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Çi�gdem Atakuman, Mehmet Somel

Correspondence
somel.mehmet@gmail.com

In brief

Ceballos et al. study 411 ancient

genomes from west and central Eurasia

to show that overall inbreeding levels

have decreased over time, most likely

owing to population size increases with

agriculture. The sample contains highly

consanguineous ancient individuals, but

these are rare, and all come from

agriculturalist backgrounds.
Inc.
ll

mailto:somel.mehmet@gmail.com
https://doi.org/10.1016/j.cub.2021.06.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2021.06.027&domain=pdf


OPEN ACCESS

ll
Report

Human inbreeding has decreased in
time through the Holocene
Francisco C. Ceballos,1,7 Kanat Gürün,1,7 N. Ezgi Altınısxık,2 Hasan Can Gemici,3 Cansu Karamurat,3 Dilek Koptekin,1

KıvılcımBasxak Vural,1 Igor Mapelli,1 Ekin Sa�glıcan,1 Elif Sürer,4 Yılmaz Selim Erdal,2 Anders Götherström,5,6 Füsun Özer,2
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SUMMARY
The history of human inbreeding is controversial.1 In particular, how the development of sedentary and/or
agricultural societies may have influenced overall inbreeding levels, relative to those of hunter-gatherer com-
munities, is unclear.2–5 Here, we present an approach for reliable estimation of runs of homozygosity (ROHs)
in genomes with R33 mean sequence coverage across >1 million SNPs and apply this to 411 ancient
Eurasian genomes from the last 15,000 years.5–34 We show that the frequency of inbreeding, as measured
by ROHs, has decreased over time. The strongest effect is associated with the Neolithic transition, but the
trend has since continued, indicating a population size effect on inbreeding prevalence. We further show
that most inbreeding in our historical sample can be attributed to small population size instead of consan-
guinity. Cases of high consanguinity were rare and only observed among members of farming societies in
our sample. Despite the lack of evidence for common consanguinity in our ancient sample, consanguineous
traditions are today prevalent in variousmodern-day Eurasian societies,1,35–37 suggesting that such practices
may have become widespread within the last few millennia.
RESULTS AND DISCUSSION

To study runs of homozygosity (ROH) levels in time, we tailored

the PLINK implementation of ROH calling to suit relatively low-

coverage ancient genomes. Simulations using in silico-gener-

ated ancient DNA reads with spiked-in ROH showed that PLINK

calls ROHs accurately down to 53 coverage. We also observed

that at 33 coverage, or with 30% SNPmissingness rates, PLINK

calls tend to deviate from expected values in the number of ROH

> 1Mb (NROH) and the sum of ROH > 1Mb (SROH) (Data S1A)

(Data S1, S2, and S3 can be found at Zenodo Data: https://doi.

org/10.5281/zenodo.4906173). We next performed simulations

using empirical data by downsampling n = 44 relatively high

coverage (>103) ancient genomes. This showed that in real

data, the default PLINK algorithm overestimates NROH and

SROH at 33 coverage due to missed heterozygous positions

in the data (Figure S1; Table S1). We could empirically account

for this bias by varying the parameters of PLINK with respect

to the number of heterozygous SNP allowed per window condi-

tional on coverage, and we could thus estimate NROH and

SROH > 1Mb reliably for R33 coverage genomes in downsam-

pling simulations (Figures S2A and S2B; STAR Methods).
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Meanwhile, we found that ROH < 1Mb cannot be identified reli-

ably at low coverage, and therefore we did not include such short

ROHs in downstream analyses (STAR Methods).

Using our conditional approach for ROH calling, we estimated

ROHs in 411 published ancient genomes that either had R33

mean SNP coverage or had R23 coverage and <30% missing

SNPs across the 1240K SNP set6 (Data S1B; STAR Methods).

We further compared our approach with alternative tools for

ROH inference. Recently, twomodel-based ROH inference algo-

rithms have been reported for ancient genomes. That of Renaud

and colleagues,38ROHan, was shown to infer ROH reliably down

to 53 coverage, while Ringbauer and colleagues’ method, hap-

ROH,39 infers ROH > 4 Mb from genomes down to 0.33

coverage, taking advantage of a modern haplotype reference

panel. We compared our approach with hapROH across the

384 genomes covered in both studies and found high correla-

tions (R2 > 0.81 and 0.89, respectively) for both NROH and

SROH values (STAR Methods).

Our analyses below focus on ROH> 1Mb estimated across the

aforementioned 411 genomes, as well as among 448 contempo-

rary human individuals (Figures S3A and S3B). We focused on

West Eurasia (Europe) and Central Eurasia (SW Asia, Caucasus,
er 13, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 3925
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Figure 1. Temporal distribution of the

genomic inbreeding coefficient (FROH)

(A) Regression of FROH estimates against time

(sample age) in years Before Common Era (BCE).

Cultural groups are defined with colors: ‘‘hunter-

gatherers’’ in violet, ‘‘simple agriculturalists’’ (Sim-

ple Agri.) in blue, ‘‘early complex agriculturalists’’

(Early Complex Agri.) in green, ‘‘advanced complex

agriculturalists’’ (Adv. Complex Agri.) in orange, and

present-day populations from the Human Genome

Diversity Panel in gray. The region of origin of each

individual is shown with a symbol: Central Eurasia

with a circle and West Eurasia with a triangle. The

regression line was obtained by analyzing only the

ancient individuals (n = 411) and has a significant

slope (Pearson adjusted R2 = 0.21, p < 2e�16).

(B) Violin plots of FROH estimates for the different

cultural groups andmodern-day populations from the

Human Genome Diversity Panel. In addition, in mul-

tiple regression analysis that includes sample

archaeological age and cultural groupings together,

we found that sample age has a significant contribu-

tion to the full model (Data S3, adjusted R2 = 0.32, p <

2e�16), while the effect of each cultural grouping was

also significant in comparison to the baseline set by

the hunter-gatherers (simple agriculturalists’ p =

5e�10; early complex agriculturalists’ p = 2e�15; and

advanced complex agriculturalists’ p = 3e�08). In

addition, comparing the FROH distributions between

pairsofgroups,all comparisonswerehighlynominally

significant (Wilcoxon rank sum test p < 1e�10; Data

S1D) except for the comparisons involving simple

agriculturalists versus early complex agriculturalists,

and that involving advanced complex agriculturalists

versus modern-day populations (p > 0.09).
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and Central Asia), regions with the highest published ancient

genome data density. To study the effects of varying social

and economic organization on inbreeding amongHolocene pop-

ulations, we separated past societies into four broad cultural

groups based on their subsistence and mobility patterns that

are historically contingent for each region (see ‘‘Classification

into broad cultural groups’’ in STAR Methods): ‘‘hunter-gath-

erers,’’ who subsisted onwild resourceswithin egalitarianmobile

bands (e.g., Gravettian hunter-gatherers in East Europe40); ‘‘sim-

ple agriculturalists,’’ the earliest adopters of agriculture within

relatively egalitarian sedentary communities (e.g., Linearband-

keramik farmers of Central Europe41–43); ‘‘early complex agricul-

turalists,’’ farmer/pastoralist communities with emerging institu-

tionalized hierarchy and specialization (e.g., Bell Beaker groups

known mainly from burials in West and Central Europe44–46); and

‘‘advanced complex agriculturalists,’’ living in highly stratified

societies organized around state systems (e.g., the Roman state

in the Mediterranean47). We note that these do not represent

simple temporal categories and may cross-cut different

millennia in different regions (Data S1C).48–50

Temporal and spatial distribution of human inbreeding
We first studied the temporal distribution of autozygosity, i.e.,

homozygosity created by inbreeding, in West and Central Eura-

sia. We used FROH, the genomic inbreeding coefficient, as a

measure of autozygosity, estimated as SROH > 1.5Mb per

genome.51 We find a manifest trend of decreasing levels of
3926 Current Biology 31, 3925–3934, September 13, 2021
autozygosity over time in Eurasia through the Holocene (Fig-

ure 1A).When separating the data into five broad cultural groups,

from hunter-gatherers to advanced complex agriculturalists and

finally to contemporary humans, we observe the same trend.

Notably, the largest shift in FROH occurs between hunter-gath-

erers and simple agriculturalists, during the Neolithic transition,

but the trend is sustained in later periods (Data S1D).

