DETECTING MALICIOUS BEHAVIOR IN BINARY PROGRAMS USING
DYNAMIC SYMBOLIC EXECUTION
AND
API CALL SEQUENCES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS OF
THE MIDDLE EAST TECHNICAL UNIVERSITY
BY

FATIH TAMER TATAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF INFORMATION SYSTEMS

JUNE 2021

Approval of the thesis:

DETECTING MALICIOUS BEHAVIOR IN BINARY PROGRAMS USING
DYNAMIC SYMBOLIC EXECUTION
AND
API CALL SEQUENCES

Submitted by FATIH TAMER TATAR in partial fulfillment of the requirements for the degree of

Master of Science in Information Systems Department, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozsahin
Dean, Graduate School of Informatics

Prof. Dr. Sevgi Ozkan Yildirim
Head of Department, Information Systems

Assoc. Prof. Dr. Aysu Betin Can
Supervisor, Information Systems Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. P. Erhan Eren
Information Systems Dept., METU

Assoc. Prof. Dr. Aysu Betin Can
Information Systems Dept., METU

Assoc. Prof. Dr. Banu Giinel Kilig
Information Systems Dept., METU

Assoc. Prof. Dr. Altan Kogyigit
Information Systems Dept., METU

Assoc. Prof. Dr. Ayc¢a Kolukisa Tarhan
Computer Engineering Dept., Hacettepe University

Date: 18.06.2021

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. |
also declare that, as required by these rules and conduct, | have fully
cited and referenced all material and results that are not original to this

work.

Name, Last name : Fatih Tamer TATAR

Signature

ABSTRACT

DETECTING MALICIOUS BEHAVIOR IN BINARY PROGRAMS USING
DYNAMIC SYMBOLIC EXECUTION
AND
API CALL SEQUENCES

Tatar, Fatih Tamer
MSc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Aysu Betin Can

June 2021, 53 pages

Program analysis becomes an important part of malware detection as malware
become stealthier and more complex. For example, modern malware may detect
whether they are under analysis and they may use certain triggers such as time to
avoid detection. However, current detection techniques turn out to be insufficient as
they have limitations to detect new, obfuscated, and intelligent malware. In this
thesis, we propose a behavior based malware detection methodology using API call
sequence analysis. In our methodology, we combine dynamic symbolic execution
and API function models to extract call sequences of a given binary program and
decide whether it has a malicious sequence. In our experiments, we showed that our
methodology is capable of detecting malware hiding behind evasion techniques and
our methodology is applicable to a real-world problem.

Keywords: Call Sequence Analysis, Dynamic Symbolic Execution, Function
Modeling, Malware Analysis

0z

DINAMIK SEMBOLIK UYGULAMA VE
API CAGRI SIRALAMALARI KULLANARAK
IKiLI PROGRAMLARDA ZARARLI DAVRANIS TESPITI

Tatar, Fatih Tamer
Yiiksek Lisans, Bilisim Sistemleri Boliimii

Tez Yoneticisi: Dog. Dr. Aysu Betin Can

Haziran 2021, 53 sayfa

Kotli amaglt yazilimlar daha gizli ve daha karmasik hale geldik¢e program analizi,
kotii amagl yazilim tespitinde 6nemli bir parca haline gelmistir. Ornegin, modern
kot amagl yazilimlar programin analiz altinda olup olmadiklarini tespit edebilir ve
tespit edilmekten kaginmak igin zaman gibi belirli tetikleyicileri kullanabilirler.
Ancak mevcut tespit yontemleri yeni, karistirllmis ve akilli kotii yazilimlar tespit
etmekteki sinirlamalari sebebiyle yetersiz kalmaktadir. Bu tezde, APl cagr dizisi
analizini kullanan davranig tabanli bir kot yazilim tespit methodolojisi
onerilmektedir. Metodolojimizde, verilen programin ¢agri dizilerini ¢ikarmak ve
kotli amaclh bir diziye sahip olup olmadigina karar vermek i¢in dinamik sembolik
yuriitme ve APl fonksiyon modelleri birlestirilmistir. Deneylerimiz ise
metodolojimizin, kaginma tekniklerinin arkasinda saklanan kotii amagli yazilimlar
tespit edebildigini ve gercek diinyadaki bir soruna uygulanabilir oldugunu
gostermektedir.

Anahtar Kelimeler: Cagr1 Sirasi Analizi, Dinamik Sembolik Yiiriitme, Fonksiyon
Modelleme, K6tii Amagli Yazilim Analizi

To my mother, Ayse,
To my father, Mehmet,

To my sisters, Cigdem and Mehtap.

Vi

ACKNOWLEDGMENTS

First of all, 1 would like to thank my supervisor Assoc. Prof. Dr. Aysu Betin Can for

her support, guidance, criticism, inspiration and insight throughout the research.

Besides my supervisor, | would like to acknowledge my team leader, Baris lyidir,
and my manager, Miren lzaskun Gallastegi Dorken, from ASELSAN for letting me

complete my graduate studies.

I would also like to thank my valuable friends Elif, Gizem, Didem and Safak for their

endless support and motivation to finish this thesis.

Lastly, 1 would like to express my gratefulness to my sisters Mehtap Tatar and
Cigdem Yiiksel for being perfect role models for my entire education and my parents
Ayse Tatar and Mehmet Tatar for always being supportive throughout my decisions.

vii

TABLE OF CONTENTS

ABSTRACT ..ottt r bt e et st ene e iv
OZ oottt v
ACKNOWLEDGMENTS ...ttt Vil
TABLE OF CONTENTS ...oiiiici et viii
LIST OF TABLES......cc ottt X
LIST OF FIGURESco ittt Xi
LIST OF ABBREVIATIONSot Xii
CHAPTER
1 INTRODUCTION ..ottt s 1
2 RELATED WORK ...ttt 5
2.1 Background INFOrmationcccocoveiiiiniieneee e 5
2.2 LIterature REVIEW........ccooiiiiieiiiesie e 7
3 METHODOLOGY ..coooiiiiiiiiiieiee ettt 11
3.1 INPUE GANEIING ..t 12
3.2 Extracting Dynamically Linked FUNCEIONSccccoviiiiininiiicnn, 13
3.3 Automatic Function Model Generationcccoceveveiienienienieeinnnn, 15
3.4 Functions Replacementcccovveiiiie i 17
341 DLL Creation......ccccooiiieieiiie e 17
3.4.2 DLL Injector APpliCatioNccooceiiiriiiiiieieiese e 18
3.5 Running Symbolic EXECULIONccooiiiiiiiiiiieiee e 19
3.6 Analyzing the Call SEQUENCEccceeviiiiciiecece e 21
3.7 Displaying EVIAENCES.........coiiiiieiieesiie e 22
3.8 MOdel REFINING ..o 25
4 EXPERIMENTS ...t 27

4.1 EXperimental SETUPccooveriiiiiiiieeee s 27

4.2 Experiment 1: Synthetic Malware.............ccccccevvviiiveic i, 28
4.2.1 SyNnthetic MaIWarecccccviieiieecic e 28
4.2.2 Experimentl and ReSUILS...........cooviiiiiiiiiiee e 30

4.3 EXperiment2: WannaCry ... 34
4.3.1 WannaCry MalWarecccccoveiieiiiiieieese e 34
4.3.2 Experiment2 and ReSUILS..........ccooviiiiieeiiie e 35

A4 DISCUSSION ..ouvveuiiiiieitiesieetiesieesieaseesseestaaneesseesseaseesseesseensesseesseensesseeseens 38

5 CONCLUSION ...ttt e e 41
REFERENGCES. ..ottt 43
APPENDICES ..ottt 51
APPENDIX A e 51

LIST OF TABLES

Table 1: Summary of the Techniques Used for Malware Detectioncccccveueenee. 9
Table 2: Concrete Return Types and Their Valuesccccccovevevieivevc e 16
Table 3: Synthetic Malware Dynamically Linked FUNCLIONSccccevvevveieninnnnnn 30
Table 4: Generated Function Models for WannaCryccccooveniiinininienicseenn 36

Figure 1 :
Figure 2 :
Figure 3:
Figure 4 :
Figure 5 :
Figure 6 :
Figure 7:
Figure 8 :
Figure 9 :

Figure 10 :
Figure 11 :

Figure 12

Figure 13 :
Figure 14 :
Figure 15:
Figure 16 :
Figure 17 :
Figure 18 :
Figure 19:

Figure 20
Figure 21

LIST OF FIGURES

Summary of Proposed Methodologycccvvveiieiiiciicc e 12
Sample Malicious Function Call Sequence..........ccccceevvevveieiieciece e, 13

Sample Decompiler QUEPULccoiiiiiieieiereseee e 14

Sample Function Model............cooviiiiiiii 15
Detail Level SNIPPEL........cov o 18
Sample Path Condition Generationcccccvvveveeieiiieieese e 20
Sample Program Call SEQUENCEccoeiiiiiiiiiieee e 21
A Sample Malicious Call Sequence with a Pipe Symbol............c..cco..... 22
Sample Program for Displaying EVIAeNCes............ccccooevveieiieiiene e, 23
Sample Function Models for Displaying Evidencescccccceevvennne. 23
Sample EVIdence OULPULccviiiieieieceseree e 24
: Time Bomb Code SNIPPETooveiiiiieicierieeeee e 29
Sandbox Evasion Code SNIPPeL.........ccoveiiieeii i 29
Synthetic Malware Malicious Call Sequence............ccccooevvevvivievnennenne. 31
Symbolic Execution States of Synthetic Malwarecc.ccoovvviieienn, 31
Synthetic Malware Analysis ReSUIt...........c.cooviiiiiiiiiien, 32
Return Struct of GetLocalTime Function [70]ccccooveviiieiieceieen, 33
Return Struct of GetSystemInfo Function [71]ccccocvevviviiiieciieciee, 33
Malicious Call Sequence Input of WannaCry Analysis..........c.ccocvvennen. 35
: WannaCry Malicious Call SEQUENCE...........ccoviiieiiienc e 35
» WannaCry Analysis ReSUIL...........ccoveiiiiiiiiice e 37

Xi

file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150463
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150464
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150465
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150466
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150467
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150468
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150469
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150470
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150471
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150472
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150473
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150474
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150475
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150476
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150477
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150478
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150479
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150480
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150481
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150482
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150483

API
CPU
DLL
MSDN

LIST OF ABBREVIATIONS

Application Programming Interface
Central Processing Unit
Dynamic Link Library

Microsoft Software Developer Network

Xii

CHAPTER 1

INTRODUCTION

It has been an issue to detect malicious software for decades. Researchers use various
techniques to discover malware such as signature, behavior, and deep learning based
techniques. With the development of complex and obfuscated malware, traditional
malware detection techniques such as signature-based detection become inadequate to
unknown malware [1] and there is a demand for more scientific studies to cover the
shortcomings of existing methods. [2]

As malware analysis techniques improve, malware becomes stealthier and more
intelligent. New malware may not show their malicious behavior immediately especially
if they are aware of being analyzed. For example, the dropper component of WannaCry
ransomware [3] tries to access an invalid resource, an unregistered domain name, to
detect if it is running in a sandbox environment. In addition, new malware may postpone
their malicious activity until they are triggered by a resource such as a keyboard. For
instance, MyDoom waits until February 1 and 3, 2004 to perform its DDOS attack [4].
Therefore, malware detection becomes a challenging task. It is also very important to
understand the malware behavior on the infected system. If a malware analyst is late to
take precautions, undetected malware behavior may help the malware to persist in the
system under different forms or even worse, its spread may not be prevented at all and
everything goes off the spin. Consequently, it is not enough to detect the malware only.
Analysts should also need to understand its effects on the system. However, the latest
malware detection methodologies fail to propose a general solution for these problems.
For example, signature-based detection is adapted by security companies for its
quickness, but they fail to detect unknown [1] and obfuscated malware [5]. Deep
learning based detection methods perform up to 95-99% success rates [6]. However,
they suffer from reliability [7]. Behavior based malware detection methods run the
malware in a contained environment and detect malware even its code changes as long
as its core functionality stays the same. Nevertheless, they fail to detect intelligent
malware which is capable of sensing analysis environment [8]. In our work, we

1

approach the problem from the behavior-based malware detection perspective and
combine API analysis approach using the power of dynamic symbolic execution.

