# INVESTIGATION OF WATER-WASTE ROCK INTERACTIONS RELATED ENVIRONMENTAL EFFECTS IN ÇELTİKÇİ COAL FIELD, ANKARA - TURKEY

# A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

# FERHAT KALKAN

## IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING

JUNE 2021

## Approval of the thesis:

# INVESTIGATION OF WATER-WASTE ROCK INTERACTIONS RELATED ENVIRONMENTAL EFFECTS IN ÇELTİKÇİ COAL FIELD, ANKARA - TURKEY

submitted by **FERHAT KALKAN** in partial fulfillment of the requirements for the degree of **Master of Science** in **Geological Engineering**, **Middle East Technical University** by,

| Prof. Dr. Halil Kalıpçılar<br>Dean, Graduate School of <b>Natural and Applied Sciences</b> |                  |
|--------------------------------------------------------------------------------------------|------------------|
| Prof. Dr. Erdin Bozkurt<br>Head of the Department, <b>Geological Engineering</b>           |                  |
| Prof. Dr. Mehmet Zeki Çamur<br>Supervisor, <b>Geological Engineering Dept., METU</b>       |                  |
| Examining Committee Members:                                                               |                  |
| Examining Committee Members.                                                               |                  |
| Prof. Dr. Serdar Bayarı<br>Geological Engineering Dept., Hacettepe Uni.                    |                  |
| Prof. Dr. Mehmet Zeki Çamur<br>Supervisor, Geological Engineering Dept., METU              |                  |
| Prof. Dr. Mehmet Çelik<br>Geological Engineering Dept., Ankara Uni.                        |                  |
| Assoc. Prof. Dr. Koray Kamil Yılmaz<br>Geological Engineering Dept., METU                  |                  |
| Assist. Prof. Dr. Ali İmer<br>Geological Engineering Dept., METU                           |                  |
|                                                                                            | Date: 24.06.2021 |

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name Last name : Ferhat Kalkan

Signature :

#### ABSTRACT

## INVESTIGATION OF WATER-WASTE ROCK INTERACTIONS RELATED ENVIRONMENTAL EFFECTS IN ÇELTİKÇİ COAL FIELD, ANKARA - TURKEY

Kalkan, Ferhat Master of Science, Geological Engineering Supervisor : Prof. Dr. Mehmet Zeki Çamur

### June 2021, 156 pages

The purpose of this research is to investigate the water-rock interactions related acid rock drainage potential, leachate chemistry and related processes under test conditions using potential waste rock samples (Bostantepe I, Lower Çavuşlar II and Upper Çavuşlar III) of Çeltikçi formation coal deposit and to predict the drainage leachate chemistry under atmospheric given pile conditions. Mineralogic, static (acid base accounting, net acid generation) test, short-term leach test and long-term kinetic test data are collected for the investigation. The samples include silicate, oxide and hydroxide types of minerals in addition to clay, carbonate, sulphate and sulphide minerals. The ARD potentials of test samples are in the order of I>II>III and do not have acid rock drainage potential in short and long terms. Low-high metal release could occur according to the short term and kinetic leach tests. Relatively high concentrations of As, Mo and SO<sub>4</sub> are detected. Hydrogeochemical modeling results based on prefeasibility pile assumptions and no remediation implementations suggest that pile leachates could be in acidic character under closed  $CO_2$  equilibrium conditions and in basic character in equilibrium with atmospheric  $CO_2$  conditions. The maximum environmental quality limits of Al, As, Fe, Pb, V in all simulated leachates and Cd/Cr/Zn parameters in some simulated leachates for the closed CO<sub>2</sub> equilibrium conditions and As, Si, V in all simulated leachates and Cd/Pb/Zn parameters in some simulated leachates for the atmospheric CO<sub>2</sub> conditions are

exceeded. Gradual conditions between the closed  $CO_2$  and the open to atmospheric  $CO_2$  cases would probably be developed under the field conditions. Sensitivity analyses indicate that concentrations show in general slight tendency to decrease when the infiltration amount increase, the number of rainy days decrease and the SI criteria decrease.

Keywords: Çeltikçi coal field, Acid rock drainage, static, kinetic, leach tests

# ÖΖ

# ÇELTİKÇİ KÖMÜR SAHASI PASA KAYAÇLARININ KAYAÇ-SU TEPKİMELERİNE BAĞLI ÇEVRESEL ETKİLERİNİN ARAŞTIRILMASI, ANKARA - TÜRKİYE

Kalkan, Ferhat Yüksek Lisans, Jeoloji Mühendisliği Tez Yöneticisi: Prof. Dr. Mehmet Zeki Çamur

#### Haziran 2021, 156 sayfa

Bu araştırmanın amacı, Çeltikçi formasyonu kömür yatağına ait potansiyel pasa kayaç örneklerini (Bostantepe I, Aşağı Çavuşlar II ve Yukarı Çavuşlar III) kullanarak, su-kavac etkilesimlerine bağlı asit kava drenaj potansiyeli, sızıntı suyu kimyası ve ilgili prosesleri test koşullarında incelemek ve atmosferik pasa koşullarında drenaj sızıntı suyu kimyasını tahmin etmektir. Araştırma için mineralojik, statik (asit baz muhasebesi, net asit üretimi) test, kısa süreli sızıntı testi ve uzun süreli kinetik testi verileri toplanmıştır. Örneklerde kil, karbonat, sülfat ve sülfit minerallerinin yanı sıra silikat, oksit ve hidroksit mineralleri gözlenmiştir. Test numuneleri ARD potansiyelinin I>II> III diziniminde olduğu belirlenmiş ve ayrıca numunelerin kısa ve uzun vadede asit kaya drenajı potansiyeline sahip olmadıkları sonucuna varılmıştır. Kısa süreli ve kinetik sızıntı testlerine göre düşük-yüksek konsantrasyonlarda metal salınımı meydana gelebilir. Nispeten yüksek As, Mo ve SO<sub>4</sub> konsantrasyonları gözlenmiştir. Ön fizibilite pasa varsayımları ve iyileştirme uygulaması yapılmayacağı varsayımlarına dayalı hidrojeokimyasal modelleme sonuçları; pasa sızıntı suyunun CO<sub>2</sub> değişimine kapalı system koşullarında asidik karakterde ve atmosferik CO<sub>2</sub> koşullarında ise bazik karakterde olacağına işaret etmektedir. Sistem karbondioksit değişimine kapalı olduğunda Al, As, Fe, Pb, V

konsantrasyonları tüm durumlarda ve Cd/Cr/Zn konsantrasyonları bazı durumlarda ve atmosferik CO<sub>2</sub> koşullarında ise As, Si, V konsantrasyonları tüm durumlarda ve Cd/Pb/Zn konsantrasyonları bazı durumlarda maksimum çevresel kalite limitlerinden fazla olabilir. Saha koşullarında muhtemelen kademeli açık-kapalı CO<sub>2</sub> koşulları gelişecektir. Duyarlılık analizlerine göre, infiltrasyon miktarı arttığında, yağmurlu gün sayısı azaldığında ve SI kriterleri azaldığında konsantrasyonlar genel olarak az da olsa azalma eğilimi gösterecektir.

Anahtar Kelimeler: Çeltikçi kömür sahası, Asit kaya drenajı, statik test, liç test, kinetik test

TO MY BELOVED FAMILY

FROM THEIR MIRROR...

### ACKNOWLEDGMENTS

First and foremost, the author would like to express his deepest gratitude to his thesis supervisor, Prof. Dr. Mehmet.Zeki Çamur, for his valuable guidance, criticism, great knowledge, patience, and encouragement throughout all process of this thesis study. The author also feels very lucky and honored to have worked with him in his career due to his continuous support, kindness, advice, and discipline, both on academic and on personal level.

The author would also like to thank Assoc. Prof. Dr. Fatma Toksoy Köksal for her guidance in the software and determining the minerals in the samples.

The author would like to thank to Asia Minor Mining Company for providing the samples and previous study hydrochemical data.

The author would like to sincere thanks to ENCON Laboratory for the analyses.

The author would like to express his special thanks and gratitude to his other guide, a perfect person, friend and colleague Timur Ersöz. Whenever author needs to have any kind of help and support including mental and technical, he always be ready and close to one door knocking or one message.

The author would like to thank his colleague, friend Çidem Argunhan Atalay for her valuable hydrogeological background in addition to her kindness to author. The author knows that he could overcome a problem in hydrogeological subject with the help of her.

The author also would like to thank his brothers from another mothers, Göktuğ Söğütcü and Tunahan Kılıç. Whenever the author needs support and mental therapy in the stressful times, they are one call away. Thank to them, the author never feels that he does not have siblings. Also, he would like to express gratitude to Tunahan Kılıç and Beyza Özdemir Kılıç for opening their door of their sweet and peaceful home for him to hang out and to have fun with games especially in these stressful pandemic period. Author is inevitably grateful to his friends Zeynep Bektaş as roommate, Özlem Karadaş as his kind soulmate psychologist, Doğukan Tayyar, Merve Atasu, Ceren Korucu, Damla Yener, Ekrem Utku İlgün, Selin Tansu Soysal, Bengül Bıyık, Ceren Yazıgülü Tural, Şeyma Baysal, Melisa Kaya, İrem Gözübüyük. Also, the author is grateful for his friend Akın Çil. When the author had in any trouble especially technologic ones, he is always eager to run and help to me immediately. Without them, author could not write this thesis consciously.

Finally, the author would like to express his sincere gratitude to his parents Zeynep Kalkan and Ahmet Kalkan. They are always behind the author to find the best path and to be strong since the day author was born. They do not hesitate to provide any opportunity that helps the author to improve himself. Also, author would like to give his lovely feelings to his cheerful and kind aunt, Gülümser Vural, who raised him in childhood and the aunt, Figen Kuluhan, who always wants the best for him. The last but not the least, author would like to thank his cousins & their spouses for not making the author feel that he does not have siblings.

This work is partially funded by M.E.T.U. Scientific Research Projects Division under grant number YLT 10127.

# TABLE OF CONTENTS

| ABSTRACTv                                                          |
|--------------------------------------------------------------------|
| DZvii                                                              |
| ACKNOWLEDGMENTSx                                                   |
| CABLE OF CONTENTSxii                                               |
| JST OF TABLESxiv                                                   |
| JST OF FIGURESxvi                                                  |
| CHAPTERS                                                           |
| INTRODUCTION1                                                      |
| 1.1 Purpose and Objectives                                         |
| LITERATURE REVIEW                                                  |
| 2.1 Acid Rock Drainage                                             |
| 2.2 Çeltikçi Coal Basin                                            |
| HYDROCHEMISTRY OF ÇELTİKÇİ FORMATION GROUNDWATER9                  |
| 3.1 Groundwater Quality15                                          |
| METHODOLOGY                                                        |
| 4.1 Sample Selection and Preparation17                             |
| 4.2 Determination of Mineralogical Properties of the Samples       |
| 4.3 Determination of Acid Rock Drainage Potential of the Samples21 |
| 4.4 Determination of Short-term Leachate Concentrations25          |
| 4.5 Sample Preparation for Column Kinetic Tests                    |
| 4.6 Determination of Column Kinetic Test Concentrations            |
| ROCK GEOCHEMISTRY                                                  |

| 6 |    | MI  | NERALOGY                                                   | .35 |
|---|----|-----|------------------------------------------------------------|-----|
| 7 |    | STA | ATIC TESTS                                                 | .43 |
|   | 7. | 1   | Modified Acid Base Accounting Tests                        | .44 |
|   | 7. | 2   | Net Acid Generation Tests                                  | .48 |
|   | 7. | 3   | Static Test Results Summary                                | .49 |
| 8 |    | SH  | AKE FLASK LEACH TESTS                                      | .53 |
| 9 |    | KI  | NETIC TESTS                                                | 59  |
|   | 9. | 1   | Grain Size Distributions and Surface Areas of Test Samples | .59 |
|   | 9. | 2   | Quality Control                                            | .60 |
|   | 9. | 3   | Test Results                                               | .61 |
| 1 | 0  | ΗY  | DROGEOCHEMICAL MODELING OF PILE SEEPAGE QUALITY .          | .83 |
|   | 10 | 0.1 | Hydrology and Pile Precipitation Infiltration              | 84  |
|   | 10 | 0.2 | Seepage Quality Prediction Results                         | .88 |
|   | 10 | 0.3 | Sensitivity Analyses                                       | .92 |
| 1 | 1  | RE  | SULTS AND CONCLUSIONS                                      | .95 |
| 1 | 2  | RE  | COMMENDATIONS                                              | 99  |
| R | EF | ERI | ENCES                                                      | 101 |
|   | A  | PPE | NDIX-A Previous Study Whole Rock Chemistry Data            | 107 |
|   | A  | PPE | NDIX-B Previous Study Shake Flask Test Data                | 111 |
|   | A  | PPE | NDIX-C Sample I Mixing Free Data Estimation                | 112 |
|   | A  | PPE | NDIX-D Kinetic Test Rate Values                            | 114 |
|   | A  | PPE | NDIX-E Example Thermodynamic Model Run Output              | 116 |
|   | A  | PPE | NDIX-F Previous Study Groundwater Analyses                 | 155 |

# LIST OF TABLES

| TABLES                                                                                 |
|----------------------------------------------------------------------------------------|
| Table 3.1. Field parameter measurements in the wells (Yazıcıgil et al., 2015)11        |
| Table 3.2. Groundwater quality according to the surface water quality limits and       |
| waste categorization criteria                                                          |
| Table 4.1. Test sample information                                                     |
| Table 4.2. Quality limits of MFW (2016) on the left, and MEF (2010) on the right.      |
|                                                                                        |
| Table 5.1. Average of the ratios of rock sample concentrations to those of the Upper   |
| crustal average                                                                        |
| Table 6.1. XRD results of the Sample I. 36                                             |
| Table 6.2. XRD results of Sample II                                                    |
| Table 6.3. XRD results of Sample III. 39                                               |
| Table 7.1. Static test measurements                                                    |
| Table 7.2. Static test evaluation results                                              |
| Table 7.3. AP, NP, NNP and NPR values determined by Sum of Sulphur-S-2 &               |
| Sulphur-SO4 concentrations and Sulphur-S-2 & insoluble S51                             |
| Table 8.1. Shake flask leachate test results. 53                                       |
| Table 8.2. Classification of short-term leach test results according to surface water  |
| and waste categorization limits                                                        |
| Table 9.1. Results of density and sieve analyses. 59                                   |
| Table 9.2. Duplicate sample percent deviation error of the parameters in kinetic test. |
|                                                                                        |
| Table 9.3. Room temperature values during the kinetic test                             |
| Table 9.4. Kinetic test results                                                        |
| Table 9.5. Average concentrations above detection limit parameters in kinetic test     |
| leachates74                                                                            |
| Table 9.6. Cumulative concentration production rates of samples in mg/kg/13 weeks.     |
|                                                                                        |

| Table 9.7. Classification of kinetic test leachate results according to the surface water |
|-------------------------------------------------------------------------------------------|
| and waste categorization limits                                                           |
| Table 10.1. Long term monthly average precipitation and temperature (Yazıcıgil et.        |
| al, 2015)                                                                                 |
| Table 10.2. Monthly water budget results. 88                                              |
| Table 10.3. Calculated pile pore water concentrations. 91                                 |
| Table 10.4. Classification of pile pore water concentration results according to the      |
| surface water and waste categorization limits                                             |
| Table 10.5. Calculated pile pore water concentrations of sensitivity runs for leachate    |
| 3 and Case II condition94                                                                 |
| Table 10.6. Classification of sensitivity run results according to the surface water      |
| and waste categorization limits                                                           |

# LIST OF FIGURES

| FIGURES                                                                                |
|----------------------------------------------------------------------------------------|
| Figure 1.1. Image of the study area2                                                   |
| Figure 3.1. The geological map of the study area (AMM, 2015)9                          |
| Figure 3.2. Generalized columnar section of the area (AMM, 2015)10                     |
| Figure 3.3. Lithology-based average values of pH, EC, DO and ORP in                    |
| groundwaters12                                                                         |
| Figure 3.4. Piper diagram showing groundwater facies of Çeltikci formation13           |
| Figure 3.5. Trace element concentrations of the groundwater samples14                  |
| Figure 3.6. Groundwater concentrations in Ficklin leachate categorization diagram.     |
|                                                                                        |
| Figure 4.1. Locations of sampled drill holes on the geological map of the area         |
| (AMM, 2015)                                                                            |
| Figure 4.2. Shake flask leach test photographs25                                       |
| Figure 4.3. The schematic view of column test equipment and photograph taken           |
| during the test on the right                                                           |
| Figure 5.1. The ratios of all rock sample concentrations to those of the Upper crustal |
| averages of Rudnick and Gao (2003)                                                     |
| Figure 6.1. Unoriented, and heat & acid treated XRD results of Sample I35              |
| Figure 6.2. XRD peaks of the Sample II                                                 |
| Figure 6.3. XRD peaks of the Sample III40                                              |
| Figure 7.1. AP and NP distribution. Lines represent the limits of NP/AP values         |
| (1 <np ap<3)45<="" td=""></np>                                                         |
| Figure 7.2. NNP vs NPR relationship. Below: Zoomed version of the same graph.          |
|                                                                                        |
| Figure 7.3. Relationship between NAG test EC and Sulphide% -Sulphur49                  |
| Figure 7.4. Summary graph of static tests. Above: NNP vs. NAG pH; Below: NPR           |
| vs. NAG pH50                                                                           |

| Figure 8.1. EC and pH plot of this study and the previous study results (taken from |
|-------------------------------------------------------------------------------------|
| Gladwell et al., 2014)                                                              |
| Figure 8.2. Durov diagram of samples for facies analyses                            |
| Figure 8.3. Leachate categorization in Ficklin diagram based on pH and trace metal  |
| ion content                                                                         |
| Figure 9.1. Grain size analyses of samples60                                        |
| Figure 9.2. Room temperature distribution during the kinetic test62                 |
| Figure 9.3. Kinetic test pH values (above) and percentage changes with respect to   |
| the irrigation water pH (below)                                                     |
| Figure 9.4. Variation of the EC values71                                            |
| Figure 9.5. EC-pH relationship. The dashed line represents the expected trend71     |
| Figure 9.6. Kinetic test leachate classification according to EC-pH values72        |
| Figure 9.7. Kinetic test leachate facies of the samples on Piper plot73             |
| Figure 9.8. Kinetic test leachate classification based on pH and trace metal ion    |
| content75                                                                           |
| Figure 9.9. Concentration production rates of the samples through the weeks78       |
| Figure 10.1. Monthly average temperature values                                     |
| Figure 10.2. Monthly average precipitation values                                   |
| Figure 10.3. Graph of monthly water budget components                               |

## **CHAPTER 1**

### INTRODUCTION

When rocks are taken out of their natural locations due to various activities (e.g. mining, tunneling, construction, etc.) and are piled as a waste under atmospheric conditions, they are subjected to chemical weathering, hence, alteration processes mainly occurring due to precipitation water-rock interactions. Such alterations are also controlled by the characteristics of the new environment and rocks (e.g., amount of water, duration of interaction, mineralogy, grain size, oxidation state, etc.). The water-rock interactions could introduce highly concentrated leachates, which could be acidic as well depending on mainly mineralogical characteristics, to the discharge environment. These drainage waters could cause environmental problems if necessary measures are not taken into consideration and are not implemented. Potentials of such environmental impacts could be assessed by hydrogeochemical prediction studies.

Çeltikçi basin rock units, located 50 km northwest of Ankara province (Figure 1.1), include coal deposits which are planned to be mined. Mining activities would produce waste rocks which will be piled in the area. Therefore, water-rock interactions for the waste rocks are needed to be evaluated and related potential impacts should be assessed.

Water-rock interactions related drainage water ion concentrations are generally determined/predicted by applying either theoretical or empirical modelling approaches. The theoretical approach is based on mineral-water reactions related thermochemical calculations (e.g., Allison et al., 1990, Parkhust and Appelo, 1999). However, especially due to solid-solution including mineral presence in the rocks, these type of models, in general, are used to study pure mineral-water interactions



Figure 1.1. Image of the study area.

for the prediction of the drainage water chemistry. In other words, predictions of these models might not be satisfactory for natural materials unless all the solid solution properties of the minerals in the rocks are known. On the other hand, in the empirical approach, site specific kinetic test concentration results from different areas are compiled and are fitted to equations using statistical methods (e.g. Morrin and Hutt, 2001). The results of such models should be subjected to thermodynamic restrictions to finalize the drainage chemistry. Application of empirical models suggest that satisfactory predictions could be achieved depending on how close the site characteristics to those of the compiled database.

The empirical approach related models are very few and their applicability is limited to metallic mine waste rocks-water interactions because of their database restrictions. Mainly due to the lack of enough data from different areas, such models do not exist for evaluations of non-metallic ore (e.g., coal) waste rocks-water interactions. Although coal deposit waste rocks produce non-acid leachates in general, metal leaching does present. In this study, site specific data are collected from potential waste rocks of Çeltikçi coal deposit to determine potential drainage chemistry and to produce data for the development of such empirical models to apply coal fields in future.

### **1.1** Purpose and Objectives

The purpose of this research is to investigate the water-rock interactions related acid rock drainage potential, leachate chemistry and related processes under test conditions using potential waste rocks of Çeltikçi formation coal deposit and to predict the drainage leachate chemistry under atmospheric given pile conditions.

Mineralogic, static (acid base accounting, net acid generation) test, short-term leach test and long-term kinetic test data collected for the investigation. In order to reach the purpose, the following objectives are aimed to be accomplished.

- (1) To determine bulk rock concentration anomalies.
- (2) To determine neutralizing and acid producing minerals in the rocks.
- (3) To estimate acid rock drainage potentials of the rocks.
- (4) To determine short term (easily dissolvable) water-rock interactions related leachate concentrations under test conditions.
- (5) To determine long term water-rock interactions related leachate concentrations under test conditions.
- (6) To estimate potential drainage leachate concentrations of the possible waste rock pile.

### **CHAPTER 2**

### LITERATURE REVIEW

#### 2.1 Acid Rock Drainage

Acid rock drainage (ARD), is the outflow of acidic water especially from mining operations including waste rock, tailings, and exposed surfaces in open pits and underground workings. Investigations of water-rock interactions are based on the evaluations of Acid Base Accounting (ABA), Net Acid Generation (NAG), short-term shake flask leach (SFL) and kinetic test results (EPA, 1994, MEND, 2009, GARD, 2014). These tests are used to evaluate the possible acid rock drainage potentials and metal release amounts. The MEND (2009) is considered as a pioneering guidebook for the ARD characterization in addition to the GARD (2014) guide.

Different neutralization potential (NP) and acid potential (AP) determination methodologies are available (e.g., Sobek et al, 1978; Lawrence and Wang, 1997; AMIRA, 2002). In standard ABA, AP is determined by total sulphur (%S) content that accepts all the sulphur is present as pyrite and the quantity of acid-consuming minerals is estimated by adding a known excess of acid to sample to measure the amount of acid consumed. On the other hand, in the modified ABA test, AP is determined by sulphide-sulphur (%S-S-2) content.

Variety of ARD and metal release related studied have been carried out for different mine sites in recent years (Capanema and Ciminelli, 2003; Benzaazoua et al., 2004; Weber et al., 2006; Méndez-Ortiz et al., 2007; Gautama and Kusuma, 2008; Hakkou et al., 2008; Plante et at., 2010; Campaner et al., 2014; Bouzahzah et al., 2014; Banerjee, 2014; Shoja and Salari, 2015; Gahardi and Bonotto, 2016; Qureshi and

Öhlander, 2016; Yucel and Baba, 2016; Battioui et al., 2016; Singh et al., 2017; Elghali et al., 2018).

Different chemical modeling approaches which could be grouped as empirical and theoretical, exist for the drainage chemistry predictions. Systematic empirical modeling studies have been performed by Morin and co-workers (Morin and Hutt, 1993, 1994, 2001; Morin, 1994; Morin et al., 1995; 2001). As a result, the Empirical Drainage Chemistry Models (EDCM) based on the concentration best fit relations, established using compiled kinetic test results from different metallic mine sites, are established (Morin et al., 2001). Comparisons of the predicted-observed ion concentrations from different mine sites suggest that although from different mine sites, similar models (similar concentration best fit relations) are produced. These empirical models are generally used to predict drainage chemistry for the mine sites which have lithological similarities to those of the database.

On the other hand, theoretical modeling is based on equilibrium thermodynamics approaches to the water-rock interactions. In these studies, different models such as MINTEQA (Allison et al., 1990) and PHREEQC (Parkhust and Appelo, 1999) with different databases such as WATEQ4F (Ball and Nordstrom, 1991), LLNL (Johnson et al., 1992) have been developed.

In addition to the concentration modeling, the drainage chemistry predictions require coupling of the porous media fluid flow modeling of the system (waste rock piles, open-pit areas, heap leach areas, etc.). The porous media fluid modeling approaches could also be grouped as empirical and theoretical. As to the theoretical approach, mostly the numerical solution based variety of porous media fluid flow modeling are available based on finite difference and finite element methodologies (McDonald and Harbaugh, 1988; Trefry & Muffels, 2007), which are not a subject of this study. Since mine-rock piles have rather complex hydrogeologic systems due to heterogeneities of the waste rocks and of hydraulic conductivities, a simplistic empirical model based on general knowledge and available data could be used to obtain rough estimates of the seepage chemistry through time rather than accurate

predictions based on detailed simulations of their internal processes as suggested by Morin and Hutt (1994). The major factors, that should mainly be considered in a simplistic empirical model are detailed by Morin and Hutt (1994) as geochemical production rates from the kinetic tests, infiltration of water, elapsed time between infiltration events, residence time of water within a pile (generally assumed to be equal to the elapsed time) and percentage of rock surface flushed by the water flow.

The remediation of the ARD is as important as its characterization. Numerous strategies have been proposed to control ARD (e.g., Kleinmann, 1990; Johnson and Hallberg, 2005). These strategies could be grouped as chemical and biological efforts. Some major strategies include the followings: (a) addition of lime/limestone or fly ash for neutralization (Sahoo et al., 2013; Skoussen et al., 2018) processes, (b) application of permeable reactive barriers (either physico-chemical or bacterial), which includes subsurface insert of reactive materials through which a dissolved contaminant can move as it flows (Ayala-Parra et al., 2016). The remediation processes are not a subject of this study.

## 2.2 Çeltikçi Coal Basin

The earliest work for the coal potential in the area is conducted by MTA geologist Becker (1957a, 1957b) who recognized the coal at 38 outcrops and made descriptions of these coal seams. The area is later studied in more detail again by MTA geologists (Akyol, 1968 and Turgut, 1978) who provided certain details and prepared geological map at 1/25.000 scale. MTA started a drilling program in the region for the coal exploration. Çeltikçi coal deposit is planned to be exploited for termal power plant operation by AMM company at present. Pre-operation works are currently underway.

The major recent geological studies in the project area in detail were carried out by AMM (Asia Minor Mining) company (Rojay, 2013; AMM, 2014, 2015). The hydrochemical studies related partly to the subjects of this thesis work include

studies of Yazıcıgil et al. (2014, 2015). The ARD related single static test study was performed by Gladwell et al. (2014).

The baseline hydrogeology of the area was characterized by Yazıcıgil et al. (2014). Development of groundwater flow model, dewatering system design and possible effects on groundwater for Çeltikçi coal basin were the main subjects of Yazıcıgil et al. (2015) studies. With the contribution of this study, Kahraman (2014) conducted a thesis study about hydrogeological characterization and investigation of the Çeltikçi coal basin. In these studies, it is concluded that there are three main aquifers in the study area. Stratigraphically from top to bottom, the first one is Quaternary aged alluvium deposits, the second one is Bezci-Aktepe-Kocalar unconfined aquifer, and the third one is Volcanic-Çavuşlar aquifer. Open pit dewatering system designs were simulated using groundwater flow models. It is estimated that groundwater levels could be decreased to desired levels at the earlier mine operation period but the levels could not be decreased to desired target values toward the end of operation.

Static test (whole rock, ABA, SFL) results of both coal and Çeltikçi formation rocks were evaluated for the investigation of ARD potentials by Gladwell et al. (2014). These results collected using fifty-six core samples from nine drill cores were also re-evaluated in this work in related chapters. No kinetic test has been carried out for the rocks so far.

Varlı and Yilmaz (2018) worked on surface water-groundwater interactions in the area by using thermal sensing and in-stream measurements. They concluded that the Kirmir stream channel areas can be seperated into three different sections as 1) the downstream section where the stream is gaining, 2) the upstream section where the stream is loosing and 3) the middle section where stream exhibits both gaining and losing seasonal variability.

## **CHAPTER 3**

## HYDROCHEMISTRY OF ÇELTİKÇİ FORMATION GROUNDWATER

The geological map and the generalized columnar section of the study area are shown in Figure 4.1 and **Hata! Başvuru kaynağı bulunamadı.**, respectively. The units outcropping in the area are stratigraphically lined from bottom to top as basic volcanics, Çeltikçi formation sedimentary units, Plio-Quaternary sedimentary units and Quaternary alluvium.



Figure 3.1. The geological map of the study area (AMM, 2015)

All Miocene units having conformable relationship in the area are named as Çeltikçi formation by AMM (2015). All mappable units within this formation are classified as members and divided into seven. These members stratigraphically from bottom to top are called as; Bostantepe, Lower Çavuşlar, Upper Çavuşlar, Abacı, Kocalar, Aktepe and Bezci. The coal levels are located at the base of the Upper Çavuşlar member. These levels have not been considered as a separate member by AMM (2015) in terms of mappability, therefore are not shown in the geological map.



