ???0

Ascon 00100 ??110 ForkAE 0001 10??

Ascon 00101 1???? ForkAE 0010 0???

Ascon 00110 ????1 ForkAE 0011 1???

Ascon 00111 0??1? ForkAE 1000 ?1??

Ascon 01000 ??11? ForkAE 1001 ?1??

Ascon 01011 ???1? Knot 0001 ?1??

Ascon 01100 ??00? Knot 1000 ?1??

Ascon 01110 ?0??? Knot 1001 ?0??

Ascon 01111 ?1?0? Photon 0001 ???1

Ascon 10000 ?10?? Photon 1000 ???1

Ascon 10001 10??1 Photon 1001 ???0

Ascon 10011 0???0 Pyjamask 3-bit 001 ?1?

Ascon 10100 0?1?? Pyjamask 3-bit 010 1??

Ascon 10101 ????1 Pyjamask 3-bit 100 ??1

Ascon 10110 1???? Pyjamask’s 4-bit 0001 1???

Ascon 10111 ????0 Pyjamask’s 4-bit 0010 ??0?

Ascon 11000 ??1?? Pyjamask’s 4-bit 1000 1???

Ascon 11100 ??0?? Pyjamask’s 4-bit 1001 0?1?

Ascon 11110 ?1??? Pyjamask’s 4-bit 1011 ??1?

Ascon 11111 ?0??? Spook 0010 ???1

Gift 0100 ???1 Spook 0100 ??10

Gift 0110 ??1? Spook 0110 ???1

Gift 1000 ??11 Spook 1000 ??0?

Gift 1100 ???0 Spook 1100 ??1?

Gift 1110 ??0?

After finding the undisturbed bits of the algorithms, we studied the related cipher’s

structures and calculated their probability one truncated differentials. Our aim was to

see if their distinguishers will give us long enough rounds to work with. The results

of how many rounds we managed to go with probability one truncated differentials

using undisturbed bits can be seen in Table 2.4.

29

Table 2.4: Probability one truncated differential distinguishers of some algorithms

that were submitted into NIST’s lightweight cryptography competition. Round num-

bers represent the minimum one that is used in their permutations.

Name Sbox Undisturbed Bits Rounds Analysis

Saturnin 4-bit 0 10 0 round

Drygascon 5-bit 13 11 3.5 round

Ascon 5-bit 13 12 3.5 round

Isap 5-bit 13 12 3.5 round

Spook 4-bit 5 12 - round

Photon-Beetle 4-bit 3 12 1.5 round

Orange 4-bit 3 12 1.5 round

Pyjamask 3-bit 3 14 1.5 round

Pyjamask 4-bit 5 14 1.5 round

Forkae (Forkskinny-64-192) 4-bit 5 17 -

Knot 4-bit 3 28 7 round

Lotus-Locus 4-bit 5 28 3 round

Hyena 4-bit 5 40 3 round

Gift-Cofb 4-bit 5 40 3 round

Estate 4-bit 5 40 3 round

Sundae-Gift 4-bit 5 40 3 round

Elephant 4-bit 3 80 -

Out of these 16 ciphers, we decided to focus on two very similar cipher suites: Ascon

and Drygascon. Because other ciphers had shorter truncated differentials compared

to their total number of rounds. So it could have been harder to work with these

truncated differential distinguishers for further analysis.

30

CHAPTER 3

ASCON

Ascon [Dobraunig et al., 2016] is a cipher suite that provides AEAD and hashing

functionality. It was a primary choice in the lightweight applications category of the

CAESAR competition and selected as one of the finalists in the NIST Lightweight

Cryptography competition. It consists of ciphers Ascon-128 and Ascon-128a that

have SPN structures. Both versions provide 128-bit security and use the same 320-bit

permutation that is defined on 64-bit words but different round numbers. Ascon’s

mode of operation is based on the monkeyDuplex construction [Bertoni et al., 2012]

except keyed initialization and finalization functions are stronger.

3.1 Notation

The operators used in the description of the Ascon and Drygascon can be seen in

Table 3.1. When the state needs to be interpreted as bitstring, it starts with a most

significant bit in Ascon and the least significant bit in Drygascon.

Table 3.1: Notation that is used in description of Ascon and Drygascon

a⊕b XOR of a and b bitstrings

a&b Bitwise and operetion of a and b bitstrings

a|b Bitwise or operation of a and b bitstrings

a≫b Right rotation of a in b times

a�b Left shift of a for b times

a�b Right shift of a for b times

a||b Concatenation of a and b bitstrings

31

3.2 Permutation-Based Constructions

Traditional encryption algorithms often use block ciphers. Block ciphers involve di-

viding plaintext into fixed-length blocks and encrypting each block with a secret key.

These encrypted blocks are then combined using various mode of operations. These

ciphers are usually SPN or Feistel. However, it is seen that sponge constructions have

recently been used as an alternative.

Sponge constructions [Bertoni et al., 2007] use fixed-permutations as primitives in-

stead of block ciphers. Therefore the security of this structure depends on the security

of this permutation. Unlike block ciphers, they do not include a key-scheduling algo-

rithm. Instead, they use a limited-length initial state that includes the secret key. By

using this state, the message with the desired length can be encrypted. They can be

used to implement various cryptographic components such as authenticated encryp-

tion algorithms, hash functions, stream ciphers. Block ciphers can be converted into

iterative permutations if their secret keys are fixed. Hence they can be used in sponge

constructions.

There are two parts of the state produced in sponge constructions: outer part; rate,

and inner part; capacity. While rate is responsible for the efficiency of the structure,

capacity is concerned with its security. The size of the two varies according to each

other. In other words, determining their size is a choice between security and effi-

ciency. Then the structure goes through stages called absorb and squeeze. It was

illustrated in Figure 3.1.

Absorbing phase Squeezing phase

m0

c bits

r bits

f

m1

f

m2

f

m3

f

z0

f

z1

f

z2

Figure 3.1: Illustration of Sponge Construction. The figure was taken from [Jean,

2016]

32

Duplex construction [Bertoni et al., 2011] is one of the ways to use sponge construc-

tion. Therefore, the security properties valid for sponge construction are also valid

for duplex construction. Absorb and squeeze processes in duplex construction are

applied slightly differently than sponge construction.

MonkeyDuplex [Bertoni et al., 2012] construction can be called the keyed version

of Duplex construction. Here, obtaining the inner part of the state is as important as

obtaining its key. Therefore, its security is based on the uniqueness of the nonce used.

3.3 Properties of Ascon’s S-box

S-boxes are non-linear components of symmetric-keyed algorithms and provide con-

fusion for the cipher. It is basically a look-up table that takes some n-bit as input and

turns it into m-bit output. It can also be implemented as bit-sliced. Ascon has a 5x5

S-box, and that can be seen in Table 3.2.

Table 3.2: 5-bit S-box of Ascon

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 04 0b 1f 14 1a 15 09 02 1b 05 08 12 1d 03 06 1c

x 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 1e 13 07 0e 00 0d 11 18 10 0c 01 19 16 0a 0f 17

Analyzing the S-box will give how many times the input difference is observed with

the output difference. And that information can be used to perform differential crypt-

analysis. DDT [Biham and Shamir, 1991] gives these occurrences in a table for a

more systematic analysis. In this table, the highest value besides the first entry is

called differential uniformity [Nyberg, 1993] and an attacker could find a good trail

if this value would be higher. Therefore, when designing a cipher this is taken into

account for selecting S-boxes. It is theoretically possible to obtain the 2-uniform S-

boxes if the S-box is odd [Nyberg, 1993]. Ascon has an odd S-box, but the designers

did not prefer a 2-uniform S-box. Instead, they used a 8-uniform S-box and that can

be seen in Table 3.3.

33

Table 3.3: DDT of Ascon’s Sbox

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 32 .

1 4 . 4 . 4 . 4 4 . 4 . 4 . 4 .

2 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4

3 . 4 . . . 4 . . . 4 . . . 4 . . 4 . . . 4 . . . 4 . . . 4 . . .

4 8 8 8 8 .

5 4 . 4 4 . 4 . 4 . 4 . . 4 . 4

6 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2

7 . . 4 4 . . 4 4 . . 4 4 . . 4 4

8 4 4 4 4 4 4 4 4

9 . 2 . 2 2 . 2 . 2 . 2 . . 2 . 2 2 . 2 . . 2 . 2 . 2 . 2 2 . 2 .

a . 2 2 . 2 . . 2 . 2 2 . 2 . . 2 . 2 2 . 2 . . 2 . 2 2 . 2 . . 2

b . . 2 2 . . 2 2 . . 2 2 . . 2 2 . . 2 2 . . 2 2 . . 2 2 . . 2 2

c . 8 8 8 8

d . 2 . 2 . 2 . 2 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . . 2 . 2 . 2 . 2

e . 4 4 . 4 . . 4 4 4 . 4 . . 4

f 4 4 . . 4 4 4 4 . . 4 4 . .

10 8 . 8 8 . 8

11 8 . 8 . 8 . 8

12 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .

13 . . 8 . 8 8 . 8

14 4 4 4 4 4 4 4 4

15 4 . 4 . 4 . 4 4 . 4 4 . 4

16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

17 . . 4 . 4 4 . 4 4 . 4 4 . 4 . . .

18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

19 . . . 4 . . 4 . 4 4 . . 4 4 4 . . 4 .

1a . 2 2 . . 2 2 . 2 . . 2 2 . . 2 . 2 2 . . 2 2 . 2 . . 2 2 . . 2

1b . . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 . .

1c . 4 . 4 4 . 4 4 . 4 4 . 4

1d . . . 4 . 4 . . 4 4 . 4 4 4 . 4 . .

1e 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1f . . 4 4 4 4 4 4 4 4

Besides, according to the analysis of [Dobraunig et al., 2016], the algebraic degree

of this S-box is 2, which makes it vulnerable to algebraic attacks theoretically. And

they required a differential branch number is to be 3, which doubles the number of

active S-boxes. But the designers had their reasons to choose it that way. Because

they wanted the S-box to be effectively implemented as bit-sliced. This approach was

not going to only increase the speed but also would help prevent some side-channel

attacks. And since they wanted the bit-sliced implementation of this S-box to be

cheaper, they designed this S-box with reasonable security rather than being perfect.

In a similar manner, it is possible to perform linear cryptanalysis by analyzing S-

boxes. When performing linear cryptanalysis, it is tried to find a relation between

34

plaintext bits, ciphertext bits, and key bits by constructing a linear approximation.

That can be done by using Linear Approximation Table (LAT). In Table (LAT) 3.4 it

could be seen that the maximum linear probability of the S-box is 2−2 and the linear

branch number is 3 [Dobraunig et al., 2016].