We next studied the spatial distribution of FROH. Notably, the

distribution of FROH is highly structured in present-day Eurasia

(Figure S3B; Table 1). In contrast, we found that temporal

changes in FROH were largely consistent across different regions

of Eurasia: neither a multiple regression analysis, with latitude

and longitude as dependent variables (blatitude = 2.1e�04, p =

0.181; blongitude = 8.9e�06, p = 0.789), nor kriging analysis (Fig-

ure 2) revealed any prominent spatial structure for FROH through

different cultural groupings. We also noted that contemporary

populations have the lowest average inbreeding levels, despite

high variability within this group (Figure 1B; Table 1).

Given the heterogeneity of this sample with respect to genome

coverage and missing SNP proportions (Figures S2E and S2F),

we further studied whether these technical factors may influence

the above observations. Both coverage and missingness values

showed weak but sometimes significant correlations with sam-

ple archaeological age and FROH (STAR Methods; Table S2).

We, therefore, performed three additional tests to assess

possible effects of technical variation on the above results. First,

we carried out multiple regression analyses with FROH as the



Figure 2. Spatially kriged reconstructions for the distribution of the genomic inbreeding coefficient (FROH)

The colors represent the predicted FROH values. The panels show spatial kriging of FROH estimates in hunter-gatherers (A), in the simple agriculturalists (B), in the

early complex agriculturalists (C), and in the advanced complex agriculturalists (D). See also Data S1A.
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dependent variable and archaeological age, cultural grouping,

coverage (measured in two different ways), and missingness

as independent variables (see ‘‘Testing the effects of varying

coverage’’ in STAR Methods and Data S3). We found that the

coverage and missingness have no significant influence on the

estimated FROH levels in this model. Second, we repeated

FROH estimation after downsampling all 411 genomes to 33

coverage and testing the effects of time, cultural grouping, and

space on these FROH estimates (Figures S2H–S2J). Third, we

repeated FROH estimation by calling ROH using a >1.9 M SNP

panel ascertained in 1000Genomes Project Yoruba individuals52

and using 72 shotgun-sequenced individuals (see ‘‘The effect of

using a denser SNP panel’’ in STAR Methods and Figures S2H–

S2J). Our results in both experiments confirmed that neither vari-

ation in genome coverages within our sample nor SNP panel

choice could explain the observed decrease in FROH with time.

The origins of autozygosity in ancient humans
We find extreme autozygosity in some ancient individuals within

our dataset (Figure 1A). Autozygosity can be caused by two

distinct but non-exclusive processes:53 (1) panmictic inbreeding,

which is produced by genetic drift in isolated populations andwill

be stronger with smaller population size, and (2) systematic

inbreeding, which is produced by deviations from panmixia, as

occurs with cultural consanguinity in humans (see STAR

Methods). Throughout the rest of the manuscript, we refer to
these processes as drift and consanguinity, respectively. The

contributions of drift and consanguinity to autozygosity can be

studied qualitatively by comparing NROH versus SROH per

individual genome. Strong drift creates proportionately high

NROH and SROH. Conversely, consanguinity creates mainly

long ROH, and thus, disproportionately high SROH relative to

NROH.54

Using this approach, we explored the origins of extreme auto-

zygosity signals in our data. In Figure 3, the diagonal line is set by

an outbred population with no evidence of consanguinity54

(STAR Methods). Individuals with high values along the diagonal

exhibit high autozygosity due to drift, while ‘‘right shifts’’ from the

diagonal indicate consanguinity (Figure S4). We observe that au-

tozygosity among our sample of 411 ancient individuals can be

mostly attributed to drift caused by small population size. Most

notably, individuals assigned to the hunter-gatherer category,

with overall high FROH levels, revealed no obvious indication of

consanguinity. This included some West Eurasian hunter-gath-

erers with extreme autozygosity (FROH > 0.125; Chan, Villabruna,

and R7). The vast majority of agriculturalists likewise showed no

evidence of consanguinity. Within the agriculturalist sample,

however, the three individuals with themost extreme autozygos-

ity (FROH > 0.125) displayed the right shift that indicates consan-

guinity. We compared the NROH and SROH observed in these

individuals with the values expected under different types of

consanguinity in simulations (see ‘‘Consanguineous mating
Current Biology 31, 3925–3934, September 13, 2021 3927



Table 1. Summary statistics for the genomic inbreeding coefficient calculated from ROHs (FROH) across broad cultural groupings and

geographical regions

N Median FROH IQC F > 0.0117 F > 0.0391 F > 0.0932

N % N % N %

Hunter-gatherers 40 0.0633 0.026 40 100 38 92.6 4 9.7

West Eurasia 38 0.0687 0.026 38 100 37 97.3 4 10.5

Central Eurasia 2 0.0397 0.006 2 100 1 50.0 0 0.0

Simple agriculturalists 102 0.0286 0.014 97 95.1 15 14.7 2 1.9

West Eurasia 83 0.0290 0.012 79 95.2 11 13.3 2 2.4

Central Eurasia 19 0.0201 0.017 18 94.7 4 21.1 0 0.0

Early complex agriculturalists 230 0.0250 0.011 221 96.0 15 6.5 1 0.4

West Eurasia 145 0.0241 0.010 138 95.1 7 4.8 0 0.0

Central Eurasia 85 0.0269 0.011 83 97.6 8 9.4 1 1.2

Advanced complex agriculturalists 39 0.0160 0.009 30 76.9 2 5.1 0 0.0

West Eurasia 9 0.0212 0.006 7 77.7 1 11.1 0 0.0

Central Eurasia 30 0.0151 0.006 23 76.7 1 3.3 0 0.0

Human Genome Diversity Panel 448 0.0066 0.022 172 38.4 74 16.5 6 1.3

West Eurasia 139 0.0039 0.005 19 13.7 3 2.2 0 0.0

Central Eurasia 309 0.0156 0.034 153 49.5 71 23.0 6 1.9

N, number of individuals; IQC, interquartile range; F> 0.0117, individuals with FROH > 0.0117 (individuals who could be offspring of second cousin mat-

ings or closer matings); F > 0.039, individuals with FROH > 0.039 (individuals who could be offspring of first cousin matings or closer matings, ignoring

drift); F > 0.093, number and percentage of individuals with FROH > 0.093 (individuals who could be offspring of avuncular matings or closer matings,

ignoring drift).
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simulations’’ in STARMethods). We thus estimate that individual

NG10 fromMiddle Neolithic Ireland (3338–3028 cal BCE) may be

the offspring of an incest mating (brother-sister or parent-

offspring), as suggested by Cassidy and colleagues7 (Figure 3B;

Figure S4). We further estimate that individuals I6671 from Early-

Middle Bronze Age Turkmenistan (3000–2039 cal BCE) and

I2521 from Neolithic Bulgaria (5619–5491 cal BCE) may be the

offspring of avuncular matings (uncle-niece, aunt-nephew, or

double first cousins), while also exhibiting additional autozygos-

ity due to drift.

We further studied the distribution of ROHs using the total

length of ROH values for different ROH track lengths (Figure 3C).

The size of ROHs is inversely correlated with its age: longer

ROHs are inherited from recent common ancestors, while

shorter ROHs come from distant ancestors, broken down by

recombination.We found that among those hunter-gatherer indi-

viduals with extreme autozygosity, total lengths of short ROHs

(between 1 and 2 Mb) are high, implicating autozygosity by drift.

Conversely, among ancient genomes from food producing soci-

eties, the three with the highest autozygosity, NG10, I6671, and

I2521, have high levels of long ROHs (ROH > 8 Mb) total lengths,

indicating consanguinity. The individual NG10 reveals five ROHs

of size > 30 Mb, with an estimated age of just one generation.57

Overall, consanguinity appears rare, with only three (0.7%) of all

ancient individuals analyzed exhibiting strong evidence for

consanguinity.

We finally repeated theNROH versus SROH comparison using

ancient genomes downsampled to 33 coverage. Our PLINK-

based conditional approach tends to underestimate consan-

guinity at 33 coverage due to overestimation of NROH, but the

three most consanguineous individuals identified with the orig-

inal data (NG10, I6671, and I2521) are still identified as outliers
3928 Current Biology 31, 3925–3934, September 13, 2021
(Figure S2I). This result, as well as qualitatively similar conclu-

sions reached in an independent study,39 confirm that consan-

guinity explains only a small fraction of the overall autozygosity

observed.

