
DETECTING MALICIOUS BEHAVIOR IN BINARY PROGRAMS USING

DYNAMIC SYMBOLIC EXECUTION

AND

API CALL SEQUENCES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATİH TAMER TATAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JUNE 2021

Approval of the thesis:

DETECTING MALICIOUS BEHAVIOR IN BINARY PROGRAMS USING

DYNAMIC SYMBOLIC EXECUTION

AND

API CALL SEQUENCES

Submitted by FATİH TAMER TATAR in partial fulfillment of the requirements for the degree of

Master of Science in Information Systems Department, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin

Dean, Graduate School of Informatics

Prof. Dr. Sevgi Özkan Yıldırım

Head of Department, Information Systems

Assoc. Prof. Dr. Aysu Betin Can

Supervisor, Information Systems Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. P. Erhan Eren

Information Systems Dept., METU

Assoc. Prof. Dr. Aysu Betin Can

Information Systems Dept., METU

Assoc. Prof. Dr. Banu Günel Kılıç

 Information Systems Dept., METU

Assoc. Prof. Dr. Altan Koçyiğit

 Information Systems Dept., METU

Assoc. Prof. Dr. Ayça Kolukısa Tarhan

Computer Engineering Dept., Hacettepe University

Date: 18.06.2021

iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I

also declare that, as required by these rules and conduct, I have fully

cited and referenced all material and results that are not original to this

work.

Name, Last name : Fatih Tamer TATAR

Signature :

iv

 ABSTRACT

DETECTING MALICIOUS BEHAVIOR IN BINARY PROGRAMS USING

DYNAMIC SYMBOLIC EXECUTION

AND

API CALL SEQUENCES

Tatar, Fatih Tamer

MSc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Aysu Betin Can

June 2021, 53 pages

Program analysis becomes an important part of malware detection as malware

become stealthier and more complex. For example, modern malware may detect

whether they are under analysis and they may use certain triggers such as time to

avoid detection. However, current detection techniques turn out to be insufficient as

they have limitations to detect new, obfuscated, and intelligent malware. In this

thesis, we propose a behavior based malware detection methodology using API call

sequence analysis. In our methodology, we combine dynamic symbolic execution

and API function models to extract call sequences of a given binary program and

decide whether it has a malicious sequence. In our experiments, we showed that our

methodology is capable of detecting malware hiding behind evasion techniques and

our methodology is applicable to a real-world problem.

Keywords: Call Sequence Analysis, Dynamic Symbolic Execution, Function

Modeling, Malware Analysis

v

ÖZ

DİNAMİK SEMBOLİK UYGULAMA VE

API ÇAĞRI SIRALAMALARI KULLANARAK

İKİLİ PROGRAMLARDA ZARARLI DAVRANIŞ TESPİTİ

Tatar, Fatih Tamer

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Aysu Betin Can

Haziran 2021, 53 sayfa

Kötü amaçlı yazılımlar daha gizli ve daha karmaşık hale geldikçe program analizi,

kötü amaçlı yazılım tespitinde önemli bir parça haline gelmiştir. Örneğin, modern

kötü amaçlı yazılımlar programın analiz altında olup olmadıklarını tespit edebilir ve

tespit edilmekten kaçınmak için zaman gibi belirli tetikleyicileri kullanabilirler.

Ancak mevcut tespit yöntemleri yeni, karıştırılmış ve akıllı kötü yazılımları tespit

etmekteki sınırlamaları sebebiyle yetersiz kalmaktadır. Bu tezde, API çağrı dizisi

analizini kullanan davranış tabanlı bir kötü yazılım tespit methodolojisi

önerilmektedir. Metodolojimizde, verilen programın çağrı dizilerini çıkarmak ve

kötü amaçlı bir diziye sahip olup olmadığına karar vermek için dinamik sembolik

yürütme ve API fonksiyon modelleri birleştirilmiştir. Deneylerimiz ise

metodolojimizin, kaçınma tekniklerinin arkasında saklanan kötü amaçlı yazılımları

tespit edebildiğini ve gerçek dünyadaki bir soruna uygulanabilir olduğunu

göstermektedir.

Anahtar Kelimeler: Çağrı Sırası Analizi, Dinamik Sembolik Yürütme, Fonksiyon

Modelleme, Kötü Amaçlı Yazılım Analizi

vi

To my mother, Ayşe,

To my father, Mehmet,

To my sisters, Çiğdem and Mehtap.

vii

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Assoc. Prof. Dr. Aysu Betin Can for

her support, guidance, criticism, inspiration and insight throughout the research.

Besides my supervisor, I would like to acknowledge my team leader, Barış İyidir,

and my manager, Miren Izaskun Gallastegi Dorken, from ASELSAN for letting me

complete my graduate studies.

I would also like to thank my valuable friends Elif, Gizem, Didem and Şafak for their

endless support and motivation to finish this thesis.

Lastly, I would like to express my gratefulness to my sisters Mehtap Tatar and

Çiğdem Yüksel for being perfect role models for my entire education and my parents

Ayşe Tatar and Mehmet Tatar for always being supportive throughout my decisions.

viii

TABLE OF CONTENTS

ABSTRACT ...iv

ÖZ ...v

ACKNOWLEDGMENTS ..vii

TABLE OF CONTENTS ...viii

LIST OF TABLES ..x

LIST OF FIGURES ..xi

LIST OF ABBREVIATIONS ...xii

CHAPTER

1 INTRODUCTION ..1

2 RELATED WORK ...5

2.1 Background Information ..5

2.2 Literature Review ...7

3 METHODOLOGY ...11

3.1 Input Gathering ..12

3.2 Extracting Dynamically Linked Functions ..13

3.3 Automatic Function Model Generation ...15

3.4 Functions Replacement ..17

3.4.1 DLL Creation ..17

3.4.2 DLL Injector Application ...18

3.5 Running Symbolic Execution ..19

3.6 Analyzing the Call Sequence ...21

3.7 Displaying Evidences ...22

3.8 Model Refining ..25

4 EXPERIMENTS ...27

ix

4.1 Experimental Setup ... 27

4.2 Experiment 1: Synthetic Malware ... 28

4.2.1 Synthetic Malware ... 28

4.2.2 Experiment1 and Results.. 30

4.3 Experiment2: WannaCry ... 34

4.3.1 WannaCry Malware ... 34

4.3.2 Experiment2 and Results.. 35

4.4 Discussion ... 38

5 CONCLUSION .. 41

REFERENCES ... 43

APPENDICES ... 51

APPENDIX A .. 51

x

LIST OF TABLES

Table 1: Summary of the Techniques Used for Malware Detection 9

Table 2: Concrete Return Types and Their Values .. 16

Table 3: Synthetic Malware Dynamically Linked Functions 30

Table 4: Generated Function Models for WannaCry ... 36

xi

LIST OF FIGURES

Figure 1 : Summary of Proposed Methodology ... 12

Figure 2 : Sample Malicious Function Call Sequence ... 13

Figure 3 : Sample Decompiler Output ... 14

Figure 4 : Sample Function Model... 15

Figure 5 : Detail Level Snippet .. 18

Figure 6 : Sample Path Condition Generation ... 20

Figure 7 : Sample Program Call Sequence .. 21

Figure 8 : A Sample Malicious Call Sequence with a Pipe Symbol 22

Figure 9 : Sample Program for Displaying Evidences ... 23

Figure 10 : Sample Function Models for Displaying Evidences 23

Figure 11 : Sample Evidence Output ... 24

Figure 12 : Time Bomb Code Snippet ... 29

Figure 13 : Sandbox Evasion Code Snippet ... 29

Figure 14 : Synthetic Malware Malicious Call Sequence .. 31

Figure 15 : Symbolic Execution States of Synthetic Malware 31

Figure 16 : Synthetic Malware Analysis Result ... 32

Figure 17 : Return Struct of GetLocalTime Function [70] .. 33

Figure 18 : Return Struct of GetSystemInfo Function [71] 33

Figure 19 : Malicious Call Sequence Input of WannaCry Analysis 35

Figure 20 : WannaCry Malicious Call Sequence ... 35

Figure 21 : WannaCry Analysis Result .. 37

file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150463
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150464
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150465
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150466
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150467
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150468
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150469
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150470
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150471
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150472
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150473
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150474
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150475
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150476
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150477
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150478
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150479
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150480
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150481
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150482
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150483

xii

LIST OF ABBREVIATIONS

API Application Programming Interface

CPU Central Processing Unit

DLL Dynamic Link Library

MSDN Microsoft Software Developer Network

1

 CHAPTER 1

1 INTRODUCTION

It has been an issue to detect malicious software for decades. Researchers use various

techniques to discover malware such as signature, behavior, and deep learning based

techniques. With the development of complex and obfuscated malware, traditional

malware detection techniques such as signature-based detection become inadequate to

unknown malware [1] and there is a demand for more scientific studies to cover the

shortcomings of existing methods. [2]

As malware analysis techniques improve, malware becomes stealthier and more

intelligent. New malware may not show their malicious behavior immediately especially

if they are aware of being analyzed. For example, the dropper component of WannaCry

ransomware [3] tries to access an invalid resource, an unregistered domain name, to

detect if it is running in a sandbox environment. In addition, new malware may postpone

their malicious activity until they are triggered by a resource such as a keyboard. For

instance, MyDoom waits until February 1 and 3, 2004 to perform its DDOS attack [4].

Therefore, malware detection becomes a challenging task. It is also very important to

understand the malware behavior on the infected system. If a malware analyst is late to

take precautions, undetected malware behavior may help the malware to persist in the

system under different forms or even worse, its spread may not be prevented at all and

everything goes off the spin. Consequently, it is not enough to detect the malware only.

