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 ABSTRACT 

DETECTING MALICIOUS BEHAVIOR IN BINARY PROGRAMS USING  

DYNAMIC SYMBOLIC EXECUTION 

AND 

API CALL SEQUENCES 

 

Tatar, Fatih Tamer 

MSc., Department of Information Systems 

Supervisor: Assoc. Prof. Dr. Aysu Betin Can 

 

June 2021, 53 pages 

 

Program analysis becomes an important part of malware detection as malware 

become stealthier and more complex. For example, modern malware may detect 

whether they are under analysis and they may use certain triggers such as time to 

avoid detection. However, current detection techniques turn out to be insufficient as 

they have limitations to detect new, obfuscated, and intelligent malware. In this 

thesis, we propose a behavior based malware detection methodology using API call 

sequence analysis. In our methodology, we combine dynamic symbolic execution 

and API function models to extract call sequences of a given binary program and 

decide whether it has a malicious sequence. In our experiments, we showed that our 

methodology is capable of detecting malware hiding behind evasion techniques and 

our methodology is applicable to a real-world problem.  

Keywords: Call Sequence Analysis, Dynamic Symbolic Execution, Function 

Modeling, Malware Analysis  
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ÖZ 

DİNAMİK SEMBOLİK UYGULAMA VE 

API ÇAĞRI SIRALAMALARI KULLANARAK 

İKİLİ PROGRAMLARDA ZARARLI DAVRANIŞ TESPİTİ 

 

Tatar, Fatih Tamer 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. Aysu Betin Can 

 

Haziran 2021, 53 sayfa 

 

Kötü amaçlı yazılımlar daha gizli ve daha karmaşık hale geldikçe program analizi, 

kötü amaçlı yazılım tespitinde önemli bir parça haline gelmiştir. Örneğin, modern 

kötü amaçlı yazılımlar programın analiz altında olup olmadıklarını tespit edebilir ve 

tespit edilmekten kaçınmak için zaman gibi belirli tetikleyicileri kullanabilirler. 

Ancak mevcut tespit yöntemleri yeni, karıştırılmış ve akıllı kötü yazılımları tespit 

etmekteki sınırlamaları sebebiyle yetersiz kalmaktadır. Bu tezde, API çağrı dizisi 

analizini kullanan davranış tabanlı bir kötü yazılım tespit methodolojisi 

önerilmektedir. Metodolojimizde, verilen programın çağrı dizilerini çıkarmak ve 

kötü amaçlı bir diziye sahip olup olmadığına karar vermek için dinamik sembolik 

yürütme ve API fonksiyon modelleri birleştirilmiştir. Deneylerimiz ise 

metodolojimizin, kaçınma tekniklerinin arkasında saklanan kötü amaçlı yazılımları 

tespit edebildiğini ve gerçek dünyadaki bir soruna uygulanabilir olduğunu 

göstermektedir. 

 

Anahtar Kelimeler: Çağrı Sırası Analizi, Dinamik Sembolik Yürütme, Fonksiyon 

Modelleme, Kötü Amaçlı Yazılım Analizi  



vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my mother, Ayşe,  

To my father, Mehmet, 

To my sisters, Çiğdem and Mehtap.  

 

 

  



vii 

 

 

ACKNOWLEDGMENTS 

 

First of all, I would like to thank my supervisor Assoc. Prof. Dr. Aysu Betin Can for 

her support, guidance, criticism, inspiration and insight throughout the research.  

Besides my supervisor, I would like to acknowledge my team leader, Barış İyidir, 

and my manager, Miren Izaskun Gallastegi Dorken, from ASELSAN for letting me 

complete my graduate studies.  

I would also like to thank my valuable friends Elif, Gizem, Didem and Şafak for their 

endless support and motivation to finish this thesis. 

Lastly, I would like to express my gratefulness to my sisters Mehtap Tatar and 

Çiğdem Yüksel for being perfect role models for my entire education and my parents 

Ayşe Tatar and Mehmet Tatar for always being supportive throughout my decisions.  

  



viii 

 

 

TABLE OF CONTENTS 

ABSTRACT .....................................................................................................iv 

ÖZ .....................................................................................................................v 

ACKNOWLEDGMENTS ................................................................................vii 

TABLE OF CONTENTS .................................................................................viii 

LIST OF TABLES ............................................................................................x 

LIST OF FIGURES ..........................................................................................xi 

LIST OF ABBREVIATIONS ...........................................................................xii 

CHAPTER 

1 INTRODUCTION ....................................................................................1 

2 RELATED WORK ...................................................................................5 

2.1 Background Information ....................................................................5 

2.2 Literature Review ...............................................................................7 

3 METHODOLOGY ...................................................................................11 

3.1 Input Gathering ..................................................................................12 

3.2 Extracting Dynamically Linked Functions ........................................13 

3.3 Automatic Function Model Generation .............................................15 

3.4 Functions Replacement ......................................................................17 

3.4.1 DLL Creation ..............................................................................17 

3.4.2 DLL Injector Application ...........................................................18 

3.5 Running Symbolic Execution ............................................................19 

3.6 Analyzing the Call Sequence .............................................................21 

3.7 Displaying Evidences .........................................................................22 

3.8 Model Refining ..................................................................................25 

4 EXPERIMENTS .......................................................................................27 



ix 

 

 

4.1 Experimental Setup ........................................................................... 27 

4.2 Experiment 1: Synthetic Malware ..................................................... 28 

4.2.1 Synthetic Malware ..................................................................... 28 

4.2.2 Experiment1 and Results............................................................ 30 

4.3 Experiment2: WannaCry ................................................................... 34 

4.3.1 WannaCry Malware ................................................................... 34 

4.3.2 Experiment2 and Results............................................................ 35 

4.4 Discussion ......................................................................................... 38 

5 CONCLUSION ........................................................................................ 41 

REFERENCES ................................................................................................. 43 

APPENDICES ................................................................................................. 51 

APPENDIX A .................................................................................................. 51 

 

  



x 

 

 

LIST OF TABLES 

 

Table 1: Summary of the Techniques Used for Malware Detection ............................ 9 

Table 2: Concrete Return Types and Their Values .................................................... 16 

Table 3: Synthetic Malware Dynamically Linked Functions ..................................... 30 

Table 4: Generated Function Models for WannaCry ................................................. 36 

  



xi 

 

 

LIST OF FIGURES 

 

Figure 1 : Summary of Proposed Methodology ......................................................... 12 

Figure 2 : Sample Malicious Function Call Sequence ............................................... 13 

Figure 3 : Sample Decompiler Output ....................................................................... 14 

Figure 4 : Sample Function Model............................................................................. 15 

Figure 5 : Detail Level Snippet .................................................................................. 18 

Figure 6 : Sample Path Condition Generation ........................................................... 20 

Figure 7 : Sample Program Call Sequence ................................................................ 21 

Figure 8 : A Sample Malicious Call Sequence with a Pipe Symbol .......................... 22 

Figure 9 : Sample Program for Displaying Evidences ............................................... 23 

Figure 10 : Sample Function Models for Displaying Evidences ............................... 23 

Figure 11 : Sample Evidence Output ......................................................................... 24 

Figure 12 : Time Bomb Code Snippet ....................................................................... 29 

Figure 13 : Sandbox Evasion Code Snippet ............................................................... 29 

Figure 14 : Synthetic Malware Malicious Call Sequence .......................................... 31 

Figure 15 : Symbolic Execution States of Synthetic Malware .................................. 31 

Figure 16 : Synthetic Malware Analysis Result ......................................................... 32 

Figure 17 : Return Struct of GetLocalTime Function [70] ........................................ 33 

Figure 18 : Return Struct of GetSystemInfo Function [71] ....................................... 33 

Figure 19 : Malicious Call Sequence Input of WannaCry Analysis .......................... 35 

Figure 20 : WannaCry Malicious Call Sequence ....................................................... 35 

Figure 21 : WannaCry Analysis Result ...................................................................... 37 

 