The origins of present-day autozygosity in Central
Eurasia
We then studied the spatial distribution of present-day

inbreeding prevalence in relation to ancient inbreeding patterns.

Figure 3D presents the average sum of the different ROH sizes

across regions and cultural groupings. This reveals an interesting

spatiotemporal structure, especially for the shorter ROHs (1–2

Mb) in Figure 3D. West Eurasian hunter-gatherers carry the high-

est total length of short ROHs among all historical groups, attest-

ing to their small population size around the early Holocene, as

recently inferred using high-quality ancient genomes.58 Howev-

er, this inbreeding signal is rapidly lost, and West Eurasian

advanced agriculturalists carry the lowest average sum of short

ROHs among all ancient groups studied. In Central Eurasia, the

total length of short ROHs is also high in hunter-gatherers and

decreases in agriculturalists, but at a more modest rate (SROH

decreases from c.235.3 Mb to c.85.1 Mb in West Eurasia, and

from c.168.3 Mb to c.115.5 Mb in Central Eurasia). Compared

to ancient populations, present-day populations have the short-

est average total length of shorter ROHs, denoting large effective

population size and slow genetic drift.

However, this temporal pattern vanishes when we study the

total length of longer ROHs, e.g., ROHs between 4 and 8 Mb.

Importantly, ROH > 4 Mb may have an age of 5 to 10 genera-

tions37,51,59 and thus indicate relatively close consanguinity.

Figure 3D reveals that some modern-day Central Eurasian pop-

ulations (e.g., Balochi of Pakistan or the Bedouin from Saudi
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Arabia) carry higher total lengths of ROHs between 4 and 8 Mb

than any other group in the HGDP dataset, as well as any of

our historical cultural groupings.

In Table 1, we present comparisons of median FROH and the

frequency of individuals with high autozygosity. As also

observed in Figure 3, we find that present-day populations

tend to carry the lowest proportions of individuals with high

FROH. However, some present-day Eurasian groups have excep-

tionally high proportions of individuals with FROH > 0.0391 (i.e.,

individuals who could be offspring of first cousin matings or

closer matings, ignoring drift; STAR Methods). This is especially

salient among certain Central Eurasian populations. Samples

from modern groups like the Balochi, the Bedouin, or the Sindhi

from Pakistan have the highest proportions of individuals with

FROH > 0.0391 (50%, 41.3%, and 33.3% respectively).

Comparing contemporary Central versus West Eurasia with

respect to the proportion of individuals with high autozygosity,

we find a significant difference between the two regions, both

for individuals with FROH > 0.0391 (odds ratio = 13.5, Fisher’s

exact test p = 9e�10) and also for individuals with FROH > 0.0117

(i.e., individuals who could be offspring of second cousinmatings

or closer matings, ignoring drift) (odds ratio = 6.2, p = 7e�14) (Ta-

ble 1). Because Central Eurasian populations also exhibit rela-

tively high total lengths of long ROH, this excess of individuals

with high autozygosity could be attributed to consanguinity,

rather than drift-related processes such as caste endogamy.

This result is consistent with documented cultural preferences

for first-cousin matings in some contemporary societies.60,61

This raises the question of whether the differential rates of con-

sanguinity among present-day Central versus West Eurasia

could be traced back in time. In fact, we observed an excess

of individuals with FROH > 0.0117 in Central versus West Eurasia

among ‘‘advanced complex agriculturalists,’’ roughly spanning

third to first millennium BC, depending on region (odds ratio =

5.1, p = 0.009; Table 1; Data S1C). However, we find no indica-

tion that this difference was driven by consanguinity, i.e., excess

of long ROHs, in these ancient societies (Figure 3). Conse-

quently, high rates of consanguinity in Central Eurasia observed

today might have only a recent history.

Conclusion
The impact of food production and social complexity on human

inbreeding levels has been an open question. One plausible ef-

fect is sedentism and food surplus allowing population growth2

and thus leading to weaker drift and diminished autozygosity.

On the other hand, the advent of private property in food produc-

ing societies could have promoted the role of biological kinship in

the group; consequently, customs such as consanguineous

marriage or caste endogamy3,36 could have elevated overall au-

tozygosity. The net impact of these potential demographic and

cultural processes on autozygosity has remained unknown.

Our results demonstrate that the Neolithic transition to agricul-

ture and the emergence of complex societies led to significantly

lower levels of overall autozygosity in bothWest and Central Eur-

asia. This could have been driven by food production-driven

population growth, as well as elevated rates of population

admixture as inferred from archaeogenomic data.8,62 These pro-

cesses must have mitigated total autozygosity by reducing the

strength of drift throughout recent history.
Of course, here we rely on the assumption that the 411 individ-

uals analyzed in this study were representative of their time.

Sampling biases caused by various factors, such as the burial

location of the elite versus the commoners, or a focus on elite

burials by archaeologists, could influence inferences on class-

based societies. That said, the fact that our data derive from

181 different archaeological sites, and also our observation

that autozygosity decreases in parallel both in West and in Cen-

tral Eurasia, lend support to our conclusions.We further note that

our results are consistent with previous work. Earlier ROH ana-

lyses of single genomes have suggested that high levels of

drift-driven autozygosity were common in the genomes of hunt-

er-gatherers from Upper Paleolithic and Mesolithic periods from

Europe and the Caucasus.5,9 A recent report that used model-

based ROH inference on ancient genomes also identified a

temporal decrease in >4 Mb ROH levels across global human

populations, similar to the trend described here.39

Three points further deserve mention regarding mating pat-

terns in human societies. One is the seeming contrast between

the high levels of drift-driven autozygosity (panmictic inbreeding)

we report for ancient hunter-gatherer societies and ethnographic

studies showing low levels of inbreeding among modern-day

hunter-gatherers. For instance, a comparison of inbreeding pat-

terns in a worldwide sample of contemporary hunter-gatherers

with Amazonian horticulturalists reported lower inbreeding in

hunter-gatherer groups.3 Hill and colleagues also report low

levels of relatedness withinmodern-day hunter-gatherer bands.4

However, the mentioned ethnographic findings rely on geneal-

ogies and report the prevalence of inbreeding by consanguinity,

not inbreeding by drift. In fact, we also find consanguinity to be

rare among early Holocene Eurasian hunter-gatherers relative

to agriculturalists, consistent with widespread exogamy in mod-

ern-day hunter-gatherers. This raises the possibility that recip-

rocal exogamy and consanguinity avoidance traditions may

have been predominant among human foragers since prehistory

(but possibly not in archaic hominins63).

Second, our results lend support, albeit with limited data, to

the hypothesis that extreme consanguinity may have become

more common with farming. This result parallels higher within-

group marriages among modern-day horticulturalists than for-

agers.3 It is also consistent with singular reports on ancient

agriculturalist genomes, such as evidence for consanguinity

identified in an early Neolithic farmer from Iran,10 a first-degree

incest case from Neolithic Ireland,7 as well as a recent report

on close-kin unions in the central Andes after 1000 CE.64 In our

analysis, among the seven individuals with the highest level of

inbreeding (with FROH > 0.125), all four hunter-gatherers appear

autozygous by drift, while all three agriculturalists appear auto-

zygous by consanguinity. This appears unlikely to happen by

chance (Fisher’s exact test, two-sided p = 0.029). These results

are consistent with the view that consanguineous traditions

could have thrived in class-based agricultural societies with pri-

vate property more readily than in more egalitarian hunter-gath-

erer groups.

Finally, we report higher consanguinity in Central versus

West Eurasia in contemporary societies, in parallel with earlier

work.35 This is consistent with widespread first- or second-

cousin marriage practices in agricultural societies in Middle

Eastern and North African countries and in South Asia,
Current Biology 31, 3925–3934, September 13, 2021 3929



Figure 3. Assessing ROH origins

(A) Mean number of ROHs and sumof ROHs, for ROH> 1.5Mb, is plotted for each individual. The diagonal line is obtained by the regression of the number of ROH

versus the sum of ROH in ASW and ACB populations from the 1000 Genomes Project that represent admixed and thus relatively outbred populations.55,56

Consanguinity practices in the previous generation are visible as a right shift in this figure.