Analysts should also need to understand its effects on the system. However, the latest

malware detection methodologies fail to propose a general solution for these problems.

For example, signature-based detection is adapted by security companies for its

quickness, but they fail to detect unknown [1] and obfuscated malware [5]. Deep

learning based detection methods perform up to 95-99% success rates [6]. However,

they suffer from reliability [7]. Behavior based malware detection methods run the

malware in a contained environment and detect malware even its code changes as long

as its core functionality stays the same. Nevertheless, they fail to detect intelligent

malware which is capable of sensing analysis environment [8]. In our work, we

2

approach the problem from the behavior-based malware detection perspective and

combine API analysis approach using the power of dynamic symbolic execution.

In this thesis, we developed a methodology for analyzing suspicious binary programs

using dynamic symbolic execution to observe API call sequences. In our work, we aim

to detect given malicious behavior and provide a methodology to analyze malware

behavior using API call sequence analysis for the Windows platform. To show the

feasibility of our work, we also developed a toolset for the methodology. First, our

toolset extracts the Windows API functions used by the binary program and creates

models for the extracted functions. Then, it replaces actual functions with the function

models and executes the binary program using dynamic symbolic execution. In this way,

our function models create traceable outputs for the API calls and our toolset extracts the

call sequences of all possible program branches even the branches are hidden behind

certain trigger conditions such as sandbox evasion and time. Next, our toolset compares

the extracted call sequences with known malicious API call sequences provided by the

user. If our toolset finds a matching sequence, it displays a warning and presents

evidences of malicious behavior. As our methodology utilizes dynamic symbolic

execution on a binary program, it is resilient to obfuscation methods such as packaging

and capable of detecting new malware once the user provides a malicious API call

sequence. Also, our toolset supports extensibility as users may modify its default

behavior to meet their future needs and change malicious API call sequence input to

employ the future developments in the literature.

In order to show the effectiveness of our methodology, we conducted experiments on a

synthetic and a real-world malware, WannaCry. During the experiments, our toolset

generated more than 1200 lines of C++ code to model 75 Windows API functions

automatically. The synthetic malware experiment showed our capability of detecting a

malicious behavior, DLL injection, even it is hidden behind time discovery and sandbox

evasion techniques. On the other hand, WannaCry ransomware experiment showed the

applicability of our methodology to a real-world problem. In the experiment, our

methodology discovered behaviors such as registry key creation, file hiding, file access

modifications and function imports for encryption purposes.

Overall, we make the following contributions:

• We present an extensible toolset for analyzing binary programs that supports

future developments in the malicious call sequence analysis area.

• We propose a technique to observe API call sequences using function models.

• We introduce an approach that combines function models and dynamic symbolic

execution to analyze malware without being affected by obfuscation techniques

such as time discovery and sandbox evasion.

3

• We implement a method to avoid state space explosion problem of symbolic

execution by changing return values of API models to symbolic or concrete

without recompiling the models.

• We show evidences after the analysis to support decision-making and increase

user benefit.

The rest of the thesis is organized as follows. Chapter 2 introduces the related work in

terms of background information and the literature review. Chapter 3 presents the

proposed methodology in detail. Chapter 4 describes the experimental work showing the

feasibility of our methodology. Chapter 5 concludes our study with the limitations and

the future work.

4

5

 CHAPTER 2

2 RELATED WORK

2.1 Background Information

In this section, we introduce general concepts and terminology in the thesis to provide an

overview of the topic.

Malware. Cyber attackers design malicious software programs, also known as malware,

to steal personal data, gain financial benefits, and damage devices. Malware can be

labeled into different categories such as trojan horses, worms, polymorphic viruses, and

ransomware[5]. Attackers use trojan horses to hide the malware inside other programs

that appear to be innocent. Worms are malware that spread to other devices by copying

themselves. They may infect a computer network without any manual intervention.

Polymorphic viruses are one of the hardest malware to analyze. They evade detection

systems by changing themselves in runtime. For example, they may modify their code

without changing the main functionality, decrypt or unpack previously hidden malicious

code segments. Attackers also use ransomware to gain financial benefits by encrypting

personal data and demanding ransom for decryption.

Dynamic Symbolic Execution. Symbolic execution is a program analysis technique that

analyzes the programs by traversing all possible branches and generating constraints for

them. The pioneers of the technique such as DART[9], CUTE[10], KLEE[11], and

SAGE[12] use symbolic execution to find program bugs by using constraint solvers.

In 2005, CUTE improved the symbolic execution and introduced the concept of concolic

(concrete symbolic) execution, also known as dynamic symbolic execution. In their

work, they combined concrete and symbolic execution to create test inputs for the

discovery of all possible execution branches.

6

Symbolic execution performs as follows: First, a symbolic execution engine replaces

program inputs with symbolic variables that can hold any value. Symbolic variables are

analogous to the mathematical unknown variables such as X, Y, Z. Then, when program

execution reaches a branch using a symbolic variable, the symbolic execution engine

executes both branches simultaneously and creates a set of constraints called path

condition. Path conditions are mathematical formulas that represent a valid range of

values for symbolic variables to satisfy the current branch condition. When the path

reaches a termination point or a bug, the symbolic execution engine uses a constraint

solver to evaluate the satisfiability of the path condition. If the condition is

mathematically solvable, the solver returns a concrete value for the symbolic variable

and this value may be used as a test condition for the path [11]. However, if the

condition is unsolvable, symbolic execution stops.

On the other hand, dynamic symbolic execution starts the program with random concrete

values as inputs. Then, during the execution, it keeps track of both concrete values and

symbolic constraints. When execution reaches a termination point, the engine returns to

the branch point and negates the constraint in order to decide if there is an input that

satisfies the other branch. If such input exists, the engine uses the newly found concrete

value to continue execution. However, if the constraint is too complex to solve, it

simplifies the constraint using concrete values and the constraint solver generates such

an assignment. Then, the engine runs the program with these concrete inputs.

One of the biggest drawbacks of symbolic execution is the path explosion problem. As

symbolic execution engine runs many branches simultaneously, it starts to suffer from

high memory consumption. In order to solve this problem, symbolic execution engines

utilize different techniques such as prioritized path searching [13] and constraint

optimization [12]. In addition, there are symbolic execution engines [14] [15] that

directly run on binary programs where it is very useful when there is no access to the

code of the program such as malware.

API Modeling. Programs running in the user space need to call Application

Programming Interface (API) functions to use the services provided by the operating

system’s kernel. So, in order to understand the main behavior of a program, the sequence

of its API calls can be analyzed. Similarly, malware analysis techniques [16] [17] also

use API call sequence information to analyze malware behavior. In our work, in order to

collect the API call sequence of malware in run-time, we re-write the Windows API

functions in a way that they do not perform their actual tasks. In other words, we create

models of the Windows API functions to understand the behavior of malware while it is

running. Instead of performing real API activities, our models create logs upon

execution.

Dynamic Linking. Windows provide its API in the form of Dynamic Link Libraries

(DLLs). DLL files enable the share of functions and resources among different programs

by allowing programs to use a single DLL file in memory at the same time. So, DLL

7

files save memory and disk space. In contrast to static linking where the content of a

static library is duplicated into the programs, dynamic linking creates only the

information needed by Windows at runtime to find the DLL file containing data or

function [18]. In our work, we use a technique, DLL injection, to overwrite the dynamic

linking behavior of Windows so that we insert our API models into malware to

understand its behavior.

2.2 Literature Review

As new and complex malware emerge, detection methods also evolve rapidly. We focus

on three main malware detection techniques in the literature, signature-based, deep

learning based and behavior based. Then, we present other approaches in literature such

as API analysis and symbolic execution.

In the early studies, the signature-based detection method is widely accepted by antivirus

vendors as it provides a quick and effective way of detecting known malware [2].

Researchers extract malware signatures in different ways, such as integrity checking

[19], string scanning [20], top and tail scanning [21], and entry point scanning [21].

However, these techniques are not capable of detecting new unknown malware [1] since

there is no signature match for the new malware in the signature database. Also,

signature-based detection techniques suffer from malware using obfuscation techniques

[22], such as encryption, packaging, and polymorphism, and require continuous updates

of signature databases which require maintenance cost. Though there are studies [23]

[24] [25] making improvements to overcome obfuscation methods, their success is still

limited to polymorphic malware. In our study, we are not limited to detect known

malware. Although our methodology is still limited to the malicious call sequence input,

our methodology provides an extensible approach for the detection of new unknown

malware using API call sequences. Once the user gives the malicious call sequence, our

methodology can detect an unknown malware performing such sequence. Also, our

configurable toolset provides an analysis environment where the users may incorporate

their expertise in the area to compose new sequences.

Studies using deep learning for malware detection mainly focus on four techniques

namely multilayer perceptrons (MLP) [26] [27] [28], convolutional neural networks

(CNNs) [29] [30] [31], recurrent neural networks (RNNs) [32] and Hybrid Models [33].

Although they show high malware detection rates up to 95-99% [6], they suffer from

effectiveness and reliability [7]. Also, they are not resistant to malware using

perturbation [34] [35] and evasion [36] techniques. Furthermore, 70% of the deep

learning studies detecting malware focus on Android devices [6]. Our methodology fills

the gap of reliable malware detection methodology for the Windows platform.

8

Behavior based malware detection techniques determine whether a program is benign or

malware using monitoring tools and sandboxes [37] such as Norman Sandbox [38].