Figure 3.2. Generalized columnar section of the area (AMM, 2015)

In order to present hydrochemical characteristics and quality of groundwaters under natural conditions in the Çeltikçi formation units of Bostantepe member, Lower Çavuşlar member and Upper Çavuşlar member, whose rock samples are used for the tests performed in this work, water quality data of Yazıcıgil et al. (2015) collected from the wells representing groundwaters of these units are evaluated. The water quality data are given in Appendix-F. The locations of the wells are shown in Figure 3.1. CEL107B well filtrates Bostantepe (BT) units (represented by Sample I in this work); CEL35, CEL44 and CEL51 wells filtrate Lower Çavuşlar (LC) units (represented by Sample II in this work) and PW2, PW7 and PW9 wells filtrate Upper Çavuşlar (UC) units (represented by Sample III in this work). PW7 and PW9 wells additionally filtrate alluvium unit as well. Among the UC wells, PW2 well filtering low hydraulic conductivity (1.84X10<sup>-8</sup> m/s) possessing claystone unit is not actually a representative well for the UC units. However, it is included here to show the extent of some possible deviations.

Average values of electrical conductivity (EC), pH, oxidation-reduction potential (ORP) and dissolved oxygen (DO) measured by Yazıcıgil et al. (2015) in the well waters are listed in Table 3.1 and the unit based averages are shown in Figure 3.3 where PW2 is not included into the unit-based average.

| Average   | EC<br>(μS/cm)25C | рН      | ORP (mv) | DO (mg/l) | Lithology           |
|-----------|------------------|---------|----------|-----------|---------------------|
| PW2*      | 2011             | 9.35    | -20      | 3.33      | Upper Çavuşlar      |
| PW7       | 770              | 7.6     | 105      | 8.20      | Al + Upper Çavuşler |
| PW9       | 412              | 8.04    | 7        | 6.93      | Al + Upper Çavuşler |
| CEL35     | 878              | 8.14    | -57      | 3.26      | Lower Çavuşlar      |
| CEL44     | 729              | 9.24*** |          | 9.20      | Lower Çavuşlar      |
| CEL51     | 1027             | 9.4***  |          | 7.30      | Lower Çavuşlar      |
| CEL100**  | 856              | 7.98    | -32      | 2.16      | Lower Çavuşlar      |
| CEL104**  | 1050             | 7.51    | -42      | 2.34      | Lower Çavuşlar      |
| CEL107A** | 1006             | 7.88    | -26      | 2.30      | Lower Çavuşlar      |
| CEL107B** | 747              | 8.01    | -17      | 2.82      | Bostantepe          |

Table 3.1. Field parameter measurements in the wells (Yazıcıgil et al., 2015).

\* Very Low Hydraulic Conductivity, \*\*No lab anaylses, \*\*\* Possible drilling mud effect

The unit based average electric conductivity (specific conductivity) values are ordered as Lower Çavuşlar (924  $\mu$ S/cm)>Bostantepe (747  $\mu$ S/cm)>Upper Çavuşlar (591  $\mu$ S/cm) groundwaters. Very high EC value in PW2 well water filtered from claystone is related to the longer water-rock reaction time due to low hydraulic conductivity.

All groundwater samples are in basic character in Table 3.1. The unit based average pH values increasing from upper to the lower units are 7.82, 7.88 and 8.01 in the UC (excluding PW2), LC (excluding CEL44 and CEL51) and BT groundwaters, respectively in Figure 3.3.



Figure 3.3. Lithology-based average values of pH, EC, DO and ORP in groundwaters.

The unit based dissolved oxygen values in the groundwaters (7.57 mg/l, 4.43 mg/l and 2.82 mg/l in UC, LC and BT, respectively) decrease from upper to the lower units. Relatively high DO value of the UC groundwater is probably reflecting partly alluvium unit groundwater effect.

The ORP values are in reducing character in relatively deeply circulating groundwaters of BT and LC units. The unit based average values of 56 mV, -39 mV and -17 mV are determined in UC, LC and BT groundwaters, respectively.

Major ion concentration shown in Figure 3.4. The Upper Çavuşlar well waters (PW7 and PW9) are in Mix-HCO<sub>3</sub> type facies and probably partly reflecting the alluvium groundwater effect. PW2 water is in Na-Cl facies and as mentioned earlier this different facies is related to the lower hydraulic conductivity of the unit where PW2

is filtered. The Lower Çavuşlar groundwater (CEL35, CEL44 and CEL51) on the other hand is in Mg-HCO<sub>3</sub> facies. There is no available data for Bostantepe groundwater.



Figure 3.4. Piper diagram showing groundwater facies of Çeltikci formation.

The distributions of the trace elements which have greater concentrations than the detection limits in the sampled waters are shown in Figure 3.5. In general, the concentrations are higher in Lower Çavuşlar groundwater. In order to provide means of comparison with the later ARD related leachate concentrations, the distribution of metal concentrations in the Ficklin graph is also plotted (Figure 3.5) where detection limit concentrations are taken as zero. According to the graph, all groundwater concentrations fall into the near neutral-low metal area although three samples plot close to the near neutral-high metal boundary.



Figure 3.5. Trace element concentrations of the groundwater samples.



Figure 3.6. Groundwater concentrations in Ficklin leachate categorization diagram.

### 3.1 Groundwater Quality

In oder to compare the groundwater quality results with those of waste rock leachates that will be determined/estimated in this study, the leachate quality evaluation criteria of (a) limits for the surface water classification (SWC) and maximum environmental quality (MEQ) for rivers of MFW (2016) and (b) waste categorization (WC) limits of MEF (2010) are used to determine the quality of groundwaters. The results are given in Table 3.2. Groundwater quality according to the surface water quality limits and waste categorization criteria.

Table 3.2. Groundwater quality according to the surface water quality limits and waste categorization criteria.

| Sample<br>Name | SWQR (MFW,2016)                    | MEQ (MFW,2016)    | WC (MEF, 2010)         |
|----------------|------------------------------------|-------------------|------------------------|
| PW2            | Class IV- COD,EC,N(Kjel),pH        | Al, As, B, Fe, Si | Non-Hazardous - As, Cl |
| PW7            | Class II- DO,EC,N-NO3,o-PO4        | Al, Fe, Si        | Inert                  |
| PW9            | Class II- DO,EC,o-PO4              | Al, Si            | Inert                  |
| CEL35          | Class II- DO,EC,N(Kjel),o-PO4,P(t) | Cu, Si            | Inert                  |
| CEL44          | Class II- EC,N(Kjel),o-PO4,P(t)    | Al, Fe, Si        | Inert                  |
| CEL51          | Class III- o-PO4,P(t)              | Al, Fe, Pb, Si    | Inert                  |

According to the waste categorization limits, all groundwater samples are in "Inert" class except that of PW2 which is classified as Non-Hazardous class due to high As and Cl concentrations. According to the surface water classification, PW7 and PW9 waters filtered from Upper Çavuşlar unit are classified as Class II (Slightly Contaminated) due to high DO, EC, o-PO<sub>4</sub>, and N-NO<sub>3</sub> concentrations. Unlike these groundwater samples, PW2 also filtered from Upper Çavuşlar unit is classified as Class IV (Highly Contaminated) due to high COD (Chemical Oxygen Demand), EC, N(Kjel), and pH values. On the other hand, among the groundwaters filtered from Lower Çavuşlar unit, only CEL51 is classified as Class III (Contaminated) due to high o-PO<sub>4</sub> and P(t) values. The others, CEL35 and CEL44 waters are classified as Class II due to relatively high EC, N(Kjel), o-PO<sub>4</sub>, P(t), and DO values. In addition, the concentration of Si is higher than the maximum environmental quality limits in

all groundwater samples. Besides Si, concentrations of Al and Fe in PW7 water; Al in PW9 water; Al, As, B and Fe in PW2 water; Cu in CEL35 water; Al and Fe in CEL44 water and Al, Fe and Pb in CEL51 water are higher than the maximum environmental quality limits.

## **CHAPTER 4**

## METHODOLOGY

In this study, mineralogic, static, shake-flask leach and column kinetic tests were performed using drilling core rock samples representing potential waste rocks of Çeltikçi coal mine field. The collected data are used to determine the water-rock interactions related acid rock drainage potential, leachate concentrations and related processes under test conditions and potential drainage water chemistry that could seep from waste rock pile(s). Major steps of the research methodology are given in detail below. Methodology of the hydrogeochemical modeling of the pile seepage quality is provided in the Chapter 10.

## 4.1 Sample Selection and Preparation

Three rock samples used for the research were obtained from the drilling cores in the Çeltikçi - Kızılcahamam area. Due to the limited project budget, the number of samples were kept to three samples. The sample locations are shown in Figure 4.1. The unit descriptions of the samples used in the tests are summarized from AMM (2015) given below from old to young.

- <u>Sample I</u> is a fine, medium-grained clastic sedimentary rock (sandstone).
  Volcanic and sedimentary fragments lie in a sandy-clayey matrix. It was taken from Bostantepe member, which is underlain by volcanic breccia levels.
- <u>Sample II</u> is a tuff and bituminous shale mixture. Lower Çavuşlar member from which this sample was taken, consists of oolitic limestone and thin immature coal layers alternating with sediment levels of tuff and chert.

• <u>Sample III</u> is mudstone. Upper Çavuşlar member from which this sample was taken, consists of cream-white-light green mudstones containing sandstones, tuffs and well laminated bituminous shale levels.



Figure 4.1. Locations of sampled drill holes on the geological map of the area (AMM, 2015).

The sampling information is listed in Table 4.1 Potential waste rocks are taken into consideration for the determination of the sampling location and depth. Expertise of the company expolaration geologists is used for the selection. Due to both the limited project budget and temporary piling of coal in the mining operations, coal ore was not sampled.

For the preparation of samples as test materials, initially each core sample was crushed to a grain size of <10 mm using a jaw crusher. Then, 1 kg of II.1 and II.2 samples obtained using the quartering method for each and mixed to obtain Sample II. Using the similar procedure, samples III.1 and III.2 were mixed to obtain Sample III.
| Sample<br>Name | Well Number | Latitude       | Longitude | Depth (m)     | Explanations                                                |
|----------------|-------------|----------------|-----------|---------------|-------------------------------------------------------------|
| Ι              | CEL 101 A   | 462212         | 1166160   | 117.20-117.60 | Bostantepe Member (Below coal zone, above volcanic breccia) |
|                | CEL 101 A   | 462212 4466162 |           | 65.10-65.60   | Lower Çavuşlar (Below coal zone)                            |
| Π              | CEL 101 A   | 462212         | 4466162   | 65.60-65.90   | Lower Çavuşlar, Bituminous shale (Below coal zone)          |
|                | CEL IUI A   | 402212         |           | 67.80-67.90   | Lower Çavuşlar, Tuff (Below coal zone)                      |
| ш              | CEL 104 B   | 462497         | 4466056   | 11.00-11.40   | Upper Çavuşlar (Above coal zone)                            |
| 111            | CEL 101 A   | 462212         | 4466162   | 18.70-19.10   | Upper Çavuşlar (Above coal zone)                            |

Table 4.1. Test sample information.

Samples I, II and III then were used to prepare 1kg kinetic test sample with the quartering method for each and placed into the column apparatus after the sieve analyses. After separating 250 grams of each remaining sample with the quartering method for the shake-flask leach tests, the grain size of the remaining samples was reduced to < 2 mm by grinding. The ground samples were used for static tests and XRD analyses.

## 4.2 Determination of Mineralogical Properties of the Samples

The constituents that react with water in rocks are minerals during water-rock interactions. Therefore, one of the most important factors that determines chemistry of the leachate formed as a result of the reaction is the mineralogical properties of the interacting rock. Mineralogical characteristics of the test samples (I, II and III) were determined by XRD analyses in the Geological Engineering Department of Middle East Technical University.

Sample II and III were subjected to random measurements only but in addition to random measurements, Sample I was also analyzed further after treatment (air dried, ethylene glycolated, at 400 °C and at 550 °C). Due to the swelling problem encountered with this sample during kinetic test, it was thought that clay minerals were present. The XRD peaks are evaluated using MDI Jade 6 Software (MDI, 2019) but further evaluation with charts (Moore and Reynolds, 1997) was required for Sample I peaks due to its clay content.

The following information mostly summarized from MEND (2009) is used to interpret whether a detected mineral has acid producting or neutralizing effect in the solution.

Iron-sulphur minerals produce acid upon oxidation.

Example:  $\text{FeS}_2 + 3.5\text{O}_2 + \text{H}_2\text{O} \rightarrow \text{Fe}^{2+} + 2\text{H}^+ + 2\text{SO}_4^{2-}$ 

*As, Mo, Sb, Se - sulphur minerals* in general produce acid due to their compound formation characteristics after dissolution.

Example: (Molybdenite)  $MoS_2 + 9/2O_2 + 3H_2O \rightarrow MoO_4^{2-} + 6H^+ + 2SO_4^{2-}$ 

*Ag, Cd, Co, Cu, Ni, Pb and Zn - sulphur minerals* do not produce acid if they are in free metal cation form after oxidation.

Example: (Sphalerite)  $ZnS + 2O_2 = Zn^{2+} + SO_4^{2-}$ 

Usually Ag, Cd, Co, Ni and Zn meet this criterion. But if they are in the form of compounds (especially Cu and Pb), they can produce acid upon dissolution.

Example: (Chalcopyrite) CuFeS<sub>2</sub> +  $17/4O_2 + 5/2H_2O \rightarrow Fe(OH)_3 + Cu^{2+} + 2H^+ + 2SO_4^{2-}$ 

As to *sulphate minerals*, complete metal hydroxide and ion compound/ exchange /precipitation forming *acidic cation* (Al<sup>3+</sup>, Cu<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Pb<sup>2+</sup>, Zn<sup>2+</sup>) hydroxy sulphate minerals can produce acid after dissolution.

Example: (Melanterite)  $FeSO_4.7H_2O + (1/4)O_2 \rightarrow Fe(OH)_3 + SO_4^{2-} + (9/2)H_2O + 2H^+$ 

If *base cation* (e.g. Na, K) is present in the mineral and if it forms cation hydroxides or ion compounds/exchange/precipitation upon dissolution, acid can be produced.

Example: (K-jarosite)  $KFe_3(SO_4)_2(OH)_6 + 3H_2O \rightarrow K^+ + 3Fe(OH)_3 + 2SO_4^{2-} + 3H^+$ 

As a general rule, metal (hydro) oxide formation would produce additional acid. If cations do not produce ionic compounds (present as free cations) acid production does not occur.

Example: (Melanterite) FeSO<sub>4</sub>.7H<sub>2</sub>O + (1/4)O<sub>2</sub>  $\rightarrow$  Fe<sup>3+</sup> + SO<sub>4</sub><sup>2-</sup> + (13/2)H<sub>2</sub>O + OH<sup>-</sup>

Ca and Mg *carbonate minerals* are neutralizing in oxidized environments. The neutralization capacity of Fe solid solution including carbonate minerals decreases as Fe content increases in the solid solution. The neutralization effect of Fe and Mn carbonates depends on oxygen amount of the environment. Neutralization producing Fe and Mn carbonates upon initial oxidation, would produce acid due to hydrolysis later as oxidation continue.

Example:

 $FeCO_3 + 2H \rightarrow Fe^{2+} + H_2CO_3$  low oxygen environment-acid consumption.  $Fe^{2+} + 5/2H_2O + 1/4O_2 \rightarrow Fe(OH)_3 + 2H^+$  high oxygen environment-acid production.

Combining two conditions:  $FeCO_3 + \frac{1}{4}O_2 + \frac{21}{2}H2O = Fe(OH)_3 + H^+ + HCO_3^$ indicates no change at the end result in terms of acidity/neutralization effects. Therefore, Fe and Mn carbonate minerals contribution to neutralization is possible only under low oxidizing (anaerobic) conditions. In general, acidic cation (Al<sup>3+</sup>, Cu<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Pb<sup>2+</sup>, Zn<sup>2+</sup>) bearing carbonate minerals can possibly contribution to neutralization is possible only under low oxidizing (anaerobic) environments.

# 4.3 Determination of Acid Rock Drainage Potential of the Samples

The acid rock drainage (ARD) potential of rocks is determined using the acid base accounting (ABA) and the net acid generation (NAG) static tests (Sobek et al., 1978; Amira, 2002; MEND, 2009). These tests were carried out on the samples having grain size of < 2 mm at the Encon Laboratory Inc., Ankara. ARD potentials of test

samples (I, II, and III) are evaluated using data obtained from modified ABA (Sobek et al., 1982) tests (total sulphur, sulphide-sulphur, sulphate-sulphur, paste pH, neutralization potential and inorganic carbon) and NAG tests (NAG pH, NAG values at pH of 4.5 and 7). Since sulphide values of the samples are less than 1% and there are relatively low metal concentrations, instead of sequential, single NAG tests were performed.

#### Acid potential estimation:

Static tests generate data to estimate the total acid production potential and the total neutralizing potential of a sample. The acid potential (AP) in the static tests is calculated generally using sulphide amount of the sample using the following formula:

$$AP_{Sulphide}(kgCaCO3/ton) = \% S_{Sulphide} * 31.25$$

This is actual kg amount of  $CaCO_3$  required to neutralize 1 ton material. The calculation procedure is based on the following reaction relationships:

(Pyrite)  $\operatorname{FeS}_2 + (15/4) \operatorname{O}_2 + (7/2) \operatorname{H}_2\operatorname{O} \xrightarrow{\rightarrow} \operatorname{Fe}(\operatorname{OH})_3 + 2 \operatorname{SO}_4^{2^2} + 4\operatorname{H}^+$ (Calcite)  $\operatorname{CaCO}_3 + 2\operatorname{H}^+ \xrightarrow{\rightarrow} \operatorname{Ca}^{2^+} + \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2$ In pyrite reaction: 1 mole sulphide-sulphur produces 2 moles H<sup>+</sup> and In calcite reaction: 1 mole calcite neutralizes 2 moles H<sup>+</sup>. (1 molecular weight of calcite / 1 molecular weight of sulphur in pyrite) \* % to kg/ton conversion factor = [(1\*100) / (1\*32)]\*10 = 31.25 kgCaCO3/ton

Cu and Pb sulphur minerals similarly also produce 2 moles H<sup>+</sup>.

If there is acid generating base cation including sulphate minerals such as Na-, K Jarosite:

 $AP_{sulphate}$  (kgCaCO3/ton) = % SO<sub>4</sub> \* 23.438.

Based on the following reaction relationships:

(K-jarosite) KFe<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub> (OH)<sub>6</sub> + 3H<sub>2</sub>O  $\rightarrow$  K<sup>+</sup> + 3 Fe(OH)<sub>3</sub> + 2SO<sub>4</sub><sup>2-</sup> + 3H<sup>+</sup> (Calcite) 1 CaCO<sub>3</sub> + 2H<sup>+</sup>  $\rightarrow$  Ca<sup>2+</sup> + H<sub>2</sub>O + CO<sub>2</sub>

In jarosite reaction: 4 mole sulphate produces 6 moles H<sup>+</sup> and
In calcite reaction: 3 mole calcite neutralizes 6 moles H<sup>+</sup>.

(3 molecular weight of calcite / 4 molecular weight of sulphur in jarosite) \*
% to kg/ton conversion factor = [(3\*100) / (4\*32)]\*10 = 23.438
kgCaCO3/ton

If there is acid generating sulphate minerals without base cations such as melanterite:

 $AP_{Sulphate}$  (kgCaCO3/ton) = %  $S_{Sulphate}$  \* 31.25

Based on the following reaction relationships:

(Melanterite)  $\operatorname{FeSO}_4 7\operatorname{H}_2O + (1/4)O_2 \rightarrow \operatorname{Fe}(OH)_3 + \operatorname{SO}_4^{2-} + (9/2)\operatorname{H}_2O + 2\operatorname{H}^+$ (Calcite)  $\operatorname{CaCO}_3 + 2\operatorname{H}^+ \rightarrow \operatorname{Ca}^{2+} + \operatorname{H}_2O + \operatorname{CO}_2$ 

In melanterite reaction: 1 mole sulphate produces 2 moles H<sup>+</sup> and In calcite reaction: 1 mole calcite neutralizes 2 moles H<sup>+</sup>.

#### ARD evaluation:

The neutralizing potential (NP) is measured either by back titration of acidified sample or directly by acid titration. Net neutralizing potential (NNP) is estimated by subtracting AP value from that of NP. The negative NNP value is interpreted that the rock has a potential of acid production. The positive value indicates low risk of acid production. However, a small positive value does not necessarily indicate that the rock would not produce acid. It is difficult to determine whether the acid production potential exists if the NNP value is between -20 and +20 (kg CaCO3/ton). Therefore, NP to AP ratio is also used in the estimation. Previous application results show that if the ratio is greater than 3:1, acid production risk is low (MEND, 2009). The ratios between 3:1 and 1:1 reflect uncertain conditions. The kinetic test is recommended

(MEND, 2009) under these circumstances. If the ratio is 1:1 or less, it indicates that the sample would most probably produce acid.

If the final NAG pH value of the sample is greater than 4.5, it is interpreted that rock has low or none acid production potential (AMIRA, 2002).

The other two evaluation criteria used are the paste pH and sulphide percentage values of the samples. It is generally assumed that the samples with paste pH values greater than 5.5 and sulphide percentages less than 0.3 would not generate acid rock drainage (MEND, 2009).

The carbonate NP (CNP) calculations are also made to determine the short-term neutralization potential (before neutralization production by aluminosilicate minerals) of the samples to reduce possible acid generation. The CNP is calculated using the inorganic carbon content with the following formula;

CNP (kg CaCO<sub>3</sub>/t) = %*TIC* \* 
$$\frac{M_{CaCO_3}}{M_c}$$
 \*  $\frac{1000\frac{kg}{t}}{100\%}$  = %*TIC* \*  $\frac{100.08}{12.011}$  \* 10

#### Sample classification:

The test samples are classified as non-acid generating waste (NAGW), possibly acid generating waste (PAGW) and acid generating waste (AGW) using ABA test results according to the internationally applied following criteria:

NPR > 3 
$$\rightarrow$$
 NAGW ; 1\rightarrow PAGW ; NPR < 3  $\rightarrow$  AGW

In addition, static tests are evaluated based on waste rock classification criteria of MEU (2015). According to the "Mine Waste Regulation", considering only sulphide content and NPR values the waste (the test samples) is classified as follows:

\* Sulphide <0.1wt%  $\rightarrow$  "inert"

\* 0.1 <Sulphide<1 wt% uncertain condition, but if NPR>3  $\rightarrow$  "inert"

\* 0.1 <Sulphide<1 wt% uncertain condition, but if NPR<3  $\rightarrow$  "non-hazardous/hazardous"

\* Sulphide >1 wt% "non-hazardous/hazardous".

Non-hazardous/hazardous determinations require further evaluation of short term and kinetic test leachate characteristics.

## 4.4 Determination of Short-term Leachate Concentrations

The short-term leachate concentrations of the samples are determined by shake flask leach tests (MEND, 2009) in METU Geological Engineering Department. The test for each sample was carried out using the prepared test material that composed of 250 g sample having a grain size of <6.35 mm (MEND, 2009) and 750 ml deionized water (3:1 ratio) in a bottle. Shaking for 24 hours at 200 rpm was applied. Relatively high agitation (close to the maximum of gentle shaking interval) is adapted to increase leaching rates. Photographs form the test are shown in Figure 4.2.



Figure 4.2. Shake flask leach test photographs.

After termination of the test, the solutions were separated from the sediments by centrifuging (30 minutes at 2300 rpm) and electrical conductivity (EC) and pH measurements were carried out. Approximately 100 ml of each sample solution is preserved by acidifying with 60% ultrapure HNO<sub>3</sub> (MERCK KGaA) after filtration with 0.45-micron filter for metal analysis. A bottle of filtered-acidified test solution for metal analyses and a bottle of unfiltered-unacidified test solution for anion analyses from each sample test were sent to Encon Laboratory Inc. in order to determine concentrations of chloride, sulphate, alkalinity and dissolved metals (Al , As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Se, Sb, Si, Sn, Sr, Ti, U, V, Zn, Zr). Ion chromatography and Inductively Coupled Plasma – Mass Spectrometer (ICP-MS) methods were used in the laboratory for the analyses of anions and cations, respectively.

Leachate concentration quality of samples were determined using (a) surface water classification (SWC) and maximum environmental quality (MEQ) standards for rivers of MFW (2016) (Table 4.2) and (b) waste categorization (WC) limits of MEF (2010) (Table 4.2).

## 4.5 Sample Preparation for Column Kinetic Tests

The grain size distribution of the rock material to be tested in the column is an important factor affecting the water-rock reactions. The larger the surface area (smaller the grain size) of the rock, greater the water-rock reaction would be. Although there is no pre-established standard for the grain size used in the column tests, the main idea is that the test material size should represent the actual waste material size resulting from mining activities as much as possible. The important point for the evaluation of test results is, though to have the information of grain size distribution of the test material rather than its representativeness with respect to a pile material.

| Parameter (mg/l) | Class I/<br>Max-EQS<br>(Rivers&L<br>akes) | Class II | Class III | Class IV |
|------------------|-------------------------------------------|----------|-----------|----------|
| Ag               | 0.0015                                    |          |           |          |
| Al               | 0.027                                     |          |           |          |
| As               | 0.053                                     |          |           |          |
| В                | 1.472                                     |          |           |          |
| Ba               | 0.68                                      |          |           |          |
| Be               | 0.0039                                    |          |           |          |
| BOD              | < 4                                       | 8        | 20        | > 20     |
| Br               | 0.046                                     |          |           |          |
| Cd               | < 0.00045                                 | 0.0006   | 0.0009    | > 0.0015 |
| CN               | 0.006                                     |          |           |          |
| Со               | 0.0026                                    |          |           |          |
| COD              | < 25                                      | 50       | 70        | > 70     |
| Color            | < 25                                      | 50       | 300       | > 300    |
| Cr, t            | 0.142                                     |          |           |          |
| Cu               | 0.0031                                    |          |           |          |
| DO (mg O2/L)     | > 8                                       | 6        | 3         | < 3      |
| EC (µS/cm)       | < 400                                     | 1000     | 3000      | > 3000   |
| F                | $\leq 1$                                  | 1.5      | 2         | > 2      |
| Fe               | 0.101                                     |          |           |          |
| Mn               | ≤ 0.1                                     | 0.5      | 3         | > 3      |
| Ni               | 0.034                                     |          |           |          |
| N, Kjeldahl, t   | < 0.5                                     | 1.5      | 5         | >5       |
| N-NH4            | < 0.2                                     | 1        | 2         | >2       |
| N-NO3            | < 3                                       | 10       | 20        | > 20     |
| Oil & Grease     | < 0.2                                     | 0.3      | 0.5       | > 0.5    |
| o-PO4            | < 0.05                                    | 0.16     | 0.65      | > 0.65   |
| P,t              | < 0.08                                    | 0.2      | 0.8       | > 0.8    |
| Pb               | 0.014                                     |          |           |          |
| pH               | 6.0-9.0                                   | 6.0-9.0  | 6.0-9.0   | 6.0-9.0  |
| S-2              | $\leq 0.002$                              | 0.005    | 0.01      | > 0.01   |
| Sb               | 0.103                                     |          |           |          |
| Se               | $\leq 0.01$                               | 0.015    | 0.02      | > 0.02   |
| Si               | 1.83                                      |          |           |          |
| Sn               | 0.013                                     |          |           |          |
| Ti               | 0.042                                     |          |           |          |
| V                | 0.097                                     |          |           |          |
| Zn               | 0.231                                     |          |           |          |

Table 4.2. Quality limits of MFW (2016) on the left, and MEF (2010) on the right.

Г

| Parameter<br>(mg/l) | Inert   | Non<br>Hazardous | Hazardous | Very<br>Hazardous |
|---------------------|---------|------------------|-----------|-------------------|
| As                  | < 0.05  | 0.2              | 2.5       | > 2.5             |
| Ba                  | < 2     | 10               | 30        | > 30              |
| Cd                  | < 0.004 | 0.1              | 0.5       | > 0.5             |
| Cl                  | < 80    | 1500             | 2500      | > 2500            |
| Cr, t               | < 0.05  | 1                | 7         | >7                |
| Cu                  | < 0.2   | 5                | 10        | >10               |
| F                   | <1      | 15               | 50        | >50               |
| Hg                  | < 0.001 | 0.02             | 0.2       | > 0.2             |
| Мо                  | < 0.05  | 1                | 3         | > 3               |
| Ni                  | < 0.04  | 1                | 4         | >4                |
| Pb                  | < 0.05  | 1                | 5         | > 5               |
| Sb                  | < 0.006 | 0.07             | 0.5       | > 0.5             |
| Se                  | < 0.01  | 0.05             | 0.7       | > 0.7             |
| SO4                 | < 100   | 2000             | 5000      | > 5000            |
| Zn                  | < 0.4   | 5                | 20        | > 20              |

The grain size distribution of each 1 kg kinetic test sample having grain size of <10 mm (MEND, 2009), is determined with sieve analyses. The densities of the sampled rocks were also determined using the core samples in order to estimate the surface area of the kinetic test samples. All sample preparation was carried out in Geological Engineering Department at METU.

### 4.6 Determination of Column Kinetic Test Concentrations

Column kinetic tests were carried out for 13 weeks for Sample I and for 16 weeks for samples II and III excluding Week 0 in the METU Geological Engineering Department by using the plexiglass column apparatus.

A cross-sectional schematic view of the column test apparatus and a photograph taken during the test are shown in Figure 4.3. The upper column (sample chamber;



Figure 4.3. The schematic view of column test equipment and photograph taken during the test on the right.

inside diameter: 11 cm, height: 22.5 cm) including a plexiglass disc (thickness: 1 cm, diameter: 11 cm, porosity: 0.38) at the base is attached to the lower column (leachate collection chamber; inside diameter: 11 cm, height: 3.5 cm) having a plexiglass plate (with 7 mm hole at the center) at the base before the dry sample placement. A silicon

tube (diameter: 7 mm) is placed between the hole of the plate and a polyethylene solution collection bottle rest at the shelf below the test table in order to transfer the leachate from the collection chamber. A transparent silicon is used for sealing the connection interfaces (between the plexiglass disc and the upper column inside wall, between the outside walls of two columns and between the base plate and lower column outside wall) to prevent possible solution leakage. The top of the upper column is kept closed with a plexiglass disc having holes of 3 cm and 1.5 cm in dimeter during test period.