Table 3.4: LAT of Ascon’s Sbox

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 16 .

1 8 . . 4 4 . . -4 4 . . . 4 4 . . 4 -4 4 . -4 . -4 . -4 .

2 -8 8 . . 4 4 . . 4 4 . . 4 4 . . -4 -4

3 . 8 4 . 4 . 4 . -4 -8 4 . 4 . 4 . -4 .

4 . . . 4 . -4 4 . . 4 -4 -4 . . 4 . -4 -8 . -4 -4 . 4 -4

5 . . . 4 . 4 . . . -4 -4 . . . -4 4 . -4 -4 4 . -4 4 . -8 . -4

6 . . . 4 . -4 -4 . 4 -4 -4 . -4 -4 . 8 . -4 -4 . -4 4

7 . . . -4 . -4 . . . 4 4 4 . . -4 . . . -4 . -4 . . . -4 . -4 4 . -8 . 4

8 4 4 . . -4 -4 8 -4 4 . 8 4 -4

9 -8 . -4 . 4 . 4 . 4 . . 4 4 . . -4 4 4 . . 4 -4 . . 4

a 4 4 . . 4 4 . 8 4 -4 . -8 4 -4

b . 8 -4 4 . . -4 -4 . 8 4 . . -4 4 . . 4

c . . -8 4 -8 -4 4 . -4 -4 . 4 4 . -4 . . .

d . . . -4 -8 4 . . . 4 -4 -4 . . -4 4 -4 . -4 -4 4 4 .

e . . . -4 8 -4 -4 . . -4 -4 -4 . . . 4 4 . -4 -4 . . 4 . -4 . . .

f . . 8 -4 -8 -4 . . . -4 -4 . . 4 . 4 . . . -4 -4 .

10 -8 . . 4 . -4 -4 . -4 4 -4 4 4 4 . -4 . -4 . -4 .

11 -8 . -4 4 -4 -4 . . . 8 4 -4 -4 -4

12 . -8 -4 4 . -4 . . -4 . . -4 4 -4 -4 . . 4 . 4 . 4 . -4 .

13 -8 -8 4 -4 4 -4 -4 4 4 -4

14 . . . 4 . 4 . . . 4 4 -4 -4 -4 . -4 . . 4 . . 4 -4 4 -4 . 4 4 . . . 4

15 . . . 4 . -4 -4 4 . -4 4 . 8 . 4 . 4 4 4 . -4 -4

16 . . . -4 . -4 . . . 4 . . -4 4 4 . 8 . . -4 . 4 . . 4 . 4 4 . . . -4

17 . . . 4 . -4 . . 8 . -4 . -4 4 . . -4 4 -4 . . . 4 4 . 4 4

18 -8 . 4 4 . -4 . . 4 4 -4 -4 -4 -4 . . -4 4 . . -4

19 4 -4 -4 4 . -8 4 -4 -4 -4 4 4 . . -4 -4

1a . 8 -4 . -4 -4 . 4 . . . -4 4 -4 -4 . . -4 . . 4 -4 . . -4

1b 8 . -4 4 -4 -4 -4 4 -4 4 . . -4 -4 . . -4 -4

1c . . 8 4 . -4 . . . 4 . . 4 -4 4 . . . -4 . . -4 -4 4 4 4 .

1d . . . -4 . 4 . . 8 . 4 . 4 8 . -4 . -4 4 . -4 . . .

1e . . . 4 . 4 . . . 4 -4 4 4 4 . -4 8 . . 4 . -4 . . -4 -4 .

1f . . 8 4 . 4 4 -4 . -4 4 . . -4 . . 4 4 -4 . . 4 . -4 . . .

3.4 General Structures of Ascon

Ascon has two instances, Ascon-128 and Ascon-128a. They use the same length key,

nonce, tag, round number which are respectively 128, 128, 128. But their data block

size and round numbers are different. While data block size is 64 in Ascon-128, it is

128 in Ascon-128a. The round number a is 12 in both Ascon-128 and Ascon128-a.

And the round number b is 6 and 8 for Ascon-128 and Ascon128-a respectively.

35

The encryption of Ascon has 4 steps: Initialization, processing of associated data,

processing the plaintext, and finalization. The encryption process takes inputs as a

secret key K, a nonce N with 128-bits, associated data A of arbitrary length if it

exists, and plaintext P that has arbitrary length. It produces ciphertext C that has

the same length as the plaintext P . It also produces the authentication tag T with

128-bits. The mode of operation of Ascon was illustrated in Figure 3.2.

Figure 3.2: The duplex sponge mode for Ascon v1.2 authenticated encryption, figure

is from its official website https://Ascon.iaik.tugraz.at/images/aead_encrypt.pdf

The decryption process takes input as 128-bit key K, 128-bit nonce N , tag T , ci-

phertext C, and associated data A if it exists. When decrypting the cipher if the tag

verification is correct, it produces the plaintext P . If not, it gives an error.

In the initialization process, the 64-bit IV, 128-bit secret key, 128-bit nonce are form

the 320-bit state S. This state contains five 64-bit words as x0, x1, x2, x3, x4. In here,

x0 word is IV, x1, x2 words are secret key, and x3, x4 words are nonce.

S = Sr||Sc = x0||x1||x2||x3||x4

S could be interpreted as big-endian format. Rate r and capacity 320−r expressed in

the outer part Sr and inner part Sc respectively. The value of IV is 80400c0600000000

for Ascon-128 and 80800c0800000000 for Ascon-128a.

In the initialization part, the state updates with permutation p as α times which rep-

resented as pα. Then the secret key K is XORed with the state. The permutation p

that updates the state has some layers. In here, first, a 5-bit constant is added to the

x2. These constants are changed according to the round numbers α and β. They can

be seen in Table 3.5.

36

 https://Ascon.iaik.tugraz.at/images/aead_encrypt.pdf

Table 3.5: Constants of Ascon. While p12 and p6 are used for Ascon-128, p12 and p8

are used for Ascon128-a.

p12 p8 p6 Constant p12 p8 p6 Constant

0 000000000000000000f0 6 2 0 00000000000000000096

1 000000000000000000e1 7 3 1 00000000000000000087

2 000000000000000000d2 8 4 2 00000000000000000078

3 000000000000000000c3 9 5 3 00000000000000000069

4 0 000000000000000000b4 10 6 4 0000000000000000005a

5 1 000000000000000000a5 11 7 5 0000000000000000004b

Then the substitution layer that uses the 5x5 S-box updates the state S 64 times in

parallel. That can be seen in Figure 3.3.

Figure 3.3: Substitution layer of Ascon. Figure was taken from the cipher’s official

websitehttps://ascon.iaik.tugraz.at/images/state_vertical_small.png

After the substitution layer, the linear diffusion layer comes. In this layer, the func-

tion Σi(xi) is applied to each word xi. This Σi(xi) uses simple boolean operations.

Therefore it is fast.

xi ← Σi, 0 ≤ i ≤ 4

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

37

https://ascon.iaik.tugraz.at/images/state_vertical_small.png

In the associated data processing part, a single 1 and the smallest number of 0s are

added to the associated data A. Then A is divided into blocks that have a size of

r − bit. No padding is required if A is empty. After that, each block of A XORed

with the first r bits Sr, then b-round permutation is applied to S. Finally, S is XORed

with the 1-bit domain separation constant.

In the plaintext processing part, padding operation is applied to the plaintext P such

that the addition of single 1 and the smallest number of 0s, if it is necessary. Then

P is split into blocks that have a size of r-bit. In the encryption, the first r bits of Sr

and one padded plaintext block is XORed with each other and produce the ciphertext

block. State S is updated with permutation pb for each block to the last one. The last

output block is truncated to the size of the last plaintext block, which is unpadded. So

the total length of the ciphertext C would be the same as the plaintext.

In the finalization part, the internal state and the secret key K are XORed with each

other, then the permutation pa updates the state. The last 128-bits of the key and the

last 128-bits of the state XORed with each other to produce the Tag T . So after the

encryption, there would be a tag and the ciphertext. And after the decryption, if the

received tag value is the same as the calculated one, plaintext could be obtained.

3.5 Differential-Linear Distinguishers of Ascon

Ascon uses MonkeyDuplex construction as a mode of operation. In MonkeyDuplex

construction, obtaining the inner part of the state is as important as obtaining its key

[Bertoni et al., 2012]. Hence its security is based on the uniqueness of the nonce.

Nonce means "number used once". In a communication, the arbitrary number nonce

can be used just once as its name suggests. While implementing a cipher in a system,

sometimes this property is overlooked. Therefore the cryptanalytic attacks are given

according to whether this feature is taken into account or not. Namely, a nonce-

respecting scenario or a nonce-misuse scenario.

38

The attacks on Ascon can be categorized into two sections: key recovery attacks and

forgery attacks. Key recovery attacks target the initialization phase or processing

plaintext phase whether it is a nonce-respecting scenario or not, respectively.

In key recovery attacks, differences are given to the nonce, namely the words x3

and x4. And since the plaintext is XORed with x0 to generate the ciphertext, the

differences in the output are only examined for x0.

Forgery attacks aim to forge tags and therefore target the finalization phase. In this

scenario, differences are given to the word x0. And other words should not have

any difference since the analyst has no control over them. And because the tag is

generated from words x3 and x4 with the key, the output differences can be observed

in them.

In this work, we mainly focused on the differential-linear analysis of Ascon-128.

This method was applied in [Dobraunig et al., 2015b] for key recovery attacks to the

4 and 5 rounds of Ascon. They used a 2-round differential characteristic that has a

probability of 2−5 with the 2-round linear approximation that has a probability of 2−8

and obtained a 4-round characteristic with probability 2pq2 = 2−20. But the practical

results were about 2−2 according to that study. The huge gap between these results

was explained as the existence of multiple characteristics on the differential and linear

analysis part. Then [Bar-On et al., 2019] showed that this theoretical bias is actually

2−5 by introducing DLCT. As can be seen, there were still considerable differences

with this theoretical bias 2−5 and practical bias 2−2, and it was explained as the slow

diffusion with the existence of multiple characteristics.

Recently, [Tezcan, 2020] improved the results given by [Dobraunig et al., 2015b] by

using 2-round probability one truncated differential with the 2-round linear approxi-

mation and provided 4-round differential-linear characteristics. Then they used it to

attack 4 and 5 rounds of Ascon. Actually, in the previous work of Tezcan [Tezcan,

2016], they observed the S-box of Ascon has 35 undisturbed bits and they used it

to build a 3.5-round probability one truncated differential distinguisher for Ascon.