Also, they detect malware even if malware code changes as long as the behavior stays

the same [37]. However, the main disadvantage of behavior based malware detection is

that malware may detect the analysis environment and it may avoid showing its

malicious behavior under analysis [39] [8]. In our approach, we used a behavior based

malware detection technique and solved this problem by combining dynamic symbolic

execution and API function models that return concrete or symbolic values. So, our

models can distort the malware’s perception about its environment and provide

information in user control.

In order to detect malware, researchers use the similarity between the API calls of the

new and the known malware. In terms of their approaches, their API call analysis

methods divide into two categories: static [40] [41] [42] and dynamic [43] [44] [45].

Researchers using dynamic API call analysis analyze the malware in runtime and they

achieve better results analyzing obfuscated malware with respect to static API call

analysis researchers. [40] [43] analyze malware to extract the frequency of repeatedly

used API functions and their total events. Moreover, [44] [45] use API calls to extract

static signatures but they fail to detect polymorphic and unknown malware. Also, [46]

states that studies using API call sequences suffer from the fuzzy API calls that attackers

intentionally insert, delete, replace existing ones without affecting the overall

functionality. [16] used dynamic analysis to extract API calls of more than 23000

malware and apply DNA sequencing algorithm to find critical API call sequence

patterns. However, their approach fails to detect malicious behavior hidden behind the

logic bombs and evasion techniques. In our methodology, we fill this gap by detecting

hidden malware behavior by utilizing API function models in a dynamic symbolic

execution. Also, we provide a configurable tool set that users may add the latest API call

sequence information in the literature so that our methodology provides an up-to-date

solution. Furthermore, malicious API call sequence information lets our methodology

distinguish previously unknown malware.

Since the first introduction of symbolic execution [47], it is used in different areas such

as test case generation [9] [10] [11] [12] [48], bug discovery [11] [13] [14] [49] [50] and

malware analysis [51] [52] [53] [4]. Although [51] successfully detects a remote access

Trojan (RAT) using the symbolic execution framework ANGR [15], their work is

limited to RAT families. On the other hand, [4] and [53] conduct similar work. They

approach malware detection with a broader aspect and analyze the existence of trigger

sources and their corresponding conditions, such as system time, system event keyboard

inputs, and system calls. However, their approach is still limited to trigger sources. Our

methodology provides an extensible API call sequence analysis where users may modify

the control mechanism, call sequence, and API function models to meet their future

needs.

9

Since our methodology utilizes malicious API call sequences, it may seem to be a

signature-based malware detection technique. However, signature-based malware

detection techniques use strings, byte sequences, entry points, and integrity checks of the

binary program as a signature. Moreover, our methodology focus on the run-time

behavior of the binary program to extract invocations of Windows API functions and

runs the binary program in a symbolic execution environment. So, our methodology can

be positioned as a behavior-based malware detection technique. Table 1 shows the

summary of the techniques used for malware detection.

Table 1: Summary of the Techniques Used for Malware Detection

10

11

 CHAPTER 3

3 METHODOLOGY

In this thesis, we developed a methodology to analyze suspicious binary programs

written for the Windows platform. In addition, we designed a toolset to show the

feasibility of our methodology. We aim to detect whether a given program may generate

a malicious sequence of function calls using dynamic symbolic execution. Our tool takes

suspicious and malicious function call sequences and examines the binary program

whether such sequence is possible. The tool generates evidence showing what data lead

the program to produce such a malicious execution sequence. Our approach consists of 8

steps and we provide the details in the following sections of this chapter. We show an

illustrative summary of our work in Figure 1.

In order to make the function calls traceable and facilitate the reachability of different

execution paths of the binary program, we use a decompiler and extract the functions

called from the Windows API. Then, our model generator module creates models for

these functions where they emit execution information such as their function names and

their arguments. Next, we combine function models and create a DLL file. After that, an

injector application injects the DLL file into the binary program. So, the program calls

the modeled functions instead of calling actual Windows API functions.

To initiate every API function call combination in the program, we need to traverse all

the possible execution paths. Therefore; we used a symbolic execution framework called

S2E to run the program symbolically. It invokes all possible function call combinations

along the paths of the binary program. At this point, function models facilitate the

symbolic execution as they cost less than actual API functions. Before the execution, we

also set the execution environment and determine a time-bound for the analysis; so that

our analysis does not suffer from the state-space explosion and endless consumption of

the resources. While the framework is running every possible path of the program, it

calls our modeled functions in the execution order. Then, our analysis parser module

12

collects execution information, such as function names and their arguments, and

processes it to generate the program’s function call sequence.

After that, the log analyzer compares the call sequence with the malicious sequences

given at the beginning of the analysis. As a result, it warns the user if it finds a

correspondence between these sequences and shows the evidences of its findings.

3.1 Input Gathering

Our system takes four inputs. Namely, a binary program, a malicious function call

sequence, a detail level, and a configuration. The program is a 32-bit Windows

executable that we suspect its behavior of hiding malicious activities.

The second input is the malicious function call sequence specification written in a file.

Users either use their expert knowledge or the latest developments in the API call

sequence analysis literature to create the content of this file. Each line of the file

Figure 1 : Summary of Proposed Methodology

13

corresponds to one call sequence and each of them starts with a sequence name. A

sample call sequence is shown in Figure 2. In the figure, there are two sequences namely

IATHooking and DLLInjection [16]. After the sequence name, lines continue with

comma symbols and function names. Precedence between the functions determines the

order in the sequence. For example, the second line of the figure means the following:

DLLInjection sequence starts with OpenProcess function followed by VirtualAllocEx

function. Then, the WriteProcessMemory function comes and the sequence ends with

the CreateRemoteThread function. A pipe symbol “|” in a sequence indicates function

variation. For instance, the LoadLibrary function in the IATHooking sequence can be

followed by either strcmp, strncmp, _stricmp or strnicmp function.

The third input is the detail level. It determines the analysis detail by deciding the return

values of the modeled functions to be concrete or symbolic values. Symbolic values will

make the symbolic engine to try different execution paths while concrete values make

the engine choose one of the possible executions. Concrete return values make the

analysis less detailed. As the number of the symbolic return values increases, the

symbolic execution framework becomes more likely to discover new paths; hence, it

discovers hidden sequences within the binary program. Our system takes the detail level

as a command line input in the form of a free text. We use this free text to specify the

function names that we want to return symbolic values or write ‘all’ to represent all

function names. Later, function models interpret this free text to decide their return

value.

3.2 Extracting Dynamically Linked Functions

In order to track the function call sequence of the binary program; first, we need to

determine the function calls made by the program. To demonstrate the feasibility of our

approach, we narrow the scope of our work to Windows API functions. Since these

functions are linked dynamically, we further narrowed our analysis to dynamically

linked functions.

We used a decompiler, Retargetable Decompiler (RetDec) [54], to extract all

dynamically linked Windows API functions in the binary program. Although this tool is

known for its decompiling capabilities, we used it to analyze dynamically linked

functions because it supports cross-platform analysis and provides an insight for the

statically linked functions. Despite our analysis does not cover statically linked

functions, we aim to add this feature to analyze the whole program in the future. An

alternative to decompiler would be Microsoft’s dumpbin.exe; however, it only runs on

Figure 2 : Sample Malicious Function Call Sequence

14

Windows machines and does not capture the statically linked functions. Consequently,

we decided to use a tool that both meets our needs and supports our vision for the future.

A sample output of the decompiler is in Figure 3.

 Figure 3 : Sample Decompiler Output

15

3.3 Automatic Function Model Generation

In this step, we process the decompiler’s output and create models for the Windows API

functions called by the binary program. To automate this process, we developed a model

generator as a module in Python.

Since we decided to work with dynamically linked functions, we need to extract their

declarations from the output file of the decompiler. So, the model generator first collects

all of them into a file. Then for each function declaration, it creates method bodies. A

method body in a function model does not perform the actual responsibility of that

function nor calls any of the Windows functions. Instead, it emits the function name and

values of its arguments and then returns either a symbolic or predetermined value

depending on the analysis level. We give a sample function model in Figure 4.

A model of a function, when replaced with the corresponding actual function, will

provide an execution trace. A trace, in our methodology, is an execution log showing the

functions called in the order they are made. When executing the program in question, a

trace is built by using messages showing the name of the functions. For example, line 4

in Figure 4 shows a sample log message. Whenever the symbolic execution engine

invokes the model function, it emits the function name.

In addition to execution trace, a function model provides information to support the

result of the call sequence analysis. We call function evidence to this information. Each

Figure 4 : Sample Function Model

16

model includes log messages, function evidences, to display their arguments. Upon

invocation, models emit their argument names and values in a human-readable format.

Since our generator does not support human readability, we manually edit the evidences

to increase their understandability. To illustrate, lines 5, 6, and 7 in Figure 4 show

sample evidence. Later, the log analyzer module displays evidences to support the

analysis result. We explain the usage of evidences in section 3.7.

Moreover, the generated function bodies have return values coherent with the function

declaration. Although there are infinitely many possibilities, we wanted to work with a

constraint set of simple return values. As a result, we determined to use the values given

in Table 2. These are not the final values that are supposed to fit all cases; instead, we

use them to show the feasibility of our approach. Users of the system may alter these

values to enhance this table according to the future need of the analysis.

Besides concrete return values, our model generator is also capable of producing

function bodies returning symbolic values. In Figure 4, line 12 shows this capability.