In the beginning of the test, the sample in each column was saturated with a measured amount of deionized water and the drained leachate (Week 0) was collected for chemical analyses. Afterwards, 4.5 days of dry period and 2.5 days of wet period weekly cycle, which was determined by reducing the number of annual wet and dry days (determined using the daily precipitation data of 2013-2015 at K1z1lcahamam meteorology station) was adapted. This does not mean that each cycle represents actual annual period. In the wet period, each column was irrigated with about 750 mm of deionized water over 2.5 days using a peristaltic pump. The amount of water added, and the room temperature were recorded daily. The drained water (leachate) from the bottom of the column was weekly collected in a polyethylene container.

Following collection of the leachate in a weekly cycle for each column, including Week 0; leachate volume, electrical conductivity and pH values are measured. The weekly amount of leachate collected averages about 695 ml. Approximately 100 ml of each collected leachate is preserved by acidifying with 60% ultrapure HNO3 (MERCK KGaA) after filtration with 0.45-micron filter for metal analysis. Sample I leachates were centrifuged before filtration due to high sediment content throughout the test period. The centrifuge residues were replaced back to the sample chamber. However, due to the centrifuge instrument malfunction, leachates of Week 3 and the following cycles were centrifuged in the laboratory where chemical analysis were done. Hence the centrifuge residues (total of about 45 gr) were not replaced back to the Sample I chamber. Although this amount was very small, it still was taken into consideration on a weekly basis during kinetic concentration ratio calculations of the sample. A bottle of filtered-acidified test solution for metal analyses and a bottle of unfiltered-unacidified test solution for anion analyses from each sample at the end of each weekly cycle were sent to Encon Laboratory Inc. in the same or the following day after collection in order to determine concentrations of chloride, sulphate, alkalinity and dissolved metals (A1, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Se, Sb, Si, Sn, Sr, Ti, U, V, Zn, Zr). Ion chromatography and ICP-MS methods were used in the laboratory for the analyses of anions and cations, respectively. A total of 49 kinetic test leachate (including 1 duplicate) drain was analyzed.

Moreover, a series of quality control measurements were carried out during the column tests for the accuracy and precision evaluation of pH and EC values.

As different from initial plans: (a) although test period is planned for 15 weeks for each sample, Sample I test is terminated at the end of Week 13 due to seepage droplets development between the upper and lower column interface. On the other hand, the test periods of Sample II and III are extended to Week 16. (b) Leachate drainage was ceased after Week 1 from Sample I column due to clogging of the porous disc caused by very high clay content of the sample. As a result, the sample became saturated in irrigation days (wet period) and added water accumulated at the top of the sample. After every irrigation, the slurry (sample + solution at the top) was mechanically mixed for a short period of time in order to ensure interaction of the added water with the sample. The leachate at the end of a cycle is collected from the upper column with a pump after allowing enough sedimentation time. (c) Due to pandemic measures, days of Week 10 and Week 11 cycles were changed to 6 days and 8 days, respectively considering dry-wet days.

## **CHAPTER 5**

#### **ROCK GEOCHEMISTRY**

Rock chemistry evaluations provide initial information about potential ions which could have high concentration in leachates upon water-rock reactions. Whole rock chemical analyses were not done for the test samples but there are enough data from the previous study of Gladwell and others (2014) for evaluations of the waste rock chemistry in Çeltikçi coal mine area. The data and sampling location information are given in Appendix-A. The database includes rock analyses from Upper Çavuşlar member above the coal zone (10 rock analyses) and below the main coal zone (20 rock analyses).

Whole rock concentrations from above and below the main coal zone are compared with those of Upper crustal average (Rudnick and Gao, 2003). The averages of the calculated ratios are listed in Table 5.1 and all values are shown in Figure 5.1. As it can be seen both in the table and the figure, regardless whether the rocks are from above or below the coal zone, they exhibit similar anomalies except for Cd and Zn. Concentrations of As, Ca, Cd, Li, Mg, Mo, S and Sr in the rocks are higher than those of the Upper crust. However, these high concentrations do not necessarily mean that they would leach from the rocks upon water-rock interactions. Leachate characteristics of the rocks will further be evaluated using results of short-term and long-term leach tests.

| ppm | Above the<br>Coal Zone(U) | Below the<br>Coal Zone (B) | ppm | Above the<br>Coal Zone(U) | Below the<br>Coal Zone (B) |
|-----|---------------------------|----------------------------|-----|---------------------------|----------------------------|
| Ag  | 0.00                      | 0.00                       | Ni  | 0.17                      | 0.13                       |
| Al  | 0.22                      | 0.13                       | Р   | 0.52                      | 0.62                       |
| As  | 7.50                      | 3.95                       | Pb  | 0.37                      | 0.22                       |
| Au  | 0.00                      | 0.00                       | Rb  | 0.49                      | 0.30                       |
| Ba  | 0.23                      | 0.20                       | S   | 7.49                      | 6.72                       |
| Be  | 0.24                      | 0.24                       | Sb  | 0.34                      | 0.29                       |
| Bi  | 0.53                      | 0.47                       | Sc  | 0.12                      | 0.09                       |
| Ca  | 4.26                      | 5.21                       | Se  | 0.00                      | 0.00                       |
| Cd  | 0.89                      | 1.58                       | Si  | 0.51                      | 0.42                       |
| Ce  | 0.21                      | 0.13                       | Sn  | 0.17                      | 0.09                       |
| Со  | 0.17                      | 0.11                       | Sr  | 1.73                      | 1.87                       |
| Cr  | 0.66                      | 0.51                       | Та  | 0.26                      | 0.14                       |
| Fe  | 0.25                      | 0.24                       | Th  | 0.52                      | 0.16                       |
| Hf  | 0.12                      | 0.08                       | Ti  | 0.16                      | 0.10                       |
| K   | 0.46                      | 0.15                       | П   | 0.46                      | 0.40                       |
| La  | 0.22                      | 0.14                       | U   | 0.92                      | 0.50                       |
| Li  | 8.04                      | 3.96                       | V   | 0.20                      | 0.31                       |
| Mg  | 5.27                      | 5.46                       | W   | 0.13                      | 0.11                       |
| Mn  | 0.54                      | 0.91                       | Y   | 0.18                      | 0.11                       |
| Mo  | 4.95                      | 4.35                       | Zn  | 1.09                      | 0.84                       |
| Na  | 0.16                      | 0.11                       | Zr  | 0.11                      | 0.06                       |
| Nb  | 0.22                      | 0.09                       |     |                           |                            |

Table 5.1. Average of the ratios of rock sample concentrations to those of the Upper crustal average.

Yellow color represents the concentrations higher than those of the upper crustal averages of Rudnick and Gao (2003).





## **CHAPTER 6**

## MINERALOGY

### SAMPLE I:

The XRD peaks of Sample I are shown in Figure 6.1 and the determined minerals are listed in Table 6.1 from the possibility of the most abundant to least abundant. Montmorillonite, nontronite, volkonskonite, illite, as clay minerals; surite as a carbonate mineral; margarite, feldspar as silicate minerals; polyhalite as a sulphate mineral and one unnamed mineral exist in the sample.



Figure 6.1. Unoriented, and heat & acid treated XRD results of Sample I.

|                  | Sample I                                                                                                        |               |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|
| Mineral Name     | Chemical Formula                                                                                                | Mineral group |  |  |  |  |  |  |
| Montmorillonite  | $(Na, Ca)_{0.33} (Al Mg)_2 (Si_4O_{10}) (OH)_2 nH_2O$                                                           | Clay          |  |  |  |  |  |  |
| Nontronite       | $Na_{0.3}Fe_2((Si,Al)_4O_{10})(OH)_2 \cdot nH_2O$                                                               | Clay          |  |  |  |  |  |  |
| Volkonskonite    | $Ca_{0.3}$ (Cr,Mg,Fe) <sub>2</sub> ((Si,Al) <sub>4</sub> O <sub>10</sub> )(OH) <sub>2</sub> · 4H <sub>2</sub> O | Clay          |  |  |  |  |  |  |
| Surite           | $(Pb,Cu)_3(Al,Fe^{2+},Mg)_2((Si,Al)_4O_{10})(CO_3)_2(OH)_2$                                                     | Carbonate     |  |  |  |  |  |  |
| Margarite        | $CaAl_2(Al_2Si_2)O_{10}(OH)_2$                                                                                  | Silicate      |  |  |  |  |  |  |
| Illite           | $K_{0.65}Al_{2.0}[Al_{0.65}Si_{3.35}O_{10}](OH)_2$                                                              | Clay          |  |  |  |  |  |  |
| Albite           | Na(AlSi <sub>3</sub> O <sub>8</sub> )                                                                           | Silicate      |  |  |  |  |  |  |
| Anorthite        | $Ca(Al_2Si_2O_8)$                                                                                               | Silicate      |  |  |  |  |  |  |
| Albite (Ca-rich) | $Ca(AlSi_3O_8)$                                                                                                 | Silicate      |  |  |  |  |  |  |
| Polyhalite       | $K_2Ca_2Mg(\frac{SO_4}{4})_4 \cdot 2H_2O$                                                                       | Sulphate      |  |  |  |  |  |  |
| Unnamed Mineral  | MgAsO <sub>4</sub> .H <sub>2</sub> O                                                                            |               |  |  |  |  |  |  |

| Table 6.1. | XRD | results of | the | Samp | le | I. |
|------------|-----|------------|-----|------|----|----|
|------------|-----|------------|-----|------|----|----|

Although sulphide concentration is measured in ABA tests, any sulphur mineral which could possibly cause acid generation was not identified in the XRD analyses. Therefore, it is interpreted that the sample contains sulphur mineral with amounts less than the XRD detection limit (about 2-5%). Polyhalite is not the type of sulphate mineral that could produce acidity either. The determined carbonate mineral (surite) neutralization capacity is probably very limited under aerobic conditions. The low neutralization potential determined from ABA tests for this sample is related to aluminosilicates and hydroxides as will be discussed in the next chapter. However, calcite mineral was also reported in petrographic analyses of these member rocks (AMM, 2014).

Mineralogic content, in addition to commonly present major elements, includes As, Cr, Cu and Pb trace elements that could create environmental problems if released. Because there is not any available rock analysis from Bostantepe member, comparison between mineral content and the rock chemistry cannot be performed.

#### Sample II:

The XRD peaks of Sample II are shown in Figure 6.2 and the determined minerals are listed in Table 6.2 from the possibility of the most abundant to least abundant one. According to the peaks, dolomite, magnesite, ankerite as carbonate minerals; quartz as a silicate mineral and teallite as a sulphur mineral exist in this sample. No sulphate mineral was detected although in small amounts sulphate concentration is measured in ABA tests. Therefore, it is interpreted that the sample contains sulphate mineral with amounts less than the XRD detection limit (about 2-5%).

| Table 6.2. | XRD | results | of | Sample | Η. |
|------------|-----|---------|----|--------|----|

| Sample II    |                             |               |  |  |  |  |
|--------------|-----------------------------|---------------|--|--|--|--|
| Mineral Name | Chemical Formula            | Mineral group |  |  |  |  |
| Dolomite     | $CaMg(CO_3)_2$              | Carbonate     |  |  |  |  |
| Quartz       | SiO <sub>2</sub>            | Silicate      |  |  |  |  |
| Magnesite    | MgCO <sub>3</sub>           | Carbonate     |  |  |  |  |
| Ankerite     | $Ca(Fe^{2+},Mg,Mn)(CO_3)_2$ | Carbonate     |  |  |  |  |
| Teallite     | PbSnS <sub>2</sub>          | Sulphur       |  |  |  |  |

Among the carbonate minerals, dolomite has a neutralization capacity that would be active very early. Indeed, neutralization potential of this sample is high in the ABA test results. Ankerite, on the other hand, has the neutralization capacity in only anaerobic conditions. Otherwise, it has no effect on the neutralization. Teallite is the only sulphur mineral that could create acidity. However, acid generation potential of this mineral is relatively low as indicated by lower acid potential (AP) value in the ABA test probably due to presence in low amount of the mineral in the sample. Teallite mineral contains Pb and Sn heavy metals which should be taken into consideration for possible environmental problems. But trace element comparison with whole rock analyses suggests that Pb and Sn heavy metals including teallite must be in very small amount in the sample.



#### Sample III:

The XRD peaks of Sample III are shown in Figure 6.3 and the determined minerals are listed in Table 6.3 from the possibility of the most abundant to least abundant one.

| Sample III      |                                        |               |  |  |  |  |
|-----------------|----------------------------------------|---------------|--|--|--|--|
| Mineral Name    | Chemical Formula                       | Mineral Group |  |  |  |  |
| Dolomite        | $CaMg(CO_3)_2$                         | Carbonate     |  |  |  |  |
| Minrecordite    | $CaZn(CO_3)_2$                         | Carbonate     |  |  |  |  |
| Sanidine        | K(AlSi <sub>3</sub> O <sub>8</sub> )   | Silicate      |  |  |  |  |
| Teallite        | PbSnS <sub>2</sub>                     | Sulphur       |  |  |  |  |
| Hodgkinsonite   | $Mn^{2+}Zn_2(SiO_4)(OH)_2$             | Silicate      |  |  |  |  |
| Lanarkite       | $Pb_2(SO_4)O$                          | Sulphate      |  |  |  |  |
| Haradaite       | (Ba,Sr)VSi <sub>2</sub> O <sub>7</sub> | Silicate      |  |  |  |  |
| Wilhelmkleinite | $ZnFe^{3+}_{2}(AsO_{4})_{2}(OH)_{2}$   | Phosphate     |  |  |  |  |
| Quartz          | SiO <sub>2</sub>                       | Silicate      |  |  |  |  |
| Argentopyrite   | $AgFe_2S_3$                            | Sulphur       |  |  |  |  |

Table 6.3. XRD results of Sample III.

According to the peaks, dolomite and minrecordite as carbonate minerals; teallite and argentopyrite as sulphur minerals; sanidine, hodgkinsonite, haradaite and quartz as silicate minerals; lanarkite as a sulphate mineral; and wilhelmkleinite as a hydroxide mineral exist in the sample. Although the peaks of some minerals are overlying each other, they are included into the output due to heavy metals in their chemical formulas.

Among the carbonate minerals, dolomite has a neutralization capacity that would be active very early. The neutralization potential of this sample is relatively high in the ABA test results. Minrecordite, on the other hand, has the neutralization capacity in relatively anaerobic conditions because released Zn after the dissolution could produce acid due to hydrolyzation upon oxidation in the solution. Lanarkite sulphate



Figure 6.3. XRD peaks of the Sample III.

mineral could produce acid in addition to sulphur minerals. Although teallite and argentopyrite sulphur minerals are detected in the sample, these minerals as well as lanarkite mineral must be in small amounts because acid generation potential of this sample is found to be low in ABA test results.

In addition to commonly present elements, some minerals contain heavy metals that may cause environmental problems highlighted in the table. These are As, Pb, Sn, V and Zn elements. However, trace element comparison with whole rock analyses suggests that minerals including these elements with the exception of As, must be in small amounts in the samples.

# **CHAPTER 7**

# STATIC TESTS

The parameters and related measurements of the static tests (Paste pH, sulphur, Carbon, NAG pH, NAG at pH 4.5 and 7) are listed in Table 7.1.

Table 7.1. Static test measurements.

| Sample Name                                | - I    | П      | III    |
|--------------------------------------------|--------|--------|--------|
| Modified ABA                               |        |        |        |
| Sample Weight(g)                           | 2.0031 | 2.0061 | 2.0027 |
| Fizz Rate                                  | 2      | 4      | 4      |
| Fizz Rate                                  | Weak   | Strong | Strong |
| 1.0 N HCl (0 h) Volume (mL)                | 2.00   | 3.00   | 3.00   |
| 1.0 N HCl (2 h) Volume(mL)                 | 1.00   | 2.00   | 2.00   |
| HCI (Normality)                            | 1.0    | 1.0    | 1.0    |
| pH 22 hours later                          | 2.12   | 2.25   | 2.28   |
| Needed volume of 1.0M HCl to reach 2.0-2.5 | 0.0    | 4.65   | 8      |
| pH of 125 ml Sample                        | 2.25   | 5.21   | 4.84   |
| NaOH Normality                             | 1.0    | 1.0    | 1.0    |
| Needed volume of 0.1M NaOH to have 8.3 pH  | 0.90   | 3.25   | 4.50   |
| NP (kg CaCO3/t sample)                     | 52.42  | 159.5  | 212.2  |
| Paste pH                                   |        |        |        |
| Paste pH (1:1 ratio)                       | 7.56   | 8.75   | 8.19   |
| Paste pH (1:2 ratio)                       | 7.40   | 8.70   | 8.17   |
| Sulphur                                    |        |        |        |
| Total Sulphur (%S)                         | 0.774  | 0.273  | 0.328  |
| HCl Acid Insoluble Sulphur (%S)            | 0.546  | 0.239  | 0.281  |
| Acid Soluble Sulphate Sulphur (%SO4-S)     | 0.228  | 0.034  | 0.047  |
| HNO3 Insoluble Sulphur                     | 0.103  | 0.107  | 0.13   |
| Sulphide-Sulphur (%S-2-S)                  | 0.443  | 0.132  | 0.151  |
| Carbon                                     |        |        |        |
| Total Carbon %                             | 0.85   | 9.30   | 6.60   |
| Organic Carbon %                           | 0.19   | 1.40   | 1.44   |
| Total Inorganic Carbon %(TIC)              | 0.66   | 7.90   | 5.16   |
| NAG                                        |        |        |        |
| Sample Name                                | 1      | Ш      | III    |
| Sample Weight(g)                           | 2.5055 | 2.5068 | 0.5023 |
| Final pH                                   | 5.14   | 5.53   | 5.71   |
| EC                                         | 883    | 691    | 888    |
| NaOH Normality                             | 0.1    | 0.1    | 0.1    |
| NaOH Volume                                | 0      | 0      | 0      |
| NaOH Volume                                | 6.2    | 6.65   | 5.2    |
| NAG (kg H2SO4/t) (pH 4.5)                  | 0      | 0      | 0      |
| NAG (kg H2SO4/t) (pH 7.0)                  | 12.13  | 13.00  | 50.73  |

Paste pH values in general reflect the pH values of short term (operation period) leachates. The paste pH values of the samples I, II and III are measured as 7.56, 8.75 and 8.19 for 1:1 ratio (solid/liquid) case and 7.40, 8.70 and 8.17 for 1:2 ratio case. Therefore, the values indicate that acid production should not expected in the short term leachates. However, it should be kept in mind that the acid generation capacity of the samples cannot be determined solely based on paste pH tests as it is explained in the following sections.

### 7.1 Modified Acid Base Accounting Tests

The measured values of neutralization potential (NP) and NAG Final pH, and calculated values of acid potential (AP), net neutralization potential (NNP), neutralization potential ratio (NPR) together with resulting waste categorization are listed in Table 7.2.

| SAMPLE NO | AP (kg<br>CaCO3/t) | Net NP(NP-AP)<br>(kg CaCO3/t) | NP/AP (NPR) | NAG Final pH | Sulphide -S<br>Result | NPR Result | NAG Result | NNP Result |
|-----------|--------------------|-------------------------------|-------------|--------------|-----------------------|------------|------------|------------|
| Ι         | 13.75              | 38.67                         | 3.81        | 5.14         | Uncertain             | NAGW       | NAGW       | NAGW       |
| п         | 4.06               | 155.45                        | 39.26       | 5.53         | Uncertain             | NAGW       | NAGW       | NAGW       |
| III       | 4.69               | 207.52                        | 45.27       | 5.71         | Uncertain             | NAGW       | NAGW       | NAGW       |

Table 7.2. Static test evaluation results.

In addition to sulphur minerals, acid producing any significant sulphate mineral was not detected in the mineralogic analyses. Therefore, the acid potentials (AP) of the samples are calculated using sulphide concentrations based on the assumption that 1 mole sulphur would produce 2 moles H<sup>+</sup> as in the case of pyrite, Cu and Pb sulphur minerals. After completion of the sulphide-based AP evaluations, in order to simulate probable worst scenario, sulphate concentrations were also added to the AP calculations and the results are further evaluated. According to the sulphide-based calculations, the test samples include very low AP values in general, in kg CaCO3/t unit: Sample I (Bostantepe member sandstone); 13.8, Sample II (lower Çeltikçi member tuff, bituminous shale); 4.1 and Sample III (upper Çeltikçi member mudstone with sandstone, tuff and coal levels); 4.7.

The NP values are 52.4, 159.5 and 212.2 in kg CaCO3/t for samples I, II and III, respectively. Relatively high NP values are mainly related to the presence of dolomite minerals as determined in the XRD analyses and also indicate the contributions of aluminosilicates and in some samples, hydroxide and oxide minerals. The AP and NP distribution of the samples is shown in Figure 7.1.



Figure 7.1. AP and NP distribution. Lines represent the limits of NP/AP values (1<NP/AP<3).

The carbonate NP calculations were also made to determine the short-term neutralization potential (before neutralization production by aluminosilicate minerals) of the samples to reduce possible acid generation. CNP values are calculated as 55, 658, 430 in kg CaCO3/t for the samples I, II and III, respectively.

When compared with total NP values, although Sample I includes a similar CNP value, the CNP values of the others are greater. These results suggest that either enough acid addition during NP measurements was not done (it as confirmed by the laboratory that performed in the analysis) or determined inorganic carbon do not produce alkalinity. Latter possibility may be caused by 1) the presence of non-carbonate carbon (e.g. organic matter, graphite) content in the samples and/or 2) the presence of significant amounts of Fe-Mn carbonate minerals. Sample content and XRD studies suggest that high CNP values are mainly as a result of the existence of non-carbonate carbon content, in addition to only anaerobic environment neutralization producing carbonate minerals. Therefore, it is not possible to determine how much of total NP values are related to the neutralizing carbonate minerals and hence, whether the neutralization potential would be operative in short term (operation period) or not considering CNP values.

The calculated NNP values are 38.7, 155.5 and 207.5 in kg CaCO3/t for the samples I, II and III, respectively. Since all NNP values are greater than 20 kg CaCO3/t, the samples are considered as none acid generating waste (NAGW) (Figure 7.2). Previous study data of Gladwell et al. (2014) are also shown in the Figure 7.2. The test samples include relatively low NP values when compared to the previous data. The non-linear relationship between positive NNP and sulphide indicates that NNP values are controlled by varying high NP rather than relatively low AP.

Another important parameter indicating acid rock drainage potential of rocks is NPR. Calculated values are 3.8, 38.7 and 45 for the samples I, II and III, respectively. Since all these values are greater than 3, the samples are considered as NAGW (Figure 7.2). Gladwell et al.(2014) samples which were taken from Upper Çavuşlar member above the coal zone and below the main coal zone, also fall into the none acid generating area in the Figure 7.2.





Figure 7.2. NNP vs NPR relationship. Below: Zoomed version of the same graph.

According to MEU (2015) mine waste classification sulphide criteria only, all test samples having > 0.1% sulphide content are in non-inert waste (non-hazardous/hazardous) class. But when the second criteria (NPR > 3) for samples with %0.1< sulphide <1% (in the samples I, II and III; %0.44, %0.13 and %0.15, respectively) is used, test samples could be considered inert waste (provided that concentration release is low upon water-rock interaction) indicating none or very low acid production property. Indeed, NNP values of the samples are high as well.

## 7.2 Net Acid Generation Tests

The net acid generation (NAG) static tests based on oxidation of sulphur minerals with hydrogen peroxide, were used for the long-term acid generation potential determinations. If the final NAG pH value of the sample is greater than 4.5, it is interpreted that rock has low or none acid production potential. The NAG pH values of the samples I, II and III are 5.14, 5.53 and 5.71, respectively, indicating that the samples do not have acid producing potential in long term period. When NAG pH values are considered, it is possible to conclude that the test samples (falling in non-inert waste class due to only sulphide MEU (2015) criteria but considered inert when NPR criteria is applied) do not bear acid production potential.

NAG (pH 4.5) potential, which indicates acid production generally caused by Fe, Al and H ions, is less than the detection limits. However, NAG (pH 7.0) potential, which indicates acid production caused by soluble hydroxide metals (e.g. Cu, Zn), is measured greater than the detection limit value in the samples as (kg CaCO<sub>3</sub>/t) 12.4, 13.3 and 51.8 for the samples I, II and III, respectively. These values indicate possibility (being higher in Sample III) of hydroxides related pH buffering and possible metal release upon increasing oxidation in the leachates.

Electrical conductivity (EC) values of NAG solutions do not show linear relationship with sulphide content (Figure 7.3) and were measured as, in  $\mu$ S/cm, 883, 691, and 888 for the samples I, II and III, respectively. These values indicate moderate dissolved metal concentrations in the long term. Therefore, possible metal release would be at low to moderate total concentrations as also indicated by low NAG (pH 7) values.



Figure 7.3. Relationship between NAG test EC and Sulphide%-Sulphur.

# 7.3 Static Test Results Summary

In summary, static test (paste pH, ABA, NAG) evaluation results indicate that: The test samples I, II and III exhibiting ARD potential in the order of I>II>III (controlled by high neutralization potential rather than low acid potential) do not have acid rock drainage potential in short or long term and any acid production will be neutralized by the minerals in the rocks (Figure 7.4). However, lack of ARD potential should not be interpreted as none ion release occurrence. NAG (pH 7) potential values indicate hydroxides related pH buffering and possible low-intermediate total concentration metal release upon excessive oxidation increase in the leachates. The metal release processes will further be evaluated using short-term and long-term leach tests. Ignoring leachate chemical characteristics, the samples could be classified as inert wastes according to MEU (2015) static test criteria.



Figure 7.4. Summary graph of static tests. Above: NNP vs. NAG pH; Below: NPR vs. NAG pH.

The ABA evaluations as suggested by the mineralogy are based on the assumption that AP is related to sulphur mineralogy of the samples. Although no significant acid producing sulphate mineral was determined in the samples, for the first worst scenario case, sulphate concentrations were added to the AP calculation procedure and the results were re-evaluated. In the calculations, for Sample I; AP multiplication coefficient of 23.44 was used due to base cation including sulphate mineral (polyhalite; which is actually none-acid-producing sulphate mineral), for Sample III; 31.25 was used due to acid cation including sulphate mineral (lanarkite) and for Sample II; no sulphate mineral is detected but due to similar formation properties to Sample III, 31.25 was used. Furthermore, for the second worst scenario, insoluble sulphur concentrations (assuming representing sulphide) were added to the measured sulphide concentrations in the AP calculations. The calculated AP, NNP, and NPR values under given worst scenario conditions are listed in Table 7.3.

Table 7.3. AP, NP, NNP and NPR values determined by Sum of Sulphur-S-2 & Sulphur-SO4 concentrations and Sulphur-S-2 & insoluble S

| SAMPLE<br>NO | % S-2-S;<br>% SO4-S | AP (kg<br>CaCO3/t) | NNP (kg<br>CaCO3/t) | NPR   | SAMPLE<br>NO | %S-2-S +<br>Insoluble S | AP (kg<br>CaCO3/t) | NNP (kg<br>CaCO3/t) | NPR   |
|--------------|---------------------|--------------------|---------------------|-------|--------------|-------------------------|--------------------|---------------------|-------|
| Ι            | 0.443;0.228         | 19.19              | 33.23               | 2.73  | Ι            | 0.55                    | 17.06              | 35.36               | 3.07  |
| II           | 0.132; 0.034        | 5.19               | 154.32              | 30.75 | II           | 0.24                    | 7.47               | 152.04              | 21.36 |
| III          | 0.151; 0.047        | 6.19               | 206.02              | 34.30 | III          | 0.28                    | 8.78               | 203.43              | 24.17 |

In the scenarios results, sulphide concentrations are less than 1% and NPR values are greater than 3 with the exception of Sample I (NPR =2.7) in the first scenario. But it should be kept in mind that NAG test pH value of Sample I is relatively high and the scenarios represent very extreme conditions. These evaluations indicate that even under worst possible scenario, only sulphide related previous results (before worse scenarios) would not change.