But they did not use this 3.5 round distinguisher when building the differential-linear

distinguisher, because it has contained differences in words x0, x3, and x4. But to per-

form a key recovery attack, the input differences could have been only in the nonce,

39

namely x3, and x4. So they used a 2-round probability one truncated differential dis-

tinguisher that only had an input difference on x3 and x4 instead. And they combined

it with a 2-round Type-II linear approximation with bias 2−8 provided by [Dobraunig

et al., 2015a]. They have used the Type-II characteristic because the last round of the

approximation should have masks only in word x0, and the rest should have been free

from any masks. The characteristics they have used to build a 4-round differential-

linear distinguisher can be seen in Table 3.6.

Table 3.6: 2-round truncated probability one truncated differential with the combi-

nation of 2-round linear approximation with bias 2−8 in hexadecimal notation. They

were used for building 4-round differential-linear distinguisher by [Tezcan, 2020].

Round 4- Round Differential-Linear Path for Ascon-128

00

00

I 00

000000000100

000000000100

000000000?00

000000000?00

S1 000000000?00

00

000000000?00

000000000?000000000000000000?00000000?00000000000000000000000000

000000?00?00000000000000000000000000000000000000?000000000000000

P1 000000000??0000?00

00

000000000?000000?000000000000000000000000000000000?0000000000000

000000?00??0000??00000000000?00000000?0000000000?0?0000000000000

000000?00??0000??00000000000?00000000?0000000000?0?0000000000000

S2 000000?00??0000??0000000000000000000000000000000?0?0000000000000

000000?00??0000??00000000000?00000000?0000000000?0?0000000000000

000000?00?000000?00000000000?00000000?0000000000?0?0000000000000

0?0?0??00??0?0???00000000?00??0000??0??0000??00??0?00000?0000000

000?00??0??0??0??000000?0?00?00000?00?0000000?0????000??00000000

P2 000000??0????00???000??0000000000000000000000000????00?0?0000000

0?0?00?00??0000??00??00?0????000??000??000000?0??0?000?000?0?000

00000??00?000??0?000000?0?0??000000?0?000000?00??0?0000?0?000000

Round State

02.4..2.4.12........8.2........8.

111

2 9224b6d24b6eda49

40

According to this, the new theoretical bias was 2−15 instead of 2−20 and the practical

results were slightly better. The practical results of these biases are 2−2.68, 2−3.68, 2−3.30,

and 2−2.30 in Dobraunig’s work while key bits are (0, 0), (0, 1), (1, 0), and (1, 1) in the

activated S-box, respectively. They were required 212 samples to capture these key

bits. In Tezcan’s work, the improved results were 2−2.41, 2−1.68, 2−2.41 and 2−1.68 and

the data complexity was reduced to 28 for capturing the first key bit. Besides, while

capturing the whole 128-bit key required with time complexity of 64 · 212 = 218 in

Dobraunig’s approach, it required 64 · 2 · 28 = 215 in Tezcan’s.

To perform this attack, Tezcan used 224 random nonces and performed this experiment

with 1000 random keys for the 4-round permutation [Tezcan, 2020]. They repeated

this experiment for 4 possible key pairs. Although they had better results in capturing

the first key bit, which was the usage of 28 data, they could not distinguish the second

key bit because they observed the same biases regardless of the second key bit. So

they captured the second key bit using another 28 samples and then they have got the

whole 128-bit key by rotating the initial difference.

To extend this attack to 5-rounds, Dobraunig performed some precomputations and

completed the attack with about 236 time complexity [Dobraunig et al., 2015a]. Tez-

can got 232 time complexity with a different technique by using a 3-round differential

and 2-round linear approximation [Tezcan, 2020]. Then in the same study, they ex-

tended this experiment to 6-rounds by using 242 random nonces and repeating the

experiment with 128 random keys by rotating the input difference to every possible

position. This operation was performed with 2 · 242 · 128 · 64 · 4 = 258 complexity.

In this work, we studied the approach of [Tezcan, 2020] and used it to find practical

5-round differential-linear distinguishers for Drygascon. [Tezcan, 2020] used a Type-

II linear approximation for finding this distinguisher. In this way, it was going to be

possible to attack the cipher. Since the additional functions of Drygascon change the

state of it, using Type-II approximation would not have a significant meaning. There-

fore we mainly focused on Type-I approximation. But for the sake of comparison,

we also provided a 4-round differential-linear distinguisher that has Type-II linear

approximation. We present them in the next chapter.

41

42

CHAPTER 4

DRYGASCON

Drygascon [Riou, 2019] is a cipher suite that provides AEAD and hashing functional-

ity. It was selected as a second-round candidate in NIST’s Lightweight Cryptography

competition. It did not make it to the final round. It uses GASCON permutation as

a primitive, which is a generalized variant of Ascon. The aim of the GASCON is to

increase the Ascon’s 128-bit security. Drygascon has two instances: Drygascon-128

and Drygascon-256, but the primary submission was Drygascon-128. Drygascon128

has a 128-bit block size and 3 different key sizes: These are small setup with 128-bit,

fast setup with 256-bit, and full setup with 448-bit. Therefore, it provides a security

level with a minimum of 128-bit. And Drygascon-256 has a 128-bit block size and

a 256-bit key size. Therefore, it provides a security level of 256-bit. The security

in both versions is based on the assumption that nonce will not be reused. Also in

Drygascon-128, one should not perform encryptions more than 264 bytes with the

same key. This number is 2128 for Drygascon-256. Drygascon uses a new construc-

tion DrySponge as a mode of operation, which is based on Duplex Sponge construc-

tion [Bertoni et al., 2011]. But the combination of the input with the state and the

extraction of output from the state is different in DrySponge than the Duplex Sponge

construction.

In Drysponge, the security claims are related to the size of the capacity, as in the other

sponge constructions. The state is created with a key setup function. This function

produces capacity c and optional x parameter.

The absorbing stage is carried out with a function called F . The squeezing stage is

carried out with a function called G. Domain separation is made with the input in

function F , which is a different property from regular sponge constructions. F takes

43

input state (c, x), 128-bit data input i, and domain separator DS as input. DS could

be partially modified by the attacker. The input i is assumed to be controllable by

the attacker. (c, x) is always kept secret. Then it outputs the modified state (c, x),

128-bit input i and r. F function uses the Mix function to process i and DS, and the

G function to generate r. F fıunction contains the following stages:

• Mix: This function handles the input bits. It is claimed that a known difference

to (c, x) cannot be injected by manipulating i or DS. This function is a design

parameter for Drysponge, as it can be implemented in various ways.

• Core: It is included in the G function. It contains an iterative permutation that

processes hidden data, namely GASCON. So the security of the algorithm is

based on the security of this permutation.

• Accumulate: It is included in the G function. It simply operates XOR to all

input bits to generate the output bits r.

Its AEAD uses a precomputed optional static data S, a nonce whose size is a design

parameter, and associated data A, plaintext P , ciphertext C and tag T . Encryption

operation takes input as secret key K, optional static data S, a nonce N , associated

data A, and plaintext P . And it outputs the ciphertext C and a tag T . Decryption

operation takes input as secret keyK, an optional static data S, a nonceN , associated

data A, ciphertext C and tag T . And it outputs the plaintext P .

4.1 Gascon Permutation

Gascon stands for ’Generalized Ascon’. It is a concrete sampling of the Drygascon’s

CoreRound function and it was designed to support a wider size than the Ascon’s

permutation. It has different key sizes, and rotation sizes are also varied in the lin-

ear layer. Drygascon-128 uses GASCONC5R11, which is a 320-bit state formed by

64-bit words. It uses Ascon’s 5x5 S-box except represents it in little-endian. And

unlike Ascon, its round number is 11 instead of 12. However, Drygascon-256 uses

GASCONC9R12, which has 12 rounds and it uses 576 bits from nine 64-bit words.

44

Hence its S-box is a 9x9 one. Unlike Ascon, constant addition does not depend on

the total number of rounds. The constants are added using Equation (3).

x2,4 = x2,4 ⊕ ((0xfull − r)� 4)|r (3)

In Drygascon-128, 5-bit constant is added to the x2 , where r = 1 + round. And in

Drygascon-256 5-bit constant is added to the x4, where r = round. In here, round

stands for the current round.

Linear layer of Drygascon-128 is similar to the linear layer of Ascon-128. But in

Drygascon two rotations are different, namely Σ1 and, Σ4. They were changed into 39

to 38 in Σ1 and 41 to 40 in Σ4. The rotation for both Drygascon-128 and Drygascon-

256 are as follows:

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 38)

Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 40)

Σ5(x5) = x0 ⊕ (x5 ≫ 31)⊕ (x5 ≫ 26)

Σ6(x6) = x1 ⊕ (x6 ≫ 53)⊕ (x6 ≫ 58)

Σ7(x7) = x2 ⊕ (x7 ≫ 9)⊕ (x7 ≫ 46)

Σ8(x8) = x3 ⊕ (x8 ≫ 43)⊕ (x8 ≫ 50)

And since each word is in a bit interleaved representation, the rotation is different

from Ascon’s. According to [Riou, 2019], every 64-bit word rotates once with an

odd shift to make sure that a difference in half of an input word will be propagated

to the other half of the matching output word. Namely intra word diffusion. See

Algorithm 1 that provided by [Riou, 2019] for detailed information.

45

Algorithm 1 BiRotR: 64 bit rotation in bit interleaved format [Riou, 2019]
Input: in: 64 bit value in bit interleaved format, shift

Output: out: in rotated right by shift

i0← in & 0xFFFFFFFF

i1← in� 32

shift2 = [x/2]

if shift&1 then

t← i1 ≫ shift2

i1← i0 ≫ ((shift2 + 1)mod32)

i0← t

else

i0← i0 ≫ shift2

i1← i1 ≫ shift2

end if

return (i1� 32)|i0

4.2 Differential-Linear Distinguishers of Drygascon

Since Ascon and Drygascon have similar designs, [Riou, 2019] stated that the crypt-

analysis of Ascon can be applied on Drygascon with some modifications. Therefore

[Tezcan, 2020] applied the differential-linear analysis that they performed on Ascon

to Drygascon. When performing the analysis they only focused on GASCONC5R11

permutation, the constrained version of Drygascon. Because [Riou, 2019] stated the

Mix128 function does not really have any effect on the Drygascon’s security and

analysis should be performed on only GASCONC5R11 permutation.

[Riou, 2019] presented some analysis results that they performed. These were linear

approximations for various round numbers along with a truncated differential distin-

guisher of Drygascon. With that, they presented the undisturbed bits of Drygascon

and stated there was no truncated differential distinguisher with probability one longer

than 3-round, unlike Ascon. And as can be seen in Table 4.1, they provided a 3-round

probability one truncated differential distinguisher.

