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ABSTRACT

REDUCED-ORDER MODELLING OF SHALLOW WATER EQUATIONS

Yıldız, Süleyman

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

July 2021, 128 pages

The shallow water equations (SWEs) consist of a set of two-dimensional partial dif-
ferential equations (PDEs) describing a thin inviscid fluid layer flowing over the to-
pography in a frame rotating about an arbitrary axis. SWEs are widely used in model-
ing large-scale atmosphere/ocean dynamics and numerical weather prediction. High-
resolution simulations of the SWEs require long time horizons over global scales
when combined with accurate resolution in time and space makes simulations very
time-consuming. While high-resolution ocean-modeling simulations are still feasi-
ble on large HPC machines, performing many query applications, such as repeated
evaluations of the model over a range of parameter values, at these resolutions, is not
feasible. Reduced-order modeling enables fast simulation of the PDEs using high-
fidelity solutions. In this thesis, reduced-order models (ROMs) are investigated for
the rotating SWE, with constant (RSWE) and non-traditional SWE with full Corio-
lis force (NTSWE), and for rotating thermal SWE (RTSWE) while preserving their
non-canonical Hamiltonian-structure, the energy, and Casimir’s, i.e. mass, enstro-
phy, vorticity, and buoyancy. Two different approaches are followed for constructing
ROMs; the traditional intrusive model order reduction with Galerkin projection and
the data-driven, non-intrusive ROMs. The full order models (FOM) of the SWE,
which needed to construct the ROMs are obtained by discretizing the SWE in space
by finite differences by preserving the skew-symmetric structure of the Poisson ma-
trix. Applying intrusive proper orthogonal decomposition (POD) with the Galerkin
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projection, energy preserving ROMs are constructed for the NTSWE and RTSWE in
skew gradient form. Due to the nonlinear terms, the dimension of the reduced-order
system scales with the dimension of the FOM. The nonlinearities in the ROM are
computed by applying the discrete empirical interpolation (DEIM) method to reduce
the computational cost. The computation of the reduced-order solutions is acceler-
ated further by the use of tensor techniques. For the RSWE in linear-quadratic form,
the dimension of the reduced solutions is obtained using tensor algebra without ne-
cessitating hyper-reduction techniques like the DEIM. Applying POD in a tensorial
framework by exploiting matricizations of tensors, the computational cost is further
reduced for the rotating SWE in linear-quadratic as well in skew-gradient form. In
the data-driven, non-intrusive ROMs are learned only from the snapshots by solving
an appropriate least-squares optimization problem in a low-dimensional subspace.
Data-driven ROMs are constructed for the NTSWE and RTSWE with the operator
inference (OpInf). Computational challenges such as ill-conditioning and regulariza-
tion are discussed. The non-intrusive model order reduction framework is extended
to a parametric case, whereas we make use of the parameter dependency at the level
of the PDE without interpolating between the reduced operators.

The intrusive and non-intrusive ROMs in linear-quadratic and skew-gradient form
yield a clear separation of the offline and online computational costs. Both ROMs
behave similarly and can accurately predict in the test and training data and capture
system behavior in the prediction phase. The preservation of physical quantities in
the ROMs of the SWEs such as energy (Hamiltonian), and other conserved quantities,
i.e., mass, buoyancy, and total vorticity, enables that the models fit better to data
and stable solutions are obtained in the long-term predictions which are robust to
parameter changes while exhibiting several orders of magnitude computational speed-
up over the FOMs.

Keywords: Hamiltonian systems, energy, conserved quantities, proper orthogonal
decomposition, discrete empirical interpolation, tensors, operator inference, least-
squares
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ÖZ

SIĞ SULARDA DALGA DENKLEMLERİ İÇİN MODEL İNDİRGEME
YÖNTEMLERİ

Yıldız, Süleyman

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Temmuz 2021, 128 sayfa

Sığ su denklemleri, rastgele bir eksen etrafında dönen bir çerçeve içinde topografya
üzerinden akan ince bir viskoz olmayan sıvı tabakasını tanımlayan bir dizi iki bo-
yutlu kısmi diferansiyel denklemden oluşur. Bu denklemler, büyük ölçekli atmosfer
/ okyanus dinamiklerinin modellenmesinde ve sayısal hava tahmininde yaygın olarak
kullanılmaktadır. Sığ su denklemlerinin yüksek çözünürlüklü simülasyonları, zaman
ve mekanda doğru çözünürlükle birleştirildiğinde, küresel ölçekler üzerinde uzun za-
man ufku gerektirir, simülasyonları çok zaman alıcı hale getirir. Yüksek çözünürlüklü
okyanus modelleme simülasyonları yüksek performanslı makinelerinde hala uygula-
nabilir olsa da, bu çözünürlüklerde modelin bir dizi parametre değeri üzerinden tek-
rarlanan değerlendirmeleri gibi birçok tekrarın gerçekleştirilmesi mümkün değildir.
Düşük mertebeden modelleme, yüksek kaliteli çözümler kullanarak kısmi diferansi-
yel denklemlerin hızlı simülasyonunu sağlar. Bu tezde, rotasyonel sığ su denklem-
leri, sabit ve tam Coriolis kuvvetine sahip geleneksel olmayan sığ su denklemleri ve
termal sığ su denklemleri için kanonik olmayan Hamilton yapısını, enerjiyi ve Casi-
mirleri, yani kütleyi, entropiyi, vortisite ve kaldırma kuvveti özelliklerini koruyaran
indirgenmiş mertebeden modeller incelenmiştir. İndirgenmiş modelleri oluşturmak
için iki farklı yaklaşım izlenmiştir; Galerkin projeksiyonu ile geleneksel müdahaleci
model indirgeme ve veriye dayalı müdahaleci olmayan model indirgeme yöntem-
leri. İndirgenmiş modelleri oluşturmak için gerekli olan sığ su denklemlerinin tam
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mertebeli modelleri, Poisson matrisinin ters-simetrik yapısı korunarak uzaydaki sığ
su denklemlerinin sonlu farklarla ayrıştırılmasıyla elde edilmiştir. Galerkin projek-
siyonu ile müdahaleci uygun ortogonal ayrıştırma (POD) uygulayarak, tam Coriolis
kuvvetine sahip geleneksel olmayan ve termal sığ su denklemi için çarpık gradyan
formunda enerji koruyan indirgenmiş modeller oluşturulmuştur. Doğrusal olmayan
terimler nedeniyle, indirgenmiş modelin boyutu, tam modelin boyutuyla ölçeklenir.
İndirgenmiş modeldeki doğrusal olmayan terimler, hesaplama maliyetini düşürmek
için ayrık deneysel interpolasyon (DEIM) yöntemi uygulanarak hesaplanmıştır. İn-
dirgenmiş modellerin çözümlerin hesaplanması, tensör tekniklerinin kullanılmasıyla
daha da hızlandırılır. Lineer-kuadratik formdaki rotasyonel sığ su denklemleri için, in-
dirgenmiş çözümlerin boyutu, DEIM gibi hiper indirgeme tekniklerini gerektirmeden
tensör cebiri kullanılarak elde edilir. Tensörlerin matrisizasyonlarından yararlanarak
tensörel bir çerçevede POD uygulandığında, doğrusal-kuadratik ve çarpık-gradyan
formunda rotasyonel sığ su denklemleri için hesaplama maliyeti daha da azaltılmış-
tır. Veriye dayalı, müdahaleci olmayan indirgenmiş modeller, düşük boyutlu bir alt
uzayda uygun bir en küçük kareler optimizasyon problemini çözerek yalnızca anlık
görüntülerden öğrenilir. Veriye dayalı indirgenmiş modeller, tam Coriolis kuvvetine
sahip geleneksel olmayan ve termal sığ su denklemi için operatör çıkarımı (OpInf)
metodu ile oluşturulur. Kötü koşullandırma ve iyileştirme gibi hesaplama zorlukları
tartışılmaktadır. Müdahaleci olmayan model indirgeme çerçevesi parametrik bir du-
ruma genişletilirken, indirgenmiş operatörler arasında enterpolasyon yapmadan kısmi
diferansiyel denklemler düzeyinde parametre bağımlılığını kullanıyoruz.

Doğrusal-kuadratik ve çarpık gradyan biçimindeki müdahaleci ve müdahaleci olma-
yan düşük mertebeden modeller, çevrimdışı ve çevrimiçi hesaplama maliyetlerinin
net bir şekilde ayrılmasını sağlar. Her iki düşük mertebeden modelde benzer şekilde
davranmıştır ve test ve eğitim verilerinde doğru bir şekilde öngörüde bulunabilmiş-
tir ve tahmin aşamasında sistem davranışını yakalayabilmiştir. Enerji (Hamiltonian)
gibi sığ su denklemlerinin indirgenmiş modellerinde fiziksel niceliklerin korunması
ve diğer korunan nicelikler, yani kütle, kaldırma kuvveti ve toplam vortisite, model-
lerin verilere daha iyi uymasını sağlar ve kararlı çözümler tam modeller üzerinden
birkaç büyüklük derecesinde hesaplama hızı sergilerken parametre değişikliklerine
karşı dayanıklı olan uzun vadeli tahminlerde elde edilir.

Anahtar Kelimeler: Hamilton sistemleri, enerji, korunan nicelikler, uygun ortogonal
ayrıştırma, ayrık ampirik interpolasyon, tensörler, operatör çıkarımı, en küçük kare-
ler
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CHAPTER 1

INTRODUCTION

1.1 Shallow Water Equations

In this thesis, reduced-order models (ROMs) are constructed for the shallow water

equations (SWEs) frequently used to model large-scale atmosphere/ocean dynam-

ics and numerical weather prediction. They contain a collection of two-dimensional

partial differential equations (PDEs) illustrating a thin inviscid fluid layer circulat-

ing over a bottom topography in a frame rotating about an arbitrary axis. Preserv-

ing physics in reduced models is the central theme of the thesis. In particular, this

work aims to construct a framework for ROMs that retains the Hamiltonian structure.

Many geophysical flows can be written in Hamiltonian form [85]. The non-canonical

Hamiltonian/Poisson form of the SWE in the rotational frame with constant Coriolis

force was introduced first in [103]. Later on, the Nambu formulation of the rotating

shallow water equation (RSWE) [104], RSWE with complete Coriolis force, the so-

called non-traditional shallow water equation (NTSWE) [41, 113], and multi-layer

RSWE [113] are developed. The discrete energy conservation follows from the anti-

symmetry of the discrete Poisson bracket. Additional preserved quantities (Casimir)

are potential enstrophy, vorticity, and mass. The energy cascades to large scales

whilst enstrophy cascades to small scales [8, 113]. The RSWE [103] is a broadly

used theoretic model in planetary and geophysical fluid dynamics for investigating

rotating inviscid fluids with one or multilayers. The horizontal velocity is supposed

to be depth-independent within each layer, so the fluid moves in columns. Yet, the

RSWE model does not permit the gradients of the mean density and/or temperature

widely in the oceans and atmosphere. The rotating thermal shallow water equation
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(RTSWE) [40, 43, 99, 122] represents an extension of the RSWE, which include the

horizontal density/temperature gradients in addition. The RTSWE is a simplification

of the three-dimensional primitive equations and the Euler-Boussinesq model, which

are commonly used for computationally simulating large-scale ocean and atmosphere

circulation dynamics, such as the general circulation models [130], planetary flows

[123], and modeling atmospheric and oceanic temperature fronts [42, 127], thermal

instabilities [53]. Consequently, the energy and the enstrophy preserving numerical

schemes of the SWEs lead to stable solutions in the long term integration [4]. High-

resolution simulations of the SWEs require long time horizons over global scales.

Simulations in time and space are very time-consuming for many query applications,

such as repeated evaluations of the model over a range of parameter values. In this

thesis, ROMs are constructed for fast simulation of the above mentions three types of

SWEs.

1.2 Model Order Reduction

Realistic simulations of SWEs require a fine discretization on space-time grids to

obtain reliable high-fidelity solutions. Therefore, real-time simulations need a large

amount of computation time and computer memory. Moreover, the computational

cost linked with fully resolved simulations remains a barrier in many applications.

Model order reduction (MOR) techniques allow the construction of low-dimensional

ROMs for the high dimensional full-order models (FOMs), generated by the dis-

cretization of PDEs with the finite-difference, finite-element, spectral elements, finite-

volume, and discontinuous Galerkin methods. The ROMs are computationally effi-

cient and accurate and are worthy when a FOM needs to be simulated multiple times

for different parameter settings or in multi-query scenarios such as in optimization,

and for predicting the model for a long time horizon.

ROMs consist of two classes, the data-driven non-intrusive and the intrusive ROMs.

In intrusive ROMs, the high-fidelity FOMs are projected on a low dimensional re-

duced space, usually applying the proper orthogonal decomposition (POD) [16, 108].

There are other MOR techniques like the dynamic mode decomposition (DMD) [100,

107] and balanced truncation [92] which are frequently used. POD is a commonly
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used ROM technique, which extracts dominant POD modes from the snapshots of the

FOM solutions. An essential feature of the ROMs is the offline-online decomposi-

tion. The offline stage consists of the computation of the FOM and the construction

of the reduced basis, whereas the online stage consists of the solution of the projected

problem onto the low-dimensional reduced space. Typically, POD basis are deter-

mined by applying the singular value decomposition (SVD) to the snapshot matrix.

After obtaining the POD basis, ROM is constructed by employing Galerkin projec-

tion. For PDEs with polynomial nonlinearities like the SWEs, the projection-based

reduced model admits an efficient low-dimensional numerical representation inde-

pendent of the dimension of the FOM without necessitating hyper-reduction tech-

niques like empirical/discrete empirical interpolation method (DEIM) [7, 29]. We

refer to [15, 96, 106] for an overview of the available MOR techniques.

Projection-based MOR methods are intrusive since they require access to the discrete

operators of the FOM. Traditional intrusive MOR techniques thus possess limited

scope in some applications. For instance, the traditional intrusive MOR methods are

not suitable when proprietary software is used to solve the PDEs, where the governing

equations are known, but full-order operators are not available. Another challenging

case for intrusive MOR methods could be when the FOM solution is obtained through

experiments, where there is no model nor the discretized operators. These bottlenecks

of the intrusive MOR methods give rise to the other class of ROMs, so-called data-

driven or non-intrusive ROMs. The non-intrusive ROMs are fundamentally different

from the intrusive ROMs. Unlike the intrusive projection-based MOR methods, in

the non-intrusive MOR techniques, reduced models are learnt from snapshots, i.e.,

either by numerical approximations or measurements of the states of the dynamical

systems, when the operators of the discretized systems are not available. There are

several software packages that are able to simulate SWEs for a given parameter set

and an initial condition [48, 38]. Machine learning techniques are an essential tool

for constructing models and analyzing the underlying process of the dynamics from

the data. Recent advances in machine learning methods such as neural networks offer

new occasions to construct more efficient and accurate ROMs. They learn the model

from the training data, where they neither require direct access to the high-fidelity

model operators nor any extra information about the process. Nevertheless, to learn
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the model accurately, they require a large amount of necessary data, which imposes

a burden in the context of large-scale PDE simulations [116]. Incorporating existing

knowledge about the physics of the models requires less training data. We review the

most relevant literature about learning dynamical-system models from data related

to this work. Recently, data-fit non-intrusive ROMs with artificial neural networks

(ANNs) are also used for time-dependent dynamical systems [64, 121].

Another class of non-intrusive ROM modeling is the DMD, which determines the

reduced nonlinear dynamical systems, by fitting the snapshots to the linear opera-

tors with respect to the L2 norm [100, 107]. Using the Koopman operator based

methods, the methodology of DMD has been extended nonlinear dynamical systems

[124]. In [20, 77, 105], the ROMs are constructed in the high-dimensional systems

by exploiting the sparsity of the governing equations. Non-intrusive and intrusive

MOR methods, DMD and POD, have been intensively studied for the SWEs; see,

e.g., [17, 18, 44, 79, 78, 3, 109]. The DMD is also extended to quadratic bilinear

systems [52].

Recently, constructing non-intrusive ROMs by the operator inference (OpInf) method

has gained significant attention. The OpInf method first studied for polynomial non-

linearities in [90], where the operators defining the governing equations of ROM

learned by solving an optimization problem, i.e., least-squares problem. The OpInf

method is a non-intrusive ROM in a sense; it does not need the high-dimensional

semi-discretized operators of the PDEs, but only some information at the PDE level.

Later, the OpInf method extended to the nonlinear systems that can be written as

a polynomial or quadratic-bilinear system by using lifting variable transformation,

called Lift & Learn method [72, 95]. In [95], the OpInf method is applied to the

nonlinear models in which the structure of the nonlinear terms are conserved while

learning ROMs from data. Data-driven non-intrusive ROMs via regularized OpInf

are applied to combustion problems [83, 115]. Data-driven ROMs of fluid dynamics

are studied by employing the OpInf method, such as incompressible flows [13] and

SWEs [128]. In [93] the OpInf method is generalized to the PDE setting through

lifting variables. For the linear FOMs, the OpInf method and DMD equivalent, i.e.,

the inferred operators, are the same.
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The Markovian systems are memory free systems, where the future states of sys-

tems just depend on the current state and not on the previous ones. In contrast to the

Markovian systems, the non-Markovian systems are considered to have a memory,

where the memory indicates that the future states depend on the current and previous

states. The OpInf [90] with the projected trajectories leads to non-Markovian dy-

namics in the low-dimensional subspaces even though the FOMs are Markovian, as

known from, e.g., the Mori–Zwanzig formalism [32, 49]. On the other hand, intru-

sive ROMs are Markovian systems. Thus, the reduced-order operators learned by the

OpInf method with projected trajectories are not exactly the projection-based intru-

sive reduced-order operators. In [89], the Markovian dynamics in the non-intrusive

reduced-order system are recovered by a data sampling scheme that iterates between

time stepping the high-dimensional FOM and the low-dimensional ROM after projec-

tion. Hence, the Markovian dynamics are maintained in low-dimensional subspaces.

In [89], it is shown that under particular conditions, the operator inference with re-

projected trajectories results in the intrusive reduced-order operators for dynamical

systems with nonlinear polynomial terms. Recently in [118], probabilistic a posteri-

ori error estimators are derived for the OpInf with re-projection for linear parabolic

PDEs. The non-Markovian OpInf is investigated with partial information in [119]. A

deep learning version of the OpInf is introduced in [54].

1.3 Outline of the Thesis

In this thesis, intrusive and non-intrusive ROMs are constructed for the RSWE, NTSWE,

and RTSWE. In Figure1.1, an overview about the thesis is given.

In Chapter 2, the Hamiltonian structure of the RSWE, NTSWE, and RTSWE is pre-

sented with the full spatial and temporal discretization. All three SWEs are dis-

cretized with the centered second-order finite differences in space that preserve the

skew-symmetric structure in the semi-discrete form, i.e., a skew-gradient system is

obtained. We consider two different formulations of all the SWEs; non-canonical

Hamiltonian/Poisson PDE and PDE with linear-quadratic terms as primitive equa-

tions. Both versions of the SWEs are discretized in space using finite differences

while preserving the skew-symmetric structure of the Poisson matrix. The result-
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OpInf with
re-projection
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OpInf without
re-projection
(Section 4.2)

Figure 1.1: Outline of the thesis.

ing semi-discrete systems are skew-gradient and linear quadratic ordinary differen-

tial equation systems with multiple conserved quantities. The skew-gradient system

is integrated in time with the energy preserving implicit average vector field (AVF)

method [24, 33]. On the other hand, the linear-quadratic ODE system in time has

solved by the linearly implicit Kahan’s method [67, 26]. Both AVF and Kahan’s

method are second-order convergent in time. Due to its implicit nature, the AVF

method needs iterative solvers like Newton’s method at each time step for solving the

nonlinear systems arising from time discretization. However, the linearly implicit

Kahan’s method requires solving only one linear system of equations in each time

step. Both methods preserve well the conserved quantities of the SWEs, like the en-

ergy, enstrophy, mass, and vorticity in long-time integration [104, 43], and they build

the basis for the ROM in the subsequent Chapters.

In Chapter 3, DEIM and POD based intrusive ROMs of SWEs are constructed. We

start by briefly introducing the POD and DEIM methods in Sections 3.1 and 3.2. In

Section 3.3, we introduce tensors and useful tensor techniques. Next, we employ POD

Galerkin projection to the RSWE in the form of a linear-quadratic system, in Section

3.4 of the Chapter 3. Nevertheless, the dimension of the ROM arising from the RSWE

still scales with the dimension of the FOM. For PDEs with the nonlinear polynomial

terms like SWEs, the efficiency of ROMs can be obtained without approximating the
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nonlinear terms through sampling, where the reduced operators can be precomputed

in the "offline" stage. Thus, ROMs permit a clear separation of the offline-online

stages. Projection of FOM corresponding to the RSWE onto the reduced space re-

sults in low-dimensional matrix operators that conserve the linear-quadratic structure

of the FOM. The advantage of the offline-online separation is the nonlinearities can

be evaluated without approximating in contrast to the hyper-reduction methods. In

recent years, ROMs for PDEs with nonlinear polynomial terms have been broadly

studied, where the computationally efficient ROMs are constructed by using some

tools from tensor theory and by matricizations of tensors [10, 12, 11, 56, 72]. With

the tensorial framework combined by POD, i.e., by exploiting matricizations of ten-

sors, the online computational cost is reduced significantly. Hence, the ROM for the

linear-quadratic system gains an efficient offline-online decomposition and does not

require an additional step of hyper-reduction, like DEIM. Here to deal with tensors,

we consider MULTIPROD [76] to accelerate the tensor calculations. Numerical re-

sults show that the energy (Hamiltonian) and other conserved quantities of the RSWE

like the mass, the total vorticity, and the enstrophy are preserved in the long-time in-

tegration.

Typically, the preservation of nonlinear invariants like energy is not guaranteed with

traditional MOR techniques. The violation of such invariants in ROMs generally

yields an unstable or inaccurate reduced-order system, even when the high-fidelity

system is stable. Thus, preservation of the physical laws of the ROMs by the reduced

system plays a vital role to obtain in physically meaningful reduced systems for fluid

dynamics problems, such as incompressible and compressible Euler equation [2]. The

stability of ROMs over the long-time integration has been studied in the context of

Lagrangian systems [23], and for port-Hamiltonian systems [28].

In this work, we study structure-preserving ROMs for NTSWE and RTSWE that uti-

lize the skew-symmetry of the centered discretization schemes to recover conserva-

tion of the energy at the level of the reduced system. There is no numerical integra-

tor method that conserves both the symplectic/Poisson structure and the energy of

a Hamiltonian system [57]. We remark that some integrators exist only for specific

Poisson systems, which preserve the Poisson structure unlike the symplectic integra-

tors for all canonical Hamiltonian systems [62]. Since the reduced-order NTSWE
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and RTSWE are skew-gradient systems with a first integral, i.e., Hamiltonian, and

Casimirs, energy-preserving integrators can be easily applied. In recent years, ROMs

are constructed that conserve the reduced skew-symmetic constant Poisson matrix

for the Korteweg de Vries (KdV) equation with the energy in [51, 84, 70]. The AVF

method is applied for the reduced-order modeling of Hamiltonian systems like the

Korteweg-de Vries (KdV) equation [51, 62, 84] and the nonlinear Schrödinger equa-

tion [70]. Constructing on the approach in [51, 84] in the Sections 3.5.1 and 3.5.3

, ROMs are constructed that preserve the state-dependent skew-gradient structure of

the semi-discretized NTSWE and RTSWE with energy preserving time integrator

AVF. The straightforward application of a structure-preserving hyper-reduction tech-

nique does not allow separation of online and offline computation of the nonlinear

terms of the non-canonical Hamiltonian systems like the RTSWE, and consequently,

the online computational cost is not reduced. Approximation of the Poisson matrix

and the gradient of the Hamiltonian of the RTSWE with the DEIM results in a skew-

gradient reduced system. In Section 3.5.1, the DEIM has applied only the gradient of

the Hamiltonian of the NTSWE and not to the nonlinear terms of the skew-symmetric

Poisson matrix. In Section 3.5.3, the POD-DEIM ROM for the RTSWE is constructed

using tensor techniques that preserves also the skew-symmetric structure of the Pois-

son matrix.

POD-DEIM ROM results show that the reduced discrete energy (Hamiltonian) and

other conserved quantities like enstrophy, mass, and vorticity are well-preserved in

the long-term using POD and DEIM. The ROMs with the POD and DEIM provide

accurate and stable approximate solutions of the RTSWE while exhibiting several

orders of magnitude computational speed-ups over the FOMs.

In Chapter 4, we discuss a non-intrusive MOR method that learns low-dimensional

dynamical models for a parametrized shallow water equation from data. First, we

describe the general framework of the OpInf method for linear-quadratic PDEs in

Section 4.1. In Section 4.2, we consider NTSWE as a FOM and focus on recovering

ROM in a non-intrusive way. The method in Section 4.2 is non-intrusive in the sense

that it does need access to the semi-discretized operators of the NTSWE in any form.