The symbolic values facilitate the path exploration in the symbolic execution. Even

though the model generator is capable of returning all the values symbolically, we

decided to use it with caution in order not to have a state-space explosion problem

during symbolic execution. Nevertheless, our approach is not limited to our choice of

implementation. It can be extended to meet different needs. For example, if a detailed

analysis is required, other functions may also return symbolic values instead of concrete

ones. Line 10 of Figure 4 shows a sample conditional statement for the management of

return values. Modifying a file content extracted in Section 3.4, users may decide the

return values of the models to either symbolic or concrete.

Table 2: Concrete Return Types and Their Values

Return Type Value Return Type Value

BOOL TRUE int* NULL

DWORD 1 int32_t 1

FARPROC NULL long 1

FILE* NULL LPVOID NULL

HANDLE NULL SIZE_T 1

HMODULE NULL UINT 1

int 1 void* NULL

17

3.4 Functions Replacement

In the previous step, the model generator created function models emitting their name,

arguments, and argument values; as well as, returning concrete or symbolic values

depending on the detail level. In this step, we used a technique called DLL injection to

replace actual functions of the binary program with the function models so that function

calls of the binary program become traceable.

As the technique suggests, we create a DLL file and put our function models inside.

Then, we use an injector module to replace actual API functions with the function

models. Next, the injector application runs the binary program in a suspended state and

injects the DLL file. After the injection, it resumes the execution of the binary program.

3.4.1 DLL Creation

In order to put our function models inside a DLL file, we used EasyHook library [55] for

its simplicity. First, we changed our model names so that they do not exactly match with

the real API functions in order not to have any conflicts. Next, for every function model,

we need to match the name of the function with its actual Windows API equivalent

along with the corresponding library name. In order to find the library name, we write a

library finder module in Python to automate this process. It visits MSDN pages using

Selenium [56], a suite of tools for automating web browsers, and matches Windows API

functions with their libraries. Then, we provide this match information to the EasyHook

via its API. In the end, we get a DLL file ready to inject where we use injected function

models’ outputs to trace the call sequence of the binary program.

In this step, we add a feature inside the DLL file that facilitates the change of model

behaviors. Although we use this feature to decide whether function models return

concrete or symbolic values, it also provides a capability to switch between different

concrete values. For this purpose, we used a file to configure models from the outside;

so that, we can change their behavior by only editing a file content. As a result, we

eliminate the heavy weight of recompiling all the models over and over again if we need

a simple change in the model. We show the code snippet that we read external input in

Figure 5.

18

We focused on using this feature to change the detail level of our analysis. To do so, we

used a file called detailLevel.txt containing data for the detail level. Later, the DLL file

reads detailLevel.txt, and models either return symbolic or concrete values according to

our choice of detail. Please also note that, while creating the models, we modeled our

functions so that they support this feature. Figure 4 shows the detail level information

inside a function model.

3.4.2 DLL Injector Application

In the previous step, we created a DLL file having instructions to replace the real

Windows API functions with our models. In order to complete function hooking, we

need to insert the DLL file into the binary program. As in the previous step, we used

EasyHook’s API to facilitate the DLL injection and we implemented an injector

application that inserts the DLL file. Our injector starts the binary program in a

suspended state so that the program waits without calling any functions. Later, our

injector inserts the DLL file to replace actual functions with the model functions. Then,

it wakes up the program and the program starts to run. In other words, our injector

behaves like malware as it runs another program after changing its behavior. This

behavior allowed us to insert our model functions.

In addition to the injection, our injector takes command-line arguments to decide

whether the user asks for a detailed analysis or not. In other words, our injector module

supports the feature that we use to change the model behavior without recompiling the

model codes. After the injector takes the command line argument, it creates the

detailLevel.txt containing the command line value. Then, the DLL file read this file to

capture detail level.

Figure 5 : Detail Level Snippet

19

3.5 Running Symbolic Execution

In order to trigger all the function calls in the binary program, we need to traverse all

valid execution paths one by one. For this purpose, we used a symbolic execution

platform called S2E. Among other symbolic execution platforms, we chose S2E since it

runs on binary programs, supports Linux and Windows platforms, and provides detailed

documentation. Though our analysis does not cover Linux binaries, we also aim to

support Linux systems in the future.

Before we run the symbolic execution, we configure S2E’s environment. First, we

specify the starting point of the execution since we do not want S2E to analyze the

binary program as it is. Instead, we make S2E to run our injector application, then, the

application runs the binary program after it replaces API functions with the modeled

ones. Next, we disable some of the default plugins brought by the S2E in order not to

slow our analysis down [57].

After the configuration, we run S2E who runs the injector which executes the binary

program that is linked to our function models, symbolically. During the symbolic

execution, S2E traverses the program branches according to detail level, i.e. using

concrete or symbolic return values.

If all function models return symbolic values, S2E traverses all the branches. Otherwise,

it traverses only a subset of the total branches with respect to the function return value.

When S2E visits a function model in a branch, the model creates an execution trace

without calling any other Windows API functions. S2E stops after it visits all the

possible branches or the user terminates the execution.

S2E helped our analysis by providing an execution environment where we can collect all

function traces to extract function call sequences of the binary program. Since it runs the

program symbolically, it traverses all possible branches and invokes the function models

in all possible combinations. When a function model returns a symbolic value, S2E

marks the memory area of the value as symbolic. Whenever this memory area is used in

a statement, S2E creates, if not exists, a path condition by keeping the symbolic value as

unknown. If the statement is a control statement, such as an if statement or a for loop, it

forks a new execution branch and duplicates the path condition and updates with the

new condition.

For example, in Figure 6 GetRandomInteger function returns a symbolic value and this

value is used in conditional statements <A> and . When S2E reaches the statement

in <A> it forks the branch execution and duplicates the current path condition which is

empty right now. Then, it appends the path condition of the left branch with the

mathematical equation that satisfies the condition. If the condition is mathematically

correct, it continues to execute the branch. Otherwise, it stops the execution. Similarly,

S2E appends the right branch’s path condition with the unsatisfying condition and

20

checks the satisfiability of the equation. When S2E reaches statement , it forks the

branch execution again, duplicates the current path condition, and appends them with

corresponding conditions.

As a result, whenever a function model returns a symbolic value, S2E runs symbolic

execution to discover all possible branches. So, it makes our toolset capable of

discovering even the hidden execution branches where it uses their function traces to

extract hidden call sequences. In other words, if all function models return symbolic

values, our methodology discovers all possible call sequences. However, to avoid the

state space explosion problem, we do not recommend all functions to return symbolic

values. Users may select certain functions to return desired concrete values using detail

level input after seeing the exact values of symbolic variables. So, users may keep the

balance between path discovery and symbolic execution performance.

After symbolic execution, our analysis parser module processes the execution log of S2E

including the trace generated during the dynamic symbolic execution. This module

extracts three kinds of information that we are interested in the execution output.

The first one is fork information. Whenever S2E reaches a control statement, it forks

another execution path when the statement depends on a symbolic value and logs it to

the output. Although we trigger forking via our function models to discover hidden

program branches, it complicates the traceability of the execution. Therefore, it is

essential to use fork information to trace S2E output in the correct order; so, our analysis

parser extracts this information to make sense of other output information.

The second one is function traces. Every model emits its function trace whenever S2E

invokes it. Our parser extract function traces to create function call sequences of the

binary application. However, function traces are not meaningful by themselves since

Figure 6 : Sample Path Condition Generation

21

S2E does not invoke functions in branch order. Therefore, our parser uses fork

information to put function traces in order and creates the function call sequences.

The third one is the function evidences. Even though they are generated in a similar way

with function traces, their form differs from them as we show in Figure 4. Therefore, we

handled them separately.

Our analysis parser starts with discarding all the unnecessary data from the output of

S2E. That is, it discards all the information other than fork, function traces and function

evidences. Afterward, it uses fork information to put function traces in order and it

achieves complete function call sequences for different program paths. Then, it also puts

function evidences in order and finishes its job.

3.6 Analyzing the Call Sequence

In order to detect malicious sequences in the binary program, we create a module using

Python called log analyzer. Log analyzer reads each call sequence of the binary

program, extracted by analysis parser, and compares it with respect to the malicious

function sequence, provided by the user. The log analyzer tries to match each malicious

call sequence function in the correct order inside the program call sequence using a

regular expression match. Meanwhile, in order to eliminate a sequence hiding attempt,

our analyzer neglects irrelevant function calls inside the program call sequence while it

is looking for the next malicious function.

For example, in order to satisfy the requirement of the DLLInjection sequence, shown in

Figure 2, the program binary should have a call sequence containing all the functions of

the malicious sequence in the given order. Recall that the sequence is specified as
DLLInjection, OpenProcess, VirtualAllocEx, WriteProcessMemory, CreateRemoteThread

where the first element is the name of the attack. However, a call sequence of the binary

program may be in the form shown in Figure 7. In this case, our algorithm starts by

searching for the OpenProcess function inside the call sequence of the binary program.

If the algorithm finds a match, it continues to search for the next function,

VirtualAllocEx. After matching the VirtualAllocEx function, the log analyzer tries to

find the next one WriteProcessMemory. However, the call sequence of the binary

program contains GetCommandLineA and GetFileSize functions before the

WriteProcessMemory function. In such a case, our algorithm discards these unexpected

functions as they may be put in order to hide the malicious sequence. Also, there would

Figure 7 : Sample Program Call Sequence

22

be a repetition in the call sequence of the binary program. For example, instead of the

GetCommandLineA function, there could be another VirtualAllocEx function. Then, our

algorithm also ignores the repetition as it searches for the WriteProcessMemory

function. Finally, our algorithm finds the match for the CreateRemoteThread function

inside the call sequence. When our log analyzer matches all the functions inside the

malicious sequence input, it warns the user and stops the analysis. In the result, it shows

the name of the matching sequence, DLLInjection.