46

Table 4.1: 3 round probability one truncated differential that was reported wrongly

for GASCONC5R11 by [Riou, 2019]

Round 3- Round Truncated Differantial Distinguisher of GASCONC5R11

0000000100

00

I 00

0000000100

0000000100

00

0000000?00

S1 0000000?00

0000000?00

00

00

0000000?000000000000?0000000000000000000?00000000000000000000000

P1 0000?00?000000000000000000000000000000?0000000000000000000000000

00?0000?00?0

00

00?0?00?000000000000?00000000000000000?0?000000000000000000000?0

00?0?00?000000000000?00000000000000000?0?000000000000000000000?0

S2 00?0?00?000000000000?00000000000000000?0?000000000000000000000?0

00?0?00?000000000000?00000000000000000?0?000000000000000000000?0

00?0000?000000000000?0000000000000000000?000000000000000000000?0

00?0?0??000000000000???00?000?0?000000?0?0?00000?0000000?0?00??0

???0?00??0?0000?0?00?00000000000000?0??0?00?0000000?0?00000000?0

P2 0??0?0???00000000?00?000000000??0?0?0??0?0000000000?0000000?00?0

?0?0?00?0000000?0000?0?000000???0?0?00?0?00?0000000000000?0?00?0

?0?00?0?000000?0000??000000?0000000?0000?0?00000?000?000000000?0

???0?????0?000??0?0????00?0?0???0?0?0??0?0??0000?00???00????0??0

???0?????0?000??0?0????00?0?0???0?0?0??0?0??0000?00???00????0??0

S3 ???0?????0?000??0?0??0?0000?0???0?0?0??0?0??0000?00???000?0?00?0

???0?????0?000??0?0????00?0?0???0?0?0??0?0??0000?00???00????0??0

???0?????0?000??0?0????00?0?0???0?0?0??0?0??0000?00???00????0??0

?????????0????????????????????????????????????0???0????????????0

?????????0??????0???????0???????????0???????00???0??????????????

P3 ?????????0???0????0????0????????????????????0??0???????0????????

???????????????????????0??????????0?0??0?0???????0??????????????

????????????????????????????0???????????????0?0?????????????????

But [Tezcan, 2020] refuted Riou’s claim by providing a 3.5-round probability one

differential distinguisher. Because as can be seen in Table 4.2, the non-zero values in

the third round actually were revealing some characteristics for the next layer.

47

Table 4.2: 3.5 round probability one truncated differential where the intermediate

differences are reported wrongly [Tezcan, 2020].

Round 3.5- Round Truncated Differential Distinguisher of GASCONC5R11

1000

00

I 00

00

00

?000

1000

S1 00

?000

?000

?00000000000000000?00000000000000000000000000000000000?000000000

1000000000000100000000000000000001000000000000000000000000000000

P1 00

?00000000000000000000000000?000000000000000000000000000?00000000

?00000000000?000?000

?00000000000??0000?00000000?00000?00000000000000000000??0000?000

?00000000000??0000?00000000?00000?00000000000000000000??0000?000

S2 ?00000000000?10000000000000?000001000000000000000000000?0000?000

?00000000000?10000?00000000?00000100000000000000000000??0000?000

?00000000000??0000?00000000?00000?00000000000000000000??0000?000

?000?0000000???000??0000?00?00??0???0000??0000?00?0?00??0000?000

?00?0000?000??0000?00000????00??0?0??0000?000??0000?00??0000?000

P2 ?10000000?10?1000000000??00???0001000000000?10000000?00?0??0?01?

?000000?1000????00?0?0?0010?0000010?10000?0000000??000??0000?000

?000000?0000??0000???000??0?00?00???0000??000??0000000??0000?000

??0??00????0????00???0??????????0????000??0????00????0??0??0?0??

??0??00????0????00???0??????????0????000??0????00????0??0??0?0??

S3 ?10?000???10????00???0??????????0????000??0?1??00????0??0??0?01?

?10??00???10????00???0??????????0????000??0?1??00????0??0??0?01?

?00??00??000????00???0?0????00??0????000??000??00???00??0000?000

???????????????????????????????????????0????????????????0???????

??0???

P3 ??

????????????????0??????????????????????1????????????????1???????

?????????0???????0???0?0????00???????000????0???????????0???????

???????????????????????????????????????a????????????????b???????

???????????????????????????????????????a????????????????b???????

S4 ???????????????????????????????????????a????????????????b???????

???????????????????????????????????????a????????????????b???????

???????????????????????????????????????a????????????????b???????

Since [Riou, 2019] have already provided some linear approximations by using lin-

eartrails tool [Dobraunig et al., 2015a], Tezcan used the 3-round one to build a 5

48

round differential-linear distinguisher [Tezcan, 2020]. Unlike the distinguisher that

they [Tezcan, 2020] have found for Ascon, they used a Type-I linear approximation

instead of Type-II. And they gave the initial difference in x1 and x2, instead of x3 and

x4. That can be seen in Table 4.3.

Table 4.3: 2-round truncated probability one truncated differential with the combina-

tion of 3-round Type-I linear approximation with a bias of 2−15. Since the differential

part is wrong, this 5-round distinguisher [Tezcan, 2020] is also wrong.

Round 5- Round Differential-Linear Distinguisher of GASCONC5R11

00

0000000000000000000000000010000000000000000000000000000000000000

I 0000000000000000000000000010000000000000000000000000000000000000

00

00

00000000000000000000000000?0000000000000000000000000000000000000

00000000000000000000000000?0000000000000000000000000000000000000

S1 00

00

00000000000000000000000000?0000000000000000000000000000000000000

000000000000?0000000000000?000000000000000000000?000000000000000

0000000?000000000000000000?00000000000000000000000000000000?0000

P1 00

00

000000?0000000000000000000?000000000000000000000000000?000000000

000000??0000?0000000000000?000000000000000000000?00000?0000?0000

000000??0000?0000000000000?000000000000000000000?00000?0000?0000

S2 000000??000000000000000000?000000000000000000000000000?0000?0000

000000??0000?0000000000000?000000000000000000000?00000?0000?0000

000000??0000?0000000000000?000000000000000000000?00000?0000?0000

000000??0000??0000?00000???000?000?00000?0000?00?00000?0000???00

000000??0000?00000???000???00?00000?000??0000?00?00000?0000?0?00

P2 000??0??00000000000000??00??000000000??000000000000?00?0??0?0000

0??000???000?0?0000?0?0000?00000000?0000000?0000??0000?0000?0??0

000000??0000??0000??0000?0?0000000??000??0000000?00000?0000??000

Round State

0 1......8.21.1.2118. 1......8.21.11a.

18..1....18..1....1

21

3 e37c4f1b6e8d53e6 e.8629e8e4b766af

Because building the state of Drygascon is different than Ascon, the nonce is not in

the words x3 and x4. So there was no point in giving the initial difference to x3 and

x4 and observing the output difference only in x0. So they just aimed to find some

characteristics [Tezcan, 2020]. As a result of this, they calculated the total bias as

49

2pq2 = 2 · 1 · (2−15)
2

= 2−29. And they stated that they can distinguish it from a

random permutation by using 261.28 samples according to Algorithm 1 of [Blondeau

et al., 2011].

Since Tezcan has already presented the theoretical 5-round differential-distinguishers

for GASCONC5R11 [Tezcan, 2020], we decided to verify its result experimentally.

But Tezcan’s claim was they needed around 261.28 samples to distinguish it from a

random permutation [Tezcan, 2020], and we did not have such computational power.

Because 5-round encryption of Drygascon with 235 data took 2 hours in our Intel(R)

Core(TM) i7-6500U CPU @ 2.50GHz 2.59 GHz system. So it would have taken

us over 233016 years to try that with more than 260 data. But based on our experi-

ence from Ascon, we knew there was going to be a gap between the theoretical and

practical results. So we concluded that this experiment was applicable because while

the theoretical bias was around 2−15 in the 4-round differential-linear distinguisher of

Ascon, the practical was around 2−2. Since the Ascon and Drygascon had similar de-

signs, the practical bias that comes from the linear approximation should have been at

least around 2−7 instead of 2−15. And according to Matsui’s Piling-up lemma [Matsui,

1993], data complexity should have been around p−2q−4 = 1−2 · (2−7)
−4

= 228.

First, we implemented the GASCONC5R11 ourselves with using C programming

language. Then we wrote a 5-round differential-linear distinguishing algorithm of

GASCONC5R11, again by using C programming language. We used Tezcan’s initial

difference with Riou’s linear approximation when testing this distinguisher. We used

230 random data as a beginning. But the results were around 1/2, and that meant the

cipher was random and there was no bias q to examine. We concluded since Drygas-

con’s permutation has some differences from Ascon’s, maybe we needed more data

to test it. So we increased our random data size from 230 to 235, then 238. Results were

still random. So we decided to examine where the bias would converge to decide how

much data we would need. For that to happen, we checked the bias in every 229 data

to see if it really converges to some point, or it is monotone increasing. But it did not

seem like it would converge to some point. The explanation for this, the truncated dif-

ferential with the given initial difference were not actually matching with the linear

approximation. Since Drygascon is rotation invariant, we rotated the difference 64

times and checked its compatibility with the linear approximation. When this did not

50

give the result we expected, we tried it with smaller rounds and met with high biases.

Finally, we came to the conclusion of either the truncated differential path was wrong

or the linear approximation. Therefore we decided to check them first.

We began by checking the correctness of the truncated differential distinguisher. We

wrote our own C code for checking the diffusion of the initial difference provided

by [Tezcan, 2020]. Surprisingly, we observed this diffusion differs from probability

one truncated differential provided by [Tezcan, 2020]. That was why the experiment

did not work, truncated differential distinguisher was wrong, therefore it was not com-

patible with the linear approximation. Our corrected results for this 2-round truncated

differential distinguisher can be seen in Table 4.4

Table 4.4: Corrected results for 2-round probability one truncated differential of

GASCONC5R11. The wrong one was reported by [Tezcan, 2020] and was used to

build a 5-round differential-linear distinguisher.