Instead, we assume the snapshots are obtained using a black-box solver. Therefore,

we aim at recovering the ROMs only from the snapshots. The non-intrusive ROM
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of NTSWE is obtained by solving a least-squares problem in a low-dimensional sub-

space. Hence, we also discuss computational difficulties that arise from the least-

squares problem being ill-conditioned. Moreover, we extend the non-intrusive MOR

framework to a parametric case, where we utilize the parameter dependency at the

level of the PDEs. We demonstrate the efficiency of the non-intrusive MOR technique

by constructing ROM for NTSWE and compare it with an intrusive POD method. Be-

sides, we examine the predictive skills of both ROMs outside the range of the training

data.

In Section 4.3, we use the OpInf with re-projection [89] to learn the dynamics of

RTSWE by preserving the low-dimensional Markovian dynamics. To obtain an ef-

ficient intrusive ROM, we apply the POD by utilizing the matricization of tensors

[12, 11, 69], and the sparse matrix technique MULTIPROD [76]. The numerical re-

sults show that learned non-intrusive ROM from the OpInf method with re-projection

[89] are very close to the intrusive ROM obtained by POD. Moreover, the energy

and other physical quantities are preserved with the OpInf and POD without any drift

over time. Moreover, we compare OpInf with the POD method in the parametric

case, where the Coriolis parameter is assumed to have known parametric dependency

at the PDE level, whereas in [90, 89] the parametric ROMs are obtained at each train-

ing parameter by interpolation. We demonstrate that under particular assumptions

on the time discretization [90, 89] the intrusive POD model converges to the learned

non-intrusive OpInf model. Numerical results indicate that both the OpInf and the

POD methods can predict the dynamics of the parametric FOM with high accuracy.

Moreover, we demonstrate that the ROMs show high precision in the training set and

tolerable accuracy in the prediction phase. The data matrices arising from the OpInf

have large condition numbers, resulting in an ill-conditioned optimization problem.

Therefore in the optimization problem, a proper regularization method like Tikhonov

regularization or the truncated SVD should be used. Because the decay of the sin-

gular values in the data matrices does not give any information about the choice of

tolerance for the regularization parameter, we determine the regularization tolerances

by the L-curve. Speed-up factors of order two over the FOM are achieved for both

ROMs, whereas the OpInf is more costly than the POD due to the re-projection.

The simulations on Sections 3.4.1, 3.5.2, 3.5.4 and 4.3.3 are performed on a machine
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with Intelr CoreTM i7 2.5 GHz 64 bit CPU, 8 GB RAM, Windows 10, using 64 bit

MatLab R2019a.
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CHAPTER 2

FULL-ORDER MODELS FOR SHALLOW WATER

EQUATIONS

This Chapter presents the FOM for two-dimensional SWEs, which consist of a set

of hyperbolic PDEs illustrating a sheer inviscid fluid layer circulating over a bottom

topography in a rotating frame. SWEs are extensively used in a conceptual way, such

as investigating large-scale atmosphere/ocean dynamics and numerical weather pre-

diction. SWEs are also used to study geophysical wave phenomena, e.g., the Rossby

and Kelvin waves in the oceans and the atmosphere, large-scale geophysical flow

prediction [9, 34], investigation of planetary flows [123], and baroclinic instability

[19, 120]. Energy and enstrophy are the most important physical laws of the SWEs,

whereas the energy cascades to large scales whilst enstrophy cascades to small scales

[8, 113]. Typically, the ocean and atmosphere models include only the contribution

to the Coriolis force from the component of the planetary rotation vector that is lo-

cally normal to geopotential surfaces when the vertical length scales are much smaller

than the horizontal length scales, known as a traditional approximation. Neverthe-

less, most of the atmospheric and oceanographic phenomena are extensively affected

by the non-traditional component of the Coriolis force [112], such as deep convec-

tion [81], Ekman spirals [75], and internal waves [47]. The NTSWE [41, 110, 113]

has a similar structural form as the traditional SWE [103]. The key difference occurs

in distinguishing between particle velocities and canonical velocities. A drawback of

modeling of SWEs with multilayers is that it does not admit horizontal temperature

and density gradients. Within each layer, the horizontal velocity is assumed to be

depth-independent, so the fluid moves in columns. The RTSWE represents an exten-

sion of the RSWE, to include horizontal density/temperature gradients, also known
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as Ripa equation [99]. The RTSWE can be derived similarly to the RSWE by the

mean-field approximation with changing the hypothesis of uniform density/tempera-

ture [53, 129].

Enstrophy cascades to small scales and energy cascades to large scales in atmospheric

and ocean flows [8, 113]. Hence their preservation is essential to obtain stable solu-

tions in the long term integration [4]. Most of the geophysical flows can be repre-

sented in Hamiltonian form [85]. The non-canonical Hamiltonian form of the SWE

in the rotational frame with constant Coriolis force was in by Salmon in[103]. Later

on, SWE with complete Coriolis force [41, 113], the Nambu formulation [104], and

multi-layer SWE [113] have been formulated. The preservation of the discrete energy

comes from the antisymmetry of the discrete Poisson bracket. Other important pre-

served quantities are potential enstrophy, mass, and vorticity. In this thesis, we have

considered two different forms of the SWEs; the non-canonical Hamiltonian form and

a linear-quadratic PDE form in the f-plane, where the region is assumed to be small

enough that the latitudinal variation in the Coriolis parameter can be ignored. Both

the non-canonical Hamiltonian form and a linear-quadratic PDE form of the SWEs

are discretized in space using finite differences by conserving the skew-symmetry in

the Poisson matrix. The semi-discretized system of the ordinary differential equa-

tions (ODEs) is also in Poisson form and has linear-quadratic terms. For the time

integration of the SWE in the non-canonical Hamiltonian form, fully implicit energy

preserving AVF method [24, 33] is considered. Moreover, the linear-quadratic system

of SWE is integrated in time by the linearly implicit Kahan’s method [67, 26]. Both

AVF and Kahan’s methods are second-order convergent in time. The AVF method

needs iterative solvers like Newton’s method to solve the nonlinear systems arising

from time discretization due to its implicit nature. In contrast to the AVF method, the

linearly implicit Kahan’s method needs solving only one linear system of equations

in each time step. Both AVF and Kahan’s methods conserve the energy and Casimir

of the SWEs, like the energy, vorticity, enstrophy and mass in long-time integration

[33, 26].

We remark that both RTSWE and RSWE as a hyperbolic system with nonlinear con-

servation laws were discretized using cell-centred finite volume methods [45] and the

well-balanced schemes central upwind and finite volume method [31, 74, 73].
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In Section 2.1 we introduce the three types of the SWEs; the RSWE with constant

Coriolis force, the NTSWE with full Coriolis force, and the RTSWE. Spatial and

temporal discretizations for each SWE are described in Sections 2.2, and 2.3, respec-

tively.

2.1 Rotating Shallow Water Equation

In this section, we introduce the RSWE, NTSWE and RTSWE in Hamiltonian and

linear-quadratic form.

2.1.1 Rotating Shallow Water Equation in Hamiltonian form

The two-dimensional RSWE is given on a rectangular domain Ω = [a, b]×[c, d] ⊂ R2

(a, b, c, d ∈ R), as [103]
∂u

∂t
= qvh− Φx,

∂v

∂t
= −quh− Φy,

∂h

∂t
= −(uh)x − (vh)y,

(2.1)

where q(x, t) = (vx(x, t)− uy(x, t) + f(x, t))/h(x, t) is the potential vorticity with

the Coriolis force f(x, t), h(x, t) is the fluid depth, u(x, t) is the particle velocity in

x-direction, and v(x, t) is the particle velocity in y-direction. The partial derivatives

with respect to x and y components are denoted with subscripts x and y, respec-

tively. Moreover, the Bernoulli potential is given that Φ(x, t) = (1/2)u(x, t)2 +

(1/2)v(x, t)2 + gh(x, t), for gravity constant g. We consider the RSWE (2.1) under

periodic boundary conditions

z(a, y, t) = z(b, y, t), z(x, c, t) = z(x, d, t), z ∈ {u, v, h},

and with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), h(x, 0) = h0(x).
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The RWSE (2.1) is a non-canonical Hamiltonian PDE with the Poisson structure

∂z

∂t
= J (z)

δH
δz

=


0 q −∂x
−q 0 −∂y
−∂x −∂y 0



uh

vh

Φ

 , (2.2)

where z(x, t) = (u(x, t), v(x, t), h(x, t))T is the solution vector, υ(x, t) = (u(x, t), v(x, t))T

is the velocity field, andH(z) is the Hamiltonian

H(z) =
1

2

∫∫
h(υ · υ + gh)dx. (2.3)

The skew-symmetric Poisson bracket is defined for any two functionals A and B
[80, 103] as

{A,B} =

∫∫ (
q
δ((A,B)

δ(u, v)
− δA
δυ
· ∇δB

δh
+
δB
δυ
· ∇δA

δh

)
dx, (2.4)

where∇ = (∂x, ∂y)T , and δA/δυ is the functional derivative ofA with respect to υ.

The functional Jacobian is given by

δ(A,B)

δ(u, v)
=
δA
δu

δB
δv
− δB
δu

δA
δv
.

Although the matrix J in (2.2) is not skew-symmetric, the skew-symmetry of the

Poisson bracket is shown up after integration by parts [80], and the Poisson bracket

satisfies the Jacobi identity

{A, {B,D}}+ {B, {D,A}}+ {D, {A,B}} = 0,

for any three functionalsA, B, and D. Conservation of the Hamiltonian (2.3) follows

from the antisymmetry of the Poisson bracket (2.4)

dH
dt

= {H,H} = 0.

Other conserved quantities of the RSWE [103] are the Casimirs of the form

C =

∫∫
hG(q)dx,

where G is an arbitrary function of the potential vorticity q. The Casimirs are addi-

tional constants of motion which commute with any functional A, i.e., the Poisson

bracket vanishes

{A, C} = 0, ∀A(z) or J ij ∂C
∂zj

= 0.
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Important special cases of the Casimirs are potential enstrophy Z , vorticity V , and

massM, given by

Z =
1

2

∫ ∫
hq2dx =

1

2

∫ ∫
1

h

(
∂v

∂x
− ∂u

∂y
+ f

)2

dx,

V =

∫∫
hqdx, M =

∫∫
hdx.

(2.5)

2.1.2 The f -plane and β-plane Approximations

A common technique for studying geophysical flows in the atmosphere is the "tangent

plane" approximation, which is obtained by projecting the RSWE from the surface

of Earth, onto local tangent plane. The tangent plane approximation is valid when

horizontal scales small, e.g., mesoscale phenomena. The Cartesian coordinates x, y,

and z in the tangent plane point North, East, and outward from the centre of the Earth,

respectively.

The RSWE (2.1) describes inviscid fluid rotating with angular velocity vector Ω =

(Ωx,Ωy,Ωz). Both Ωx and Ωy depend on x and y axes but not on z. The angular

velocity vector can be written as [111]:

Ωx = Ω cos θ sinφ, Ωy = Ω cos θ cosφ, and Ωz = Ω sin θ, (2.6)

where θ is the angle corresponding to the latitude, and φ is the angle determining the

orientation between the x-axis and the eastward direction. In this study, we set the x-

axis of the rotation vector to zero, implying that it is aligned to the East. In Figure2.1,

the components of the angular velocity vector are shown for the latitude θ and φ = 0.

Hence, the components of the Coriolis force can be written as

2Ω× u ≈ (−2Ωv sin θ, 2Ωu sin θ,−2Ωu cos θ) = (−fv, fu,−2Ωu cos θ) , (2.7)

where the Coriolis parameter f = 2Ω sin θ. The vertical component of (2.7) is usually

neglected due to dominant terms in the vertical equation of motion.

The f -plane approximation assumes that the Coriolis force is constant over the tan-

gent plane so that f can be approximated as, f0 = 2Ω sin θ0, where θ0 is the central

latitude of the region. The f -plane model is more useful when the horizontal scales
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small. A more realistic model on the approximation of the Coriolis parameter over a

larger horizontal scales is called β-plane approximation, which takes the variation of

the Coriolis parameter into account. The β-plane approximation can be obtained by

expanding the Coriolis parameter in a Taylor series about the central latitude θ0 as

f ≈ f0 + y

(
∂f

∂y

)
θ0

= f0 + βy. (2.8)

O

O

y
z

Equator

Figure 2.1: Outline of the components of the angular velocity vector Ω with respect
to the latitude angle θ as Ωx = 0, (reproduced from [61]).

2.1.3 Rotating Shallow Water Equation in the f-plane

Generally, in the ocean and atmosphere models, computing the Coriolis force is done

by considering just the component of the planetary rotation vector that is locally nor-

mal to geopotential surfaces, which is known as "traditional approximation" [113].

On the other hand, the so-called β-plane approximation is applicable when the earth’s

surface is considered locally flat with the latitudinal variation of the Coriolis force,

where the Coriolis force approximated as f ≈ f0βy. The β-plane approximation is

also used frequently in the literature (see for example [17, 35]). In some models, the

latitudinal variation in the Coriolis parameter is neglected for small regions, and the

Coriolis force f is assumed to be a constant value, which corresponds to the f-plane

approximation of the RSWE.
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Inserting the potential vorticity q in (2.1), the RSWE can be written in the f-plane as

∂u

∂t
= −uux − vuy − ghx + fv,

∂v

∂t
= −uvx − vvy − ghy − fu,

∂h

∂t
= −(uh)x − (vh)y.

(2.9)

2.1.4 Non-Traditional Rotating Shallow Water Equation

Most of the atmosphere and ocean models consider the traditional approximation of

the Coriolis force. Nevertheless, many oceanographic and atmospheric phenomena

are primarily influenced by the non-traditional component of the Coriolis force [112],

such as Ekman spirals [75], deep convection [81], and internal waves [47]. The nondi-

mensional NTSWE [41, 110, 113] has the same structural form as the traditional SWE

[103] by distinguishing between the canonical velocities ũ(x, y, t) and ṽ(x, y, t), and

particle velocities u(x, y, t) and v(x, y, t)

∂ũ

∂t
= hqv − ∂Φx,

∂ṽ

∂t
= −hqu+ Φy,

∂h

∂t
= − ∂

∂x
(hu)− ∂

∂y
(hv),

(2.10)

where h(x, y, t) denote the height field, and x and y denote horizontal distances within

a constant geopotential surface. The one-layer NTSWE (2.10) describes an inviscid

fluid flowing over bottom topography at z = hb(x, y) in a frame rotating with angular

velocity vector Ω = (Ω(x),Ω(y),Ω(z)). The orientation of the x and y axes are consid-

ered arbitrary with respect to North. In traditional rotating and non-rotating SWEs,

only the particle velocity components appear. The canonical velocity components

are related to the canonical momentum per mass or to the depth average of particle

velocities as

ũ = u+ 2Ω(y)

(
hb +

1

2
h

)
, ṽ = v − 2Ω(x)

(
hb +

1

2
h

)
. (2.11)

The Bernoulli potential Φ and potential vorticity q are given by

Φ =
1

2
(u2 + v2) + g(hb + h) + h(Ω(x)v − Ω(y)u),

q =
1

h
(2Ω(z) + ṽx − ũy).
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The non-traditional parameter is given as σ = H/Rd, where H represents the layer

thickness scale and Rd is Rossby deformation radius, and g denotes the gravitational

acceleration [41, 110].

The traditional and non-traditional RSWE differ only by a function of the space alone,

so their time derivatives are identical. The non-rotating, traditional SWE [102] and

NTSWE (2.10) have the same Hamiltonian structure and Poisson bracket [41, 110,

113]

∂z̃

∂t
= J (z̃)

δH
δz̃

=


0 q −∂x
−q 0 −∂y
−∂x −∂y 0



hu

hv

Φ

 , (2.12)

where z̃ = (ũ, ṽ, h). The Hamiltonian or the energy of (2.10) is given in terms of

particle velocity components by

H(z) =

∫∫ {
1

2
h(u2 + v2) + gh

(
hb +

1

2
h

)}
dx, (2.13)

over a periodic domain. We remark that the Hamiltonian (2.12) is treated as a func-

tion of the canonical velocity components ũ and ṽ and the layer thickness using the

relations (2.11).

The Casimirs are the potential enstrophy

Z =
1

2

∫ ∫
hq2dx =

1

2

∫ ∫
1

h

(
Ω(z) +

∂ṽ

∂x
− ∂ũ

∂y

)2

dx, (2.14)

the massM =
∫∫

hdx, and the vorticity V =
∫∫

hqdx.

2.1.5 Rotating Thermal Shallow Water Equation

RSWE is widely used in planetary and geophysical fluid dynamics as an conceptual

model for the behaviour of rotating inviscid fluids with one or more layers. The hor-

izontal velocity is considered to be depth-independent in RSWE, so the fluid moves

in columns in each layer. A drawback of this model is that it does not admit horizon-

tal temperature and density gradients. The RTSWE takes into account the horizontal

density/temperature gradients compared with RSWE. It is also known in the litera-

ture as Ripa equation [99]. The RTSWE can be obtained along the same lines as the
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RSWE, by vertical averaging of the primitive equations in the Boussinesq approx-

imation, and using the hypothesis of columnar motion (mean-field approximation),

but relaxing the hypothesis of uniform density/temperature [53, 129]. The RTSWE

provides a depth-averaged description of motions in a fluid layer that permits hori-

zontal variations in material properties. When the layer depth is supposed to be small

compared with a typical horizontal length scale, the vertical fluid acceleration in the

layer may be neglected, then the RTSWE [39, 122, 43] has the form

∂h

∂t
= −(hu)x − (hv)y,

∂u

∂t
= hqv −

(
u2 + v2

2

)
x

− h

2
sx − s(h+ b)x,

∂v

∂t
= −hqu−

(
u2 + v2

2

)
y

− h

2
sy − s(h+ b)y,

∂s

∂t
= −usx − vsy,

(2.15)

where u(x, y, t) and v(x, y, t) are the depth-averaged relative velocities, h(x, y, t) is

the fluid height, b(x, y) represents the bottom topography, g is the gravity constant,

s = g ρ
ρ0

is the buoyancy, where the ρ = ρ(y) horizontally varying density, ρ0 is the

reference density used in the Boussinesq approximation. Density variations in the

ocean are proportional to temperature variations, in the atmospheric applications, ρ

and ρ0 should be replaced with the potential temperature θ and θ0. An f -plane ap-

proximation is not suitable when considering RSWE over large length scales, whereas

in the β -plane approximation, f varies with the latitude, f = f0 + βy, which is ap-

plicable for larger length scales. The RTSWE (2.15) is considered as the RSWE on

doubly periodic domain Ω ∈ Rd, d = 1, 2 and in time interval [0, T ] with the initial

conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), h(x, 0) = h0(x), s(x, 0) = s0(x).

The RTSWE has as similar non-canonical Hamiltonian/Poisson structure as the RSWE
[39, 122, 43]

∂z

∂t
= −J (z)

δH
δz

= −


0 ∂x ∂y 0

∂x 0 −q −h−1sx
∂y q 0 −h−1sy
0 h−1sx h−1sy 0




u2+v2

2 + sh+ sb

hu

hv

h2

2 + hb

 , (2.16)

19



with the conserved Hamiltonian or the energy

E(z) =

∫
Ω

(
h2s

2
+ hsb+ h

u2 + v2

2

)
dΩ, (2.17)

where z = (h, u, v, s)T . Other conserved quantities are the total mass, the total po-

tential vorticity, and the total buoyancy

M =

∫
h dΩ, Q =

∫
q dΩ, B =

∫
hs dΩ, (2.18)

respectively. Unlike the RSWE, in case RTSWE, the potential enstrophy is not con-

served [43].

2.2 Spatial Discretization

For the space discretization of the RSWE (2.1), the spatial domain Ω = (a, b)× (c, d)

is discretized on the uniform grid nodes xij = (xi, yj)
T , where the nodes are xi =

a+(i−1)∆x and yj = c+(j−1)∆y, i = 1, . . . , Nx+1, j = 1, . . . , Ny+1 so that the

spatial domain is divided into Nx and Ny equidistant intervals in x and y-directions,

respectively. Hence, the mesh sizes becomes ∆y = (d−c)/Ny and ∆x = (b−a)/Nx.

After the spatial discretization, the semi-discrete time-dependent solution are defined

as follows

u(t) = (u11(t), . . . , u1Ny(t), u21(t), . . . , u2Ny(t), . . . , uNxNy(t))T ,

v(t) = (v11(t), . . . , v1Ny(t), v21(t), . . . , v2Ny(t), . . . , vNxNy(t))T ,

h(t) = (h11(t), . . . , h1Ny(t), h21(t), . . . , h2Ny(t), . . . , hNxNy(t))T ,

(2.19)

where each semi-discrete particle velocities uij(t), vij(t) and the fluid depth hij(t)

denotes the approximate solutions of u(x, t), v(x, t), and h(x, t), respectively at the

grid nodes xij and time t, i = 1, . . . , Nx, j = 1, . . . , Ny. We remark that each

semi-discrete solution vector in (2.19) has N := NxNy elements because we ignore

the solutions on the topmost and rightmost boundary due to the periodic boundary

conditions. In the remainder of this Chapter, we ease the notation by omitting the

time dependency of the semi-discrete solutions, i.e., by simply writing u, v, and h,

the semi-discrete vector for the solution vector z is defined by z = (u;v;h) ∈ R3N .

Similarly, the semi-discrete vector for the potential vorticity q is defined by q.
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The first-order partial derivatives are approximated by one-dimensional central finite

differences, and then one-dimensional operators are extended to two dimensions by

utilizing the Kronecker product. For a positive integer s, let D̃s denotes the matrix

of central finite-differences to the first-order ordinary differential operator under pe-

riodic boundary conditions

D̃s =



0 1 −1

−1 0 1
. . . . . . . . .

−1 0 1

1 −1 0


∈ Rs×s.

Then, on the two-dimensional mesh, the central finite-difference matrices correspond-

ing to the first-order partial derivative operators ∂x and ∂y are given, respectively, by

Dx =
1

2∆x
D̃Nx ⊗ INy ∈ RN×N , Dy =

1

2∆y
INx ⊗ D̃Ny ∈ RN×N ,

where ⊗ denotes the Kronecker product, and INx and INy are the identity matrices of

size Nx and Ny, respectively.

The semi-discrete formulation of the RSWE (2.2) is given as the following 3N -

dimensional system of Hamiltonian ODEs

dz

dt
= J(z)∇H(z) =


0 qd −Dx

−qd 0 −Dy

−Dx −Dy 0




u ◦ h
v ◦ h

1
2
(u ◦ u+ v ◦ v) + gh

 , (2.20)

where ◦ denotes element-wise or Hadamard product. In (2.20), the matrix qd ∈
RN×N corresponds to the diagonal matrix with the diagonal elements qdii = qi, where

q ∈ RN denotes the semi-discrete potential vorticity vector, i = 1, . . . , N .

The fully discrete conserved quantities of RSWE are defined as:

• energy

Hk = H(zk) =
1

2

N∑
i=1

((uki )
2 + (vki )2 + ghki )h

k
i ∆x∆y, (2.21)

• potential enstrophy

Zk = Z(zk) =
1

2

N∑
i=1

((Dxv
k)i − (Dyu

k)i + f)2

hki
∆x∆y, (2.22)
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• vorticity

V k = V (zk) =
N∑
i=1

((Dxv
k)i − (Dyu

k)i + f)∆x∆y, (2.23)

• and mass

Mk = M(zk) =
N∑
i=1

hki ∆x∆y. (2.24)

The RTSWE (2.15) is discretized similarly as the RSWE. The time-dependent ap-

proximate semi-discrete solution vectors are given as

u(t) = (u11(t), . . . , u1Nx(t), u21(t), . . . , u2Nx(t), . . . , uNxNy(t))T ,

v(t) = (v11(t), . . . , v1Nx(t), v21(t), . . . , v2Nx(t), . . . , vNxNy(t))T ,

h(t) = (h11(t), . . . , h1Nx(t), h21(t), . . . , h2Nx(t), . . . , hNxNy(t))T ,

s(t) = (s11(t), . . . , s1Nx(t), h21(t), . . . , s2Nx(t), . . . , sNxNy(t))T .

(2.25)

The semi-discrete form of the RTSWE (2.2) leads to a 4N dimensional system of
Hamiltonian ODEs in skew-gradient form

dz̃

dt
= −J(z̃)∇zH(z)

= −


0 Dx Dy 0

Dx 0 −q −h−1Dx · s

Dy q 0 −h−1Dy · s

0 h−1Dx · s h−1Dy · s 0




u2+v2

2 + s ◦ h+ sb

h ◦ u

h ◦ v
h2

2 + hb

 , (2.26)

where the matrix qd ∈ RN×N , again denotes the diagonal matrix containing the

semi-discrete vorticity q ∈ RN in the principal diagonal, as in (2.2).