(B) Simulations of the number and sum of ROHs, for ROH > 1.5 Mb, calculated for the offspring of different consanguineous matings are shown, along with the

ancient and modern samples. Points with different colors designate offspring of different consanguineous mating: second cousin (green), first cousin (yellow),

avuncular (uncle-niece, aunt-nephew, double first cousin) (orange), incest (brother-sister, parent-offspring) (red). Five thousand simulations are represented for

each consanguineous mating (see STAR Methods). Note that this simulation does not include drift, but the degree of right shift can be projected to cases where

there exists a non-zero level of autozygosity due to drift. Vertical lines represent the average sum of ROHs (>1.5Mb) for the offspring of each type of consan-

guineous mating. We also present results for a similar simulation of consanguinity using genotype data from two modern-day populations (ASW and CHS) in

Figure S2G and for a simulation of consanguinity and drift together for chromosome 1 in Figure S4.

(C) The total length of ROHs (Mb) over four classes of ROH tract lengths: 1% ROH < 2 Mb, 2% ROH < 4 Mb, 4% ROH < 8 Mb, and ROHR 8 Mb, described for

each ancient individual. Individuals were colored according to region and cultural groupings: West Eurasia hunter-gatherers (H-GWest-Eurasia, shown in purple

triangles), Central Eurasian hunter-gatherers (H-G Central-Eurasia shown in purple circles), West Eurasia simple agriculturalists (S.A West-Eurasia shown in blue

triangles), Central Eurasian simple agriculturalists (S.A Central-Eurasia shown in blue circles), West Eurasia early complex agriculturalists (E.C.A West-Eurasia

shown in green triangles), Central Eurasian early complex agriculturalists (E.C.A Central-Eurasia shown in green circles), West Eurasia advanced complex ag-

riculturalists (A.C.AWest-Eurasia shown in yellow triangles), Central Eurasian advanced complex agriculturalists (A.C.A Central-Eurasia shown in yellow circles).

(D) The total length of ROHs (Mb) over four classes of ROH tract lengths as in (C), calculated as the average for the different groups of individuals. The coloring

scheme is the same as in (C); in addition, modern-day populations are represented in gray triangles (modern West-Eurasian populations) and circles (modern

Central-Eurasian populations).
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including Muslim and Jewish groups, as documented by ethno-

graphic or genomic studies.1,36,60,65 We note that cousin mar-

riages were also common among royal dynasties and upper

classes of Europe until the 20th century, and many prominent

European scientists of that period are known to have married

their first cousins, including Charles Darwin and Albert Ein-

stein.66,67 These traditions are thought to have arisen through

various social factors, including the inheritance of property in

class societies.1,3,68 Interestingly, we do not observe the rela-

tively high rates of consanguineous marriage observed in mod-

ern-day Central Eurasia in any of the past societies we studied,

in Antiquity or earlier. We naturally prefer to remain cautious,

especially given the limited sample size of our advanced
3930 Current Biology 31, 3925–3934, September 13, 2021
complex agriculturalist samples from West and Central Eurasia

(n = 9 and n = 30, respectively). Nevertheless, it appears

possible that present-day cultural patterns may have emerged

relatively late in time.
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23. Hofmanová, Z., Kreutzer, S., Hellenthal, G., Sell, C., Diekmann, Y., Dı́ez-
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact: Mehmet

Somel (msomel@metu.edu.tr).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The processed ancient genome data (VCF files) used in this study and the supplemental data tables (Data S1, S2, and S3) are depos-

ited at Zenodo and are publicly available as of the date of publication. The DOI is listed in the key resources table.

The computer simulation codes, bash scripts and the R code used in the study have been deposited at Zenodo and are publicly

available as of the date of publication. The DOI is listed in the key resources table. All original code is also available at https://github.

com/CompEvoMetu/ROH.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Classification into broad cultural groups
Identifying social complexity in archaeology is an issue in itself, and the debate in archaeology and cultural anthropology still con-

tinues.79–82 Social complexity can be defined as increased differences in status that leads to social hierarchies in control of economic

and social activities by a centralized agent and its bureaucratic devices, such as a chief or a state.83 Archaeological correlates to this

phenomenon include increased population size as demonstrated in settlement patterns, complex organization of labor as demon-

strated in labor intensive subsistence activities and architectural projects, social networks as demonstrated in long-distance ex-

change of artifacts and raw materials, or intensified and elaborated ritual activities.84 Here, we use a fourfold division that corre-

sponds to some of the most important socio-economic thresholds in human (pre)history.

Hunter-gatherer groups are small-scale egalitarian mobile bands that subsist by utilizing the wild resources. While some hunter-

gatherer communities can be involved in long-distance exchange, elaborate ritual, and labor control for large scale architectural pro-

jects,85 the emergent complexity is often fragile in the absence of storage and redistributivemechanisms.86 In these groups, often the

accumulation of wealth by individuals or certain groups as well as transference of acquired status to kin members are not permitted.
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Prior to the Holocene, hunting-gathering-foraging was the sole source of livelihood; however, with the onset of the Holocene, long

term sedentism and intensification of animal and plant management gave way to domestication and the establishment of agricultural

societies, i.e., the Neolithic Process.87 It is understood that the advent of agriculture is the basis for more solid forms of social

complexity, particularly due to the emergence of a new social and economic organization that this pattern of subsistence requires.

In particular, the increase in population sizes, the emergence of storage and redistribution mechanisms, along with a new social and

economic organization that is focused on competing households and extended kinship networks, seem to have resulted in more

complex forms of social organization, such as chiefdoms and states.88–90 In these societies, competing groups seek to expand their

labor force within a kinship making system, which can be secured by marriage alliances with a wide range of groups; in this context,

prestigious families attract more alliances and multiple spouses can be attained.

For our purposes, we identified three types of past agriculturalist societies in Eurasia. We chose to name the early sedentary agri-

cultural villages without a centralized institution that is at the top of a hierarchical social organization as simple agriculturalists, in any

geographical area.91,92 These societies represent the earliest farming groups in their region, either growing organically from the

preceding hunter-gatherer groups, or through a process of drawn-out interaction and/or replacement by pre-existing farmer com-

munities. Second, the groups that show forms of incipient centralization and institutionalized hierarchy are named early complex ag-

riculturalists, indicating a degree of social complexity as particularly evidenced in their ritual activity, settlement pattern, architecture

and craft specialization.45,46,93–95 These include those societies caught in the process of urbanization, early metal-working societies,

and pastoral groups that eventually boosted their mobility with the domestication of the horse. Lastly, the advanced complex agri-

culturalists include the highly stratified societies organized around states, depending on a system of economical accumulation and

redistribution based on a formal, typically hereditary leadership.47,96,97

Grouped in this way, the periodization that we apply to past societies is not a universal and time-dependent evolutionary scheme,

but is rather a function of historical developments unique to each region that resulted in different responses. Data S1C and Figure S3F

provide a description of the rough initiation dates of each cultural group in each of the two regions of Eurasia.

METHOD DETAILS

Overview of the genome data
We made use of the rich collection of published ancient genomes in this study. We built two different ancient genome datasets. The

first was used for method development, and included n = 44 ancient genomes with coverages higher than 10x. These were used to

optimize ROH calling to suit ancient genomes with different coverage (Data S1E).5–7,9–20,98 Once having determined that our

approach yielded unbiased ROH estimates with genomes with coverage > 3x, we built a second dataset to study the evolution of

autozygosity during the Holocene. We limited our sample to genomes of the last 15,000 years, and also to West and Central Eurasia;

this spatiotemporal frame contains the highest density of published ancient genomes, providing sufficient power to test our hypoth-

eses on change in inbreeding patterns over time. The second dataset thus contained n = 411 ancient genomes thatmet at least one of

these two criteria: they had R3x mean SNP coverage across the 1240K SNP set irrespective of missingness (n = 404) or had R2x

coverage and less than 30%missing SNPs overall (n = 7) (Data S1B).5–34 The distribution of coverage and missingness levels across

these genomes are shown in Figures S2E and S2F. We note that we were motivated to include the latter small group of 7 genomes

with R2x coverage because it included a historically interesting genome with extreme levels of autozygosity (Chan); meanwhile

removing these 7 individuals does not alter any of our main results. We also performed additional controls to ensure that variance

in coverage and missingness does not influence our analyses, e.g., we included coverage and missingness as explanatory variables

in multiple regression models of FROH (see below).