  

file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150463
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150464
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150465
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150466
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150467
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150468
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150469
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150470
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150471
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150472
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150473
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150474
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150475
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150476
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150477
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150478
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150479
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150480
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150481
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150482
file:///C:/Users/fttatar/Documents/github/fttatar-thesis-2020/documents/5_thesis/Thesis.docx%23_Toc76150483


xii 

 

 

LIST OF ABBREVIATIONS 

 

API Application Programming Interface 

CPU Central Processing Unit 

DLL Dynamic Link Library 

MSDN Microsoft Software Developer Network 

 

  



1 

 

 

 

 

 

 

      CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

It has been an issue to detect malicious software for decades. Researchers use various 

techniques to discover malware such as signature, behavior, and deep learning based 

techniques. With the development of complex and obfuscated malware, traditional 

malware detection techniques such as signature-based detection become inadequate to 

unknown malware [1] and there is a demand for more scientific studies to cover the 

shortcomings of existing methods. [2] 

As malware analysis techniques improve, malware becomes stealthier and more 

intelligent. New malware may not show their malicious behavior immediately especially 

if they are aware of being analyzed. For example, the dropper component of WannaCry 

ransomware [3] tries to access an invalid resource, an unregistered domain name, to 

detect if it is running in a sandbox environment. In addition, new malware may postpone 

their malicious activity until they are triggered by a resource such as a keyboard. For 

instance, MyDoom waits until February 1 and 3, 2004 to perform its DDOS attack [4]. 

Therefore, malware detection becomes a challenging task. It is also very important to 

understand the malware behavior on the infected system. If a malware analyst is late to 

take precautions, undetected malware behavior may help the malware to persist in the 

system under different forms or even worse, its spread may not be prevented at all and 

everything goes off the spin. Consequently, it is not enough to detect the malware only. 

Analysts should also need to understand its effects on the system. However, the latest 

malware detection methodologies fail to propose a general solution for these problems. 

For example, signature-based detection is adapted by security companies for its 

quickness, but they fail to detect unknown [1] and obfuscated malware [5]. Deep 

learning based detection methods perform up to 95-99% success rates [6]. However, 

they suffer from reliability [7]. Behavior based malware detection methods run the 

malware in a contained environment and detect malware even its code changes as long 

as its core functionality stays the same. Nevertheless, they fail to detect intelligent 

malware which is capable of sensing analysis environment [8]. In our work, we 
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approach the problem from the behavior-based malware detection perspective and 

combine API analysis approach using the power of dynamic symbolic execution. 

In this thesis, we developed a methodology for analyzing suspicious binary programs 

using dynamic symbolic execution to observe API call sequences. In our work, we aim 

to detect given malicious behavior and provide a methodology to analyze malware 

behavior using API call sequence analysis for the Windows platform. To show the 

feasibility of our work, we also developed a toolset for the methodology. First, our 

toolset extracts the Windows API functions used by the binary program and creates 

models for the extracted functions. Then, it replaces actual functions with the function 

models and executes the binary program using dynamic symbolic execution. In this way, 

our function models create traceable outputs for the API calls and our toolset extracts the 

call sequences of all possible program branches even the branches are hidden behind 

certain trigger conditions such as sandbox evasion and time. Next, our toolset compares 

the extracted call sequences with known malicious API call sequences provided by the 

user. If our toolset finds a matching sequence, it displays a warning and presents 

evidences of malicious behavior. As our methodology utilizes dynamic symbolic 

execution on a binary program, it is resilient to obfuscation methods such as packaging 

and capable of detecting new malware once the user provides a malicious API call 

sequence. Also, our toolset supports extensibility as users may modify its default 

behavior to meet their future needs and change malicious API call sequence input to 

employ the future developments in the literature. 

In order to show the effectiveness of our methodology, we conducted experiments on a 

synthetic and a real-world malware, WannaCry. During the experiments, our toolset 

generated more than 1200 lines of C++ code to model 75 Windows API functions 

automatically. The synthetic malware experiment showed our capability of detecting a 

malicious behavior, DLL injection, even it is hidden behind time discovery and sandbox 

evasion techniques. On the other hand, WannaCry ransomware experiment showed the 

applicability of our methodology to a real-world problem. In the experiment, our 

methodology discovered behaviors such as registry key creation, file hiding, file access 

modifications and function imports for encryption purposes.  

 

Overall, we make the following contributions: 

• We present an extensible toolset for analyzing binary programs that supports 

future developments in the malicious call sequence analysis area. 

• We propose a technique to observe API call sequences using function models. 

• We introduce an approach that combines function models and dynamic symbolic 

execution to analyze malware without being affected by obfuscation techniques 

such as time discovery and sandbox evasion. 
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• We implement a method to avoid state space explosion problem of symbolic 

execution by changing return values of API models to symbolic or concrete 

without recompiling the models. 

• We show evidences after the analysis to support decision-making and increase 

user benefit. 

 

The rest of the thesis is organized as follows. Chapter 2 introduces the related work in 

terms of background information and the literature review. Chapter 3 presents the 

proposed methodology in detail. Chapter 4 describes the experimental work showing the 

feasibility of our methodology. Chapter 5 concludes our study with the limitations and 

the future work.  
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      CHAPTER 2 

 

 

2 RELATED WORK 

 

 

 

2.1 Background Information 

In this section, we introduce general concepts and terminology in the thesis to provide an 

overview of the topic. 

Malware. Cyber attackers design malicious software programs, also known as malware, 

to steal personal data, gain financial benefits, and damage devices. Malware can be 

labeled into different categories such as trojan horses, worms, polymorphic viruses, and 

ransomware[5]. Attackers use trojan horses to hide the malware inside other programs 

that appear to be innocent. Worms are malware that spread to other devices by copying 

themselves. They may infect a computer network without any manual intervention. 

Polymorphic viruses are one of the hardest malware to analyze. They evade detection 

systems by changing themselves in runtime. For example, they may modify their code 

without changing the main functionality, decrypt or unpack previously hidden malicious 

code segments. Attackers also use ransomware to gain financial benefits by encrypting 

personal data and demanding ransom for decryption. 

Dynamic Symbolic Execution. Symbolic execution is a program analysis technique that 

analyzes the programs by traversing all possible branches and generating constraints for 

them. The pioneers of the technique such as DART[9], CUTE[10], KLEE[11], and 

SAGE[12] use symbolic execution to find program bugs by using constraint solvers.  

In 2005, CUTE improved the symbolic execution and introduced the concept of concolic 

(concrete symbolic) execution, also known as dynamic symbolic execution. In their 

work, they combined concrete and symbolic execution to create test inputs for the 

discovery of all possible execution branches.  
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Symbolic execution performs as follows: First, a symbolic execution engine replaces 

program inputs with symbolic variables that can hold any value. Symbolic variables are 

analogous to the mathematical unknown variables such as X, Y, Z. Then, when program 

execution reaches a branch using a symbolic variable, the symbolic execution engine 

executes both branches simultaneously and creates a set of constraints called path 

condition. Path conditions are mathematical formulas that represent a valid range of 

values for symbolic variables to satisfy the current branch condition. When the path 

reaches a termination point or a bug, the symbolic execution engine uses a constraint 

solver to evaluate the satisfiability of the path condition. If the condition is 

mathematically solvable, the solver returns a concrete value for the symbolic variable 

and this value may be used as a test condition for the path [11]. However, if the 

condition is unsolvable, symbolic execution stops. 

On the other hand, dynamic symbolic execution starts the program with random concrete 

values as inputs. Then, during the execution, it keeps track of both concrete values and 

symbolic constraints. When execution reaches a termination point, the engine returns to 

the branch point and negates the constraint in order to decide if there is an input that 

satisfies the other branch. If such input exists, the engine uses the newly found concrete 

value to continue execution. However, if the constraint is too complex to solve, it 

simplifies the constraint using concrete values and the constraint solver generates such 

an assignment. Then, the engine runs the program with these concrete inputs.  