The fully discrete form of the energy, total vorticity, mass, and buoyancy are given at

the time instances tk as

Hk =
n∑
i=1

(
1

2
(hik)

2ski + hiks
k
i b+ hik

(uik)
2 + (vik)

2

2

)
∆x∆y, (2.27a)

Mk =
n∑
i=1

(hik)∆x∆y, (2.27b)

Qk =
n∑
i=1

(
(Dxv

k)i − (Dyu
k)i + f

)
∆x∆y, (2.27c)

Bk =
n∑
i=1

(hiks
i
k)∆x∆y, (2.27d)

respectively.
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2.3 Temporal Discretization

In the following we present two different time dscretization of the SWEs. The first

one is the average vector field (AVF) method for the time integration of the ODE

system (2.20) in Poisson form and the second one is for the Kahan’s method for the

semi-discretized SWEs as linear-quadratic sysyems of ODEs.

2.3.1 Average Vector Field Method

The time domain [0, T ] is divided into K uniform intervals with the time-step size

∆t = T/K as 0 = t0 < t1 < . . . < tK = T , and tk = k∆t, k = 0, 1, . . . , K. Then,

we denote by uk = u(tk), vk = v(tk), and hk = h(tk) the full discrete solution

vectors at time tk.

Time integration of the ODE system (2.20) in Poisson form by the AVF method [33]

yields

zk+1 = zk + ∆tJ

(
zk+1 + zk

2

)∫ 1

0

∇H(ξ(zk+1 − zk) + zk)dξ. (2.28)

The main advantage of the AVF method [33] is the conservation of the higher-order

polynomial Hamiltonians, including the cubic Hamiltonian H of the SWE (2.1).

Quadratic physical quantities like circulation and mass are also preserved exactly

by the AVF method. Nevertheless, the higher-order polynomial physical quantities

like enstrophy (cubic) are not conserved. Implementing the AVF method, the in-

tegral on the right-hand side of (2.28) need to be computed. Because the discrete

Hamiltonian H and the Casimirs, like potential enstrophy, circulation, and mass are

polynomial, they can be exactly integrated with a Gaussian quadrature rule of the

appropriate order. The AVF method is studied with finite element discretization of

the RSWE [8, 125] and for RTSWE [43] in Poisson form. Although the desired

properties, such as conservation of energy, are obtained, the AVF method is com-

putationally expensive due to its implicit form. In [43], the semi-implicit form of

the AVF method is studied with a quasi-Newton solver and simplified Jacobian for

the RTSWE. In [113], the NTSWE in the Hamiltonian form is discretized in space

following [103] by the Arakawa-Lamb discretization [4] in space, where it is shown
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that by using the non-structure preserving time integrators like the Runge-Kutta and

Adams-Bashforth methods, causes drifts in the energy and enstrophy [113]. On the

other hand, preservation of multiple integrals like the enstrophy at the same time [37]

by geometric integrators like the AVF method is not possible. In [8, 125], the AVF

method employed to the SWEs in a different Hamiltonian form, where the SWEs

are discretized in space by compatible finite elements. Central difference approxi-

mation of the first order differential operators ensures that the discretized ODE is in

skew-symmetric form, which is necessary for the preservation of the Hamiltonian and

other conserved quantities. The skew-gradient structure of RTSWE is also preserved

using finite element methods in [43], the RSWE and linear SWE with discontinuous

Galerkin method [46, 126], and finite volume method [97].

The AVF method is used frequently energy preserving and dissipating integrator for

canonical Hamiltonian and dissipative systems [24]), and multysymplecic PDEs [50].

There are also higher-order versions of the AVF method, but they are more computa-

tional costly

2.3.2 Kahan’s Method

The spatial discretization of the RSWE (2.9) results in the following system of ODEs:

du

dt
= −u ◦ (Dxu)− v ◦ (Dyu)− gDxh+ fv,

dv

dt
= −u ◦ (Dxv)− v ◦ (Dyv)− gDyh− fu,

dh

dt
= −Dx(u ◦ h)−Dy(v ◦ h).

(2.29)

The semi-discrete RSWE (2.29) consists of linear and quadratic terms, which can be

written as

dz

dt
= F (z) = R1(z) +R2(z) + L(z), (2.30)

where the L(z) includes the linear terms, while the quadratic vectorR1(z) andR2(z)

includes the quadratic terms, given by

R1(z) =


−u ◦ (Dxu)

−u ◦ (Dxv)

−Dx(u ◦ h)

 , R2(z) =


−v ◦ (Dyu)

−v ◦ (Dyv)

−Dy(v ◦ h)

 , L(z) =


−gDxh+ fv

−gDyh− fu
0

 .
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For the linear-quadratic autonomous ODE systems like (2.29), Kahan introduced an

"unconventional" discretization [67]

zk+1 − zk

∆t
= Rf

1(zk, zk+1) +Rf
2(zk, zk+1) +

1

2
L(zk + zk+1),

where the symmetric bilinear forms Rf
1(·, ·) and Rf

2(·, ·) are computed by the polar-

ization [25] of the quadratic vector fields R1(·) and R2(·), respectively, defined by

Rf
i (zk, zk+1) =

1

2

(
Ri(z

k + zk+1)−Ri(z
k)−Ri(z

k+1)
)
, i = 1, 2.

Kahan’s method is time-reversal, second-order, and linearly implicit method, i.e., it

need just one Newton iteration per each time step [68]. The fully discrete RSWE

equations (2.30) with Kahan’s method is given as(
I3N −

∆t

2
F ′(zk)

)
zk+1 − zk

∆t
= F (zk), (2.31)

where I3N ∈ R3N×3N denotes the identity matrix and F ′(zk) denotes for the Jacobian

matrix of F (z) evaluated at zk. Analytical form of the Jacobian matrix F ′(z) is given

as

F ′(z) = −


udDx + (Dxu)d + vdDy (Dyu)d − f gDx

(Dxv)d + f udDx + vdDy + (Dyv)d gDy

Dxh
d Dyh

d Dxu
d +Dyv

d

 ,

where the superscript d denotes the diagonal matrix possessing the a vector in prin-

cipal diagonal, i.e., for any vector a ∈ RN , the matrix ad ∈ RN×N is the diagonal

matrix with the diagonal elements adii = ai.

Spatial discretization of the RTSWE (2.15) results in the following linear-quadratic

ODE system

dh

dt
= −Dx(u ◦ h)−Dy(v ◦ h),

du

dt
= −u ◦ (Dxu)− v ◦ (Dyu)− h

2
◦Dxs− s ◦Dxh− s ◦Dxb+ fv,

dv

dt
= −u ◦ (Dxv)− v ◦ (Dyv)− h

2
◦Dys− s ◦Dyh− s ◦Dyb− fu,

ds

dt
= −u ◦Dxs− v ◦Dys.

(2.32)

which can be written in matrix-tensor form as

dz

dt
= F (z) = Az + H(z ⊗ z), (2.33)
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where A ∈ R4N×4N is a linear matrix operator containing the linear terms

Az =


0

−s ◦Dxb+ fv

−s ◦Dyb− fu
0

 ,

and H ∈ R4N×(4N)2 is a matricized tensor operator containing the quadratic terms

H(z ⊗ z) =


−Dx(u ◦ h)−Dy(v ◦ h),

−u ◦ (Dxu)− v ◦ (Dyu)− h
2
◦Dxs− s ◦Dxh,

−u ◦ (Dxv)− v ◦ (Dyv)− h
2
◦Dys− s ◦Dyh,

−u ◦Dxs− v ◦Dys

 .
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CHAPTER 3

PROJECTION BASED INTRUSIVE REDUCED-ORDER

MODELLING

Realistic numerical simulations of the SWEs are computationally costly because they

require a large amount of computer memory and computation time. ROMs have

been developed as an effective strategy to decrease the computational cost of simulat-

ing high-fidelity PDEs by constructing a low-dimensional linear subspace (reduced

space) that approximately expresses the solution to the PDEs with a significantly low

computational cost. The solutions (trajectories) of the high-fidelity FOM, obtained

by space-time discretization of PDEs and then projected onto reduced space using

the POD [16, 108]. The POD is a computationally efficient reduced-order modeling

technique that been extensively applied in large-scale simulations of nonlinear PDEs.

The dominant modes of the PDEs are recovered from the trajectories of the FOM.

The computation of the FOM trajectories is performed in the "offline" stage. On the

other hand, the "online" stage indicates the solution of the reduced system in the low-

dimensional subspace. Various ROMs are constructed for the SWEs, in conservative

form [79, 78], in the f-plane [44], in the β-plane [35, 36], with POD and in the β-plane

[17, 18] with DMD. MOR methods for SWEs have been intensively investigated in

the literature, see, e.g., [3, 17, 18, 44, 69, 78, 79, 109].

The main obstacle in constructing the efficient ROMs from the high-dimensional

FOM is the efficient evaluation of the nonlinear terms on the POD basis. The com-

putational cost is decreased by interpolating the nonlinear terms and evaluating them

in the sampling points, known as hyper-reduction techniques [7, 29, 5, 131, 87, 22].

In this thesis, as a hyper-reduction technique, we consider DEIM [29], which is one
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of the most popular hyper-reduction methods. The number of sampling points used

in DEIM scales with the reduced dimension. For PDEs possessing nonlinear polyno-

mial terms like SWEs, ROMs do not need approximating the nonlinearities through

hyper-reduction techniques. The reduced operators can be precomputed in the of-

fline stage. After projecting the full-order operators onto the reduced space, the low-

dimensional ROM preserves the polynomial structure of the FOM. In recent years, for

PDEs with nonlinear polynomial terms, the computationally efficient ROMs are de-

veloped by using some properties from tensor theory and by matricizations of tensors

[10, 12, 11, 56, 72].

In the traditional projection-based intrusive MOR techniques, the conservation of

physical quantities like energy is not, in general, guaranteed. When the physical quan-

tities violated, ROMs frequently results in an unstable or qualitatively wrong reduced

system, even when the high-fidelity system is stable. Thus, preservation of the phys-

ical quantities of the FOMs by the reduced system yields in physically meaningful

ROMs for fluid dynamics problems, such as compressible and incompressible Euler

equation [2]. The stability of ROMs over the long-time integration has been stud-

ied in the context of Lagrangian systems [23], and port-Hamiltonian systems [28].

In [1, 91], symplectic Galerkin projection are constructed for linear and nonlinear

Hamiltonian systems, such as the linear wave equation, nonlinear Schrödinger equa-

tion, and Sine-Gordon equation that capture the symplectic structure of Hamiltonian

systems to enforce long term stability to the ROMs.

We study structure preserving reduced-order modeling for the RTSWE that exploits

skew-symmetry of the centered discretization schemes to recover conservation of the

energy at the level of the ROMs. In Sections 3.1, 3.2 and 3.3, the POD and DEIM

are introduced and the tensor algebra is briefly described, which are needed for con-

structing ROMs.

In Section 3.4, ROM are constructed by exploiting the linear-quadratic-structure of

the RSWE after the semi-discretization in space without necessitating hyper reduction

techniques like the DEIM. Utilizing tensor techniques [12, 11, 69], the computation of

the ROM is further accelerated while preserving the skew-symmetric structure. For

the time integration of the ROM, we have considered the linearly implicit Kahan’s
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method. The cubic Hamiltonian (energy) of the RSWE and the linear and quadratic

Casimirs, i.e., the mass, the buoyancy, and the total vorticity, are well preserved and

the speed-ups of order two are achieved over the FOM.

In [51, 63, 84], the skew-gradient structure of the Hamiltonian system of ODEs,

such as the Korteweg-de Vries (KdV) equation with the constant Poisson matrix,

are preserved in the ROMs using the modified POD-Galerkin projection. However,

RTSWE possesses an additional difficulty in constructing structure-preserving ROM

with the state-dependent skew-symmetric Poisson matrix. Moreover, due to the ra-

tional nonlinear term in the Poisson matrix, constructing efficient ROMs by offline-

online decomposition becomes challenging in the case of all SWEs. Thus, in the

case of the state-dependent skew-symmetric Poisson structure, preserving the skew-

gradient structure in the ROMs becomes more challenging than with the constant

Poisson structure. Another bottleneck is the lack of the numerical integration tech-

nique that preserving both the Poisson structure and the energy of a Hamiltonian

system [57]. When the ROMs of RTSWE maintain the skew-gradient structure and

thus have the energy-preservation law, energy-preserving integrators can be easily ap-

plied. We consider the AVF method [33] to integrate the semi-discrete skew-gradient

RTSWE, which is conjugated to a Poisson integrator. Recently, the AVF method is

used to construct ROMs to Hamiltonian systems like nonlinear Schrödinger equa-

tion [70] and the Korteweg-de Vries equation [51, 63, 84]. To separate the high-

dimensional variables in the computation of the nonlinearities in the reduced form,

we consider DEIM. Nevertheless, the basic implementation of a proposed structure-

preserving DEIM does not permit the separation of online and offline phases in the

nonlinear terms of the non-canonical Hamiltonian systems like the RTSWE. To ac-

celerate the online computation of the ROMs, we approximated the Poisson matrix

and the gradient of the Hamiltonian of the RTSWE with the DEIM, which yields a

skew-gradient ROM with linear and quadratic terms only.

In Section 3.5.1, ROMs are constructed by using the POD-Galerkin projection which

preserves the skew-gradient structure of the semi-discrete non-traditional rotating

SWE (NTSWE) with full Coriolis force. The DEIM is applied only for the gradi-

ent of the Hamiltonian, but not for the skew-symmetric Poisson matrix.
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In Section 3.5.3 a POD-DEIM ROM is constructed for the RTSWE that preserving

both the skew-symmetric Poisson matrix and structure of the skew-gradient reduced

system. Numerical simulations for the double vortex test case from [43] show that by

preserving the structure of FOM of RTSWE, i.e., preservation of the skew-gradient

structure, the long term integration of the ROM results in a physically meaningful

solution. Furthermore, the numerical results indicate that ROMs of the RTSWE with

the DEIM and POD yield a stable approximation of the solutions while exhibiting

several orders of magnitude computational speed-ups over the FOMs.

3.1 Proper Orthogonal Decomposition (POD)

POD method seeks to find optimal basis for low-dimensional approximation of sub-

sets in the Hilbert space. The basis vectors obtained by POD is extracted from the

spatio-temporal observation matrix called "snapshot" matrix. Let us define the snap-

shot matrix as follows

S =
(
z1, z2, . . . , zK

)
(3.1)

where zk = z(tk) called the snapshot at time instances tk for k = 1, . . . , K. The

snapshots are obtained from the solution of the FOM. The POD basis vectors ψi for

i = 1, . . . , r satisfy the following optimization problem

arg min
{ψi}ri=1

K∑
j=1

‖zj −
r∑
j=1

((zj)Tψi)ψi‖2
2 (3.2)

subject to ψTi ψi = δij, for 1 ≤ i, j ≤ r,

where δij is the Kronecker delta. Now, assume that dimension of the FOM is greater

than the number of snapshots: N > K. Then, the solution of the minimization

problem (3.2) can be expressed in terms of left singular vectors of the snapshot matrix

S. Let us define the SVD of snapshot matrix as

S = V ΣW T ,

where Σ = diag(σ1, . . . , σK) is a diagonal matrix, containing singular values and

V = [v1, . . . , vK ] is the matrix containing left singular vectors. The POD modes can

be expressed via first r left singular vectors. Let us denote Vr = [v1, · · · , vr] as the
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POD basis matrix. Using r POD modes the error in the optimization problem (3.2)

becomes

min
Vr∈RN×r

||S − VrV T
r S||2F =

K∑
j=r+1

σ2
j ,

where ‖ · ‖F denotes the Frobenius norm. The optimization error gives motivation to

determine the order of the approximation r via following relative "cumulative energy"

criteria ∑n
j=1 σ

2
i,j∑K

j=1 σ
2
i,j

> 1− κ, (3.3)

where κ is a user-specified tolerance.

Using POD modes the state can be approximated as z = ẑ ≈ Vrzr. After substituting

the approximation of the state in (2.30) the approximate model takes form of

Vr
dzr
dt
− F (ẑ) = R(ẑ). (3.4)

Finally, employing Galerkin projection on (3.4), the ROM becomes

dzr
dt
− V T

r F (ẑ) = V T
r R(ẑ) = 0. (3.5)

The deterministic SVD for the snapshot matrices of size N × K has complexity of

O(min(NK2, NK). In this study, we use the randomized SVD (rSVD) [58, 6] which

is faster than the deterministic SVD for big matrices and has complexity ofO(NKr).

3.2 Discrete Empirical Interpolation Method (DEIM)

In the nonlinear PDEs like RSWE, the right-hand side F (z) contains nonlinear terms,

which posses burden in Jacobian and online computation of the ROM. For instance,

let the right-hand side contains F (z) = Az + N(z), where A corresponds linear

operator and N(z) is nonlinear function. Using POD-Galerkin ROM, right-hand be-

comes V T
r F (Vrzr) = V T

r AVrzr + V T
r N(Vrzr), where V T

r AVr can be precomputed,

but V T
r N(Vrzr) still needs to evaluated in FOM dimension. One way to deal with

inefficiency due to nonlinearities in the FOM is using discrete empirical interpolation
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method (DEIM). The DEIM approximates the nonlinearities using interpolation on a

subset which is independent of FOM dimension.

Let us consider a nonlinear vector f(ẑ) ∈ RN . The DEIM procedure in [29] intro-

duced to approximate the nonlinear vectors by interpolating them onto an empirical

basis, that is,

f(ẑ) ≈ Φc(t),

where Φ = [φ1, . . . , φp] ∈ RN×p is the basis matrix and c(t) : [0, T ] 7→ Rp is the

reduced coefficient vector. Let us define P = [eρ1 , . . . , eρp ] ∈ RN×p as the subset of

columns of the identity matrix. Let (P)>Φ is invertible, then, the coefficient vector

c(t) can be uniquely obtained by solving (P)>Φc(t) = (P)>f(ẑ(t)). Hence, the

nonlinear terms can be approximated as follows

f(ẑ(t)) ≈ Φc(t) = Φ((P)>Φ)−1(P)>f(ẑ(t)), (3.6)

where Φ((P)>Φ)−1 can be precomputed.

Moreover, the reduced approximated nonlinear vectors using DEIM are defined as

fr(ẑ(t)) := (P)>f(ẑ(t)) ∈ Rp, by which online computation of the nonlinear term

f(ẑ(t)) ∈ RN no longer scales with the FOM dimension N and instead just p � N

dimensional DEIM reduced nonlinear vectors fr(ẑ(t)) need to be computed. The

entries of reduced nonlinear terms fr(ẑ(t)) consist of the p selected entries of the

nonlinear vectors f(ẑ(t)) among N entries.

The accuracy of DEIM related on the selection of the basis, and not much by the

choice of the selection matrix P. Generally, the interpolation basis {φ1, . . . , φp} is

obtained from the snapshots matrices of the nonlinear vectors, e.g.,

Sf = [f 1,f 2, · · · ,fK ] ∈ RN×K , (3.7)

where fk = f(ẑk) denotes the nonlinear vector f(ẑ(t)) at time tk, computed by

using the solution vectors ẑk = ẑ(tk), k = 1, . . . , K. The columns of the matrices

Φ = [φ1, . . . , φp] are determined as the first p� N dominant left singular vectors in

the SVD of Sf . The selection matrix P for DEIM is determined by a greedy algorithm

based on the system residual; see [29, Algorithm 3.1].

A sophisticated way of determining the sampling points is the Q-DEIM [132] which

depends on QR decomposition with column pivoting. It is showed that Q-DEIM
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yields better stability and accuracy properties of the determined selection matrix P(j)

with the pivoted QR-factorization of (Φ(j))>. In this section, we employ Q-DEIM for

obtaining the selection matrices P(j), see Algorithm 1.

Algorithm 1 Q-DEIM

1: Input: Basis matrix Φ ∈ RN×p

2: Output: Selection matrix P

3: Perform pivoted QR factorization of Φ> so that Φ>Π = QR

4: Set P = Π(:, 1 : p)

3.3 Tensor Algebra

Typically, tensors are defined as multidimensional arrays which storing the numbers,

e.g. real numbers. The number of a tensor dimension called the order or mode of a

tensor. For instance, scalars can be represented as zeroth-order tensors, vectors can

be represented as first-order tensors, and matrices can be represented as second-order

tensors. In this study, we will focus on tensors of order three. Figure 3.1 shows

tensors of order zero to up to order three.

Figure 3.1: x ∈ R, x ∈ R4,X ∈ R4×5, X ∈ R4×5×3.

In this section, we use a similar notation with [71]. The subarray obtained by fixing

all indices except one index is called fibers, e.g., for order-three tensor x:jk = xjk.

Fixing all except two indices of tensors called the slices of the tensor, e.g.,X::k = Xk.

Fibers obtained by fixing the first index, the second index, and the third index are

called column, row, and tube fibers, respectively. Frontal, lateral, and horizontal

slices are obtained by fixing first and second, first and third, second and third indices,

respectively. Fibers and slices for a order-three tensor are shown in Figure 3.2 and

3.3.
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Figure 3.2: (left): Column, (middle): row, (right): tube fibers of a mode-3 tensor.

Figure 3.3: (left): Lateral, (middle): horizontal, (right): frontal slices of a mode-3
tensor.

For a given matrix X ∈ RI×J vertically stacking the columns of X into a vector

called vectorization of the matrix.

vec(X) =


x:1

x:2

...

x:J

 . (3.8)

Similiar to vectorization by reordering the tensor into a matrix called matricization.

In this study, we focus on the mode-n matricization (unfolding). For a given tensor

X ∈ RI1×I2×...×IN , mode-n matricization of the tensor into matrix is denoted as

X(n) ∈ RIn×(I1·...·In−1·In+1·...·IN ).

Let us consider m ∈ M as the element of the matricized tensor and x ∈ X as the

element of a tensor. The mode-n unfolding is defined as following:

xi1,i2,··· ,iN 7→ min,j with j = 1 +
N∑
k=1
k 6=n

(
(ik − 1)

k−1∏
m=1
m 6=n

Im

)
(3.9)

.

For instance, let X ∈ R3×3×2 be a tensor with the following frontal slices:

X1 =

1 2 3

4 5 6

7 8 9

 , X2 =

10 11 12

13 14 15

16 17 18

 .
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Then, the three mode-n matricizations are:

X(1) =


1 2 3 10 11 12

4 5 6 13 14 15

7 8 9 16 17 18

 ,

X(2) =


1 4 7 10 13 16

2 5 8 11 14 17

3 6 9 12 15 18

 ,

X(3) =

 1 4 7 2 5 8 3 6 9

10 13 16 11 14 17 12 15 18

 .

3.3.1 Important Tensor Products

Definition 1. The Kronecker product between any two matrices A ∈ RI×J and B ∈
RK×L is defined as follows

A⊗B :=


a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

... . . . ...

aI1B aI2B · · · aIJB


=
[
a1 ⊗ b1 a1 ⊗ b2 · · · aJ ⊗ bL−1 aJ ⊗ bL

]
∈ R(IK)×(JL),

(3.10)

where ⊗ denotes the Kronecker product.

Definition 2. Let A ∈ RI×K and B ∈ RJ×K be two matrices, the Khatri-Rao

(column-wise Kronecker) product between two matrices is defined as:

A�B :=
[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
∈ R(IJ)×K , (3.11)

where � denote Khatri-Rao product.
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Definition 3. Let A ∈ RI×J and B ∈ RI×J matrices, the Hadamard (element-wise)

product between two matrices is defined as follows

A ◦B :=


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J

...
... . . . ...

aI1bI1 aI2bI2 · · · aIJbIJ

 ∈ RI×J , (3.12)

where ◦ denotes Hadamard product.

Definition 4. Let the tensor X ∈ RI1×I2×...×IN and the matrix M ∈ RJ×In are

given, the n-mode product between these tensor and matrix is defined as

(X ×nM )i1···in−1jin+1···iN =
In∑
in=1

xi1...iNmjin , (3.13)

where ×n denotes the n-mode product.

An equivalent expression of Definition (4) can be obtained using unfolded tensors as

Y(n) = MX(n).

3.4 ROM for RSWE in Tensor Framework

In this subsection, we will illustrate the usage of tensorial techniques to obtain ROM

with online cost independent of FOM dimension.

We construct the ROM by approximating the solutions of FOM (2.29) onto a low-

dimensional subspace spanned by the POD basis vectors. The POD basis vectors

obtained from the snapshot matrix, whose columns consist of fully discrete solution

vectors at each time instances.

Typically, all the state variables are stacked in one vector to determine the POD basis

vectors, then the common reduced subspace is determined by taking the SVD of the

snapshot data. When the governing PDEs like the RSWE are coupled, computing

POD basis by the stacked states causes unstable ROMs [95, 98] due to the unpreserved

coupling structure of the FOM. To conserve the coupling structure of RSWE in the

ROMs, the POD basis vectors are determined separately for each the state vector h,

u, and v.
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The ROM arising from the fluid problems poses fluctuations, which can be avoided

by the mean centred snapshots are obtained at time instances tk, k = 1, . . . , K, in the

snapshot matrices Su, Sv, and Sh

Su =
(
u1 − u,u2 − u, · · · ,uK − u

)
∈ RN×K ,

Sv =
(
v1 − v,v2 − v, · · · ,vK − v

)
∈ RN×K ,

Sh =
(
h1 − h,h2 − h, · · · ,hK − h

)
∈ RN×K ,

where u, v, h ∈ RN denote the mean of the snapshots defined by

u =
1

K

K∑
k=1

uk , v =
1

K

K∑
k=1

vk , h =
1

K

K∑
k=1

hk.