Figures S3C–S3F shows the temporal distribution of the genomes collected, ranging between 520 CE and 12,030 BCE. Further, to

study the effects of sociocultural organization and economic activity, we divided ancientWest and Central Eurasians into four cultural

groupings, according to the chronological periodization scheme described earlier (see ‘‘Classification into broad cultural groups’’).

These included: hunter-gatherers (n = 40), simple agriculturalists (n = 102), early complex agriculturalists (n = 230) and advanced

complex agriculturalists (n = 39). For comparison purposes we also analyzed 19West and Central Eurasian populations from the Hu-

man Genome Diversity Panel (HGDP) with n = 448 present-day individuals in total (Data S1F).

The spatial distribution of ancient and present-day individuals is shown in Figures S3A and S3B. We divided our focal region of

Eurasia into two, in order to study possible spatial patterns. We used the Aegean, the Black Sea, the Caucasus and the Urals to delin-

eate West and Central Eurasia. Individuals belonging to the west of this demarcation line were considered West Eurasians (n = 275

ancient and n = 155modern) and individuals belonging to the east of the line, Central Eurasians (n = 136 ancient and n = 293modern).

This demarcation overlaps with major geographical boundaries that appear to have hindered population contacts.99 Finally, we use

two outbred populations, African ancestry fromBarbados in the Caribbean (ACB) and African ancestry in Southwest USA (ASW) from

the 1000 Genomes dataset,56 to define a baseline to compare the number and sum of ROH in Figure 3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing ancient genome data
We downloaded published ancient human genomes produced in various studies, listed in Data S1B and S1E. These included data

obtained by shotgun sequencing or DNA target-enrichment of 1.24 million genome-wide single-nucleotide polymorphisms (SNPs)
e2 Current Biology 31, 3925–3934.e1–e8, September 13, 2021
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(the so-called ‘‘1240k capture’’ process).6,19,100 To decrease bias resulting from different pipelines in the original studies, we pro-

cessed all the raw data through our own pipeline. First, we mapped the reads to the human reference genome (hs37d5) using the

Burrows–Wheeler Aligner (BWA, v. 0.7.15),69 with parameters ‘-l 16500, -n 0.01, -o 2’. Then we used SAMtools ‘‘merge’’ (v. 1.9)70

to merge all libraries from the same individual and removed PCR duplicates using FilterUniqueSAMCons.py.71 We removed reads

shorter than 35 base pairs and those with > 10% mismatches to the reference genome. We trimmed the BAM files of the ancient

individuals to remove postmortem damage-causedmismatches at the read ends, in order to avoid interpreting these as true variants.

We trimmed reads from both ends by 10 bp if no UDG treatment was used in the original study, and 2 bp if the samples were UDG-

treated, using the trimBAM command of the bamUtil software.72

For genotyping we used the 1240k SNP panel as reference and its subset of 1,151,161 autosomal SNPs. We used SAMtools mpi-

leup to call genotypes of ancient individuals using this panel (parameters: ‘-B -q30 -Q30’).6 The output BCF files were converted to

VCF files with parameters ‘-mV indels’ using the bcftools call command.73 We obtained the mean coverage per genome across the

1240K SNP set by collecting SNP read depths from each VCF file (i.e., the ‘DP’ field), also accounting for missing SNPs for each

genome using the R package VcfR v1.12.101 This is the coverage value we report throughout this study for all samples. Finally,

the VCF files were converted to PLINK input files using PLINK v1.9.74,75

In order to ensure that our results are robust to the choice of reference SNP panel, SNP density, and confounding by postmortem

damage, we further repeated the analyses using a denser Yoruba transversion SNP panel (> 1.9 million SNPs) from the phase 3 of

1000 Genomes Project52 (see ‘‘The effect of using a denser SNP panel’’ below).

Processing modern-day genome data. In parallel with ancient genomes, we also analyzed n = 448 individuals from the Human

Genome Diversity Panel (HGDP) (belonging to 19 populations)102 and n = 235 admixed (outbred) individuals from the 1000 Genomes

(belonging to two populations: ASW and ACB).56 We used the version 3.0 of the HGDP which consists of high coverage WGS data

(data obtained from ftp://ngs.sanger.ac.uk:21/production/hgdp/hgdp_wgs.20190516) and genotype data (Illumina BedStation and

Infinium Omni 2.5) from the 1K Genomes individuals (data obtained from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502). We filtered both HGDP and 1K Genomes individuals using the 1240k SNP panel so that the genotypes of all the individ-

uals in this study were based on the same SNP panel. Since HGDP data is based on the GRCh38 reference genome, but 1240K is

based on GRCh37, a liftover to the HGDP dataset was applied.103

Statistical analyses

All statistical tests and procedures described below were performed using R v3.6.1.104 All hypothesis testing was conducted two-

sided.

ROH calling procedures

We used PLINK v1.974,75 to identify ROH. PLINK has been extensively used to call ROH in human genomic studies and is the most

widely used software for this purpose.37 We chose PLINK due to its methodological convenience: its direct observational approach

allows the researcher to have full control of the ROHcalling process. Also, bymodifyingPLINK parameters, it has been shown that it is

possible to obtain equivalent ROH estimations between different sequencing technologies and genomic coverages.37

ROH were called in autosomes with the following arguments:

–homozyg-snp 30. Minimum number of SNPs that a ROH is required to contain (30 SNPs).

–homozyg-kb 500. Length in Kb of the sliding window (500 Kb).

–homozyg-density 30. Required minimum density to consider a ROH (1 SNP in 30 Kb).

–homozyg-gap 1000. Length in Kb between two SNPs to be considered in two different segments (1 Mb).

–homozyg-window-snp 30. Number of SNPs that the sliding window must contain (30 SNPs).

–homozyg-window-het (0 - 1). Number of heterozygous SNPs allowed in a window (0 or 1).

–homozyg-window-missing 5. Number of missing calls allowed in a window (5 calls).

–homozyg-window-threshold 0.05. Proportion of overlapping windows that must be called homozygous to define a given SNP as

within a ‘‘homozygous’’ segment (5%).

We collected the following statistics on the total number of ROH events (NROH) or the total sum of ROH events (SROH) from the

outcome file of each PLINK run:

- NROH for ROH longer than 1 Mb (NROH>1Mb), longer than 1.5 Mb (NROH>1.5Mb), or shorter than 1 Mb (NROH<1Mb),

- SROH for ROH longer than 1 Mb (SROH>1Mb), longer than 1.5 Mb (SROH>1.5Mb), or shorter than 1 Mb (SROH<1Mb),

- SROH>1.5Mb divided by the total length of the autosomal genome, which is used to estimate the genomic inbreeding coefficient,

FROH.
51

On each genome we estimated ROH using PLINK in two ways, allowing no heterozygous SNP per window (‘het 0’), and allowing

one heterozygous SNP (‘het 1’).

Simulating ancient genomes with spiked-in ROH
We tested the performance of our PLINK-based approach and also our conditional scheme (described below) using purely simulated

data. First, we created simulated genotypes with ROH of different numbers and sizes on human Chromosome 1 (chr1), using the

1240K SNP list.6 We created ROH under two different scenarios (see below), each with 20 individuals, and each at three different

genome coverages: 3x, 5x, and 10x. Each individual’s diploid chr1 was created as follows in the R environment (R v4).

1) Creating outbred chromosomes: (a) We chose a single random allele at each of the 1240K SNPs on chr1 (n = 93,207 SNPs), (b)

we chose the alternative allele as second allele of that individual’s genotype with 10% probability (i.e., we chose the same allele with
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90% probability). This approximates realistic heterozygosity levels at 1240K SNP positions on chr1 among the Eurasian ancient ge-

nomes we analyzed (c.12%).

2) Spiking in ROHs of different size: Artificial 1 Mb ROHs were then randomly inserted into each such simulated chr1 bed file. This

we performed by converting all heterozygous positions within that stretch to homozygous state. Under scenario 1, we inserted 23 1

Mb ROH per individual, under scenario 2 we inserted 10 3 1 Mb ROH per individual. In the simulations we ensured that randomly

inserted ROH were separated by at least 1.5 Mb to avoid spiked-in ROH overlaps and the generation of extra-long ROH. We also

ensured that ROH were not inserted in the 23 Mb centromeric region of chr1, which is devoid of 1240K SNPs. Using each simulated

bed file, we then created a chr1 fasta file using a custom Python script ‘‘modifyfasta.’’ The custom R and Python scripts for these

steps are available at GitHub (https://github.com/CompEvoMetu/ROH).