In some cases, the malicious call sequence input may contain pipe symbols ‘|’ to indicate

function variance. Whenever our log analyzer module encounters this symbol, it accepts

the function either on the left or right side of the pipe symbol as a match. For example, if

the malicious call sequence input is given as in Figure 8, our log analyzer module again

warns the user if it matches with the function GetFileSize instead of the

WriteProcessMemory function.

3.7 Displaying Evidences

In order to support the results of the call sequence analysis, our log analyzer module also

shows function evidences for the program paths containing malicious function

sequences. So, even though our tool set produces a false-positive result, it supports the

decision by displaying evidences. In this way, the user avoids making false decisions

since evidences consolidate the analysis result by bringing the power of manual

investigation. Furthermore, evidences accelerate early iterations of the analysis. That is,

it guides users to decide whether they need to increase the detail level of the analysis or

not.

Figure 9 shows a sample program for displaying evidences and a sample for generated

function models are shown in Figure 10. The program in Figure 9 starts with a variable

declaration of dayOfMonth in line 3. Then, the program calls Function_A with the

parameter 60000 and uses dayOfMonth variable to call Function_B. Next, if Function_B

sets the variable value to 15, the program calls Function_C with a string value “C:/”

otherwise program ends with status value 0.

Figure 8 : A Sample Malicious Call Sequence with a Pipe Symbol

23

Figure 9 : Sample Program for Displaying Evidences

Figure 10 : Sample Function Models for Displaying Evidences

24

During the analysis of the sample program shown in Figure 9, assume that only

Function_B is configured to return symbolic value. The evidence output generated for

this program is shown in Figure 11. In the output, we display 2 types of evidences:

function evidences and execution evidences. The function evidences start after the

EVIDENCES :: tag and their content consist of the function names encountered along

the execution path and their input arguments. Our analyzer module presents the function

evidences in human-readable form as they are emitted by the function models. Execution

evidences are the rest of the data shown in Figure 11 which our log analyzer combines in

the end of the analysis.

The first line of Figure 11 shows the analyzed call sequence name. Then, the log

analyzer displays a warning message by giving the encountered malicious input

sequence. Next, our log analyzer shows the complete malicious sequence. In the

EVIDENCES:: section, the log analyzer displays the function evidences as they are

created by the function models. Each line starts with the name of the function model

given in the square brackets. Then, evidence information follows in curly brackets. For

example, the first function evidence indicates that the function model of Function_A is

called with a value that suspends the execution by 60000 milliseconds. Similarly, second

function evidence indicates that the function model of Function_C deletes the directory

“C:/”.

After the TestCaseGenerator tag, our log analyzer displays symbolic return values of the

model functions in little-endian byte order and ASCII formats. The meaning of the byte

fields strongly depends on the function's return type. In our sample, Function_B returns

an integer value symbolically with the length of 4 bytes. The value is set to 15 in

decimal. Detailed usage of a symbolic return value is explained in section 4.2.2.

Figure 11 : Sample Evidence Output

25

3.8 Model Refining

After examining the evidences, users may want to perform future analysis on the binary

program to achieve better results. In this case, our methodology supports users to re-

analyze the program using different settings. For example, if the analysis stops after

executing a certain function, users may modify the default return values shown in Table

2 or they may modify the detail level of the analysis to use symbolic return values rather

than the concrete ones. So, our methodology allows users to analyze the binary program

iteratively to achieve better results by providing a configurable toolset.

26

27

 CHAPTER 4

4 EXPERIMENTS

In this chapter, we show our experimental work on our methodology. First, we present

the experimental setup where we conduct our experiments. Next, we show the

effectiveness of our methodology by analyzing a synthetic and an actual malware.

4.1 Experimental Setup

We evaluated our methodology on a virtual machine running on a desktop with a 3.30

GHz Intel(R) Core(TM) i5-6600 CPU and 32GB of RAM. The virtual machine had

16GB RAM and was running Ubuntu 20.04.1. Besides, the virtual machine performed

symbolic execution on S2E’s QEMU environment running Windows 10 Pro 1909

x86_64.

In order to evaluate our methodology, we implemented our modules in a combination of

C++ and Python. We developed 6 modules namely: model generator, library finder,

analysis parser, log analyzer, a DLL file having function models, and injector

application. We wrote the DLL file and injector modules in C++ and they are around

2500 lines of code. On the other hand, we implement the rest of the modules in Python

and they consist of about 600 lines of code.

28

4.2 Experiment 1: Synthetic Malware

4.2.1 Synthetic Malware

In order to show the capabilities of our methodology, wrote a synthetic malware and

analyzed it. Our malware uses two techniques to hide its malicious activity: system time

discovery [58] and sandbox evasion [59]. Then, it performs DLL injection using a DLL

file we wrote.

Malware such as Friday 13th [60], Chernobyl [61], and FatDuke [62] use system time

discovery techniques to prevent detection by delaying its malicious behavior until a

specified time which is also called a time-bomb. In our malware, we also used this

technique to show that our methodology can reveal hidden malware behavior, hidden

program branches, and analyze all possible call sequences to detect a malicious sequence

in program binary. Figure 12 shows the corresponding code segment. We programmed

our malware so that it performs its malicious activity on 10th of November 2040. In

Figure 12, detecting a time bomb appears to be a straightforward process since we can

access the source code of the malware. However, it is a highly complex task to detect

such a code segment in a binary program using obfuscation methods such as packaging

and encryption.

We also add a system check technique to perform sandbox evasion [59]. It is a hiding

technique that malware such as Astaroth, Evilnum, MegaCortex, and RogueRobin [59]

uses to conceal its malicious behavior if the malware infers that it is under analysis. The

malware checks system artifacts associated with the sandbox environment, such as

device names, available memory, and CPU core, to evade it. So, we put a CPU core

count control in our malware to show that our methodology can collect the call

sequences hidden behind sandbox evasion. Figure 13 shows our malware’s code snippet

performing sandbox evasion. In the code, we allowed malware to activate if the target

device has four or more CPU cores.

After using system time discovery and sandbox evasion techniques our synthetic

malware performs its malicious behavior, process injection. Process injection is the

technique that malware injects arbitrary code into a live separate process in order to

make the live process perform the malicious activity. So, malware evades from defense

mechanisms, such as anti-viruses, and access privileges of the live process. In order to

show that our methodology is capable of detecting a malware technique that a signature-

based system cannot discover, we used it in our experiments.

29

According to Mitre ATT&CK [63] process injection has 11 sub-techniques and we used

the dynamic-link library (DLL) injection technique in our malware [64]. In this

technique, the malware performs Windows API calls to inject a DLL file into a separate

live process. First, the malware injects the path of the DLL in the address space of the

process. Then, malware invokes a new thread to load the DLL and the new thread runs

the code, the malicious activity, inside the DLL. As a result, the process performs the

malicious activity with its privileges and malware stays hidden. As we already know the

malicious call sequence of a DLL injection technique, shown in Figure 2, we decided to

use it in our experiment and we used the data in Figure 2 as input to our experiment. The

source code of our malware is given in APPENDIX A.

Figure 12 : Time Bomb Code Snippet

Figure 13 : Sandbox Evasion Code Snippet

30

4.2.2 Experiment1 and Results

In the analysis, the decompiler found 15 dynamically linked functions. However, our

toolset only modeled 9 of them as our methodology is only interested in the functions

that belong to Windows API and these functions cover 100% of the Windows API

functions used in the binary program. Table 3 shows dynamically linked functions

extracted by the decompiler. Then, our model generator automatically creates models for

the chosen functions. In total, around 150 lines of C++ code are created automatically.

Even though our decompiler did not extract it, we modeled the ExitProcess function of

the Windows API to increase the traceability of our call sequences.

To avoid state space explosion, we make all function models return concrete values at

the beginning of the analysis. However, when we analyzed the function call sequences,

we realized that the malware did not call any function after certain ones. For example

GetLocalTime, GetSystemInfo and GetModuleHandleW functions were the last

functions that we detected in call sequences. Therefore, we used expert opinion to

change the default return values we show in Table 2. Then, we regenerate the models

and run the analysis again to discover new paths. Furthermore, we modified the detail

level of the analysis so that the functions returning simple C structs, such as

GetLocalTime and GetSystemInfo, return symbolic values.

Table 3: Synthetic Malware Dynamically Linked Functions

Function Name Model Function Name Model

_errno No GetSystemInfo Yes

CloseHandle Yes Memcpy No

CreateRemoteThread Yes memmove No

exit No OpenProcess Yes

free No VirtualAllocEx Yes

GetLocalTime Yes wcstol No

GetModuleHandleW Yes WriteProcessMemory Yes

GetProcAddress Yes

Depending on the complexity of the binary program and the number of symbolic

variables, the symbolic execution may take long hours. In order to avoid state space

explosion and see the effects of modifications as soon as possible, such as detail level,

we put a time limit for the symbolic execution. So, the symbolic execution engine run

31

until either execution finishes or the timer for execution expires. During the experiment,

we saw that approximately 10 minutes of execution provide enough information to

conclude the analysis.

Our log analyzer extracted the malicious call sequence given in Figure 14. In this figure,

each line corresponds to a model invocation. The first element in a line shows the

elapsed time, in seconds since the symbolic execution started. The second element

shows the state number during the symbolic execution and the third one shows the

invoked function model name.