The mean-subtracted ROMs is used commonly in fluid dynamics to stabilize the

ROMs, and it guarantees that reduced model solutions would satisfy the same bound-

ary conditions for the FOM [17].

The objective of POD method is to form the POD basis matrices Vu, Vv, Vh ∈ RN×r

which span approximately the column space of the snapshot matrices Su, Sv and Sh,

for a positive integer r � K, respectively. The POD basis matrices are obtained by

the singular value decomposition (SVD) to the snapshot matrices

Su = Vr,uΣr,uW
T
r,u , Sv = Vr,vΣr,vW

T
r,v , Sh = Vr,hΣr,hW

T
r,h ,

where the columns of the orthonormal matrices Vr,i ∈ RN×K and Wr,i ∈ RK×K

are the left and right singular vectors of the snapshot matrix Sr,i, respectively, and

the diagonal matrix Σr,i ∈ RK×K with the diagonal elements (Σr,i)jj = σi,j , j =

1, . . . , K, contains the singular values of Sr,i, i ∈ {u, v, h}. The POD basis matrix

Vi constructed by the first r left singular vectors from Vr,i, i ∈ {u, v, h}. The left

singular vectors of Vi, i ∈ {u, v, h} are called POD modes. Using the POD basis

following optimization problem is satisfied

min
Vi∈RN×n

||Si − ViV T
i Si||2F =

K∑
j=n+1

σ2
i,j , i ∈ {u, v, h},

where ‖ · ‖F denotes the Frobenius norm. Hence, the projection error in the snapshot

matrices is obtained from the sum of the squared singular values greater than the

dimension of ROM. The projection error creates guidance on the accuracy of ROM.
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After computing the POD basis matrices Vu, Vv, and Vh, we approximate û, v̂, and ĥ

to the FOM solutions u, v, and h as follows

u ≈ û = u + Vuur , v ≈ v̂ = v + Vvvr , h ≈ ĥ = h + Vhhr ,

where ur, vr, hr ∈ Rr are the solution vectors of the reduced system of dimension

r � N . For convenience, we also define the following vectors and matrix

z =


u

v

h

 ∈ R3N , zr =


ur

vr

hr

 ∈ R3r , Vz =


Vu

Vv

Vh

 ∈ R3N×3r,

and then we get the approximation z ≈ ẑ = z + Vzzr. We also note that since the

columns of the r-POD matrices are orthonormal, the approximation identity satisfies

zr = V T
z (ẑ− z).

Constructing ODEs and PDEs possessing the nonlinear polynomial terms, ROMs do

not need to approximate the nonlinear term F (·) by sampling; hence the reduced-

order operators arising from projection can be constructed in the offline phase. Sepa-

ration of the offline-online computation as the hyper-reduction methods increase the

computational efficiency of the ROM. Previously, the quadratic nonlinearities of the

FOMs are utilized to construct ROMs for the Navier-Stokes equations [55, 65]. This

approach avoids the approximation of the nonlinearities by hyper-reduction. More-

over, it enables the separation of offline and online phases of FOM and ROM, and the

ROM conserve the linear-quadratic structure of the high-fidelity FOM.

We rewrite the FOM in terms of Kronecker product and tensors to avoid approxi-

mating the nonlinearities in the SWE (2.29) by the hyper-reduction methods, such

as DEIM. The matricizations of the tensors allow us to perform mathematical oper-

ations with tensors easily. A popular matricization of a tensor Q is called n-mode

matricization Qn [10]. The quadratic systems like (2.29) possess three different un-

foldings, depending on the n-mode used for the unfolding. We refer to [71] for the

basic concepts and details of tensors. The matricizations is also advantageous in terms

of matrix-matrix products so that tensor-matrix multiplications can be performed. The

matricizied tensor Q corresponds to the Hessian of the right-hand side of (2.29). In

this study, we have exploited the structure of the matricizied tensor Q to construct the
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reduced Hessian efficiently [10]. The matricizied tensor Q corresponds to the unfold-

ing of a 3-tensor Q ∈ R3N×3N×3N . Due to the structure of well-known discretization

methods such as finite differences and finite elements, the matrix Q is sparse. For the

SWE with quadratic nonlinearities, the cross-terms zi · zj vanish for |i − j| > 3 in

the semi-discretized ODE (2.29). Hence the number of nonzero terms of Q(j) is only

2N .

The semi-discrete system (2.29) can be rewritten using the Kronecker product as the

following linear-quadratic system of ODEs

dz

dt
= F (z) = R̃1(z) + R̃2(z) + L(z), (3.14)

with the following quadratic terms

R̃1(z) = −AxQ



u

u

u

⊗ (Bxz)

 , R̃2(z) = −AyQ



v

v

v

⊗ (Byz)

 , (3.15)

where⊗ denotes the Kronecker product, and the matrices Ax, Ay, Bx, By ∈ R3N×3N

are given by

Ax =


IN

IN

Dx

 , Ay =


IN

IN

Dy

 ,

Bx =


Dx

Dx

IN

 , By =


Dy

Dy

IN

 ,

where IN represent the identity matrix of size N × N . In (3.15), the matrix Q ∈
R3N×(3N)2 represents the matricized 3-tensor such thatQ(z⊗z) = z◦z is satisfied. By

substituting the approximation z ≈ ẑ = z+Vzzr into (3.14), and employing Galerkin

projection onto Vz, the following reduced linear-quadratic system is obtained:

dzr
dt

= Fr(ẑ) = F u
r (ẑ) + F v

r (ẑ) + Lr(ẑ), (3.16)
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where we set

F u
r (ẑ) = −V T

z A
xQ




û

û

û

⊗ (Bxẑ)

 ,

F v
r (ẑ) = −V T

z A
yQ




v̂

v̂

v̂

⊗ (Byẑ)

 ,

Lr(ẑ) = V T
z L(ẑ).

Computation of the reduced quadratic terms F u
r (ẑ) and F v

r (ẑ) in the reduced model

(3.16) is tricky. Next, we discuss the efficient computation of the reduced quadratic

terms F u
r (ẑ). Computation of the second reduced quadratic term F v

r (ẑ) can be done

in a similar way. Substituting the mean-centered approximation ẑ = z+Vzzr into the

quadratic term F u
r (ẑ), and using the properties of the Kronecker product operation,

we obtain

F u
r (ẑ) = F u

r (z + Vzzr)

= −V T
z A

xQ




u + Vuur

u + Vuur

u + Vuur

⊗ (Bx(z + Vzzr))

 ,

= −V T
z A

xQ




u

u

u

⊗ (Bxz) +


u

u

u

⊗ (BxVzzr)



− V T
z A

xQ



Vuur

Vuur

Vuur

⊗ (Bxz) +


Vuur

Vuur

Vuur

⊗ (BxVzzr)

 .

(3.17)

All the term are at most linear in (3.17), only last terms includes quadratic term.
Using the properties of the Kronecker product high-dimensional variables can be de-
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composed as follows

−V T
z A

xQ



Vuur

Vuur

Vuur

⊗ (BxVzzr)

 = −V T
z A

xQ (V ∗u ⊗ (BxVz))



ur

ur

ur

⊗ (zr)



= Qu,r



ur

ur

ur

⊗ (zr)

 ,

(3.18)

where the matrix Qu,r = −V T
z A

xQ (V ∗u ⊗ (BxVz)) ∈ R3r×(3r)2 can be computed in

the offline stage, and

V ∗u =


Vu

Vu

Vu

 ∈ R3N×3r.

The most significant computational issue in constructing Qu,r is the computation of

the Kronecker product V ∗u ⊗ (BxVz) ∈ R(3N)2×(3r)2 , which has a cost ofO(r2N2) for

quadratic terms. Due to the dense structure of POD basis matrices, the construction of

Qu,r needs extra attention. In [10], the reduced matricized tensor Qu,r is constructed

by avoiding the computation of the Kronecker product V ∗u ⊗ (BxVz), having a com-

plexity of orderO(rN2). Therein, utilising the µ-mode (matrix) product, the reduced

matricized tensor Qu,r efficiently constructed as following

• Compute Y3r×3N×3N by Y (1) = −V T
z A

xQ,

• Compute Z3r×3r×3N by Z(2) = V T
z (Bx)TY (2),

• Compute Q3r×3r×3r
u,r by Q(3)

u,r = (V ∗u )TZ(3).

Although using the µ-mode (matrix) product to compute Qu,r decreases the complex-

ity, still the matrix Q must constructed for each different polynomial nonlinear terms.

Recently, in [12, 11] two new algorithms are used for efficient construction of the

reduced matricized tensor Qu,r by taking advantage of the special structure of Kro-

necker product. The compact construction of the reduced matricized tensor Qu,r in
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MatLab notation can be done as follows [12, 11]

Qu,r = −V T
z A

xQ (V ∗u ⊗ (BxVz))

= −V T
z A

xQ(V ∗u ⊗G)

= −V T
z A

x


V ∗u (1, :)⊗G(1, :)

...

V ∗u (3N, :)⊗G(3N, :)

 ,

(3.19)

where G = BxVz ∈ R3N×3r. Hence, the reduced matricized tensor Qu,r can be

formed without explicitly constructing the matrix Q. The complexity of (3.19) is

O(Nr3). The computation of (3.19) is carried out in the offline phase over a loop in

the FOM dimension. Nevertheless, for large-scale problems, this operation is time-

consuming. Next, we show the efficient construction of (3.19) for large-scale prob-

lems. The transpose of the Kronecker products of any given two vectors a and b can

be represented as follows

(vec(ba>))> = (a⊗ b)>

= a> ⊗ b>,
(3.20)

where vec (·) denotes vectorization of a matrix. Using (3.20), the matrix N :=

Q(V ∗u ⊗G) ∈ R3N×(3r)2 in (3.19) can be constructed as follows

N(i, :) =
(
vec
(
G(i, :)TV ∗u (i, :)

))T
, i = 1, 2, . . . , 3N.

We use "MULTIPROD" [76] routine to increase the efficiency in the offline compu-

tation. MULTIPROD uses virtual array expansion to perform multiple matrix prod-

ucts. When the matrix V ∗u ∈ R3N×3r is reshaped as V ∗u ∈ R3N×1×3r, then MULTI-

PROD is applied to G and V ∗u in 2 and 3 dimensions. MULTIPROD assigns virtually

a singleton to the third dimension of G, and we get the 3-dimensional array (ten-

sor) N := MULTIPROD(G, V ∗u ) ∈ R3N×3r×3r. Thus, we can represent (3.19) as

Qu,r = −V T
z A

xN (1), where N (1) ∈ R3N×(3r)2 is the matricization of N . In Sec-

tion 3.4.1, we compare the computational efficiency of computing the reduced matri-

cized tensor Qu,r by the algorithm in [10] with the algorithms in [12, 11] improved

by the use of MULTIPROD.
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3.4.1 Numerical Results

Our test example for the RSWE (2.9) on the spatial domain Ω = [0, 1]2 is given, with

g = 1, f = 0, and with the initial conditions [114]

h(x, 0) = 1 +
1

2
exp

[
−25

(
x− 1

2

)2

− 25

(
y − 1

2

)2
]
,

u(x, 0) = − 1

2π
sin(πx) sin(2πy),

v(x, 0) =
1

2π
sin(2πx) sin(πy).

The periodic boundary conditions are satisfied by the initial conditions. We set the

final time T = 50 for simulation, and spatial and temporal domains are discretized

with the mesh sizes ∆x = 0.01 and ∆t = 4∆x, respectively. This discretization

leads to a FOM dimension of size N = 10000, and K = 1250 time intervals, there-

fore each snapshot matrix Su, Sv, and Sh has size 10000 × 1250. The FOM of the

SWE (2.9) is considered in the f-plane, and integrated with Kahan’s time integrator

(SWE-Kahan). To demonstrate the efficiency of the ROM, we consider (3.16) without

tensorial framework (POD-Kahan) and with tensorial framework (TPOD-Kahan).

In Figure 3.4, the FOM solution of SWE-Kahan for the height field h and the velocity

fields u, v are given. We plot the normalized singular values of the snapshot matrices

Su, Sv, and Sh related to the velocity fields u, v, and the height field h, respectively, in

Figure 3.5. The normalized singular values exhibiting a slow decay for each snapshot

matrix, which is a typical behavior for the problems with wave phenomena in fluid

dynamics [88]. Slow decay in the singular values poses a big difficulty for ROMs,

their dynamical behaviour cannot be captured accurately by the linear combination of

a few POD modes.

To examine the conservation of the discrete enstrophy (2.22), discrete energy (2.21),

and discrete vorticity (2.23) for a FOM solution vector z (or ROM approximation

vector ẑ), we use the time-averaged absolute errors ‖ · ‖H , ‖ · ‖Z and ‖ · ‖V defined as

follows

‖z‖E =
1

K

K∑
k=1

|E(zk)− E(z0)|, E ≡ H,Z, V. (3.21)
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Figure 3.4: FOM solutions at final time T = 50.
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Figure 3.5: Singular values of the snapshot matrix.

Furthermore, to measure the global error between the fully discrete ROM approxima-

tion (FOM-ROM error) and the fully discrete FOM solution, we define the following

time averaged relative L2 errors for the each state variables w ≡ u,v,h

‖w − ŵ‖Rel =
1

K

K∑
k=1

‖wk − ŵk‖L2

‖wk‖L2

, ‖wk‖L2 =
N∑
i=1

wk
i ∆x∆y. (3.22)

To show the FOM-ROM error at a discrete time instance, we consider the node-wise

difference between the FOM solution and ROM approximation.

The slow decay in the normalized singular values also cause a slow decay in FOM-

ROM errors for all states with varying number of POD modes in Figure 3.6. Hence,

the number of POD modes is set to a relatively big value, r = 50, according to the

relative energy criteria (3.3) with κ = 10−4.

In Figure 3.7, the FOM-ROM errors for height field and velocity fields are demon-

strated, which indicates that height field error is slightly less accurate than the veloc-

ities error as in Figure 3.6.

In Figure 3.8, the discrete enstrophy error |Zk−Z0|, the discrete energy error |Hk−
H0|, and the discrete vorticity error |V k−V 0| are shown, k = 1, . . . , K. The discrete
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Figure 3.6: Time averaged relative L2-errors vs. number of POD modes.
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Figure 3.7: FOM-ROM errors at the final time T = 50.

enstrophy, energy, and vorticity are well preserved over the time interval [0, 50]. Since

the vorticity is a quadratic quantity, it is preserved by both methods in Figure 3.8. The

mass is conserved up to machine precision because it is a linear conserved quantity,

and it is not shown here.

Table 3.1: Time averaged relative L2-errors.
‖u− û‖Rel ‖v − v̂‖Rel ‖h− ĥ‖Rel

Kahan 30 POD modes 1.265e-01 1.265e-01 1.567e-02

Table 3.2: Time averaged absolute errors for the conserved quantities.
Energy Enstrophy Vorticity

Kahan 30 POD modes 2.901e-05 3.108e-03 3.454e-05
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Figure 3.8: Errors in the conserved quatities. (left): energy error, (middle): enstrophy

error and (right): vorticity error.
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Table 3.3: Wall-clock time (in seconds) and speed-up factors.
wall-clock time speed-up

FOM 788.89

POD
basis computation 31.02
online computation 289.01
total 321.03 2.45

TPOD
tensor computation [10](MP) 20.78 (9.43)
online computation 6.42
total [10](MP) 27.20 (15.89) 29.00 (49.64)

The time-averaged relative L2-errors between full and reduced-order solutions are

given in Table 3.1, which indicates the dynamics of the height fields is more accu-

rately captured than for the velocity field components. The conserved quantities are

accurately preserved by the TPOD-Kahan in Table 3.2.

The wall-clock times and corresponding speed-up factors in Table 3.3 for r = 50

POD, shows the computational efficiency obtained by the separation of the high-

dimensional variables of the TPOD-Kahan. Table 3.3 presents the basis computation

time, which is consist of SVD computation, and online computation time, which con-

sists of the time required for projection and solution of ROM. The computational

performance is further increased by utilizing the sparse matrix structure of the dis-

cretized RSWE using MULTIPROD (MP) in the algorithm of [12, 11] over [10] as

shown in Table 3.3.

The computational time of the reduced matricized tensorQu,r = −V T
z A

xQ (V ∗u ⊗ (BxVz))

is examined for the method in [10] (TS) is compared with the algorithms in [12, 11]

utilising the MULTIPROD. In Figure 3.9, left, we present the required computa-

tional time versus the number of POD modes by fixing the number of grid points

N = 10000. In contrast, the required computational time for the varying number of

grid points using a fixed number of POD mode r = 50 is given in Figure 3.9, right.

Both figures expose the computational efficiency using MULTIPROD by increasing

the size of the FOM and ROMs.
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Figure 3.9: Tensor calculations by [10] (TS) and MULTIPROD (MP): (left) FOM is
fixed with N = 10000, (right) ROM is fixed with r = 50.

3.5 Structure Preserving Reduced-Order Modelling

In this section, we derive ROMs that preserves the skew-gradient structure of NTSWE

and RTSWE.

3.5.1 Nontraditional Rotating Shallow Water Equation

In this subsection, we construct ROM that maintaining the skew-gradient structure of

the NTSWE (2.12) and, as a result, the Hamiltonian (2.13) of NTSWE. The NTSWE

is a non-canonical Hamiltonian PDE with a state-dependent Poisson structure. Naive

employment of the POD will not conserve the skew-gradient form of the NTSWE

(2.12) in the reduced model. Energy preserving POD reduced models are formed

for Hamiltonian systems with constant skew-symmetric matrices like the Korteweg

de Vries equation [51, 84], and nonlinear Schrödinger equation (NLSE) [70]. It is

possible to apply the approach in [51] to skew-gradient systems with state-dependent

skew-symmetric structure as the NTSWE (2.12). We show the efficient evaluation

of the state-dependent skew-gradient structure of (2.12) in the online stage, which is

independent of the full dimension N .

We compute the POD basis from the mean subtracted snapshot matrices Sũ, Sṽ, and

Sh as done in Section 3.4. The snapshot matrices Sũ, Sṽ, and Sh consist of the solu-

tions of the fully discrete FOM (2.12) for each states ũ, ṽ, and h, respectively.

After obtaining the POD basis Vi for the states i = ũ, ṽ, h, the reduced-order approx-
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imations becomes as follows

ũ ≈ ̂̃u = ũ + Vũũr, ṽ ≈ ̂̃v = ṽ + Vṽũr, h ≈ ĥ = h + Vhhr, (3.23)

where the reduced (coefficient) vectors ũr, ũr,hr ∈ Rr are the solutions of the fol-

lowing ROM of (2.12)

d

dt
z̃r = V T

z J(ẑ)∇zH(ẑ), (3.24)

where z̃r = (ũr, ṽr,hr)
T ∈ R3r consists of the reduced coefficients, ũ, ṽ, h ∈ RN

denote the time averaged mean of the solutions and the components of the vector

ẑ = (̂̃u, ̂̃v, ĥ) are given as in (3.23). The block diagonal matrix Vz contains the matrix

of POD modes for each state solution given by

Vz =


Vũ

Vṽ

Vh

 ∈ R3N×3r.

Recently, symplectic MOR methods [1, 91] have been designed for canonical Hamil-

tonian PDEs with the constant skew-symmetric matrix

J2N =

 0N IN

−IN 0N

 ∈ R2N×2N ,

where IN and 0N denote the identity and zero matrices, respectively. The skew-

gradient structure of the FOM of NTSWE is not preserved in the ROM (3.24). How-

ever the approach in [1, 91] is not applicable to reduced system of NTSWE as demon-

strated in [51], the reduced system (3.24) is not a skew-gradient system. A reduced-

order skew-gradient system is constructed by adding VzV T
z between J(ẑ) and∇zH(ẑ)

[51], leading to the ROM

d

dt
z̃r = Jr(ẑ)∇zrH(ẑ), (3.25)

where Jr(ẑ) = V T
z J(ẑ)Vz and ∇zrH(ẑ) = V T

z ∇zH(ẑ). The reduced-order NTSWE

(3.25) is also solved by the AVF.

The reduced-order skew-gradient system (3.25) is not the same with the ROM (3.24)

since VzV T
z 6= I in general. Nevertheless, by increasing the reduced dimension,

the vector fields of (3.24) and (3.25) become similar, and the solution to (3.24) well
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approximates to solutions of the reduced skew-gradient system (3.25). An error anal-

ysis is given in [51]. Furthermore, the reduced model (3.24) differs from the reduced

skew-gradient model (3.25) by conservation laws, i.e., for the reduced-order approx-

imation ẑ = Vzzr obtained by the reduced skew-gradient model (3.25), the Hamilto-

nian H(ẑ) is constant as follows

d

dt
H(Vzzr) = [∇zrH(Vzzr)]

T d

dt
zr

= − [∇zrH(Vzzr)]
T J̃r(ẑ)∇zrH(Vzzr)

= −
[
V T
z ∇zH(Vzzr)

]T
J̃r(ẑ)

[
V T
z ∇zH(Vzzr)

]
= 0,

where we utilize the skew-symmetry of the reduced matrix J̃r(ẑ). Non-canonical

Hamiltonian models with constant skew-symmetric matrices, like the KDV equations,

are solved with the POD and DEIM methods following the approach in [51, 84],

where the ROMs are integrated in time by the mid-point rule and AVF method.

The reduced NTSWE (3.25) can be written explicitly as

d

dt
z̃r =


0 V T

ũ qdVṽ −V T
ũ DxVh

−V T
ṽ qdVũ 0 −V T

ṽ DyVh

−V T
h DxVũ −V T

h DyVṽ 0

V T
z ∇zH(ẑ). (3.26)

The reduced-order system (3.26) has constant matrices which can be precomputed

in offline stage whereas the matrices V T
ũ qdVṽ and V T

ṽ qdVũ should be computed in

online stage depending on the full order system. Utilizing the diagonal structure of

qd the computational complexity of evaluating the state dependent skew-symmetric

matrix in (3.26) can be decreased similar to the skew-gradient systems with constant

skew-symmetric matrices as discussed in [84]. Let vec(·) denotes vectorization of a

matrix. For any A ∈ Rm×n and B ∈ Rn×p

vec(AB) = (Ip ⊗ A)vec(B) = (B> ⊗ Im)vec(A).
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Thus, for a diagonal matrix D ∈ Rn×n and V ∈ Rn×r

vec(V >DV ) = (Ir ⊗ V >)vec(DV )

= (Ir ⊗ V >)(V > ⊗ In)vec(D)

= (V ⊗ V )>vec(D)

= (V ⊗ V )>M>D̃

=


V (1, :)⊗ V (1, :)

...

V (n, :)⊗ V (n, :)


>

D̃,

where M ∈ Rn×n2 is a matrix satisfying M(a⊗ b) = a ◦ b for any vector a, b ∈ Rn,

and D̃ = [D11, D22, . . . , Dnn]T ∈ Rn. Using the above result, the computational

complexity of the matrix products V T
ũ qdVṽ and V T

ṽ qdVũ is reduced fromO(r ·N(r+

N)) to O(r2 ·N).

The nonlinear terms cause the computation of the reduced-order system to still scales

with the dimension N of the FOM. We deal with this issue by employing the hyper-

reduction technique DEIM given in Section (3.2). The ROM (3.25) can be rewritten

as a nonlinear ODE system of the form

d

dt
z̃r = V T

z f(z̃) =


V T
ũ f1(z̃)

V T
ṽ f2(z̃)

V T
h f3(z̃)

 . (3.27)

In order to apply the DEIM basis, we construct the snapshot matrices defined by

Gi = (f 1
i ,f

2
i , · · · ,fKi ) ∈ RN×K , i = 1, 2, 3,

where fki = fi(z̃
k) denotes the i-th component of the nonlinear term f(z̃) in (3.27)

at time tk computed by using the approximation of FOM solution vector z̃, k =

1, . . . , K. Hence, the nonlinear term fi(z̃) can be approximated in the column space

of the snapshot matricesGi. First, we employ SVD to the nonlinear snapshot matrices

Gi and find the basis matrices Φfi,p ∈ RN×p whose columns are the basis vectors

spanning the column space of the nonlinear snapshot matrices Gi. Next, we use the

DEIM algorithm [29] to find a projection matrix Pi ∈ RN×p

fi(z̃) ≈ Φfi,p(P
T
i Φfi,p)

−1P T
i fi(z̃),
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and then we use the DEIM approximation to the reduced nonlinear terms in (3.27) as

V T
ũ f1(z̃) ≈ Vu,1(P T

1 f1(z̃)), V T
ṽ f2(z̃) ≈ Vv,2(P T

2 f2(z̃)), V T
h f3(z̃) ≈ Vh,3(P T

3 f3(z̃)),

where

Vu,1 = V T
ũ Vf1,p(P

T
1 Vf1,p)

−1, Vv,2 = V T
ṽ Vf2,p(P

T
2 Vf2,p)

−1, Vh,3 = V T
h,nVf3,p(P

T
3 Vf3,p)

−1

are all the matrices of sizeN×p, and they are precomputed in the offline stage. Using

the DEIM approximations, the ROM (3.27) becomes

d

dt
z̃r =


Vu,1fr,1(z̃)

Vv,2fr,2(z̃)

Vh,3fr,3(z̃)

 , (3.28)

where the reduced nonlinearities fr,i(z̃) = P T
i fi(z̃) are computed by considering just

p � N entries of the nonlinearities fi(z̃) among N entries, i = 1, 2, 3. In addition,

being an approximation to the right hand side of the ROM (3.27), the ROM (3.28)

with DEIM approximately preserves the skew-gradient structure, but exactly at the

interpolation points.