3) Creating ancient reads: The fasta files were in turn used as input to create simulated aDNA reads with the gargammel software.76

This included the generation of reads, with average read length set to 70 bp, and simulation of postmortem damage, i.e., deamina-

tion-causedC->T andG->A transitions at read ends. TheBriggsmodel parameters were used for postmortemdamage simulation.105

For each of the 20 simulated individuals and for each scenario, we created 20.9, 35.6, and 71.2 million chr1 reads on average, for

coverages 3x, 5x, and 10x, respectively.

After adapter removal, all simulated reads were then processed using the same pipeline as used in the original data analysis (see

‘‘Processing ancient genome data’’ above): reads were trimmed for 10 bp from both ends, aligned to the reference genome, SNPs

were called with SAMtools mpileup and the 1240K SNP panel, and ROH were called using PLINK with the same parameters,

including allowing either 0 or 1 heterozygous SNP per window.

We also analyzed the effect of missing SNPs using the same simulated data. For this, we randomly removed 30%of the SNPs from

each simulated chromosome in R v4, before performing ROH calling.

Analyzing spiked-in ROH simulation results
We assessed the performance of our ROH calling approach on low coverage data using spiked-in ROH in simulated chr1 data

(described in the previous section). We measured recall and false discovery rate (FDR), as well as deviation of estimated NROH>1Mb

and SROH>1Mb values from expected.

To determine the true and false positives, we used theR packageGenomicRanges v1.12.5106. True positives were defined as ROH

that showed > 90% overlap between expected and observed ROH positions, and that strictly reached 1 Mb length. False positives

were defined as ROH that did not fulfil the above criteria.

Using the PLINK ‘het = 1’ parameter for ROH calling, recall rates were promisingly > 90% in both scenarios and at all coverages

(Data S1G). Meanwhile, FDR varied from 0.04 to 0.61, with the highest rates observed at 3x. The elevation in FDR at low coverage is

expected: the lower the coverage, the higher the fraction of heterozygous sites missed due to sampling error (see ‘‘Applying the ROH

estimation scheme’’ below).

For coverages 5x and 10x, NROH and SROH estimates were close to expected values. Under scenario 1, for SROH estimates the

median deviation from expected values was 21% and the full range was [4%–138%], and for NROH estimates the median was 0%

[0%–100%]. Under scenario 2, for SROH estimates the median deviation was 17% [0%–32%], and for NROH estimates the median

was 0% [0%–20%] (Data S1A and S1H).

At 3x coverage calculated with the ‘‘het 1’’ parameter, we observed greater deviations from expected values. Under scenario 1, for

SROH estimates themedian deviation was 185% [64%–465%], and forNROH estimates themedian was 150% [50%–350%]. Under

scenario 2, for SROH estimates the median deviation was 59% [20%–100%], and for NROH estimates the median was 30% [0%–

50%].

As described below, we found that using the ‘‘het 0.5’’ correction improves these results (see ‘‘Applying the ROH estimation

scheme’’ below).

Downsampling simulations
We next studied the effect of genome coverage on ROH calling using simulations with real ancient genome data. For this, we simu-

lated low coverage genomes by downsampling the n = 44 ancient genomeswith > 10x coverage (Data S1E).We usedPicard’sDown-

sampleSam tool (https://broadinstitute.github.io/picard) to randomly extract reads from BAM files to obtain 10x, 5x, 3x and 2x

coverage versions. We thus created 10x, 5x, 3x and 2x versions for each ancient genome, yielding a total of n = 220 full or partial

genomes. Table S1 shows variant calling results across coverages. This reveals that with lower genome coverages, there arises a

bias towards calling homozygous genotypes over heterozygous genotypes, as expected due to sampling error. Consequently,

low coverage leads to systematic overestimation of the sum of ROHs with PLINK (Figure S1).

The ‘het 0.5’ correction
As Figure S1 shows, at genome coverages < 5x, PLINK overestimates ROH. Conversely, allowing using ‘het 0’ instead of ‘het 1’ (i.e.,

not allowing heterozygous SNPs per window) leads to underestimation of ROH. This is also consistent with our observations using

spiked-in ROH in simulated ancient genomes (Data S1G). Studying the results of downsampling simulations using real genomes, we

observed that the two effects can partly cancel each other out at 3x coverage. Specifically, when we calculated the average between

the ‘het 0’ estimate and the ‘het 1’ estimate for various statistics (NROH>1Mb, NROH<1Mb, SROH>1Mb, SROH<1Mb, FROH), we found

that the averages empirically approximate the original estimates at high coverage (explained below). We refer to this approach,
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i.e. estimating ROH statistics for low coverage genomes as an average between two estimates as the ‘‘‘het 0.5’ correction’’ (Fig-

ure S1). For instance, the ‘het 0.5’ corrected estimate for SROH>1Mb is the average between SROH>1Mb calculated using ‘het 0’

and SROH>1Mb calculated using ‘het 1’.

A conditional ROH estimation scheme
We hypothesized that we could limit the effect of coverage on ROH calls by conditioning ROH calling parameters on coverage. We

chose the number of heterozygous SNPs allowed per window depending on coverage: (a) for genomes with average genomic

coverageR4x we allowed one heterozygous SNP per window (i.e., called ROH using ‘het 1’), (b) for genomes with average genomic

coverage < 4xwe used the ‘het 0.5’ correction. We chose 4x as themidway between two values: when using ‘het 1’, at 5x we observe

negligible deviation from expected SROH values when downsampling real ancient genomes and also in spike-in simulations,

whereas at 3x coverage the deviation becomes conspicuous.

Testing the ROH estimation scheme
To assess the effects of different genomic coverage on ROHmeasurements, we estimated ROHusing different approaches, and then

studied the outcomes with regression analyses. Here wemade use of the downsampling simulation dataset based on the 44 ancient

high coverage genomes introduced earlier.

First, we calculated ROH using the ‘het 0’, ‘het 1’ and ‘het 0.5’ schemes on all 44 ancient genomes. We then tested the effects of

coverage and ROH calling scheme by fitting the below general linear model, which we call model 1:

Yijk = g00 + Ci + Vj + Uk; (1)

where Yijk is the response variable (either NROH>1Mb, NROH<1Mb, SROH>1Mb, or SROH<1Mb) with coverage i, the number hetero-

zygous SNPs allowed per window j, and the individual (as random effect) k. Here, g00 is the overall mean, Ci is the fixed effect of the

genomic coverage of each individual (n = 5 types: full, 10x, 5x, 3x and 2x), Vj is the fixed effect of the number of heterozygous SNPs

allowed per window (n = 3 types: ‘het 0’, ‘het 1’ and ‘het 0.5’) andUk is the random effect of the individual (n = 44). This regression was

repeated separately for each of the four response variables.

Second, we used the conditional scheme, where we estimated ROH using ‘het 1’ for genomes with average genomic coverage

R4x and using the ‘het 0.5’ correction for genomes with average genomic coverage < 4x. We then fit the following general linear

model, which we call model 2:

Yik = g00 + Ci + Uk; (2)

where Yik is the response variable (either NROH>1Mb, NROH<1Mb, SROH>1Mb, or SROH<1Mb) with coverage i, and individual (as

random effect) k. Here, g00 is the overall mean, Ci is the fixed effect of the genomic coverage of each individual (n = 5 types: full,

10x, 5x, 3x and 2x), and Uk is the random effect of the individual (n = 44).

The results of bothmodels (1) and (2) are shown in Data S2.We found that the coverage effect was highly significant (p < 2.2e-16) in

both trials. However, when the different coverage classes (> 10x, 10x, 5x, 3x and 2x) are pairwise compared (Figures S3G–S3J; Data

S2) we can see that, by using the conditional scheme, it is possible to obtain statistically non-different estimations of NROH>1Mb and

for SROH>1Mb for average genomic coverage down to 3x.

We also found that for ROH < 1Mb, none of these approaches could remove the effect of variable genomic coverage on ROH calls,

i.e., NROH<1Mb and SROH<1Mb statistics (data not shown).