# **CHAPTER 8**

## SHAKE FLASK LEACH TESTS

The shake flask leach test is an effective indicator of waste pile short term hydrogeochemistry. From the leach test data, leaching concentrations of the elements, pH and electrical conductivity could be obtained. The test results are listed in Table 8.1.

| Parameter / Sample | Detection | I-F      | II-F     | III-F    |
|--------------------|-----------|----------|----------|----------|
| EC µS/cm at 25°C   | < 0.001   | 1000     | 493.2    | 438.6    |
| pH                 | < 0.1     | 9.49     | 9.35     | 8.61     |
| Alkalinity         | <3        | 211      | 213.4    | 9.5      |
| Cl                 | <1.5      | 7        | <1.5     | 4        |
| SO4                | <10       | 339      | 49       | 99.706   |
| Al                 | < 0.01    | < 0.01   | < 0.01   | < 0.01   |
| As                 | < 0.001   | 0.0953   | 0.0362   | 0.04318  |
| В                  | < 0.01    | < 0.01   | < 0.01   | < 0.01   |
| Ba                 | < 0.01    | 0.05738  | 0.03976  | 0.03545  |
| Be                 | < 0.001   | < 0.001  | < 0.001  | < 0.001  |
| Bi                 | < 0.040   | < 0.040  | < 0.040  | < 0.040  |
| Ca                 | <1        | 45.22    | 29.29    | 7.753    |
| Cd                 | < 0.0005  | 0.00176  | < 0.0005 | 0.00067  |
| Со                 | < 0.0005  | 0.00274  | < 0.0005 | 0.00079  |
| Cr, t              | < 0.001   | 0.02577  | < 0.001  | < 0.001  |
| Cu                 | < 0.001   | < 0.001  | < 0.001  | < 0.001  |
| Fe                 | < 0.01    | < 0.01   | < 0.01   | < 0.01   |
| Hg                 | < 0.0001  | < 0.0001 | < 0.0001 | < 0.0001 |
| K                  | <1        | 23.5     | 11       | 13.5     |
| Li                 | < 0.01    | 0.04514  | 0.74461  | 0.70073  |
| Mg                 | <1        | 16.4     | 52.5     | 28       |
| Mn                 | < 0.01    | 0.0134   | < 0.01   | < 0.01   |
| Mo                 | < 0.001   | 0.89984  | 0.23106  | 0.59882  |
| Na                 | <1        | 21.2     | 52.5     | 26.6     |
| Ni                 | < 0.01    | < 0.01   | < 0.01   | < 0.01   |
| Р                  | < 0.040   | < 0.040  | < 0.040  | < 0.040  |
| Pb                 | < 0.0005  | 0.01804  | 0.00226  | 0.00417  |
| Sb                 | < 0.0005  | 0.00223  | 0.00114  | 0.00719  |
| Se                 | < 0.01    | < 0.01   | < 0.01   | < 0.01   |
| Si                 | < 0.04    | 21.07    | 18.44    | 10.04    |
| Sn                 | < 0.001   | < 0.001  | < 0.001  | < 0.001  |
| Sr                 | < 0.01    | 1.03074  | 0.71193  | 0.71696  |
| Ti                 | < 0.01    | < 0.01   | < 0.01   | < 0.01   |
| U                  | < 0.005   | 2.93039  | 0.5263   | 1.03667  |
| V                  | < 0.001   | 0.0018   | 0.0364   | 0.0119   |
| Zn                 | < 0.01    | 0.02078  | < 0.01   | < 0.01   |
| Zr                 | < 0.040   | < 0.040  | < 0.040  | < 0.040  |
| *Unit (mg/l)       |           |          |          |          |

pH and EC values are evaluated based on relative values (by comparing values among samples) rather than absolute ones due to the nature of the test because relatively high solid/liquid (1/3) ratios are used. Hence,pH and EC values are not good absolute value indicators of the real conditions. Test leach pH and EC values are in the order of Bostantepe (I)>Lower Çavuşlar (II)>Upper Çavuşlar (III) and all results are basic which indicates that EC values reflect basic environment ion release conditions pH and electrical conductivity values is shown in Figure 8.1. Previous test results (see Appendix-B) with the same solid/liquid ratio of Gladwell et. al (2014) are also plotted in the figure. It should be pointed out that Bostantepe member (Sample I) rocks were not sampled in the previous study.



Figure 8.1. EC and pH plot of this study and the previous study results (taken from Gladwell et al., 2014)

The relative order of sample leachate pH values is the same as that of groundwaters, but it is not compatible with the static test results. Although static test results provide information mainly for the long term, the incompatibility are investigated for possible reasons. Since NPR value of Sample I is lower than those of the others, it is expected that its leachate should relatively be the most acidic one but it is not. The
highest pH value of Sample I leachate could be explained by the presence of Fe, Mn carbonate minerals. As explained earlier, such minerals introduce neutralization at earlier stages of water-rock interaction but then produce acid due to hydrolysis effects at later stages. Therefore, it is possible that the pH value of Sample I reflects results of the earlier (carbonate release) stage reactions. Mineralogical analyses indicate that surite mineral which could produce such effects is present in Sample I. These types of minerals are not necessarily subject to the same reaction rate, but Sample II and III also contain such minerals. Another explanation for the highest pH value of Sample I leachate could be related to the montmorillonite content of its sample. As it will also be discussed in the kinetic test section, montmorillonite is not stable under alkaline conditions, subject to hydrolysis and Na and H<sup>+</sup> exchange increases solution pH (Kaufhold et al., 2008). As a result, sulphide oxidation related acid production in Sample I leachate must have been much lower than the alkali production of the montmorillonite related reaction. Contrary to the static test indications, (NPR value of III is higher than that of II), pH value of Sample II leachate is greater than that of Sample III as well. This could be explained by the earlier stage reaction effects of the detected ankerite (Fe, Mn carbonate) and possibly iron bearing magnesite mineral in Sample II. Such effects related minrecordite (Ca, Zn carbonate) detected in Sample III is probably present in relatively small amounts as below detection limit concentrations of Zn suggested (Table 8.1). Yet another explanation could the different rates of sulphide mineral oxidation/carbonate mineral dissolution in the samples due to the nature of the minerals present, remembering that static test results provide information for the long-term results.

According to the major ion concentrations, facies types of the leachates: Sample I leachate is  $Mix-SO_4$  type; Sample II leachate is Mg-HCO<sub>3</sub> type (compatible with that of groundwater) and Sample III leachate is Mg-SO<sub>4</sub> type (Figure 8.2). Relatively high sulphate concentrations of Samples I and III, in addition to the sulphide oxidation could be related to the dissolution of sulphate minerals (e.g. polyhalite, lanarkite) as they were determined in the XRD analyses of these samples but not in

Sample II. Relatively high amounts of Mg in the leachates of II and III are probably related to the presence of dolomite mineral as it was determined in the XRD analyses.



Figure 8.2. Durov diagram of samples for facies analyses.

The test results indicate that concentrations of Al, B, Be, Bi, Cu, Fe, Hg, Ni, P, Se, Sn, Ti and Zr are lower than the detection limits and the concentrations of alkalinity, Ca, K, Mg, Na, Si, SO<sub>4</sub>, Cl, As, Ba, Li, Mo, Pb, Sb, Sr, U and V are higher than the detection limits in all sample leachates. Additionally, the leachates include above detection limit values of Cd, Co, Cr, Mn and Zn in Sample I and Cd and Co in Sample III. The sample leachates are in neutral pH-low metal category (similar to the groundwater composition) according to Ficklin graph (Figure 8.3), where Sample I composition plot close to the low-high metal boundary.



Figure 8.3. Leachate categorization in Ficklin diagram based on pH and trace metal ion content.

In order to evaluate the leachate qualities, quality limits (a) for the surface water classification (SWC) and maximum environmental quality (MEQ) for rivers of MFW (2016) and (b) waste categorization (WC) limits of MEF (2010) are used as explained in the related methodology section(4.4) and the results are given in Table 8.2. According to the waste categorization limits, the test samples are in "Nonhazardous" class. The parameters causing this class with relatively high concentrations are given in Table 8.2.

Table 8.2. Classification of short-term leach test results according to surface water and waste categorization limits.

| Sample No | SWC (MFW, 2016) | MEQ (MFW, 2016)        | WC (MEF, 2010)             |
|-----------|-----------------|------------------------|----------------------------|
| Ι         | Class IV - pH   | As, Cd(IV), Co, Si, Pb | Non-Hazardous; As, Mo, SO4 |
| П         | Class IV - pH   | Si                     | Non-Hazardous; Mo          |
| III       | Class II - EC   | Cd(III), Si            | Non-Hazardous; Mo, Sb      |

According to surface water classification, Sample I and Sample II were classified as Class IV (highly contaminated) due to the high pH values and Sample III was classified as Class II (slightly contaminated) due to relatively higher EC value. If pH parameter was neglected, Sample I and Sample II also could be classified as Class II (slightly contaminated) according to the EC values. Moreover, according to surface water maximum environmental quality, As, Co, Si, Cd, and Pb concentration for Sample I; Si concentration for Sample II; Si and Cd concentration for Sample III exist above the limit standard. Previous study results(Gladwell et al.(2014)) (provided in Appendix-B) are similar to those of this work, As, Mo and SO4 concentrations are higher according to the waste categorization limits. Surface water quality evaluations are also similar indicating high As, Co, Si concentrations. Although does not necessarily has to be competitive, high concentrations of trace metal ions (As, Cd, Li, Mo, and Sr) detected in the whole rock analyses as greater than those of the average Upper crust are also high in the leachates. Groundwater includes high Al, As, Fe, Pb, Si concentrations

These shake flask leach test results indicate that low-high concentration metal release could occur from the test samples in short term (easily dissolvable) period under saturated test conditions. However, to determine whether such metal releases in short and long terms under field waste pile conditions would occur and if occur in what amounts, require water-rock reaction based hydrogeochemical modelling using kinetic test results. The model works will be presented in Chapter 10.

## **CHAPTER 9**

### **KINETIC TESTS**

## 9.1 Grain Size Distributions and Surface Areas of Test Samples

Densities and sieve analyses results measured in kinetic test samples are listed in Table 9.1. The densities of the test samples are in the order of II> I> III. The grain size analyses curves are shown in Figure 9.1. The grain size distribution of the samples is in the order of II <III <I.

| Sample | No    | Density | (g/cm3) | Range (mm) | Size (mm) | I (g) | II (g) | III(g) |
|--------|-------|---------|---------|------------|-----------|-------|--------|--------|
| Ι      | Ι     | 2.46    | 2.46    | >6.35      | 6.35      | 304   | 75.6   | 270.2  |
| п      | II.1  | 2.11    | 2.51    | 5.66-6.35  | 5.66      | 97.1  | 84.4   | 178.5  |
| Ш      | II.2  | 2.91    | 2.31    | 4.76-5.66  | 4.76      | 60.7  | 107.3  | 134.5  |
| ш      | III.1 | 1.64    | 2.01    | 4.00-4.76  | 4         | 61.9  | 143.1  | 135.2  |
| III    | III.2 | 2.37    | 2.01    | 2.83-4.00  | 2.83      | 81.4  | 222    | 170.7  |
|        |       |         |         | 2.00-2.83  | 2         | 54.1  | 135    | 121.8  |
|        |       |         |         | 1.68-2.00  | 1.68      | 37.5  | 98.9   | 80.1   |
|        |       |         |         | 1.19-1.68  | 1.19      | 47.9  | 115.6  | 96.4   |
|        |       |         |         | 1.00-1.19  | 1         | 23.6  | 46.5   | 39.9   |
|        |       |         |         | <1         | 0         | 218.4 | 458.2  | 283.1  |
|        |       |         |         | Total      |           | 986.6 | 1486.6 | 1510.4 |

Table 9.1. Results of density and sieve analyses.

Surface area calculations (MDAG, 2020) based on the grain size distribution and sample density indicate that surface area of Samples I, II and III are  $1.54 \text{ m}^2/\text{kg}$ ,  $2.07 \text{ m}^2/\text{kg}$ , and  $1.82 \text{ m}^2/\text{kg}$ , respectively. As it is expected, the reverse of the grain size distribution, the surface areas of the samples are in the order of II>III>I.



Figure 9.1. Grain size analyses of samples.

# 9.2 Quality Control

Quality control measurements were carried out during kinetic test runs to determine the accuracy and repeatability of the pH values and repeatability of the EC values. These measurements indicate that accuracy error of the pH values were very low (0.09 %). The repeatability for pH and EC values includes errors of about 2 % (+/-0.15 pH unit) and 0.13 % (+/- 0.55  $\mu$ S/cm), respectively.

In addition to these measurements, the kinetic leachate test solution of Sample II was separated into two different solutions (duplicate) and were sent to the laboratory in the 16<sup>th</sup> week. The estimated percent average deviations (average deviation \*100/average) associated with the parameters, which have concentrations above the detection limit values, are listed in Table 9.2 as percent errors. These parameters are alkalinity, As, Ca, Li, Mg, Mo, Pb, Si, Sr and V.

Table 9.2. Duplicate sample percent deviation error of the parameters in kinetic test.

| Parameter | Alkalinity | As  | Ca  | Li  | Mg  | Mo  | Pb   | Si  | Sr  | V   |
|-----------|------------|-----|-----|-----|-----|-----|------|-----|-----|-----|
| %Error    | 10.3       | 2.1 | 1.5 | 5.1 | 0.2 | 3.1 | 55.6 | 1.8 | 0.5 | 1.0 |

Lead parameter includes higher error than normally acceptable error of 30 % for these types of tests. The error is partially related to the very low concentrations measured (0.0044 mg/l, 0.0013 mg/l). But in any case, this possible error will be taken into consideration during lead parameter related evaluations.

# 9.3 Test Results

Room temperature values measured during the kinetic test are listed in Table 9.3 and distribution of the values are shown in Figure 9.2. The room temperature values were

| Π                | TOO    | I I | <b>T*</b>        | TOO    | 1 | <b>T*</b>        | TOO    |
|------------------|--------|-----|------------------|--------|---|------------------|--------|
| 1 ime            | 1 (°C) |     | 11me             | I (°C) |   | 11me             | I (°C) |
| 17.02.2020 10:30 | 28     |     | 18.03.2020 10:45 | 27     |   | 28.04.2020 10:39 | 26.2   |
| 18.02.2020 10:46 | 27.5   |     | 19.03.2020 11:27 | 26     |   | 29.04.2020 11:01 | 26.7   |
| 19.02.2020 15:46 | 28.2   |     | 23.03.2020 10:45 | 27     |   | 30.04.2020 13:02 | 27.2   |
| 20.02.2020 13:35 | 29.2   |     | 24.03.2020 10:07 | 27.7   |   | 4.05.2020 13:32  | 26.8   |
| 21.02.2020 15:25 | 29.6   |     | 25.03.2020 11:09 | 27.8   |   | 5.05.2020 09:41  | 26.1   |
| 24.02.2020 10:52 | 29.8   |     | 26.03.2020 11:05 | 28     |   | 6.05.2020 13:05  | 26.3   |
| 25.02.2020 09:52 | 30     |     | 30.03.2020 10:27 | 26.3   |   | 7.05.2020 12:25  | 26.9   |
| 26.02.2020 16:59 | 30.6   |     | 31.03.2020 09:30 | 26     |   | 11.05.2020 13:08 | 26.7   |
| 27.02.2020 15:20 | 30.8   |     | 1.04.2020 12:23  | 26.1   |   | 12.05.2020 10:14 | 26.7   |
| 28.02.2020 13:50 | 30.8   |     | 2.04.2020 11:55  | 26     |   | 13.05.2020 12:45 | 27.2   |
| 29.02.2020 13:52 | 30.8   |     | 6.04.2020 10:45  | 25     |   | 14.05.2020 12:48 | 28     |
| 3.03.2020 15:25  | 31.1   |     | 7.04.2020 10:47  | 25     |   | 15.05.2020 16:15 | 28     |
| 4.03.2020 16:32  | 32     |     | 8.04.2020 10:25  | 25     |   | 20.05.2020 10:57 | 29.1   |
| 5.03.2020 15:15  | 32     |     | 9.04.2020 12:11  | 26     |   | 21.05.2020 10:25 | 29.6   |
| 6.03.2020 15:15  | 31.6   |     | 13.04.2020 10:32 | 25.6   |   | 22.05.2020 12:24 | 30     |
| 9.03.2020 11:35  | 31.6   |     | 14.04.2020 10:29 | 25.9   |   | 27.05.2020 11:28 | 26     |
| 10.03.2020 10:12 | 31.1   |     | 15.04.2020 10:31 | 26     |   | 28.05.2020 10:00 | 25.2   |
| 11.03.2020 10:33 | 30.2   |     | 16.04.2020 12:22 | 26.9   |   | 29.05.2020 11:47 | 25.2   |
| 12.03.2020 14:03 | 30     |     | 20.04.2020 13:25 | 27.2   |   | 1.06.2020 11:37  | 24.1   |
| 13.03.2020 14:45 | 29.8   |     | 21.04.2020 10:42 | 27     |   | 2.06.2020 12:30  | 24.2   |
| 16.03.2020 10:32 | 29.3   |     | 22.04.2020 12:29 | 27.1   |   | 3.06.2020 12:08  | 24     |
| 17.03.2020 11:55 | 28.8   |     | 27.04.2020 10:41 | 26     |   | 4.06.2020 11:38  | 24.7   |

Table 9.3. Room temperature values during the kinetic test.



Figure 9.2. Room temperature distribution during the kinetic test.

in range of 24 °C and 32 °C with the average of 28 °C which is slightly higher than that of air temperature in the study area. Considering the characteristic of the kinetic leach test (excessive sample alteration in a short period of time in comparison to natural conditions) and other alteration agents (e.g. wind, abrupt changes of temperatute) which are not simulated in the tests but will be active in the field, the room and field temperature difference is considered acceptable.

The kinetic test related other results of samples are listed in Table 9.4. As it was explained before, the leachate drainage was ceased after the 1st Week from Sample I column due to clogging of the porous disc caused by very high clay content of the sample. Because of it, the sample became saturated in irrigation days (wet period) and added water accumulated at the top of the sample. After the irrigation, the slurry (sample + solution at the top) is mechanically mixed for a short period of time in order to ensure interaction of the added water with the sample. The leachate at the end of a cycle is collected from the upper column with a pump after allowing enough sedimentation time. However, while collecting with the pump, approximately 3 cm height slurry was left in the upper column in order not to collect the sample sediments present in the slurry. The effect of this remaining solution to the concentrations of the remaining solution and volume and concentrations of the next cycle solution as explained in Appendix-C. The values of Sample I listed in Table 9.4 are those estimated mixing free values. The mixing effects are in fact negligible as

demonstrated in Appendix-C where the original laboratory measurements are also provided.

|                 | Starting   |      | Added     | Collected | Decreased |      |      |        |              |      |        |
|-----------------|------------|------|-----------|-----------|-----------|------|------|--------|--------------|------|--------|
| Sample No       | Starting   | Week | Volume of | Volume of | Sample    | T ℃  | pH   | EC     | Alkalinity   | Cl   | SO4    |
|                 | date       |      | Water     | Water     | Amount    |      |      |        |              |      |        |
| Detection       |            |      |           |           |           |      | <0.1 | <0.1   | <3           | <1.5 | <10    |
| Unit (mg/l)     |            |      | ml        | ml        | g         |      |      | uS/cm  | mg/l         | mg/l | mg/l   |
| I-0             |            |      | 1700      | 640       | 8         |      | 7.76 | 732.0  | 88           | 7    | 247.64 |
| II-0            | 13.02.2020 | 0    | 1400      | 1070      |           | 21.6 | 7.27 | 232.1  | 70.7         | <1.5 | 33.92  |
| III-0           |            |      | 1600      | 1070      |           | 21.3 | 7.09 | 346.0  | 73.8         | 1.95 | 87.00  |
| I-1             |            |      | 900       | 700       |           | 25.8 | 7.66 | 1473.0 | 76.2         | 6.65 | 498.53 |
| II-1            | 20.02.2020 | 1    | 800       | 745       |           | 22.3 | 7.72 | 366.8  | 70.1         | <1.5 | 122.26 |
| III-1           |            |      | 800       | 747       |           | 22.8 | 7.32 | 573.0  | 63.0         | 3.95 | 236.24 |
| I-2             |            |      | 750       | 532.5     |           | 27.7 | 7.92 | 479.8  | 84.4         | 7.9  | 166.55 |
| II-2            | 27.02.2020 | 2    | 750       | 645       |           | 25.1 | 7.89 | 275.0  | 68.8         | 4    | 59.57  |
| III-2           |            |      | 750       | 732       |           | 25.2 | 7.54 | 404.0  | 60.0         | 6    | 124.70 |
| I-3             |            |      | 750       | 565       | 4*        | 26.7 | 8.75 | 657.9  | 168.6        | 69.6 | 149.87 |
| II-3            | 5.03.2020  | 3    | 750       | 707       |           | 26.7 | 7.72 | 205.2  | 66.0         | 3    | 31.32  |
| III-3           |            |      | 750       | 705       |           | 26.9 | 8.40 | 335.5  | 63.4         | 3    | 87.25  |
| I-4             |            |      | 750       | 655       | 4*        | 24.3 | 9.04 | 524.8  | 102.6        | 6.7  | 84.06  |
| II-4            | 12.03.2020 | 4    | 800       | 782.5     |           | 24.5 | 7.59 | 189.5  | 62.6         | 2    | 27.01  |
| III-4           |            |      | 800       | 744       |           | 24.6 | 7.97 | 298.3  | 60.0         | 5    | 75.93  |
| I-5             |            |      | 750       | 743       | 1.47      | 20.7 | 9.44 | 324.3  | 242.9        | <1.5 | 68.33  |
| II-5            | 19.03.2020 | 5    | 750       | 712.5     |           | 20.3 | 7.09 | 148.4  | 73.4         | <1.5 | 11.45  |
| III-5           |            |      | 750       | 699       |           | 20.4 | 8.15 | 250.1  | 74.8         | <1.5 | 70.72  |
| I-6             |            |      | 750       | 675       | 2.55      | 22.4 | 8.81 | 271.9  | 86.0         | <1.5 | 21.33  |
| II-6            | 26.03.2020 | 6    | 750       | 725       |           | 22.3 | 7.02 | 133.2  | 63.0         | <1.5 | <10    |
| 111-6           |            |      | 750       | 725       |           | 22.3 | 7.63 | 232.9  | 60.2         | <1.5 | 49.69  |
| I-/             | 2.04.2020  | 7    | 750       | 684       | 3.11      | 20.7 | 8.80 | 225.5  | 86.5         | <1.5 | 25.47  |
| II- /           | 2.04.2020  | /    | 750       | 733       |           | 20.7 | 6.84 | 126.1  | 61.3         | <1.5 | 14.68  |
| III- /          |            |      | 750       | /30       | 11        | 20.6 | 7.60 | 228.3  | 56.6         | <1.5 | 49.69  |
| 1-8<br>1-8      | 0.04.0000  | 0    | 750       | 6/6       | 11        | 20.5 | 8.61 | 191.6  | 81.9         | <1.5 | 16.35  |
| II-8<br>III-8   | 9.04.2020  | 8    | 750       | 735       |           | 20.4 | 0.88 | 122.7  | 57.8         | 0.65 | <10    |
| III-8           |            |      | 750       | /32.5     | 0.10      | 20.3 | 7.49 | 198.9  | 59.2         | <1.5 | 39.76  |
| I-9             | 16.04.2020 | 0    | 750       | 644       | 0.13      | 21.6 | 8.50 | 182.4  | 91.8         | <1.5 | 8.95   |
| II-9<br>III-0   | 16.04.2020 | 9    | 750       | 718       |           | 21.5 | 6.82 | 119.0  | 59.0         | <1.5 | <10    |
| III-9           |            |      | 750       | /26       | 10.5      | 21.5 | 7.44 | 183.7  | 38.5         | <1.5 | 35.57  |
| П 10            | 22.04.2020 | 10   | 720       | 665       | 10.5      | 21.9 | 8.29 | 102.0  | 81.2<br>65.9 | <1.5 | 10.51  |
| II-10<br>III 10 | 22.04.2020 | 10   | 710       | 670       |           | 21.9 | 7.24 | 140.2  | 59.1         | 1.0  | 26.80  |
| III-10          |            |      | 710       | 682       | 1.96      | 21.7 | 9 22 | 149.2  | 04.7         | <1.5 | 16.52  |
| I-11<br>II-11   | 30.04.2020 | 11   | 700       | 690       | 1.60      | 21.9 | 6.23 | 118.8  | 94.7<br>65.4 | <1.5 | <10.55 |
| III-11          | 50.04.2020 |      | 725       | 694       |           | 21.7 | 7.20 | 165.7  | 62.3         | <1.5 | 30.15  |
| I-12            |            |      | 725       | 670       | 2.54      | 21.7 | 8.29 | 141.2  | 90.8         | <1.5 | <10    |
| II-12           | 7.05.2020  | 12   | 725       | 692       | 2.54      | 21.5 | 6.61 | 119.7  | 59.9         | <1.5 | <10    |
| III-12          |            |      | 725       | 702.5     |           | 21.5 | 7 17 | 160.2  | 62.0         | <1.5 | 23.80  |
| I-13            |            |      | 715       | 681       | 1.98      | 22.4 | 8 23 | 133.3  | 69.0         | 2.4  | 16.42  |
| II-13           | 14.05.2020 | 13   | 725       | 686       | 1.50      | 22.4 | 6.55 | 112.3  | 63.4         | 2    | <10    |
| III-13          |            |      | 725       | 695       |           | 22.3 | 7.29 | 151.3  | 64.6         | 2.3  | 22.50  |
| I-14            |            |      | -         | -         | -         | -    | -    | -      | -            | -    | -      |
| II-14           | 21.05.2020 | 14   | 750       | 704.5     |           | 24.4 | 6.81 | 129.8  | 70.4         | <1.5 | <10    |
| III-14          |            |      | 750       | 690       |           | 24.5 | 8.19 | 137.1  | 56           | <1.5 | 22.66  |
| I-15            |            |      | -         | -         | -         | -    | -    | -      | -            | -    | -      |
| II-15           | 28.05.2020 | 15   | 750       | 677.5     |           | 20   | 6.54 | 106.2  | 53           | <1.5 | <10    |
| III-15          |            |      | 750       | 685       |           | 19.9 | 7.15 | 129.3  | 52.4         | <1.5 | 19.73  |
| I-16            |            |      | -         | -         | -         | -    | -    | -      | -            | -    | -      |
| II-16           | 4.06.2020  | 16   | 750       | 695       |           | 19.2 | 6.54 | 87.3   | 58.3         | <1.5 | <10    |
| III-16          |            |      | 750       | 735       |           | 19   | 7.28 | 133.9  | 52.1         | 1.65 | 24.614 |

Table 9.4. Kinetic test results

\*Estimated value. nm: Not measured due to insufficient sample solution.