3.5.2 Numerical Results

In this subsection, we demonstrate two numerical experiments to show the efficiency

of the ROMs. The first example covers the propagation of the inertia-gravity waves

by Coriolis force, known as geostrophic adjustment [113]. The second example is

based on the shear instability in the form of the roll-up of an unstable shear layer,

known as barotropic instability [113]. For numerical experiments, we consider the

non-dimensional structure of the NTSWE (2.12) with the setting

x = Rdx̂, y = Rdŷ, u = cû, v = cv̂, h = Hĥ, hb = Hĥb,(
Ω(x),Ω(y),Ω(z)

)
= Ω

(
Ω̂(x), Ω̂(y), Ω̂(z)

)
,

where a variable with a hat indicates a dimensionless component, and Ω is planetary

rotation rate to construct the gravity wave speed c

c =
√
gH, Rd =

c

2Ω
, σ =

H

Rd

=
2ΩH

c
.
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The non-traditional parameter is given as σ = H/Rd, where Rd denotes Rossby

deformation radius, H is the layer thickness scale, and g denotes the gravitational

acceleration [41, 110]. The parameters are taken following [113] as H = 1000 m,

Ω ≈ 7.3 × 10−5 rad s −1, g = 10−3ms−2. The dimensionless variable of the rotation

vector at latitude φ are taken as

Ω̂(x) = 0, Ω̂(y) = cos(φ), Ω̂(z) = sin(φ),

where we set φ = π/4 in the numerical experiments. In all the experiments, the

spatial and temporal mesh sizes are taken as ∆x = 0.1 and ∆t = 0.1, respectively.

To determine the dimensions r and p of the POD and DEIM, respectively, we used

the relative cumulative energy criteria (3.3). In the simulations, we fix κ = 10−3

and κ = 10−5 to catch at least 99.9% and 99.999% of the dynamics for the ROMs

obtained with POD and DEIM, respectively. We consider the same number of modes

for each state variable.

The error between a full solution and a reduced-order solution (FOM-ROM error) are

obtained for the states w = ũ, ṽ,h using the time averaged relative errors (3.22) in

L2-norm.

Example 1: Single-layer geostrophic adjustment

The NTSWE is considered on the periodic spatial domain [−5, 5]2 and time interval

[0, 150] [113]. The initial conditions are prescribed in form of a motionless layer with

an upward bulge of the height field

h(x, y, 0) = 1 +
1

2
exp

[
−
(

4x

5

)2

−
(

4y

5

)2
]
,

u(x, y, 0) = 0,

v(x, y, 0) = 0.

The inertia-gravity waves diffuse after the collapse of the initial symmetric peak con-

cerning axes. Nonlinear interactions create smaller waves diffusing around the do-

main, and increasingly more complicated patterns are occurred.

The snapshot matrix Sũ, Sṽ, and Sh and the nonlinear snapshots has size 10000×1500.

Using the energy criteria (3.3), we consider r = 40 POD modes and m = 240 DEIM
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modes. In Fig. 3.10, the normalized singular values decay slowly, which is a key prob-

lem for PDEs with wave phenomena in fluid dynamics [88]. The slow decay of the

normalized singular values also causes slow decay with small oscillations in FOM-

ROM errors for all states with the increasing number of POD modes in Fig. 3.10.
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Figure 3.10: Normalized singular values for solution snapshots (left) and relative
FOM-ROM errors (right).

The energy and enstrophy errors in Fig. 3.11 exhibit small drifts with bounded oscil-

lations in time, i.e., they have conserved approximately at the same level of accuracy.

The height h and the potential vorticity q are plotted at the final time, in Figs. 3.12-

3.13. In [30], it is shown that a priori error bounds are proportional to the sums of the

singular values corresponding to neglected POD basis vectors in the reduced-order

system and the DEIM approximation of the nonlinear terms. A relatively large num-

ber of DEIM points are needed for convergence of the Newton method for solving

the nonlinear fully discrete form of the reduced-order system. Figs. 3.12-3.13 and

Tables 3.4-3.5 show that POD, POD-DEIM reduced solutions, approximately have

the same level accuracy. The speed-up factors in Table 3.6 indicates that the ROM of

NTSWE with DEIM increases the computational efficiency further.
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Figure 3.11: Energy error |Hk −H0| (left) and enstrophy error |Zk − Z0| (right).
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Figure 3.13: Full and reduced solutions for the potential vorticity q at the final time.

Figure 3.12: Full and reduced solutions for the height h at the final time.

Example 2: Single-layer shear instability

In the second example, the NTSWE is considered on the periodic spatial domain

[0, 10]2 and on the time domain [0, 150] [113]. The initial conditions are as follows

h(x, y, 0) = 1 + ∆h sin

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
,

u(x, y, 0) = −2π∆h

ΩzL
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
,

v(x, y, 0) = −4π2∆h∆y

ΩzL2
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
cos

(
2πx

L

)
,

where ∆h = 0.2, ∆y = 0.5 and the dimensionless spatial domain length L = 10, as

the case in the first test example.

The singular values decay and corresponding FOM-ROM errors in Fig. 3.14 are sim-

ilar to the first test example in Fig. 3.10.
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Figure 3.15: Energy error |Hk −H0| (left) and enstrophy error |Zk − Z0| (right).

Figure 3.16: Full and reduced solutions for the height h at the final time.
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Figure 3.14: Normalized singular values for solution snapshots (left) and relative
FOM-ROM errors (right).

As in previous example, each snapshot matrix has size 10000 × 1500. We set the

number of POD and DEIM modes as r = 10 and p = 345, respectively, by using the

energy criteria (3.3).

Fig. 3.15 shows that the energy and entropy errors are bounded over time with small

oscillations, similar to the first example. Furthermore, the height field h and the

potential vorticity field q are approximated properly by the ROMs at the final time,

in Figs. 3.16-3.17. In Tables 3.4-3.5 and Table 3.6, the computational efficiency and

accuracy of the ROMs are shown.
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Figure 3.17: Full and reduced solutions for the potential vorticity q at the final time.

Table 3.4: Time averaged relative L2-errors.

‖ũ− ̂̃u‖Rel ‖ṽ − ̂̃v‖Rel ‖h− ĥ‖Rel

Example 1
40 POD modes 1.151e-01 1.151e-01 6.172e-03
240 DEIM modes 1.156e-01 1.156e-01 6.180e-03

Example 2
10 POD modes 3.946e-02 9.088e-02 4.224e-03
345 DEIM modes 4.859e-02 1.011e-01 5.464e-03

Table 3.6: Wall-clock time (in seconds) and speed-up factors.

Example 1 Example 2

wall-clock time speed-up wall-clock time speed-up

FOM 1051.0 1038.1

POD
basis computation 61.6 23.2
online computation 412.7 2.55 167.4 6.2

DEIM
basis computation 67.4 31.1
online computation 87.1 12.1 47.3 22.0

Table 3.5: Mean absolute FOM-ROM errors of the conserved quantities.

Energy Enstrophy

Example 1
40 POD modes 7.094e-04 9.067e-04
240 DEIM modes 8.837e-04 1.370e-03

Example 2
10 POD modes 4.450e-03 3.068e-02
345 DEIM modes 1.529e-02 3.589e-02
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3.5.3 Rotating Thermal Shallow Water Equation

In this section, the skew-gradient structure of the semi-discrete RTSWE (2.26) is

preserved in ROMs of RTSWE. Thus, the discrete quantities (2.27) are also pre-

served in the ROMs. The RTSWE is a non-canonical Hamiltonian PDE with a state-

dependent Poisson structure. Direct employment of the POD will not conserve the

skew-symmetric Poisson matrix in the reduced model so that the skew-gradient struc-

ture of the RTSWE (2.26) in the reduced form will not be preserved. The structure

of the FOM is maintained by utilising the approach in [51] to the RTSWE (2.26).

We demonstrate that the resulted ROMs conserves the skew-gradient structure of the

FOM of RTSWE. The ROMs in time are integrated with the AVF method as for the

FOM. Due to the approximation of the nonlinear terms in using DEIM, the discrete

energy (Hamiltonian) of the FOM is preserved approximately. We have derived an

upper bound for the conservation of the discrete energy by POD-DEIM.

The POD basis are constructed as in Section 3.4, where we again consider the mean

subtracted snapshot matrices Su, Sv, Sh, and Ss, which consist of the solutions of the

fully discrete RTSWE (2.26) for the states u, v, h, and s, respectively.

Furthermore, we have the reduced-order approximations are as follows

u ≈ û = u+ Vuur, v ≈ v̂ = v + Vvvr, h ≈ ĥ = h+ Vhhr, s ≈ ŝ = s+ Vssr, (3.29)

where u,v,h, s are time-averaged snapshots, and the vectors ur, vr,hr, and sr are

the ROM solutions which are the coefficient vectors for the reduced approximations

û, v̂, ĥ, and ŝ. The ROM is determined by the Galerkin projection onto the reduced

space

d

dt
zr = −V T

z J(ẑ)∇zH(ẑ), (3.30)

where the ROM solution is zr = (hr,ur,vr, sr) : [0, T ] 7→ Rrh+ru+rv+rs and the

related reduced approximation is ẑ = (ĥ, û, v̂, ŝ). The block diagonal matrix Vz

contains the matrix of POD modes for each state variable

Vz =


Vh

Vu

Vv

Vs

 ∈ R4N×(rh+ru+rv+rs).
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Although the formulae in this section are generally applicable for any number of

modes rh, ru, rv, and rs, we use equal number of POD modes in the present study

r := rh = ru = rv = rs.

Skew-gradient POD reduced system

We preserve the skew-gradient system in ROM of RTSWE by adding VzV T
z ∈ Rr×r

between J(ẑ) and∇zH(ẑ) as in structure- preserving ROM of NTSWE 3.25, leading

to

d

dt
zr = −Jr(ẑ)∇zrH(ẑ), (3.31)

where Jr(ẑ) = V T
z J(ẑ)Vz ∈ R4r×4r is the reduced skew-symmetric matrix and

∇zrH(ẑ) = V T
z ∇zH(ẑ) ∈ R4r is the reduced discrete gradient of the Hamiltonian.

The main obstacle in constructing ROMs of RTSWE is the nonlinear state dependency

in the skew-symmetric matrix of the semi-discretized RTSWE (2.26), which does not

allow the offline-online separation in the ROMs. The skew-symmetric matrix Jr(ẑ)

in the reduced model of RTSWE (3.31) can be written as follows

Jr(ẑ) =


0 V T

h DxVu V T
h DyVv 0

V T
u DxVh 0 −V T

u F1(ẑ)Vv −V T
u F2(ẑ)Vs

V T
v DyVh V T

v F1(ẑ)Vu 0 −V T
v F3(ẑ)Vs

0 V T
s F2(ẑ)Vu V T

s F3(ẑ)Vv 0,

 , (3.32)

where for the nonlinear vectors

f1(ẑ) = q̂, f2(ẑ) = ĥ−1 ◦ (Dxŝ), f3(ẑ) = ĥ−1 ◦ (Dyŝ),

the matrices Fj(ẑ) refer to the diagonal matrices with the diagonal elements from the

vectors fj(ẑ), i.e., (Fj(ẑ))ii = (fj(ẑ))i, j = 1, 2, 3, i = 1, . . . , N .

The semi-discrete equations of structure-preserving reduced model (3.31) can be writ-
ten explicitly as

d

dt
hr = −V T

h DxVuV
T
u f5(ẑ)− V T

h DyVvV
T
v f6(ẑ),

d

dt
ur = −V T

u DxVhV
T
h f4(ẑ) + V T

u (f1(ẑ) ◦ VvV T
v f6(ẑ)) + V T

u (f2(ẑ) ◦ VsV T
s f7(ẑ)),

d

dt
vr = −V T

v DyVhV
T
h f4(ẑ)− V T

v (f1(ẑ) ◦ VuV T
u f5(ẑ)) + V T

v (f3(ẑ) ◦ VsV T
s f7(ẑ)),

d

dt
sr = −V T

s (f2(ẑ) ◦ VuV T
u f5(ẑ))− V T

s (f3(ẑ) ◦ VvV T
v f6(ẑ)),

(3.33)
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where the nonlinear vectors fj(ẑ), j = 4, 5, 6, 7 are the components of the discrete

gradient ∇zH(ẑ) of Hamiltonian, which are given by

f4(ẑ) =
û2 + v̂2

2
+ ŝ ◦ ĥ+ bŝ, f5(ẑ) = ĥ ◦ û, f6(ẑ) = ĥ ◦ v̂, f7(ẑ) =

ĥ2

2
+ bĥ.

Skew-gradient POD-DEIM reduced system

Due to the nonlinearities in the skew-symmetric Possion matrix, the computation of

the POD-ROM (3.33) still scales with the FOM dimension N . Precisely, the non-

linear vectors fj(ẑ), j = 1, 2, 3, in (3.32) do not possess polynomial nonlinearities.

Thus, they should be computed in the online stage depending on the FOM dimension.

To conserve the structure in (3.31) in a efficient way, we approximate the nonlinear-

ities individually inside the skew-symmetric reduced Poisson matrix Jr(ẑ) and the

discrete reduced gradient∇zrH(ẑ) of the Hamiltonian with DEIM. Using DEIM, the

nonlinear vectors fj(ẑ) in (3.33) are approximated by

fj(ẑ(t)) ≈ Ψjfr,j(ẑ(t)), j = 1, . . . , 7, (3.34)

where Ψj := Φ(j)((P(j))>Φ(j))−1 ∈ RN×pj are the precomputed matrices, P(j) are the

selection matrices, and Φ(j) are the DEIM modes.

To determine the POD modes, we use following snapshot matrices of the nonlinear

vectors given by

Sfj = [f 1
j ,f

2
j , . . . ,f

K
j ] ∈ RN×K , j = 1, . . . , 7, (3.35)

where fkj = fj(ẑ
k) denote the nonlinear vectors fj(ẑ(t)) at time tk, computed by

using the solution vectors ẑk = ẑ(tk), k = 1, . . . , K. Similar to the POD, we take

the same number of DEIM modes for the nonlinear terms, i.e., p := pj, j = 1, . . . 7.

Applying the DEIM/Q-DEIM approximation (3.34), the POD reduced system (3.31)

takes the form
d

dt
zr = −J̃r(ẑ)∇zrH̃(ẑ), (3.36)

where the skew-gradient structure of the reduced system is preserved. In the POD-

DEIM reduced system (3.36), the terms ∇zrH̃(ẑ) and J̃r(ẑ) are the DEIM reduced
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discrete gradient of Hamiltonian and the DEIM reduced skew-symmetric Poisson ma-

trix, respectively, given by

∇zrH̃(ẑ) = V T
z ∇zH̃(ẑ) =


V T
h

V T
u

V T
v

V T
s




Ψ4fr,4(ẑ)

Ψ5fr,5(ẑ)

Ψ6fr,6(ẑ)

Ψ7fr,7(ẑ)

 ,

J̃r(ẑ) =


0 V T

h DxVu V T
h DyVv 0

V T
u DxVh 0 −V T

u Fr,1(ẑ)Vv −V T
u Fr,2(ẑ)Vs

V T
v DyVh V T

v Fr,1(ẑ)Vu 0 −V T
v Fr,3(ẑ)Vs

0 V T
s Fr,2(ẑ)Vu V T

s Fr,3(ẑ)Vv 0

 ,

where Fr,j(ẑ) are the diagonal matrices of the related DEIM approximated nonlinear

vectors, i.e., (Fr,j(ẑ))ii = (Ψjfr,j(ẑ))i, j = 1, 2, 3, i = 1, . . . , N .

The skew-gradient structure of the FOM is maintained by both the POD-DEIM re-

duced model (3.36) and the POD reduced model (3.31). Nevertheless, the discrete

Hamiltonian H(ẑ) is not preserved for the reduced-order approximation ẑ = Vzzr

obtained by the POD-DEIM reduced model (3.36) since the discrete gradient∇zH(ẑ)

of the Hamiltonian in the reduced discrete gradient ∇zrH(ẑ) = V T
z ∇zH(ẑ) is re-

placed by the DEIM approximation∇zH̃(ẑ). To see this, for the reduced approxima-

tion ẑ = Vzzr obtained by the POD-DEIM reduced system (3.36), we have for the

discrete Hamiltonian H(ẑ) = H(Vzzr)

d

dt
H(Vzzr) =

[
V T
z ∇zH(Vzzr)

]T d

dt
zr

= −
[
V T
z ∇zH(Vzzr)

]T
J̃r(ẑ)∇zrH̃(Vzzr)

= −
[
V T
z ∇zH(Vzzr)

]T
J̃r(ẑ)

[
V T
z ∇zH̃(Vzzr)

]
6= 0.

(3.37)

The Hamiltonian of the ROM is preserved approximately due to the nonlinear terms

in the gradient of the Hamiltonian of ROM is approximated by the DEIM. An upper

bound for the preservation of the discrete Hamiltonian by POD-DEIM method can be

derived as follows: starting from the last row of (3.37), we can write
d

dt
H(Vzzr) = −

[
V T
z ∇zH(Vzzr)

]T
J̃r(ẑ)

[
V T
z ∇zH̃(Vzzr)

]
= −

[
V T
z ∇zH(Vzzr)

]T
J̃r(ẑ)

[
V T
z ∇zH̃(Vzzr)− V T

z ∇zH(Vzzr)
]

= −
[
V T
z ∇zH(Vzzr)

]T
J̃r(ẑ)V T

z

[
∇zH̃(Vzzr)−∇zH(Vzzr)

]
,

(3.38)
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where we use the fact that the reduced matrix J̃r(ẑ) is skew-symmetric and adding the

term −V T
z ∇zH(Vzzr) in the second row does not change the equality since we have

that
[
V T
z ∇zH(Vzzr)

]T
J̃r(ẑ)

[
V T
z ∇zH(Vzzr)

]
= 0 for the skew-symmetric matrix

J̃r(ẑ). Using the equality in (3.38), we can bound the time derivative of the discrete

Hamiltonian. Taking the norm of the last row in the equality (3.38), we can easily

obtain the inequality∥∥∥∥ ddtH(Vzzr)

∥∥∥∥ ≤ ‖∇zH(Vzzr)‖‖Vz‖2‖J̃r(ẑ)‖‖∇zH̃(Vzzr)−∇zH(Vzzr)‖, (3.39)

where ‖ · ‖ := ‖ · ‖2 denotes the 2-norm. In terms of the nonlinear components

fj(Vzzr), j = 4, 5, 6, 7, and corresponding DEIM approximated nonlinear compo-

nents in (3.34), of the discrete gradients ∇zH(Vzzr) and ∇zH̃(Vzzr), respectively,

the inequality (3.39) becomes∥∥∥∥ ddtH(Vzzr)

∥∥∥∥ ≤ ‖Vz‖2‖J̃r(ẑ)‖
7∑
j=4

‖fj(Vzzr)‖‖fj(Vzzr)−Ψjfr,j(Vzzr)‖. (3.40)

Using the DEIM approximation error [29, Lemma 3.2] on the last term, we have for

j = 4, 5, 6, 7

‖fj(Vzzr)−Ψjfr,j(Vzzr)‖ ≤ ‖((P(j))>Φ(j))−1‖‖(IN − Φ(j)(Φ(j))>)fj(Vzzr)‖.
(3.41)

Finally, imposing the bounds (3.41) in the inequality (3.40), we obtain the following
bound on the time derivative of the discrete Hamiltonian∥∥∥∥ ddtH(Vzzr)

∥∥∥∥ ≤ ‖Vz‖2‖J̃r(ẑ)‖
7∑

j=4

‖fj(Vzzr)‖‖((P(j))>Φ(j))−1‖‖(IN −Φ(j)(Φ(j))>)fj(Vzzr)‖.

We remark that the reduced model obtained by the POD (3.31) and the POD-DEIM

(3.36) has a skew-gradient structure with the reduced-order skew-symmetric matrix.

Here we use the energy preserving AVF integrator to the skew-gradient FOM (2.26)

and as well as to the POD (3.31) and POD-DEIM (3.36) reduced skew-gradient sys-

tems, which is co-adjoint to a Poisson integrator and preserves the linear and quadratic

Casimirs [33].

Fast solution of the reduced system with tensor techniques

To accelerate the online computations of the ROM (3.36) further, we employ the
tensor techniques. The POD-DEIM reduced model (3.36) can be written explicitly as
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the following system of ODEs in tensor form
d

dt
hr = −V T

h DxVuV
T
u Ψ5fr,5(ẑ)− V T

h DyVvV
T
v Ψ6fr,6(ẑ),

d

dt
ur = −V T

u DxVhV
T
h Ψ4fr,4(ẑ) +G1(fr,1(ẑ)⊗ fr,6(ẑ)) +G2(fr,2(ẑ)⊗ fr,7(ẑ)),

d

dt
vr = −V T

v DyVhV
T
h Ψ4fr,4(ẑ)−G3(fr,1(ẑ)⊗ fr,5(ẑ)) +G4(fr,3(ẑ)⊗ fr,7(ẑ)),

d

dt
sr = −G5(fr,2(ẑ)⊗ fr,5(ẑ))−G6(fr,3(ẑ)⊗ fr,6(ẑ)),

(3.42)

where only the reduced nonlinear vectors fr,j(ẑ) are non-constant, j = 1, . . . , 7. In

(3.42), the small matrices Gj ∈ Rr×p2 , called reduced matricized tensors, are defined

as

G1 = V T
u G(Ψ1 ⊗ VvV T

v Ψ6), G2 = V T
u G(Ψ2 ⊗ VsV T

s Ψ7),

G3 = V T
v G(Ψ1 ⊗ VuV T

u Ψ5), G4 = V T
v G(Ψ3 ⊗ VsV T

s Ψ7),

G5 = V T
s G(Ψ2 ⊗ VuV T

u Ψ5), G6 = V T
s G(Ψ3 ⊗ VvV T

v Ψ6),

where the matrices G ∈ RN×N2 satisfy the identity G(a⊗ b) = a ◦ b for any vectors

a, b ∈ RN . Typically, the matrix G is called matricized tensor since the computation

of the matrix product of G by Kronecker products like G(Ψ1⊗VvV T
v Ψ6) are handled

in the literature through converting the matrix G into a 3-tensor and using tensor

algebra on it [10, 11, 12, 69].

All the reduced matricized tensors Gj can be precomputed in the offline stage, and

the DEIM reduced nonlinear terms fr,j(ẑ) = (P(j))Tfj(ẑ) are computed by consid-

ering just p� N entries of the nonlinear terms fj(ẑ) among N entries, j = 1, . . . , 7.

Thus, in the online stage, the cost of ROM (3.42) scales with O(rp2), i.e., only de-

pends on the reduced dimensions. We remark that it is also possible to obtain a

structure-preserving ROM by using DEIM applied only to the nonlinear terms in the

reduced Poisson matrix Jr(ẑ) and not to the reduced gradient of the Hamiltonian.

Nevertheless, in this case, the online computational cost increases rapidly due to the

cubic nonlinear terms.

Beside the computational efficiency in the online phase, a straightforward computa-

tion of the reduced matricized tensors Gj in the POD-DEIM reduced system (3.42)

creates a big burden on the offline cost. Thus, we use the same procedure computing

the matricized tensors Gj as in (3.19).

We remark that Poisson structure or energy preserving reduced models are constructed
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for non-canonical Hamiltonian systems, such as for the modified KDV equation [84].

But tensor techniques are not exploited with the POD and DEIM. In [84], the Poisson

matrix is approximated by DEIM but not the gradient of the Hamiltonian, which is

linear in the state variable for the modified KdV equation. Our approach approximat-

ing both the Poisson matrix and the gradient of the Hamiltonian with the DEIM, can

be applied to any non-canonical Hamiltonian system, that leads to a skew-gradient

reduced system. Application of the tensor techniques to the reduced systems, speeds

up the computation of the ROMs further.

3.5.4 Numerical Results

In this subsection, we illustrate the efficiency and accuracy of the ROMs of RTSWE

for the double vortex test case [43]. The spatial domain is set to Ω = [0, L]2 with

doubly periodic boundary conditions and no bottom topography (b = 0). The initial

conditions are given by

h = H0 −∆h

[
e−0.5((x′1)2+(y′1)2) + e−0.5((x′2)2+(y′2)2) − 4πσxσy

L2

]
,

u =
−g∆h

fσy

[
y′′1e
−0.5((x′1)2+(y′1)2) + y′′2e

−0.5((x′2)2+(y′2)2)
]
,

v =
g∆h

fσx

[
x′′1e

−0.5((x′1)2+(y′1)2) + x′′2e
−0.5((x′2)2+(y′2)2)

]
,

s = g

(
1 + 0.05sin

[
2π

L
(x− xc)

])
,

where xc = 0.5L and

x′1 =
L

πσx
sin
[π
L

(x− xc1)
]
, x′2 =

L

πσx
sin
[π
L

(x− xc2)
]
,

y′1 =
L

πσy
sin
[π
L

(y − yc1)
]
, y′2 =

L

πσy
sin
[π
L

(y − yc2)
]
,

x′′1 =
L

2πσx
sin

[
2π

L
(x− xc1)

]
, x′′2 =

L

2πσx
sin

[
2π

L
(x− xc2)

]
,

y′′1 =
L

2πσy
sin

[
2π

L
(y − yc1)

]
, y′′2 =

L

2πσy
sin

[
2π

L
(y − yc2)

]
.