Applying the ROH estimation scheme
We further investigated the performance of our conditional ROH estimation approach using the spiked-in ROH dataset (see above).

We used the ‘het 0.5’ correction for simulated genomes with 3x coverage, and used ‘het 1’ for simulated genomes with 5x or 10x

coverage (Figures S2A and S2B).

For the comparison of 3x (‘het 0.5’) results with those of 3x (‘het 1’), we first studied the simulations without missing data. When

calling ROH (1 Mb) using ‘het 0.5’ at 3x coverage, NROH and SROH values showed systematically lower deviation. Specifically, for

scenario 1, SROH median deviation was 43% with a full range of [4%–182%], and NROH median deviation was 25% [0%–125%];

under scenario 2, SROH median deviation was 5% [4%–34%], and NROH median deviation was 25% [0%–45%]. In comparison,

using ‘het 1’ at 3x coverage, under scenario 1, we had observed the following: for SROH median deviation was 185% [64%–

465%], for NROH 150% [50%–350%]; under scenario 2, for SROH median deviation was 59% [20%–100%], and for NROH 30%

[0%–50%]. We thus find considerable improvement using ‘het 0.5’, especially on SROH estimates.

We also repeated this analysis after inserting 30%missing data. We once again detected lower deviations using ‘het 0.5’ (for sce-

nario 1, SROHmedian deviation was 246% with a full range of [83%–390%], and NROHmedian deviation was 175% [50%–300%],

and for scenario 2, SROH median deviation was 37% [2%–62%], and NROH median deviation was 5% [0%–35%]), compared to

deviations found using the ‘het 1’ parameter (for scenario 1, SROH median deviation 572% [249%–879%], NROH median 425%

[200%–700%], and for scenario 2, SROH median deviation was 121% [72%–190%], and NROH median 75% [30%–120%]).

We then visualized FROH values estimated in the simulated dataset using the conditional approach; here FROH was calculated as

SROH R1Mb divided by the chromosome size (Figure S2A).
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Importantly, using our conditional approach for ROH estimation, the deviations we find in the spike-in simulation experiment in

ROH estimates (e.g., FROH with 1 Mb), at either 3x, 5x and 10x coverages, (e.g., FROH median deviation 0-0.016, with a mean of

0.005) were of much smaller magnitude than FROH variation within the real ancient sample we are studying (FROH ranging between

0.0004-0.23 with a mean of 0.031; see Figure 1A).

FROH measurements and consanguinity
In view of our downsampling experiments and the regression analysis results, in downstream analyses we used the genomic

inbreeding coefficient, or FROH (sum of ROH > 1.5 Mb)51 calculated using our conditional approach: i.e., using ‘het 1’ for genomes

R4x coverage, and ‘het 0.5’ scheme for genomes between 3x to 4x coverage.

We used different FROH thresholds to define different consanguinity matings (Table 1). FROH > 0.0117 (average value between the

genealogical inbreeding coefficient of second and third cousin) designates individuals who could be the offspring of a second cousin

marriage. FROH > 0.039 (average value between the genealogical inbreeding coefficient of first and second cousin) designates individ-

uals who could be the offspring of a first cousinmarriage. FROH > 0.093 (average value between the genealogical inbreeding coefficient

of first and avuncular mating) designates individuals who could be the offspring of an avuncular marriage. All estimates ignore drift.

Temporal and spatial distribution of FROH

Weused different approaches to assess the effect of temporal and spatial distribution in FROH of the individuals analyzed in this study.

We first fit a simple regression analysis of FROH on the archaeological time of ancient individuals (Figure 1). We also compared among

different cultural groupings using a Wilcoxon pairwise rank-sum test with continuity correction using the R ‘wilcox.test’ function. We

further fit a multiple regression model with both the archaeological time and cultural grouping (Data S3, also see ‘‘Testing the effects

of varying coverage’’ below). To test the spatial distribution, we first fit amultiple regression analysis with FROH as dependent variable,

and the longitude, latitude, and archaeological time of each ancient individual as independent variables. To delve deeper in the spatial

distribution of the FROH, we divided the complete dataset into the designed cultural groupings, and we fitted a kriging, or Gaussian

process regression, using the functions variogram(), fit.variogram() and krige() in R package Gstat v2.06.107 To obtain the variogram

we used an exponential model.

Studying the origins of autozygosity
Two distinct and independent biological scenarios can increase homozygosity in natural populations: cultural consanguinity and ge-

netic drift in isolated populations. These two different sources were defined in classical population genetics as systematic inbreeding

(denoted by FIS) and panmictic inbreeding (denoted by FST), respectively.
53,108 Total inbreeding, denoted by FIT, is defined by (1-FIT) =

(1-FIS) (1-FST).
109

Panmictic inbreeding occurs in isolated populations, when individuals randomly mate within their own group, with no immigration.

Population isolation can be cultural, a consequence of geographical barriers or because of sedentary behavior. Importantly, isolation

by itself does not create genomic autozygosity, except when the effective population size (Ne) is small and genetic drift has the

strength to remove genetic variability. On the other hand, systematic inbreeding, or cultural consanguinity, has the effect of reducing

heterozygosity relative to the expectation under Hardy-Weinberg equilibrium independent of Ne, and thus increasing FIS. High con-

sanguinity (and consequent high FIS), and genetic drift by isolation coupled with low Ne (and consequent high FST) are two indepen-

dent and non-mutually-exclusive phenomena that can increase overall autozygosity (FIT) in a population.

Here we also note that the term ‘‘endogamy’’ is generally used to describe population isolation, although the term is sometimes

used to refer to consanguinity. To avoid confusion, we chose to avoid use of ‘‘endogamy’’ in the text.

Because we yet lack reliable estimates of population allele frequencies for these ancient populations, we cannot estimate FIS and

FST directly in this study. Instead, we may assess the origins of the autozygosity in our ancient genomes using comparisons of

NROH>1.5Mb and SROH>1.5Mb, as explained in Ceballos et al.54 Namely, if an individual displays excess of SROH>1.5Mb relative to

NROH>1.5Mb in comparison to non-consanguineous individuals, this suggests autozygosity by consanguinity. If both SROH>1.5Mb

and NROH>1.5Mb are high, this suggests drift-driven autozygosity. This approach does not provide a quantitative estimation of the

relative contributions of drift versus consanguinity, but only a qualitative assessment. Nevertheless, it is a powerful approach: its in-

ferences on autozygosity patterns in modern human populations’ genomes are consistent with known ethnographic data about

consanguineous traditions, and about population size and isolation.54

Consanguinity and genetic drift simulations
In our study we estimated NROH>1.5Mb and SROH>1.5Mb using the conditional scheme across the 411 ancient genomes, and

compared the two values (Figure 3A). We further performed three additional analyses to place our results in context.

First, we performed a simple pedigree simulation.We used an inhouseR script to simulatemeioses using theGRCh37 geneticmap

downloaded from the UCSC Genome Browser (https://genome.ucsc.edu) under different levels of consanguineous mating, keeping

track of break points, and recording consequent NROH>1.5Mb and SROH>1.5Mb. We thus simulated ROH for 20,000 second cousin

matings, first cousin matings, avuncular (uncle - niece, aunt - nephew, or double first cousin) matings, and incest (brother - sister,

parent - offspring) matings (5,000 each) (Figure 3B). This simulation does not account for drift. However, in light of the earlier discus-

sion about the independent effects of drift and consanguinity, we predicted that the degree of right shift should be projectable in

cases where there exists a non-0 level of autozygosity due to drift.
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We further sought to detect the possible effect of drift (panmictic inbreeding) when it is combined with the effect of systematic

inbreeding using another set of simulations. For this, we used real data from two populations with different population histories: a

sample of individuals with African ancestry in Southwest USA (ASW, n = 61), and Southern Han Chinese from China (CHS, n =

105), from the 1000 Genomes dataset. Using these two datasets, we again simulated second cousin, first cousin, avuncular and

incest matings using the GRCh37 genetic map. This time we used the software PED-SIM77 to create > 100 pedigrees for both pop-

ulations. We specified the number of founders needed for each mating type in the DEF file (e.g., four founders for the inbreeding of

first cousins). Given the set of individuals at hand, we could create 15 samples at each run (i.e., a total of 60 founders were required for

first cousins at each run). We repeated the process until at least 100 samples were produced for each mating type (i.e., seven times

for first cousins). Each time the founders were randomly chosen from the given file (n = 105 1st cousins, n = 100 2nd cousins, n = 100

avuncular and n = 100 incest matings in simulated ASW pedigrees, and n = 100 1st cousins, n = 105 2nd cousins, n = 105 avuncular

and n = 105 incest matings in simulated CHS pedigrees). The PED-SIM parameters were ‘–pois–miss_rate 0–keep_phase’ (i.e., using

a Poisson crossover model, having nomissing genotypes, and keeping the output phased). The VCF files containing the 1240K SNPs

were converted to PLINK files and ROH were called using PLINKwith the same parameters used throughout the study (Figure S2G).