In this thesis, we developed a methodology for analyzing suspicious binary programs
using dynamic symbolic execution to observe API call sequences. In our work, we aim
to detect given malicious behavior and provide a methodology to analyze malware
behavior using API call sequence analysis for the Windows platform. To show the
feasibility of our work, we also developed a toolset for the methodology. First, our
toolset extracts the Windows API functions used by the binary program and creates
models for the extracted functions. Then, it replaces actual functions with the function
models and executes the binary program using dynamic symbolic execution. In this way,
our function models create traceable outputs for the API calls and our toolset extracts the
call sequences of all possible program branches even the branches are hidden behind
certain trigger conditions such as sandbox evasion and time. Next, our toolset compares
the extracted call sequences with known malicious API call sequences provided by the
user. If our toolset finds a matching sequence, it displays a warning and presents
evidences of malicious behavior. As our methodology utilizes dynamic symbolic
execution on a binary program, it is resilient to obfuscation methods such as packaging
and capable of detecting new malware once the user provides a malicious API call
sequence. Also, our toolset supports extensibility as users may modify its default
behavior to meet their future needs and change malicious API call sequence input to
employ the future developments in the literature.

In order to show the effectiveness of our methodology, we conducted experiments on a
synthetic and a real-world malware, WannaCry. During the experiments, our toolset
generated more than 1200 lines of C++ code to model 75 Windows API functions
automatically. The synthetic malware experiment showed our capability of detecting a
malicious behavior, DLL injection, even it is hidden behind time discovery and sandbox
evasion techniques. On the other hand, WannaCry ransomware experiment showed the
applicability of our methodology to a real-world problem. In the experiment, our
methodology discovered behaviors such as registry key creation, file hiding, file access
modifications and function imports for encryption purposes.

Overall, we make the following contributions:

e We present an extensible toolset for analyzing binary programs that supports
future developments in the malicious call sequence analysis area.

e We propose a technique to observe API call sequences using function models.

e We introduce an approach that combines function models and dynamic symbolic
execution to analyze malware without being affected by obfuscation techniques
such as time discovery and sandbox evasion.

e We implement a method to avoid state space explosion problem of symbolic
execution by changing return values of APl models to symbolic or concrete
without recompiling the models.

e We show evidences after the analysis to support decision-making and increase
user benefit.

The rest of the thesis is organized as follows. Chapter 2 introduces the related work in
terms of background information and the literature review. Chapter 3 presents the
proposed methodology in detail. Chapter 4 describes the experimental work showing the
feasibility of our methodology. Chapter 5 concludes our study with the limitations and
the future work.

CHAPTER 2

RELATED WORK

2.1 Background Information

In this section, we introduce general concepts and terminology in the thesis to provide an
overview of the topic.

Malware. Cyber attackers design malicious software programs, also known as malware,
to steal personal data, gain financial benefits, and damage devices. Malware can be
labeled into different categories such as trojan horses, worms, polymorphic viruses, and
ransomware[5]. Attackers use trojan horses to hide the malware inside other programs
that appear to be innocent. Worms are malware that spread to other devices by copying
themselves. They may infect a computer network without any manual intervention.
Polymorphic viruses are one of the hardest malware to analyze. They evade detection
systems by changing themselves in runtime. For example, they may modify their code
without changing the main functionality, decrypt or unpack previously hidden malicious
code segments. Attackers also use ransomware to gain financial benefits by encrypting
personal data and demanding ransom for decryption.

Dynamic Symbolic Execution. Symbolic execution is a program analysis technique that
analyzes the programs by traversing all possible branches and generating constraints for
them. The pioneers of the technique such as DART[9], CUTE[10], KLEE[11], and
SAGE[12] use symbolic execution to find program bugs by using constraint solvers.
In 2005, CUTE improved the symbolic execution and introduced the concept of concolic
(concrete symbolic) execution, also known as dynamic symbolic execution. In their
work, they combined concrete and symbolic execution to create test inputs for the
discovery of all possible execution branches.

Symbolic execution performs as follows: First, a symbolic execution engine replaces
program inputs with symbolic variables that can hold any value. Symbolic variables are
analogous to the mathematical unknown variables such as X, Y, Z. Then, when program
execution reaches a branch using a symbolic variable, the symbolic execution engine
executes both branches simultaneously and creates a set of constraints called path
condition. Path conditions are mathematical formulas that represent a valid range of
values for symbolic variables to satisfy the current branch condition. When the path
reaches a termination point or a bug, the symbolic execution engine uses a constraint
solver to evaluate the satisfiability of the path condition. If the condition is
mathematically solvable, the solver returns a concrete value for the symbolic variable
and this value may be used as a test condition for the path [11]. However, if the
condition is unsolvable, symbolic execution stops.

On the other hand, dynamic symbolic execution starts the program with random concrete
values as inputs. Then, during the execution, it keeps track of both concrete values and
symbolic constraints. When execution reaches a termination point, the engine returns to
the branch point and negates the constraint in order to decide if there is an input that
satisfies the other branch. If such input exists, the engine uses the newly found concrete
value to continue execution. However, if the constraint is too complex to solve, it
simplifies the constraint using concrete values and the constraint solver generates such
an assignment. Then, the engine runs the program with these concrete inputs.

One of the biggest drawbacks of symbolic execution is the path explosion problem. As
symbolic execution engine runs many branches simultaneously, it starts to suffer from
high memory consumption. In order to solve this problem, symbolic execution engines
utilize different techniques such as prioritized path searching [13] and constraint
optimization [12]. In addition, there are symbolic execution engines [14] [15] that
directly run on binary programs where it is very useful when there is no access to the
code of the program such as malware.

APl Modeling. Programs running in the user space need to call Application
Programming Interface (API) functions to use the services provided by the operating
system’s kernel. So, in order to understand the main behavior of a program, the sequence
of its API calls can be analyzed. Similarly, malware analysis techniques [16] [17] also
use API call sequence information to analyze malware behavior. In our work, in order to
collect the API call sequence of malware in run-time, we re-write the Windows API
functions in a way that they do not perform their actual tasks. In other words, we create
models of the Windows API functions to understand the behavior of malware while it is
running. Instead of performing real API activities, our models create logs upon
execution.

Dynamic Linking. Windows provide its API in the form of Dynamic Link Libraries
(DLLs). DLL files enable the share of functions and resources among different programs
by allowing programs to use a single DLL file in memory at the same time. So, DLL

6

files save memory and disk space. In contrast to static linking where the content of a
static library is duplicated into the programs, dynamic linking creates only the
information needed by Windows at runtime to find the DLL file containing data or
function [18]. In our work, we use a technique, DLL injection, to overwrite the dynamic
linking behavior of Windows so that we insert our APl models into malware to
understand its behavior.

2.2 Literature Review

As new and complex malware emerge, detection methods also evolve rapidly. We focus
on three main malware detection techniques in the literature, signature-based, deep
learning based and behavior based. Then, we present other approaches in literature such
as API analysis and symbolic execution.

In the early studies, the signature-based detection method is widely accepted by antivirus
vendors as it provides a quick and effective way of detecting known malware [2].
Researchers extract malware signatures in different ways, such as integrity checking
[19], string scanning [20], top and tail scanning [21], and entry point scanning [21].
However, these techniques are not capable of detecting new unknown malware [1] since
there is no signature match for the new malware in the signature database. Also,
signature-based detection techniques suffer from malware using obfuscation techniques
[22], such as encryption, packaging, and polymorphism, and require continuous updates
of signature databases which require maintenance cost. Though there are studies [23]
[24] [25] making improvements to overcome obfuscation methods, their success is still
limited to polymorphic malware. In our study, we are not limited to detect known
malware. Although our methodology is still limited to the malicious call sequence input,
our methodology provides an extensible approach for the detection of new unknown
malware using API call sequences. Once the user gives the malicious call sequence, our
methodology can detect an unknown malware performing such sequence. Also, our
configurable toolset provides an analysis environment where the users may incorporate
their expertise in the area to compose new sequences.

Studies using deep learning for malware detection mainly focus on four techniques
namely multilayer perceptrons (MLP) [26] [27] [28], convolutional neural networks
(CNNs) [29] [30] [31], recurrent neural networks (RNNSs) [32] and Hybrid Models [33].
Although they show high malware detection rates up to 95-99% [6], they suffer from
effectiveness and reliability [7]. Also, they are not resistant to malware using
perturbation [34] [35] and evasion [36] techniques. Furthermore, 70% of the deep
learning studies detecting malware focus on Android devices [6]. Our methodology fills
the gap of reliable malware detection methodology for the Windows platform.

Behavior based malware detection techniques determine whether a program is benign or
malware using monitoring tools and sandboxes [37] such as Norman Sandbox [38].
Also, they detect malware even if malware code changes as long as the behavior stays
the same [37]. However, the main disadvantage of behavior based malware detection is
that malware may detect the analysis environment and it may avoid showing its
malicious behavior under analysis [39] [8]. In our approach, we used a behavior based
malware detection technique and solved this problem by combining dynamic symbolic
execution and API function models that return concrete or symbolic values. So, our
models can distort the malware’s perception about its environment and provide
information in user control.

In order to detect malware, researchers use the similarity between the API calls of the
new and the known malware. In terms of their approaches, their API call analysis
methods divide into two categories: static [40] [41] [42] and dynamic [43] [44] [45].
Researchers using dynamic API call analysis analyze the malware in runtime and they
achieve better results analyzing obfuscated malware with respect to static API call
analysis researchers. [40] [43] analyze malware to extract the frequency of repeatedly
used API functions and their total events. Moreover, [44] [45] use API calls to extract
static signatures but they fail to detect polymorphic and unknown malware. Also, [46]
states that studies using API call sequences suffer from the fuzzy API calls that attackers
intentionally insert, delete, replace existing ones without affecting the overall
functionality. [16] used dynamic analysis to extract API calls of more than 23000
malware and apply DNA sequencing algorithm to find critical APl call sequence
patterns. However, their approach fails to detect malicious behavior hidden behind the
logic bombs and evasion techniques. In our methodology, we fill this gap by detecting
hidden malware behavior by utilizing APl function models in a dynamic symbolic
execution. Also, we provide a configurable tool set that users may add the latest API call
sequence information in the literature so that our methodology provides an up-to-date
solution. Furthermore, malicious API call sequence information lets our methodology
distinguish previously unknown malware.

Since the first introduction of symbolic execution [47], it is used in different areas such
as test case generation [9] [10] [11] [12] [48], bug discovery [11] [13] [14] [49] [50] and
malware analysis [51] [52] [53] [4]. Although [51] successfully detects a remote access
Trojan (RAT) using the symbolic execution framework ANGR [15], their work is
limited to RAT families. On the other hand, [4] and [53] conduct similar work. They
approach malware detection with a broader aspect and analyze the existence of trigger
sources and their corresponding conditions, such as system time, system event keyboard
inputs, and system calls. However, their approach is still limited to trigger sources. Our
methodology provides an extensible API call sequence analysis where users may modify
the control mechanism, call sequence, and API function models to meet their future
needs.

Since our methodology utilizes malicious API call sequences, it may seem to be a
signature-based malware detection technique. However, signature-based malware
detection techniques use strings, byte sequences, entry points, and integrity checks of the
binary program as a signature. Moreover, our methodology focus on the run-time
behavior of the binary program to extract invocations of Windows API functions and
runs the binary program in a symbolic execution environment. So, our methodology can
be positioned as a behavior-based malware detection technique. Table 1 shows the
summary of the techniques used for malware detection.