Round 2- Round Truncated Differantial of GASCONC5R11

00

0000000000000000000000000010000000000000000000000000000000000000

I 0000000000000000000000000010000000000000000000000000000000000000

00

00

00000000000000000000000000?0000000000000000000000000000000000000

00000000000000000000000000?0000000000000000000000000000000000000

S1 00

00

00000000000000000000000000?0000000000000000000000000000000000000

00000000?00000000000000000?00000000?0000000000000000000000000000

0000000000000?000000000000?00000000000000000000000000000?0000000

P1 00

00

00000000000000?00000000000?0000000000000000000000000000000000?00

00000000?0000??00000000000?00000000?00000000000000000000?0000?00

00000000?0000??00000000000?00000000?00000000000000000000?0000?00

S2 0000000000000??00000000000?00000000000000000000000000000?0000?00

00000000?0000??00000000000?00000000?00000000000000000000?0000?00

00000000?0000??00000000000?00000000?00000000000000000000?0000?00

00?0000??0000??0000000?000???000000?00?0000?00000?0000???0000?00

???00000?0000??00000000?00???000000?00?0000??000?00000?0?0000?00

P2 0000000000000??0??0000000??00??0?000000000000??000000000?0??0?00

0?0000?0?000???000??000000?0000?00??0000?0000000?0000??0?0000?00

0??0000??0000??00000000000?0?000000?0000000??000??00000??0000?00

51

Before moving further, we decided to check all other truncated differential distin-

guishers that were provided so far. We checked Riou’s 3-round truncated differential

distinguisher, we observed the same situation applies to that also. We believe the

reason was the bits move in the opposite direction in provided code than described in

the linear layer. And that may have led to further erroneous analysis. The corrected

results to this 3-round truncated differential distinguisher can be seen in Table 4.5.

Table 4.5: Corrected results of 3-round probability one truncated differential of

GASCONC5R11 that was reported wrongly by [Riou, 2019].

Round 3- Round Truncated Differantial of GASCONC5R11

0000000100

00

I 00

0000000100

0000000100

00

0000000?00

S1 0000000?00

0000000?00

00

00

0000000?000000000000000000?0000000000?00000000000000000000000000

P1 0000000?00?0000000000000000000000000000?000000000000000000000000

0000000?0000?0000000000000000000000000000000000?0000000000000000

00

0000000?00?0?0000000000000?0000000000?0?0000000?0000000000000000

0000000?00?0?0000000000000?0000000000?0?0000000?0000000000000000

S2 0000000?00?0?0000000000000?0000000000?0?0000000?0000000000000000

0000000?00?0?0000000000000?0000000000?0?0000000?0000000000000000

0000000?0000?0000000000000?0000000000?000000000?0000000000000000

0000000??0?0?00?0?000?00???00000000?0?0?0000000??00?0?0000000?00

0000?0??00?0???00000000000?00?0?00?00?0??0?0000?00000000?0?00000

P2 000000???0?0??0??000000000?00?0000000?0??0?0?00?00?0000000?00000

0000000?00?0?0????000000?0?0000?00?00?0?00?0?00?00?0?00000000000

?000000?0?00?0?0000?000000??0000000?0?0000?0000?000000000?000?00

?000?0?????0??????0?0?00????0?0?00??0?0??0?0?00??0????00???00?00

?000?0?????0??????0?0?00????0?0?00??0?0??0?0?00??0????00???00?00

S3 ?000?0?????0??????0?0000?0??0?0?00??0?0??0?0?00?00?0?000???00?00

?000?0?????0??????0?0?00????0?0?00??0?0??0?0?00??0????00???00?00

?000?0?????0??????0?0?00????0?0?00??0?0??0?0?00??0????00???00?00

?????0??0????????????0???0

?????0????????????????0???????0?00???????0??????????????????0???

P3 ?0???0?????????????????0????0????0????????????????????0???????0?

???????????????????????0????????????0?0??0?0????????????????0???

??????????????????0??????????????0?????????????????????????????0

52

We also checked the 3.5-round truncated differential provided by [Tezcan, 2020]. As

can be expected, the results were inaccurate here, also. However, they were right

about the existence of a 3.5-round truncated differential distinguisher despite Riou’s

claim [Riou, 2019]. Moreover, surprisingly the differentials in the last round were ac-

tually accurate. It was just distributing differently in the middle rounds. We corrected

this distinguisher and that can be seen in Table 4.6.

Table 4.6: Corrected results of 3.5-round probability one truncated differential of

GASCONC5R11 that was reported wrongly by [Tezcan, 2020]. Despite the middle

rounds, S4 is same with Tezcan’s.

Round 3.5- Round Truncated Differantial of GASCONC5R11

1000

00

I 00

00

00

?000

1000

S1 00

?000

?000

?0000000000000?00000000000000000000000000?0000000000000000000000

100000000000000000010010

P1 00

?0000?0000000000000000000000000000000000?00000000000000000000000

?0000000000000000000?00000000000000?0000000000000000000000000000

?0000?00000000?0000??00000000000000?0000??00000000000000000000?0

?0000?00000000?0000??00000000000000?0000??00000000000000000000?0

S2 ?0000?00000000000001?00000000000000?0000?00000000000000000000010

?0000?00000000?00001?00000000000000?0000??0000000000000000000010

?0000?00000000?0000??00000000000000?0000??00000000000000000000?0

???00?00?0000??000???0000000?000000?0000??00?0?00?0000??0000???0

???00????00000?0000??000?0000?00000?0000??00?0000??000?0000??0?0

P2 ?00???00??0000000001?01?00000001?10?0??0?00?00000001?00000000010

?0000?0100?0?0?00????0001?000000000?0000??000??0000000?00001?010

?0?00?0??000???0000??0000?000000000?0000??0000000??000??0000???0

???????????0???00????0????00??0???0?0??0??0????00????0??000????0

???????????0???00????0????00??0???0?0??0??0????00????0??000????0

S3 ???????????0???00????01???000?01?10?0??0??0????00??1?0??000????0

???????????0???00????01???00??01?10?0??0??0????00??1?0??000????0

???00????0?0???00????000??00??00000?0000??00???00??000??000????0

???????????????????????????????????????0????????????????0???????

??????????????????????????????0?????????????????????????????????

P3 ??

????????????????0??????????????????????1????????????????1???????

???00????0?0???0???????0???????????????0???????????0????000?????

???????????????????????????????????????a????????????????b???????

???????????????????????????????????????a????????????????b???????

S4 ???????????????????????????????????????a????????????????b???????

???????????????????????????????????????a????????????????b???????

???????????????????????????????????????a????????????????b???????

53

After we have corrected these results, we still needed a truncated differential path that

would be compatible with the presented 3-round linear approximation [Riou, 2019].

Since it was difficult to find out which difference would work best with this linear

approximation, we decided to try for all 64 positions by rotating Tezcan’s difference

64 times. Then we applied this experiment for each of them. We could have had the

best results experimentally due to the fact that Drygascon is rotation invariant. As a

result, we discovered the initial difference 0x0000008000000000 works best with the

linear approximation provided by [Riou, 2019]. We present that in Table 4.7.

Table 4.7: 2-round probability one truncated differential with the combination of 3-

round linear approximation that we used for building a 5-round differential-linear

distinguisher. The input difference was changed into 0x0000008000000000.

Round 5- Round Differential-Linear Distinguisher of GASCONC5R11

00

0000000000000000000000001000000000000000000000000000000000000000

I 0000000000000000000000001000000000000000000000000000000000000000

00

00

000000000000000000000000?000000000000000000000000000000000000000

000000000000000000000000?000000000000000000000000000000000000000

S1 00

00

000000000000000000000000?000000000000000000000000000000000000000

000000?00000000000000000?00000000?000000000000000000000000000000

00000000000?000000000000?00000000000000000000000000000?000000000

P1 00

00

000000000000?00000000000?0000000000000000000000000000000000?0000

000000?0000??00000000000?00000000?00000000000000000000?0000?0000

000000?0000??00000000000?00000000?00000000000000000000?0000?0000

S2 00000000000??00000000000?00000000000000000000000000000?0000?0000

000000?0000??00000000000?00000000?00000000000000000000?0000?0000

000000?0000??00000000000?00000000?00000000000000000000?0000?0000

?0000??0000??0000000?000???000000?00?0000?00000?0000???0000?0000

?00000?0000??00000000?00???000??0?00?0000??000?00000?0?0000?0000

P2 00000000000??0??0000000??00??00000000000000??000000000?0??0?00?0

0000?0?000???000??000000?0000?0???0000?0000000?0000??0?0000?0000

?0000??0000??00000000000?0?0000?0?0000000??000??00000??0000?0000

Round State

0 1......8.21.1.2118. 1......8.21.11a.

18..1....18..1....1

21

3 e37c4f1b6e8d53e6 e.8629e8e4b766af

54

At the end of the experiment, we got 2−7.96 bias by using 229 data. That was far better

than the theoretical bias 2−29 and 261.28 data complexity. Then we wondered if we

can find a better linear approximation, so we used lineartrails too [Dobraunig et al.,

2015a] to search for it. We could not found a 3-round linear approximation with

better than 2−15 bias. But when we were experimenting with this new approximation,

surprisingly we got better practical results. The experiments showed that practical

bias is around 2−5.35 for this new 5-round differential-linear distinguisher and around

217 samples were enough to distinguish it from a random permutation, which is better

than the previous results. The new 5-round distinguisher is given in Table 4.8.

Table 4.8: 2-round truncated probability one truncated differential with the combi-

nation of 3-round Type-I linear approximation with bias 2−15 that we found to build

5-round differential-linear distinguisher.

Round 2- Round Truncated Differantial Distinguisher of GASCONC5R11

00

00100000000000000000000000

I 00100000000000000000000000

00

00

00?00000000000000000000000

00?00000000000000000000000

S1 00

00

00?00000000000000000000000

0000000000000000000000000000000?00000000?00000000000000000?00000

0000000000?00000000000000000000000000000?000000000000?0000000000

P1 00

00

00000?0000000000000000000000000000000000?00000000000?00000000000

00000?0000?00000000000000000000?00000000?00000000000??0000?00000

00000?0000?00000000000000000000?00000000?00000000000??0000?00000

S2 00000?0000?00000000000000000000000000000?00000000000??0000000000

00000?0000?00000000000000000000?00000000?00000000000??0000?00000

00000?0000?00000000000000000000?00000000?00000000000??0000?00000

00000?0000???0000?00000?0000?00??00000???000?0000000??0000??0000

00000?0000?0?00000?000??0000?00????000???00?00000000??0000?00000

P2 00?00?0??0?000000000??00000000000000??00??0000000??0??0000000000

?0000?0000?0??0000?0000000?0000?0?0?0000?000000??000???000?0?000

00000?0000??00000??000??0000000???0000?0?00000000000??0000??0000

Round State

018. 1......8.21.1.2. 1......8.21.1.2118.

18..1....18..1....1

21

3 e.8629e8e4b766af c587ed1921757a4e

55

We tried to extend this distinguisher for a practical 6-round experiment by increasing

the truncated differential for one round. Because of our computational power, the

experiment would have taken weeks to finish if we used more than 240 data. So we

have proceeded with using 238 data to be optimal. But the results were showing ran-

domness. Then we experimented for six rounds by rotating the initial difference 64

times with about 232 data. But the data we used was not enough. Then we thought

about finding a 4-round linear approximation and combining it with a 2-round trun-

cated differential. But the best 4-round linear approximation we found had 2−60 bias.