The center of the two vortices are given by

xc1 = (0.5− ox)L, xc2 = (0.5 + ox)L, yc1 = (0.5− oy)L, yc2 = (0.5 + oy)L.
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The parameters are f = 0.00006147s−1, L = 5000km, H0 = 750m, ∆h = 75m,

g = 9.80616ms−2, σx = σy = 3
40
L, and ox = oy = 0.1. The FOM and ROMs

simulations are performed on the spatial grid Ω = [0, L]2 with the spatial mesh sizes

∆x = ∆y = 50km. The number of time steps is set to K = 250 with the time

step-size ∆t = 486s, which leads to the final time T = 33h 45min. For each state

variable, the size of the snapshot matrices are 10000× 250.

The DEIM and POD basis are determined using the following relative cumulative

energy criterion (3.3). The accuracy of conserved quantities is affected by DEIM

approximation of the nonlinear terms. Consequently, the captured accuracy by the

DEIM must be higher than the POD in relative cumulative energy. We set the POD

and DEIM tolerances to κ = 10−3 and κ = 10−5, which capture at least 99.99% and

99.9999% of relative cumulative energy for POD and DEIM, respectively.

We use the time averaged relative L2-errors (3.22) to measure the accuracy between

FOM and ROM solutions for each state variable w = u,v,h, s.

Preservation of the discrete conserved quantities (2.27): the energy, buoyancy, total

vorticity, and the mass of the FOM and ROM solutions are measured using the time-

averaged relative error ‖E‖abs in (3.21) for E = H,M,B,Q.

In Figure 3.18, the singular values exhibit slow decay both for the state variables and

the nonlinear terms. According to the relative cumulative energy criteria (3.3), we

have selected r = 5 POD modes and p = 35 DEIM modes.
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Figure 3.18: Normalized singular values: (left) state variables, (middle and right)
nonlinear terms.

Figures 3.19-3.20 indicates that the potential vorticity q and the buoyancy s dynam-

ics are captured well by the ROMs at the final time. Figure 3.21 shows the relative

errors in the mass |Mk−M0|/M0, the Hamiltonian (energy) |Hk−H0|/H0, the total
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Figure 3.19: Bouyancy at the final time.

Figure 3.20: Potential vorticity at the final time.

potential vorticity |Qk − Q0|/Q0, and the buoyancy |Bk − B0|/B0 versus the time

steps, where the total potential vorticity remains constant with the error up to machine

precision. Mass, buoyancy, and the energy errors of the ROMs show bounded oscil-

lations over time, i.e., they are conserved almost at the same level of accuracy. All

the preserved quantities are well approximated by the POD and POD-DEIM ROMs

and do not show any drift over time, which means that the reduced-order solutions

are robust in long term computations.

In Table 3.7, we have demonstrated the time-averaged relative L2 errors of the FOM

and ROMs, which shows similar level of accuracy for the POD-DEIM and POD.

Moreover, Table 3.8 shows that the preserved quantities are accurately captured by the

ROMs. The POD errors are slightly smaller than the POD-DEIM errors in both tables.

Nevertheless, the POD-DEIM is much faster than the POD as shown in Table 3.9.

Table 3.7: Time-averaged relative L2 errors of the state variables.
‖h− ĥ‖rel ‖u− û‖rel ‖v − v̂‖rel ‖s− ŝ‖rel

POD 8.622e-03 1.502e-01 2.185e-01 7.899e-04
POD-DEIM 1.014e-02 1.737e-01 2.400e-01 7.943e-04

In Table 3.9, we show the computational efficiency ROMs in terms of the wall clock

time. The offline computations consist of the time required for the construction of the

65



50 100 150 200 250

Time step

10
-15

10
-10

10
-5

10
0

Energy

FOM POD DEIM

50 100 150 200 250

Time step

10
-16

10
-15

10
-14

10
-13

Total Vorticity

FOM POD DEIM

50 100 150 200 250

Time step

10
-15

10
-10

10
-5

10
0

Bouyancy

FOM POD DEIM

50 100 150 200 250

Time step

10
-15

10
-10

10
-5

10
0

Mass

FOM POD DEIM

Figure 3.21: Relative errors in the conserved quantities.

Table 3.8: Mean relative errors of the conserved quantities by FOM and ROMs.
‖H‖abs ‖Q‖abs ‖M‖abs ‖B‖abs

FOM 4.768e-15 4.053e-15 2.233e-15 3.267e-16
POD 9.549e-05 3.041e-16 1.834e-04 2.412e-04
POD-DEIM 9.589e-05 3.447e-15 2.440e-04 3.237e-04

Table 3.9: Wall-clock time (in seconds) and speed-up factors.
Wall-clock time Speed-up factors

FOM 841.2

POD
offline computation 1.7
online computation 31.5 26.7

POD-DEIM
offline computation (POD+DEIM) 10.5
online computation 5.8 146.0

precomputed matrices and the basis computation by SVD. On the other hand, the on-

line computation includes of the time required for the solution of the reduced models

and projections to obtain reduced approximations. Note that the wall clock time of

the offline computation for POD-DEIM consists of computation time for DEIM and

POD basis as well as the computation time of the reduced tensor calculations. The

speed-up factors in Table 3.9 are calculated as the ratio of the time required for FOM

solutions over the time required for the online computation of the ROM, which shows

that the ROM with DEIM increases the computational efficiency.
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CHAPTER 4

DATA DRIVEN NON-INTRUSIVE REDUCED-ORDER

MODELLING

Most of the MOR techniques are intrusive, which means they need to access the semi-

discretized full order operators so that the reduced-order operators can be obtained by

projecting the full order operators onto a low-dimensional subspace using the projec-

tion matrices. Intrusive methods sometimes possess less attractive properties in the

application, such as they require access to full order operators. When the dynamical

system is complex, obtaining an explicit discretized FOM would be difficult. Details

of the discretization, solver, and governing equations are generally unavailable when

using proprietary software to simulate FOM, and consequently, traditional projection-

based intrusive MOR methods are not applicable. The non-intrusive or data-driven

reduced models are radically different from the intrusive ROMs. In contrast to the

intrusive ROMs, the non-intrusive model reduction techniques aim to learn reduced

models from snapshots, i.e., either numerical approximations or measurements of the

states and the outputs of the dynamical systems. In this way, the scope of model re-

duction is extended on settings where the operators of the high-dimensional systems

are unavailable. There are several software packages to simulate the SWEs for a given

parameter set and an initial condition [48, 38]. In this Chapter, we will investigate ap-

plications of the non-intrusive data-driven MOR techniques to SWE, where ROMs

are constructed without accessing the full order operators.

Learning dynamical systems from data has become a very active topic, and there is

a huge literature on it. Nevertheless, we review the most related ones with reduced

systems. Among them, machine learning plays a vital role in analyzing the under-
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lying process of the dynamics from the data. A popular approach to constructing a

model from only the simulation data is neural networks. By neural networks, it is

possible to approximate a large class of functions [66]. Neural networks construct

a model by input-output data. They do not need any information about the physical

process or discretized operators. A computational bottleneck of the neural networks

is the amount of data to construct accurate models, which is large for high-fidelity

problems [116]. Moreover, some ideas from compressive sensing have been used to

learn the full order operators from a large library of candidate functions [101]. Nev-

ertheless, the method’s success massively depends on the compiled library, and gen-

erally, one needs to execute computations in the FOM, thus making the method quite

challenging in large-scale frames. Dynamic mode decomposition (DMD) learns

reduced models for nonlinear dynamical systems, by fitting linear operators to state

trajectories with respect to the L2 norm [100, 107]. Methods based on the Koopman

operator have been developed to extend DMD to nonlinear dynamical systems [124].

Reduced models are also constructed by exploiting sparsity in the high-dimensional

systems [20, 77, 105]. In the data-fitting surrogate-modeling approaches, regression

is used to learn maps from parameters to coefficients of approximations of high di-

mensional solutions in low-dimensional subspaces. Recently, data-fit non-intrusive

regression models with artificial neural networks (ANNs) have been developed for

time-dependent dynamical systems [64, 121].

Recently, the operator inference (OpInf) method to assemble ROMs has obtained

considerable attention. The OpInf method uses the information of nonlinear terms

at the PDE level. In the OpInf methods, the operators representing the ROM are

obtained by an optimization problem without requiring the discretized full order op-

erators of the PDEs. The method firstly studied in [90] for polynomial nonlineari-

ties. Later, the method stretched to a class of nonlinear terms, which can be written

as quadratic-bilinear (QB) or polynomial nonlinearities by defining new variables in

[94, 95]. Lately, in [14] authors generalized the method to nonlinear terms, where

the structure of the nonlinear terms is conserved. Recently the DMD is extended

to quadratic bilinear systems [52]. The projected trajectories of the OpInf [90] cor-

respond to non-Markovian dynamics in the low-dimensional subspaces even though

the high-dimensional trajectories and the corresponding high-dimensional systems
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are Markovian, as known from, e.g., the Mori–Zwanzig formalism [32, 49]. Dynam-

ical systems are Markovian if future states depend only on the current state and not

on previous ones, whereas the non-Markovian systems can be thought of as having a

memory so that future states depend on the current and previous states. To recover

the Markovian dynamics of the reduced system, in [89] a data sampling scheme has

devised. The time stepping iterates between the high-dimensional system and pro-

jecting onto the low-dimensional subspaces. The generated trajectories correspond to

the low-dimensional Markovian dynamics. It was shown in [89] that under certain

conditions, applying operator inference to re-projected trajectories for finite amounts

of data and for a large class of systems with polynomial nonlinear terms gives the

same operators that are obtained with traditional model reduction methods. Recently,

probabilistic a posteriori error estimators are derived for the OpInf with re-projection

for linear parabolic PDEs [118]. The non-Markovian OpInf with partial information

is investigated [119]. Also, a deep learning version of the OpInf is introduced in [54].

In this Chapter, we apply the OpInf method [90] to the parameterized SWEs. In

Section 4.1, the general framework of the OpInf is described. In Section 4.2, we

investigate an application of the OpInf method to NTSWE in parametric form. The

OpInf is studied in [90] for parametric cases, where the ROMs are built via inter-

polation for each training parameter. In this study, we present an OpInf framework

for the parametric ROMs, assuming that parametric dependency at the PDE level is

known. The optimization problem of the OpInf method generally yields a discrete

ill-posed least-squares problem. To overcome this bottleneck, we consider the regu-

larized least-squares problem proposed in [90]. The data matrices in the least-squares

problem of the OpInf have large condition numbers, leading to ill-conditioned in-

verse problem. To deal with this, the truncated SVD, Tikhanov regularization, and

truncated QR are used. Because decay of the singular values of the data matrices

does not provide any information about the choice of the tolerance for the regulariza-

tion parameter, we solve the least-squares problem in the minimum norm, where the

tolerances are determined with the L-curve. In Section 4.3, we lastly investigate the

application of the OpInf to RTSWE in parametric form.

Moreover, the intrusive POD Galerkin projection is compared with OpInf using re-

projection. Numerical results in Section 4.3.3 show that both the OpInf and the POD
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methods are able to predict the parametrized ROMs of RTSWE accurately. Speed-up

factors of order two over the FOM have been obtained for both the intrusive and non-

intrusive ROMs, whereas the non-intrusive OpInf is more expensive than the POD

due to the re-projection. We illustrate the efficiency of the intrusive and non-intrusive

ROMs of RTSWE and compare them in terms of capturing the future dynamics of

RTSWE outside the range of the training data. Numerical results show that the physi-

cal quantities of the RTSWE are conserved for both intrusive and non-intrusive ROMs

over time. Moreover, in both of the ROMs, the long-term stability of the reduced

trajectories is obtained. The conservation of system physics of FOM, such as the

physical quantities by both ROMs, allows that the ROM fit better to data, and sta-

ble solutions are obtained in the long-term predictions which are robust to parameter

changes.

4.1 Operator Inference for Linear-Quadratic PDEs

In this section, we briefly introduce the operator inference method and discuss the

least-squares methods for inferring reduced-order operators.

We consider the following linear-quadratic system of ODEs of the form

ẇ(t) = Aw(t) + H(w(t)⊗w(t)), (4.1)

where A ∈ RN×N is a linear operator, H ∈ RN×N2 is the matrix which corresponds

for quadratic terms, and w(t) ∈ RN×1 is spatially discretized state vector at time

t. The (4.1) arises from spatial discretization of the PDEs with the linear-quadratic

nonlinearities such as RSWE and RTSWE.

The snapshot matrix is given as

S = [w(t1),w(t2), . . . ,w(tK)] ∈ RN×K , (4.2)

where w(tj) is obtained from solving (4.1) at time tj and K denotes the number of

snapshots.
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Here we aim to learn the reduced-order approximation of (4.1), so we start by con-

structing the ROM of (4.1). The first thing in constructing the ROM is to determine

the projection matrix Vr, which can be obtained by the SVD of the snapshot matrix

(4.2) as follows

S = VΣUT , (4.3)

where V ∈ RN×K ,Σ ∈ RK×K ,U ∈ RK×K , and the projection matrix Vr is given

by the first r columns of V.

Next, we can construct the ROM of (4.1) by using Galerkin projection as follows

˙̂w(t) = Âŵ(t) + Ĥ(ŵ(t)⊗ ŵ(t)), (4.4)

where w(t) ≈ Vrŵ(t), Â = VT
r AVr ∈ Rr×r, and Ĥ = VT

r H(Vr ⊗Vr) ∈ Rr×r2

with r � N .

Our primary goal is to obtain reduced-order operators Â, Ĥ without necessarily ac-

cessing the full-order operators A,H. Since, we already have the trajectories of states

w(tj) for j = 1, . . . , K from the solution of the FOM (4.1) or some experiments, us-

ing (4.4) the reduced-order operators will satisfy the following least-squares problem:

min
Â∈Rr×r,Ĥ∈Rr×r2

K∑
k=1

∥∥∥Âŵ(tk) + Ĥ(ŵ(tk)⊗ ŵ(tk))− ˙̂w(tk)
∥∥∥2

2
, (4.5)

where reduced states can be obtained via projection ŵ(tk) = VT
r w(tk). The reduced

time derivative of the trajectories ˙̂w(tk) can be constructed either using the right-hand

side of FOM (4.1) as ˙̂w(tk) = VT
r ẇ(tk) or by approximating the time derivatives

using some finite difference approximation, e.g., the 5-point approximation

˙̂w(tk) =
−ŵ(tk+2) + 8ŵ(tk+1)− 8ŵ(tk−1) + ŵ(tk−2)

12∆t
.

To write the least-squares problem (4.5) in a matrix form, let us define the reduced-

snapshot matrix Ŝ and reduced-time derivative matrix ˙̂
S as follows

Ŝ = [ŵ(t1), ŵ(t2), . . . , ŵ(tK)] ∈ Rr×K ,
˙̂
S =

[
˙̂w(t1), ˙̂w(t2), . . . , ˙̂w(tK)

]
∈ Rr×K .
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Using the reduced-snapshot matrix Ŝ and time derivative matrix ˙̂
S, (4.5) can be writ-

ten in the matrix form as

min
Â∈Rr×r,Ĥ∈Rr×r2

∥∥∥ÂŜ + Ĥ(Ŝ⊗̂Ŝ)− ˙̂
S
∥∥∥2

F
, (4.6)

where ‖ · ‖F denotes the Frobenius norm ⊗̂ denotes column-wise Kronecker product

(Khatri–Rao product).

Transposing (4.6), we obtain

min
Â∈Rr×r,Ĥ∈Rr×r2

∥∥∥∥ŜT ÂT + (Ŝ⊗̂Ŝ)T ĤT − ˙̂
S
T
∥∥∥∥2

F

, (4.7)

which can also be written as

min
O∈Rr×(r+r2)

∥∥∥∥DOT − ˙̂
S
T
∥∥∥∥2

F

, (4.8)

where O =
[
Â Ĥ

]
∈ Rr×(r+r2) and D =

[
ŜT (Ŝ⊗̂Ŝ)T

]
∈ RK×(r+r2).

4.2 OpInf for NTSWE

In this subsection, we consider the OpInf method to learn ROMs for NTSWE from

data, e.g., obtained from real-world data or proprietary software. We start the discus-

sion with the linear-quadratic form of the NTSWE in the parametric settings. Next,

we construct of the ROM of NTSWE via an intrusive POD method. Then, we in-

troduce the OpInf method to learn the reduced-order operators of NTSWE by simu-

lation data, where we use the information of the parametric dependency at the PDE

level. Furthermore, we address computational details for constructing the ROM by

the OpInf method in Subsection 4.2.1.

Let us consider the state vector w : [0, T ] × D → RN with N degrees of freedom,

a parameter vector µ ∈ D ⊂ Rd, and the time t ∈ [0, T ] ⊂ R. The NTSWE model

(2.10) contains linear and quadratic terms that can be exploited to construct quadratic

ROMs. Consequently, let us consider the following linear-quadratic system ODEs:

ẇ(t;µ) = A(µ)w(t;µ) + H(µ)(w(t;µ)⊗w(t;µ)), (4.9)
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where H(µ) ∈ RN×N2 to the quadratic terms and A(µ) ∈ RN×N corresponds to the

linear terms. Let the initial conditions also depend on the parameter µ, i.e., w(0, µ) =

w0(µ).

Our aim is to construct a parametrized ROM that captures the dynamics of the FOM

(4.9) for a given parameter range as follows:

˙̂w(t;µ) = Â(µ)ŵ(t;µ) + Ĥ(µ)(ŵ(t;µ)⊗ ŵ(t;µ)), (4.10)

where Â(µ) ∈ Rr×r and Ĥ(µ) ∈ Rr×r2 with r � N . When the FOM are available

in the matrix-vector form, then intrusive MOR methods can be applied, such as POD

[10, 12] and interpolation-based methods [11]. If the full-order operators is available,

the reduced-order operators can be constructed with the projection matrix V ∈ RN×r

so that w(t, µ) ≈ Vŵ(t, µ), for all t ≥ 0 and µ ∈ D obtained by POD. The reduced-

order matrices of (4.10) can be evaluated as follows:

Â(µ) = VTA(µ)V ∈ Rr×r, Ĥ(µ) = VTH(µ)(V ⊗V). (4.11)

We assume that the full-order operators in (4.9) have a affine dependence on the

parameter µ:

A(µ) = α1(µ)A1 + · · ·+ αna(µ)Ana , (4.12a)

H(µ) = η1(µ)H1 + · · ·+ ηnh
(µ)Hnh

, (4.12b)

where αi(µ), ηj(µ) : Rd → R are the smooth functions of the parameter µ and Ai ∈
RN×N , Hj ∈ RN×N2 are constant matrices. Then, the reduced-order operators in

(4.11) can be computed in the offline stage, e.g., Â(µ) = α1(µ)Â1+· · ·+αna(µ)Âna ,

where Âi = VTAiV , i ∈ {1, . . . ,na}.

However, when the FOM is not available in matrix form constructing reduced-order

operators becomes an issue. We assume that data is obtained from proprietary soft-

ware. We collect simulation data for a training parameter set, µi ∈ D for i =

1, . . . ,M . Thus, we construct the global snapshot matrix:

Sµ = [S(µ1), . . . ,S(µM)] , S(µi) = [w(t1;µi),w(t2;µi), . . . ,w(tK ;µi)] ∈ RN×K ,

(4.13)

where w(tj, µi) denotes the state solution at time tj for the parameter µi. The projec-

tion matrix V can be obtained by the SVD of the snapshot matrix

Sµ = VµΣµU
T
µ , (4.14)
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where Vµ ∈ RN×M ·K ,Σµ ∈ RM ·K×M ·K ,Uµ ∈ RM ·K×M ·K , and V is given then by

the first r columns of Vµ.

To learn the reduced-order operators by using the OpInf method, firstly, we project

the snapshot matrix Sµ onto the dominant subspace spanned by V as follows:

Ŝµ := VTSµ =
[
Ŝ(µ1), . . . , Ŝ(µM)

]
, (4.15)

where

Ŝ(µi) = [ŵ(t1;µi), ŵ(t2;µi), . . . , ŵ(tK ;µi)] ∈ Rr×K

in which ŵ(tj, µi) := VTw(tj, µi). Moreover, we define

˙̂
Sµ =

[
˙̂
S(µ1), . . . ,

˙̂
S(µM)

]
, (4.16)

where ˙̂
S(µi) can either be approximated using Ŝ(µi) by employing a finite difference

approximation or obtained using the right-hand side of (4.9), see, e.g., [90]. Conse-
quently, the reduced-order operators of the parametric ROM (4.10) are determined by
solving the following least-squares problem:

min
Âi∈Rr×r,Ĥj∈Rr×r2

M∑
k=1

∥∥∥∥∥− ˙̂
S (µk)

T +

na∑
i=1

(
αi(µk)Ŝ(µk)

T ÂT
i

)
+

nh∑
i=1

(
ηi(µk)

(
Ŝ(µk)⊗̂Ŝ(µk)

)T
ĤT

i

)∥∥∥∥∥
2

F
(4.17)

where ⊗̂ denotes the column-wise Kronecker product. Note that the optimization

problem (4.17) does not include any explicit information of the FOM; it involves only

the projected data. We can rewrite the least-squares problem (4.17) in the standard

form as follows:

min
X∈Rr×nar+nhr2

M∑
k=1

∥∥∥A(µk)X T − ˙̂
S (µk)

T
∥∥∥2

F
, (4.18)

where

X =
[
Â1, . . . , Âna , Ĥ1, . . . , Ĥnh

]
,

A(µk) =
[
[α1(µk), . . . , αna(µk)]⊗ Ŝ(µk)

T , [η1(µk), . . . , ηnh
]⊗
(
Ŝ(µk)⊗̂Ŝ(µk)

)T]
.

We summarize overall procedure in the Algorithm (2).
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Algorithm 2 Operator inference model for parametric NTSWE.
1: procedure OPINF

2: Input: States u(tj;µi),v(tj;µi),h(tj;µi) and time derivatives

u̇(tj;µi), v̇(tj;µi), ḣ(tj;µi)

3: Stack the states into w(tj;µi) = [u(tj;µi),v(tj;µi),h(tj;µi)]
T . for each

µi ∈ D, i = 1, . . . ,M and j = 1, . . . , K.

4: Stack the time derivatives into ẇ(tj;µi) = [u̇(tj;µi), v̇(tj;µi), ḣ(tj;µi)]
T for

each µi ∈ D, i = 1, . . . ,M and j = 1, . . . , K.

5: Construct S(µi) = [w(t1;µi), . . . ,w(tK ;µi)].

6: Construct the global snapshot matrix Sµ = [S(µ1), . . . ,S(µM)].

7: Compute the dominant global POD basis V of Sµ using (4.14).

8: Construct Ṡ(µi) = [ẇ(t1;µi), . . . , ẇ(tK ;µi)].

9: Compute Ŝ(µi) = VTS(µi) and ˙̂
S(µi) = VT Ṡ(µi) .

10: Solve the least-squares problem (4.18) to obtain operators of the reduced-

order system, having the form. (4.10)

11: end procedure

4.2.1 Computational Aspects

In this subsection, we discuss about the computational details of the OpInf method

(4.18). Computationally, solving the optimization problem (4.18) can be a difficult

task because the problem can be highly ill-conditioned and the cost of the solution

O
(

(rK(nar + nhr
2)

3
)

grows quickly with the order r of the ROM, and linearly

with the number of snapshots [90]. The computational cost of the least-squares prob-

lem (4.18) can be decreased by decoupling of the problem.

In the OpInf method, learnt reduced-order operators are solutions of the ill-posed

least-squares problem (4.18), where ill-conditioning may occur due to nearly linearly

dependence in the columns of the snapshot matrix. If the snapshots at successive time

steps are almost linearly dependent due to small step size, the condition number of the

snapshot matrix in the least-squares problem increases. Therefore, the least-squares

problem arising from the OpInf method needs a proper regularization method. There

exist several methods to deal with this problem. A proper and extensively used can-

didate for this task is the Tikhonov regularization [117]. Small singular values of the
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data matrix amplify the noise on the solution of the least-squares problem, which can

be filtered by applying Tikhonov regularization. The quality of the solution obtained

by the Tikhonov regularization depends on the regularisation parameter selection,

which is typically selected by the L-curve [60]. The Tikhonov regularization pa-

rameter creates a trade-off between the residual norm and the solution norm. If the

parameter is large, the solution becomes overly smooth that may fail to catch some

essential details on the desired solution, while a small regularization parameter may

produce a solution that is severely affected by the propagated error. Typically, the

logarithmic plot of the solution vs the residual norm exhibits an L shaped curve. The

corner of the L-curve represents the optimal regularization parameter, which gives a

compromise between the minimization solution norm and residual norm [60]. The

stability of the OpInf method can be improved by L-curve [115]. Nevertheless, the

computation efficient Tikhonov parameter is costly for large-scale problems [21]. Al-

though it can be argued that the least-squares problem (4.18) is in a low dimension, it

still can be large when the number of training parameters or/and the number of snap-

shots is large. In a compact form the Tikhonov regularization applied to (4.18) can be

written as follows:

min
xi∈Rnar+nhr2

‖Aµxi − si‖2
2 + λ ‖xi‖2

2 , i = 1, . . . , r. (4.19)

Here xi are the columns of X T , and si are the columns of ˙̂
Sµ, and

Aµ =
[
AT (µ1), . . . ,AT (µM)

]T
.