Table 1: Summary of the Techniques Used for Malware Detection

N N

¢ Fails to detect unknown [1] and obfuscated

malware [5]

Signature Based Quick and effective [2] * Requires maintenance cost for the
continuous updates of the signature
database

* Suffers from effectiveness and reliability [7]
Deep Learning Based High (95-99%) successrate [6] * Not resistant malware using perturbation
[34] [35] and evasion [36] techniques

Detects malware even if the

malware code changes as long + Fails to detect intelligent malware which is
as malware behavior stays the capable of sensing analysis environment [8]
same [37]

Behavior Based

Disclose the attributes of the . Suffers from fuzzy API calls [46]

API Call Analysis . « Cannot detect logic bomhs and evasion
malware in the same class [16] .
techniques

Capable of detecting trigger + Suffers from state space explosion problem
Symbolic Execution sources, time bombs, and =+ Takes more time with respect to signature
evasion techniques based detection techniques

10

CHAPTER 3

METHODOLOGY

In this thesis, we developed a methodology to analyze suspicious binary programs
written for the Windows platform. In addition, we designed a toolset to show the
feasibility of our methodology. We aim to detect whether a given program may generate
a malicious sequence of function calls using dynamic symbolic execution. Our tool takes
suspicious and malicious function call sequences and examines the binary program
whether such sequence is possible. The tool generates evidence showing what data lead
the program to produce such a malicious execution sequence. Our approach consists of 8
steps and we provide the details in the following sections of this chapter. We show an
illustrative summary of our work in Figure 1.

In order to make the function calls traceable and facilitate the reachability of different
execution paths of the binary program, we use a decompiler and extract the functions
called from the Windows API. Then, our model generator module creates models for
these functions where they emit execution information such as their function names and
their arguments. Next, we combine function models and create a DLL file. After that, an
injector application injects the DLL file into the binary program. So, the program calls
the modeled functions instead of calling actual Windows API functions.

To initiate every API function call combination in the program, we need to traverse all
the possible execution paths. Therefore; we used a symbolic execution framework called
S2E to run the program symbolically. It invokes all possible function call combinations
along the paths of the binary program. At this point, function models facilitate the
symbolic execution as they cost less than actual API functions. Before the execution, we
also set the execution environment and determine a time-bound for the analysis; so that
our analysis does not suffer from the state-space explosion and endless consumption of
the resources. While the framework is running every possible path of the program, it
calls our modeled functions in the execution order. Then, our analysis parser module

11

collects execution information, such as function names and their arguments, and
processes it to generate the program’s function call sequence.

After that, the log analyzer compares the call sequence with the malicious sequences
given at the beginning of the analysis. As a result, it warns the user if it finds a
correspondence between these sequences and shows the evidences of its findings.

A
Binary Program - Decompiler # Windows API Calls ‘ Function Models

Program with
Function Models

S2E '
Configuration Symbolic
Execution Output

LRSI e—
l Processing

Suspicious Call
Sequence

Malicious API
Call Sequences

Sequence —

e m

Sequence

Figure 1 : Summary of Proposed Methodology

3.1 Input Gathering

Our system takes four inputs. Namely, a binary program, a malicious function call
sequence, a detail level, and a configuration. The program is a 32-bit Windows
executable that we suspect its behavior of hiding malicious activities.

The second input is the malicious function call sequence specification written in a file.
Users either use their expert knowledge or the latest developments in the API call
sequence analysis literature to create the content of this file. Each line of the file

12

corresponds to one call sequence and each of them starts with a sequence name. A
sample call sequence is shown in Figure 2. In the figure, there are two sequences namely
IATHooking and DLLInjection [16]. After the sequence name, lines continue with
comma symbols and function names. Precedence between the functions determines the
order in the sequence. For example, the second line of the figure means the following:
DLLInjection sequence starts with OpenProcess function followed by VirtualAllocEx
function. Then, the WriteProcessMemory function comes and the sequence ends with
the CreateRemoteThread function. A pipe symbol “” in a sequence indicates function
variation. For instance, the LoadLibrary function in the IATHooking sequence can be
followed by either strcmp, strncmp, _stricmp or strnicmp function.

The third input is the detail level. It determines the analysis detail by deciding the return
values of the modeled functions to be concrete or symbolic values. Symbolic values will
make the symbolic engine to try different execution paths while concrete values make
the engine choose one of the possible executions. Concrete return values make the
analysis less detailed. As the number of the symbolic return values increases, the
symbolic execution framework becomes more likely to discover new paths; hence, it
discovers hidden sequences within the binary program. Our system takes the detail level
as a command line input in the form of a free text. We use this free text to specify the
function names that we want to return symbolic values or write ‘all’ to represent all
function names. Later, function models interpret this free text to decide their return
value.

IATHooking, LoadLibrary,strcmp|strncmp|_stricmp|strnicmp,VirtualProject
DLLInjection,OpenProcess,VirtualAllocEx,WriteProcessHemory,CreateRemoteThread

Figure 2 : Sample Malicious Function Call Sequence

3.2 Extracting Dynamically Linked Functions

In order to track the function call sequence of the binary program; first, we need to
determine the function calls made by the program. To demonstrate the feasibility of our
approach, we narrow the scope of our work to Windows API functions. Since these
functions are linked dynamically, we further narrowed our analysis to dynamically
linked functions.

We used a decompiler, Retargetable Decompiler (RetDec) [54], to extract all
dynamically linked Windows API functions in the binary program. Although this tool is
known for its decompiling capabilities, we used it to analyze dynamically linked
functions because it supports cross-platform analysis and provides an insight for the
statically linked functions. Despite our analysis does not cover statically linked
functions, we aim to add this feature to analyze the whole program in the future. An
alternative to decompiler would be Microsoft’s dumpbin.exe; however, it only runs on

13

Windows machines and does not capture the statically linked functions. Consequently,
we decided to use a tool that both meets our needs and supports our vision for the future.
A sample output of the decompiler is in Figure 3.

i
i/
i/
i/

i/

i/
i/
i/
i/
i/
i/

i/
i/
i/
i/

i/
i/
i/
i/
i/
i/
i/
i/

i/

i/

i/

——————————————— Statically Linked Functions -----——————-——-

int32 © 3f 3f 2 40 YAPARI 40 Z(int32 t al);

int32 t 3f 3f G non rtti object 40 std 40 40 UAEPANI 40 Z({int32 t al):
int32 t 3f 3f G Ref count base 40 std 40 40 UAEPAXT 40 Z(int32 t al):
int32 t 40 security check cookie 40 4 (wvoid);

——————————————— Dynamically Linked Functions ----———————-———-

int32 t ? Xbad alloc@std@BYAXXZ (void):

int32 t 3f Xinvalid argument 20 std 40 40 YAXPBD 40 Z(char * al);
int32 t 3f Xlength error 40 std 40 40 YAXPBED 40 Z(char * al):
int32 t 3f Xout of range 40 std 40 40 YAXPBD 40 Z(char * al);
_ACRTIMP ALT FILE * cdecl acrt _iob func(unsigned):

int _cdecl stdio common vfprintf(In unsigned _ inté4 Options,
_Imout FILE * Stream,

_In z char const * Format,

In opt locale t Locale, wa_list Arglist);

int * cdecl errno(void):
void cdecl invalid parameter noinfo noreturn(void):

BOOL CloseHandle(_In_ HANDLE hObject);
HANDLE CreateRemoteThread(In_ HANDLE hProcess,

In opt LPSECURITY ATTRIBUTES lpThreadAttributes,

Im SIZE T dwStackSize, In LPTHREAD START ROUTINE lpStartAddress,
In opt LPVOID lpParameter,

_In DWORD dwCreationFlags,

_Out_opt_ LPDWORD 1pThreadId):
vold exit(int status);
volid free(void * ptr):;

int getchar (void);
HMODULE GetModuleHandleW(In opt_ LPCWSTR lpModuleName):

FARPROC GetProchAddress(_In HMODULE hModule, In_ LPCSTR lpProcName):
void * memcpy(void * restrict dest, const void * restrict srec, size t n):;
void * memmove (void * dest, const void * src, size t n):
HANDLE CpenProcess(_In DWORD dwDesiredRccess,

In BOOL bInheritHandle, In DWORD dwProcessId);

LEVOID VirtualAllocEx({ In HANDLE hProcess, In opt_ LPVOID lpAddress,
_Im SIZE T dwSize, _In_ DWORD flAllocationType, _In DWORD flProtect);
long int westol (const wchar t * restrict nptr,

wchar t ** restrict endptr, int base);

BOOL WriteProcessMemory(In HANDLE hProcess, In LPVOID lpBaseAddress,
LPCVOID lpBuffer, In SIZE T nSize,

_Out_opt_ SIZE T * lpNumberOfBytesWritten):

Figure 3 : Sample Decompiler Output

14

3.3 Automatic Function Model Generation

In this step, we process the decompiler’s output and create models for the Windows API
functions called by the binary program. To automate this process, we developed a model
generator as a module in Python.

Since we decided to work with dynamically linked functions, we need to extract their
declarations from the output file of the decompiler. So, the model generator first collects
all of them into a file. Then for each function declaration, it creates method bodies. A
method body in a function model does not perform the actual responsibility of that
function nor calls any of the Windows functions. Instead, it emits the function name and
values of its arguments and then returns either a symbolic or predetermined value
depending on the analysis level. We give a sample function model in Figure 4.

static HANDLE WINAPI OpenThread_Model {DWORD dwDesiredfccess, BOOL bInheritHandle,
DWORD dwThreadId)

1
Message("OpenThread Modelin");
Message (" [OpenThread Model|evidence] {[Desirediccess: %d,\
Does it inherit handle?(®:false/l:true): &d,\
Thread Id: %d\n",dwDesiredAccess,bInheritHandle,dwThreadId);
HANDLE retWal = NULL;
if ((detail.compare("all") == 8) || (detail.find("OpenThread_Modzl")} = -1})
{
S2EMakeSymbolic(&retVal, sizeof(retVal), "OpenThread_Model™);
else
{
return retVal;
}

Figure 4 : Sample Function Model

A model of a function, when replaced with the corresponding actual function, will
provide an execution trace. A trace, in our methodology, is an execution log showing the
functions called in the order they are made. When executing the program in question, a
trace is built by using messages showing the name of the functions. For example, line 4
in Figure 4 shows a sample log message. Whenever the symbolic execution engine
invokes the model function, it emits the function name.

In addition to execution trace, a function model provides information to support the
result of the call sequence analysis. We call function evidence to this information. Each

15

model includes log messages, function evidences, to display their arguments. Upon
invocation, models emit their argument names and values in a human-readable format.
Since our generator does not support human readability, we manually edit the evidences
to increase their understandability. To illustrate, lines 5, 6, and 7 in Figure 4 show
sample evidence. Later, the log analyzer module displays evidences to support the
analysis result. We explain the usage of evidences in section 3.7.

Moreover, the generated function bodies have return values coherent with the function
declaration. Although there are infinitely many possibilities, we wanted to work with a
constraint set of simple return values. As a result, we determined to use the values given
in Table 2. These are not the final values that are supposed to fit all cases; instead, we
use them to show the feasibility of our approach. Users of the system may alter these
values to enhance this table according to the future need of the analysis.

Besides concrete return values, our model generator is also capable of producing
function bodies returning symbolic values. In Figure 4, line 12 shows this capability.
The symbolic values facilitate the path exploration in the symbolic execution. Even
though the model generator is capable of returning all the values symbolically, we
decided to use it with caution in order not to have a state-space explosion problem
during symbolic execution. Nevertheless, our approach is not limited to our choice of
implementation. It can be extended to meet different needs. For example, if a detailed
analysis is required, other functions may also return symbolic values instead of concrete
ones. Line 10 of Figure 4 shows a sample conditional statement for the management of
return values. Modifying a file content extracted in Section 3.4, users may decide the
return values of the models to either symbolic or concrete.