That can be seen in Table 4.9.

Table 4.9: 4-round Type-I linear approximation with bias 2−60, hexadecimal notation.

Round State

0 c9.62.....431... 3261.1.186.84451 b261.1..a6.84641 8...8.4......... .9128.22...31...

122.4..... 4..42.2.2.4..... 42.42.2.2.4.....3........1........

22..2...2....... .2..2...2.......

3 .2..2...2.......2..............

4 5fc96ecda38218a7 9c42eaf467161fb4

So even if we could locate an initial difference that would match this approximation,

theoretical data complexity was going to be q−4 = 260·4 = 2240. And theoretical bias

was going to be 2pq2 = 2 ·1 ·2−60x2 = 2−119. Considering our previous observations,

we expected that the practical total bias would not be less than 2−30. And this would

cost us to perform the experiment with at least 260 data. Since we did not have such

computational power, we decided to leave it there.

4.2.1 Comparison Between Ascon and Drygascon

So far we examined the differential-linear distinguishers of Ascon and Drygascon.

But we still needed to compare the security of Ascon and Drygascon. Riou had

already indicated that the theoretical linear approximation biases of Ascon and Dry-

gascon were the same; both for Type-I and Type-II [Riou, 2019]. So we wanted to see

if the practical biases were the same, also. But the given practical differential-linear

analyses were not enough for a comparison. Because the 4-round differential-linear

distinguisher of Ascon contained a 2-round truncated differential distinguisher with

a 2-round Type-II linear approximation to turn it into an attack. But the 5-round

56

differential-linear distinguisher of Drygascon contained a 2-round truncated differ-

ential distinguisher with a 3-round Type-I linear approximation. So, for a fair com-

parison, we found the Type-II linear approximation of Drygascon (Table 4.10) and

experimentally verified it.

Table 4.10: 2-round Type-II linear approximation with bias 2−8 in hexadecimal nota-

tion. We used that to build a 4-round differential-linear distinguisher.

Round State

024.......242...... 1...........2... 1...........2...

12......2......

2 6529b26f9284d935

Since 217 data was enough for distinguishing 5 rounds of Drygascon, we just used

217 data for 4 rounds of it to begin with. To be able to find a truncated distinguisher

compatible with this linear approximation, we rotated the initial difference 64 times

and performed the experiment for each of them. We observed the initial difference

0x0000000000800000 gives us the best total bias of 2−1.67. And in [Tezcan, 2020],

the best bias for 4-round Ascon was 2−1.68. The comparison of Ascon and Drygascon

can be seen in Table 4.11.

Table 4.11: Comparison of Ascon128 and Drygascon-128

Algorithm Round Type Theoretical Bias Data Practical Bias Data

Ascon 4/12 Type-II 2−15 232 2−1.68 28

Drygascon 4/12 Type-II 2−15 232 2−1.67 24

Drygascon 5/12 Type-I 2−29 261.28 2−5.34 217

Even though these are very close results, we may say that Ascon might be more

resistant against differential-linear cryptanalysis because Ascon has one more round

than Drygascon and there are more data needed for distinguishing 4-rounds of it from

a random permutation.

57

58

CHAPTER 5

CONCLUSIONS

Today’s rapid development of technology is causing a gap between industry and

academia. The fact that the industry has to respond quickly to emerging needs brings

along new security vulnerabilities. The absence of regulation for encryption in IoT

security, which is one of these areas, forces the industry to produce its own solutions.

Failure to perform security analysis adequately while designing their cryptographic

algorithms along with trying to keep their algorithms secret leads to their systems

being broken. On the contrary, these ciphers need to be thoroughly studied by the

cryptography community for ultimate security and performance. Because subsequent

events not only negatively affect security but also cause reputational loss and high

costs for them.

In 2013, NIST initiated a lightweight cryptography project to fill this gap. And

in 2017, they announced that they started a competition for selecting one or more

lightweight cryptography standard [McKay et al., 2016].

We carried out this work in order to contribute to the selection of a new and secure

lightweight encryption standard for the constrained devices by analyzing some of the

candidate algorithms. We showed the undisturbed bits of 16 of them and provided

their probability one truncated differential distinguisher rounds that they have for fu-

ture analysis. Then we focused on two very similar cipher suites Ascon and Drygas-

con. On our way to compare the security of the candidates Ascon and Drygascon, we

realized that the 3-round truncated differential given to Drygascon by its designer was

wrong [Riou, 2019]. Moreover, this misrepresentation and complexity of the specifi-

cation of the algorithm had led to further erroneous analyses, which were a 5-round

differential-linear distinguisher and a 3.5-round probability one truncated differential

59

distinguisher [Tezcan, 2020]. This situation shows how important it is to practically

test the results that were obtained in theory. Experiments in practice will enable to

check the accuracy of theoretical results. It will also show how effective the found

distinguisher actually is because our research confirmed that there are significant dis-

tinctions between the theoretical data complexities of Ascon and Drygascon and their

practical ones. The reasons were explained as the existence of multiple characteristics

and slow diffusion in these ciphers [Bar-On et al., 2019].

In this study, we corrected 2, 3, and 3.5 rounds truncated differentials and 5-round

differential-linear distinguisher given for Drygascon and presented them. We have

also found a new 3-round linear approximation that will allow the 5-round differential-

linear distinguisher to perform better in practice. This is the longest differential-linear

distinguisher for Drygascon that we know of. That shows us the different distinguish-

ers with the same theoretical biases can give different practical results.

We obtained these distinguishers not theoretically but practically. In theory, the

masked input bits of the linear approximation should match the zero-difference of

the truncated differential output bits. The reason is that since we cannot be sure how

the unknown values at the end of the truncated differential will behave, we make such

an assumption when calculating the theoretical bias. But that was not like that in our

case. Because the unknown values at the end of the truncated differentials can give

good results with linear masked bits at the beginning of the linear approximation in

practice. This situation demonstrates the importance of testing theoretical results in

practice.

In this work, we aimed to compare the security of Ascon and Drygascon in terms of

differential-linear cryptanalysis. Since there were not such analyses that tested their

security in practice under the same conditions, we reduced them into the same states.

We showed their practical distinguishers are very close. But we may say that Ascon

might be more resistant against differential-linear cryptanalysis. The reason is that

Ascon has one more round than Drygascon.

60

REFERENCES

[Aagaard et al., 2019a] Aagaard, M., AlTawy, R., Gong, G., Mandal, K., and Rohit,

R. (2019a). Ace: An authenticated encryption and hash algorithm. A Submission

to the NIST Lightweight Cryptography Standardization Process.

[Aagaard et al., 2019b] Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit, R.,

and Zidaric, N. (2019b). Wage: An authenticated cipher. Submission to NIST

Lightweight Cryptography Standardization Project (announced as round 2 candi-

date on August 30, 2019).

[Adomnicai et al., 2019] Adomnicai, A., Berger, T. P., Clavier, C., Francq, J., Huynh,

P., Lallemand, V., Le Gouguec, K., Minier, M., Reynaud, L., and Thomas, G.

(2019). Lilliput-ae: A new lightweight tweakable block cipher for authenticated

encryption with associated data. A Submission to the NIST Lightweight Cryptog-

raphy Standardization Process.

[AlTawy et al., 2019a] AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi,

M., and Rohit, R. (2019a). Spoc. Submission to NIST LwC Standardization Pro-

cess (Round 2).

[AlTawy et al., 2019b] AlTawy, R., Gong, G., He, M., Mandal, K., and Rohit, R.

(2019b). Spix: An authenticated cipher submission to the nist lwc competition.

Submitted to NIST Lightweight Standardization Process.

[Andreeva et al., 2019] Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R.,

Roy, A., and Vizár, D. (2019). Forkae. Submission to NIST Lightweight Cryptog-

raphy Project.

[Avanzi et al., 2019] Avanzi, R., Banik, S., Bogdanov, A., Dunkelman, O., Huang,

S., and Regazzoni, F. (2019). Qameleon v. 1.0. A Submission to the NIST

Lightweight Cryptography Standardization Process.

[Avik Chakraborti, 2019] Avik Chakraborti, Nilanjan Datta, A. J. C. M. L.

61

M. N.-Y. S. (2019). Lotus-aead and locus-aead. https://csrc.nist.gov/

CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/

lotus-aead-and-locus-aead-spec.pdf. Accessed: 2021-05-10.

[Banik et al., 2019a] Banik, S., Bogdanov, A., Peyrin, T., Sasaki, Y., Sim, S. M.,

Tischhauser, E., and Todo, Y. (2019a). Sundae-gift. A Submission to the NIST

Lightweight Cryptography Standardization Process.

[Banik et al., 2019b] Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi,

M., Peyrin, T., Sasaki, Y., Sim, S. M., and Todo, Y. (2019b). Gift-cofb. A Submis-

sion to the NIST Lightweight Cryptography Standardization Process.

[Bao et al., 2019] Bao, Z., Chakraborti, A., Datta, N., Guo, J., Nandi, M., Peyrin, T.,

and Yasuda, K. (2019). Photon-beetle authenticated encryption and hash family.

A Submission to the NIST Lightweight Cryptography Standardization Process.

[Bar-On et al., 2019] Bar-On, A., Dunkelman, O., Keller, N., and Weizman, A.

(2019). Dlct: A new tool for differential-linear cryptanalysis. In Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

pages 313–342. Springer.

[Barker and Mouha, 2017] Barker, E. and Mouha, N. (2017). Recommendation for

the triple data encryption algorithm (tdea) block cipher. Technical report, National

Institute of Standards and Technology.

[Barker and Roginsky, 2011] Barker, E. and Roginsky, A. (2011). Transitions:

Recommendation for transitioning the use of cryptographic algorithms and key

lengths. NIST Special Publication, 800:131A.

[Beierle et al., 2019] Beierle, C., Biryukov, A., dos Santos, L. C., Großschädl, J.,

Perrin, L., Udovenko, A., Velichkov, V., Wang, Q., and Biryukov, A. (2019).

Schwaemm and esch: Lightweight authenticated encryption and hashing using the

sparkle permutation family. A Submission to the NIST Lightweight Cryptography

Standardization Process.

[Beierle et al., 2020] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin,

T., Sasaki, Y., Sasdrich, P., and Sim, S. M. (2020). Skinny-aead and skinny-hash.

IACR Transactions on Symmetric Cryptology, pages 88–131.

62

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf

[Bellizia et al., 2020] Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S.,

Guo, C., Leander, G., Leurent, G., Levi, I., Momin, C., et al. (2020). Spook:

Sponge-based leakage-resistant authenticated encryption with a masked tweakable

block cipher. IACR Transactions on Symmetric Cryptology, pages 295–349.