One of the biggest drawbacks of symbolic execution is the path explosion problem. As  

symbolic execution engine runs many branches simultaneously, it starts to suffer from 

high memory consumption. In order to solve this problem, symbolic execution engines 

utilize different techniques such as prioritized path searching [13] and constraint 

optimization [12]. In addition, there are symbolic execution engines [14] [15] that 

directly run on binary programs where it is very useful when there is no access to the 

code of the program such as malware. 

API Modeling. Programs running in the user space need to call Application 

Programming Interface (API) functions to use the services provided by the operating 

system’s kernel. So, in order to understand the main behavior of a program, the sequence 

of its API calls can be analyzed. Similarly, malware analysis techniques [16] [17] also 

use API call sequence information to analyze malware behavior. In our work, in order to 

collect the API call sequence of malware in run-time, we re-write the Windows API 

functions in a way that they do not perform their actual tasks. In other words, we create 

models of the Windows API functions to understand the behavior of malware while it is 

running. Instead of performing real API activities, our models create logs upon 

execution.  

Dynamic Linking.  Windows provide its API in the form of Dynamic Link Libraries 

(DLLs). DLL files enable the share of functions and resources among different programs 

by allowing programs to use a single DLL file in memory at the same time. So, DLL 
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files save memory and disk space. In contrast to static linking where the content of a 

static library is duplicated into the programs, dynamic linking creates only the 

information needed by Windows at runtime to find the DLL file containing data or 

function [18]. In our work, we use a technique, DLL injection, to overwrite the dynamic 

linking behavior of Windows so that we insert our API models into malware to 

understand its behavior.  

2.2 Literature Review 

As new and complex malware emerge, detection methods also evolve rapidly. We focus 

on three main malware detection techniques in the literature, signature-based, deep 

learning based and behavior based. Then, we present other approaches in literature such 

as API analysis and symbolic execution. 

In the early studies, the signature-based detection method is widely accepted by antivirus 

vendors as it provides a quick and effective way of detecting known malware [2]. 

Researchers extract malware signatures in different ways, such as integrity checking 

[19], string scanning [20], top and tail scanning [21], and entry point scanning [21]. 

However, these techniques are not capable of detecting new unknown malware [1] since 

there is no signature match for the new malware in the signature database. Also, 

signature-based detection techniques suffer from malware using obfuscation techniques 

[22], such as encryption, packaging, and polymorphism, and require continuous updates 

of signature databases which require maintenance cost. Though there are studies [23] 

[24] [25] making improvements to overcome obfuscation methods, their success is still 

limited to polymorphic malware. In our study, we are not limited to detect known 

malware. Although our methodology is still limited to the malicious call sequence input, 

our methodology provides an extensible approach for the detection of new unknown 

malware using API call sequences. Once the user gives the malicious call sequence, our 

methodology can detect an unknown malware performing such sequence. Also, our 

configurable toolset provides an analysis environment where the users may incorporate 

their expertise in the area to compose new sequences.  

Studies using deep learning for malware detection mainly focus on four techniques 

namely multilayer perceptrons (MLP) [26] [27] [28], convolutional neural networks 

(CNNs) [29] [30] [31], recurrent neural networks (RNNs) [32] and Hybrid Models [33]. 

Although they show high malware detection rates up to 95-99% [6], they suffer from 

effectiveness and reliability [7]. Also, they are not resistant to malware using 

perturbation [34] [35] and evasion [36] techniques. Furthermore, 70% of the deep 

learning studies detecting malware focus on Android devices [6]. Our methodology fills 

the gap of reliable malware detection methodology for the Windows platform. 
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Behavior based malware detection techniques determine whether a program is benign or 

malware using monitoring tools and sandboxes [37] such as Norman Sandbox [38]. 

Also, they detect malware even if malware code changes as long as the behavior stays 

the same [37]. However, the main disadvantage of behavior based malware detection is 

that malware may detect the analysis environment and it may avoid showing its 

malicious behavior under analysis [39] [8]. In our approach, we used a behavior based 

malware detection technique and solved this problem by combining dynamic symbolic 

execution and API function models that return concrete or symbolic values. So, our 

models can distort the malware’s perception about its environment and provide 

information in user control. 

In order to detect malware, researchers use the similarity between the API calls of the 

new and the known malware. In terms of their approaches, their API call analysis 

methods divide into two categories: static [40] [41] [42] and dynamic [43] [44] [45]. 

Researchers using dynamic API call analysis analyze the malware in runtime and they 

achieve better results analyzing obfuscated malware with respect to static API call 

analysis researchers. [40] [43] analyze malware to extract the frequency of repeatedly 

used API functions and their total events. Moreover, [44] [45] use API calls to extract 

static signatures but they fail to detect polymorphic and unknown malware. Also, [46] 

states that studies using API call sequences suffer from the fuzzy API calls that attackers 

intentionally insert, delete, replace existing ones without affecting the overall 

functionality. [16] used dynamic analysis to extract API calls of more than 23000 

malware and apply DNA sequencing algorithm to find critical API call sequence 

patterns. However, their approach fails to detect malicious behavior hidden behind the 

logic bombs and evasion techniques. In our methodology, we fill this gap by detecting 

hidden malware behavior by utilizing API function models in a dynamic symbolic 

execution. Also, we provide a configurable tool set that users may add the latest API call 

sequence information in the literature so that our methodology provides an up-to-date 

solution. Furthermore, malicious API call sequence information lets our methodology 

distinguish previously unknown malware. 

Since the first introduction of symbolic execution [47], it is used in different areas such 

as test case generation [9] [10] [11] [12] [48], bug discovery [11] [13] [14] [49] [50] and 

malware analysis [51] [52] [53] [4]. Although [51] successfully detects a remote access 

Trojan (RAT) using the symbolic execution framework ANGR [15], their work is 

limited to RAT families. On the other hand, [4] and [53] conduct similar work. They 

approach malware detection with a broader aspect and analyze the existence of trigger 

sources and their corresponding conditions, such as system time, system event keyboard 

inputs, and system calls. However, their approach is still limited to trigger sources. Our 

methodology provides an extensible API call sequence analysis where users may modify 

the control mechanism, call sequence, and API function models to meet their future 

needs. 
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Since our methodology utilizes malicious API call sequences, it may seem to be a 

signature-based malware detection technique. However, signature-based malware 

detection techniques use strings, byte sequences, entry points, and integrity checks of the 

binary program as a signature. Moreover, our methodology focus on the run-time 

behavior of the binary program to extract invocations of Windows API functions and 

runs the binary program in a symbolic execution environment. So, our methodology can 

be positioned as a behavior-based malware detection technique. Table 1 shows the 

summary of the techniques used for malware detection. 

 

Table 1: Summary of the Techniques Used for Malware Detection 
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      CHAPTER 3 

 

 

3 METHODOLOGY 

 

 

 

In this thesis, we developed a methodology to analyze suspicious binary programs 

written for the Windows platform. In addition, we designed a toolset to show the 

feasibility of our methodology. We aim to detect whether a given program may generate 

a malicious sequence of function calls using dynamic symbolic execution. Our tool takes 

suspicious and malicious function call sequences and examines the binary program 

whether such sequence is possible. The tool generates evidence showing what data lead 

the program to produce such a malicious execution sequence. Our approach consists of 8 

steps and we provide the details in the following sections of this chapter. We show an 

illustrative summary of our work in Figure 1. 

In order to make the function calls traceable and facilitate the reachability of different 

execution paths of the binary program, we use a decompiler and extract the functions 

called from the Windows API. Then, our model generator module creates models for 

these functions where they emit execution information such as their function names and 

their arguments. Next, we combine function models and create a DLL file. After that, an 

injector application injects the DLL file into the binary program. So, the program calls 

the modeled functions instead of calling actual Windows API functions.  