Table 2: Concrete Return Types and Their Values

BOOL TRUE int* NULL
DWORD 1 int32_t 1
FARPROC NULL long 1
FILE* NULL LPVOID NULL
HANDLE NULL SIZE_T 1
HMODULE NULL UINT 1
int 1 void* NULL

16

3.4 Functions Replacement

In the previous step, the model generator created function models emitting their name,
arguments, and argument values; as well as, returning concrete or symbolic values
depending on the detail level. In this step, we used a technique called DLL injection to
replace actual functions of the binary program with the function models so that function
calls of the binary program become traceable.

As the technique suggests, we create a DLL file and put our function models inside.
Then, we use an injector module to replace actual API functions with the function
models. Next, the injector application runs the binary program in a suspended state and
injects the DLL file. After the injection, it resumes the execution of the binary program.

341 DLL Creation

In order to put our function models inside a DLL file, we used EasyHook library [55] for
its simplicity. First, we changed our model names so that they do not exactly match with
the real API functions in order not to have any conflicts. Next, for every function model,
we need to match the name of the function with its actual Windows API equivalent
along with the corresponding library name. In order to find the library name, we write a
library finder module in Python to automate this process. It visits MSDN pages using
Selenium [56], a suite of tools for automating web browsers, and matches Windows API
functions with their libraries. Then, we provide this match information to the EasyHook
via its API. In the end, we get a DLL file ready to inject where we use injected function
models’ outputs to trace the call sequence of the binary program.

In this step, we add a feature inside the DLL file that facilitates the change of model
behaviors. Although we use this feature to decide whether function models return
concrete or symbolic values, it also provides a capability to switch between different
concrete values. For this purpose, we used a file to configure models from the outside;
so that, we can change their behavior by only editing a file content. As a result, we
eliminate the heavy weight of recompiling all the models over and over again if we need
a simple change in the model. We show the code snippet that we read external input in
Figure 5.

17

ifstream detailFile("detaillevel.txt");

while {getline(detailFile, detail))

{
Message(detail.c_str()).

}

detailFile.closze();

Figure 5 : Detail Level Snippet

We focused on using this feature to change the detail level of our analysis. To do so, we
used a file called detailLevel.txt containing data for the detail level. Later, the DLL file
reads detailLevel.txt, and models either return symbolic or concrete values according to
our choice of detail. Please also note that, while creating the models, we modeled our
functions so that they support this feature. Figure 4 shows the detail level information
inside a function model.

3.4.2 DLL Injector Application

In the previous step, we created a DLL file having instructions to replace the real
Windows API functions with our models. In order to complete function hooking, we
need to insert the DLL file into the binary program. As in the previous step, we used
EasyHook’s API to facilitate the DLL injection and we implemented an injector
application that inserts the DLL file. Our injector starts the binary program in a
suspended state so that the program waits without calling any functions. Later, our
injector inserts the DLL file to replace actual functions with the model functions. Then,
it wakes up the program and the program starts to run. In other words, our injector
behaves like malware as it runs another program after changing its behavior. This
behavior allowed us to insert our model functions.

In addition to the injection, our injector takes command-line arguments to decide
whether the user asks for a detailed analysis or not. In other words, our injector module
supports the feature that we use to change the model behavior without recompiling the
model codes. After the injector takes the command line argument, it creates the
detailLevel.txt containing the command line value. Then, the DLL file read this file to
capture detail level.

18

3.5 Running Symbolic Execution

In order to trigger all the function calls in the binary program, we need to traverse all
valid execution paths one by one. For this purpose, we used a symbolic execution
platform called S2E. Among other symbolic execution platforms, we chose S2E since it
runs on binary programs, supports Linux and Windows platforms, and provides detailed
documentation. Though our analysis does not cover Linux binaries, we also aim to
support Linux systems in the future.

Before we run the symbolic execution, we configure S2E’s environment. First, we
specify the starting point of the execution since we do not want S2E to analyze the
binary program as it is. Instead, we make S2E to run our injector application, then, the
application runs the binary program after it replaces API functions with the modeled
ones. Next, we disable some of the default plugins brought by the S2E in order not to
slow our analysis down [57].

After the configuration, we run S2E who runs the injector which executes the binary
program that is linked to our function models, symbolically. During the symbolic
execution, S2E traverses the program branches according to detail level, i.e. using
concrete or symbolic return values.

If all function models return symbolic values, S2E traverses all the branches. Otherwise,
it traverses only a subset of the total branches with respect to the function return value.
When S2E visits a function model in a branch, the model creates an execution trace
without calling any other Windows API functions. S2E stops after it visits all the
possible branches or the user terminates the execution.

S2E helped our analysis by providing an execution environment where we can collect all
function traces to extract function call sequences of the binary program. Since it runs the
program symbolically, it traverses all possible branches and invokes the function models
in all possible combinations. When a function model returns a symbolic value, S2E
marks the memory area of the value as symbolic. Whenever this memory area is used in
a statement, S2E creates, if not exists, a path condition by keeping the symbolic value as
unknown. If the statement is a control statement, such as an if statement or a for loop, it
forks a new execution branch and duplicates the path condition and updates with the
new condition.

For example, in Figure 6 GetRandomInteger function returns a symbolic value and this
value is used in conditional statements <A> and . When S2E reaches the statement
in <A> it forks the branch execution and duplicates the current path condition which is
empty right now. Then, it appends the path condition of the left branch with the
mathematical equation that satisfies the condition. If the condition is mathematically
correct, it continues to execute the branch. Otherwise, it stops the execution. Similarly,
S2E appends the right branch’s path condition with the unsatisfying condition and

19

checks the satisfiability of the equation. When S2E reaches statement , it forks the
branch execution again, duplicates the current path condition, and appends them with
corresponding conditions.

int a_sym = GetRandomInteger();

if{a_sym < 3)<h>»
ENCRYPT_DATA();

else

{

if{a_sym == 8) Fa
(a_sy)] a_sym < 3 false

DECRYPT_DATA();
glse l \/ l

DDOS_ATTACK(Y;

} (a_sym »= 2) && (a_sym == 8) (a_sym »>= 3) &% (a_sym != 8)

Figure 6 : Sample Path Condition Generation

As a result, whenever a function model returns a symbolic value, S2E runs symbolic
execution to discover all possible branches. So, it makes our toolset capable of
discovering even the hidden execution branches where it uses their function traces to
extract hidden call sequences. In other words, if all function models return symbolic
values, our methodology discovers all possible call sequences. However, to avoid the
state space explosion problem, we do not recommend all functions to return symbolic
values. Users may select certain functions to return desired concrete values using detail
level input after seeing the exact values of symbolic variables. So, users may keep the
balance between path discovery and symbolic execution performance.

After symbolic execution, our analysis parser module processes the execution log of S2E
including the trace generated during the dynamic symbolic execution. This module
extracts three kinds of information that we are interested in the execution output.

The first one is fork information. Whenever S2E reaches a control statement, it forks
another execution path when the statement depends on a symbolic value and logs it to
the output. Although we trigger forking via our function models to discover hidden
program branches, it complicates the traceability of the execution. Therefore, it is
essential to use fork information to trace S2E output in the correct order; so, our analysis
parser extracts this information to make sense of other output information.

The second one is function traces. Every model emits its function trace whenever S2E
invokes it. Our parser extract function traces to create function call sequences of the
binary application. However, function traces are not meaningful by themselves since

20

S2E does not invoke functions in branch order. Therefore, our parser uses fork
information to put function traces in order and creates the function call sequences.

The third one is the function evidences. Even though they are generated in a similar way
with function traces, their form differs from them as we show in Figure 4. Therefore, we
handled them separately.

Our analysis parser starts with discarding all the unnecessary data from the output of
S2E. That is, it discards all the information other than fork, function traces and function
evidences. Afterward, it uses fork information to put function traces in order and it
achieves complete function call sequences for different program paths. Then, it also puts
function evidences in order and finishes its job.

3.6 Analyzing the Call Sequence

In order to detect malicious sequences in the binary program, we create a module using
Python called log analyzer. Log analyzer reads each call sequence of the binary
program, extracted by analysis parser, and compares it with respect to the malicious
function sequence, provided by the user. The log analyzer tries to match each malicious
call sequence function in the correct order inside the program call sequence using a
regular expression match. Meanwhile, in order to eliminate a sequence hiding attempt,
our analyzer neglects irrelevant function calls inside the program call sequence while it
is looking for the next malicious function.

OpenProcess, VirtualAllocEx, GetCommandlLineh, GetFileSize, WriteProcessMemory, CreateRemoteThread

Figure 7 : Sample Program Call Sequence

For example, in order to satisfy the requirement of the DLLInjection sequence, shown in
Figure 2, the program binary should have a call sequence containing all the functions of
the malicious sequence in the given order. Recall that the sequence is specified as
DLLInjection, OpenProcess, VirtualAllocEx, WriteProcessMemory, CreateRemoteThread
where the first element is the name of the attack. However, a call sequence of the binary
program may be in the form shown in Figure 7. In this case, our algorithm starts by
searching for the OpenProcess function inside the call sequence of the binary program.
If the algorithm finds a match, it continues to search for the next function,
VirtualAllocEx. After matching the VirtualAllocEx function, the log analyzer tries to
find the next one WriteProcessMemory. However, the call sequence of the binary
program contains GetCommandLineA and GetFileSize functions before the
WriteProcessMemory function. In such a case, our algorithm discards these unexpected
functions as they may be put in order to hide the malicious sequence. Also, there would

21

be a repetition in the call sequence of the binary program. For example, instead of the
GetCommandLineA function, there could be another Virtual AllocEx function. Then, our
algorithm also ignores the repetition as it searches for the WriteProcessMemory
function. Finally, our algorithm finds the match for the CreateRemoteThread function
inside the call sequence. When our log analyzer matches all the functions inside the
malicious sequence input, it warns the user and stops the analysis. In the result, it shows
the name of the matching sequence, DLLInjection.

In some cases, the malicious call sequence input may contain pipe symbols ‘|’ to indicate
function variance. Whenever our log analyzer module encounters this symbol, it accepts
the function either on the left or right side of the pipe symbol as a match. For example, if
the malicious call sequence input is given as in Figure 8, our log analyzer module again
warns the user if it matches with the function GetFileSize instead of the
WriteProcessMemory function.

DLLInjection,OpenProcess,VirtualdllocEx,GetFileSize|WriteProcessMemory,CreateRemoteThread

Figure 8 : A Sample Malicious Call Sequence with a Pipe Symbol

3.7 Displaying Evidences

In order to support the results of the call sequence analysis, our log analyzer module also
shows function evidences for the program paths containing malicious function
sequences. So, even though our tool set produces a false-positive result, it supports the
decision by displaying evidences. In this way, the user avoids making false decisions
since evidences consolidate the analysis result by bringing the power of manual
investigation. Furthermore, evidences accelerate early iterations of the analysis. That is,
it guides users to decide whether they need to increase the detail level of the analysis or
not.

Figure 9 shows a sample program for displaying evidences and a sample for generated
function models are shown in Figure 10. The program in Figure 9 starts with a variable
declaration of dayOfMonth in line 3. Then, the program calls Function_A with the
parameter 60000 and uses dayOfMonth variable to call Function_B. Next, if Function_B
sets the variable value to 15, the program calls Function C with a string value “C:/”
otherwise program ends with status value 0.