[Bernstein, 2013] Bernstein, D. (2013). Caesar: Competition for authenticated en-

cryption: Security, applicability, and robustness. https://competitions.cr.yp.to/

caesar.html. Accessed: 2021-05-10.

[Bernstein et al., 2017] Bernstein, D. J., Kölbl, S., Lucks, S., Massolino, P. M. C.,

Mendel, F., Nawaz, K., Schneider, T., Schwabe, P., Standaert, F.-X., Todo, Y.,

et al. (2017). Gimli: A cross-platform permutation. In International Conference

on Cryptographic Hardware and Embedded Systems, pages 299–320. Springer.

[Bertoni et al., 2007] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G.

(2007). Sponge functions. In ECRYPT hash workshop, volume 2007. Citeseer.

[Bertoni et al., 2011] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G.

(2011). Duplexing the sponge: Single-pass authenticated encryption and other ap-

plications. In International Workshop on Selected Areas in Cryptography, pages

320–337. Springer.

[Bertoni et al., 2012] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G.

(2012). Permutation-based encryption, authentication and authenticated encryp-

tion. Directions in Authenticated Ciphers, pages 159–170.

[Bhattacharjee et al., 2021] Bhattacharjee, A., López, C. M., List, E., and Nandi,

M. (2021). The oribatida v1. 3 family of lightweight authenticated encryption

schemes. Journal of Mathematical Cryptology, 15(1):305–344.

[Biham et al., 2002] Biham, E., Dunkelman, O., and Keller, N. (2002). Enhancing

differential-linear cryptanalysis. In International Conference on the Theory and

Application of Cryptology and Information Security, pages 254–266. Springer.

[Biham and Shamir, 1991] Biham, E. and Shamir, A. (1991). Differential cryptanal-

ysis of des-like cryptosystems. Journal of CRYPTOLOGY, 4(1):3–72.

63

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html

[Biryukov and Perrin, 2018] Biryukov, A. and Perrin, L. (2018). Lightweight block

ciphers. https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers/. Ac-

cessed: 2021-05-10.

[Blondeau et al., 2011] Blondeau, C., Gérard, B., and Tillich, J.-P. (2011). Accurate

estimates of the data complexity and success probability for various cryptanalyses.

Designs, codes and cryptography, 59(1):3–34.

[Bogdanov et al., 2007] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C.,

Poschmann, A., Robshaw, M. J., Seurin, Y., and Vikkelsoe, C. (2007). Present:

An ultra-lightweight block cipher. In International workshop on cryptographic

hardware and embedded systems, pages 450–466. Springer.

[Browning et al., 2010] Browning, K., Dillon, J., McQuistan, M., and Wolfe, A.

(2010). An apn permutation in dimension six. Finite Fields: theory and appli-

cations, 518:33–42.

[Chakraborti et al., 2020] Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C.,

Nandi, M., and Sasaki, Y. (2020). Estate: A lightweight and low energy authenti-

cated encryption mode. IACR Transactions on Symmetric Cryptology, pages 350–

389.

[Chakraborti et al., 2019] Chakraborti, A., Datta, N., Jha, A., and Nandi, M. (2019).

Hyena. A Submission to the NIST Lightweight Cryptography Standardization Pro-

cess.

[Chakraborty and Nandi, 2019a] Chakraborty, B. and Nandi, M. (2019a). mixfeed.

A Submission to the NIST Lightweight Cryptography Standardization Process.

[Chakraborty and Nandi, 2019b] Chakraborty, B. and Nandi, M. (2019b). Security

proof of orange-zest. A Submission to the NIST Lightweight Cryptography Stan-

dardization Process.

[Daemen et al., 2020a] Daemen, J., Hoffert, S., Peeters, M., Assche, G. V., and Keer,

R. V. (2020a). Xoodyak, a lightweight cryptographic scheme. A Submission to the

NIST Lightweight Cryptography Standardization Process.

64

 https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers/

[Daemen et al., 2020b] Daemen, J., Massolino, P. M. C., Mehrdad, A., and Rotella,

Y. (2020b). The subterranean 2.0 cipher suite. IACR Transactions on Symmetric

Cryptology, pages 262–294.

[Daemen and Rijmen, 1999] Daemen, J. and Rijmen, V. (1999). The rijndael block

cipher: Aes proposal. In First candidate conference (AeS1), pages 343–348.

[Daemen and Rijmen, 2002] Daemen, J. and Rijmen, V. (2002). The design of Rijn-

dael, volume 2. Springer.

[De Canniere, 2006] De Canniere, C. (2006). Trivium: A stream cipher construc-

tion inspired by block cipher design principles. In International Conference on

Information Security, pages 171–186. Springer.

[do Nascimento and Xexéo, 2019] do Nascimento, E. M. and Xexéo, J. A. M.

(2019). Flexaead-a lightweight cipher with integrated authentication. A Submis-

sion to the NIST Lightweight Cryptography Standardization Process.

[Dobraunig et al., 2020] Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F.,

Mennink, B., Primas, R., and Unterluggauer, T. (2020). Isap v2. 0. A Submis-

sion to the NIST Lightweight Cryptography Standardization Process.

[Dobraunig et al., 2015a] Dobraunig, C., Eichlseder, M., and Mendel, F. (2015a).

Heuristic tool for linear cryptanalysis with applications to caesar candidates. In

International Conference on the Theory and Application of Cryptology and Infor-

mation Security, pages 490–509. Springer.

[Dobraunig et al., 2015b] Dobraunig, C., Eichlseder, M., Mendel, F., and Schläffer,

M. (2015b). Cryptanalysis of ascon. In Cryptographers’ Track at the RSA Confer-

ence, pages 371–387. Springer.

[Dobraunig et al., 2016] Dobraunig, C., Eichlseder, M., Mendel, F., and Schläffer,

M. (2016). Ascon v1. 2. Submission to the CAESAR Competition.

[Dobraunig and Mennink, 2019] Dobraunig, C. and Mennink, B. (2019). Elephant

v1. A Submission to the NIST Lightweight Cryptography Standardization Process.

[Driscoll, 2018] Driscoll, K. (2018). Lightweight crypto for lightweight unmanned

65

arial systems. In 2018 Integrated Communications, Navigation, Surveillance Con-

ference (ICNS), pages 1–15. IEEE.

[Dworkin, 2015] Dworkin, M. J. (2015). Sha-3 standard: Permutation-based hash

and extendable-output functions. Standard NIST FIPS-202.

[ECRYPT, 2019] ECRYPT (2019). ebacs: Ecrypt benchmarking of cryptographic

systems. http://bench.cr.yp.to/. Accessed: 2021-05-02.

[Evertse, 1987] Evertse, J.-H. (1987). Linear structures in blockciphers. In Work-

shop on the Theory and Application of of Cryptographic Techniques, pages 249–

266. Springer.

[Fabio Campos and Viguier, 2020] Fabio Campos, Lars Jellema, M. L. L. M. D. S.

and Viguier, B. (2020). Lightweight crypto on risc-v. https://github.com/

AsmOptC-RiscV/Assembly-Optimized-C-RiscV. Accessed: 2021-05-02.

[Garcia et al., 2008] Garcia, F. D., de Koning Gans, G., Muijrers, R., Van Rossum,

P., Verdult, R., Schreur, R. W., and Jacobs, B. (2008). Dismantling mifare classic.

In European symposium on research in computer security, pages 97–114. Springer.

[Goudarzi et al., 2020] Goudarzi, D., Jean, J., Kölbl, S., Peyrin, T., Rivain, M.,

Sasaki, Y., and Sim, S. M. (2020). Pyjamask: Block cipher and authenticated

encryption with highly efficient masked implementation. IACR Transactions on

Symmetric Cryptology, pages 31–59.

[Gueron et al., 2019] Gueron, S., Jha, A., and Nandi, M. (2019). Comet: Counter

mode encryption with authentication tag. Second Round Candidate of the NIST

LWC Competition.

[Gueron and Lindell, 2019] Gueron, S. and Lindell, Y. (2019). Simple: A simple

aead scheme, a submission to the nist lightweight cryptography standardization

process. A Submission to the NIST Lightweight Cryptography Standardization

Process.

[Guo and Iwata, 2019] Guo, J. and Iwata, T. (2019). Siv-rijndael 256 authenti-

cated encryption and hash family. Submission to NIST Lightweight Cryptography

Project.

66

http://bench.cr.yp.to/
https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV
https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV

[Guo et al., 2011] Guo, J., Peyrin, T., and Poschmann, A. (2011). The photon family

of lightweight hash functions. In Annual Cryptology Conference, pages 222–239.

Springer.

[Han Sui, 2019] Han Sui, Wenling Wu, L. Z. D. Z. (2019). Laem (lightweight

authentication encryption mode). https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.pdf. Ac-

cessed: 2021-05-10.

[Hashing, 2019] Hashing, C. (2019). Sneiken and sneikha. A Submission to the NIST

Lightweight Cryptography Standardization Process.

[Hell et al., 2019] Hell, M., Johansson, T., Meier, W., Sönnerup, J., and Yoshida, H.

(2019). Grain-128aead-a lightweight aead stream cipher. A Submission to the

NIST Lightweight Cryptography Standardization Process.

[Isobe et al., 2019] Isobe, S. T., Meier, W., and Zhang, B. (2019). Triad v1. A Sub-

mission to the NIST Lightweight Cryptography Standardization Process.

[Iwata et al., 2020] Iwata, T., Khairallah, M., Minematsu, K., and Peyrin, T. (2020).

Duel of the titans: The romulus and remus families of lightweight aead algorithms.

IACR Transactions on Symmetric Cryptology, pages 43–120.

[Iwata et al., 2019] Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T., Sasaki, Y.,

Sim, S. M., and Sun, L. (2019). Thank goodness it’s friday (tgif). A Submission to

the NIST Lightweight Cryptography Standardization Process.

[Jean, 2016] Jean, J. (2016). TikZ for Cryptographers. https://www.iacr.org/authors/

tikz/. Accessed: 2021-05-10.

[Jirotka, 2016] Jirotka, Z. (2016). Saturnin. Charles University in Prague,

Karolinum Press.

[Kamyar Mohajerani and Gaj, 2020] Kamyar Mohajerani, Richard Haeussler, R. N.

F. F. A. A. J.-P. K. and Gaj, K. (2020). Athena: Fpga benchmarking. https:

//cryptography.gmu.edu/athena/index.php?id=LWC. Accessed: 2021-05-02.

[Knudsen, 1994] Knudsen, L. R. (1994). Truncated and higher order differentials.

In International Workshop on Fast Software Encryption, pages 196–211. Springer.