To initiate every API function call combination in the program, we need to traverse all 

the possible execution paths. Therefore; we used a symbolic execution framework called 

S2E to run the program symbolically. It invokes all possible function call combinations 

along the paths of the binary program. At this point, function models facilitate the 

symbolic execution as they cost less than actual API functions. Before the execution, we 

also set the execution environment and determine a time-bound for the analysis; so that 

our analysis does not suffer from the state-space explosion and endless consumption of 

the resources. While the framework is running every possible path of the program, it 

calls our modeled functions in the execution order. Then, our analysis parser module 



12 

 

 

collects execution information, such as function names and their arguments, and 

processes it to generate the program’s function call sequence.  

After that, the log analyzer compares the call sequence with the malicious sequences 

given at the beginning of the analysis. As a result, it warns the user if it finds a 

correspondence between these sequences and shows the evidences of its findings.  

 

 

 

3.1 Input Gathering 

Our system takes four inputs. Namely, a binary program, a malicious function call 

sequence, a detail level, and a configuration. The program is a 32-bit Windows 

executable that we suspect its behavior of hiding malicious activities.  

The second input is the malicious function call sequence specification written in a file. 

Users either use their expert knowledge or the latest developments in the API call 

sequence analysis literature to create the content of this file. Each line of the file 

Figure 1 : Summary of Proposed Methodology 
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corresponds to one call sequence and each of them starts with a sequence name. A 

sample call sequence is shown in Figure 2. In the figure, there are two sequences namely 

IATHooking and DLLInjection [16]. After the sequence name, lines continue with 

comma symbols and function names.  Precedence between the functions determines the 

order in the sequence. For example, the second line of the figure means the following: 

DLLInjection sequence starts with OpenProcess function followed by VirtualAllocEx 

function. Then, the WriteProcessMemory function comes and the sequence ends with 

the CreateRemoteThread function. A pipe symbol “|” in a sequence indicates function 

variation. For instance, the LoadLibrary function in the IATHooking sequence can be 

followed by either strcmp, strncmp, _stricmp or strnicmp function.  

The third input is the detail level. It determines the analysis detail by deciding the return 

values of the modeled functions to be concrete or symbolic values. Symbolic values will 

make the symbolic engine to try different execution paths while concrete values make 

the engine choose one of the possible executions. Concrete return values make the 

analysis less detailed. As the number of the symbolic return values increases, the 

symbolic execution framework becomes more likely to discover new paths; hence, it 

discovers hidden sequences within the binary program. Our system takes the detail level 

as a command line input in the form of a free text. We use this free text to specify the 

function names that we want to return symbolic values or write ‘all’ to represent all 

function names. Later, function models interpret this free text to decide their return 

value. 

 

 

3.2 Extracting Dynamically Linked Functions 

In order to track the function call sequence of the binary program; first, we need to 

determine the function calls made by the program. To demonstrate the feasibility of our 

approach, we narrow the scope of our work to Windows API functions. Since these 

functions are linked dynamically, we further narrowed our analysis to dynamically 

linked functions.  

We used a decompiler, Retargetable Decompiler (RetDec) [54], to extract all 

dynamically linked Windows API functions in the binary program. Although this tool is 

known for its decompiling capabilities, we used it to analyze dynamically linked 

functions because it supports cross-platform analysis and provides an insight for the 

statically linked functions. Despite our analysis does not cover statically linked 

functions, we aim to add this feature to analyze the whole program in the future. An 

alternative to decompiler would be Microsoft’s dumpbin.exe; however, it only runs on 

Figure 2 : Sample Malicious Function Call Sequence 



14 

 

 

Windows machines and does not capture the statically linked functions. Consequently, 

we decided to use a tool that both meets our needs and supports our vision for the future. 

A sample output of the decompiler is in Figure 3. 

 Figure 3 : Sample Decompiler Output 
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3.3 Automatic Function Model Generation 

In this step, we process the decompiler’s output and create models for the Windows API 

functions called by the binary program. To automate this process, we developed a model 

generator as a module in Python.   

Since we decided to work with dynamically linked functions, we need to extract their 

declarations from the output file of the decompiler. So, the model generator first collects 

all of them into a file. Then for each function declaration, it creates method bodies. A 

method body in a function model does not perform the actual responsibility of that 

function nor calls any of the Windows functions. Instead, it emits the function name and 

values of its arguments and then returns either a symbolic or predetermined value 

depending on the analysis level. We give a sample function model in Figure 4.  

 

 

 

A model of a function, when replaced with the corresponding actual function, will 

provide an execution trace. A trace, in our methodology, is an execution log showing the 

functions called in the order they are made. When executing the program in question, a 

trace is built by using messages showing the name of the functions. For example, line 4 

in Figure 4 shows a sample log message. Whenever the symbolic execution engine 

invokes the model function, it emits the function name.  

In addition to execution trace, a function model provides information to support the 

result of the call sequence analysis. We call function evidence to this information. Each 

Figure 4 : Sample Function Model 
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model includes log messages, function evidences, to display their arguments. Upon 

invocation, models emit their argument names and values in a human-readable format. 

Since our generator does not support human readability, we manually edit the evidences 

to increase their understandability. To illustrate, lines 5, 6, and 7 in Figure 4 show 

sample evidence. Later, the log analyzer module displays evidences to support the 

analysis result. We explain the usage of evidences in section 3.7. 

Moreover, the generated function bodies have return values coherent with the function 

declaration. Although there are infinitely many possibilities, we wanted to work with a 

constraint set of simple return values. As a result, we determined to use the values given 

in Table 2. These are not the final values that are supposed to fit all cases; instead, we 

use them to show the feasibility of our approach. Users of the system may alter these 

values to enhance this table according to the future need of the analysis.  

Besides concrete return values, our model generator is also capable of producing 

function bodies returning symbolic values. In Figure 4, line 12 shows this capability. 

The symbolic values facilitate the path exploration in the symbolic execution. Even 

though the model generator is capable of returning all the values symbolically, we 

decided to use it with caution in order not to have a state-space explosion problem 

during symbolic execution. Nevertheless, our approach is not limited to our choice of 

implementation. It can be extended to meet different needs. For example, if a detailed 

analysis is required, other functions may also return symbolic values instead of concrete 

ones. Line 10 of Figure 4 shows a sample conditional statement for the management of 

return values. Modifying a file content extracted in Section 3.4, users may decide the 

return values of the models to either symbolic or concrete. 
 

Table 2: Concrete Return Types and Their Values 

Return Type Value  Return Type Value 

BOOL TRUE  int* NULL 

DWORD 1  int32_t 1 

FARPROC NULL  long 1 

FILE* NULL  LPVOID NULL 

HANDLE NULL  SIZE_T 1 

HMODULE NULL  UINT 1 

int 1  void* NULL 
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3.4 Functions Replacement 

In the previous step, the model generator created function models emitting their name, 

arguments, and argument values; as well as, returning concrete or symbolic values 

depending on the detail level. In this step, we used a technique called DLL injection to 

replace actual functions of the binary program with the function models so that function 

calls of the binary program become traceable. 

As the technique suggests, we create a DLL file and put our function models inside. 

Then, we use an injector module to replace actual API functions with the function 

models. Next, the injector application runs the binary program in a suspended state and 

injects the DLL file. After the injection, it resumes the execution of the binary program. 

3.4.1 DLL Creation 

In order to put our function models inside a DLL file, we used EasyHook library [55] for 

its simplicity. First, we changed our model names so that they do not exactly match with 

the real API functions in order not to have any conflicts. Next, for every function model, 

we need to match the name of the function with its actual Windows API equivalent 

along with the corresponding library name. In order to find the library name, we write a 

library finder module in Python to automate this process. It visits MSDN pages using 

Selenium [56], a suite of tools for automating web browsers, and matches Windows API 

functions with their libraries. Then, we provide this match information to the EasyHook 

via its API. In the end, we get a DLL file ready to inject where we use injected function 

models’ outputs to trace the call sequence of the binary program. 