22

int main()

1
int day0fMonth;
Function A(68828);
Function B(&dayO0fMonth);
if{day0fMonth == 15}

Function C{"C:/");

return @;

1

Figure 9 : Sample Program for Displaying Evidences

static void Function_A Model(_ In_ int millis)

i
Message("Function_Akn");
Message("[Function_aA|evidence] {[Wait for %d (ms)]}in",millis);
return;
}
static void Function_B_Model(_Out_ int* dayOfMonth}
1
Message("Function_B\n");
int retVal = 1;
if(detail.compare("Function_B" == &)){
52EMakeSymbolic (&day0fMonth, sizeof(int), "Function_B");
telsed
*dayOfMonth = retval;
}
return;
}

static int Function_C_Model(_In_ char* dir)

1
Message("Function Chn");
Message("[Function C|evidence] {[Deleting directory %s]}\n",dir);

int retval = 1;

if(detail.compare("Function C" == &)){
S52EMakeSymbolic(&day0fMonth, sizeof(int), "Functicn C");

else]

}

return retVal;

}

Figure 10 : Sample Function Models for Displaying Evidences

23

During the analysis of the sample program shown in Figure 9, assume that only
Function_B is configured to return symbolic value. The evidence output generated for
this program is shown in Figure 11. In the output, we display 2 types of evidences:
function evidences and execution evidences. The function evidences start after the
EVIDENCES :: tag and their content consist of the function names encountered along
the execution path and their input arguments. Our analyzer module presents the function
evidences in human-readable form as they are emitted by the function models. Execution
evidences are the rest of the data shown in Figure 11 which our log analyzer combines in
the end of the analysis.

The first line of Figure 11 shows the analyzed call sequence name. Then, the log
analyzer displays a warning message by giving the encountered malicious input
sequence. Next, our log analyzer shows the complete malicious sequence. In the
EVIDENCES:: section, the log analyzer displays the function evidences as they are
created by the function models. Each line starts with the name of the function model
given in the square brackets. Then, evidence information follows in curly brackets. For
example, the first function evidence indicates that the function model of Function_A is
called with a value that suspends the execution by 60000 milliseconds. Similarly, second
function evidence indicates that the function model of Function_C deletes the directory
“C./.

After the TestCaseGenerator tag, our log analyzer displays symbolic return values of the
model functions in little-endian byte order and ASCII formats. The meaning of the byte
fields strongly depends on the function's return type. In our sample, Function_B returns
an integer value symbolically with the length of 4 bytes. The value is set to 15 in
decimal. Detailed usage of a symbolic return value is explained in section 4.2.2.

Analyzing the call seguence ending with [State X]
WARNING :: Seqg_XYZ is encountered.

SEQUENCE :: Seg_XYZ, Function_ B | Function_ C
EVIDENCES ::

[Function_A|evidence] {[Wait for 60860 (ms)]}

[Function C|evidence] {[Deleting directory C:/]}

TestlaseGenerator:
Function B = {8x8, Bx8, 8x8, B@xel}; (string) "...."

Figure 11 : Sample Evidence Output

24

3.8 Model Refining

After examining the evidences, users may want to perform future analysis on the binary
program to achieve better results. In this case, our methodology supports users to re-
analyze the program using different settings. For example, if the analysis stops after
executing a certain function, users may modify the default return values shown in Table
2 or they may modify the detail level of the analysis to use symbolic return values rather
than the concrete ones. So, our methodology allows users to analyze the binary program
iteratively to achieve better results by providing a configurable toolset.

25

26

CHAPTER 4

EXPERIMENTS

In this chapter, we show our experimental work on our methodology. First, we present
the experimental setup where we conduct our experiments. Next, we show the
effectiveness of our methodology by analyzing a synthetic and an actual malware.

4.1 Experimental Setup

We evaluated our methodology on a virtual machine running on a desktop with a 3.30
GHz Intel(R) Core(TM) i5-6600 CPU and 32GB of RAM. The virtual machine had
16GB RAM and was running Ubuntu 20.04.1. Besides, the virtual machine performed
symbolic execution on S2E’s QEMU environment running Windows 10 Pro 1909
x86_64.

In order to evaluate our methodology, we implemented our modules in a combination of
C++ and Python. We developed 6 modules namely: model generator, library finder,
analysis parser, log analyzer, a DLL file having function models, and injector
application. We wrote the DLL file and injector modules in C++ and they are around
2500 lines of code. On the other hand, we implement the rest of the modules in Python
and they consist of about 600 lines of code.

27

4.2 Experiment 1: Synthetic Malware

4.2.1 Synthetic Malware

In order to show the capabilities of our methodology, wrote a synthetic malware and
analyzed it. Our malware uses two techniques to hide its malicious activity: system time
discovery [58] and sandbox evasion [59]. Then, it performs DLL injection using a DLL
file we wrote.

Malware such as Friday 13" [60], Chernobyl [61], and FatDuke [62] use system time
discovery techniques to prevent detection by delaying its malicious behavior until a
specified time which is also called a time-bomb. In our malware, we also used this
technique to show that our methodology can reveal hidden malware behavior, hidden
program branches, and analyze all possible call sequences to detect a malicious sequence
in program binary. Figure 12 shows the corresponding code segment. We programmed
our malware so that it performs its malicious activity on 10" of November 2040. In
Figure 12, detecting a time bomb appears to be a straightforward process since we can
access the source code of the malware. However, it is a highly complex task to detect
such a code segment in a binary program using obfuscation methods such as packaging
and encryption.

We also add a system check technique to perform sandbox evasion [59]. It is a hiding
technique that malware such as Astaroth, Evilnum, MegaCortex, and RogueRobin [59]
uses to conceal its malicious behavior if the malware infers that it is under analysis. The
malware checks system artifacts associated with the sandbox environment, such as
device names, available memory, and CPU core, to evade it. So, we put a CPU core
count control in our malware to show that our methodology can collect the call
sequences hidden behind sandbox evasion. Figure 13 shows our malware’s code snippet
performing sandbox evasion. In the code, we allowed malware to activate if the target
device has four or more CPU cores.

After using system time discovery and sandbox evasion techniques our synthetic
malware performs its malicious behavior, process injection. Process injection is the
technique that malware injects arbitrary code into a live separate process in order to
make the live process perform the malicious activity. So, malware evades from defense
mechanisms, such as anti-viruses, and access privileges of the live process. In order to
show that our methodology is capable of detecting a malware technique that a signature-
based system cannot discover, we used it in our experiments.

28

_SYSTEMTIME 1Time;
GetlocalTime(&lTime);
if (1Time.wYear == 284a)
if (1Time.wMonth == 11)
if (1Time.wDay == 18)

{void)a;

Figure 12 : Time Bomb Code Snippet

SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
int numCPU = sysinfo.dwNumberOfProcessors;
if (numCPU >= 4)

(void)e;
else

exit(-1};

Figure 13 : Sandbox Evasion Code Snippet

According to Mitre ATT&CK [63] process injection has 11 sub-techniques and we used
the dynamic-link library (DLL) injection technique in our malware [64]. In this
technique, the malware performs Windows API calls to inject a DLL file into a separate
live process. First, the malware injects the path of the DLL in the address space of the
process. Then, malware invokes a new thread to load the DLL and the new thread runs
the code, the malicious activity, inside the DLL. As a result, the process performs the
malicious activity with its privileges and malware stays hidden. As we already know the
malicious call sequence of a DLL injection technique, shown in Figure 2, we decided to
use it in our experiment and we used the data in Figure 2 as input to our experiment. The
source code of our malware is given in APPENDIX A.

29

4.2.2 Experimentl and Results

In the analysis, the decompiler found 15 dynamically linked functions. However, our
toolset only modeled 9 of them as our methodology is only interested in the functions
that belong to Windows API and these functions cover 100% of the Windows API
functions used in the binary program. Table 3 shows dynamically linked functions
extracted by the decompiler. Then, our model generator automatically creates models for
the chosen functions. In total, around 150 lines of C++ code are created automatically.
Even though our decompiler did not extract it, we modeled the ExitProcess function of
the Windows API to increase the traceability of our call sequences.

To avoid state space explosion, we make all function models return concrete values at
the beginning of the analysis. However, when we analyzed the function call sequences,
we realized that the malware did not call any function after certain ones. For example
GetLocalTime, GetSysteminfo and GetModuleHandleW functions were the last
functions that we detected in call sequences. Therefore, we used expert opinion to
change the default return values we show in Table 2. Then, we regenerate the models
and run the analysis again to discover new paths. Furthermore, we modified the detail
level of the analysis so that the functions returning simple C structs, such as
GetLocalTime and GetSystemInfo, return symbolic values.

Table 3: Synthetic Malware Dynamically Linked Functions

N Ll =

GetSystemlInfo
CloseHandle Yes Memcpy No
CreateRemoteThread Yes memmove No
exit No OpenProcess Yes
free No Virtual AllocEx Yes
GetLocalTime Yes wcstol No
GetModuleHandleW Yes WriteProcessMemory Yes

GetProcAddress Yes

Depending on the complexity of the binary program and the number of symbolic
variables, the symbolic execution may take long hours. In order to avoid state space
explosion and see the effects of modifications as soon as possible, such as detail level,
we put a time limit for the symbolic execution. So, the symbolic execution engine run

30

until either execution finishes or the timer for execution expires. During the experiment,
we saw that approximately 10 minutes of execution provide enough information to
conclude the analysis.

Our log analyzer extracted the malicious call sequence given in Figure 14. In this figure,
each line corresponds to a model invocation. The first element in a line shows the
elapsed time, in seconds since the symbolic execution started. The second element
shows the state number during the symbolic execution and the third one shows the
invoked function model name.

162 [State @] GetLocalTime Model

182 [state 3] GetSystemInfo_ Model

190 [State 4] OpenProcess_Model

190 [State 4] GetModuleHandlel_Model
190 [State 4] GetProcAddress Model

190 [State 4] virtualAllocEx_Model

190 [State 4] WriteProcessMemory Model
190 [State 4] CreateRemoteThread_Model
190 [State 4] CloseHandle_ Model

Figure 14 : Synthetic Malware Malicious Call Sequence

State @
_SYSTEMTIME 1Time;
GetLocalTime(&1Time); GetlLocalTime
if (1Time.wYear == 2048) <A>
if (1Time.wMonth == 11)
if (1Time.wDay == 18) <C»
(void)e;

else
. . State 2
exit(-1); Year!=20848
else

exit(-1);

else
exit(-1); Monthioil State 3
GetsystemInfo

State 4

State 1

SYSTEM_INFO sysinfo; Day!=18
GetSystemInfo(&sysinfo);
int numCPU = sysinfo.dwNumberOfProcessors;
if (numCPU >= 4) <D>

(void)e; numCPU<4
else

exit(-1);

Figure 15 : Symbolic Execution States of Synthetic Malware

31

In Figure 15, we showed the symbolic state creation of our malware. We mark each
decision point with < and > signs in the code and put a diamond shape for its program
flow performed by the symbolic execution engine. Our log analyzer module creates the
first two lines of the call sequence, in Figure 14, according to the flow we show in
Figure 15. Then, it extracts the rest of the call sequence since the symbolic engine calls
our model functions according to our malware’s activity we show in APPENDIX A.

To detect the DLLInjection attack, we used a malicious call sequence input in the
literature [16] where we show in Figure 2. Then, our log analyzer module detected the
malicious sequence and generated the results in Figure 16. The first line in the result
shows the analysis step. In this case, our log analyzer module analyzes the call sequence
in Figure 14. Then, it prints a warning message that DLLInjection sequence is detected.
Next, it prints the malicious sequence of DLLInjection and shows the evidences.

Analyzing the call sequence ending with [State 4]
WARNING :: DLLInjection is encountered.