67

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LAEM-spec.pdf
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://cryptography.gmu.edu/athena/index.php?id=LWC
https://cryptography.gmu.edu/athena/index.php?id=LWC

[Langford and Hellman, 1994] Langford, S. K. and Hellman, M. E. (1994).

Differential-linear cryptanalysis. In Annual International Cryptology Conference,

pages 17–25. Springer.

[Leander et al., 2007] Leander, G., Paar, C., Poschmann, A., and Schramm, K.

(2007). New lightweight des variants. In International Workshop on Fast Soft-

ware Encryption, pages 196–210. Springer.

[Li et al., 2017] Li, Z., Dong, X., and Wang, X. (2017). Conditional cube attack on

round-reduced ascon. IACR Transactions on Symmetric Cryptology, pages 175–

202.

[Liu et al., 2019] Liu, D., Nepal, S., Pieprzyk, J., and Susilo, W. (2019). Clae: a

lightweight aead scheme of resisting side channel attacks. A Submission to the

NIST Lightweight Cryptography Standardization Process.

[Makarim and Tezcan, 2014] Makarim, R. H. and Tezcan, C. (2014). Relating undis-

turbed bits to other properties of substitution boxes. In International Workshop on

Lightweight Cryptography for Security and Privacy, pages 109–125. Springer.

[Matsui, 1993] Matsui, M. (1993). Linear cryptanalysis method for des cipher. In

Workshop on the Theory and Application of of Cryptographic Techniques, pages

386–397. Springer.

[McKay et al., 2016] McKay, K., Bassham, L., Sönmez Turan, M., and Mouha, N.

(2016). Report on lightweight cryptography. Technical report, National Institute

of Standards and Technology.

[Mehner, 2019] Mehner, C. E. (2019). Limdolen. A Submission to the NIST

Lightweight Cryptography Standardization Process.

[Meijer and Verdult, 2015] Meijer, C. and Verdult, R. (2015). Ciphertext-only crypt-

analysis on hardened mifare classic cards. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pages 18–30.

[Miguel Montes, 2019] Miguel Montes, D. P. (2019). Yarara and coral

v1. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/spec-doc/yarara_and_coral-spec.pdf. Accessed: 2021-05-10.

68

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/yarara_and_coral-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/yarara_and_coral-spec.pdf

[Mustafa Khairallah and Chattopadhyay, 2020] Mustafa Khairallah, T. P. and Chat-

topadhyay, A. (2020). Asic benchmarking. https://github.com/mustafam001/

lwc-aead-rtl. Accessed: 2021-05-02.

[Naito et al., 2019] Naito, Y., Matsui, M., Sakai, Y., Suzuki, D., Sakiyama, K., and

Sugawara, T. (2019). Saeaes. A Submission to the NIST Lightweight Cryptography

Standardization Process.

[Nechvatal et al., 2001] Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin,

M., Foti, J., and Roback, E. (2001). Report on the development of the advanced

encryption standard (aes). Journal of Research of the National Institute of Stan-

dards and Technology, 106(3):511.

[Nilanjan et al., 2019] Nilanjan, D., Ashrujit, G., Debdeep, M., Sikhar, P., Stjepan,

P., and Rajat, S. (2019). Trifle. A Submission to the NIST Lightweight Cryptogra-

phy Standardization Process.

[NIST, 2018] NIST (2018). Submission requirements and evaluation cri-

teria for the lightweight cryptography standardization process. https:

//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/

final-lwc-submission-requirements-august2018.pdf/. Accessed: 2021-05-10.

[NIST, 2021] NIST (2021). Benchmarking of lightweight crypto-

graphic algorithms on microcontrollers. https://github.com/usnistgov/

Lightweight-Cryptography-Benchmarking. Accessed: 2021-05-02.

[Nohl et al., 2008] Nohl, K., Evans, D., Starbug, S., and Plötz, H. (2008). Reverse-

engineering a cryptographic rfid tag. In USENIX security symposium, volume 28.

[Nyberg, 1993] Nyberg, K. (1993). Differentially uniform mappings for cryptogra-

phy. In Workshop on the Theory and Application of of Cryptographic Techniques,

pages 55–64. Springer.

[Otte, 2019] Otte, D. (2019). Gage and ingage v1. 03. A Submission to the NIST

Lightweight Cryptography Standardization Process.

[Paar et al., 2009] Paar, C., Eisenbarth, T., Kasper, M., Kasper, T., and Moradi, A.

(2009). Keeloq and side-channel analysis-evolution of an attack. In 2009 Work-

69

https://github.com/mustafam001/lwc-aead-rtl
https://github.com/mustafam001/lwc-aead-rtl
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf/
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

shop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 65–69.

IEEE.

[Penazzi and Montes, 2019] Penazzi, D. and Montes, M. (2019). Shamash (and

shamashash)(version 1). A Submission to the NIST Lightweight Cryptography

Standardization Process.

[Riou, 2019] Riou, S. (2019). Drygascon. A Submission to the NIST Lightweight

Cryptography Standardization Process.

[Sarkar et al., 2019] Sarkar, S., Mandal, K., and Saha, D. (2019). Sycon v1. 0

submission to lightweight cryptographic standards. A Submission to the NIST

Lightweight Cryptography Standardization Process.

[Sebastian Renner and Mottok, 2020] Sebastian Renner, E. P. and Mottok, J. (2020).

Avr/arm/risc-v microcontroller benchmarking. https://lwc.las3.de/. Accessed:

2021-05-02.

[Shannon, 1949] Shannon, C. E. (1949). Communication theory of secrecy systems.

The Bell System Technical Journal, 28(4):656–715.

[Tezcan, 2014] Tezcan, C. (2014). Improbable differential attacks on present using

undisturbed bits. Journal of Computational and applied mathematics, 259:503–

511.

[Tezcan, 2016] Tezcan, C. (2016). Truncated, impossible, and improbable differen-

tial analysis of ascon. IACR Cryptol. ePrint Arch., 2016:490.

[Tezcan, 2017] Tezcan, C. (2017). Brute force cryptanalysis of mifare classic cards

on gpu. In International Conference on Information Systems Security and Privacy,

volume 2, pages 524–528. SCITEPRESS.

[Tezcan, 2020] Tezcan, C. (2020). Analysis of ascon, drygascon, and shamash per-

mutations. International Journal of Information Security Science, 9(3):172–187.

[Tezcan et al., 2014] Tezcan, C., Taşkın, H. K., and Demircioğlu, M. (2014). Im-

probable differential attacks on serpent using undisturbed bits. In Proceedings of

the 7th International Conference on Security of Information and Networks, pages

145–150.

70

https://lwc.las3.de/

[Todo, 2015] Todo, Y. (2015). Structural evaluation by generalized integral property.

In Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, pages 287–314. Springer.

[Turan et al., 2019] Turan, M. S., McKay, K. A., Çalik, Ç., Chang, D., Bassham,

L., et al. (2019). Status report on the first round of the nist lightweight cryptog-

raphy standardization process. National Institute of Standards and Technology,

Gaithersburg, MD, NIST Interagency/Internal Rep.(NISTIR).

[Watanabe et al., 2008] Watanabe, D., Ideguchi, K., Kitahara, J., Muto, K., Furuichi,

H., and Kaneko, T. (2008). Enocoro-80: A hardware oriented stream cipher.

In 2008 Third International Conference on Availability, Reliability and Security,

pages 1294–1300. IEEE.

[Weatherley, 2021] Weatherley, R. (2021). Avr/arm microcontroller benchmarking.

https://rweather.github.io/lightweight-crypto/. Accessed: 2021-05-02.

[Wouters et al., 2019] Wouters, L., Marin, E., Ashur, T., Gierlichs, B., and Preneel,

B. (2019). Fast, furious and insecure: Passive keyless entry and start systems in

modern supercars. IACR Transactions on Cryptographic Hardware and Embedded

Systems, pages 66–85.

[Wu and Huang, 2019a] Wu, H. and Huang, T. (2019a). Clx: A family of lightweight

authenticated encryption algorithms. https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/CLX-spec.pdf. Ac-

cessed: 2021-05-10.

[Wu and Huang, 2019b] Wu, H. and Huang, T. (2019b). Tinyjambu: A family

of lightweight authenticated encryption algorithms. Submission to the NIST

Lightweight Cryptography Competition, available online at https://csrc. nist.

gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-

doc/TinyJAMBU-spec. pdf.

[Ye et al., 2019] Ye, D., Shi, D., Ma, Y., and Wang, P. (2019). Hern & heron:

Lightweight aead and hash constructions based on thin sponge (v1). A Submis-

sion to the NIST Lightweight Cryptography Standardization Process.

71

https://rweather.github.io/lightweight-crypto/
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/CLX-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/CLX-spec.pdf

[Z’aba et al., 2019] Z’aba, M. R., Jamil, N., Rohmad, M. S., Rani, H. A., and Sham-

suddin, S. (2019). The cilipadi family of lightweight authenticated encryption. A

Submission to the NIST Lightweight Cryptography Standardization Process.

[Zhang, 2019a] Zhang, B. (2019a). Fountain: A lightweight authenticated cipher

(v1). A Submission to the NIST Lightweight Cryptography Standardization Pro-

cess, 1.

[Zhang, 2019b] Zhang, B. (2019b). Quartet: A lightweight authenticated

cipher. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/round-1/spec-doc/Quartet-spec.pdf. Accessed: 2021-05-10.

[Zhang et al., 2019] Zhang, W., Ding, T., Yang, B., Bao, Z., Xiang, Z., Ji, F., and

Zhao, X. (2019). Knot: Algorithm specifications and supporting document. A

Submission to the NIST Lightweight Cryptography Standardization Process.

[Zhenzhen Bao, 2019] Zhenzhen Bao, Jian Guo, T. I. L. S. (2019). Siv-

tem-photon authenticated encryption and hash family. https://csrc.nist.gov/

CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/

SIV-TEM-PHOTON-Spec.pdf. Accessed: 2021-05-10.

72

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Quartet-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Quartet-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SIV-TEM-PHOTON-Spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SIV-TEM-PHOTON-Spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SIV-TEM-PHOTON-Spec.pdf

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Cryptography and Cryptanalysis
	Lightweight Cryptography
	Ascon
	Drygascon
	Undisturbed Bits
	Differential Cryptanalysis
	Truncated Differential Cryptanalysis

	Linear Cryptanalysis
	Differential-Linear Cryptanalysis
	Our Contribution

	Undisturbed Bits
	Ascon
	Notation
	Permutation-Based Constructions
	Properties of Ascon's S-box
	General Structures of Ascon
	Differential-Linear Distinguishers of Ascon

	Drygascon
	Gascon Permutation
	Differential-Linear Distinguishers of Drygascon
	Comparison Between Ascon and Drygascon

	Conclusions
	REFERENCES