In this step, we add a feature inside the DLL file that facilitates the change of model 

behaviors. Although we use this feature to decide whether function models return 

concrete or symbolic values, it also provides a capability to switch between different 

concrete values. For this purpose, we used a file to configure models from the outside; 

so that, we can change their behavior by only editing a file content. As a result, we 

eliminate the heavy weight of recompiling all the models over and over again if we need 

a simple change in the model. We show the code snippet that we read external input in 

Figure 5.  
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We focused on using this feature to change the detail level of our analysis. To do so, we 

used a file called detailLevel.txt containing data for the detail level. Later, the DLL file 

reads detailLevel.txt, and models either return symbolic or concrete values according to 

our choice of detail. Please also note that, while creating the models, we modeled our 

functions so that they support this feature. Figure 4 shows the detail level information 

inside a function model.  

3.4.2 DLL Injector Application 

In the previous step, we created a DLL file having instructions to replace the real 

Windows API functions with our models. In order to complete function hooking, we 

need to insert the DLL file into the binary program. As in the previous step, we used 

EasyHook’s API to facilitate the DLL injection and we implemented an injector 

application that inserts the DLL file. Our injector starts the binary program in a 

suspended state so that the program waits without calling any functions. Later, our 

injector inserts the DLL file to replace actual functions with the model functions. Then, 

it wakes up the program and the program starts to run. In other words, our injector 

behaves like malware as it runs another program after changing its behavior. This 

behavior allowed us to insert our model functions.  

In addition to the injection, our injector takes command-line arguments to decide 

whether the user asks for a detailed analysis or not. In other words, our injector module 

supports the feature that we use to change the model behavior without recompiling the 

model codes. After the injector takes the command line argument, it creates the 

detailLevel.txt containing the command line value. Then, the DLL file read this file to 

capture detail level.  

Figure 5 : Detail Level Snippet 
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3.5 Running Symbolic Execution 

In order to trigger all the function calls in the binary program, we need to traverse all 

valid execution paths one by one. For this purpose, we used a symbolic execution 

platform called S2E. Among other symbolic execution platforms, we chose S2E since it 

runs on binary programs, supports Linux and Windows platforms, and provides detailed 

documentation. Though our analysis does not cover Linux binaries, we also aim to 

support Linux systems in the future. 

Before we run the symbolic execution, we configure S2E’s environment. First, we 

specify the starting point of the execution since we do not want S2E to analyze the 

binary program as it is. Instead, we make S2E to run our injector application, then, the 

application runs the binary program after it replaces API functions with the modeled 

ones. Next, we disable some of the default plugins brought by the S2E in order not to 

slow our analysis down [57]. 

After the configuration, we run S2E who runs the injector which executes the binary 

program that is linked to our function models, symbolically. During the symbolic 

execution, S2E traverses the program branches according to detail level, i.e. using 

concrete or symbolic return values.  

If all function models return symbolic values, S2E traverses all the branches. Otherwise, 

it traverses only a subset of the total branches with respect to the function return value. 

When S2E visits a function model in a branch, the model creates an execution trace 

without calling any other Windows API functions. S2E stops after it visits all the 

possible branches or the user terminates the execution. 

S2E helped our analysis by providing an execution environment where we can collect all 

function traces to extract function call sequences of the binary program. Since it runs the 

program symbolically, it traverses all possible branches and invokes the function models 

in all possible combinations. When a function model returns a symbolic value, S2E 

marks the memory area of the value as symbolic. Whenever this memory area is used in 

a statement, S2E creates, if not exists, a path condition by keeping the symbolic value as 

unknown. If the statement is a control statement, such as an if statement or a for loop, it 

forks a new execution branch and duplicates the path condition and updates with the 

new condition.  

For example, in Figure 6 GetRandomInteger function returns a symbolic value and this 

value is used in conditional statements <A> and <B>. When S2E reaches the statement 

in <A> it forks the branch execution and duplicates the current path condition which is 

empty right now. Then, it appends the path condition of the left branch with the 

mathematical equation that satisfies the condition. If the condition is mathematically 

correct, it continues to execute the branch. Otherwise, it stops the execution. Similarly, 

S2E appends the right branch’s path condition with the unsatisfying condition and 
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checks the satisfiability of the equation. When S2E reaches statement <B>, it forks the 

branch execution again, duplicates the current path condition, and appends them with 

corresponding conditions.  

 

 
 

As a result, whenever a function model returns a symbolic value, S2E runs symbolic 

execution to discover all possible branches. So, it makes our toolset capable of 

discovering even the hidden execution branches where it uses their function traces to 

extract hidden call sequences. In other words, if all function models return symbolic 

values, our methodology discovers all possible call sequences. However, to avoid the 

state space explosion problem, we do not recommend all functions to return symbolic 

values. Users may select certain functions to return desired concrete values using detail 

level input after seeing the exact values of symbolic variables. So, users may keep the 

balance between path discovery and symbolic execution performance.  

After symbolic execution, our analysis parser module processes the execution log of S2E 

including the trace generated during the dynamic symbolic execution. This module 

extracts three kinds of information that we are interested in the execution output.  

The first one is fork information. Whenever S2E reaches a control statement, it forks 

another execution path when the statement depends on a symbolic value and logs it to 

the output. Although we trigger forking via our function models to discover hidden 

program branches, it complicates the traceability of the execution. Therefore, it is 

essential to use fork information to trace S2E output in the correct order; so, our analysis 

parser extracts this information to make sense of other output information. 

The second one is function traces. Every model emits its function trace whenever S2E 

invokes it. Our parser extract function traces to create function call sequences of the 

binary application. However, function traces are not meaningful by themselves since 

Figure 6 : Sample Path Condition Generation 
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S2E does not invoke functions in branch order. Therefore, our parser uses fork 

information to put function traces in order and creates the function call sequences. 

The third one is the function evidences. Even though they are generated in a similar way 

with function traces, their form differs from them as we show in Figure 4. Therefore, we 

handled them separately. 

Our analysis parser starts with discarding all the unnecessary data from the output of 

S2E. That is, it discards all the information other than fork, function traces and function 

evidences. Afterward, it uses fork information to put function traces in order and it 

achieves complete function call sequences for different program paths. Then, it also puts 

function evidences in order and finishes its job. 

3.6 Analyzing the Call Sequence 

In order to detect malicious sequences in the binary program, we create a module using 

Python called log analyzer. Log analyzer reads each call sequence of the binary 

program, extracted by analysis parser, and compares it with respect to the malicious 

function sequence, provided by the user. The log analyzer tries to match each malicious 

call sequence function in the correct order inside the program call sequence using a 

regular expression match. Meanwhile, in order to eliminate a sequence hiding attempt, 

our analyzer neglects irrelevant function calls inside the program call sequence while it 

is looking for the next malicious function. 

 

 

 

For example, in order to satisfy the requirement of the DLLInjection sequence, shown in 

Figure 2, the program binary should have a call sequence containing all the functions of 

the malicious sequence in the given order. Recall that the sequence is specified as 
DLLInjection, OpenProcess, VirtualAllocEx, WriteProcessMemory, CreateRemoteThread 

where the first element is the name of the attack. However, a call sequence of the binary 

program may be in the form shown in Figure 7. In this case, our algorithm starts by 

searching for the OpenProcess function inside the call sequence of the binary program. 

If the algorithm finds a match, it continues to search for the next function, 

VirtualAllocEx. After matching the VirtualAllocEx function, the log analyzer tries to 

find the next one WriteProcessMemory. However, the call sequence of the binary 

program contains GetCommandLineA and GetFileSize functions before the 

WriteProcessMemory function. In such a case, our algorithm discards these unexpected 

functions as they may be put in order to hide the malicious sequence. Also, there would 

Figure 7 : Sample Program Call Sequence 
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be a repetition in the call sequence of the binary program. For example, instead of the 

GetCommandLineA function, there could be another VirtualAllocEx function. Then, our 

algorithm also ignores the repetition as it searches for the WriteProcessMemory 

function. Finally, our algorithm finds the match for the CreateRemoteThread function 

inside the call sequence. When our log analyzer matches all the functions inside the 

malicious sequence input, it warns the user and stops the analysis. In the result, it shows 

the name of the matching sequence, DLLInjection. 