SEQUENCE :: DLLInjection, OpenProcess, VirtualAllocEx,
WriteProcessMemory, CreateRemoteThread

EVIDENCES ::
[OpenProcess|evidence] {[Open process with ID: 123]}
[GetModuleHandlel| evidence] {[Get the handle for the module: ‘'kernel32.d11°]}
[GetProcAddress|evidence] {[Retrieve the function: ‘Loadlibraryd’ from a DLL file]}
[VirtualAllocEx|evidence] {[Allocation size: 13, allocation type: Bx3009, protections: 8x4]}
[WriteProcessMemory|evidence] {[Data written to the process memory:

Bxbd Bxbl Bxbc BxbY Bx63 Bx69 Bxbf @x75 Bx73 Bx2e Bxbd Bxbc Bxbc

in ASCII format "malicious.dll"]}
TestCaseGenerator:

v8 _LocalTime_8 = {8xf8, 8x7, Oxb, 8xB, 0x08, 8xA, Oxa,

BxB, Ox@, @x@, Ox0, OxA, Ox0, 6x@, Ox8, Bx0}; (string) ".... ...t

vl SystemInfo 1 = {Bx8, OxB8, 8x8, 6xB8, 6xB, 6xB, OxB, BxB, Bx0, Ox0, Bx0,

9x0, Bx0, Ox0, OxB, Ox0, 9x0, 0x0, Ox0, OxD, Ox80, Ox0, Ox0, Ox8, 0x0,

Bx8, OxB, 6x@, Bx0, BxA, Ox0, 6x@, Ox0, 6x0, Ox0, OxO};

G 1 =0 T '

Figure 16 : Synthetic Malware Analysis Result

Our log analyzer displays the evidences after EVIDENCES tag of Figure 16. Each line
starting with square brackets shows evidence created by a function model and
corresponding evidence information is presented between the curly brackets. For
example, the GetModuleHandleW function created evidence for the requested access to
kernel32.dll module and the GetProcAddress function indicated the access request for
the LoadLibraryA function.

32

Moreover, our log analyzer displayed the symbolic return values of the function models
satisfying the program path that generates the call sequence in Figure 14. The return
types of the functions that return symbolic data are shown in Figure 17 and Figure 18. In
Figure 16, vO_LocalTime_0 represents the symbolic value of the GetLocal Time function
model and its C++ struct is shown in Figure 17. The figure suggests that the first 2 bytes
of the symbolic value, Oxf8 and O0x7, represent the wYear element of the
_SYSTEMTIME struct. These bytes denote the year 2040 in little-endian format.
Similarly, next 2 bytes, Oxb and 0x0, represents the wMonth element and it is 11 in
decimal. Finally, 4" byte pair in vO_LocalTime_0 represents the wDay field and it is 10
in decimal.

typedef struct SYSTEMTIME {
WORD wYear;
WORD wMonth;
WORD wDayOflhlesk;
WORD wDay,
WORD wHour;
WORD wMinute;
WORD wsecond;
WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME, *LPSYSTEMTIME;

Figure 17 : Return Struct of GetLocalTime Function [70]

typedef struct _SYSTEM_INFO {
union {
DWORD dwOemId;
struct {

WORD wProcessorfArchitecturs;
WORD wReserved;
} DUMMYSTRUCTNAME;
1 DUMMYUNIONNAME ;

DWORD dwPagesize;
LPVOID lpMinimumépplicationAddress;
LPVOID lpMaximumbpplicationAddress;
DWORD_PTR dwActiveProcessorMask;
DWORD dwHumber0fProcessors;
DWORD dwProcessorType;
DWORD dwallocationGranularity;
WORD wProcessorLevel;
WORD wProcessorRevision;

} SYSTEM_INFD, *LPSYSTEM INFO;

Figure 18 : Return Struct of GetSystemInfo Function [71]

33

vl SystemInfo_1 represents the symbolic value of GetSysteminfo function model and
we show its C++ struct in Figure 18. The bytes between 21 and 24™ represent the
dwNumberOfProcessors field of the struct. During the analysis, the symbolic engine
resolved the field as 128 in decimal which satisfies line 22 in Figure 15.

In the end, our methodology captured the DLL injection attack of our malware whose
cyclomatic complexity is 11. The symbolic execution of the malware took 190 seconds
with 2 symbolic return values and 4 program branches. Although our methodology
achieved 50% branch and 69% line coverages, the toolset executed 100% of the
Windows API functions invocations of the malware It is also possible to achieve 100%
branch coverage by using detail level input, but it is not a cost-effective solution as the
toolset already detect the malicious sequence with less symbolic variables.

After we examined the evidences, we concluded that our malware performs a DLL
injection attack on November 10, 2040 if it is not running on a virtual machine. During
the DLL injection attack, first, it opens a process whose ID is 123. Then, it retrieves the
kernel32 library and loads the LoadLibraryA function. Next, it allocates the process
memory for 13 bytes and inserts ‘malicious.dll’ text in the memory. Finally, it creates a
remote thread. This experiment shows the detection capability of our methodology with
respect to the malware using evasion techniques.

4.3 Experiment2: WannaCry

4.3.1 WannaCry Malware

In order to show that our methodology is also applicable to analyzing real-world
problems, we analyzed WannaCry ransomware. As of its first report in May 2017,
WannaCry has spread to more than 150 countries. It uses a Windows vulnerability,
MS17-010, to gain access to the systems and it encrypts user files. Then, it demands
Bitcoin worth $300 or $600 to decrypt the data [65]. Malware analysts identify the
malware as it is composed of two components namely, worm and encryption. The initial
component behaves as a package containing the encryption component. As a sandbox
avoidance mechanism, it tries to access a web page. If it connects to the page
successfully, it stops its malicious behavior. Otherwise, it extracts the encryption
component from its resource and executes it. After that, the encryption component
changes the file attributes in its directory and starts encryption [3] [66]. In this
experiment, we run our analysis on the encryption component.

In order to make sure that we analyze the correct malware component, we calculated
sha256 and md5 hashes of the malware. Then, we verified the calculated values using a
previous study [66] and a malware database [67]. The md5sum value is calculated as

34

84c82835a5d21bbcf75a61706d8ab549 and the sha256sum value is calculated as
ed01ebfbc9eb5hbeas45af4d01bf5f1071661840480439c6e5babe8e080e41aa.

4.3.2 Experiment2 and Results

In the analysis, the decompiler found more than 105 dynamically linked functions and
we are interested in 64 of them. Table 4 shows the chosen functions. Then, our model
generator automatically creates models for the chosen functions and generates around
1100 lines of C++ code automatically.

Next, to analyze behavior, we create a malicious call sequence, shown in Figure 19, by
using our previous experience in synthetic malware, explained 4.2. In this way, we set
our log analyzer module to create a warning if any one of the WriteProcessMemory,
LoadLibraryA, or GetProcAdress functions are invoked.

WannaCryAnalysis, WriteProcessMemory|Loadlibraryld|GetProcAddress

Figure 19 : Malicious Call Sequence Input of WannaCry Analysis

183 [State 8] GetStartupInfold_Model

183 [State 8] GetModuleHandle& Model
183 [State @] GetModuleFileNamed Model
133 [5tate @] GetComputerhamell Model
183 [State @] SetCurrentDirectoryA_Model
183 [State 8] RegCreateKeyl Model

183 [State 8] RegCreateKeyl Model

133 [State @] FindResourced Model

183 [State @] CreateProcessA_Model

183 [5tate @] WaitForSingleObject Model
183 [State @] TerminateProcess_Model
183 [State 8] GetExitCodeProcess_Model
133 [State @] CloseHandle Model

183 [State @] CloseHandle Model

183 [5tate @] CreateProcessA_Model

183 [State @] WaitForSingleObject Model
183 [State 8] TerminateProcess_Model
183 [State 8] GetExitCodeProcess_Model
183 [State @] CloseHandle Model

133 [5tate @] CloseHandle Model

183 [State @] LoadlLibraryA_Model

183 [State 8] GetProcAddress_Model

183 [State 8] GetProcAddress_Model

133 [State @] GetProcAddress Model

183 [State @] GetProcAddress_Model

183 [5tate @] GetProcAddress_Model

183 [State @] GetProcAddress_Model

Figure 20 : WannaCry Malicious Call Sequence
35

Table 4: Generated Function Models for WannaCry

CloseHandle
CloseServiceHandle
CopyFileA
CreateDirectoryA
CreateDirectoryW
CreateFileA
CreateProcessA
CreateServiceA
CryptReleaseContext
DeleteCriticalSection
EnterCriticalSection
FindResourceA
FreeLibrary
GetComputerNameW
GetCurrentDirectoryA
GetExitCodeProcess
GetFileAttributesA
GetFileAttributesw
GetFileSize
GetFileSizeEx
GetFullPathNameA
GetModuleFileNameA

GetModuleHandleA
GetProcAddress
GetProcessHeap
GetStartupInfoA
GetTempPathwW
GetWindowsDirectoryW
GlobalAlloc
GlobalFree

HeapAlloc

HeapFree
InitializeCriticalSection
IsBadReadPtr
LeaveCriticalSection
LoadLibraryA
LoadResource
LocalFileTimeToFileTime
LockResource
MultiByteToWideChar
OpenMutexA
OpenSCManagerA
OpensServiceA
ReadFile

36

RegCloseKey
RegCreateKeyW
RegQueryValueExA
RegSetValueExA
SetCurrentDirectoryA
SetCurrentDirectoryW
SetFileAttributeswW
SetFilePointer
SetFileTime
SetLastError
SizeofResource

Sleep

StartServiceA
SystemTimeToFileTime
TerminateProcess
VirtualAlloc
VirtualFree
VirtualProtect
WaitForSingleObject
WriteFile

Our log analyzer module discovered the call sequence shown in Figure 20. This
sequence has the malicious call sequence we specified in Figure 19 and our log analyzer
displayed evidences shown in Figure 21. Evidences show that, first, WannaCry gets the
handle for itself as it passes the NULL parameter to the GetModuleHandleA function
[68]. Then, it sets its current directory to its current directory and it creates a registry key
with the name WannaCryptOr under Software tab. Next, it hides all the files in its current
directory by using ‘attrib +h’ command [69] and waits approximately 30 minutes. After
it terminates an operation with a failure status, it grants full access to all the files in its
current directory and below using ‘icacls . /grant Everyone:F /T /C /Q', in directory’.
Then it waits again around 30 minutes and terminates the process with a fail status.
Lastly, it loads a library called ‘advapi32.dll’ and loads 6 functions responsible for
encryption.

Analyzing the call sequence ending with [State 8]
WARNING :: WannaCryAnalysis is encountered.
SEQUENCE :: WannaCryAnalysis, RegCreateKeyli|Loadlibraryd|GetProcAddress

EWIDENCES ::
[GetModuleHandled|evidence] {[Get module handle for (null)]}
[SetCurrentDirectoryd|evidence] {[Set current directory to ‘c:\s2e\malware.exe']}
[RegCreatekeyl|evidence] {[Create a registry key with name: 'Software‘\WanaCrypt@r-']}
[CreateProcessA|evidence] {[Create Process '(null)’, with command line:

‘attrib +h .7, in directory "(null)’]}
[WaitForSingleObject|evidence] {[Wait for 1783624 (ms)]}
[TerminateProcess|evidence] {[Terminate the process with the code: 4294967295]}
[CreateProcessA|evidence] {[Create Process ‘(null)’, with command line:

‘icacls . /fgrant Everyone:F /T /C /Q°, in directory “(null)"]}
[WaitForSingleObject|evidence] {[Wait for 1783624 (ms)]}
[TerminateProcess|evidence] {[Terminate the process with the code: 4294967295]}
[LoadlLibraryA|evidence] {[Load the Library: advapi32.dl1l1]}
[GetProcAddress|evidence] {[Retrieve the function: 'CryptAcquireContextd’ from a DLL file]}
[GetProcAddress|evidence] {[Retrieve the function: 'CryptImportKey' from a DLL file]}
[GetProcAddress|evidence] {[Retrieve the function: 'CryptDestroyKey® from a DLL file]}
[GetProcAddress|evidence] {[Retrieve the function: 'CryptEncrypt' from a DLL file]}
[GetProcAddress|evidence] {[Retrieve the function: 'CryptDecrypt' from a DLL file]}
[GetProcAddress|evidence] {[Retrieve the function: 'CryptGenKey' from a DLL file]}

Figure 21 : WannaCry Analysis Result

When we examined the evidences, we concluded that WannaCry performs suspicious
operations such as creating a registry key with an unusual name, hiding files, granting
open accessibility for everyone, and importing encryption functions. Even though all of
our function models return concrete values, our toolset invoked 25% of the function
models in a single symbolic execution run and generate meaningful evidences for the
malicious behavior. This shows the applicability of our methodology to a real-world
problem.