# Table 9.4. Cont'd.

| Sample No       | Starting<br>date | Week | Al       | As      | В      | Ba      | Be      | Bi      | Ca    | Cd       | Со       | Cr. t    | Cu      |
|-----------------|------------------|------|----------|---------|--------|---------|---------|---------|-------|----------|----------|----------|---------|
| Detection       |                  |      | <0.01    | <0.001  | <0.01  | <0.01   | <0.001  | <0.040  | <1.00 | < 0.0005 | < 0.0005 | <0.001   | <0.001  |
| Unit (mg/l)     |                  |      | mg/l     | mg/l    | mg/l   | mg/l    | mg/l    | mg/l    | mg/l  | mg/l     | mg/l     | mg/l     | mg/l    |
| I-0             |                  |      | 0.68555  | 0.082   | < 0.01 | 0.078   | < 0.001 | < 0.040 | 30.95 | 0.0007   | 0.0141   | 0.001    | 0.015   |
| П-0             | 13.02.2020       | 0    | < 0.01   | 0.012   | < 0.01 | 0.020   | < 0.001 | < 0.040 | 5.78  | < 0.0005 | 0.00064  | 0.00129  | 0.009   |
| III-0           |                  |      | < 0.01   | 0.028   | < 0.01 | 0.035   | < 0.001 | < 0.040 | 7.97  | < 0.0005 | < 0.0005 | < 0.001  | 0.007   |
| I-1             |                  |      | < 0.01   | 0.104   | < 0.01 | 0.080   | < 0.001 | < 0.040 | 56.84 | 0.004    | 0.00232  | < 0.001  | < 0.001 |
| II-1            | 20.02.2020       | 1    | 0.01811  | 0.017   | < 0.01 | 0.031   | < 0.001 | < 0.040 | 7.48  | 0.00062  | 0.00139  | < 0.001  | 0.001   |
| III-1           |                  |      | < 0.01   | 0.066   | < 0.01 | 0.041   | < 0.001 | < 0.040 | 21.42 | 0.00271  | 0.00211  | < 0.001  | < 0.001 |
| I-2             |                  |      | 0.03473  | 0.139   | < 0.01 | 0.061   | < 0.001 | < 0.040 | 0.00  | 0.00108  | 0.00078  | < 0.001  | < 0.001 |
| П-2             | 27.02.2020       | 2    | 0.01287  | 0.021   | < 0.01 | 0.021   | < 0.001 | < 0.040 | 4.89  | 0.00036  | 0.00127  | < 0.001  | < 0.001 |
| III-2           |                  |      | < 0.01   | 0.094   | < 0.01 | 0.033   | < 0.001 | < 0.040 | 8.43  | 0.00162  | 0.00323  | < 0.001  | < 0.001 |
| I-3             |                  |      | 0.01398  | 0.108   | < 0.01 | 0.009   | < 0.001 | < 0.040 | nm    | < 0.0005 | < 0.0005 | < 0.001  | 0.022   |
| II-3            | 5.03.2020        | 3    | 0.01026  | 0.024   | < 0.01 | 0.016   | < 0.001 | < 0.040 | nm    | < 0.0005 | < 0.0005 | < 0.01   | 0.004   |
| III-3           |                  |      | < 0.01   | 0.102   | < 0.01 | 0.029   | < 0.001 | < 0.040 | nm    | < 0.0005 | < 0.0005 | 0.00102  | 0.004   |
| I-4             |                  |      | 0.28589  | 0.201   | < 0.01 | 0.061   | < 0.001 | < 0.040 | nm    | < 0.0005 | 0.00047  | 0.00316  | 0.002   |
| II-4            | 12.03.2020       | 4    | < 0.01   | 0.028   | < 0.01 | 0.017   | < 0.001 | < 0.040 | nm    | < 0.0005 | < 0.0005 | 0.00103  | 0.004   |
| 111-4           |                  |      | <0.01    | 0.102   | < 0.01 | 0.026   | < 0.001 | < 0.040 | nm    | < 0.0005 | < 0.0005 | <0.001   | 0.003   |
| 1-5             |                  | _    | 0.3533   | 0.093   | < 0.01 | 0.028   | < 0.001 | < 0.040 | 2.58  | < 0.0005 | 0.00048  | 0.00055  | 0.004   |
| II-5            | 19.03.2020       | 5    | <0.01    | 0.024   | < 0.01 | 0.012   | < 0.001 | < 0.040 | 5.34  | <0.0005  | < 0.0005 | <0.001   | 0.002   |
| III-5           |                  |      | 0.02311  | 0.097   | <0.01  | 0.039   | < 0.001 | <0.040  | 6.21  | <0.0005  | 0.00064  | 0.00105  | 0.013   |
| 1-6             |                  | -    | 0.9176   | 0.137   | <0.01  | 0.027   | < 0.001 | <0.040  | 17.80 | <0.0005  | <0.0005  | < 0.001  | 0.003   |
| II-6            | 26.03.2020       | 6    | 0.02372  | 0.020   | < 0.01 | 0.012   | < 0.001 | <0.040  | 4.45  | < 0.0005 | <0.0005  | < 0.001  | 0.001   |
| 111-6           |                  |      | 0.03863  | 0.076   | <0.01  | 0.025   | < 0.001 | < 0.040 | 6.04  | < 0.0005 | < 0.0005 | < 0.001  | 0.001   |
| I-/             | 2.04.2020        | 7    | 0.65681  | 0.133   | < 0.01 | 0.014   | < 0.001 | <0.040  | 29.44 | < 0.0005 | <0.0005  | < 0.001  | 0.002   |
| II-/            | 2.04.2020        | /    | 0.02599  | 0.020   | <0.01  | 0.011   | < 0.001 | <0.040  | 4.98  | < 0.0005 | < 0.0005 | < 0.001  | 0.001   |
|                 |                  |      | 0.01653  | 0.068   | <0.01  | 0.026   | <0.001  | <0.040  | 0.50  | <0.0005  | <0.0005  | <0.001   | 0.001   |
| 1-8<br>IL 9     | 0.04.2020        | 0    | 1.43/03  | 0.281   | <0.01  | 0.011   | <0.001  | <0.040  | 4.54  | < 0.0005 | < 0.0005 | <0.001   | 0.002   |
| II-8            | 9.04.2020        | 8    | 0.02621  | 0.019   | <0.01  | 0.011   | < 0.001 | < 0.040 | 5.37  | <0.0005  | < 0.0005 | <0.001   | 0.001   |
| III-8           |                  |      | 0.03537  | 0.071   | <0.01  | 0.023   | <0.001  | <0.040  | 0.10  | < 0.0005 | <0.0005  | < 0.001  | 0.001   |
| I-9             | 16.04.2020       | 0    | 0.76418  | 0.085   | <0.01  | 0.020   | < 0.001 | <0.040  | 8.20  | < 0.0005 | <0.0005  | < 0.001  | 0.003   |
| II-9            | 16.04.2020       | 9    | 0.02387  | 0.018   | <0.01  | < 0.01  | < 0.001 | < 0.040 | 4.63  | < 0.0005 | < 0.0005 | < 0.001  | <0.001  |
| III-9           |                  |      | 0.0216   | 0.0/1   | <0.01  | 0.020   | <0.001  | <0.040  | 0.11  | <0.0005  | <0.0005  | <0.001   | <0.001  |
| I-10            | 22.04.2020       | 10   | 2.43357  | 0.106   | <0.01  | 0.011   | <0.001  | <0.040  | 3.62  | <0.0005  | <0.0005  | <0.001   | 0.002   |
| II-10<br>III 10 | 22.04.2020       | 10   | 0.03304  | 0.010   | <0.01  | <0.01   | <0.001  | <0.040  | 4.79  | <0.0005  | <0.0005  | <0.001   | <0.001  |
| III-10          |                  |      | 0.01107  | 0.059   | <0.01  | 0.010   | <0.001  | <0.040  | 4.97  | < 0.0005 | < 0.0005 | <0.001   | <0.001  |
| П-11            | 20.04.2020       | 11   | 0.02061  | 0.238   | <0.01  | 0.014   | <0.001  | <0.040  | 5.11  | < 0.0005 | <0.0005  | <0.001   | 0.002   |
| II-11           | 50.04.2020       | 11   | 0.02901  | 0.018   | <0.01  | 0.020   | <0.001  | <0.040  | 5.00  | < 0.0005 | <0.0005  | <0.001   | <0.001  |
| I-12            |                  |      | 10.01394 | 0.008   | <0.01  | 0.020   | <0.001  | <0.040  | 2.51  | <0.0005  | <0.0005  | <0.001   | <0.001  |
| П-12            | 7 05 2020        | 12   | 0.02440  | 0.079   | < 0.01 | <0.029  | <0.001  | <0.040  | 7.16  | < 0.0005 | <0.0005  | <0.01239 | <0.001  |
| III-12          | 7.05.2020        | 12   | 0.02449  | 0.019   | < 0.01 | <0.01   | <0.001  | <0.040  | 0.03  | <0.0005  | <0.0005  | <0.001   | <0.001  |
| I-12            |                  |      | 4 23968  | 0.062   | <0.01  | 0.015   | <0.001  | <0.040  | 2.44  | <0.0005  | <0.0005  | 0.00105  | <0.001  |
| II-13           | 14 05 2020       | 13   | 0.01929  | 0.009   | <0.01  | <0.043  | <0.001  | < 0.040 | 16.51 | <0.0005  | <0.0005  | <0.0007  | <0.001  |
| III-13          | 11.05.2020       | 15   | <0.01    | 0.062   | <0.01  | 0.013   | <0.001  | <0.040  | 3 21  | <0.0005  | <0.0005  | <0.001   | <0.001  |
| I-14            |                  |      | -        |         | -      | -       | -       | -       | -     | -        | -        | -        | -       |
| II-14           | 21.05 2020       | 14   | < 0.01   | 0.01474 | < 0.01 | < 0.01  | < 0.001 | <0.040  | 9,009 | <0.0005  | <0.0005  | < 0.001  | < 0.001 |
| III-14          |                  |      | <0.01    | 0.0452  | <0.01  | 0.01192 | <0.001  | <0.040  | 4 727 | <0.0005  | <0.0005  | <0.001   | <0.001  |
| I-15            |                  |      | -        | -       | -      | -       | -       | -       | -     | -        | -        | -        | -       |
| II-15           | 28.05.2020       | 15   | < 0.01   | 0.02968 | < 0.01 | < 0.01  | < 0.001 | <0.040  | 4 635 | <0.0005  | <0.0005  | < 0.001  | < 0.001 |
| III-15          | 2010012020       |      | <0.01    | 0.03672 | < 0.01 | 0.0131  | < 0.001 | < 0.040 | 4.465 | < 0.0005 | < 0.0005 | < 0.001  | < 0.001 |
| I-16            |                  |      | -        | -       | -      | -       | -       | -       | -     | -        | -        | -        | -       |
| II-16           | 4.06.2020        | 16   | < 0.01   | 0.01002 | < 0.01 | < 0.01  | < 0.001 | < 0.040 | 4.011 | < 0.0005 | < 0.0005 | < 0.001  | < 0.001 |
| III-16          |                  | -    | < 0.01   | 0.0424  | < 0.01 | 0.01089 | < 0.001 | < 0.040 | 4.638 | < 0.0005 | < 0.0005 | < 0.001  | < 0.001 |

Table 9.4. Cont'd.

| Sample No     | Starting<br>date | Week | Fe      | Hg       | К            | Li      | Mg    | Mn       | Мо      | Na     | Ni      | Р       | Рь       |
|---------------|------------------|------|---------|----------|--------------|---------|-------|----------|---------|--------|---------|---------|----------|
| Detection     |                  |      | <0.01   | <0.0001  | <1.00        | <0.01   | <1.00 | <0.01    | <0.001  | <1.00  | <0.01   | <0.040  | < 0.0005 |
| Unit (mg/l)   |                  |      | mg/l    | mg/l     | mg/l         | mg/l    | mg/l  | mg/l     | mg/l    | mg/l   | mg/l    | mg/l    | mg/l     |
| I-0           |                  |      | 1.140   | < 0.0001 | 23.18        | 0.044   | 8.35  | 0.0487   | 0.88359 | 10.78  | 0.01689 | < 0.040 | 0.0047   |
| II-0          | 13.02.2020       | 0    | < 0.01  | < 0.0001 | 6.36         | 0.092   | 22.40 | < 0.01   | 0.14754 | 17.95  | 0.02701 | < 0.040 | 0.00544  |
| III-0         |                  |      | < 0.01  | < 0.0001 | 9.37         | 0.262   | 25.18 | < 0.01   | 0.45989 | 33.28  | < 0.01  | < 0.040 | 0.00061  |
| I-1           |                  |      | < 0.01  | < 0.0001 | 3.16         | 0.085   | 20.24 | < 0.01   | 2.8465  | 20.24  | < 0.01  | < 0.040 | 0.01202  |
| II-1          | 20.02.2020       | 1    | < 0.01  | < 0.0001 | 6.30         | 0.121   | 32.70 | 0.02176  | 0.26813 | 22.70  | < 0.01  | < 0.040 | 0.02163  |
| III-1         |                  |      | < 0.01  | < 0.0001 | 6.89         | 0.379   | 38.52 | < 0.01   | 1.31469 | 42.62  | < 0.01  | < 0.040 | 0.01472  |
| I-2           |                  |      | < 0.01  | < 0.0001 | 20.56        | 0.031   | 3.73  | < 0.01   | 0.454   | 110.07 | < 0.01  | < 0.040 | 0.00325  |
| II-2          | 27.02.2020       | 2    | < 0.01  | < 0.0001 | 4.24         | 0.104   | 25.25 | 0.0173   | 0.16925 | 10.97  | < 0.01  | < 0.040 | 0.00159  |
| III-2         |                  |      | < 0.01  | < 0.0001 | 7.71         | 0.251   | 25.81 | < 0.01   | 0.69712 | 33.39  | < 0.01  | < 0.040 | 0.00429  |
| I-3           |                  |      | < 0.01  | < 0.0001 | nm           | 0.038   | nm    | < 0.01   | 0.60744 | nm     | < 0.01  | < 0.040 | 5.4E-05  |
| II-3          | 5.03.2020        | 3    | 0.024   | < 0.0001 | nm           | 0.091   | nm    | 0.0153   | 0.1027  | nm     | < 0.01  | < 0.040 | 0.01377  |
| III-3         |                  |      | < 0.01  | < 0.0001 | nm           | 0.268   | nm    | < 0.01   | 0.38272 | nm     | < 0.01  | < 0.040 | 0.00793  |
| 1-4           | 10.00.0000       |      | 0.084   | < 0.0001 | nm           | 0.046   | nm    | < 0.01   | 0.66105 | nm     | < 0.01  | < 0.040 | < 0.0005 |
| 11-4          | 12.03.2020       | 4    | < 0.01  | < 0.0001 | nm           | 0.088   | nm    | 0.01378  | 0.06784 | nm     | < 0.01  | < 0.040 | 0.00937  |
| 111-4         |                  |      | < 0.01  | < 0.0001 | nm           | 0.236   | nm    | < 0.01   | 0.22222 | nm     | < 0.01  | < 0.040 | 0.00273  |
| I-5           | 10.02.2020       | ~    | 0.106   | < 0.0001 | 23.88        | 0.019   | 9.42  | 0.00958  | 0.19752 | 108.60 | <0.01   | <0.040  | 0.00435  |
| II-5          | 19.03.2020       | 5    | <0.01   | < 0.0001 | 2.00         | 0.065   | 15.39 | 0.01234  | 0.05802 | 3.48   | <0.01   | < 0.040 | 0.00279  |
| III-5         |                  |      | 0.088   | <0.0001  | 5.70         | 0.173   | 18.00 | <0.01    | 0.12515 | 17.78  | <0.01   | <0.040  | 0.0187   |
| 1-0<br>II.C   | 26.02.2020       | ~    | 0.102   | < 0.0001 | 8.92         | 0.015   | 2.78  | 0.04839  | 0.20117 | 37.22  | <0.01   | < 0.040 | <0.0005  |
| 11-0<br>III.6 | 26.03.2020       | 0    | 0.069   | < 0.0001 | 1.47         | 0.039   | 14.30 | <0.01    | 0.0323  | 2.44   | <0.01   | <0.040  | 0.00937  |
| III-0         |                  |      | 0.096   | <0.0001  | 4.98         | 0.121   | 18.8/ | < 0.01   | 0.07401 | 19.95  | <0.01   | <0.040  | 0.01105  |
| I-7<br>II 7   | 2 04 2020        | 7    | 0.174   | <0.0001  | 0.92         | 0.014   | 12.00 | 0.02824  | 0.11021 | 41.95  | <0.01   | <0.040  | <0.0003  |
| II-7<br>III 7 | 2.04.2020        | /    | 0.065   | < 0.0001 | 1.34         | 0.055   | 15.00 | <0.01049 | 0.02492 | 2.29   | <0.01   | <0.040  | 0.00213  |
| I-8           |                  |      | 8.868   | <0.0001  | 4.34<br>8.44 | 0.012   | 2 27  | 0.000    | 0.00534 | 40.70  | <0.01   | <0.040  | <0.00000 |
| П-8           | 0.04.2020        | 0    | 0.089   | < 0.0001 | 1.12         | 0.012   | 13.89 | <0.00    | 0.09334 | 2 24   | <0.01   | <0.040  | 0.00735  |
| m e           | 9.04.2020        | 0    | 0.007   | <0.0001  | 3.87         | 0.026   | 14.03 | <0.01    | 0.04734 | 13.68  | <0.01   | <0.040  | 0.00755  |
| 10            |                  |      | 0.097   | <0.0001  | 7.46         | 0.090   | 2 12  | <0.01    | 0.04734 | 22.54  | <0.01   | <0.040  | 0.0040   |
| I-9<br>II 0   | 16.04.2020       | 0    | 0.280   | <0.0001  | 1.00         | 0.009   | 3.15  | 0.02192  | 0.00/17 | 1.60   | <0.01   | < 0.040 | <0.0003  |
| Ш 0           | 10.04.2020       |      | 0.079   | < 0.0001 | 2.80         | 0.023   | 12.70 | < 0.01   | 0.01387 | 1.09   | <0.01   | < 0.040 | 0.00994  |
| I-10          |                  |      | 0.073   | <0.0001  | 5.60         | <0.01   | 2 31  | 0.01165  | 0.04093 | 24.56  | <0.01   | <0.040  | 0.00320  |
| П-10          | 22 04 2020       | 10   | 0.474   | < 0.0001 | <1.00        | 0.022   | 12.31 | <0.01    | 0.04043 | 1 33   | <0.01   | <0.040  | 0.00272  |
| Ш-10          | 22.01.2020       | 10   | 0.0/4   | <0.0001  | 3.02         | 0.022   | 13.02 | <0.01    | 0.03404 | 8 10   | <0.01   | <0.040  | 0.00203  |
| I-11          |                  |      | 0.049   | < 0.0001 | 8.57         | 0.013   | 2.41  | 0.01417  | 0.05404 | 35.52  | <0.01   | <0.040  | 0.00427  |
| П-11          | 30.04.2020       | 11   | 0.092   | <0.0001  | <1.00        | 0.023   | 13.08 | < 0.01   | 0.00572 | 1 29   | <0.01   | <0.040  | 0.00007  |
| III-11        |                  |      | 0.060   | <0.0001  | 3 25         | 0.075   | 14 48 | <0.01    | 0.03939 | 8.63   | <0.01   | <0.040  | 0.00501  |
| I-12          |                  |      | 2.501   | < 0.0001 | 4 38         | 0.012   | 2.40  | 0.01658  | 0.032   | 9.78   | < 0.01  | <0.040  | 0.00078  |
| II-12         | 7.05.2020        | 12   | 0.083   | < 0.0001 | <1.00        | 0.027   | 5.62  | < 0.01   | 0.01343 | <1.00  | < 0.01  | < 0.040 | 0.00497  |
| III-12        |                  |      | < 0.01  | < 0.0001 | 1.10         | 0.079   | 5.58  | < 0.01   | 0.03465 | 3.33   | < 0.01  | < 0.040 | 0.02537  |
| I-13          |                  |      | 0.276   | < 0.0001 | 2.35         | 0.012   | 1.09  | 0.00969  | 0.03468 | 8.80   | < 0.01  | < 0.040 | 0.00061  |
| II-13         | 14.05.2020       | 13   | < 0.01  | < 0.0001 | 5.56         | 0.025   | 5.56  | < 0.01   | 0.01137 | <1.00  | < 0.01  | < 0.040 | 0.00438  |
| III-13        |                  |      | < 0.01  | < 0.0001 | 1.07         | 0.076   | 5.39  | < 0.01   | 0.02919 | 3.07   | < 0.01  | < 0.040 | < 0.0005 |
| I-14          |                  |      | -       | -        | -            | -       | -     | -        | -       | -      | -       | -       | -        |
| II-14         | 21.05.2020       | 14   | < 0.01  | < 0.0001 | <1.00        | 0.02653 | 11.13 | < 0.01   | 0.01275 | <1.00  | < 0.01  | < 0.040 | < 0.0005 |
| III-14        |                  |      | < 0.01  | < 0.0001 | 2.531        | 0.06226 | 10.51 | < 0.01   | 0.02874 | 5.461  | < 0.01  | < 0.040 | 0.00061  |
| I-15          |                  |      | -       | -        | -            | -       | -     | -        | -       | -      | -       | -       | -        |
| II-15         | 28.05.2020       | 15   | 0.07959 | < 0.0001 | <1.00        | 0.02799 | 10.86 | < 0.01   | 0.01175 | <1.00  | < 0.01  | < 0.040 | 0.00163  |
| III-15        |                  |      | < 0.01  | < 0.0001 | 2.235        | 0.07703 | 9.935 | < 0.01   | 0.02999 | 4.989  | < 0.01  | < 0.040 | 0.00552  |
| I-16          |                  |      | -       | -        | -            | -       | -     | -        | -       | -      | -       | -       | -        |
| II-16         | 4.06.2020        | 16   | < 0.01  | < 0.0001 | <1.00        | 0.0198  | 9.01  | < 0.01   | 0.00481 | <1.00  | < 0.01  | < 0.040 | 0.00441  |
| III-16        |                  |      | < 0.01  | < 0.0001 | 2.328        | 0.06428 | 10.92 | < 0.01   | 0.02129 | 5.215  | < 0.01  | < 0.040 | 0.00292  |

# Table 9.4. Cont'd.

| Sample No   | Starting<br>date | Week | Sb       | Se      | Si      | Sn      | Sr      | Ti     | U        | V       | Zn      | Zr      |
|-------------|------------------|------|----------|---------|---------|---------|---------|--------|----------|---------|---------|---------|
| Detection   |                  |      | < 0.0005 | <0.01   | <0.04   | <0.001  | <0.01   | <0.01  | < 0.0005 | <0.001  | <0.01   | <0.040  |
| Unit (mg/l) |                  |      | mg/l     | mg/l    | mg/l    | mg/l    | mg/l    | mg/l   | mg/l     | mg/l    | mg/l    | mg/l    |
| I-0         |                  |      | < 0.0005 | < 0.01  | 207.7   | < 0.001 | 0.70754 | < 0.01 | 1.26085  | 0.0036  | 0.07047 | < 0.040 |
| II-0        | 13.02.2020       | 0    | 0.00055  | < 0.01  | 4.894   | < 0.001 | 0.31682 | < 0.01 | 0.32137  | 0.04981 | 0.01808 | < 0.040 |
| III-0       | 1                |      | 0.00425  | 0.01161 | 7.948   | < 0.001 | 0.54703 | < 0.01 | 0.50051  | 0.01189 | 0.01207 | < 0.040 |
| I-1         |                  |      | 0.0005   | < 0.01  | 13.66   | < 0.001 | 2.61677 | < 0.01 | 2.07852  | < 0.001 | 0.02536 | < 0.040 |
| II-1        | 20.02.2020       | 1    | 0.0013   | < 0.01  | 8.063   | < 0.001 | 0.64858 | < 0.01 | 0.27463  | 0.04917 | 0.01353 | < 0.040 |
| III-1       |                  |      | 0.00864  | 0.021   | 10.54   | < 0.001 | 0.8474  | < 0.01 | 0.5804   | 0.02438 | 0.01504 | < 0.040 |
| I-2         |                  |      | 0.00068  | < 0.01  | 12.3393 | < 0.001 | 0.23083 | < 0.01 | 1.1291   | < 0.001 | < 0.01  | < 0.040 |
| II-2        | 27.02.2020       | 2    | 0.00134  | < 0.01  | 9.848   | < 0.001 | 0.43761 | < 0.01 | 0.14368  | 0.05766 | 0.01859 | < 0.040 |
| III-2       |                  |      | 0.00995  | 0.01207 | 11.08   | < 0.001 | 0.6156  | < 0.01 | 0.42634  | 0.03705 | 0.01965 | < 0.040 |
| I-3         |                  |      | 0.00298  | < 0.01  | 1.25199 | < 0.001 | 0.517   | < 0.01 | 0        | 0.00289 | 0.01133 | < 0.040 |
| II-3        | 5.03.2020        | 3    | 0.0013   | < 0.01  | 0.1667  | < 0.001 | 0.42312 | < 0.01 | < 0.0005 | 0.06777 | 0.01361 | < 0.040 |
| III-3       |                  |      | 0.01009  | < 0.01  | 2.505   | < 0.001 | 0.54057 | < 0.01 | < 0.0005 | 0.0474  | 0.00877 | < 0.040 |
| I-4         |                  |      | 0.00111  | < 0.01  | 148.23  | < 0.001 | 0.96039 | < 0.01 | 0.00233  | 0.00295 | 0.00907 | < 0.040 |
| II-4        | 12.03.2020       | 4    | 0.00198  | < 0.01  | 2.562   | < 0.001 | 0.37363 | < 0.01 | < 0.0005 | 0.06314 | 0.01252 | < 0.040 |
| III-4       |                  |      | 0.01207  | < 0.01  | 1.103   | < 0.001 | 0.52229 | < 0.01 | < 0.0005 | 0.04295 | < 0.01  | < 0.040 |
| I-5         |                  |      | 0.00404  | < 0.01  | 0       | < 0.001 | 0.24047 | < 0.01 | 0.0001   | 0.00241 | 0.01891 | < 0.040 |
| II-5        | 19.03.2020       | 5    | 0.00185  | < 0.01  | 17.1    | < 0.001 | 0.37675 | < 0.01 | < 0.0005 | 0.05124 | 0.01234 | < 0.040 |
| III-5       |                  |      | 0.01116  | < 0.01  | 19.44   | < 0.001 | 0.37449 | < 0.01 | 0.00045  | 0.04067 | < 0.01  | < 0.040 |
| I-6         |                  |      | < 0.0005 | < 0.01  | 5.21378 | < 0.001 | 0.32608 | < 0.01 | < 0.0005 | 0.00488 | < 0.01  | < 0.040 |
| II-6        | 26.03.2020       | 6    | < 0.0005 | < 0.01  | 5.775   | < 0.001 | 0.15683 | < 0.01 | < 0.0005 | 0.05076 | < 0.01  | < 0.040 |
| III-6       |                  |      | 0.00655  | < 0.01  | 6.439   | < 0.001 | 0.86769 | < 0.01 | < 0.0005 | 0.03766 | < 0.01  | < 0.040 |
| I-7         |                  |      | 0.001    | < 0.01  | 9.78384 | < 0.001 | 0.58577 | < 0.01 | < 0.0005 | 0.00576 | < 0.01  | < 0.040 |
| II-7        | 2.04.2020        | 7    | < 0.0005 | < 0.01  | 4.752   | < 0.001 | 0.15387 | < 0.01 | < 0.0005 | 0.04742 | < 0.01  | < 0.040 |
| III-7       |                  |      | 0.00542  | < 0.01  | 4.582   | < 0.001 | 0.85869 | < 0.01 | < 0.0005 | 0.03364 | < 0.01  | < 0.040 |
| I-8         |                  |      | < 0.0005 | < 0.01  | 10.7239 | < 0.001 | 0.0203  | < 0.01 | < 0.0005 | 0.00783 | < 0.01  | < 0.040 |
| II-8        | 9.04.2020        | 8    | < 0.0005 | < 0.01  | 4.557   | < 0.001 | 0.14531 | < 0.01 | < 0.0005 | 0.04402 | < 0.01  | < 0.040 |
| III-8       |                  |      | 0.00547  | < 0.01  | 4.324   | < 0.001 | 1.1247  | < 0.01 | < 0.0005 | 0.03387 | < 0.01  | < 0.040 |
| I-9         |                  |      | < 0.0005 | < 0.01  | 11.8577 | < 0.001 | 0.1063  | < 0.01 | < 0.0005 | 0.00661 | < 0.01  | < 0.040 |
| II-9        | 16.04.2020       | 9    | < 0.0005 | < 0.01  | 3.996   | < 0.001 | 0.14297 | < 0.01 | < 0.0005 | 0.04348 | < 0.01  | < 0.040 |
| III-9       |                  |      | 0.00535  | < 0.01  | 5.008   | < 0.001 | 0.64076 | < 0.01 | < 0.0005 | 0.03619 | < 0.01  | < 0.040 |
| I-10        |                  |      | < 0.0005 | < 0.01  | 14.722  | < 0.001 | 0.07375 | < 0.01 | < 0.0005 | 0.00924 | < 0.01  | < 0.040 |
| II-10       | 22.04.2020       | 10   | < 0.0005 | < 0.01  | 4.241   | < 0.001 | 0.12995 | < 0.01 | < 0.0005 | 0.03976 | < 0.01  | < 0.040 |
| III-10      |                  |      | 0.00421  | < 0.01  | 4.385   | < 0.001 | 1.36163 | < 0.01 | < 0.0005 | 0.03228 | < 0.01  | < 0.040 |
| I-11        |                  |      | < 0.0005 | < 0.01  | 7.83332 | < 0.001 | 0.11106 | < 0.01 | < 0.0005 | 0.0063  | < 0.01  | < 0.040 |
| II-11       | 30.04.2020       | 11   | < 0.0005 | < 0.01  | 3.271   | < 0.001 | 0.14527 | < 0.01 | < 0.0005 | 0.04206 | < 0.01  | < 0.040 |
| III-11      |                  |      | 0.0051   | < 0.01  | 6.424   | < 0.001 | 0.65022 | < 0.01 | < 0.0005 | 0.03535 | < 0.01  | < 0.040 |
| I-12        |                  |      | 0.00053  | < 0.01  | 36.0288 | < 0.001 | 0.16178 | < 0.01 | < 0.0005 | 0.01866 | < 0.01  | < 0.040 |
| II-12       | 7.05.2020        | 12   | < 0.0005 | < 0.01  | 10.01   | < 0.001 | 0.17799 | < 0.01 | < 0.0005 | 0.04296 | < 0.01  | < 0.040 |
| III-12      |                  |      | 0.00551  | < 0.01  | 8.979   | < 0.001 | 0.22446 | < 0.01 | < 0.0005 | 0.03233 | < 0.01  | < 0.040 |
| I-13        |                  |      | 0.00062  | < 0.01  | 23.2825 | < 0.001 | 0.10867 | < 0.01 | < 0.0005 | 0.01097 | < 0.01  | < 0.040 |
| II-13       | 14.05.2020       | 13   | < 0.0005 | < 0.01  | 4.303   | < 0.001 | 0.17073 | < 0.01 | < 0.0005 | 0.03887 | < 0.01  | < 0.040 |
| III-13      |                  |      | 0.00545  | < 0.01  | 4.69    | < 0.001 | 0.21259 | < 0.01 | < 0.0005 | 0.03291 | < 0.01  | < 0.040 |
| I-14        |                  |      | -        | -       | -       | -       | -       | -      | -        | -       | -       | -       |
| II-14       | 21.05.2020       | 14   | < 0.0005 | < 0.01  | 4.092   | < 0.001 | 0.16747 | < 0.01 | < 0.0005 | 0.15964 | < 0.01  | < 0.040 |
| III-14      |                  |      | 0.00433  | < 0.01  | 3.182   | < 0.001 | 0.19121 | < 0.01 | < 0.0005 | 0.10503 | < 0.01  | < 0.040 |
| I-15        |                  |      | -        | -       | -       | -       | -       | -      | -        | -       | -       | -       |
| II-15       | 28.05.2020       | 15   | 0.00051  | < 0.01  | 151.1   | < 0.001 | 0.1681  | < 0.01 | < 0.0005 | 0.03318 | < 0.01  | < 0.040 |
| III-15      |                  |      | 0.0041   | < 0.01  | 129.8   | < 0.001 | 0.20894 | < 0.01 | < 0.0005 | 0.02421 | < 0.01  | < 0.040 |
| I-16        |                  |      | -        | -       | -       | -       | -       | -      | -        | -       | -       | -       |
| II-16       | 4.06.2020        | 16   | < 0.0005 | < 0.01  | 132.9   | < 0.001 | 0.12403 | < 0.01 | < 0.0005 | 0.03002 | < 0.01  | < 0.040 |
| III-16      |                  |      | 0.00389  | < 0.01  | 134.6   | < 0.001 | 0.19247 | < 0.01 | < 0.0005 | 0.02354 | < 0.01  | < 0.040 |

#### pH Evaluation:

The column test leachate pH values of each sample and pH percent differences calculated from the difference between deionized irrigation water (pH=7) and drained leachate are shown in Figure 9.3.

pH values of all sample leachates are basic in character except the values of sample II after the 6<sup>th</sup> week and the values are in the order of Bostantepe(I)>Upper Çavuşlar (III) > Lower Çavuşlar (II) sequence. Changing trends are similar after the 5<sup>th</sup> week. The pH value ranges are 7.66-9.43; 6.54-7.89 and 7.09-8.40 for Sample I, Sample II and Sample III, respectively. The values show a continuous increasing trend for all samples in the early weeks (0-5<sup>th</sup> week for sample I, 0-2<sup>nd</sup> week for sample II and 0- $3^{rd}$  week; for sample III) and afterwards, generally decreasing trends are observed except the 5<sup>th</sup> and the 14<sup>th</sup> weeks of samples II and III and the 16<sup>th</sup> week of Sample III (Figure 9.3a).

Value differences between the measured pH and the irrigation water (deionized water) pH reflect the mineral-rock reactions related pH changes which occurred as 9.4-34.9% increase in Sample IIeachates; 1.3-12.7% increase and 1.7-6.6% decrease in Sample II leachates; and 1.3-20% increase in Sample III leachates with respect to the irrigation water pH (Figure 9.3b). The reasons behind these changes in the pH values are related to the oxidation of sulphide minerals, dissolution of the neutralizing minerals and related chemical processes in leachates.

Acid generation potentials of the Sample II and Sample III having similar AP values as indicated by the static test results, are controlled by the neutralization reactions. Early weeks pH increasing in leachates of Sample II and Sample III indicates the dissolution of short-term neutralization introducing carbonate minerals (specifically dolomite). Higher pH values of Sample II leachates with respect to those of Sample III in the first two weeks are probably related to the dissolution of other carbonate minerals (magnesite and ankerite) present in Sample II in addition to dolomite reflecting the earlier stage neutralization effects of Fe-Mn carbonate minerals.