Figure 14 : Synthetic Malware Malicious Call Sequence

Figure 15 : Symbolic Execution States of Synthetic Malware

32

In Figure 15, we showed the symbolic state creation of our malware. We mark each

decision point with < and > signs in the code and put a diamond shape for its program

flow performed by the symbolic execution engine. Our log analyzer module creates the

first two lines of the call sequence, in Figure 14, according to the flow we show in

Figure 15. Then, it extracts the rest of the call sequence since the symbolic engine calls

our model functions according to our malware’s activity we show in APPENDIX A.

To detect the DLLInjection attack, we used a malicious call sequence input in the

literature [16] where we show in Figure 2. Then, our log analyzer module detected the

malicious sequence and generated the results in Figure 16. The first line in the result

shows the analysis step. In this case, our log analyzer module analyzes the call sequence

in Figure 14. Then, it prints a warning message that DLLInjection sequence is detected.

Next, it prints the malicious sequence of DLLInjection and shows the evidences.

Our log analyzer displays the evidences after EVIDENCES tag of Figure 16. Each line

starting with square brackets shows evidence created by a function model and

corresponding evidence information is presented between the curly brackets. For

example, the GetModuleHandleW function created evidence for the requested access to

kernel32.dll module and the GetProcAddress function indicated the access request for

the LoadLibraryA function.

Figure 16 : Synthetic Malware Analysis Result

33

Moreover, our log analyzer displayed the symbolic return values of the function models

satisfying the program path that generates the call sequence in Figure 14. The return

types of the functions that return symbolic data are shown in Figure 17 and Figure 18. In

Figure 16, v0_LocalTime_0 represents the symbolic value of the GetLocalTime function

model and its C++ struct is shown in Figure 17. The figure suggests that the first 2 bytes

of the symbolic value, 0xf8 and 0x7, represent the wYear element of the

_SYSTEMTIME struct. These bytes denote the year 2040 in little-endian format.

Similarly, next 2 bytes, 0xb and 0x0, represents the wMonth element and it is 11 in

decimal. Finally, 4th byte pair in v0_LocalTime_0 represents the wDay field and it is 10

in decimal.

Figure 17 : Return Struct of GetLocalTime Function [70]

Figure 18 : Return Struct of GetSystemInfo Function [71]

34

v1_SystemInfo_1 represents the symbolic value of GetSystemInfo function model and

we show its C++ struct in Figure 18. The bytes between 21st and 24th represent the

dwNumberOfProcessors field of the struct. During the analysis, the symbolic engine

resolved the field as 128 in decimal which satisfies line 22 in Figure 15.

In the end, our methodology captured the DLL injection attack of our malware whose

cyclomatic complexity is 11. The symbolic execution of the malware took 190 seconds

with 2 symbolic return values and 4 program branches. Although our methodology

achieved 50% branch and 69% line coverages, the toolset executed 100% of the

Windows API functions invocations of the malware It is also possible to achieve 100%

branch coverage by using detail level input, but it is not a cost-effective solution as the

toolset already detect the malicious sequence with less symbolic variables.

After we examined the evidences, we concluded that our malware performs a DLL

injection attack on November 10, 2040 if it is not running on a virtual machine. During

the DLL injection attack, first, it opens a process whose ID is 123. Then, it retrieves the

kernel32 library and loads the LoadLibraryA function. Next, it allocates the process

memory for 13 bytes and inserts ‘malicious.dll’ text in the memory. Finally, it creates a

remote thread. This experiment shows the detection capability of our methodology with

respect to the malware using evasion techniques.

4.3 Experiment2: WannaCry

4.3.1 WannaCry Malware

In order to show that our methodology is also applicable to analyzing real-world

problems, we analyzed WannaCry ransomware. As of its first report in May 2017,

WannaCry has spread to more than 150 countries. It uses a Windows vulnerability,

MS17-010, to gain access to the systems and it encrypts user files. Then, it demands

Bitcoin worth $300 or $600 to decrypt the data [65]. Malware analysts identify the

malware as it is composed of two components namely, worm and encryption. The initial

component behaves as a package containing the encryption component. As a sandbox

avoidance mechanism, it tries to access a web page. If it connects to the page

successfully, it stops its malicious behavior. Otherwise, it extracts the encryption

component from its resource and executes it. After that, the encryption component

changes the file attributes in its directory and starts encryption [3] [66]. In this

experiment, we run our analysis on the encryption component.

In order to make sure that we analyze the correct malware component, we calculated

sha256 and md5 hashes of the malware. Then, we verified the calculated values using a

previous study [66] and a malware database [67]. The md5sum value is calculated as

35

84c82835a5d21bbcf75a61706d8ab549 and the sha256sum value is calculated as

ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa.

4.3.2 Experiment2 and Results

In the analysis, the decompiler found more than 105 dynamically linked functions and

we are interested in 64 of them. Table 4 shows the chosen functions. Then, our model

generator automatically creates models for the chosen functions and generates around

1100 lines of C++ code automatically.

Next, to analyze behavior, we create a malicious call sequence, shown in Figure 19, by

using our previous experience in synthetic malware, explained 4.2. In this way, we set

our log analyzer module to create a warning if any one of the WriteProcessMemory,

LoadLibraryA, or GetProcAdress functions are invoked.

Figure 19 : Malicious Call Sequence Input of WannaCry Analysis

Figure 20 : WannaCry Malicious Call Sequence

36

Table 4: Generated Function Models for WannaCry

CloseHandle GetModuleHandleA RegCloseKey

CloseServiceHandle GetProcAddress RegCreateKeyW

CopyFileA GetProcessHeap RegQueryValueExA

CreateDirectoryA GetStartupInfoA RegSetValueExA

CreateDirectoryW GetTempPathW SetCurrentDirectoryA

CreateFileA GetWindowsDirectoryW SetCurrentDirectoryW

CreateProcessA GlobalAlloc SetFileAttributesW

CreateServiceA GlobalFree SetFilePointer

CryptReleaseContext HeapAlloc SetFileTime

DeleteCriticalSection HeapFree SetLastError

EnterCriticalSection InitializeCriticalSection SizeofResource

FindResourceA IsBadReadPtr Sleep

FreeLibrary LeaveCriticalSection StartServiceA

GetComputerNameW LoadLibraryA SystemTimeToFileTime

GetCurrentDirectoryA LoadResource TerminateProcess

GetExitCodeProcess LocalFileTimeToFileTime VirtualAlloc

GetFileAttributesA LockResource VirtualFree

GetFileAttributesW MultiByteToWideChar VirtualProtect

GetFileSize OpenMutexA WaitForSingleObject

GetFileSizeEx OpenSCManagerA WriteFile

GetFullPathNameA OpenServiceA

GetModuleFileNameA ReadFile

37

Our log analyzer module discovered the call sequence shown in Figure 20. This

sequence has the malicious call sequence we specified in Figure 19 and our log analyzer

displayed evidences shown in Figure 21. Evidences show that, first, WannaCry gets the

handle for itself as it passes the NULL parameter to the GetModuleHandleA function

[68]. Then, it sets its current directory to its current directory and it creates a registry key

with the name WannaCrypt0r under Software tab. Next, it hides all the files in its current

directory by using ‘attrib +h’ command [69] and waits approximately 30 minutes. After

it terminates an operation with a failure status, it grants full access to all the files in its

current directory and below using ‘icacls . /grant Everyone:F /T /C /Q', in directory’.

Then it waits again around 30 minutes and terminates the process with a fail status.

Lastly, it loads a library called ‘advapi32.dll’ and loads 6 functions responsible for

encryption.

When we examined the evidences, we concluded that WannaCry performs suspicious

operations such as creating a registry key with an unusual name, hiding files, granting

open accessibility for everyone, and importing encryption functions. Even though all of

our function models return concrete values, our toolset invoked 25% of the function

models in a single symbolic execution run and generate meaningful evidences for the

malicious behavior. This shows the applicability of our methodology to a real-world

problem.

Figure 21 : WannaCry Analysis Result

38

4.4 Discussion

In the synthetic malware experiment, our methodology detected DLLInjection attack

even though the malware uses evasion techniques, such as time discovery and sandbox

evasion, to hide its malicious activity. In this way, we showed the effectiveness of our

methodology with respect to the traditional behavioral and API analysis techniques. Our

toolset found 100% of the Windows API functions using the decompiler and modeled

these API functions using around 16 lines of C++ code per function model. As we used

our expert knowledge to choose two functions that return symbolic values, our

methodology captured the malicious call sequence even though the symbolic execution

achieved 50% branch coverage and 69% line coverage. Furthermore, the symbolic

execution invoked 100% of the modeled functions at least once. Also, as we chose the

rest of the functions to return concrete values, the symbolic execution step only took 190

seconds and did not suffer from the state-space explosion problem. In the end, our

toolset successfully found out that the synthetic malware attempts a DLLInjection attack

on November 10, 2040 to a process whose ID is 123 if the running device has 8 CPU

cores.

In the WannaCry experiment, we have shown that our methodology applies to a real-

world problem. Our toolset found 105 dynamically linked functions models. According

to [66], this number represents 91% of the total function imports. When we include the

encryption functions that our toolset extracted during the symbolic execution the

percentage rises to 97% although we only use concrete values during the analysis. Our

toolset modeled 56% of the imported functions as it only modeled the Windows API

functions. Then, generated 17 lines of C++ code per function model. As we only use

concrete values during the symbolic execution, our toolset did not experience any state-

space explosion problems and the symbolic execution took less than a second.