37

4.4 Discussion

In the synthetic malware experiment, our methodology detected DLLInjection attack
even though the malware uses evasion techniques, such as time discovery and sandbox
evasion, to hide its malicious activity. In this way, we showed the effectiveness of our
methodology with respect to the traditional behavioral and API analysis techniques. Our
toolset found 100% of the Windows API functions using the decompiler and modeled
these API functions using around 16 lines of C++ code per function model. As we used
our expert knowledge to choose two functions that return symbolic values, our
methodology captured the malicious call sequence even though the symbolic execution
achieved 50% branch coverage and 69% line coverage. Furthermore, the symbolic
execution invoked 100% of the modeled functions at least once. Also, as we chose the
rest of the functions to return concrete values, the symbolic execution step only took 190
seconds and did not suffer from the state-space explosion problem. In the end, our
toolset successfully found out that the synthetic malware attempts a DLL Injection attack
on November 10, 2040 to a process whose ID is 123 if the running device has 8 CPU
cores.

In the WannaCry experiment, we have shown that our methodology applies to a real-
world problem. Our toolset found 105 dynamically linked functions models. According
to [66], this number represents 91% of the total function imports. When we include the
encryption functions that our toolset extracted during the symbolic execution the
percentage rises to 97% although we only use concrete values during the analysis. Our
toolset modeled 56% of the imported functions as it only modeled the Windows API
functions. Then, generated 17 lines of C++ code per function model. As we only use
concrete values during the symbolic execution, our toolset did not experience any state-
space explosion problems and the symbolic execution took less than a second.
Furthermore, we achieved to invoke 25% of modeled functions only using concrete
values in a single symbolic execution by configuring the detail level input. In the end,
our toolset explicitly displayed the evidences that the usage of Windows commands,
such as attrib and icalcs, and the Windows API functions. Thus, it showed the users
whether the program they were analyzing was behaving in an unexpected way. Our
evidences also showed that, like the synthetic malware, WannaCry also uses time
functions to delay its execution. Even though it does not use a time bomb, it delays the
execution by an hour.

There studies, such as [4] and [16], using control flow diagrams and DNA squences to
show their performance for detecting API call sequences. However, this information is
insufficient to guide the user to better decisions. To the best of our knowledge, there are
no studies that show human-readable evidences for the user to improve their analysis
results and validate the decision made.

38

In summary, our methodology can detect malicious behavior behind time bombs and
sandbox evasion techniques by using a malicious call sequence and symbolic variables.
It is also applicable to a real-world problem even though we do have a sequence that is
given in the literature and using only concrete values.

Assumptions. In our methodology, we assume that:

Users have at least one known malicious API call sequence in advance to analyze
a binary program.

The malicious API call sequence does not commonly exist in benign software so
that our methodology does not produce false-positive results.

The binary program contains at least as many API calls as a malicious API call
sequence to perform a reasonable analysis.

The symbolic execution engine either calls the function models in a single
execution thread or provides state information so that function models’ execution
order can be extracted.

Function models are not forced to make actual Windows API calls so that the
symbolic execution platform does not dive into the depths of system calls which
may hinder symbolic execution performance.

Users utilize evidence information to improve function models so that the
symbolic execution platform does not suffer from state-space explosion
problems.

Constraints. Even though our methodology provides a general solution for malware
analysis, we create our toolset to show the feasibility of our approach and the toolset has
the following constraints:

It only analyzes 32-bit binary programs.
It only supports the analysis of binary programs for Windows.

It detects the malicious behavior only if the binary program contains a known
malicious API call sequence.

39

40

CHAPTER 5

CONCLUSION

In this thesis, we develop a methodology for detecting malicious behavior in a binary
program with API call sequence analysis using dynamic symbolic execution for the
Windows platform. Using our methodology, we implement an extensible toolset that
supports users to utilize the latest developments in the API call sequence literature. Also,
we present a configurable API function modeling approach to avoid the state-space
explosion problem of symbolic execution by enabling users to decide return values of
the function models to either concrete or symbolic using detail levels.

In order to show the effectiveness of our methodology, we analyzed a synthetic malware
performing DLL injection attack and a real-world malware called WannaCry. Our
toolset generated more than 1200 lines of C++ code and modeled 75 Windows API
functions for the analysis of these malware. In our experiments, we showed that our
approach of combining function models and dynamic symbolic execution is a feasible
way of detecting API call sequences of a given binary program. Also, we demonstrated
the capability of our toolset by detecting a DLL Injection attack even though it is hidden
behind obfuscation techniques such as time discovery and sandbox evasion. During the
experiments, we also showed that our function models provide observable evidences for
generating API call sequences to analyze a real-world problem. Our toolset successfully
discovered a call sequence of WannaCry ransomware and generate evidences for its
activities such as importing encryption functions, hiding files, granting file
accessibilities, and creating registry keys.

Limitations. So far, our toolset is only capable of analyzing 32 bit Windows binary
programs. Also, it does not have the capability of analyzing statically linked functions.
Therefore, its function models are only limited to dynamically linked functions. In order
to avoid state space explosion, our models support concrete return values. However,
using concrete values may hinder the capability of detecting hidden branches.
Moreover, our system is not capable of creating malicious function call sequences by

41

itself, instead, the user provides the sequence as an input. Also, our system detects
malicious behavior if the call sequence of the behavior is already known.

Future Work. We plan to model a complete set of Windows API functions. So that, we
can reduce one step from our methodology, dynamically linked function extraction.
Furthermore, we are also interested in supporting 64 bit Windows programs, Linux
systems, and statically linked functions in the future.

42

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

P. Okane, S. Sezer, and K. Mclaughlin, “Obfuscation: The Hidden Malware,”
Security & Privacy, IEEE, wvol. 9, pp. 4147, May 2011, doi:
10.1109/MSP.2011.98.

O. Aslan and R. Samet, “A Comprehensive Review on Malware Detection
Approaches,” IEEE Access, wvol. 8, p. 1, May 2020, doi:
10.1109/ACCESS.2019.2963724.

LogRhythm Labs, “A Technical Analysis of WannaCry Ransomware.” May
2020. [Online]. Awvailable: https://logrhythm.com/blog/a-technical-analysis-of-
wannacry-ransomware/

C.and L. Z. and N. J. and S. D. and Y. H. Brumley David and Hartwig,
“Automatically Identifying Trigger-based Behavior in Malware,” in Botnet
Detection: Countering the Largest Security Threat, C. and D. D. Lee Wenke and
Wang, Ed. Boston, MA: Springer US, 2008, pp. 65-88. doi: 10.1007/978-0-387-
68768-1_4.

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A Review of Android
Malware Detection Approaches Based on Machine Learning,” IEEE Access, vol.
PP, p. 1, May 2020, doi: 10.1109/ACCESS.2020.3006143.

P. Sreekumari, “Malware Detection Techniques Based on Deep Learning,” May
2020, pp. 65-70. doi: 10.1109/BigDataSecurity-HPSC-1DS49724.2020.00023.

Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep Learning for Android
Malware Defenses: a Systematic Literature Review.” May 2021.

G. Pék, B. Bencsath, B. Hu, and L. Buttyan, “nEther: In-guest Detection of Out-
of-the-guest Malware Analyzers,” May 2011, doi: 10.1145/1972551.1972554.

43

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated random
testing,” in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), May 2005, vol. 40, pp. 213-223.
doi: 10.1145/1065010.1065036.

K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing engine for C,”
in SIGSOFT Software Engineering Notes, May 2005, vol. 30, pp. 263-272. doi:
10.1145/1095430.1081750.

C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,” May 2008,
vol. 8, pp. 209-224.

P. Godefroid, M. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing for Security
Testing,” ACM Queue, vol. 10, p. 20, May 2012, doi: 10.1145/2093548.2093564.

T. Avgerinos, S. Cha, B. Hao, and D. Brumley, “AEG: Automatic Exploit
Generation.,” in Communications of the ACM, May 2011, vol. 57. doi:
10.1145/2560217.2560219.

V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-Vivo
Multi-Path Analysis of Software Systems,” Computer Architecture News, vol. 39,
May 2012, doi: 10.1145/1961295.1950396.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J.
Grosen, S. Feng, C. Hauser, C. Kruegel and G. Vigna, “SOK: (State of) The Art
of War: Offensive Techniques in Binary Analysis,” May 2016, pp. 138-157. doi:
10.1109/SP.2016.17.

Y. Ki, E. Kim, and H. K. Kim, “A Novel Approach to Detect Malware Based on
APl Call Sequence Analysis,” International Journal of Distributed Sensor
Networks, vol. 2015, pp. 1-9, May 2015, doi: 10.1155/2015/659101.

D. Rabadi and S. Teo, “Advanced Windows Methods on Malware Detection and
Classification,” May 2020, pp. 54—68. doi: 10.1145/3427228.3427242.

Microsoft, “Create C/C++ DLLs in Visual Studio.” May 2020. [Online].
Available: https://docs.microsoft.com/en-us/cpp/build/dlls-in-visual-
cpp?redirectedfrom=MSDN&view=msvc-160

M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software, 1st ed. No Starch Press, 2012.

44

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

K. Hahn and K. Hahn, “Robust Static Analysis of Portable Executable Malware,”
2014.

P. Szor, “The Art of Computer Virus Research and Defense,” May 2005.

A. Moser, C. Kruegel, and E. Kirda, “Limits of Static Analysis for Malware
Detection,” in Proceedings - Annual Computer Security Applications Conference,
ACSAC, May 2008, pp. 421-430. doi: 10.1109/ACSAC.2007.21.

M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser, and H. Veith, “Malware
normalization,” May 2021.

H. Borojerdi and M. Abadi, “MalHunter: Automatic generation of multiple
behavioral signatures for polymorphic malware detection,” in Proceedings of the
3rd International Conference on Computer and Knowledge Engineering, ICCKE
2013, May 2013, pp. 430-436. doi: 10.1109/ICCKE.2013.6682867.

Y. Tang, B. Xiao, and X. Lu, “Using a bioinformatics approach to generate
accurate exploit-based signatures for polymorphic worms,” Computers &
Security, vol. 28, pp. 827-842, May 2009, doi: 10.1016/j.cose.2009.06.003.

M. Alzaylaee, S. Yerima, and S. Sezer, “DL-Droid: Deep learning based android
malware detection using real devices.” May 2019.

J. Booz, J. McGiff, W. Hatcher, W. Yu, J. Nguyen, and C. Lu, “Tuning Deep
Learning Performance for Android Malware Detection,” May 2018, pp. 140-145.
doi: 10.1109/SNPD.2018.8441128.

A. Martin Garcia, F. Fuentes, V. Naranjo, and D. Camacho, “Evolving Deep
Neural Networks architectures for Android malware classification,” May 2017,
pp. 1659-1666. doi: 10.1109/CEC.2017.7969501.

N. McLaughlin, J. Martinez-Del-Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer,
Y. Safaei, E. Trickel, Z. Zhao, A. Doupe, and G. Ahn, “Deep Android Malware
Detection,” May 2017, pp. 301-308. doi: 10.1145/3029806.3029823.

E. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer. Automatic
framework for android malware detection using deep learning,” Digital
Investigation, vol. 24, pp. S48-S59, May 2018, doi: 10.1016/.diin.2018.01.007.

A. Pektas and T. Acarman, “Deep learning for effective Android malware
detection using API call graph embeddings,” Soft Computing, vol. 24, pp. 1-17,
May 2020, doi: 10.1007/s00500-019-03940-5.

45

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. Kumar, “Android malware
detection based on system call sequences and LSTM,” Multimedia Tools and
Applications, vol. 78, pp. 1-21, May 2019, doi: 10.1007/s11042-017-5104-0.