Figure 9.3. Kinetic test pH values (above) and percentage changes with respect to the irrigation water pH (below).

After early weeks, pH values of the sample II and sample III were decreased gradually. Considering that NNP is controlled by neutralizing minerals rather than sulphide minerals as indicated by ABA test results, this could be explained by ceasing of short-term neutralizing carbonate minerals related reactions. Oxidation of sulphide minerals were probably also slowed down during this phase as indicated by the decreasing sulphate concentrations hence values are still basic and sharp pH decrease was not observed. Nevertheless, in Sample II leachates, acid producing mineral reactions (sulphide oxidation and metal hydroxide formation) must have been at greater rates than those of neutralizing minerals after the 6<sup>th</sup> week, as a result,

pH values decreased to acidic values. Lower pH values of Sample II with respect to those of Sample III are consistent with the static test ABA results (NPR value of Sample II is lower that of Sample III). Silicate minerals related relatively long-term neutralizing reactions are suggested by mineralogy for Sample III but not for Sample II.

According to the static test results, Sample I leachates should have included relatively lower pH values than those of Sample II and III but they are not. This could be explained by either insufficient sulphide oxidation under water saturated conditions or lack of sulphide minerals as suggested by XRD analyses. However, AP value of Sample I is higher than those of the others (suggesting sulphide mineral presence) and pH of this sample showed relative decrease in the 1<sup>st</sup> week then increased under the saturated conditions. This could be interpreted as an indication of the saturated test condition related control. The increasing pH trend of Sample I up to the 5<sup>th</sup> week could be related to the dissolution of carbonate minerals (calcite and partially surite) and continuation of the increase with respect to the irrigation water pH at decreasing rates afterwards, could be explained by the exhaustion of oxidized sample parts and ceasing of short-term neutralizing carbonate minerals related reactions together with late stage acid producing reactions of surite. But lack of direct observation of calcite in the sample requires substitutional/further reasoning. In fact, saturated conditions related montmorillonite reactions could explain the observed pH trend as well. As introduced in the earlier sections, montmorillonite mineral is not stable under alk aline conditions, subject to hydrolysis and Na and H<sup>+</sup> exchange increases solution pH (Kaufhold et al., 2008). Therefore, the increasing pH trend up to the 5<sup>th</sup> week could be related to the such clay reactions (contributed also by surite mineral dissolution) and continuation of the increase with respect to the irrigation water pH at decreasing rates afterwards, could be explained by the metal hydroxide formations under such basic conditions in addition to ceasing of montmorillonite related control together with late stage acid producing reactions of surite. In any case, sulphide oxidation or other processes (metal hydroxide

formation) related acid production in Sample I leachates under saturated conditions were much lower than the neutralization production.

In summary, relatively short period covering kinetic test results suggest that waste pile rocks in the area do not have ARD production potential, but these rocks could create leachates with high concentrations under basic conditions. In addition, the pH values could be lower in the longer test periods because the trends have not reached to steady state condition yet. Indeed, NAG test results reflecting long-term extreme oxidation conditions suggest that the final pH values, although greater than the critical limit value of 4.5, could reach down to the range of 5.14-5.71.

#### **EC Evaluation:**

The electrical conductivity value distribution variation of test sample leachates is shown in Figure 9.4. Measured values reflect the water-mineral reactions related changes in the EC of deionized irrigation water whose value was determined to be between 1.5 and 3.4  $\mu$ S/cm (average of 2.55  $\mu$ S/cm). EC values of the leachates are in the ranges of 133.3-1473  $\mu$ S/cm; 87.3-366.8  $\mu$ S/cm and 129.3-573 $\mu$ S/cm for Sample I, Sample II and Sample III, respectively and are in the order of Bostantepe (I) > Upper Çavuşlar (III) > Lower Çavuşlar (II) sequence throughout the whole test period (Figure 9.4). The EC ordering among the sample leachates indicates that the ion releasing was higher at higher basic pH values. The values were initially very high due to oxidized parts related reactions, then continuously decreased to lower levels toward the last weeks and assumed flat positions indicating low level ion production in all sample leachates. This is related to the well-known lower level reaction relationship toward neutral pH conditions (Figure 9.5).







Figure 9.5. EC-pH relationship. The dashed line represents the expected trend.

According to the surface water quality regulation (MFW, 2016) limits for EC and pH values, Sample II and III leachates are in the near neutral and Class-I quality (except the 1st week leachate III, Class-II) (Figure 9.6). On the other hand, Sample I leachates are although in the near-neutral region, they are in Class I, II and III qualities in terms of EC values.



Figure 9.6. Kinetic test leachate classification according to EC-pH values.

# **Ions Concentrations:**

Relatively high EC values measured in the leachates reflect basic environment waterrock reactions related ion concentrations and indicate possible ion release from the waste rocks.

The percent distribution of major ion concentrations is shown in Figure 9.7. In general, Sample I leachates changed from  $Ca-SO_4$  to  $Na-HCO_3$  facies through Ca-Na and  $SO_4$ -HCO<sub>3</sub> mixings and Sample II and III leachates changed from Mg-SO<sub>4</sub> to Mg-HCO<sub>3</sub> facies through SO<sub>4</sub>-HCO<sub>3</sub> mixings during test period.

When the cations were considered, Ca cation facies exist in the first two weeks for sample I leachates. This could be explained by the dissolution of the Ca-bearing minerals (e.g. anorthite, margarite, polyhalite, volkonskoite and possibly calcite) as detected in the XRD analyses. minerals. The shifting of leachate cation facies to Na after first two weeks could be attributed to the clay minerals related exchange reactions in addition to the dissolution of the albite and nontronite minerals as detected in the sample. When the anions are considered, Sample I leachate was in the SO<sub>4</sub> facies in the early weeks probably due to the dissolution of polyhalite

mineral and sulphide oxidation. The shifting of leachate anion facies to HCO<sub>3</sub> afterwards could be attributed to the dissolution of carbonate minerals (surite and possibly calcite) and decreasing polyhalite dissolution and sulphide oxidation.



Figure 9.7. Kinetic test leachate facies of the samples on Piper plot.

The Mg characteristic of Sample II leachate is apparently related to the dominant Mg-bearing phases (dolomite, magnesite). Cation facies changed only once in the  $13^{th}$  week from Mg to Ca. This once shifting to Ca facies could be attributable to the Ca-enrichment due to Mg bearing phase precipitation. Anion facies of the Sample II leachate started with SO<sub>4</sub> and then shifted to the HCO<sub>3</sub> after the  $2^{nd}$  week. Lack of any SO<sub>4</sub> bearing mineral in this sample indicates that SO<sub>4</sub> content in leachates is related to sulphide mineral (teallite) oxidation. Apparently after the  $2^{nd}$  week, carbonate mineral dissolution was dominant resulting HCO<sub>3</sub> facies in the leachates.

The Mg characteristic of Sample III leachate is related to the dolomite dissolution. Cation facies changed a few times form Mg to mix types reflecting dissolution of non-Mg phases (e.g. sanidine, minrecordite). Anion facies of the leachates started with  $SO_4$  and then was shifted to the HCO<sub>3</sub> after the 5<sup>nh</sup> week. In addition to  $SO_4$  bearing mineral (lanarkite) in this sample,  $SO_4$  content in leachates is related to sulphide mineral (argentopyrite, teallite) oxidation. Shifting after the 5<sup>th</sup> week indicates that carbonate mineral dissolution took over of sulphide mineral oxidation.

Average leachate concentrations of each test sample obtained in the kinetic tests other than continuously below detection limits values measured parameters are listed in Table 9.5 from higher to lower values. Concentrations of B, Be, Bi, Hg, Ni, P, Se (except 1<sup>st</sup> and 2<sup>nd</sup> weeks of Sample III), Sn, Ti, and Zr in all sample leachates are measured below the detection limits. In addition, concentrations Cd after the 2<sup>nd</sup> week and Co, U and Zn after the 3<sup>rd</sup> -5<sup>th</sup> weeks are below the detection limits in all leachates. Majority of total dissolved solid content of leachates from higher to lower concentrations is associated with alkalinity, SO<sub>4</sub>, Na, Si, Ca, K, Cl, and Mg parameters additionally with Al, Sr, Fe, Mo, U, As, V, Li, Ba, Mn, Zn, Pb, Sb, and Cu trace ion parameters.

| Unit mg/l  | Sample I | Sample II | Sample III | Unit mg/l | Sample I | Sample II | Sample III |
|------------|----------|-----------|------------|-----------|----------|-----------|------------|
| Alkalinity | 103      | 64        | 61         | As        | 0.13     | 0.02      | 0.07       |
| SO4        | 95       | 18        | 60         | Ba        | 0.034    | 0.009     | 0.023      |
| Na         | 40       | 4         | 15         | Li        | 0.02     | 0.05      | 0.15       |
| Si         | 36       | 22        | 21         | Mn        | 0.016    | 0.005     | 0.000      |
| Ca         | 14       | 6         | 7          | V         | 0.01     | 0.05      | 0.04       |
| K          | 11       | 2         | 4          | Zn        | 0.010    | 0.005     | 0.003      |
| Cl         | 7        | 1         | 1          | Cu        | 0.004    | 0.001     | 0.002      |
| Mg         | 5        | 14        | 16         | Pb        | 0.002    | 0.006     | 0.007      |
| Al         | 1.67     | 0.01      | 0.01       | Cr. t     | 0.0017   | 0.0001    | 0.0002     |
| Fe         | 1.03     | 0.04      | 0.03       | Со        | 0.0013   | 0.0002    | 0.0004     |
| Sr         | 0.48     | 0.25      | 0.59       | Sb        | 0.001    | 0.001     | 0.007      |
| Mo         | 0.45     | 0.06      | 0.21       | Cd        | 0.0004   | 0.0001    | 0.0003     |
| U          | 0.32     | 0.04      | 0.09       | Se        | 0.0000   | 0.0000    | 0.0026     |

Table 9.5. Average concentrations above detection limit parameters in kinetic test leachates.

The sample leachates are in the near-neutral and low metal region in the Ficklin graph in general (Figure 9.8). Sample I leachates plot are in both high metal and low metal region. However, if Fe concentration were neglected due to relatively higher values, sample I leachates also could be in low metal region.



Figure 9.8. Kinetic test leachate classification based on pH and trace metal ion content.

# **Concentration Production Rates:**

Concentration production rate of each parameter for each test sample is calculated and listed in Appendix-D. In order to eliminate deionized irrigation water alkalinity (basically carbonate alkalinity) contribution despite its lower contribution, the deionized water alkalinity was calculated and subtracted from the measured value for the alkalinity production rate calculations. In the determination of the deionized water alkalinity, the reaction relationships among the carbonate species are utilized.

$$CO_2(g) + H_2O(l) = H_2CO_3^*; H_2CO_3^* = HCO_3^- + H^+; HCO_3^- = CO_3^{2-} + H^+$$

Using equilibrium constant expressions for the above reactions, relationships among pH,  $P_{CO2}$  and activities of species could be expressed as:

$$\log a_{H2CO3} = \log p_{CO2} + \log K_{CO2}$$
$$\log a_{HCO3} = \log(K_1 K_{CO2} p_{CO2}) + pH$$
$$\log a_{CO3} = \log(K_2 K_1 K_{CO2} p_{CO2}) + 2pH$$

Where equilibrium constants  $K_{CO2}$ , K1 and K2 as calculated from Gibbs free energy data at 25 °C are equal to:  $K_{CO2}$ = 10<sup>-1.6</sup>, K1=10<sup>-6.35</sup> and K2=10<sup>-10.33</sup>.

Using these values, deionized pH value of 7 and the atmospheric partial pressure of  $CO_2$  (10<sup>-3.5</sup>) in the above equations, activities of the species in the deionized water were calculated. Taking activity coefficients of the species as one since it is deionized water, carbonate alkalinity of 2.17 mg/l was calculated using molalities of species in the following equation:

Carbonate Alkalinity =  $2m_{CO3}^{2-} + m_{HCO3}^{-} + m_{OH}^{-} - m_{H}^{+}$ 

Hydrogen concentration production rate calculations were performed using the activity of  $H^+$  differences between the test leachate and the deionized irrigation water by incorporating activity coefficient of  $H^+$  in each test solution using the extended Debye-Huckel equation.

Cumulative concentration production rate of 13 weeks (test period of Sample I) for each test sample are listed in Table 9.6. Highest production rates occurred for V and Zn in Sample II, for Mg, Sr, Li, Pb, Sb, Co and Se in Sample III and for the others in Sample I.

Weekly concentration production rate values for each test sample are shown in Figure 9.9. Sulphate concentrations being sulphide mineral oxidation by product exhibit continuously decreasing trend beginning from the 1<sup>st</sup> week.

| Unit mg/kg/13 week | Sample I | Sample II | Sample III | Unit mg/kg/13 week | Sample I | Sample II | Sample III |
|--------------------|----------|-----------|------------|--------------------|----------|-----------|------------|
| Alkalinity         | 881      | 574       | 554        | As                 | 1.17     | 0.19      | 0.72       |
| SO4                | 707      | 192       | 632        | Ba                 | 0.266    | 0.095     | 0.234      |
| Si                 | 194      | 56        | 64         | Li                 | 0.201    | 0.494     | 1.461      |
| Na                 | 310      | 35        | 125        | Mn                 | 0.116    | 0.065     | 0.000      |
| Mg                 | 39       | 116       | 134        | V                  | 0.052    | 0.455     | 0.334      |
| Ca                 | 93       | 50        | 61         | Zn                 | 0.044    | 0.050     | 0.032      |
| K                  | 68       | 16        | 33         | Cu                 | 0.026    | 0.009     | 0.016      |
| Cl                 | 54       | 9         | 15         | Pb                 | 0.020    | 0.071     | 0.079      |
| Al                 | 15       | 0         | 0          | Cr. t              | 0.015    | 0.001     | 0.003      |
| Fe                 | 9.03     | 0.42      | 0.38       | Sb                 | 0.008    | 0.006     | 0.068      |
| Sr                 | 4        | 2         | 6          | Со                 | 0.003    | 0.002     | 0.004      |
| Mo                 | 3.60     | 0.58      | 2.27       | Cd                 | 0.003    | 0.001     | 0.003      |
| U                  | 2.058    | 0.297     | 0.746      | Se                 | 0.0000   | 0.0000    | 0.0245     |

Table 9.6. Cumulative concentration production rates of samples in mg/kg/13 weeks.

However, it should be kept in mind that sulphate concentrations of leachates are also related to the dissolution of sulphate minerals. In any case production rate is in the order of I > III > II among the samples and sulphate minerals were determined in Sample I and III. Therefore, it is not possible to relate decreasing sulphate concentration directly to sulphide mineral oxidation. But in any case, sulphate production rates suggest that sulphide oxidation dependent acid production rate was decreased during the test period and metal hydroxide formation related acid production took place as decreasing pH values suggest.

Concentration production rates of parameters (except Al and V parameters of Sample I) in general change in the decreasing direction. There exist increasing/decreasing fluctuations in this general trend (Figure 9.9).



Figure 9.9. Concentration production rates of the samples through the weeks.



Figure 9.9. Cont'd



Figure 9.9 Cont'd



Figure 9.9 Cont'd

### Kinetic test leachate quality:

In order to evaluate the leachate qualities, quality limits (a) for the surface water classification (SWC) and maximum environmental quality (MEQ) for rivers of MFW (2016) and (b) waste categorization (WC) limits of MEF (2010) were used and the results are given in (Table 9.7). According to the waste categorization limits, waste rocks generally are in "Non-Hazardous" class. The parameters with high concentrations causing this class are As, Mo and SO<sub>4</sub> in Sample I leachates, Mo in Sample II leachates and As, Mo, Sb and Se Sample III leachates. Sample II after the 5<sup>th</sup> week and Sample III after the 13<sup>th</sup> week are in "Inert" class. It should be kept in mind that these results represent individual week cycles meaning that cumulative effects are not reflected.

According to the surface water classification, Sample II is classified as Class I throughout the whole test period. Although Sample I was classified as Class II/III/IV due to high EC/low pH values in the first five weeks and Sample III was classified as Class II/IV due to high EC/Se values in the first and second weeks, the leachates are in Class I for Sample I and III in the other cycles. Concentrations of Al, As, Cd, Co, Cu, Fe and Si in Sample I, Al, Cd, Cu, Pb, Si and V in Sample II and Al, As, Cd, Co, Cu, Pb, Si and V in Sample III are higher than the maximum environmental quality limits. When compared with the short-term shake flask test (SFT) results, in

Table 9.7. Classification of kinetic test leachate results according to the surface water and waste categorization limits.

| Sample<br>Name   | SWC (MFW,2016)   | MEQ (MFW,2016)                  | WC (MEF, 2010)                      |
|------------------|------------------|---------------------------------|-------------------------------------|
| I-0              | Class II- EC     | Al, As, Cd(III), Co, Cu, Fe, Si | Non-Hazardous - As, Mo, SO4         |
| I-1              | Class III- EC    | As, Cd(IV), Si                  | Hazardous - Mo                      |
| I-2              | Class II- EC     | Al, As, Cd(IV), Si              | Non-Hazardous - As, Mo, SO4         |
| I-3              | Class II- EC     | As, Cu                          | Non-Hazardous - As, Mo, SO4         |
| I-4              | Class IV- pH     | Al, As, Si                      | Hazardous - As                      |
| I-5              | Class IV- pH     | Al, As, Cu, Si                  | Non-Hazardous - As, Mo              |
| I-6              | Class I          | Al, As, Cu, Fe, Si              | Non-Hazardous - As, Mo              |
| I-7              | Class I          | Al, As, Fe, Si                  | Non-Hazardous - As, Mo              |
| I-8              | Class I          | Al, As, Fe, Si                  | Hazardous - As                      |
| I-9              | Class I          | Al, As, Fe, Si                  | Non-Hazardous- As, Mo               |
| I-10             | Class I          | Al, As, Fe, Si                  | Non-Hazardous - As                  |
| I-11             | Class I          | Al, As, Fe, Si                  | Hazardous - As                      |
| I-12             | Class I          | Al, As, Fe, Si                  | Non-Hazardous - As                  |
| I-13             | Class I          | Al, As, Fe, Si                  | Non-Hazardous - As                  |
| II-0             | Class I          | Cu, Si                          | Non-Hazardous - Mo                  |
| II-1             | Class I          | Cd(III), Pb, Si                 | Non-hazardous - Mo, SO4             |
| II-2             | Class I          | Si                              | Non-Hazardous - Mo                  |
| II-3             | Class I          | Cu                              | Non-Hazardous - Mo                  |
| II-4             | Class I          | Cu, Si                          | Non-Hazardous - Mo                  |
| II-5             | Class I          | Si                              | Non-Hazardous - Mo                  |
| II-6             | Class I          | Si                              | Inert                               |
| II-7             | Class I          | Si                              | Inert                               |
| II-8             | Class I          | Si                              | Inert                               |
| II-9             | Class I          | Si                              | Inert                               |
| II-10            | Class I          | Al, Si                          | Inert                               |
| II-11            | Class I          | Al, Si                          | Inert                               |
| II-12            | Class I          | Si                              | Inert                               |
| II-13            | Class I          | Si                              | Inert                               |
| II-14            | Class I          | Si, V                           | Inert                               |
| II-15            | Class I          | Si                              | Inert                               |
| II-16            | Class I          | Si                              | Inert                               |
| III-0            | Class II- Se     | Cu, Si                          | Non-Hazardous - Mo, Se              |
| III-1            | Class IV- Se     | As, Cd(IV), Pb, Si              | Hazardous - Mo                      |
| III-2            | Class II- EC, Se | As, Cd(IV), Co, Si              | Non-Hazardous - As, Mo, Sb, Se, SO4 |
| III-3            | Class I          | As, Cu, Si                      | Non-Hazardous - As, Mo, Sb          |
| III-4            | Class I          | As                              | Non-Hazardous - As, Mo, Sb          |
| III-5            | Class I          | As, Cu, Pb, Si                  | Non-Hazardous - As, Mo, Sb          |
| III-6            | Class I          | Al, As, Si                      | Non-Hazardous - As, Mo, Sb          |
| III-7            | Class I          | As, Si                          | Non-Hazardous - As, Mo              |
| III-8            | Class I          | Al, As, Si                      | Non-Hazardous - As                  |
| III-9            | Class I          | As, Si                          | Non-Hazardous - As                  |
| III-10           | Class I          | As, Si                          | Non-Hazardous - As                  |
| III-11           | Class I          | As, Si                          | Non-Hazardous - As                  |
| III-12<br>III-12 | Class I          | As, Pb, Si                      | Non-Hazardous - As                  |
| III-13           | Class I          | As, Si                          | Non-Hazardous - As                  |
| III-14           | Class I          | Si, V                           | Inert                               |
| 111-15           | Class I          | Si                              | Inert                               |
| III-16           | Class I          | Si                              | Inert                               |

SFT leachates concentrations of Al, Cu, Fe in Sample I; Al, Cd, Cu in Sample II; and Al in Sample III are relatively lower. Groundwaters also include above MEQ limit high concentrations of Al, Cu, Pb, Si in Lower Çavuşlar and Al, As, Si in Upper Çavuşlar units.

## **CHAPTER 10**

#### HYDROGEOCHEMICAL MODELING OF PILE SEEPAGE QUALITY

In this chapter, evaluations related to waste rock pile pore water concentrations and seepage water quality are introduced. Predictions of the water quality have been carried out for the after operation (long-term) period because mining details of the operation period have not been established yet. Furthermore, due to lack of the mine closure plan, it is assumed that waste rocks will be left in the field without any remedial implementation.

Because there is not enough data to determine flow conditions in the pile using either numerical approach or analytical approach, waste rock pile pore water concentrations produced by interactions between infiltrating precipitation water and rock are estimated using the empirical approach of Morin and Hutt (1994) using weight of waste rocks in the pile, precipitation receiving surface area of the pile, annual amount of precipitation infiltration, number of precipitation days in a year and kinetic test concentration production rates. The empirical equation used for the predictions as follows;

Kinetic concentration rate of each parameter used in the predictions is listed in Appendix-D where below detection measurements were taken as zero. Waste rock amounts in the pre-feasibility studies (AMM, 2014) are given not in terms of lithological units but in terms of upper coal seam level (245.4 million bank cubic meter, Mbcm), lower coal seam level (5.1 Mbcm), third coal seam level (2.8 Mbcm) underlying the lower seam and behind fault (2.3 Mbcm). In the prediction modelling, it is assumed that the upper coal seam level waste rocks are represented by Upper Çavuşlar member rocks (Sample III), the lower coal seam level waste rocks are

 $Concentration (mg/kg) = \frac{Kinetic rate (mg/kg/day) x Number of precipitation days in a year x Waste rock weight (kg)}{Precipitation infiltration (L)}$ 

represented by Lower Çavuşlar member rocks (Sample II), third coal seam level waste rocks are represented by equal weight percentages of both Bostantepe and Lower Çavuşlar member rocks (Sample I and II, respectively) and behind fault waste rocks are represented by equal weight percentages of Bostantepe, Lower Çavuşlar and Upper Çavuşlar member rocks (Sample I, II and III, respectively). According to these assumptions, pile amounts of waste rocks represented by Sample I, II and III are estimated as 5330 kiloton, 18239 kiloton and 494795 kiloton, respectively, using previously measured densities. In the light of these weights, waste pile percentages of are 1%, 4% and 95% are represented by the samples I, II and III respectively.

## **10.1 Hydrology and Pile Precipitation Infiltration**

The study area is located in the northeast part of Sakarya River basin in Central Anatolian Region and the area is characterized by the continental climate. Because it is close to the Black Sea region, relatively higher humidity exists in the area. Turkish State Meteorological Service classified the study area as semiarid-mesothermal climate according to Thornthwaite Climate Classification (McCabe and Wolock, 1999). In this type of climate, the weather is hot and dry in summers, cold and snowy in winters.

Meteorological data do not exist for the mine site and the nearest station (Çeltikçi) data were limited to rather short period of time (1987 and 1993). Therefore, the long term estimated average monthly temperature and precipitation data of (Yazıcıgil et. al, 2015) for the mine site (Çeltikçi) were used in order to determine precipitation infiltration into the waste rock pile. In the study of Yazıcıgil et. al (2015), meteorological data of Kızılcahamam station (covering period of 1957 and 2014) and Çeltikçi station were used for the long term site (Çeltikçi) estimations by comparing common year differences (Table 10.1).

Table 10.1. Long term monthly average precipitation and temperature (Yazıcıgil et. al, 2015).

| Station/Months                    | January | February | March | April | May  | June | July | August | September | October | November | December |
|-----------------------------------|---------|----------|-------|-------|------|------|------|--------|-----------|---------|----------|----------|
| Çeltikçi-Estimated (1957-2014) mm | 59.4    | 40.9     | 33.7  | 38.7  | 37.3 | 27.8 | 14.5 | 10.1   | 9.3       | 31      | 30.5     | 58.9     |
| Temperature (C°)                  | -1.0    | 0.1      | 4.1   | 9.3   | 13.9 | 17.8 | 20.7 | 20.3   | 16.1      | 10.5    | 5.2      | 1.1      |

Monthly average temperature distribution is shown in Figure 10.1. The values are in the range of -1°C to 20.7 °C. Minimum and maximum values were recorded in January and July, respectively.



Figure 10.1. Monthly average temperature values.

The monthly average precipitation values are shown in Figure 10.2. The values are in the range of 9.3 mm to 59.4 mm. Minimum and maximum values were recorded in September and January, respectively. Winter and spring seasons have the highest precipitation. On the other hand, summer and autumn seasons have the lowest precipitation as expected from the climate classification of the area mentioned above.



Figure 10.2. Monthly average precipitation values.

According to the average of 2013-2015 meteorological data, the number of rainy days in the area is equal to 122 in a year. The waste rock pile surface area which will receive precipitation is approximately estimated as  $6000000 \text{ m}^2$  using a map of a prefeasibility study.

# Hydrologic Budget:

Water budget calculations are related to the relationships among precipitation, direct surface runoff, evapotranspiration, surplus runoff, soil-moisture storage capacity and infiltration components. In this study, Thornthwaite method (McCabe and Markstrom, 2007) is used to calculate potential evapotranspiration. The soil moisture capacity and direct surface runoff components are calculated using Curve Number (CN) method developed by the U.S. Soil Conservation Services (SCS, 1964).

The direct surface runoff amount (Q) could be estimated using the following Curve Number method equation.

$$Q = \frac{(P - 0.2S)^2}{P + 0.8S}$$

Where P is precipitation and S is potential maximum soil moisture retention which is determined using the Curve Number (CN) in the following equation:

$$S = \frac{1000}{CN} - 10$$

CN is the non-dimensional quantity depends on the land use, land cover and hydrologic soil groups. In this study, CN was assigned as 76 corresponding to disturbed quarries with high water transmission capacity hydrologic soil group (SCS,1964). The effect of adapting different CN numbers is evaluated in the sensitivity analyses by means of infiltration changes.

Monthly total precipitation is classified as rain or snow according to the mean monthly temperature. If the mean monthly temperature is less than the threshold temperature for snow [taken as  $T_{snow}$ =-10°C; as suggested by McCabe and Wolock, 1999) based on an analysis of water-balance results for a number of sites], all precipitation is regarded as snow. On the other hand, if the mean monthly temperature greater than threshold temperature for rain [taken as  $T_{rain}$ =3.3°C; as suggested by McCabe and Markstrom (2007) for elevations below 1000 m], all precipitation can be regarded as rain. When the monthly temperature is between these ranges, how much snow can be contributed to the total precipitation is calculated by the following formula.

$$P_{snow} = P * (\frac{T_{rain} - T}{T_{rain} - T_{snow}})$$

The fraction of snow melt (SMF) is calculated using the monthly average temperature, the maximum melt rate (Meltmax),  $T_{rain}$  and  $T_{snow}$  in the following formula. Meltmax is generally set to 0.5 (McCabe and Wolock, 1999) in this type of calculation.

$$SMF(Snow Melt Fraction) = (\frac{T - T_{snow}}{T_{rain} - T_{snow}}) * meltmax$$

If the SMF value is greater than the meltmax, SMF is equal to the meltmax.

Assuming 100 mm soil moisture capacity, the calculated monthly water budget is given in Table 10.2 where it is assumed that all calculated infiltration amount could infiltrate to subsurface. In other words, surplus runoff is taken as zero. The

calculations suggest that about 23% (90.7 mm) of annual precipitation (392 mm) could infiltrate to the subsurface.

| Parameter                 | J      | F      | Μ      | Α      | Μ      | J      | J      | Α      | S     | 0     | N     | D     | Total  | Percentage |
|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|--------|------------|
| Monthly Average Temp.(°C) | -1     | 0.1    | 4.1    | 9.3    | 13.9   | 17.8   | 20.7   | 20.3   | 16.1  | 10.5  | 5.2   | 1.1   |        |            |
| Precipitation             | 59.40  | 40.90  | 33.70  | 38.70  | 37.30  | 27.80  | 14.50  | 10.10  | 9.30  | 31.00 | 30.50 | 58.90 | 392.10 |            |
| PET                       | 0.00   | 0.18   | 16.08  | 44.66  | 78.76  | 105.67 | 127.85 | 117.06 | 78.92 | 44.44 | 17.26 | 2.80  | 633.68 |            |
| Direct Surface runoff     | 15.213 | 5.81   | 0.03   | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 13.34 | 34.39  | 8.77%      |
| Soil Moisture             | 100.00 | 100.00 | 100.00 | 100.00 | 58.54  | 12.95  | 0.00   | 0.00   | 0.00  | 0.00  | 13.20 | 56.00 | 540.70 |            |
| Change in soil moisture   | 0.00   | 0.00   | 0.00   | 0.00   | -41.46 | -45.59 | -12.95 | 0.00   | 0.00  | 0.00  | 13.24 | 42.80 | -43.96 | 11.21%     |
| AET                       | 0.00   | 0.18   | 16.08  | 44.66  | 78.76  | 73.39  | 27.45  | 10.10  | 9.30  | 31.00 | 17.26 | 2.80  | 310.97 | 79.31%     |
| Subsurface Infiltration   | 31.48  | 33.63  | 24.59  | 1.03   | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 90.73  | 23.14%     |
|                           |        |        |        |        |        |        |        |        |       |       |       |       |        | 100%       |

Table 10.2. Monthly water budget results.