In [90], a heuristic method is proposed to deal with the conditioning of the data matrix

in which a subset of the snapshots is considered by taking the snapshots in a regu-

lar interval e.g., every 5th time-step. In [90], it is also shown that this method can

mitigate the ill-conditioning problem to some extent in some instances. Nevertheless,

the interval selection should be made so that the essential trajectories are not missed;

therefore, the determination of the interval plays an essential role. This problem is

referred to as a heuristic column subset selection problem (CSSP) in the literature.

The CSSP determines a subset of the most linearly independent columns of a matrix

that gives the best knowledge in the matrix.
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The QR decomposition of the snapshot matrix with column pivoting (QR-CP) can

be used to find a proper subset for the CSSP. Here, we use the tQR method [27]

which is favourable for rank deficient problems with the minimum norm solution.

One alternative to this approach is the truncated SVD (tSVD) algorithm. The tSVD is

also a widely used method due to its best rank-k approximation. Typically, the tSVD

method and tQR method produce close solutions. However, the computation of the

tSVD is more costly than the tQR algorithm.

Suppose Aµ ∈ Rm×n is a rank deficient matrix with rank(Aµ) = p. There always

exists a QR-CP factorization of Aµ of the form

AµΠ = QR, (4.20)

where Q ∈ Rm×m is an orthogonal matrix, Π ∈ Rn×n is a permutation matrix, and R

is an upper triangular matrix of the form

R =

R1 R2

0 R3

 ≈
R1 R2

0 0

 . (4.21)

R1 ∈ Rp×p is upper triangular with rank(R1) = p and ‖R3‖2 is small. The diagonal

entries of R in (4.20) satisfy |Rii| ≥ |Rjj| for j > i so that the effective rank of A
can be obtained by taking the smallest integer p as the rank such that

|Rp+1,p+1| < tol · |R11|,

where tol can be considered as the tolerance for the linear dependency of the columns

of data matrix Aµ. The regularization tolerance of tQR tol can also be obtained by

the L-curve [60]. The minimum norm solution by tQR regularization can be deter-

mined as done in [27].

Lastly, in this subsection, we shortly discuss the computational details of Algorithm

(4). Since obtaining the POD basis is similar for both non-intrusive and intrusive

models, we exclude it from the discussion. Furthermore, we assume that time deriva-

tives (4.16) are given. Computation of the projected trajectories at line (9) cost in

O(rNK). Solving the least-squares problem at line (10) with tQR method as r in-

dependent problem cost in O
(

(2(nar + nhr
2 − p) + 1) (nar + nhr

2)
2
)

, where p is

the effective rank [27].
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4.2.2 Numerical Results

In this subsection, we compare the performance of the OpInf method with the in-

trusive POD method for two numerical test problems. We also show the prediction

capabilities of the intrusive POD method and the OpInf method for the parametric and

non-parametric NTSWE. Moreover, we compare the non-intrusive techniques for the

tQR method with the tolerance 10−6 and for the Tikhonov regularization (4.19) with

the penalty parameter λ = 0.01. Determination of the suitable regularization param-

eters for both Tikhonov and tQR methods have done by the L-curve criteria. The first

test problem shows the propagation of the inertia-gravity waves by Coriolis force,

known as geostrophic adjustment [113]. The second example demonstrates a shear

instability in the form of a roll-up of an unstable shear layer, known as barotropic

instability [113].

The spatial derivatives in NTSWE (2.10) is discretized in space by using central finite-

differences approximation. The semi-discrete system includes linear and quadratic

terms that depends on the parameter µ = θ:

ẇ(t;µ) = A(µ)w(t;µ) + H(µ)(w(t;µ)⊗w(t;µ)), (4.22)

where H(µ) ∈ RN×N2 corresponds to the quadratic term, A(µ) ∈ RN×N corresponds

to the linear terms, µ ∈ D ⊂ Rd, the state vector w : [0, T ]×D → RN withN degrees

of freedom, and the time t ∈ [0, T ] ⊂ R. The full-order operators A(µ) and H(µ) in

(4.12) are dependent to the parameter µ affinely as follows:

α1(µ) = 1, α2(µ) = Ωz = sin(µ), α3(µ) = ΩzΩy = sin(µ) cos(µ), (4.23a)

η1(µ) = 1, η2(µ) = Ωy = cos(µ), η3(µ) = (Ωy)2 = (cos(µ))2. (4.23b)

We study the NTSWE with periodic boundary conditions and assume no input or

forcing terms in (4.22).

For simulations, we considered the function ode15s in MATLAB® with both the rel-

ative and absolute error tolerances set to 10−8. In all numerical examples of NTSWE,

we have used the 101×101 equidistant grid points to discretize the spatial domain. We

also sampled the snapshots at equidistant time instances using the time step ∆t = 0.1.

To measure the accuracy of the ROMs, let us define following relative error in the
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Frobenius norm

E =
||SFOM −VSROM||F

||SFOM||F
, (4.24)

where SFOM ∈ RN×K is the snapshot matrix of the FOM and SROM ∈ Rr×K is the

snapshot matrix of either the non-intrusive or the intrusive ROMs. The relative er-

ror for the parametric case is computed with snapshot matrices by concatenating the

trajectories for parameter samples. Typically, the reduced dimension r is determined

through the projection error as follows:

Eproj =
||SFOM −VVTSFOM||F

||SFOM||F
. (4.25)

Single-layer geostrophic adjustment

The initial conditions are designated in the form of a motionless layer with an upward

protrusion of the height field in a periodic domain [−5, 5]× [−5, 5] :

h(x, y, 0) = 1 +
1

2
exp

[
−
(

4x

5

)2

−
(

4y

5

)2
]
, u(x, y, 0) = 0, v(x, y, 0) = 0.

After the collapse of the initial symmetric peak, the inertia-gravity waves propagate

with respect to the axes. Nonlinear interactions produce smaller waves, propagating

throughout the domain, and the interactions create more complicated patterns [113].

Non-parametric case

Here, we examine the NTSWE for a fixed parameter µ = π
4
. The snapshots of the

FOM are obtained by solving (2.10) in the time domain [0, T ] with T = 60. The FOM

trajectories are concatenated into w = [u,v,h]T ∈ R30000, resulting to a training data

of the size SFOM ∈ R30000×601. Then, the non-intrusive OpInf and the intrusive POD

are used to predict the height field outside of the training interval at time T = 80.

In Figure 4.1, the decay of the first 300 normalized singular values of the snapshot

matrix SFOM is displayed . The slow decay in the normalized singular values shows

the challenge of constructing accurate ROMs for a few POD modes, which is a com-

mon problem for hyperbolic PDEs like the NTSWE.

In Figure 4.2, we show the condition number of the data matrixAµ, which is severely

ill-conditioned. For up to the reduced dimension r = 24 the least-squares problem
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Figure 4.1: Single-layer geostrophic adjustment: Normalized singular values.
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Figure 4.2: Condition number of the data matrix.

(4.30) becomes overdetermined, and the condition number increasing. On the other

hand, when the reduced dimensions greater than r = 24, the least-squares problem

(4.30) becomes underdetermined, and the condition number is decreasing. When the

least-squares problem becomes underdetermined, the uniqueness of the system is lost.

Here, the uniqueness of the system is retained due to the minimum-norm solution.

Furthermore, the OpInf method without regularization does not give a meaningful

result in this problem due to an ill-conditioned data matrix. Truncating the matrix R

in (4.21), the condition number is adjusted to approximately 1/tol ≈ 106.

In Figure 4.3 , we show the L-curves of tQR and Tikhonov method for the reduce

dimension r = 20, Tikhonov parameters λ = [101, 100, . . . , 10−7], and tQR toler-

ances tol = [10−4, 10−5, . . . , 10−10]. The vertical axis of the plot is the squared

norm of the learned operators, and the horizontal axis is the norm of the residual.

If the L-curves are computed for each reduced dimension, the cost remarkably will

increase; therefore, the Tikhonov parameter λ and the tQR tolerance tol are chosen

close to the corners at the L-curves for r = 20 which yields stable solutions from

reduce dimension r = 20 up to reduce dimension r = 75. The taken tQR tolerance

and Tikhonov parameter λ are demonstrated as blue dot in Figure 4.3.

We construct a POD-projection matrix V ∈ R30000×r with reduced dimension r = 75,

which results to a projection error (4.25) Eproj = 2.07·10−3. Next, we construct ROMs
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Figure 4.3: L-curves: Tikhonov (left) , tQR (right).

Table 4.1: Single-layer geostrophic adjustment: Comparison of ROMs obtained by
POD and OpInf method.

Method POD OpInf (Tikhonov regularizer) OpInf (tQR)
E 3.27 · 10−3 2.07 · 10−3 2.07 · 10−3

using the non-intrusive OpInf and intrusive POD methods. To compare the quality of

the non-intrusive ROMs, we have regularized the least-squares problem arising from

the OpInf method with both Tikhonov and tQR-based regularizers. In Table 4.1, we

demonstrate the accuracy of the non-intrusive and intrusive ROMs using the FOM-

ROM error (4.24), where the non-intrusive method gives a better ROM as compared

to the intrusive POD method, and both regularizations yield a similar result.

Furthermore, we examine the quality of the ROMs as the reduced-order dimension

is increasing. The quality of the ROMs is examined by the relative error E (4.24)

for ROMs obtained through the intrusive and non-intrusive methods in Figure 4.4.

The relative error (4.24) arising from the intrusive ROM does not decrease as flatly

as in the non-intrusive case. Both regularizers yield equally accurate solutions for

all the reduced dimensions of the ROMs. Nevertheless, the penalty parameter of the

Tikhonov regularization typically is obtained by the L-curve, which needs the SVD

computation of the data matrix [60]. Therefore, the Tikhonov regularization with

L-curve is more costly than the tQR.

In the remainder of this subsection for time-domain simulations and prediction, we

present the results for the OpInf method with tQR since both the tQR-based and

Tikhonov methods results in comparable solutions with respect to the projection error

(4.25). In Figure 4.5, the height field obtained from the FOM and ROMs of dimension

r = 75 at time T = 60 are plotted. The figures indicate that both ROMs are very close
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Figure 4.4: Single-layer geostrophic adjustment: Relative ROMs errors.

to the FOM solutions, where the non-intrusive ROM is slightly more accurate.

Next, we examine the prediction capabilities of both intrusive and non-intrusive ROMs

of dimension r = 75. We have trained the ROMs using the snapshots up to time

T = 60. Then, the height field outside of the training interval at time T = 80 is

examined in Figure 4.6. Figure 4.6 shows that the height field can be predicted with

better accuracy by using the non-intrusive ROM compared to the intrusive ROM.
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Figure 4.5: Single-layer geostrophic adjustment: Comparison of the height field ob-
tained using the FOM and ROMs of order r = 75 at time T = 60.
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Figure 4.6: Single-layer geostrophic adjustment: Prediction of the height field ob-
tained using the FOM and ROMs of order r = 75 at time T = 80.
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Parametric Case

In this subsection, we examine the non-intrusive ROM in the parameter domain of

NTSWE as D =
[
π
6
, π

3

]
⊂ R. The time domain is set to [0, T ] ⊂ R for final time

T = 10. We have generated the trajectories for M = 5 equidistantly parameter

values µ1, µ2, . . . , µ5 ∈ D. The snapshot matrix is constructed as in (4.13), which

yields SFOM ∈ R30000×505.

Similar singular values in Figure 4.7 decay is observed to the non-parametric case in

Figure 4.1. The accuracy of the non-intrusive ROMs examined for r = 75, where we

compute the projection error (4.25) with the training data, which is Eproj = 2.10 ·10−4.

Table 4.2 shows that the relative errors (4.24) are close to the projection error (4.25)

for the both ROMs, which shows that non-intrusive ROMs of both non-intrusive

methods have the equivalent level of accuracy. In the parametric setting, we only

consider the non-intrusive approach; yet, we observe a similar performance for the

parametric setting as in the non-parametric case. We additionally show the relative

errors for the non-intrusive ROMs of dimension r = 25 to r = 75 over the train-

ing interval in Figure 4.8. Repeatedly, we observe a similar behaviour as for the

non-intrusive ROM; the relative errors in the training interval decrease when the di-

mension of the ROM increases. Additionally, for dimension r = 75, the relative error

of the tQR regularizer performs slightly less correct behaviour than the Tikhonov

regularizer because of the fixed tolerance of the tQR method.

Next, we investigate the performance of the non-intrusive parametric models on the

test parameter values. The test parameter values are considered as the midpoint of

two successive training parameter values. In Figure 4.9, we show the relative errors

(4.24) of the non-intrusive ROM of dimensions r = 25 and r = 75 for both test and

training parameter values. Figure 4.9 indicates that the accuracy of the non-intrusive
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Figure 4.7: Single-layer geostrophic adjustment: Normalized singular values.
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Table 4.2: Single-layer geostrophic adjustment: Comparison of ROMs obtained by
OpInf method.

Method OpInf (Tikhonov regularizer) OpInf (tQR)
E 2.10 · 10−4 3.32 · 10−4
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Figure 4.8: Single-layer geostrophic adjustment: Relative ROMs errors.

model increases when the dimension r increases for training and testing parameter

values.

Finally, we have plotted the height field and the corresponding absolute errors at time

T = 10 for the parameter µ = 5π
24

in Figure 4.10 for the non-intrusive model of di-

mension r = 75, which indicates that the non-intrusive model captures the dynamics

of the FOM accurately.
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Figure 4.9: Single-layer geostrophic adjustment: Relative error for testing and train-
ing parameters; (square): training set, (circle): testing set. (black): reduced dimension
r = 25, (red): reduced dimension r = 75.
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Figure 4.10: Single-layer geostrophic adjustment: Comparison of the height field for
the parameter µ = 5π

24
obtained using the FOM and OpInf of order r = 75 at time

T = 10.

Single-layer shear instability

The initial conditions for the second test example on the periodic domain [0, 10] ×
[0, 10] are given as:

h(x, y, 0) = 1 + ∆h sin

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
,

u(x, y, 0) = −2π∆h

ΩzL
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
,

v(x, y, 0) = −4π2∆h∆y

ΩzL2
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
cos

(
2πx

L

)
,

where ∆h = 0.2, ∆y = 0.5 and the dimensionless spatial domain length L = 10.

This test example illustrates the roll-up of an unstable shear layer [113].

Non-parametric case

The quality of non-intrusive OpInf method is examined in terms of capturing the vor-

ticity dynamics for the parameter value µ = π
4
. We sample the trajectories as the state

vectors concatenated into w = [u,v,h]T ∈ R30000. The FOM (4.22) is solved in the

time domain [0, 60], which results the training data set of the size SFOM ∈ R30000×601.

The performance of the ROMs in terms of relative errors (4.35) is demonstrated in

Figure 4.11, which indicates that the relative errors of the non-intrusive models de-
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Figure 4.11: Single-layer shear instability: Relative ROMs errors.

50 100 150 200 250 300
10−10

10−5

100

k

σ
k/
σ

1

Figure 4.12: Single-layer shear instability: Normalized singular values.

crease flatly with decreasing singular values in Figure 4.12, whereas the intrusive

ROM errors decrease non-smoothly.

The projection error (4.25) for r = 50 results, Eproj = 3.52 · 10−5. We also compare

the relative errors (4.24) of ROMs of dimension r = 50 with the projection error in

Table 4.3, which again shows that the non-intrusive models are more accurate.

The potential vorticities obtained from the ROM of dimension r = 50 and FOM as

well as corresponding absolute error are demonstrated in Figure 4.13, where both the

ROM and FOM shows similar roll-up behavior of the vorticity. In Figures 4.13c,

4.13e, the accuracy of non-intrusive and intrusive ROMs of dimension r = 50 shows

similiar accuracy for the vorticity dynamics.

We show the prediction capability of the ROMs of dimension r = 50 via non-intrusive

OpInf and intruive POD methods by training them in the time interval [0, 60], in

Table 4.3: Single-layer shear instability: Comparison of ROMs obtained by POD and
OpInf method.

Method POD OpInf (Tikhonov regularizer) OpInf (tQR)
E 5.54 · 10−5 3.52 · 10−5 3.58 · 10−5
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Figure 4.13: Single-layer shear instability: Comparison of the potential vorticity field
obtained using the FOM and ROMs of order r = 50 at time T = 60.

Figure 4.14. The final time for the prediction is set to T = 80. Figure 4.14 indicates

that the non-intrusive model are more accurate than the intrusive model.
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Figure 4.14: Single-layer shear instability: Prediction of the potential vorticity field
obtained using the FOM and ROMs of order r = 50 at time T = 80.

Parametric Case

In the last example of NTSWE example, we study the performance of both intrusive

and non-intrusive models in terms of the vorticity dynamics by fixing the parameter

domain of NTSWE as D =
[
π
6
, π

3

]
⊂ R.

In this example, the initial condition is parameter dependent as well, i.e., dependent

on the angular velocity vector Ωz. We have obtained training trajectories by simulat-

ing NTSWE (4.22) on the time domain [0, T ] and M = 5 equidistantly distributed

parameter values µ1, µ2, . . . , µ5 ∈ D. The final time of the FOM simulation is set

to T = 30. The snapshot matrix SFOM ∈ R30000×1505 is again constructed from the

concatenated states.

The relative errors (4.24) of the non-intrusive models of dimensions 20 to 65 over the

training data set are demonstrated in Figure 4.15, which is smoothly decreasing with

the normalized singular values decrease as shown in Figure 4.16. The projection error
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Figure 4.15: Single-layer shear instability: Relative ROMs errors.
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Figure 4.16: Single-layer shear instability: Normalized singular values.

(4.25) for dimension r = 65 is E = 6.12·10−5. We have compared the projection error

with the relative error (4.24) of the non-intrusive model of dimension r = 65 in Table

4.4 , which indicates that both regularizers provide similarly accurate performance.

We again consider the parameter values at the middle points of two successive train-

ing parameters for the testing values. Figure 4.17 demonstrates the relative errors for

parameter values in the test and training sets for both non-intrusive ROMs of dimen-

sion 20 and 65. In Figure 4.17, the regularized solution for the test value µ = 9π
48

is

less accurate comparing to remaining parameter values in the test set for dimension

65. This implies that the truncation tolerance for the QR-CP method can degenerate

the accuracy of the ROMs.

Finally, we demonstrate the potential vorticity of the FOM and the non-intrusive

model of dimension r = 65 as well as the corresponding absolute error at time T = 30

for the parameter µ = 5π
24

in Figure 4.18, which indicates that the non-intrusive model

Table 4.4: Single-layer shear instability (parametric case): Comparison of ROMs
obtained by OpInf method.

Method OpInf (Tikhonov regularizer) OpInf (tQR)
E 6.12 · 10−5 7.41 · 10−5
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Figure 4.17: Single-layer shear instability: Relative error for testing and training
parameters; (square): training set, (circle): testing set. (black): reduced dimension
20, (red): reduced dimension 65.
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Figure 4.18: Single-layer shear instability: Comparison of the potential vorticity field
for the parameter µ = 5π

24
obtained using the FOM and OpInf of order r = 65 at time

T = 30.

captures the vorticity dynamics of the NTSWE accurately.

4.3 OpInf for RTSWE

In this subsection, we construct an intrusive and non-intrusive ROMs with the OpInf

for the RTSWE (2.15) in the parametric form

ẇ(µ) = A(µ)w(µ) + H(w ⊗w). (4.26)

Note that only the linear terms of the RTSWE depends on the parameter µ ∈ D ⊂ Rd,

whereas the quadratic terms are independent of the parameters.
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To preserve the coupling structure in both intrusive and non-intrusive ROMs, we have

computed the POD basis vectors separately for each the state vector h,u,v, s as dis-

cussed in Section 3.4.

Let us define following trajectories

Wh(µ) =
[
h1(µ), . . . ,hK(µ)

]
,Wu(µ) =

[
u1(µ), . . . ,uK(µ)

]
,

Wv(µ) =
[
v1(µ), . . . ,vK(µ)

]
,Ws(µ) =

[
s1(µ), . . . , sK(µ)

]
,

and the corresponding global snapshot matrices of the concatenated trajectories

Whµ = [Wh(µ1), . . . ,Wh(µM)] ,Wuµ = [Wu(µ1), . . . ,Wu(µM)] ,

Wvµ = [Wv(µ1), . . . ,Wv(µM)] ,Wsµ = [Ws(µ1), . . . ,Ws(µM)] .

for each state vector and parameter values µ1, . . . , µM ∈ D.

The POD basis matrices Vh, Vu, Vv, Vs are obtained from the global snapshot matrices

Whµ,Wuµ,Wvµ,Wsµ ∈ RN×MK as in Section 3.4, respectively.

The POD coefficients h̃, ũ, ṽ, s̃ are obtained by the POD matrices as
h

u

v

s

 ≈

Vh

Vu

Vv

Vs




h̃

ũ

ṽ

s̃

 .

Although different number of POD modes can be used for each state, in this study we

use equal number of POD modes, i.ei., r = ru = rv = rh = rs. We remark that the

POD basis are independent of the parameter µ ∈ D.

4.3.1 Proper Orthogonal Decomposition with Galerkin Projection

The reduced-order operators are the determined by the employing Galerkin projec-

tion of the FOM (2.32) onto the subspace spanned by POD basis vectors Φr =

diag(Vh, Vu, Vv, Vs).

Ã(µ) = ΦT
r A(µ)Φr ∈ Rr×r, H̃ = ΦT

r H(Φr ⊗ Φr) ∈ Rr×r2 . (4.27)
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The linear and quadratic operators can be constructed as follows

Ã(µ) = ΦT
r A(µ)Φr =



0 0 0 0

0 0 f(µ)V T
u Vv −V T

u (Dxb)dVs

0 −f(µ)V T
v Vu 0 −V T

v (Dyb)dVs

0 0 0 0


∈ R4r×4r,

H̃1 =


0

H̃1
1

H̃2
1

0

 , H̃2 =


H̃1

2

H̃2
2

H̃3
2

H̃4
2

 ,

H̃4 =


0

H̃1
4

H̃2
4

0

 , H̃3 =


H̃1

3

H̃2
3

H̃3
3

H̃4
3

 ,

with the r × r2 matrices

H̃1
1 = −V >u Q(DxVu ⊗ Vu), H̃2

1 = −V >v Q(DxVv ⊗ Vu),

H̃1
2 = −V >h DxQ(Vh ⊗ Vu), H̃2

2 = −V >u Q(Vv ⊗DyVu),

H̃3
2 = −V >v Q(Vv ⊗DyVv), H̃4

2 = −V >s Q(DxVs ⊗ Vu),

H̃1
3 = −V >h DyQ(Vh ⊗ Vv), H̃2

3 = −1

2
V >u Q(Vh ⊗DxVs),

H̃3
3 = −1

2
V >v Q(Vh ⊗DyVs), H̃4

3 = −V >s Q(DyVs ⊗ Vv),

H̃1
4 = −V >u Q(Vs ⊗DxVh), H̃2

4 = −V >v Q(Vs ⊗DyVh),

(4.28)

where Q ∈ RN×N2 is the matricized tensor such that Q(a⊗b) = a◦b is satisfied for

any vectors a,b ∈ RN . Computation of the reduced matricized tensors H̃j
i is done

similar as done in the Section 3.4.
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Using the reduced-order operators, resulting ROM can be written as

ẇ(t;µ) = Ã(µ)


0

ṽ(t;µ)

ũ(t;µ)

0

+ H̃1


0

(ũ(t;µ)⊗ ṽ(t;µ))

(ṽ(t;µ)⊗ ṽ(t;µ))

0

+ H̃2


(h̃(t;µ)⊗ ũ(t;µ))

(ṽ(t;µ)⊗ ũ(t;µ))

(ṽ(t;µ)⊗ ṽ(t;µ))

(s̃(t;µ)⊗ ũ(t;µ))


(4.29)

+H̃3


(h̃(t;µ)⊗ ṽ(t;µ))

(h̃(t;µ)⊗ s̃(t;µ))

(h̃(t;µ)⊗ s̃(t;µ))

(s̃(t;µ)⊗ ṽ(t;µ))

+ H̃4


0

(s̃(t;µ)⊗ h̃(t;µ))

(s̃(t;µ)⊗ h̃(t;µ))

0


which is solved in time by Kahan’s method. Note that (4.29) preserves the linear-

quadratic structure of the FOM (2.32).