Finally, we investigated the combined effect of genetic drift and consanguinity on NROH>1.5Mb and SROH>1.5Mb distributions by

simulating data using a combination of coalescent simulations and pedigree simulations. To this end, we generated 100 humanChro-

mosome 1 samples each for two hypothetical populations with effective population sizes (Ne) of 1000 and 10,000, again using the

GRCh37 genetic map with msprime.78 Then we used PED-SIM77 to simulate mating between unrelated individuals, second cousin,

first cousin, avuncular and incest matings for both hypothetical populations. This way, we created 112 second cousin, 100 first

cousin, 132 avuncular, and 132 sibling matings using unrelated founders from the population withNe = 1000, and 110 second cousin,

99 first cousin, 132 avuncular, and 132 siblingmatings using unrelated founders from the population withNe = 10,000.We called ROH

from thePED-SIM output using the samePLINK-based approach as described above, with the ‘het = 1’ parameter.We note that even

though we only used Chromosome 1 for this analysis for sake of time and memory, the resulting ROH values were consistent with

those obtained using real ancient genomes (Figure S4). We observed the expected right-shifts in the NROH versus SROH plots,

caused by increasing levels of consanguinity, and upward shifts caused by increasing drift (lower Ne). We further included NROH

and SROH values estimated from Chromosome 1 in real ancient genomes in data visualizations. Two observations were notable:

First, none of the individuals simulated under Ne = 1000 or Ne = 10,000 reached the NROH levels observed in the Chan individual

from Mesolithic Spain. Second, a qualitative evaluation of the distribution of simulated NROH versus SROH values under drift and

consanguinity again supported incest as the most likely scenario in the past of individual NG10 from Neolithic Ireland.

Testing the effects of varying coverage
We next sought to confirm that variation among samples in technical factors such as coverage and the proportion of missing SNPs

does not influence our main conclusions.

First, we calculated whether SROH>1.5Mb (and FROH) or NROH>1.5Mb values were correlated with total coverage across all SNPs,

coverage excluding missing SNPs (i.e., coverage across available SNPs), or missing SNP proportions (missingness) across the 411

ancient genomes. Note that the coverage value used throughout the study is total coverage across all 1240K SNPs, and is thus a

measure that also reflects missingness.

NROH and SROH showed no correlation with coverage excluding missing SNPs (Kendall’s rank correlation |tau|<0.06, p > 0.05),

but they did show correlation with missingness and with total coverage (|tau|>0.13, p < 0.05) (Table S2). We also tested correlations

between sample archaeological time (or sample age, in years BCE) and genome coverage or missingness. For missingness, there

was no correlation (tau = �0.04, p = 0.23), while total coverage and coverage excluding missing SNPs and sample time showed

weak correlations (|tau|>0.07, p < 0.05; Figure S3K; Table S2), with older genomes tending to have higher coverage.

We then asked whether these correlations between technical factors, sample time (age) and FROH may influence our main obser-

vation, that FROH levels decrease with time. For this, we first performed multiple regression analyses. FROH was the dependent var-

iable, and sample archaeological time (age), cultural grouping, coverage (either total coverage or coverage excluding missing SNPs),

and missingness, were independent variables.

In the full model (adjustedvR2 = 0.32, p < 2.2e-16), only the sample archaeological time and cultural groupings were significant

explanatory variables (p < 0.05), whereas coverage (excluding missing SNPs) or missingness had no significant contribution (p >

0.10) (Data S3). To validate this, we also compared a model with only archaeological time and cultural grouping as explanatory

variables, with the full model. We found that including coverage and missingness in the model provided no significant improvement

(ANOVA p = 0.31; Table S4). Repeating the same using total coverage qualitatively yielded the same results (Data S3).

Finally, we downsampled all genomes to the same coverage (3x). For this we again used Picard’s DownsampleSam tool (https://

broadinstitute.github.io/picard) to randomly extract aligned reads from each BAM file in our full ancient dataset (n = 411). We thus

obtained 3x average depth per SNP for all genomes, and repeated all analyses using these data. The results show that the whole

dataset, when downsampled to the same minimum coverage, reveals the same main conclusions as the primary dataset used

throughout the study (Figures S2I and S2J). Using the downsampled data, we detected the same correlation between the sample

time and FROH (Pearson R2 = 0.28, p < 2.2e-16) (Figure S2J). Furthermore, consanguinity practices in the previous generation were

once again visible as a right shift in the NROH versus SROH comparison (e.g., for ancient individuals NG10, I6671 and I2521 on

Figure S2I).

We further performed two additional analyses to rule out technical effects, described below.
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Comparison with alternative approaches
Recently, two new model-based methods have been proposed to call ROH in ancient genomes. Renaud and colleagues (2019)38

publishedROHan, a Bayesian HiddenMarkovModel (HMM) that co-estimates heterozygosity and ROH. ROHanwas shown to accu-

rately estimate ROH in ancient genomes with moderate damage with a coverage of at least 5x. A more recent study by Ringbauer

et al.39 reported hapROH, a method that makes use of a reference panel of phased haplotypes. hapROH uses an HMM to determine

whether a stretch of pseudo-haploidized genotypes in an ancient genome systematically matches only a single haplotype in the

panel, indicative of ROH in that region. With this additional information, Ringbauer et al.39 report that hapROH can detect ROH >

4 cM in ancient DNA at much lower genome-wide coverage than earlier possible (> 0.3x).

Although hapROH is highly powerful for detecting ROH at coverages down to 0.3x, our approach has a number of relative advan-

tages, including beingmodel-free, its ease of implementation, its apparent power to detect ROH of lower size (down to 1Mb), and not

relying on genomic diversity panels. The latter point is probably the most important. Indeed, our PLINK-based conditional ROH esti-

mation will be available for the study of inbreeding in non-model organisms where such panels are mostly absent. Even in humans,

hapROH’s power depends on the linkage patterns of the populations in question, as demonstrated by its low power in African

populations.

We compared the performance of our PLINK-based conditional ROH estimation scheme with that of hapROH39 (data courtesy of

Dr. Harald Ringbauer). We found that the SROH and NROH values for the n = 384 samples used in both studies and four different

cultural groups (ROH > 4 cM; ROH > 8 cM; ROH > 12 cM; ROH > 20 cM) were highly similar. The NROH and SROH values of the

two studies were correlated with Pearson R2 > 0.81 for NROH and R2 > 0.89 for SROH comparisons (Figures S2C and S2D). This

strong consistency between our results, despite the difference in approaches, increases the reliability of both studies.

The effect of using a denser SNP panel
We repeated ourmain analyses using a second SNPpanel. We chose a Yoruba transversion-only SNP panel (> 1.9million SNPs) from

the phase 3 of the 1000 Genomes Project, filtered for showing minor allele frequency > 10% in an African Yoruba sample.52 We thus

aimed to investigate the effects of different genomic densities of SNPs on our results, and to rule out any effect of residual postmor-

tem damage (i.e., residual C->T transitions in ancient DNA reads that may not have been removed by trimming). We only included

shotgun sequenced ancient genomes (n = 72; Data S1I), because the rest of the data (1240K capture genomes) would not include

the bulk of the Yoruba panel SNPs.

We detected high correlation between FROH estimates obtained using the Yoruba SNP panel and 1240K SNP panel across the 72

shotgun ancient genomes (Figure S2H; Pearson R2 = 0.978). This high consistency resonates with published results: Ceballos et al.54

showed thatNROH>1Mb andSROH>1Mb estimates from a dataset with 1.5MSNPs and from awhole genome sequencing dataset with

more than 7M SNPs were highly similar. However, the same study also found thatNROH<1Mb and SROH<1Mb estimates did vary with

SNP density.
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