A. Pektas and T. Acarman, “Deep Learning To Detect Android Malware via
Opcode Sequences,” Neurocomputing, vol. 396, May 2019, doi:
10.1016/j.neucom.2018.09.102.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial Examples for Malware Detection,” May 2017, pp. 62-79. doi:
10.1007/978-3-319-66399-9 4.

X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren,
“Android HIV: A Study of Repackaging Malware for Evading Machine-Learning
Detection,” IEEE Transactions on Information Forensics and Security, vol. PP, p.
1, May 2019, doi: 10.1109/TIFS.2019.2932228.

B. Kolosnjaji, A. Demontis, B. Biggio, and D. Maiorca, “Adversarial Malware

Binaries: Evading Deep Learning for Malware Detection in Executables,” May
2018, pp. 533-537. doi: 10.23919/EUSIPCO.2018.8553214.

S. Cesare and Y. Xiang, Software similarity and classification. 2012. doi:
10.1007/978-1-4471-2909-7.

Norman Solutions, “Norman SandBox.” [Online]. Available:
http://download01.norman.no/product_sheets/eng/SandBox_analyzer.pdf

R. Paleari, L. Giampaolo, F. Roglia, and D. Bruschi, “A fistful of red-pills: How
to automatically generate procedures to detect CPU emulators,” May 2009.

V. Sathyanarayan, P. Kohli, and B. Bezawada, “Signature Generation and
Detection of Malware Families,” May 2008, vol. 5107, pp. 336-349. doi:
10.1007/978-3-540-70500-0_25.

A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamzeh,
“Malware detection based on mining API calls,” May 2010, pp. 1020-1025. doi:
10.1145/1774088.1774303.

Y. Ye, D. Wang, T. Li, and D. Ye, “IMDS: Intelligent malware detection
system,” May 2007, pp. 1043-1047. doi: 10.1145/1281192.1281308.

R. Tian, M. R. Islam, L. Batten, and S. Versteeg, “Differentiating malware from
cleanware using behavioural analysis,” in Proceedings of the 5th IEEE

46

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

International Conference on Malicious and Unwanted Software, Malware 2010,
May 2010, pp. 23-30. doi: 10.1109/MALWARE.2010.5665796.

M. Shankarapani, K. Kancherla, S. Ramammoorthy, R. Movva, and S.
Mukkamala, “Kernel machines for malware classification and similarity

analysis,” May 2010, pp. 1-6. doi: 10.1109/IJCNN.2010.5596339.

M. Shankarapani, S. Ramamoorthy, R. Movva, and S. Mukkamala, “Malware
detection using assembly and API call sequences,” Journal in Computer Virology,
vol. 7, pp. 107-119, May 2011, doi: 10.1007/s11416-010-0141-5.

H. Kim, M. Khoo, and Pietroli, “Polymorphic Attacks against Sequence-based
Software Birthmarks,” May 2021.

J. King, “Symbolic Execution and Program Testing,” Commun. ACM, vol. 19, pp.
385-394, May 1976, doi: 10.1145/360248.360252.

B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara, and F. Xie, “CRETE: A
Versatile Binary-Level Concolic Testing Framework,” 2018, pp. 281-298. doi:
10.1007/978-3-319-89363-1_16.

N. Stephens, J. Grosen, C. Salls, and A. Dutcher, “Driller: Augmenting Fuzzing
Through Selective Symbolic Execution,” May 2016. doi:
10.14722/ndss.2016.23368.

S. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing Mayhem on
Binary Code,” pp. 380-394, May 2012, doi: 10.1109/SP.2012.31.

R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Assisting Malware
Analysis with Symbolic Execution: A Case Study,” May 2017, pp. 171-188. doi:
10.1007/978-3-319-60080-2_12.

M. Alsaleh, J. Wei, E. Al-Shaer, and M. Ahmed, “gExtractor: Towards
Automated Extraction of Malware Deception Parameters,” May 2018, pp. 1-12.
doi: 10.1145/3289239.3289244.

A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution Paths for
Malware Analysis,” in Proceedings - IEEE Symposium on Security and Privacy,
May 2007, pp. 231-245. doi: 10.1109/SP.2007.17.

L. Durfina, J. Kfoustek, P. Matula, and P. Zemek, “A Novel Approach to Online
Retargetable Machine-Code Decompilation,” Journal of Network and Innovative
Computing, vol. 2, pp. 224-232, May 2014.

47

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

EasyHook, “Installing a remote hook using EasyHook with C++.” [Online].
Available: http://easyhook.github.io/tutorials/nativeremotehook.html

Selenium, “SeleniumHQ Browser Automation.” [Online]. Available:
https://www.selenium.dev/

A. Herrera, “Analysing ‘Trigger-based’ Malware with S2E.” May 2018. [Online].
Available: https://adrianherrera.github.io/post/malware-s2e/

MITRE ATT&CK®, “System Time Discovery, Technique T1124.” May 2021.
[Online]. Available: https://attack.mitre.org/techniques/T1124/

MITRE ATT&CK®, “Virtualization/Sandbox Evasion: System Checks, Sub-
technique T1497.001.” May 2021. [Online]. Available:
https://attack.mitre.org/techniques/T1497/001/

Panda Security, “Friday 13th: Remembering one of the most infamous virus in
history.” May 2018. [Online]. Available:
https://www.pandasecurity.com/en/mediacenter/malware/famous-virus-history-
friday-13th/

Panda Security, “Chernobyl - Virus Information.” [Online]. Available:
https://www.pandasecurity.com/en/security-info/2860/information/Chernobyl

MITRE ATT&CK®, “FatDuke, Software S0512.” May 2020. [Online].
Available: https://attack.mitre.org/software/S0512/

MITRE ATT&CK®, “MITRE ATT&CK®.” [Online]. Available:
https://attack.mitre.org/

MITRE ATT&CK®, “Process Injection: Dynamic-link Library Injection, Sub-
technique T1055.001 J May 2020. [Online]. Available:
https://attack.mitre.org/techniques/T1055/001/

Cybersecurity Infrastructure Security Agency (CISA)", “Indicators Associated
With WannaCry Ransomware.” May 2018. [Online]. Awvailable: https://us-
cert.cisa.gov/ncas/alerts/TA17-132A/

M. Akbanov and V. Vassilakis, “WannaCry Ransomware: Analysis of Infection,
Persistence, Recovery Prevention and Propagation Mechanisms,” Journal of
Telecommunications and Information Technology, vol. 1, pp. 113-124, May
2019, doi: 10.26636/jtit.2019.130218.

48

[67]

[68]

[69]

[70]

[71]

Virus Total, “Virus Total Search.” [Online]. Available:
https://www.virustotal.com/gui/home/search

Microsoft, “GetModuleHandleA function (libloaderapi.h) - Win32 apps.” May
2018. [Online]. Available: https://docs.microsoft.com/en-
us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea

Microsoft, “CreateProcessA function (processthreadsapi.h) - Win32 apps.” May
2018. [Online]. Available: https://docs.microsoft.com/en-
us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

Microsoft, “SYSTEMTIME (minwinbase.h) - Win32 apps.” May 2018. [Online].
Available: https://docs.microsoft.com/en-us/windows/win32/api/minwinbase/ns-
minwinbase-systemtime

Microsoft, “SYSTEM _INFO (sysinfoapi.h) - Win32 apps.” May 2018. [Online].
Available: https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/ns-
sysinfoapi-system_info

49

50

APPENDICES

APPENDIX A

Synthetic Malware Source Code

#include "stdafx.h”
#include "Windows.h"
#include "stdio.h"
#include <string>

int tmain{int argc, TCHAR* argv[])

1

char* dllPath = "malicious.d11™;

_SYSTEMTIME 1Time;
GetlocalTime(&1Time);
if (1Time.wYear == 2848)
if (1Time.wMonth == 11}
if (1Time.wDay == 18)
{void)e;
else
exit(-1});
else
exit(-1};
else
exit(-1);

o1

onoun

]

L o I e R N R == LY & B v+ |

=] h

[£4]

L Y LY W W L L LY L L R R RS Rd R

[re)

=y
L

wowmwwwww B
(= T [N <N W Ry N R i+ Vs

L)

i
[+2]

i
I¥e]

[a]

o o O O O OO O O
o = R W [-y W [y (A R

[£]

=]
[T+

lf*
* Perform sandbox evasion
*/
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
int numCPU = sysinfo.dwNumberOfProcessors;
if (numCPU »>= 4)
(void)@;// it is not a sandbox
else
exit(-1); // sandbox or old system

lf*
* Access the target process whose PID is 123.
*f
HANDLE process = OpenProcess{PROCESS ALL ACCESS, FALSE, 123);
if (process == NULL)
exit(-1); // Could not open the process with given PID.
else
{
l;:-t
* Access the LoadLibrary function.
*f
LPVOID addr = (LPVOID)GetProcAddress(GetModuleHandle(L"kernel32.d11"},
"LoadLibraryA™);
if (addr == NULL}
exit(-1); // Could not load the LoadLibraryA function.

else

{
Jfﬂit
* Allocate memory in the target process.
H,I'II

LPVOID arg = (LPVOID)VirtualAllecEx(process, NULL, strlen{dllPath},
MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE);
if (arg == NULL)
exit(-1); // Allocation failed.

elsze

{
}‘*
* Write the dll adress into the target process memory region.
*/

int n = WriteProcessMemory(process, arg, dllPath,
strlen{dllPath), NULL);
if (n == FALSE)
exit(-1); // Write failed.

52

78

(=]
o

Ll R

WO GO 0O 63 0O 0O 0O 0D RO 6D
= & W00~ oA

}

return @;

else

J,-' *
* Inject the DLL into the target process.
*

HANDLE threadID = CreateRemoteThread(process, NULL, &, addr,

arg, NULL, MNULL);
if (threadID == NULL)
exit(-1); // Mission failed.
else
(void)e; // Mission successful.

,"I *
* Close the handle.
*f

CloseHandle(process);

53

TEZ iZIN FORMU / THESIS PERMISSION FORM

ENSTITU / INSTITUTE

Fen Bilimleri Enstitlisti / Graduate School of Natural and Applied Sciences

Sosyal Bilimler Enstitiisii / Graduate School of Social Sciences

Uygulamali Matematik Enstitiisii / Graduate School of Applied Mathematics I:I

Enformatik Enstitlisii / Graduate School of Informatics

Deniz Bilimleri Enstitiisii / Graduate School of Marine Sciences

YAZARIN / AUTHOR

Soyadi / Surname © e eeeeteeeeeeeeeeiieeeesereseessseeesesresesseresseeteeeeassesesatreeeetareeeiateeeaareeeaareranns

Adi / Name © e errettterteeeettettie—a—— ——————tettetteeeettttarra ———————————tttteeteaeeeetiena e ————aaaaaes

Boliimu / Department ...

TEZIN ADI / TITLE OF THE THESIS (ingilizce / ENglish) & ..cvoveveeiieiiceieeeceeeeeeeeeeeee e
TEZIN TURU / DEGREE: Yiiksek Lisans / Master Doktora / PhD

1. Tezin tamami diinya ¢apinda erisime agilacaktir. / Release the entire work immediately
for access worldwide.

2. Teziki yil siireyle erisime kapali olacaktir. / Secure the entire work for patent and/or
proprietary purposes for a period of two year. *

3. Tez alti ay siireyle erisime kapali olacaktir. / Secure the entire work for period of six
months. *

* Enstitii Yonetim Kurulu Kararinin basili kopyasi tezle birlikte kiitliiphaneye teslim edilecektir.
A copy of the Decision of the Institute Administrative Committee will be delivered to the
library together with the printed thesis.

Yazarin imzasi / Signature ccceeeeeeneenn. Tarih / Dateccccovvevnne.

SKB-SA02/F01 Rev:03 06.08.2018