4.3.2 Operator Inference (OpInf) with Re-Projection

In this subsection, we use the OpInf method [90, 89] to learn the reduced-order op-

erators of the RTSWE (2.15) without accessing the full-order operators but only to

trajectories and some information about FOM at the PDE level. In the OpInf frame-

work, the main idea is to fit the reduced-order operators by the projected trajectories

via least-squares regression. The projected trajectories are obtained by projecting

full-order trajectories onto the low-dimensional subspaces spanned by POD basis.

Nevertheless, by fitting reduced-order operators via projected trajectories, a closure

error is introduced into the learnt operators, i.e., the operators can fail to capture the

FOM dynamics in contrast to the intrusive operators. Although the high-dimensional

trajectories are Markovian [32, 49], in the low-dimensional subspace, the reduced-

order trajectories involve non-Markovian dynamics. The dynamical systems called

Markovian when the future states depend only on the current state. On the other hand,

non-Markovian systems can be considered as having a memory so that future states

depend on the current and previous states. In [89] a data sampling method called

re-projection is used to cancel the non-Markovian dynamics so that the trajectories in

reduced space correspond to Markovian dynamics. The OpInf with re-projection ex-

actly recovers the intrusive reduced-order operators. The re-projection scheme in [89]
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iterates between the time stepping the FOM and projecting onto the low-dimensional

subspaces to generate trajectories that correspond to low-dimensional Markovian dy-

namics. Under certain conditions, applying operator inference to re-projected trajec-

tories gives the same operators that are constructed with the intrusive model reduction

in the limit of r → N .

Let us define the projected trajectories for each state as follows

Ŵh(µ) = V >h Wh(µ) ∈ Rr×K , Ŵu(µ) = V >u Wu(µ) ∈ Rr×K ,

Ŵv(µ) = V >v Wv(µ) ∈ Rr×K , Ŵs(µ) = V >s Ws(µ) ∈ Rr×K .

In addition, we define the time derivatives and their projections as

Ẇh(µ) =
[
ḣ1(µ), . . . , ḣK(µ)

]
, Ẇu(µ) =

[
u̇1(µ), . . . , u̇K(µ)

]
,

Ẇv(µ) =
[
v̇1(µ), . . . , v̇K(µ)

]
, Ẇs(µ) =

[
ṡ1(µ), . . . , ṡK(µ)

]
,

˙̂
W h(µ) = V >h Ẇu(µ),

˙̂
W u(µ) = V >u Ẇu(µ),

˙̂
W v(µ) = V >v Ẇv(µ),

˙̂
W s(µ) = V >s Ẇs(µ).

The time derivatives can be computed by using finite differences approximation [82]

or by evaluation of a right-hand side of the RTSWE (2.32). We have used right-hand

side of the RTSWE (2.32) to compute the time derivatives.

Finally, the reduced operators can be learned by solving following least-squares prob-

lems for each state separately as follows

min
Xj

M∑
k=1

∥∥∥Aj(µk)X>j − ˙̂
W j(µk)

>
∥∥∥2

F
, j = h, u, v, s, (4.30)

with the data matrices

Ah(µk) = [A11,A12] ∈ RK×2r2 ,

Au(µk) = [A21,A22,A23,A24] ∈ RK×3r2+r,

As(µk) = [A31,A32] ∈ RK×2r2 ,

Av(µk) = [A41,A42,A43,A44] ∈ RK×3r2+r,
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consist of the matrices

A11 = (Ŵh(µk)⊗̂Ŵu(µk))
>, A12 = (Ŵh(µk)⊗̂Ŵv(µk))

>,

A21 = (Ŵu(µk)⊗̂Ŵu(µk))
>, A22 = (Ŵv(µk)⊗̂Ŵu(µk))

>,

A23 = (Ŵh(µk)⊗̂Ŵs(µk))
>, A24 = f(µk)Ŵv(µk)

>,

A31 = (Ŵu(µk)⊗̂Ŵs(µk))
>, A32 = (Ŵv(µk)⊗̂Ŵs(µk))

>,

A41 = (Ŵu(µk)⊗̂Ŵv(µk))
>, A42 = (Ŵv(µk)⊗̂Ŵv(µk))

>,

A43 = (Ŵh(µk)⊗̂Ŵs(µk))
>, A44 = f(µk)Ŵu(µk)

>,

and with the learned operators

Xh =
[
Ĥ1,1, Ĥ1,2

]
∈ R2r2×r, Xu =

[
Ĥ2,1, Ĥ2,2, Ĥ2,3, L̂1(µ)

]
∈ R3r2+r×r (4.31)

Xs =
[
Ĥ4,1, Ĥ4,2

]
∈ R2r2×r, Xv =

[
Ĥ3,1, Ĥ3,2, Ĥ3,3, L̂2(µ)

]
∈ R3r2+r×r (4.32)

. The least-squares problem (4.30) can be written in standard form as

min
Xj

∥∥∥AµjX>j − ˙̂
W µj

∥∥∥2

F
, j = h, u, v, s (4.33)

where ˙̂
W µj =

[
˙̂
W

T

j (µ1), . . . ,
˙̂
W

T

j (µM)

]T
and Aµj =

[
ATj (µ1), . . . ,ATj (µM)

]T for

j = h, u, v, s.

Note that each of the least-squares problems (4.30) are independent and are solved

separately to improve the computational efficiency [90].

Substituting the recovered operators, the non-intrusive ROM becomes

˙̂
h(t;µ) = Ĥ1,1(ĥ(t;µ)⊗ û(t;µ)) + Ĥ1,2(ĥ(t;µ)⊗ v̂(t;µ)), (4.34a)

˙̂u(t;µ) = Ĥ2,1(û(t;µ)⊗ û(t;µ)) + Ĥ2,2(v̂(t;µ)⊗ û(t;µ)) (4.34b)

+ Ĥ2,3(ĥ(t;µ)⊗ ŝ(t;µ)) + f(µ)L̂1v̂(t;µ), (4.34c)

˙̂v(t;µ) = Ĥ3,1(û(t;µ)⊗ v̂(t;µ)) + Ĥ3,2(v̂(t;µ)⊗ v̂(t;µ)) (4.34d)

+ Ĥ3,3(ĥ(t;µ)⊗ ŝ(t;µ)) + f(µ)L̂2û(t;µ), (4.34e)

˙̂s(t;µ) = Ĥ4,1(û(t;µ)⊗ ŝ(t;µ)) + Ĥ4,2(v̂(t;µ)⊗ ŝ(t;µ)). (4.34f)

We have summarized data sampling by re-projection [89] in Algorithm (3) by pre-

serving the coupling structure of the ROM as done in [95]
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Algorithm 3 Data sampling via re-projection
1: procedure RE-PROJECTION

2: Input: States wj j = 1, . . . , K and POD basis matrix Φr.

3: for j = 1, . . . , K do

4: Set wj
proj = (hjproj,u

j
proj,v

j
proj, s

j
proj)

T = ΦrΦ
T
r wj .

5: Re-project the time derivatives ẇ
j

= ΦT
r F(wj

proj) in (2.33).

6: Re-project the states wj = ΦT
r wj

proj .

7: end for

8: return Ẇ =
[
ẇ

1
, . . . , ẇ

K
]

and W =
[
w1, . . . ,wK

]
.

9: end procedure

Algorithm 4 Operator inference with re-projection for parametric RTSW.
1: procedure OPINF

2: Input: States wj(µi) and time derivatives ẇj(µi) for i = 1, . . . ,M and

j = 1, . . . , K.

3: Construct the trajectories for each state

Wh(µ) = [h1(µ), . . . ,hK(µ)] , Wu(µ) = [u1(µ), . . . ,uK(µ)] ,

Wv(µ) = [v1(µ), . . . ,vK(µ)] , Ws(µ) = [s1(µ), . . . , sK(µ)] .

4: Construct the global snapshot matrices Wjµ = [Wj(µ1), . . . ,Wj(µM)] for

j = h, u, v, s.

5: Compute the global POD basis Φrj of Wjµ for j = h, u, v, s.

6: Sample the data via re-projection and set Ŵj = W j and ˙̂
W j = Ẇ j for

j = h, u, v, s.

7: Determine the tolerance of lsqminnorm tol, using L-curve formula.

8: Solve the least-squares problem (4.30) to obtain operators of the reduced-

order system using X T
j =lsqminnorm.(Aµj,

˙̂
W µj, tol).

9: end procedure

The uniqueness of the solution of the least-squares problem (4.33) plays a crucial role

in the OpInf method, which is obtained by enforcing the system to be overdetermined,

i.e., the number of the time steps should satisfy K ≥ r+r2 for linear-quadratic PDEs

like the RTSWE (see Corollary 3.2 in [89]) and the data matrices Aj, j = h, u, v, s
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must have full column rank. If this condition is not satisfied, the least-squares prob-

lem (4.33) becomes underdetermined, and the uniqueness of the solution is lost. This

issue can be overcome by picking the minimum norm of the solution. The minimum-

norm solution enforces uniqueness of the solution by picking smallest ‖Xj‖F which

minimizing the ‖AµjX>j −
˙̂
W µj‖F . To obtain the minimum-norm solution, one can

use the Moore-Penrose pseudoinverse or complete orthogonal decomposition (COD)

formulas. We use here MATLAB’s routine lsqminnorm as regularizer of the least-

squares problem (4.30) to achieve the uniqueness. An ill-conditioned matrix as ei-

ther a matrix with a well-determined numerical rank or an ill-determined numerical

rank, depending on the behavior of the singular value spectrum [59]. Usually, the L-

curve criterion [60] is used to determine the tolerance at which the singular values are

truncated. Determining regularization tolerance by the L-curve, a good compromise

between matching the accurate solution and making the problem well-conditioned is

obtained.

Once the reduce operators are recovered from the OpInf method, any time stepping

scheme can be used to solve the ROM with the recovered operators. Here, we use

Kahan’s method as the time integrator for (4.34), because it is cheap, i.e., linearly

implicit and preserves the conserved quantities in contrast to the implicit or explicit

Euler methods.

The costs of Algorithm (4) are bounded linearly, in the FOM dimension N and the

number of time steps K. All the lines in Algorithm (4) have a cost that is independent

of the FOM dimension N . Further cost occurs for obtaining the re-projected time

derivatives and trajectories. Overall, the computational cost of the Algorithm (4) with

re-projection is twice that of OpInf without re-projection.

There is a trade-off between the ROM error and the condition number of the data ma-

trices in increasing reduced dimension r, which decrease the ROM error yet increases

the condition number of the data matrix. By sampling in a subset of trajectories, the

condition number of the data matrix can be decreased, and the computational effi-

ciency can be increased, i.e. taking every kth snapshot in the data matrix. Another

strategy to deal with the condition number is to solve the FOM with different initial
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values [90].

4.3.3 Numerical Results

In this subsection, we compare the computational efficiency, accuracy, and the pre-

diction skills of the POD and OpInf methods for the double vortex RTSWE [43] in the

parametric and in the non-parametric formin a doubly periodic domain Ω = [0, L]2

with no bottom topography (b = 0). The initial conditions are given in Section

(3.5.4).

Non-parametric case

In the non-parametric case, we consider the Coriolis parameter as f = 0.00006147s−1,

which corresponds at the latitude 7, close to equator. The number of time steps fixed

to K = 250 with the time step-size ∆t = 486s, that results to the final time T = 33h

45min [43]. The snapshot matrices are of size 14440× 250.

The accuracy of both the intrusive and non-intrusive models are measured using the

relative error of the four states

||ΦrZ −W ||F
||W ||F

, (4.35)

where W ∈ R4N×K is the snapshot matrix of the FOM and Z ∈ R4r×K is the

snapshot matrix of either the intrusive or the non-intrusive model. The average rela-

tive errors between ROMs and FOM solutions are determined for each state variable

w = u,v,h, s in the time-averaged L2(Ω)-norms (3.22).

The preservation of discrete quantities (2.27): the energy, buoyancy, mass, and total

vorticity obtained from the FOM and ROM solutions are examined using the time-

averaged relative error (3.21) for E ≡ H,M,B,Q.

First, we show how the regularization tolerance tol in Algorithm 4 is obtained for the

regularized least-squares problem (4.33). In Figure 4.19, the singular values of the

data matrices decay without showing a gap. Consequently, the L-curve does not give

any useful information to determine the regularization tolerances.

The regularization tolerances for the routine lsqminnorm are obtained by the L-
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Figure 4.19: Normalized singular values of the data matrices for the reduced dimen-
sion r = 20.

curves of the data matrices in Figure 4.20 as 1e − 6 for j = h, v and 1e − 7 for

j = u, s.
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Figure 4.20: L-curves for reduced dimension r = 20.

In Figure 4.21, the singular values decay comparatively slow, which is a common

characteristic property for the complex fluid dynamic problems with transport and

phenomena like the SWEs [88].
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Figure 4.21: Normalized singular values of the snapshot matrices.

In Figure 4.22, the relative errors linked to both the intrusive and non-intrusive (4.35)

of the four trajectories are plotted, which shows the errors obtained from both intru-

sive and non-intrusive models showed similar performance, i.e. trajectories are very

close. By increasing dimension r, the POD and OpInf errors decrease in the same

manner. For reduced dimension r = 20, the average relative errors (3.22) regarding

the intrusive POD and non-intrusive OpInf methods are 1.499e− 03 and 1.485e− 03,

respectively, which indicates that both intrusive and non-intrusive model captures the

FOM dynamics with the same level of accuracy.

Figure 4.22: Relative errors (4.35) of the POD and OpInf.

We compare the efficiency of intrusive and non-intrusive ROMs by the total com-

putational times in Figure 4.23, where we don’t include the computation time for

determining the POD basis because it is the same for the POD and OpInf methods.

The computational time for the POD method consists of the online computation time

and the elapsed time for determining the reduced tensors (4.28), whereas in the OpInf

method, it consists of the online computation, elapsed time of determining the re-

projected time derivatives and states, and solving the least-squares problem (4.30).
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Due to the re-projection, the computational cost of the OpInf is larger than the POD.

The total computational times for the POD and OpInf method are 1.044s, 2.045s,

respectively. In Figure 4.23, we show the elapsed computation for ROMs, which

display a speed-up of order 102 over the FOM with 585.129s computing time .

Figure 4.23: Elapsed total computational time of the ROMs.

Both intrusive and non-intrusive models of dimension r = 20 regenerate the FOM

trajectories accurately at the final time in Figure 4.24. In Figure 4.25, the relative

errors in the mass |Mk − M0|/|M0|, Hamiltonian (energy) |Hk − H0|/|H0|, total

potential vorticity |Qk−Q0|/|Q0|, and the buoyancy |Bk−B0|/|B0| are shown. The

total potential vorticity and total mass are preserved up to machine precision. Both

ROMs’ energy and buoyancy errors exhibit bounded oscillations over time without

any drift, i.e., they are preserved well in the long term. Conservation of the energy

and Casimir’s by the ROMs is demonstrated in Table 4.5 in terms of the relative errors

(3.21).
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Figure 4.24: (Top) Vorticity and (bottom) bouyancy of the FOM and ROMs at the
final time.

Figure 4.25: Relative errors in the conserved quantities.

Table 4.5: Time-averaged relative errors (3.21) of the conserved quantities.
Energy Total Vorticity Mass Buoyancy

FOM 7.484e-07 6.392e-17 1.545e-16 1.567e-09
POD 3.489e-06 1.024e-16 2.489e-06 3.053e-06
OpInf 8.114e-06 1.018e-16 3.440e-06 3.050e-06

Forecasting the future dynamics of complex systems is studied with the non-intrusive
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and intrusive models for the single-injector combustor [83], the quasi-geostrophic

equations [86], and the shallow water equations [3]. Here, we investigate the pre-

dictive performances of both intrusive and non-intrusive ROM approaches for the

RTSWE. Let us define the relative FOM-ROM error at the time step k as

‖wk −wk
r‖L2

‖wk‖L2

, (4.36)

where the state vector defined as w = (u,v,h, s)T .

In Figures 4.26-4.27, the relative errors (4.36) obtained from the intrusive and non-

intrusive models are plotted, where the vertical blue lines indicate the separation of

the training and the prediction intervals. We investigate the prediction performance

in two cases; when training periods longer than the prediction periods and vice versa.

These cases are demonstrated in Figures 4.26 and 4.27. Figure 4.27 shows that when

the number of the snapshot in the training data becomes larger than the prediction

regime, both ROM predictions improve. On the other hand, increasing ROMs’ dimen-

sion does not significantly affect the ROM predictions in Figures 4.26-4.27. In both

intrusive and non-intrusive models, the ROMs can accurately regenerate the train-

ing data and capture much of the overall system behaviour in the prediction period.

A summary of the review of ROMs in terms of the averaged relative errors (3.22)

is given in Table 4.6. Figures 4.26-4.27, and Table 4.6 show that the extrapolatory

predictive performance of both ROMS is not improved with increasing number of

reduced dimensions.

Figure 4.26: Prediction performance of the ROMs trained up to K = 120 with the
reduced dimension (left) r = 10 and (right) r = 20.
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Figure 4.27: Prediction performance of the ROMs trained up to K = 120 with the
reduced dimension (left) r = 10 and (right) r = 20.

Table 4.6: Average relative errors (3.22) for training and prediction sets.
r = 10 r = 20

POD OpInf POD OpInf

K = 120
training 1.529e-03 1.523e-03 1.060e-04 1.106e-04
prediction 8.299e-03 9.487e-03 8.769e-03 1.193e-02

K = 180
training 4.250e-03 4.233e-03 4.737e-04 4.637e-04
prediction 7.691e-03 7.817e-03 6.695e-03 6.587e-03

Parametric case

In the last example, we assume that the Coriolis parameter f(µ) = 2Ω sin(µ) varying

with the latitude µ in the parameter domain D := 4π/18 ≤ µ ≤ 8π/18, i.e., between

the 400th to 800th latitude. We consider a larger time interval, with the number of

time steps K = 300. The average relative errors in the training phase are computed

as
1

Mtrain

Mtrain∑
i=1

‖ΦrZ(µtrain
i )−W (µtrain

i )‖F
‖W (µtrain

i )‖F
, (4.37)

where W (µtrain
i ) is the FOM trajectory and Z(µtrain

i ) is the trajectory of either ob-

tained by the intrusive reduced model (POD) or recovered model (OpInf) from the

re-projected trajectories. Similarly, the accuracy of the parametric model for the test

case is measured via the average relative error defined by

1

M test

Mtest∑
i=1

‖ΦrZ(µtest
i )−W (µtest

i )‖F
‖W (µtest

i )‖F
. (4.38)

To construct the intrusive and non-intrusive ROMs, we consideredMtrain = 6 equidis-

tant parameters µtrain
1 , . . . , µtrain

Mtrain
∈ D in the parameter domain D. Furthermore, to

106



decrease the condition number of data matrices, we make the initial conditions ran-

domly perturbed around the centre of the vortices as oy = 0.1 + γ, where γ is a uni-

formly distributed random value. Considering the random initial conditions does not

necessarily have a physical meaning. However, they show the FOM behaviour over

different trajectories to provide complete information about the FOM and decrease

the condition number of the data matrices in the OpInf. The least-squares problem

(4.30) is again solved with lsqminnorm algorithm with the tolerance tol = 1e− 10,

and by determining subset of the snapshots, i.e., every 2nd snapshot.

In the testing period, we consider Mtest = 7 randomly distributed parameter values

µtest
1 . . . , µtest

Mtest
∈ D. In Figure 4.28, we show the relative errors (4.37) and (4.38) for

the training and testing regimes as the dimension r is increasing, which shows that

both intrusive and non-intrusive models act likewise, yielding more accurate solutions

with the increasing reduced dimension. Figure 4.29 demonstrates that the potential

vorticity and buoyancy at the final time for dimension r = 10 and the Coriolis param-

eter µtest1 , which exhibits accurate behavior for the intrusive and non-intrusive ROMs.

Figure 4.28: (Left) The relative error (4.37) in the training period, (right) the relative
error (4.38) in the testing period.
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Figure 4.29: (Top) Vorticity and (bottom) bouyancy of the FOM and ROMs at the
final time.
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CHAPTER 5

SUMMARY & CONCLUSIONS

In this thesis, intrusive and data-driven non-intrusive MOR techniques are studies and

developed for the rotating SWEs. The reduced system inherits the structure of the

FOM, such as the skew-symmetry and conservation of the Hamiltonian and conserved

quantities. Conserving the structure of the SWEs not only results in a physically

meaningful reduced model but also provides robust long-time behavior and a stable

ROM. The numerical experiments in this thesis illustrate that the proposed methods

consistently result in a robust reduced system. Even when highly accurate FOMs

are chosen, traditional model reduction techniques may yield an unstable or poorly

performed reduced system. Numerical experiments confirm that the conservation of

the Hamiltonian structure of the rotating SWEs can significantly enhance the overall

dynamics of the reduced system. Furthermore, data-driven ROMs can predict the

system’s behavior beyond the time horizon and for different parameter values in the

test period for the parameterized rotating SWEs.

In Chapter 2, two different kinds of FOMs are considered by preserving the Hamilto-

nian structure: linear-quadratic systems of ODEs and a skew-gradient system. There

are geometric integrators for specific non-canonical Hamiltonian systems, such as the

rotating SWEs, unlike the symplectic integrators for the canonical Hamiltonian sys-

tems. It is also not possible to preserve the Poisson or symplectic structure and the

energy of the dynamical systems at the same time. Therefore, both types of FOMs are

integrated with the energy (Hamiltonian) preserving integrators; the linearly implicit

Kahan’s method, and the fully implicit AVF method. Both integrators preserve the

physical quantities of the SWEs well, like the energy, enstrophy, mass, buoyancy, and
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vorticity in long-time integration.

In Chapter 3, traditional intrusive ROM techniques, POD, and DEIM with Galerkin

projection are applied to the rotating SWEs. Nonlinear terms present a difficulty

for ROM from an efficiency standpoint. If they are naively implemented, then the

reduced model will not be independent of the FOM’s dimension. For polynomial

nonlinearities, tensor methods can be used, where nonlinear terms are pre-assembled

as tensors. The degree of the polynomial nonlinearity determines the order of the

tensor. Thus the complexity of the ROM grows with the degree of the polynomial

nonlinearity. In Section 3.4 by utilizing the linear-quadratic structure of the RSWE

and tensor techniques, the offline and online phase is separated, which leads to an

efficient online computation time of ROMs. For more general nonlinearities, hyper-

reduction techniques are required to avoid the growth in complexity from nonlinear

terms. For a skew-gradient system with a constant Poisson structure like the KdV

equation, the skew-symmetric structure is preserved using the ROMs. Preservation

of the state-dependent Poisson structure is more challenging. Applying DEIM to the

skew-symmetric Poisson matrix and the gradient of the Hamiltonian, ROMs are con-

structed for the RTSWE. The offline cost further decreased using tensor techniques.

In Chapter 4, data-driven projection-based ROMs of the NTSWE and RTSWE are

constructed in the Markovian and non-Markovian OpInf framework. Since the least-

squares problem of the OpInf method may suffer from ill-conditioning, the solutions

are regularized using the QR decomposition and with the minimum norm solution as

an alternative to Tikhonov regularization. The performance of the inferred models

is examined in terms of prediction capabilities. Numerical results in the parametric

and non-parametric settings show that both intrusive and data-driven ROMs behave

similarly and yield similar reduced solutions. This validates the convergence of the

learned operators to the intrusively obtained reduced operators under certain condi-

tions.

In summary, we have shown with a relatively small number of reduced modes, stable,

accurate, and fast reduced solutions are obtained; energy and other conserved quan-

tities are well preserved over long-time integration. The reduced system can be iden-

tified by reduced energy and reduced conserved quantities that mimic high-fidelity
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systems. This results in an overall, correct evolution of the solutions that ensure the

robustness of the reduced system. Both reduced models can accurately re-predict

the training data and capture much of the overall system behavior in the prediction

period. Due to re-projection, the OpInf is more costly than the POD. Nevertheless,

speed-up factors of order two are obtained by both ROMs. Moreover, preservation of

the conserved quantities by both ROMs indicates the stability of the reduced solutions

in long-time integration, which is important for Hamiltonian PDEs like the RTSWE.

It also shows the importance of respecting the physics of complex problems in ROM

application.

5.1 Future Research Perspectives

Reduced-order modeling is a very active research topic. Below are some research

directions that are listed related to the SWEs.

• Using the lifting technique, the potential vorticity term can be treated as a con-

straint, and an auxiliary equation is added to the system. This particular treat-

ment allows that the nonlinear terms in the skew-symmetric Poisson matrix

will be linear, and the SWEs in Hamiltonian form contains only polynomial

nonlinearities.

• The methodology in this thesis can be extended to the shallow water magne-

tohydrodynamic equation, which has a similar Hamiltonian structure as the

RTSWE.

• Both intrusive and non-intrusive techniques can be compared with machine

learning techniques such as symplectic and Hamiltonian neural networks.

• SWEs can also be presented as hyperbolic systems with conservation laws.

ROM techniques can be developed to preserve energy and entropy.
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