In some cases, the malicious call sequence input may contain pipe symbols ‘|’ to indicate 

function variance. Whenever our log analyzer module encounters this symbol, it accepts 

the function either on the left or right side of the pipe symbol as a match. For example, if 

the malicious call sequence input is given as in Figure 8, our log analyzer module again 

warns the user if it matches with the function GetFileSize instead of the 

WriteProcessMemory function. 
 

 

3.7 Displaying Evidences 

In order to support the results of the call sequence analysis, our log analyzer module also 

shows function evidences for the program paths containing malicious function 

sequences. So, even though our tool set produces a false-positive result, it supports the 

decision by displaying evidences. In this way, the user avoids making false decisions 

since evidences consolidate the analysis result by bringing the power of manual 

investigation. Furthermore, evidences accelerate early iterations of the analysis. That is, 

it guides users to decide whether they need to increase the detail level of the analysis or 

not.  

Figure 9 shows a sample program for displaying evidences and a sample for generated 

function models are shown in Figure 10. The program in Figure 9 starts with a variable 

declaration of dayOfMonth in line 3. Then, the program calls Function_A with the 

parameter 60000 and uses dayOfMonth variable to call Function_B. Next, if Function_B 

sets the variable value to 15, the program calls Function_C with a string value “C:/” 

otherwise program ends with status value 0.  

 

Figure 8 : A Sample Malicious Call Sequence with a Pipe Symbol 
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Figure 9 : Sample Program for Displaying Evidences 

Figure 10 : Sample Function Models for Displaying Evidences 
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During the analysis of the sample program shown in Figure 9, assume that only 

Function_B is configured to return symbolic value. The evidence output generated for 

this program is shown in Figure 11. In the output, we display 2 types of evidences: 

function evidences and execution evidences. The function evidences start after the 

EVIDENCES :: tag and their content consist of the function names encountered along 

the execution path and their input arguments. Our analyzer module presents the function 

evidences in human-readable form as they are emitted by the function models. Execution 

evidences are the rest of the data shown in Figure 11 which our log analyzer combines in 

the end of the analysis. 

The first line of Figure 11 shows the analyzed call sequence name. Then, the log 

analyzer displays a warning message by giving the encountered malicious input 

sequence. Next, our log analyzer shows the complete malicious sequence. In the 

EVIDENCES:: section, the log analyzer displays the function evidences as they are 

created by the function models. Each line starts with the name of the function model 

given in the square brackets. Then, evidence information follows in curly brackets. For 

example, the first function evidence indicates that the function model of Function_A is 

called with a value that suspends the execution by 60000 milliseconds. Similarly, second 

function evidence indicates that the function model of Function_C deletes the directory 

“C:/”. 

After the TestCaseGenerator tag, our log analyzer displays symbolic return values of the 

model functions in little-endian byte order and ASCII formats. The meaning of the byte 

fields strongly depends on the function's return type. In our sample, Function_B returns 

an integer value symbolically with the length of 4 bytes. The value is set to 15 in 

decimal. Detailed usage of a symbolic return value is explained in section 4.2.2. 

 

 
Figure 11 : Sample Evidence Output 
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3.8 Model Refining 

After examining the evidences, users may want to perform future analysis on the binary 

program to achieve better results. In this case, our methodology supports users to re-

analyze the program using different settings. For example, if the analysis stops after 

executing a certain function, users may modify the default return values shown in Table 

2 or they may modify the detail level of the analysis to use symbolic return values rather 

than the concrete ones. So, our methodology allows users to analyze the binary program 

iteratively to achieve better results by providing a configurable toolset.  
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      CHAPTER 4 

 

 

4 EXPERIMENTS 

 

 

 

In this chapter, we show our experimental work on our methodology. First, we present 

the experimental setup where we conduct our experiments. Next, we show the 

effectiveness of our methodology by analyzing a synthetic and an actual malware. 

4.1 Experimental Setup 

We evaluated our methodology on a virtual machine running on a desktop with a 3.30 

GHz Intel(R) Core(TM) i5-6600 CPU and 32GB of RAM. The virtual machine had 

16GB RAM and was running Ubuntu 20.04.1. Besides, the virtual machine performed 

symbolic execution on S2E’s QEMU environment running Windows 10 Pro 1909 

x86_64.  

In order to evaluate our methodology, we implemented our modules in a combination of 

C++ and Python. We developed 6 modules namely: model generator, library finder, 

analysis parser, log analyzer, a DLL file having function models, and injector 

application. We wrote the DLL file and injector modules in C++ and they are around 

2500 lines of code. On the other hand, we implement the rest of the modules in Python 

and they consist of about 600 lines of code. 
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4.2 Experiment 1: Synthetic Malware 

4.2.1 Synthetic Malware 

In order to show the capabilities of our methodology, wrote a synthetic malware and 

analyzed it. Our malware uses two techniques to hide its malicious activity: system time 

discovery [58] and sandbox evasion [59]. Then, it performs DLL injection using a DLL 

file we wrote. 

Malware such as Friday 13th [60], Chernobyl [61], and FatDuke [62] use system time 

discovery techniques to prevent detection by delaying its malicious behavior until a 

specified time which is also called a time-bomb. In our malware, we also used this 

technique to show that our methodology can reveal hidden malware behavior, hidden 

program branches, and analyze all possible call sequences to detect a malicious sequence 

in program binary. Figure 12 shows the corresponding code segment. We programmed 

our malware so that it performs its malicious activity on 10th of November 2040.  In 

Figure 12, detecting a time bomb appears to be a straightforward process since we can 

access the source code of the malware. However, it is a highly complex task to detect 

such a code segment in a binary program using obfuscation methods such as packaging 

and encryption.  

We also add a system check technique to perform sandbox evasion [59]. It is a hiding 

technique that malware such as Astaroth, Evilnum, MegaCortex, and RogueRobin [59] 

uses to conceal its malicious behavior if the malware infers that it is under analysis. The 

malware checks system artifacts associated with the sandbox environment, such as 

device names, available memory, and CPU core, to evade it. So, we put a CPU core 

count control in our malware to show that our methodology can collect the call 

sequences hidden behind sandbox evasion. Figure 13 shows our malware’s code snippet 

performing sandbox evasion. In the code, we allowed malware to activate if the target 

device has four or more CPU cores. 

After using system time discovery and sandbox evasion techniques our synthetic 

malware performs its malicious behavior, process injection. Process injection is the 

technique that malware injects arbitrary code into a live separate process in order to 

make the live process perform the malicious activity. So, malware evades from defense 

mechanisms, such as anti-viruses, and access privileges of the live process. In order to 

show that our methodology is capable of detecting a malware technique that a signature-

based system cannot discover, we used it in our experiments. 
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According to Mitre ATT&CK [63] process injection has 11 sub-techniques and we used 

the dynamic-link library (DLL) injection technique in our malware [64]. In this 

technique, the malware performs Windows API calls to inject a DLL file into a separate 

live process. First, the malware injects the path of the DLL in the address space of the 

process. Then, malware invokes a new thread to load the DLL and the new thread runs 

the code, the malicious activity, inside the DLL. As a result, the process performs the 

malicious activity with its privileges and malware stays hidden. As we already know the 

malicious call sequence of a DLL injection technique, shown in Figure 2, we decided to 

use it in our experiment and we used the data in Figure 2 as input to our experiment. The 

source code of our malware is given in APPENDIX A. 

Figure 12 : Time Bomb Code Snippet 

Figure 13 : Sandbox Evasion Code Snippet 
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4.2.2 Experiment1 and Results 

In the analysis, the decompiler found 15 dynamically linked functions. However, our 

toolset only modeled 9 of them as our methodology is only interested in the functions 

that belong to Windows API and these functions cover 100% of the Windows API 

functions used in the binary program. Table 3 shows dynamically linked functions 

extracted by the decompiler. Then, our model generator automatically creates models for 

the chosen functions. In total, around 150 lines of C++ code are created automatically. 

Even though our decompiler did not extract it, we modeled the ExitProcess function of 

the Windows API to increase the traceability of our call sequences. 