Furthermore, we achieved to invoke 25% of modeled functions only using concrete

values in a single symbolic execution by configuring the detail level input. In the end,

our toolset explicitly displayed the evidences that the usage of Windows commands,

such as attrib and icalcs, and the Windows API functions. Thus, it showed the users

whether the program they were analyzing was behaving in an unexpected way. Our

evidences also showed that, like the synthetic malware, WannaCry also uses time

functions to delay its execution. Even though it does not use a time bomb, it delays the

execution by an hour.

There studies, such as [4] and [16], using control flow diagrams and DNA squences to

show their performance for detecting API call sequences. However, this information is

insufficient to guide the user to better decisions. To the best of our knowledge, there are

no studies that show human-readable evidences for the user to improve their analysis

results and validate the decision made.

39

In summary, our methodology can detect malicious behavior behind time bombs and

sandbox evasion techniques by using a malicious call sequence and symbolic variables.

It is also applicable to a real-world problem even though we do have a sequence that is

given in the literature and using only concrete values.

Assumptions. In our methodology, we assume that:

• Users have at least one known malicious API call sequence in advance to analyze

a binary program.

• The malicious API call sequence does not commonly exist in benign software so

that our methodology does not produce false-positive results.

• The binary program contains at least as many API calls as a malicious API call

sequence to perform a reasonable analysis.

• The symbolic execution engine either calls the function models in a single

execution thread or provides state information so that function models’ execution

order can be extracted.

• Function models are not forced to make actual Windows API calls so that the

symbolic execution platform does not dive into the depths of system calls which

may hinder symbolic execution performance.

• Users utilize evidence information to improve function models so that the

symbolic execution platform does not suffer from state-space explosion

problems.

Constraints. Even though our methodology provides a general solution for malware

analysis, we create our toolset to show the feasibility of our approach and the toolset has

the following constraints:

• It only analyzes 32-bit binary programs.

• It only supports the analysis of binary programs for Windows.

• It detects the malicious behavior only if the binary program contains a known

malicious API call sequence.

40

41

 CHAPTER 5

5 CONCLUSION

In this thesis, we develop a methodology for detecting malicious behavior in a binary

program with API call sequence analysis using dynamic symbolic execution for the

Windows platform. Using our methodology, we implement an extensible toolset that

supports users to utilize the latest developments in the API call sequence literature. Also,

we present a configurable API function modeling approach to avoid the state-space

explosion problem of symbolic execution by enabling users to decide return values of

the function models to either concrete or symbolic using detail levels.

In order to show the effectiveness of our methodology, we analyzed a synthetic malware

performing DLL injection attack and a real-world malware called WannaCry. Our

toolset generated more than 1200 lines of C++ code and modeled 75 Windows API

functions for the analysis of these malware. In our experiments, we showed that our

approach of combining function models and dynamic symbolic execution is a feasible

way of detecting API call sequences of a given binary program. Also, we demonstrated

the capability of our toolset by detecting a DLL Injection attack even though it is hidden

behind obfuscation techniques such as time discovery and sandbox evasion. During the

experiments, we also showed that our function models provide observable evidences for

generating API call sequences to analyze a real-world problem. Our toolset successfully

discovered a call sequence of WannaCry ransomware and generate evidences for its

activities such as importing encryption functions, hiding files, granting file

accessibilities, and creating registry keys.

Limitations. So far, our toolset is only capable of analyzing 32 bit Windows binary

programs. Also, it does not have the capability of analyzing statically linked functions.

Therefore, its function models are only limited to dynamically linked functions. In order

to avoid state space explosion, our models support concrete return values. However,

using concrete values may hinder the capability of detecting hidden branches.

Moreover, our system is not capable of creating malicious function call sequences by

42

itself, instead, the user provides the sequence as an input. Also, our system detects

malicious behavior if the call sequence of the behavior is already known.

Future Work. We plan to model a complete set of Windows API functions. So that, we

can reduce one step from our methodology, dynamically linked function extraction.

Furthermore, we are also interested in supporting 64 bit Windows programs, Linux

systems, and statically linked functions in the future.

43

REFERENCES

[1] P. Okane, S. Sezer, and K. Mclaughlin, “Obfuscation: The Hidden Malware,”

Security & Privacy, IEEE, vol. 9, pp. 41–47, May 2011, doi:

10.1109/MSP.2011.98.

[2] Ö. Aslan and R. Samet, “A Comprehensive Review on Malware Detection

Approaches,” IEEE Access, vol. 8, p. 1, May 2020, doi:

10.1109/ACCESS.2019.2963724.

[3] LogRhythm Labs, “A Technical Analysis of WannaCry Ransomware.” May

2020. [Online]. Available: https://logrhythm.com/blog/a-technical-analysis-of-

wannacry-ransomware/

[4] C. and L. Z. and N. J. and S. D. and Y. H. Brumley David and Hartwig,

“Automatically Identifying Trigger-based Behavior in Malware,” in Botnet

Detection: Countering the Largest Security Threat, C. and D. D. Lee Wenke and

Wang, Ed. Boston, MA: Springer US, 2008, pp. 65–88. doi: 10.1007/978-0-387-

68768-1_4.

[5] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A Review of Android

Malware Detection Approaches Based on Machine Learning,” IEEE Access, vol.

PP, p. 1, May 2020, doi: 10.1109/ACCESS.2020.3006143.

[6] P. Sreekumari, “Malware Detection Techniques Based on Deep Learning,” May

2020, pp. 65–70. doi: 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00023.

[7] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep Learning for Android

Malware Defenses: a Systematic Literature Review.” May 2021.

[8] G. Pék, B. Bencsáth, B. Hu, and L. Buttyan, “nEther: In-guest Detection of Out-

of-the-guest Malware Analyzers,” May 2011, doi: 10.1145/1972551.1972554.

44

[9] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated random

testing,” in Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), May 2005, vol. 40, pp. 213–223.

doi: 10.1145/1065010.1065036.

[10] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing engine for C,”

in SIGSOFT Software Engineering Notes, May 2005, vol. 30, pp. 263–272. doi:

10.1145/1095430.1081750.

[11] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs,” May 2008,

vol. 8, pp. 209–224.

[12] P. Godefroid, M. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing for Security

Testing,” ACM Queue, vol. 10, p. 20, May 2012, doi: 10.1145/2093548.2093564.

[13] T. Avgerinos, S. Cha, B. Hao, and D. Brumley, “AEG: Automatic Exploit

Generation.,” in Communications of the ACM, May 2011, vol. 57. doi:

10.1145/2560217.2560219.

[14] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-Vivo

Multi-Path Analysis of Software Systems,” Computer Architecture News, vol. 39,

May 2012, doi: 10.1145/1961295.1950396.

[15] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J.

Grosen, S. Feng, C. Hauser, C. Kruegel and G. Vigna, “SOK: (State of) The Art

of War: Offensive Techniques in Binary Analysis,” May 2016, pp. 138–157. doi:

10.1109/SP.2016.17.

[16] Y. Ki, E. Kim, and H. K. Kim, “A Novel Approach to Detect Malware Based on

API Call Sequence Analysis,” International Journal of Distributed Sensor

Networks, vol. 2015, pp. 1–9, May 2015, doi: 10.1155/2015/659101.

[17] D. Rabadi and S. Teo, “Advanced Windows Methods on Malware Detection and

Classification,” May 2020, pp. 54–68. doi: 10.1145/3427228.3427242.

[18] Microsoft, “Create C/C++ DLLs in Visual Studio.” May 2020. [Online].

Available: https://docs.microsoft.com/en-us/cpp/build/dlls-in-visual-

cpp?redirectedfrom=MSDN&view=msvc-160

[19] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide to

Dissecting Malicious Software, 1st ed. No Starch Press, 2012.

45

[20] K. Hahn and K. Hahn, “Robust Static Analysis of Portable Executable Malware,”

2014.

[21] P. Szor, “The Art of Computer Virus Research and Defense,” May 2005.

[22] A. Moser, C. Kruegel, and E. Kirda, “Limits of Static Analysis for Malware

Detection,” in Proceedings - Annual Computer Security Applications Conference,

ACSAC, May 2008, pp. 421–430. doi: 10.1109/ACSAC.2007.21.

[23] M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser, and H. Veith, “Malware

normalization,” May 2021.

[24] H. Borojerdi and M. Abadi, “MalHunter: Automatic generation of multiple

behavioral signatures for polymorphic malware detection,” in Proceedings of the

3rd International Conference on Computer and Knowledge Engineering, ICCKE

2013, May 2013, pp. 430–436. doi: 10.1109/ICCKE.2013.6682867.

[25] Y. Tang, B. Xiao, and X. Lu, “Using a bioinformatics approach to generate

accurate exploit-based signatures for polymorphic worms,” Computers &

Security, vol. 28, pp. 827–842, May 2009, doi: 10.1016/j.cose.2009.06.003.

[26] M. Alzaylaee, S. Yerima, and S. Sezer, “DL-Droid: Deep learning based android

malware detection using real devices.” May 2019.

[27] J. Booz, J. McGiff, W. Hatcher, W. Yu, J. Nguyen, and C. Lu, “Tuning Deep

Learning Performance for Android Malware Detection,” May 2018, pp. 140–145.

doi: 10.1109/SNPD.2018.8441128.

[28] A. Martín García, F. Fuentes, V. Naranjo, and D. Camacho, “Evolving Deep

Neural Networks architectures for Android malware classification,” May 2017,

pp. 1659–1666. doi: 10.1109/CEC.2017.7969501.