To avoid state space explosion, we make all function models return concrete values at 

the beginning of the analysis. However, when we analyzed the function call sequences, 

we realized that the malware did not call any function after certain ones. For example 

GetLocalTime, GetSystemInfo and GetModuleHandleW functions were the last 

functions that we detected in call sequences. Therefore, we used expert opinion to 

change the default return values we show in Table 2. Then, we regenerate the models 

and run the analysis again to discover new paths. Furthermore, we modified the detail 

level of the analysis so that the functions returning simple C structs, such as 

GetLocalTime and GetSystemInfo, return symbolic values.  

 

Table 3: Synthetic Malware Dynamically Linked Functions 

Function Name Model  Function Name Model 

_errno No  GetSystemInfo Yes 

CloseHandle Yes  Memcpy No 

CreateRemoteThread Yes  memmove No 

exit No  OpenProcess Yes 

free No  VirtualAllocEx Yes 

GetLocalTime Yes  wcstol No 

GetModuleHandleW Yes  WriteProcessMemory Yes 

GetProcAddress Yes    

 

Depending on the complexity of the binary program and the number of symbolic 

variables, the symbolic execution may take long hours. In order to avoid state space 

explosion and see the effects of modifications as soon as possible, such as detail level, 

we put a time limit for the symbolic execution. So, the symbolic execution engine run 
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until either execution finishes or the timer for execution expires. During the experiment, 

we saw that approximately 10 minutes of execution provide enough information to 

conclude the analysis.  

Our log analyzer extracted the malicious call sequence given in Figure 14. In this figure, 

each line corresponds to a model invocation. The first element in a line shows the 

elapsed time, in seconds since the symbolic execution started. The second element 

shows the state number during the symbolic execution and the third one shows the 

invoked function model name. 

 

 
 

 

Figure 14 : Synthetic Malware Malicious Call Sequence 

Figure 15 : Symbolic Execution States of Synthetic Malware 
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In Figure 15, we showed the symbolic state creation of our malware. We mark each 

decision point with < and > signs in the code and put a diamond shape for its program 

flow performed by the symbolic execution engine. Our log analyzer module creates the 

first two lines of the call sequence, in Figure 14, according to the flow we show in 

Figure 15. Then, it extracts the rest of the call sequence since the symbolic engine calls 

our model functions according to our malware’s activity we show in  APPENDIX A. 

To detect the DLLInjection attack, we used a malicious call sequence input in the 

literature [16] where we show in Figure 2. Then, our log analyzer module detected the 

malicious sequence and generated the results in Figure 16.  The first line in the result 

shows the analysis step. In this case, our log analyzer module analyzes the call sequence 

in Figure 14. Then, it prints a warning message that DLLInjection sequence is detected. 

Next, it prints the malicious sequence of DLLInjection and shows the evidences.  

 

 
 

Our log analyzer displays the evidences after EVIDENCES tag of Figure 16. Each line 

starting with square brackets shows evidence created by a function model and 

corresponding evidence information is presented between the curly brackets. For 

example, the GetModuleHandleW function created evidence for the requested access to 

kernel32.dll module and the GetProcAddress function indicated the access request for 

the LoadLibraryA function.  

 

Figure 16 : Synthetic Malware Analysis Result 
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Moreover, our log analyzer displayed the symbolic return values of the function models 

satisfying the program path that generates the call sequence in Figure 14. The return 

types of the functions that return symbolic data are shown in Figure 17 and Figure 18. In 

Figure 16, v0_LocalTime_0 represents the symbolic value of the GetLocalTime function 

model and its C++ struct is shown in Figure 17. The figure suggests that the first 2 bytes 

of the symbolic value, 0xf8 and 0x7, represent the wYear element of the 

_SYSTEMTIME struct. These bytes denote the year 2040 in little-endian format. 

Similarly, next 2 bytes, 0xb and 0x0, represents the wMonth element and it is 11 in 

decimal. Finally, 4th byte pair in v0_LocalTime_0 represents the wDay field and it is 10 

in decimal. 

 
 

 

Figure 17 : Return Struct of GetLocalTime Function [70] 

Figure 18 : Return Struct of GetSystemInfo Function [71] 
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v1_SystemInfo_1 represents the symbolic value of GetSystemInfo function model and 

we show its C++ struct in Figure 18. The bytes between 21st and 24th represent the 

dwNumberOfProcessors field of the struct. During the analysis, the symbolic engine 

resolved the field as 128 in decimal which satisfies line 22 in Figure 15. 

In the end, our methodology captured the DLL injection attack of our malware whose 

cyclomatic complexity is 11. The symbolic execution of the malware took 190 seconds 

with 2 symbolic return values and 4 program branches. Although our methodology 

achieved 50% branch and 69% line coverages, the toolset executed 100% of the 

Windows API functions invocations of the malware It is also possible to achieve 100% 

branch coverage by using detail level input, but it is not a cost-effective solution as the 

toolset already detect the malicious sequence with less symbolic variables.  

After we examined the evidences, we concluded that our malware performs a DLL 

injection attack on November 10, 2040 if it is not running on a virtual machine. During 

the DLL injection attack, first, it opens a process whose ID is 123. Then, it retrieves the 

kernel32 library and loads the LoadLibraryA function. Next, it allocates the process 

memory for 13 bytes and inserts ‘malicious.dll’ text in the memory. Finally, it creates a 

remote thread. This experiment shows the detection capability of our methodology with 

respect to the malware using evasion techniques.  

4.3 Experiment2: WannaCry 

4.3.1 WannaCry Malware 

In order to show that our methodology is also applicable to analyzing real-world 

problems, we analyzed WannaCry ransomware. As of its first report in May 2017, 

WannaCry has spread to more than 150 countries. It uses a Windows vulnerability, 

MS17-010, to gain access to the systems and it encrypts user files. Then, it demands 

Bitcoin worth $300 or $600 to decrypt the data [65]. Malware analysts identify the 

malware as it is composed of two components namely, worm and encryption. The initial 

component behaves as a package containing the encryption component. As a sandbox 

avoidance mechanism, it tries to access a web page. If it connects to the page 

successfully, it stops its malicious behavior. Otherwise, it extracts the encryption 

component from its resource and executes it. After that, the encryption component 

changes the file attributes in its directory and starts encryption [3] [66]. In this 

experiment, we run our analysis on the encryption component.  

In order to make sure that we analyze the correct malware component, we calculated 

sha256 and md5 hashes of the malware. Then, we verified the calculated values using a 

previous study [66] and a malware database [67]. The md5sum value is calculated as 
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84c82835a5d21bbcf75a61706d8ab549 and the sha256sum value is calculated as 

ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa. 

4.3.2 Experiment2 and Results 

In the analysis, the decompiler found more than 105 dynamically linked functions and 

we are interested in 64 of them. Table 4 shows the chosen functions. Then, our model 

generator automatically creates models for the chosen functions and generates around 

1100 lines of C++ code automatically. 

Next, to analyze behavior, we create a malicious call sequence, shown in Figure 19, by 

using our previous experience in synthetic malware, explained 4.2. In this way, we set 

our log analyzer module to create a warning if any one of the WriteProcessMemory, 

LoadLibraryA, or GetProcAdress functions are invoked. 

 

 

 

 

Figure 19 : Malicious Call Sequence Input of WannaCry Analysis  

Figure 20 : WannaCry Malicious Call Sequence 
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Table 4: Generated Function Models for WannaCry 

 

 

CloseHandle GetModuleHandleA RegCloseKey 

CloseServiceHandle GetProcAddress RegCreateKeyW 

CopyFileA GetProcessHeap RegQueryValueExA 

CreateDirectoryA GetStartupInfoA RegSetValueExA 

CreateDirectoryW GetTempPathW SetCurrentDirectoryA 

CreateFileA GetWindowsDirectoryW SetCurrentDirectoryW 

CreateProcessA GlobalAlloc SetFileAttributesW 

CreateServiceA GlobalFree SetFilePointer 

CryptReleaseContext HeapAlloc SetFileTime 

DeleteCriticalSection HeapFree SetLastError 

EnterCriticalSection InitializeCriticalSection SizeofResource 

FindResourceA IsBadReadPtr Sleep 

FreeLibrary LeaveCriticalSection StartServiceA 

GetComputerNameW LoadLibraryA SystemTimeToFileTime 

GetCurrentDirectoryA LoadResource TerminateProcess 

GetExitCodeProcess LocalFileTimeToFileTime VirtualAlloc 

GetFileAttributesA LockResource VirtualFree 

GetFileAttributesW MultiByteToWideChar VirtualProtect 

GetFileSize OpenMutexA WaitForSingleObject 

GetFileSizeEx OpenSCManagerA WriteFile 

GetFullPathNameA OpenServiceA  

GetModuleFileNameA ReadFile  
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Our log analyzer module discovered the call sequence shown in Figure 20. This 

sequence has the malicious call sequence we specified in Figure 19 and our log analyzer 

displayed evidences shown in Figure 21. Evidences show that, first, WannaCry gets the 

handle for itself as it passes the NULL parameter to the GetModuleHandleA function 

[68]. Then, it sets its current directory to its current directory and it creates a registry key 

with the name WannaCrypt0r under Software tab. Next, it hides all the files in its current 

directory by using ‘attrib +h’ command [69] and waits approximately 30 minutes. After 

it terminates an operation with a failure status, it grants full access to all the files in its 

current directory and below using ‘icacls . /grant Everyone:F /T /C /Q', in directory’. 

Then it waits again around 30 minutes and terminates the process with a fail status. 

Lastly, it loads a library called ‘advapi32.dll’ and loads 6 functions responsible for 

encryption.  

 

 
 

When we examined the evidences, we concluded that WannaCry performs suspicious 

operations such as creating a registry key with an unusual name, hiding files, granting 

open accessibility for everyone, and importing encryption functions. Even though all of 

our function models return concrete values, our toolset invoked 25% of the function 

models in a single symbolic execution run and generate meaningful evidences for the 

malicious behavior. This shows the applicability of our methodology to a real-world 

problem.  

Figure 21 : WannaCry Analysis Result 
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4.4 Discussion 

In the synthetic malware experiment, our methodology detected DLLInjection attack 

even though the malware uses evasion techniques, such as time discovery and sandbox 

evasion, to hide its malicious activity. In this way, we showed the effectiveness of our 

methodology with respect to the traditional behavioral and API analysis techniques. Our 

toolset found 100% of the Windows API functions using the decompiler and modeled 

these API functions using around 16 lines of C++ code per function model. As we used 

our expert knowledge to choose two functions that return symbolic values, our 

methodology captured the malicious call sequence even though the symbolic execution 

achieved 50% branch coverage and 69% line coverage. Furthermore, the symbolic 

execution invoked 100% of the modeled functions at least once. Also, as we chose the 

rest of the functions to return concrete values, the symbolic execution step only took 190 

seconds and did not suffer from the state-space explosion problem. In the end, our 

toolset successfully found out that the synthetic malware attempts a DLLInjection attack 

on November 10, 2040 to a process whose ID is 123 if the running device has 8 CPU 

cores.  

 

In the WannaCry experiment, we have shown that our methodology applies to a real-

world problem. Our toolset found 105 dynamically linked functions models. According 

to [66], this number represents 91% of the total function imports. When we include the 

encryption functions that our toolset extracted during the symbolic execution the 

percentage rises to 97% although we only use concrete values during the analysis. Our 

toolset modeled 56% of the imported functions as it only modeled the Windows API 

functions. Then, generated 17 lines of C++ code per function model.  As we only use 

concrete values during the symbolic execution, our toolset did not experience any state-

space explosion problems and the symbolic execution took less than a second. 

Furthermore, we achieved to invoke 25% of modeled functions only using concrete 

values in a single symbolic execution by configuring the detail level input. In the end, 

our toolset explicitly displayed the evidences that the usage of Windows commands, 

such as attrib and icalcs, and the Windows API functions. Thus, it showed the users 

whether the program they were analyzing was behaving in an unexpected way. Our 

evidences also showed that, like the synthetic malware, WannaCry also uses time 

functions to delay its execution. Even though it does not use a time bomb, it delays the 

execution by an hour.  

 

There studies, such as [4] and [16], using control flow diagrams and DNA squences to 

show their performance for detecting API call sequences. However, this information is 

insufficient to guide the user to better decisions. To the best of our knowledge, there are 

no studies that show human-readable evidences for the user to improve their analysis 

results and validate the decision made. 
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In summary, our methodology can detect malicious behavior behind time bombs and 

sandbox evasion techniques by using a malicious call sequence and symbolic variables. 

It is also applicable to a real-world problem even though we do have a sequence that is 

given in the literature and using only concrete values.  

 

 

 

Assumptions. In our methodology, we assume that: 

• Users have at least one known malicious API call sequence in advance to analyze 

a binary program. 

• The malicious API call sequence does not commonly exist in benign software so 

that our methodology does not produce false-positive results.   

• The binary program contains at least as many API calls as a malicious API call 

sequence to perform a reasonable analysis. 

• The symbolic execution engine either calls the function models in a single 

execution thread or provides state information so that function models’ execution 

order can be extracted. 

• Function models are not forced to make actual Windows API calls so that the 

symbolic execution platform does not dive into the depths of system calls which 

may hinder symbolic execution performance.  

• Users utilize evidence information to improve function models so that the 

symbolic execution platform does not suffer from state-space explosion 

problems.  

 

Constraints. Even though our methodology provides a general solution for malware 

analysis, we create our toolset to show the feasibility of our approach and the toolset has 

the following constraints: 

• It only analyzes 32-bit binary programs. 

• It only supports the analysis of binary programs for Windows. 

• It detects the malicious behavior only if the binary program contains a known 

malicious API call sequence. 
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      CHAPTER 5 

 

 

5  CONCLUSION 

 

 

 

In this thesis, we develop a methodology for detecting malicious behavior in a binary 

program with API call sequence analysis using dynamic symbolic execution for the 

Windows platform. Using our methodology, we implement an extensible toolset that 

supports users to utilize the latest developments in the API call sequence literature. Also, 

we present a configurable API function modeling approach to avoid the state-space 

explosion problem of symbolic execution by enabling users to decide return values of 

the function models to either concrete or symbolic using detail levels.  

In order to show the effectiveness of our methodology, we analyzed a synthetic malware 

performing DLL injection attack and a real-world malware called WannaCry. Our 

toolset generated more than 1200 lines of C++ code and modeled 75 Windows API 

functions for the analysis of these malware. In our experiments, we showed that our 

approach of combining function models and dynamic symbolic execution is a feasible 

way of detecting API call sequences of a given binary program. Also, we demonstrated 

the capability of our toolset by detecting a DLL Injection attack even though it is hidden 

behind obfuscation techniques such as time discovery and sandbox evasion. During the 

experiments, we also showed that our function models provide observable evidences for 

generating API call sequences to analyze a real-world problem. Our toolset successfully 

discovered a call sequence of WannaCry ransomware and generate evidences for its 

activities such as importing encryption functions, hiding files, granting file 

accessibilities, and creating registry keys.  

Limitations. So far, our toolset is only capable of analyzing 32 bit Windows binary 

programs. Also, it does not have the capability of analyzing statically linked functions. 

Therefore, its function models are only limited to dynamically linked functions. In order 

to avoid state space explosion, our models support concrete return values. However, 

using concrete values may hinder the capability of detecting hidden branches.  

Moreover, our system is not capable of creating malicious function call sequences by 
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itself, instead, the user provides the sequence as an input. Also, our system detects 

malicious behavior if the call sequence of the behavior is already known. 

 

Future Work. We plan to model a complete set of Windows API functions. So that, we 

can reduce one step from our methodology, dynamically linked function extraction. 

Furthermore, we are also interested in supporting 64 bit Windows programs, Linux 

systems, and statically linked functions in the future. 
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