[29] N. McLaughlin, J. Martinez-Del-Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer,

Y. Safaei, E. Trickel, Z. Zhao, A. Doupe, and G. Ahn, “Deep Android Malware

Detection,” May 2017, pp. 301–308. doi: 10.1145/3029806.3029823.

[30] E. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic

framework for android malware detection using deep learning,” Digital

Investigation, vol. 24, pp. S48–S59, May 2018, doi: 10.1016/j.diin.2018.01.007.

[31] A. Pektaş and T. Acarman, “Deep learning for effective Android malware

detection using API call graph embeddings,” Soft Computing, vol. 24, pp. 1–17,

May 2020, doi: 10.1007/s00500-019-03940-5.

46

[32] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. Kumar, “Android malware

detection based on system call sequences and LSTM,” Multimedia Tools and

Applications, vol. 78, pp. 1–21, May 2019, doi: 10.1007/s11042-017-5104-0.

[33] A. Pektaş and T. Acarman, “Deep Learning To Detect Android Malware via

Opcode Sequences,” Neurocomputing, vol. 396, May 2019, doi:

10.1016/j.neucom.2018.09.102.

[34] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,

“Adversarial Examples for Malware Detection,” May 2017, pp. 62–79. doi:

10.1007/978-3-319-66399-9_4.

[35] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren,

“Android HIV: A Study of Repackaging Malware for Evading Machine-Learning

Detection,” IEEE Transactions on Information Forensics and Security, vol. PP, p.

1, May 2019, doi: 10.1109/TIFS.2019.2932228.

[36] B. Kolosnjaji, A. Demontis, B. Biggio, and D. Maiorca, “Adversarial Malware

Binaries: Evading Deep Learning for Malware Detection in Executables,” May

2018, pp. 533–537. doi: 10.23919/EUSIPCO.2018.8553214.

[37] S. Cesare and Y. Xiang, Software similarity and classification. 2012. doi:

10.1007/978-1-4471-2909-7.

[38] Norman Solutions, “Norman SandBox.” [Online]. Available:

http://download01.norman.no/product_sheets/eng/SandBox_analyzer.pdf

[39] R. Paleari, L. Giampaolo, F. Roglia, and D. Bruschi, “A fistful of red-pills: How

to automatically generate procedures to detect CPU emulators,” May 2009.

[40] V. Sathyanarayan, P. Kohli, and B. Bezawada, “Signature Generation and

Detection of Malware Families,” May 2008, vol. 5107, pp. 336–349. doi:

10.1007/978-3-540-70500-0_25.

[41] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamzeh,

“Malware detection based on mining API calls,” May 2010, pp. 1020–1025. doi:

10.1145/1774088.1774303.

[42] Y. Ye, D. Wang, T. Li, and D. Ye, “IMDS: Intelligent malware detection

system,” May 2007, pp. 1043–1047. doi: 10.1145/1281192.1281308.

[43] R. Tian, M. R. Islam, L. Batten, and S. Versteeg, “Differentiating malware from

cleanware using behavioural analysis,” in Proceedings of the 5th IEEE

47

International Conference on Malicious and Unwanted Software, Malware 2010,

May 2010, pp. 23–30. doi: 10.1109/MALWARE.2010.5665796.

[44] M. Shankarapani, K. Kancherla, S. Ramammoorthy, R. Movva, and S.

Mukkamala, “Kernel machines for malware classification and similarity

analysis,” May 2010, pp. 1–6. doi: 10.1109/IJCNN.2010.5596339.

[45] M. Shankarapani, S. Ramamoorthy, R. Movva, and S. Mukkamala, “Malware

detection using assembly and API call sequences,” Journal in Computer Virology,

vol. 7, pp. 107–119, May 2011, doi: 10.1007/s11416-010-0141-5.

[46] H. Kim, M. Khoo, and Pietrolì, “Polymorphic Attacks against Sequence-based

Software Birthmarks,” May 2021.

[47] J. King, “Symbolic Execution and Program Testing,” Commun. ACM, vol. 19, pp.

385–394, May 1976, doi: 10.1145/360248.360252.

[48] B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara, and F. Xie, “CRETE: A

Versatile Binary-Level Concolic Testing Framework,” 2018, pp. 281–298. doi:

10.1007/978-3-319-89363-1_16.

[49] N. Stephens, J. Grosen, C. Salls, and A. Dutcher, “Driller: Augmenting Fuzzing

Through Selective Symbolic Execution,” May 2016. doi:

10.14722/ndss.2016.23368.

[50] S. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing Mayhem on

Binary Code,” pp. 380–394, May 2012, doi: 10.1109/SP.2012.31.

[51] R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Assisting Malware

Analysis with Symbolic Execution: A Case Study,” May 2017, pp. 171–188. doi:

10.1007/978-3-319-60080-2_12.

[52] M. Alsaleh, J. Wei, E. Al-Shaer, and M. Ahmed, “gExtractor: Towards

Automated Extraction of Malware Deception Parameters,” May 2018, pp. 1–12.

doi: 10.1145/3289239.3289244.

[53] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution Paths for

Malware Analysis,” in Proceedings - IEEE Symposium on Security and Privacy,

May 2007, pp. 231–245. doi: 10.1109/SP.2007.17.

[54] L. Ďurfina, J. Křoustek, P. Matula, and P. Zemek, “A Novel Approach to Online

Retargetable Machine-Code Decompilation,” Journal of Network and Innovative

Computing, vol. 2, pp. 224–232, May 2014.

48

[55] EasyHook, “Installing a remote hook using EasyHook with C++.” [Online].

Available: http://easyhook.github.io/tutorials/nativeremotehook.html

[56] Selenium, “SeleniumHQ Browser Automation.” [Online]. Available:

https://www.selenium.dev/

[57] A. Herrera, “Analysing ‘Trigger-based’ Malware with S2E.” May 2018. [Online].

Available: https://adrianherrera.github.io/post/malware-s2e/

[58] MITRE ATT&CK®, “System Time Discovery, Technique T1124.” May 2021.

[Online]. Available: https://attack.mitre.org/techniques/T1124/

[59] MITRE ATT&CK®, “Virtualization/Sandbox Evasion: System Checks, Sub-

technique T1497.001.” May 2021. [Online]. Available:

https://attack.mitre.org/techniques/T1497/001/

[60] Panda Security, “Friday 13th: Remembering one of the most infamous virus in

history.” May 2018. [Online]. Available:

https://www.pandasecurity.com/en/mediacenter/malware/famous-virus-history-

friday-13th/

[61] Panda Security, “Chernobyl - Virus Information.” [Online]. Available:

https://www.pandasecurity.com/en/security-info/2860/information/Chernobyl

[62] MITRE ATT&CK®, “FatDuke, Software S0512.” May 2020. [Online].

Available: https://attack.mitre.org/software/S0512/

[63] MITRE ATT&CK®, “MITRE ATT&CK®.” [Online]. Available:

https://attack.mitre.org/

[64] MITRE ATT&CK®, “Process Injection: Dynamic-link Library Injection, Sub-

technique T1055.001 .” May 2020. [Online]. Available:

https://attack.mitre.org/techniques/T1055/001/

[65] Cybersecurity Infrastructure Security Agency (CISA)", “Indicators Associated

With WannaCry Ransomware.” May 2018. [Online]. Available: https://us-

cert.cisa.gov/ncas/alerts/TA17-132A/

[66] M. Akbanov and V. Vassilakis, “WannaCry Ransomware: Analysis of Infection,

Persistence, Recovery Prevention and Propagation Mechanisms,” Journal of

Telecommunications and Information Technology, vol. 1, pp. 113–124, May

2019, doi: 10.26636/jtit.2019.130218.

49

[67] Virus Total, “Virus Total Search.” [Online]. Available:

https://www.virustotal.com/gui/home/search

[68] Microsoft, “GetModuleHandleA function (libloaderapi.h) - Win32 apps.” May

2018. [Online]. Available: https://docs.microsoft.com/en-

us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea

[69] Microsoft, “CreateProcessA function (processthreadsapi.h) - Win32 apps.” May

2018. [Online]. Available: https://docs.microsoft.com/en-

us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

[70] Microsoft, “SYSTEMTIME (minwinbase.h) - Win32 apps.” May 2018. [Online].

Available: https://docs.microsoft.com/en-us/windows/win32/api/minwinbase/ns-

minwinbase-systemtime

[71] Microsoft, “SYSTEM_INFO (sysinfoapi.h) - Win32 apps.” May 2018. [Online].

Available: https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/ns-

sysinfoapi-system_info

50

51

APPENDICES

APPENDIX A

Synthetic Malware Source Code

52

53

SKB-SA02/F01 Rev:03 06.08.2018

TEZ İZİN FORMU / THESIS PERMISSION FORM

ENSTİTÜ / INSTITUTE

Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences

Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences

Uygulamalı Matematik Enstitüsü / Graduate School of Applied Mathematics

Enformatik Enstitüsü / Graduate School of Informatics

Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences

YAZARIN / AUTHOR

Soyadı / Surname : ..
Adı / Name : ..
Bölümü / Department : ...

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) : ..
..
..
..
..

TEZİN TÜRÜ / DEGREE: Yüksek Lisans / Master Doktora / PhD

1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work immediately

for access worldwide.

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent and/or

proprietary purposes for a period of two year. *

3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period of six
months. *

* Enstitü Yönetim Kurulu Kararının basılı kopyası tezle birlikte kütüphaneye teslim edilecektir.
 A copy of the Decision of the Institute Administrative Committee will be delivered to the
library together with the printed thesis.

Yazarın imzası / Signature Tarih / Date