Monthly distributions of precipitation, AET, soil moisture content, direct surface runoff and infiltration are shown in Figure 10.3.



Figure 10.3. Graph of monthly water budget components.

# 10.2 Seepage Quality Prediction Results

Three different methods are used as kinetic concentration rates for each parameter in the prediction modeling. In the first method (Leachate 1), the average of the kinetic concentration rate for each parameter was used for each sample covering all weeks of the kinetic test. In the second method (Leachate 2), the average of the kinetic concentration rates for each parameter was used for each sample after the 5<sup>th</sup> week due to obtaining more reliable results for the long-term predictions. The 5<sup>th</sup> week approximately represents changing peak trends of pH, EC and concentration values (see the figures 9.3, 9.4 and 9.9). On the other hand, in the third method (Leachate 3), the percentile calculation with %75 confidence limit which is generally applied in these types of estimations, was used statistically using the concentrations of the 5<sup>th</sup> week and afterwards.

Furthermore, studies indicate that percentage of waste rocks in the pile flushed by the infiltrated water is in the range of 5-20% (Morin and Hutt, 1994). In this study, average of this range (12%) is taken as the reactive amount.

The initial concentrations for each leachate is estimated using the values stated earlier in this chapter in the empirical equation. Because these empirical concentrations do not include reaction effects, in the second step, the water-rock reaction effects are incorporated using PHREEQC software (Parkhust and Appelo, 1999) with MINTEQ.V4 thermodynamic database to estimate the leachate concentrations. In the thermodynamic modeling, saturation conditions of the mineral components with respect to the empirical concentrations in each leachate composition are evaluated and those solid components which are supersaturated are equilibrated by dissolution with the leachate without considering possible surface and exchange reactions. The saturation index of >0.1 is used instead of >0 for the supersaturation determinations just to be on the safe side and simulate worse conditions.

In these calculations, each leachate is subjected to two different cases: 1) It is assumed that the leachate in the pores is not open to atmospheric  $CO_2$  conditions (Case I) and 2) the leachate in the pores is open to atmospheric CO2 conditions (Case II) and it is in equilibrium with  $CO_2$  amount of the atmosphere (e.g. drainage conditions).

Moreover, all these estimations are carried out also using two different alkalinity rates due to the possible error (10%, see Table 9.2) associated with this parameter in the laboratory analyses. Apart from the analytical error, measured alkalinity values could also include measurement delay effects because of the pandemic work hour limitations. The estimations obtained with no error considered alkalinity rate and the 10% alkalinity error considered rate are later averaged.

The estimated leachate concentrations for the cases explained above are listed in Table 10.3 for each leachate. The thermodynamic model outputs of Leachate 2 for
| ma/l       |            | Case I     |            | Case II    |            |            |  |  |  |  |
|------------|------------|------------|------------|------------|------------|------------|--|--|--|--|
| ing/i      | Leachate 1 | Leachate 2 | Leachate 3 | Leachate 1 | Leachate 2 | Leachate 3 |  |  |  |  |
| pH         | 4.45       | 4.40       | 4.31       | 7.48       | 7.54       | 7.42       |  |  |  |  |
| ре         | 4.34       | 4.24       | 4.22       | -1.35      | -1.72      | -1.74      |  |  |  |  |
| Ag         | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| Al         | 0.49       | 0.53       | 0.88       | 0.000      | 0.000      | 0.00       |  |  |  |  |
| Alkalinity | 41145.0    | 36212.5    | 41575.0    | 214.4      | 124.3      | 110.0      |  |  |  |  |
| As         | 80.4       | 75.7       | 85.3       | 54.3       | 49.9       | 53.9       |  |  |  |  |
| В          | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| Ba         | 0.002      | 0.003      | 0.003      | 0.000      | 0.000      | 0.000      |  |  |  |  |
| Be         | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| Ca         | 686.5      | 919.3      | 924.8      | 103.2      | 61.0       | 90.6       |  |  |  |  |
| Cd         | 0.319      | 0.000      | 0.000      | 0.008      | 0.000      | 0.000      |  |  |  |  |
| Cl         | 1658.3     | 401.6      | 7.1        | 1267.8     | 297.4      | 5.1        |  |  |  |  |
| Со         | 0.001      | 0.001      | 0.000      | 0.000      | 0.000      | 0.000      |  |  |  |  |
| Cr         | 0.277      | 0.285      | 0.007      | 0.001      | 0.000      | 0.001      |  |  |  |  |
| Cu         | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |  |  |  |  |
| Fe         | 49.6       | 70.5       | 98.6       | 0.0        | 0.0        | 0.0        |  |  |  |  |
| Hg         | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| K          | 4370.9     | 3833.9     | 4819.5     | 3353.3     | 2855.7     | 3485.9     |  |  |  |  |
| Li         | 158.3      | 106.8      | 118.5      | 121.0      | 79.1       | 85.2       |  |  |  |  |
| Mg         | 15713.4    | 12555.5    | 16131.7    | 7734.9     | 4686.7     | 6986.3     |  |  |  |  |
| Mn         | 0.38       | 0.31       | 0.24       | 0.29       | 0.23       | 0.18       |  |  |  |  |
| Мо         | 229.72     | 52.39      | 57.30      | 15.08      | 23.77      | 12.56      |  |  |  |  |
| Na         | 15731.3    | 11397.2    | 17638.5    | 12026.9    | 8440.3     | 12690.4    |  |  |  |  |
| Ni         | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| Р          | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| Pb         | 0.09       | 0.04       | 0.10       | 0.00       | 0.00       | 3.00       |  |  |  |  |
| Sb         | 0.000      | 0.000      | 0.000      | 0.0000     | 0.0001     | 0.000      |  |  |  |  |
| Se         | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| Si         | 0.54       | 0.57       | 0.39       | 2.06       | 2.28       | 2.15       |  |  |  |  |
| SO4        | 57597.4    | 35903.5    | 42223.0    | 51196.3    | 29406.2    | 35024.9    |  |  |  |  |
| Sn         | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| Sr         | 7.29       | 9.83       | 9.87       | 4.96       | 6.01       | 6.05       |  |  |  |  |
| Ti         | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| ΤΙ         | 0          | 0          | 0          | 0          | 0          | 0          |  |  |  |  |
| U          | 76.28      | 0.04       | 0.00       | 58.32      | 0.03       | 0.00       |  |  |  |  |
| V          | 45.08      | 47.28      | 44.79      | 34.18      | 35.01      | 31.75      |  |  |  |  |
| Zn         | 3.33       | 0.07       | 0.00       | 2.55       | 0.05       | 0.00       |  |  |  |  |

Table 10.3. Calculated pile pore water concentrations.

Alkalinity as CaCO<sub>3</sub>; yellow color represents the parameter exceeding the quality limits of MFW (2016) and MEF (2010).

Case II are listed in Appendix E as an example. The results suggest that pile pore water under closed exchange CO2 conditions (Case I) could have acidic character (pH: 4.31-4.45). On the other hand, if the pore water becomes in equilibrium with the atmospheric CO2 value (Case II), it could be in basic/near neutral character (pH: 7.42-7.54). Gradual conditions would probably develop under field conditions.

In order to evaluate the leachate qualities, quality limits (a) for the surface water classification (SWC) and maximum environmental quality (MEQ) for rivers of MFW (2016) and (b) waste categorization (WC) limits of MEF (2010) are used and

the results are given in Table 10.4. According to the MEF (2010) limits, all leachates including both Case I and II are in the "Hazardous" class due to higher As, Mo,  $SO_4$  concentrations.

| Table 10.4.  | Classification of pile pore wa  | ater concentration results according to the |
|--------------|---------------------------------|---------------------------------------------|
| surface wate | er and waste categorization lim | nits.                                       |
|              |                                 |                                             |

|         | Sample Name | SWC (MFW,2016) | MEQ (MFW,2016)                | WC (MEF, 2010)          |
|---------|-------------|----------------|-------------------------------|-------------------------|
|         | Leachate 1  | Class IV- pH   | Al, As, Cd, Cr, Fe, Pb, V, Zn | Hazardous - As, Mo, SO4 |
| Case I  | Leachate 2  | Class IV- pH   | Al, As,Cr, Fe, Pb, V          | Hazardous - As, Mo, SO4 |
|         | Leachate 3  | Class IV- pH   | Al, As, Fe, Pb, V             | Hazardous - As, Mo, SO4 |
|         | Leachate 1  | Class II- Mn   | As, Cd, Si, V, Zn             | Hazardous - As, Mo, SO4 |
| Case II | Leachate 2  | Class II- Mn   | As, Si, V                     | Hazardous - As, Mo, SO4 |
|         | Leachate 3  | Class II- Mn   | As, Pb, Si, V                 | Hazardous - As, Mo, SO4 |

According to the surface water classification, leachates are classified as Class IV (Highly Contaminated) due to their relatively low pH values in the absence of  $CO_2$  equilibrium case. In addition, the concentrations of Al, As, Fe, Pb, V in all leachates, and Cd/Cr/Zn in some leachates are higher than the maximum environmental quality limits for the case. For the  $CO_2$  equilibrium case, according to the surface water classification, leachates are classified as Class II (Slightly Contaminated) due to their relatively high Mn values. The maximum environmental quality limits of As, Si, V in all leachates and Cd/Pb/Zn parameters in some leachates are exceeded for the case. It should be kept in mind that there could a high error association with the lead laboratory measurements as discussed earlier.

### 10.3 Sensitivity Analyses

The estimated concentrations depend on different parameters some of which have potential error/range associated. In order to see the effects of these parameters separately on the estimated pore water concentrations, sensitivity analyses have been carried out for Leachate 3 with the  $CO_2$  equilibrium case (Case II). Five different scenarios have been evaluated: Scenario 1) The precipitation value was decreased by 50 mm which results about 80.2 mm infiltration. The infiltration was 90.7 mm in earlier run.

Scenario 2) The precipitation value was increased by 50 mm which results about 105.1 mm infiltration.

Scenario 3) The number of rainy days was decreased to 100 which was 122 earlier.

Scenario 4) The supersaturation determination criteria for the saturation index (SI) is set to >0.

Scenario 5) The supersaturation determination criteria for the saturation index (SI) is set to >0.3 which was >0.1 earlier.

The predicted pore water concentrations are listed in Table 10.5. The results show that leachates of all scenarios were in basic character (nearly neutral) and pH values (in the range of 7.41-7.48) are similar to that (7.42) of the original case. Concentrations slightly decrease when the infiltration amount increase, the number of rainy days decrease and the SI criteria (few parameters) decrease in general.

The quality limit comparisons are given in Table 10.6. The waste classifications of all sensitivity runs are the same as those of the original. The only difference is the addition of lead parameter in Scenario 5. Surface water classes of all sensitivity runs are also the same as those of the original. On the other hand, some parameters are added (Cd, Zn) or missing (Pb) in the comparison of the maximum environmental quality limits as shown in Table 10.6. This indicates that estimated values are relatively more sensitive to the possibly precipitating phases in the system.

| mg/l       | Leachate 3 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
|------------|------------|------------|------------|------------|------------|------------|
| pН         | 7.42       | 7.41       | 7.44       | 7.48       | 7.42       | 7.42       |
| ре         | -1.74      | -1.72      | -1.76      | -1.35      | -1.74      | -1.74      |
| Ag         | 0          | 0          | 0          | 0          | 0          | 0          |
| Al         | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| Alkalinity | 110.0      | 111.7      | 108.6      | 108.0      | 109.9      | 110.0      |
| As         | 53.9       | 58.5       | 49.4       | 54.3       | 53.9       | 53.9       |
| В          | 0          | 0          | 0          | 0          | 0          | 0          |
| Ba         | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Be         | 0          | 0          | 0          | 0          | 0          | 0          |
| Ca         | 90.6       | 98.4       | 82.7       | 103.2      | 90.6       | 90.6       |
| Cd         | 0.000      | 0.000      | 0.000      | 0.008      | 0.000      | 0.000      |
| Cl         | 5.1        | 5.5        | 4.7        | 1267.8     | 5.1        | 5.1        |
| Со         | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Cr         | 0.001      | 0.001      | 0.001      | 0.001      | 0.001      | 0.001      |
| Cu         | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Fe         | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| Hg         | 0          | 0          | 0          | 0          | 0          | 0          |
| K          | 3485.9     | 3781.0     | 3190.3     | 3353.3     | 3485.9     | 3485.9     |
| Li         | 85.2       | 92.5       | 78.0       | 121.0      | 85.2       | 85.2       |
| Mg         | 6986.3     | 7564.1     | 6393.3     | 7734.9     | 6986.7     | 6986.0     |
| Mn         | 0.18       | 0.19       | 0.16       | 0.29       | 0.18       | 0.18       |
| Mo         | 12.56      | 11.17      | 14.13      | 15.08      | 12.56      | 12.56      |
| Na         | 12690.4    | 13764.2    | 11614.6    | 12026.9    | 12690.5    | 12690.4    |
| Ni         | 0          | 1          | 0          | 0          | 0          | 0          |
| Р          | 0          | 0          | 0          | 0          | 0          | 0          |
| Pb         | 3.00       | 3.33       | 2.75       | 0.00       | 0.00       | 6.09       |
| Sb         | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Se         | 0          | 0          | 0          | 0          | 0          | 0          |
| Si         | 2.15       | 2.11       | 2.19       | 2.06       | 2.15       | 2.15       |
| SO4        | 35024.9    | 37987.2    | 32056.1    | 51196.3    | 35025.0    | 35024.8    |
| Sn         | 0          | 0          | 0          | 0          | 0          | 0          |
| Sr         | 6.05       | 5.90       | 6.22       | 4.96       | 6.05       | 6.05       |
| Ti         | 0          | 0          | 0          | 0          | 0          | 0          |
| Tl         | 0          | 1          | 1          | 0          | 0          | 0          |
| U          | 0.00       | 0.00       | 0.00       | 58.32      | 0.00       | 0.00       |
| V          | 31.75      | 35.25      | 29.10      | 34.18      | 31.75      | 31.75      |
| Zn         | 0.00       | 0.00       | 0.00       | 2.55       | 0.00       | 0.00       |

Table 10.5. Calculated pile pore water concentrations of sensitivity runs for leachate 3 and Case II condition.

Alkalinity as CaCO<sub>3</sub>; yellow color represents the parameter exceeding the quality limits of MFW (2016) or MEF (2010)

| Table 10.6. Classification | on of sensitivity ru | n results ac | ccording to t | the surface v | vater |
|----------------------------|----------------------|--------------|---------------|---------------|-------|
| and waste categorization   | limits.              |              |               |               |       |

| Sample Name          | SWC (MFW,2016) | MEQ (MFW,2016)    | WC (MEF, 2010)              |
|----------------------|----------------|-------------------|-----------------------------|
| Scenario 1           | Class II- Mn   | As, Pb, Si, V     | Hazardous - As, Mo, SO4     |
| Scenario 2           | Class II- Mn   | As, Pb, Si, V     | Hazardous - As, Mo, SO4     |
| Scenario 3           | Class II- Mn   | As, Cd, Si, V, Zn | Hazardous - As, Mo, SO4     |
| Scenario 4           | Class II- Mn   | As, Si, V         | Hazardous - As, Mo, SO4     |
| Scenario 5           | Class II- Mn   | As, Pb, Si, V     | Hazardous - As, Mo, Pb, SO4 |
| Leachate 3 (Case II) | Class II- Mn   | As, Pb, Si, V     | Hazardous - As, Mo, SO4     |

#### **CHAPTER 11**

#### **RESULTS AND CONCLUSIONS**

The comparison of Çeltikçi formation whole rock concentrations with those of the Upper crustal average indicate that concentrations of As, Ca, Cd, Li, Mg, Mo, S and Sr in the rocks are higher.

Mineralogical studies showed that Bostantepe member Sample I contains high content of clay minerals in addition to the silicate and oxide minerals. There exist carbonate mineral (surite) and sulphate mineral (polyhalite) in the sample. In addition to commonly present major elements, Sample I contains As, Cr, Cu and Pb heavy metals that could create environmental problems. Lower Çavuşlar member Sample II contains carbonate minerals (dolomite, magnezite, ankerite) and sulphide mineral (teallite) in addition to the silicate mineral (quartz). In addition to commonly present major elements, Sample II contains Carbonate minerals (dolomite, magnezite, ankerite) and sulphide mineral (teallite) in addition to the silicate mineral (quartz). In addition to commonly present major elements, Sample II contains Pb and Sn heavy metals. Upper Çavuşlar member Sample III contains carbonate minerals (dolomite, minrecordite), sulphate mineral (lanarkite) and sulphide minerals (teallite, argentopyrite) in addition to the silicate and hydroxide minerals. The sample also contains As, Pb, Sn, V and Zn heavy metals.

The static tests results show that ARD potential of the samples are in the order of I>II>III and the samples do not have significant acid production potential in the long term. The results indicate that any acidity produced will be neutralized by the minerals. NAG potential values suggest hydroxides related pH buffering and possible low-intermediate metal concentration release to the leachates upon excessive oxidation. According to MEU (2015) only static test criteria, the samples are classified as Inert.

The shake flask test results suggest that leachate pH and EC values are in the order of Bostantepe (I)>Lower Çavuşlar (II)>Upper Çavuşlar (III). According to the waste categorization limits, the test samples are in "Non-hazardous" class due to relatively high concentrations of As, Mo, SO<sub>4</sub> for Sample I; Mo for Sample II and Mo, Sb for Sample III. The surface water classification limits indicate that Sample I and Sample II are classified as Class IV (highly contaminated) due to the high pH values and Sample III is classified as Class II (slightly contaminated) due to relatively high EC value. Besides, the maximum environmental quality limits of As, Co, Si, Cd, and Pb in Sample I; Si concentration in Sample II; Si and Cd concentrations in Sample III are exceeded. Overall the results indicate low concentration metal release in short term (easily dissolvable) period under saturated test conditions.

Kinetic test result leachate pH values are in the order of Bostantepe (I)>Upper Çavuşlar (III)>Lower Çavuşlar (II). Through the test period, values of all leachates are in basic character in the ranges of 7.66-9.21, 7.09-8.40 and 6.54-7.89 and for samples I, III, and II, respectively. Increasing early week values later on decreased.

Kinetic test results showed that leachate EC values are in order of Bostantepe (I)>Upper Çavuşlar (III)>Lower Çavuşlar (II). Through the test period, EC values exist in the range 162.3-1473  $\mu$ S/cm for Sample I; 129.3-573 $\mu$ S/cm for Sample III and 87.3-366.8  $\mu$ S/cm for Sample II. The EC ordering among the sample leachates indicates that the ion release is higher at greater pH values. The values were initially very high due to oxidized parts related reactions, then continuously decreased to lower levels toward the last weeks and assumed flat positions indicating low level ion production in all sample leachates.

In kinetic test leachates, concentrations of B, Be, Bi, Hg, Ni, P, Se (except 1st and 2nd weeks of Sample III), Sn, Ti, and Zr in all sample leachates are measured below the detection limits. In addition, concentrations Cd after the 2nd week and Co, U and Zn after the 3rd -5th weeks are below the detection limits in all leachates.

According to the waste categorization limits, the leachate test samples are in "Non-hazardous" class due to higher concentrations of As, Mo and SO<sub>4</sub> in Sample I; Mo

in Sample II and As, Mo, Sb and Se in sample III. The surface water classification limits indicate that Sample II is in Class I throughout the whole test period. Although Sample I is classified as Class II/III/IV due to high EC/low pH values in the first five weeks and Sample III is classified as Class II/IV due to high EC/Se values in the first and second weeks, the leachates in general are in Class I for samples I and III in the other cycles. The maximum environmental quality limits of Al, As, Cd, Co, Cu, Fe and Si in Sample I; Al, Cd, Cu, Pb, Si and V in Sample II; and Al, As, Cd, Co, Cu, Pb, Si and V in Sample III are exceeded.

Hydrogeochemical modeling results based on prefeasibility pile assumptions and no remediation implementations, suggest that pile leachates will be in acidic (4.31-4.5) character under closed CO<sub>2</sub> equilibrium conditions and in basic (7.42-7.54) character in equilibrium with atmospheric CO<sub>2</sub> conditions. Although waste classification and surface water classification limits are not used for waste rock piles according to the current regulations, the comparison of leachate concentrations indicate that they will be in "Hazardous" class due to higher concentrations of As, Mo and SO<sub>4</sub>. The leachates are classified as Class IV due to low pH values under the closed CO<sub>2</sub> equilibrium conditions but classified as Class II under equilibrium conditions with atmospheric CO<sub>2</sub>. Besides, the maximum environmental quality limits of Al, As, Fe, Pb, V in all simulated leachates and Cd/Cr/Zn parameters in some simulated leachates for the closed CO<sub>2</sub> equilibrium conditions and As, Si, V in all simulated leachates and Cd/Pb/Zn parameters in some simulated leachates for the atmospheric  $CO_2$  conditions are exceeded. Gradual conditions between the closed  $CO_2$  and the open to atmospheric CO<sub>2</sub> cases would probably be developed under the field conditions.

Sensitivity analyses based on precipitation infiltration, number of rainy days and saturation index criteria indicate that concentrations would show in general slight tendency to decrease when the infiltration amount increase, the number of rainy days decrease and the SI criteria (few parameters) decrease.

### CHAPTER 12

### RECOMMENDATIONS

Based on the results of this study, following recommendations are made:

- Performing kinetic tests with longer period using more samples would increase the realibility and representativeness of the results.
- Revising pile seepage water calculations using updated kinetic data and pile data (types and amounts of waste rocks, pile dimensions, etc.) would improve the predictions.
- Sampling and analysis of the operational period seepage water under a monitoring program would provide means of evaluating predictions to the actual field occurences.
- Taking test and modeling data together with the recommended more data and revisions into consideration while making a closure plan would prevent possible environmental problems.
- Utilizing 3D groundwater numeric flow & mass transport modelings would provide means to determine the possible regional distribution of concenterations coming from the waste pile.
- Taking environmental precautions depending on the results from the groundwater numeric flow & mass transport models would decrease the possible problems.

#### REFERENCES

- Akyol, E., 1968, Ankara-Kızılcahamam, Çeltikçi civarında bulunan kömür zuhurlarının 1/25000 ölçekli detay jeolojik etüdü hakkında rapor, MTA, Report no. 4405, 14p.
- Allison, J. D., Brown D.S., & Novo-Gradac, K. J. (1990) MINTEQA2-PRODEFA3. A Geochemical model for environmental systems: Version 3.0 User's manual. USEPA, Environmental Research Laboratory, Athens, Georgia.
- AMIRA (2002) ARD test handbook. AMIRA P387A project, IWR Institute and Env. Geochemistry International Pty Ltd.
- AMM (2014) Preliminary Report about Petrography of Bostantepe Formation.
- AMM (2015) Geology of Çeltikçi Project Area. Asia Minor Mining: Page 55.
- Ayala-Parra, P., Sierra-Alvarez, R., & Field, J. A. (2016). Treatment of acid rock drainage using A sulfate-reducing bioreactor with zero-valent iron. *Journal of Hazardous Materials*, 308, 97-105. doi:10.1016/j.jhazmat.2016.01.029
- Ball, J.W. and Nordstrom, D.K. (1991) User's Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters. U.S. Geological Survey, Open-File Report 91-183, Washington DC, 189 p
- Banerjee, D. (2014). Acid drainage potential from coal mine wastes: Environmental assessment through static and kinetic tests. International Journal of Environmental Science and Technology, 11(5), 1365-1378. doi:10.1007/s13762-013-0292-2
- Battioui, M., Bouzahzah, H., Benzaazoua, M., Hakkou, R., &; Sbaa, M. (2016). Column kinetic tests Assessing GEOCHEMICAL behavior of Mine wastes in The Jerada coal district (Morocco). Mine Water and the Environment, 35(4), 497-507. doi:10.1007/s10230-016-0395-3
- Becker, H., 1957a, Kızılcahamam mevkiindeki linyit zuhurları hakkında muvakkat rapor, MTA Report No: 2663.
- Becker, H., 1957b, Kızılcahamam bölgesindeki linyit zuhurları prospeksiyonu, MTA Report No: 2627.
- Benzaazoua, M., Bussière, B., Dagenais, A., & Archambault, M. (2004). Kinetic tests comparison and interpretation for prediction of The Joutel Tailings Acid

generation potential. Environmental Geology, 46(8), 1086-1101. doi:10.1007/s00254-004-1113-1

- Bouzahzah, H., Benzaazoua, M., Bussiere, B., & Plante, B. (2014). Prediction of acid mine drainage: Importance of mineralogy and the test protocols for static and kinetic tests. Mine Water and the Environment, 33(1), 54-65. doi:10.1007/s10230-013-0249-1
- Campaner, V. P., Luiz-Silva, W., & Machado, W. (2014). Geochemistry of acid mine drainage from a coal mining area and Processes controlling metal attenuation in stream waters, southern Brazil. Anais Da Academia Brasileira De Ciências, 86(2), 539-554. doi:10.1590/0001-37652014113712
- Capanema, L. X., & Ciminelli, V. S. (2003). An investigation of acid rock Drainage (ard) occurrence in a gold mine located in a SOUTHEASTERN Brazil region. *Rem: Revista Escola De Minas*, 56(3), 201-206. doi:10.1590/s0370-44672003000300010
- Elghali, A., Benzaazoua, M., Bouzahzah, H., Bussière, B., & Villarraga-Gómez, H. (2018). Determination of the available acid-generating potential of waste rock, part I: mineralogical approach. Applied Geochemistry, 99, 31-41. doi:10.1016/j.apgeochem.2018.10.021
- EPA (1994) U.S. Environmental Protection Agency, technical document acid mine drainage prediction. EPA 530-R-94-036.
- Galhardi, J. A.,& Bonotto, D. M. (2016). Hydrogeochemical features of surface water and Groundwater contaminated with acid mine drainage (AMD) in coal mining areas: A case study in southern Brazil. Environmental Science and Pollution Research, 23(18), 18911-18927. doi:10.1007/s11356-016-7077-3
- GARD (2014) Global Acid Rock Drainage Guide; The International Network for Acid Prevention (INAP).
- Gautama, R. S. & Kusuma, G. J. (2008) Evaluation of Geochemical Tests in Predicting Acid Mine Drainage Potential in Coal Surface Mine. Mine Water and the Environment: 271-274.
- Hakkou, R., Benzaazoua, M. & Bussière, B. (2008). Acid mine drainage at the Abandoned Kettara Mine (Morocco): 2. mine waste geochemical behaviour. Mine Water and the Environment, 27(3), 160-170. doi:10.1007/s10230-008-0035-7
- Johnson, J.W., Oelkers, E.H., and Helgeson, H.C., 1992, SUPCRT92—A software package for calculating the standard molal thermodynamic properties of

minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C: Computers and Geosciences, v. 18, no. 7, p. 899–947.

- Johnson, D.B., Hallberg, K.B. (2005). Acid mine drainage remediation options: a review. Sci Total Environment 338:3–14
- Kahraman, C. (2014). Hydrogeological Characterization and Investigation of the Çeltikçi Coal Basin in Central Anatolia.(MSc Thesis, Middle East Technical University).
- Kaufhold, S., Dohrmann, R., Dietrich, K, Houben, G. (2008) The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56: 338–343.
- Kleinmann, R.L.P. (1990) At-source of acid mine drainage. Mine Water Environment 9:85–96
- Lawrence, R. W., & Wang, Y. (1997). Determination of Neutralization Potential in the Prediction of Acid Rock Drainage. Proceedings of 4th International Conference on Acid Rock Drainage, Vancouver, 449-464.
- McCabe, G. J., & Markstrom, S. L. (2007). A monthly water-balance model driven by a graphical user interface. Open-File Report. doi:10.3133/ofr20071088
- McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finitedifference ground-water flow model. Reston. U.S. Geological Survey.
- MDAG (2020) Minesite Drainage Assessment Group by Kevin A. Morin and Nora M. Hutt.https://www.mdag.com/grain30.html
- MDI (2019). JADE software version (Computer software), Materials Data, Livermore, CA, USA.
- MEND (2009) Prediction Manual for Drainage Chemistry from Sulfidic Geologic Materials MEND Report 1.20.1 Reporter; William A. Price.
- Méndez-Ortiz, B. A., Carrillo-Chávez, A., & Monroy-Fernández, M. G. (2007) Acid rock drainage and metal leaching from mine waste material (tailings) of a Pb-Zn-Ag skarn deposit: environmental assessment through static and kinetic laboratory tests. Revista Mexicana de Ciencias Geológicas, 24: 161-169.
- MEF (2010). Ministry of Environmental and Forestry. Storage Regulations of the Waste. Official Gazette of the Republic of Turkey(27533).
- MEU, (2015). Ministry of Environment and Urbanization. Mine Waste Management Regulations. Official Gazette of the Republic of Turkey (29417).
- MFW (2016). Ministry of Forestry and Water Works, Regulation on the Amendment of the Surface Water Quality-Attachment 5. Official Gazette of the Republic of Turkey Resmi Gazete (29797).

- Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals. Oxford: Oxford Univ. Press.
- Morin, K.A. 1994. Prediction of water chemistry in open pits during operation and after closure. In 18th Annual Mine Reclamation Symposium, Technical and Research Committee on Reclamation. (Vernon, British Columbia, April).
- Morin, K.A., and N.M. Hutt. (1993). The use of routine monitoring data for assessment and prediction of water chemistry.IN: Proceedings of the 17th Annual Mine Reclamation Symposium, Port Hardy, British Columbia, May 4-7, p.191-201.Mining Association of British Columbia.
- Morin, K. A., & Hutt, N. M. (1994). An empirical technique for predicting the chemistry of water seeping from mine-rock piles. *Journal American Society of Mining and Reclamation*, 1994(1), 12-19. doi:10.21000/jasmr94010012
- Morrin, K. A., & Hutt, N. M. (2001). Prediction of mine site drainage chemisrty through closure using operational monitoring data. *Journal of Geochemical Exploration*, 73, 123-130.
- Morin, K.A., N.M. Hutt, and I.A. Horne. (1995). Prediction of future water chemistry from Island Copper Mine's On-Land Dumps. IN: Proceedings of the 19th Annual British Columbia Mine Reclamation Symposium, Dawson Creek, B.C., June 19-23, p. 224-233.
- Morin, K.A., Hutt, N.M., & McArthur, R. (1995) Statistical assessment of past water chemistry to predict future chemistry at Noranda Minerals' Bell Mine. In: Proceedings of the Conference on Mining and the Environment, Sudbury, Ontario, May 28 - June 1, 3: 925-934.
- Morin, K.A., Hutt, N. M. & Hutt, S. (2001) A Compilation of Empirical Drainage-Chemistry Models (EDCMs). IN: Proceedings of Securing the Future, International Conference on Mining and the Environment, June 25 - July 1, Skellefteå, Sweden. The Swedish Mining Association: 556-565.
- Parkhurst, D.L. ve Appelo, C.A.J. (1999) User's guide to phreeqc (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water-resources investigations report 99-4259.
- Plante, B., Benzaazoua, M., & Bussière, B. (2010). Predicting geochemical behaviour of waste rock with low acid generating potential using laboratory kinetic tests. Mine Water and the Environment, 30(1), 2-21. doi:10.1007/s10230-010-0127-z

- Qureshi, A., Maurice, C., & Öhlander, B. (2016). Potential of coal mine waste rock for generating acid mine drainage. Journal of Geochemical Exploration, 160, 44-54. doi:10.1016/j.gexplo.2015.10.014
- Rojay, F. B. (2013). Structural Evolution of Çeltikçi-Gümele Area During post-Miocene. AMM company report.
- Rudnick, Roberta & Gao, Sally. (2003). Composition of the Continental Crust. Treatise Geochem 3:1-64. Treatise on Geochemistry. 3. 1-64. 10.1016/B0-08-043751-6/03016-4.
- Sahoo, P. K., Kim, K., Equeenuddin, S. M., & Powell, M. A. (2013). Current approaches for mitigating acid mine drainage. *Reviews of Environmental Contamination and Toxicology Volume 226*, 1-32. doi:10.1007/978-1-4614-6898-1\_1
- Soil Conservation Service (SCS) (1964), Hydrology, National Engineering Handbook, Supplement A, Section 4, Chapter 10, Soil Conservation Service, U.S.D.A., Washington, D.C.
- Shoja, S. E., & Salari, M. M. (2015). Study of acid mine drainage production potential in flotation tailings of sarchesmeh porphyry copper mine. *Arabian Journal of Geosciences*, 8(10), 8229-8236. doi:10.1007/s12517-014-1761-8
- Singh, R., Syed, T. H., Kumar, S., Kumar, M., & Venkatesh, A. S. (2017). Hydrogeochemical assessment of surface and groundwater resources of Korba coalfield, Central India: Environmental implications. Arabian Journal of Geosciences, 10(14). doi:10.1007/s12517-017-3098-6
- Skousen, J. G., Ziemkiewicz, P. F., & McDonald, L. M. (2018). Acid mine drainage formation, control and treatment: Approaches and strategies. *The Extractive Industries and Society*, 6(1), 241-249. doi:10.1016/j.exis.2018.09.008
- Sobek, A., W. Schuller, J. Freeman, & R. Smith (1978). Field and laboratory methods applicable to overburdens and minesoils. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/2-78/054 (NTIS PB280495)
- Trefry, M. G., & Muffels, C. (2007). FEFLOW: A Finite-element ground water flow and transport modeling tool. Ground Water, 45(5), 525-528. doi:10.1111/j.1745-6584.2007.00358.x
- Turgut, A.T., 1978, Kızılcahamam (Ankara) Çeltikçi ve Çamlıdere Neojen havzalarının linyit olanakları, MTA Report No., 6173, 20p.
- USGS (2007) A Monthly Water-Balance Model Driven By a Graphical User Interface. Open-File Report 2007–1088

- Varli, D., & Yilmaz, K. (2018). A multi-scale approach for improved characterization of surface water—groundwater interactions: Integrating thermal remote sensing and in-stream measurements. Water, 10(7), 854. doi:10.3390/w10070854
- Weber, P. A., Hughes, J. B., Conner, L. B., Lindsay, P., & St. C. Smart, R. (2006). Short-term acid rock drainage characteristics determined by paste pH and Kinetic NAG testing: Cypress Prospect, New Zealand. *Journal American Society of Mining and Reclamation*, 2006(2), 2289-2310. doi:10.21000/jasmr06022289
- Yazıcıgil, H., ÇAMUR, M. Z., Yılmaz, K., Peksezer, A., Fırat, E. and Kahraman C. (2014) Hydrogeological investigation and characterization of Çeltikçi Coal Basin. Asia Minor Mining Comp., METU Report No: 11-03-09-2-00-36, 231 p. (in Turkish)
- Yazıcıgil, H., ÇAMUR, M. Z., Yılmaz, K., Peksezer, A., Fırat, E. and Kahraman C. (2015) Flow model development, dewatering design and impact assessment for Çeltikçi Coal Basin groundwater. Asia Minor Mining Comp., *METU Report No:* 14-03-09-2-00-03, 263 p. (in Turkish)
- Yucel, D. S., & Baba, A. (2016). Prediction of acid mine drainage generation potential of Various lithologies using Static test: Etili coal Mine (NW Turkey) as a case study. Environmental Monitoring and Assessment, 188(8). doi:10.1007/s10661-016-5462-5

### **APPENDICES**



## APPENDIX-A Previous Study Whole Rock Chemistry Data

Figure A.1 Sampling locations of the wells

Table A-1. Well sampling interval information. U: Above the coal zone, B: Below the main coal zone

| This Study ID | Well ID | From (m) | To (m) | This Study ID | Well ID | From (m) | To (m) |
|---------------|---------|----------|--------|---------------|---------|----------|--------|
| U1            | CEL0073 | 183.7    | 184.8  | B3            | CEL0073 | 188.64   | 190.2  |
| U7            | CEL0065 | 286.94   | 288.7  | B5            | CEL0073 | 191.94   | 194.6  |
| U13           | CEL0058 | 245.3    | 249.2  | B6            | CEL0073 | 194.6    | 195.4  |
| U19           | CEL0039 | 158.8    | 161    | B9            | CEL0065 | 293.27   | 295    |
| U25           | CEL0031 | 559      | 559.6  | B11           | CEL0065 | 297.64   | 299.7  |
| U31           | CEL0026 | 519.6    | 520.5  | B15           | CEL0058 | 253.64   | 255.4  |
| U36           | CEL0026 | 533.2    | 534.1  | B17           | CEL0058 | 258.25   | 259.8  |
| U38           | CEL0045 | 338.6    | 339.5  | B21           | CEL0039 | 165.33   | 168.4  |
| U45           | CEL0002 | 269.9    | 270.4  | B23           | CEL0039 | 170.68   | 173.1  |
| U51           | CEL0069 | 303      | 304.1  | B27           | CEL0031 | 564.75   | 566    |
|               |         |          |        | B29           | CEL0031 | 569.1    | 570.4  |
|               |         |          |        | D22           | CEL0026 | 524.81   | 520.8  |

| B3  | CEL0073 | 188.64 | 190.2 |
|-----|---------|--------|-------|
| B5  | CEL0073 | 191.94 | 194.6 |
| B6  | CEL0073 | 194.6  | 195.4 |
| B9  | CEL0065 | 293.27 | 295   |
| B11 | CEL0065 | 297.64 | 299.7 |
| B15 | CEL0058 | 253.64 | 255.4 |
| B17 | CEL0058 | 258.25 | 259.8 |
| B21 | CEL0039 | 165.33 | 168.4 |
| B23 | CEL0039 | 170.68 | 173.1 |
| B27 | CEL0031 | 564.75 | 566   |
| B29 | CEL0031 | 569.1  | 570.4 |
| B33 | CEL0026 | 524.81 | 529.8 |
| B35 | CEL0026 | 531.73 | 533.2 |
| B40 | CEL0045 | 342.8  | 343   |
| B42 | CEL0045 | 346.14 | 347   |
| B44 | CEL0045 | 348.74 | 349   |
| B47 | CEL0002 | 275.1  | 276.8 |
| B49 | CEL0002 | 280.48 | 281.9 |
| B53 | CEL0069 | 308.77 | 309.9 |
| B55 | CEL0069 | 312.07 | 313.1 |

| ppm | U1     | U7     | U13    | U19    | U25    | U31    | U36    | U38    | U45    | U51    | AVERAGE |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| Al  | 28200  | 20700  | 19400  | 16700  | 17800  | 28100  | 300    | 21000  | 22400  | 4100   | 17870   |
| As  | 7      | 3      | 3      | 3      | 59     | 9      | 181    | 57     | 32     | 6      | 36      |
| Au  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       |
| Ba  | 247    | 214    | 161    | 165    | 118    | 135    | 19     | 70     | 95     | 215    | 143.9   |
| Be  | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5     |
| Bi  | 0.2    | 0.1    | 0.05   | 0.05   | 0.05   | 0.05   | 0.05   | 0.2    | 0.05   | 0.05   | 0.085   |
| Ca  | 103100 | 138500 | 102100 | 129100 | 120200 | 98600  | 64500  | 48200  | 63100  | 226600 | 109400  |
| Cd  | 0.05   | 0.05   | 0.05   | 0.05   | 0.05   | 0.05   | 0.05   | 0.3    | 0.1    | 0.05   | 0.08    |
| Ce  | 20     | 18     | 14     | 13     | 14     | 12     | 0.5    | 16     | 11     | 12     | 13.05   |
| Со  | 3.2    | 3      | 3.3    | 2.4    | 2.5    | 4.4    | nd     | 3.9    | 2.3    | 1.1    | 2.9     |
| Cr  | 26     | 28     | 14     | 13     | 57     | 58     | 198    | 164    | 39     | 10     | 60.7    |
| Cu  | 8      | 5.6    | 5.1    | 4.6    | 4.5    | 5.7    | 1.8    | 6.4    | 4.1    | 3.4    | 4.92    |
| Fe  | 6900   | 8300   | 6900   | 6000   | 6800   | 8200   | 10100  | 21600  | 7200   | 17700  | 9970    |
| Hf  | 0.9    | 0.8    | 1      | 0.7    | 0.5    | 0.9    | 0.05   | 0.8    | 0.6    | 0.3    | 0.655   |
| Hg  | 0.01   | 0.005  | 0.01   | 0.005  | 0.01   | 0.005  | 0.005  | 0.02   | 0.03   | 0.005  | 0.0105  |
| In  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025   |
| K   | 15700  | 5600   | 8500   | 5500   | 14300  | 22200  | 100    | 19600  | 14800  | 1600   | 10790   |
| La  | 10.3   | 9.1    | 7.5    | 6.6    | 7.1    | 6.3    | 0.2    | 7.8    | 6.2    | 5.7    | 6.68    |
| Li  | 400    | 352.8  | 425.8  | 269.7  | 178.6  | 195    | 13.5   | 22.6   | 18.1   | 52.8   | 192.89  |
| Mg  | 97800  | 107200 | 110100 | 98800  | 90100  | 88300  | 34900  | 30100  | 33400  | 98200  | 78890   |
| Mn  | 334    | 367    | 270    | 239    | 450    | 414    | 200    | 592    | 719    | 613    | 419.8   |
| Mo  | 2.9    | 2.4    | 2.1    | 2.3    | 2      | 2      | 23.7   | 12.6   | 3      | 1.5    | 5.45    |
| Na  | 7590   | 4800   | 7160   | 5940   | 2690   | 2900   | 410    | 1830   | 3900   | 1400   | 3862    |
| Nb  | 1.9    | 4.6    | 4.1    | 2.1    | 1.7    | 3.3    | 0.4    | 4      | 2.5    | 1.3    | 2.59    |
| Ni  | 9.3    | 6.8    | 6.9    | 9.2    | 7.5    | 12.9   | 4.8    | 13     | 5.4    | 4.6    | 8.04    |
| Р   | 240    | 90     | 70     | 100    | 230    | 110    | 650    | 350    | 1220   | 340    | 340     |
| Pb  | 6.6    | 5.3    | 5.6    | 5.2    | 5.4    | 6.9    | 0.4    | 22.3   | 2.9    | 2.1    | 6.27    |
| Rb  | 57.7   | 43.3   | 42.8   | 30.7   | 46.8   | 68.8   | 0.4    | 52     | 52.2   | 8.4    | 40.31   |
| S   | 500    | 500    | 500    | 500    | 3000   | 500    | 8000   | 24000  | 7000   | 2000   | 4650    |
| Sb  | 0.1    | 0.1    | 0.2    | 0.05   | 0.1    | 0.1    | 0.05   | 0.4    | 0.2    | 0.05   | 0.135   |
| Sc  | 2      | 3      | 2      | 2      | 1      | 2      | 0.5    | 0.5    | 1      | 3      | 1.7     |
| Se  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       |
| Si  | 128639 | 101808 | 131725 | 112513 | 134669 | 153180 | 308277 | 261953 | 225820 | 25102  | 158369  |
| Sn  | 0.4    | 0.5    | 0.4    | 0.4    | 0.3    | 0.5    | 0.05   | 0.6    | 0.3    | 0.1    | 0.355   |
| Sr  | 744    | 874    | 664    | 696    | 621    | 457    | 232    | 282    | 297    | 676    | 554.3   |
| Та  | 0.3    | 0.3    | 0.3    | 0.3    | 0.2    | 0.3    | 0.05   | 0.3    | 0.2    | 0.05   | 0.23    |
| Th  | 3.6    | 3.7    | 2.4    | 2.5    | 7.8    | 3.4    | 0.1    | 4.6    | 2.5    | 23.5   | 5.41    |
| Ti  | 390    | 960    | 820    | 560    | 430    | 790    | 60     | 860    | 720    | 390    | 598     |
| TI  | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 1.9    | 0.25   | 0.25   | 0.415   |
| U   | 1.1    | 1.2    | 0.7    | 0.6    | 3.1    | 1.2    | 0.7    | 4.1    | 3.3    | 8.8    | 2.48    |
| V   | 13     | 31     | 29     | 18     | 12     | 22     | 5      | 39     | 12     | 11     | 19.2    |
| W   | 0.05   | 0.2    | 0.2    | 0.4    | 0.2    | 0.2    | 0.1    | 0.4    | 0.6    | 0.2    | 0.255   |
| Y   | 5.1    | 4.8    | 3.7    | 3.2    | 2.9    | 3.1    | 0.3    | 3.3    | 2.8    | 8      | 3.72    |
| Zn  | 15     | 17     | 14     | 11     | 14     | 16     | 3      | 620    | 10     | 8      | 72.8    |
| Zr  | 17.2   | 23.8   | 25.1   | 15.6   | 16.2   | 24.4   | 3.1    | 31.1   | 37.3   | 9.4    | 20.32   |

Table A-2. Whole rock chemistry (Gladwell et. al., 2014)

Table A-2. Cont'd

| ppm | B3     | B5     | B6     | <b>B</b> 9 | B11    | B15    | B17    | B21    | B23    | B27    |
|-----|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|
| Al  | 12600  | 23600  | 11100  | 11300      | 3600   | 17100  | 3200   | 20700  | 4700   | 14700  |
| As  | 3      | 4      | 44     | 7          | 3      | 2      | 3      | 2      | 3      | 41     |
| Au  | 0      | 0      | 0      | 0          | 0      | 0      | 0      | 0      | 0      | 0      |
| Ba  | 181    | 237    | 90     | 178        | 98     | 215    | 149    | 181    | 108    | 95     |
| Be  | 0.5    | 0.5    | 0.5    | 0.5        | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    |
| Bi  | 0.3    | 0.2    | 0.1    | 0.05       | 0.05   | 0.05   | 0.05   | 0.05   | 0.05   | 0.05   |
| Ca  | 121300 | 126300 | 14500  | 168300     | 147100 | 174100 | 166500 | 111000 | 125700 | 166000 |
| Cd  | 0.05   | 0.05   | 0.05   | 0.05       | 0.05   | 0.05   | 0.05   | 0.05   | 0.05   | 0.1    |
| Ce  | 10     | 18     | 7      | 8          | 4      | 14     | 7      | 14     | 5      | 11     |
| Со  | 1.9    | 2.9    | 2.7    | 2.8        | 0.7    | 2.2    | 0.8    | 3.9    | 1.6    | 2.7    |
| Cr  | 87     | 25     | 45     | 15         | 50     | 14     | 30     | 21     | 31     | 193    |
| Cu  | 4.6    | 5.8    | 5.4    | 3.3        | 1.7    | 5.4    | 1.9    | 7.2    | 2.4    | 5.8    |
| Fe  | 6200   | 6700   | 7300   | 6400       | 3000   | 6900   | 5000   | 8600   | 3600   | 8900   |
| Hf  | 0.5    | 0.7    | 0.3    | 0.8        | 0.3    | 0.7    | 0.5    | 0.7    | 0.3    | 0.6    |
| Hg  | 0.02   | 0.04   | 0.04   | 0.02       | 0.005  | 0.02   | 0.01   | 0.01   | 0.005  | 0.005  |
| In  | 0.025  | 0.025  | 0.025  | 0.025      | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  |
| K   | 3000   | 7100   | 10200  | 2000       | 900    | 8600   | 1700   | 4400   | 1300   | 5800   |
| La  | 4.7    | 9.5    | 3.8    | 4.1        | 2.4    | 7.1    | 4.2    | 7.5    | 2.5    | 5.7    |
| Li  | 183    | 185.2  | 30.2   | 77.8       | 45.1   | 105.3  | 66.5   | 365.5  | 321.3  | 96.8   |
| Mg  | 89400  | 86200  | 8300   | 78800      | 78900  | 94000  | 88100  | 104400 | 105500 | 86100  |
| Mn  | 323    | 264    | 146    | 535        | 298    | 357    | 252    | 271    | 217    | 582    |
| Mo  | 1.8    | 1.2    | 8.8    | 1.8        | 1      | 2.2    | 1.6    | 1.6    | 2.1    | 3.2    |
| Na  | 5350   | 10520  | 2170   | 1820       | 1200   | 5800   | 1650   | 6930   | 1730   | 1360   |
| Nb  | 1.2    | 1.4    | 2      | 0.7        | 0.4    | 1.5    | 0.8    | 2.3    | 1      | 1.5    |
| Ni  | 6.6    | 10.5   | 14.4   | 9.5        | 2.4    | 5.8    | 3.2    | 8.5    | 4.4    | 7      |
| Р   | 1050   | 360    | 820    | 3750       | 70     | 80     | 90     | 80     | 70     | 350    |
| Pb  | 3.3    | 16.1   | 3.3    | 2.5        | 1.2    | 4.4    | 1.3    | 4.8    | 1.2    | 7.1    |
| Rb  | 24.9   | 43.1   | 45.9   | 15.5       | 5      | 54.6   | 11.8   | 47.3   | 12.9   | 48.2   |
| S   | 2000   | 3000   | 11000  | 2000       | 500    | 2000   | 2000   | 2000   | 500    | 3000   |
| Sb  | 0.05   | 0.2    | 0.3    | 0.05       | 0.05   | 0.2    | 0.05   | 0.2    | 0.05   | 0.2    |
| Sc  | 2      | 1      | 0.5    | 2          | 0.5    | 2      | 0.5    | 3      | 0.5    | 2      |
| Se  | 0      | 0      | 0      | 0          | 0      | 0      | 0      | 0      | 0      | 0      |
| Si  | 138082 | 138876 | 295235 | 120833     | 158976 | 88346  | 107137 | 126162 | 127705 | 103959 |
| Sn  | 0.2    | 0.3    | 0.2    | 0.1        | 0.1    | 0.3    | 0.05   | 0.5    | 0.05   | 0.4    |
| Sr  | 639    | 613    | 136    | 567        | 632    | 835    | 664    | 730    | 690    | 658    |
| Та  | 0.1    | 0.2    | 0.05   | 0.2        | 0.05   | 0.2    | 0.1    | 0.2    | 0.05   | 0.2    |
| Th  | 2.3    | 1.6    | 2.1    | 8.8        | 0.4    | 2.1    | 1.3    | 1.9    | 0.8    | 1.9    |
| Ti  | 510    | 520    | 380    | 330        | 110    | 560    | 180    | 890    | 290    | 580    |
| TI  | 0.25   | 0.25   | 0.25   | 0.25       | 0.25   | 0.25   | 0.25   | 0.25   | 0.25   | 1.1    |
| U   | 1.1    | 0.4    | 1.9    | 4.5        | 0.4    | 0.7    | 1.2    | 0.4    | 0.3    | 0.8    |
| V   | 20     | 16     | 12     | 23         | 8      | 20     | 12     | 34     | 17     | 54     |
| W   | 0.1    | 0.1    | 0.6    | 0.2        | 0.6    | 0.1    | 0.05   | 0.2    | 0.2    | 0.2    |
| Y   | 2.8    | 2.1    | 2      | 6.5        | 0.8    | 3.5    | 1.3    | 3.4    | 1.2    | 3.2    |
| Zn  | 11     | 13     | 14     | 10         | 4      | 16     | 5      | 20     | 7      | 40     |
| Zr  | 13     | 13     | 23.4   | 12.1       | 9.2    | 13.4   | 12.1   | 14.6   | 8.1    | 14.1   |

### Table A-2. Cont'd

| ppm      | B29         | B33        | B35    | B40    | B42    | B44    | B47    | B49    | B53    | B55    | AVERAGE       |
|----------|-------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| Al       | 4200        | 14400      | 3500   | 10500  | 10700  | 2800   | 19000  | 11300  | 12100  | 8900   | 11000         |
| As       | 23          | 11         | 11     | 0.5    | 11     | 182    | 11     | 10     | 4      | 4      | 19            |
| Au       | 0           | 0          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0             |
| Ba       | 76          | 113        | 65     | 88     | 54     | 35     | 165    | 84     | 152    | 161    | 126           |
| Be       | 0.5         | 0.5        | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    | 0.50          |
| Bi       | 0.05        | 0.05       | 0.05   | 0.05   | 0.05   | 0.05   | 0.05   | 0.1    | 0.05   | 0.05   | 0.08          |
| Ca       | 184900      | 181800     | 234700 | 153000 | 76400  | 30400  | 144700 | 78700  | 99100  | 167400 | 133595        |
| Cd       | 0.05        | 0.05       | 0.05   | 0.05   | 1.4    | 0.5    | 0.05   | 0.05   | 0.05   | 0.05   | 0.14          |
| Ce       | 4           | 8          | 4      | 7      | 7      | 3      | 14     | 6      | 10     | 7      | 8             |
| Co       | 0.9         | 2          | 0.7    | 1.6    | 1.3    | 1.3    | 3      | 1.5    | 1.9    | 1.6    | 1.90          |
| Cr       | 59          | 8          | 21     | 16     | 56     | 73     | 22     | 117    | 49     | 8      | 47            |
| Cu       | 2.3         | 3          | 1.2    | 2.6    | 2.4    | 2.1    | 6.4    | 4.1    | 4.3    | 2      | 4             |
| Fe       | 5100        | 5300       | 4400   | 10500  | 18000  | 56100  | 10600  | 5000   | 5800   | 4200   | 9380          |
| Hf       | 0.2         | 0.4        | 0.1    | 0.3    | 0.4    | 0.1    | 0.6    | 0.5    | 0.5    | 0.2    | 0.44          |
| Hg       | 0.02        | 0.005      | 0.005  | 0.005  | 0.005  | 0.005  | 0.03   | 0.02   | 0.02   | 0.005  | 0.01          |
| In       | 0.025       | 0.025      | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.025  | 0.03          |
| K        | 2400        | 3000       | 1000   | 3700   | 1500   | 900    | 4700   | 2800   | 3600   | 2600   | 3560          |
| La       | 2.1         | 4.2        | 2      | 3.9    | 3.3    | 1.4    | 7.3    | 2.9    | 4.8    | 3.8    | 4.36          |
|          | 45.7        | 46.6       | 24.4   | 66.7   | 33     | 13.9   | 36.1   | 38.9   | 58.2   | 60.1   | 95            |
| Mg       | 89700       | 90800      | 111800 | 99200  | 56400  | 47500  | 90600  | 53100  | 66300  | 109200 | 81715         |
| Mn       | 900         | 342        | 648    | 2725   | 1617   | 3118   | 479    | 210    | 437    | 448    | 708           |
| Mo       | 4.3         | 2.3        | 22.8   | 1.8    | 6.4    | 22.1   | 1.9    | 3.8    | 3.6    | 1.5    | 4.79          |
|          | 1030        | 1990       | //0    | 1220   | 1870   | 1320   | 1310   | 1000   | 1830   | 1/80   | 2033          |
| ND       | 0.8         | 1.2        | 0.3    | 0.8    | 0.4    | 0.3    | 1.4    | 0.7    | 1.8    | 0.5    | 1.05          |
| NI<br>D  | 2.6         | 5.5<br>250 | 1.6    | 2.4    | 3.1    | 4./    | 6.9    | /      | 9.5    | 2.8    | 5.92          |
| P<br>DL  | 190         | 250        | 1.2    | 130    | 2.1    | 100    | 60     | 00     | 90     | 1/0    | 405           |
| PD<br>DL | 1.9         | 2.4        | 1.5    | 1.9    | 3.1    | 1.0    | 5      | 2.1    | 3.1    | 1.2    | 3.74          |
| KD<br>S  | 9.9<br>2000 | 2000       | 500    | 27.8   | 9.9    | 20000  | 5/./   | 2000   | 29     | 1/./   | 24.55<br>4175 |
| Sh       | 2000        | 2000       | 0.05   | 4000   | 0.05   | 29000  | 0.2    | 0.2    | 2000   | 0.05   | 0.12          |
| So       | 0.1         | 0.05       | 0.05   | 0.05   | 0.05   | 0.05   | 2      | 1      | 2      | 1      | 1.23          |
| Se       | 0.5         | 0.5        | 0.5    | 0      | 0.5    | 0.5    | 0      | 0      | 0      | 0      | 0.00          |
| Si       | 97975       | 76052      | 23606  | 35245  | 218248 | 258261 | 72173  | 243723 | 167858 | 24961  | 131171        |
| Sn       | 0.2         | 0.1        | 0.05   | 0.2    | 0.1    | 0.1    | 0.4    | 0.2    | 0.3    | 0.1    | 0.20          |
| Sr       | 613         | 781        | 623    | 568    | 412    | 180    | 651    | 397    | 635    | 957    | 599           |
| Ta       | 0.05        | 0.2        | 0.05   | 0.1    | 0.1    | 0.05   | 0.2    | 0.2    | 0.2    | 0.1    | 0.13          |
| Th       | 0.7         | 1.7        | 0.6    | 1.4    | 1.1    | 0.5    | 1.3    | 0.9    | 1.4    | 1.6    | 1.72          |
| Ti       | 230         | 330        | 120    | 360    | 180    | 180    | 570    | 190    | 640    | 210    | 368           |
| П        | 0.25        | 0.25       | 0.25   | 0.25   | 0.25   | 1.6    | 0.25   | 0.25   | 0.25   | 0.25   | 0.36          |
| U        | 1.3         | 1.1        | 0.9    | 1      | 3.4    | 1.4    | 0.5    | 1.4    | 1.5    | 2.8    | 1.35          |
| V        | 68          | 16         | 18     | 48     | 45     | 33     | 41     | 30     | 50     | 31     | 30            |
| W        | 0.3         | 0.3        | 0.2    | 0.1    | 0.1    | 0.1    | 0.1    | 0.2    | 0.2    | 0.05   | 0.20          |
| Y        | 1.2         | 1.9        | 1.2    | 2.3    | 1.9    | 0.8    | 2.8    | 1.5    | 2.2    | 2.5    | 2.26          |
| Zn       | 16          | 14         | 24     | 67     | 420    | 399    | 17     | 6      | 11     | 7      | 56.05         |
| Zr       | 6.7         | 12.6       | 8.9    | 8.8    | 11.1   | 8.4    | 12.7   | 9.2    | 14.7   | 5.4    | 11.58         |

### APPENDIX-B Previous Study Shake Flask Test Data

**Table B-1.** Shake flask test data (Gladwell et. al., 2014) and the classification usingthe leaching limits of MEF (2010).

| Parameter/<br>Sample | U1   | B3   | В5   | В                 | U7     | B9   | B11         | U13  | B15  | B17  | U19  | B21    | B2.  | 3 U25    | B27  | B29   |
|----------------------|------|------|------|-------------------|--------|------|-------------|------|------|------|------|--------|------|----------|------|-------|
| EC μS/cm<br>at 25 °C | 511  | 354  | 303  | 94                | 3 326  | 295  | 221         | 508  | 534  | 378  | 347  | 304    | 254  | 4 648    | 284  | 382   |
| pН                   | 8.8  | 8.7  | 8.3  | 7.5               | 8 8.8  | 8.8  | 8.8         | 9.2  | 8.7  | 8.3  | 9.2  | 9      | 8.4  | 8.1      | 8.9  | 8     |
| Alkalinity           | 136  | 140  | 66   | 67                | 130    | 105  | 77          | 238  | 220  | 130  | 133  | 118    | 100  | ) 97     | 229  | 86    |
| As                   | 0.09 | 0.02 | 0.01 | 0.0               | 2 0.05 | 0.05 | 0.02        | 0.07 | 0.03 | 0.01 | 0.01 | 0.01   | 0.0  | 1 0.11   | 0.23 | 0.02  |
| Ba                   | 0.01 | 0.01 | 0.01 | 0.0               | 4 0.00 | 0.01 | 0.01        | 0.00 | 0.01 | 0.01 | 0.00 | 0.00   | 0.0  | 1 0.01   | 0.01 | 0.04  |
| Cd                   | 0.00 | 0.00 | 0.00 | 0.0               | 0 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.0  | 0 0.00   | 0.00 | 0.00  |
| Cl                   | 5.5  | 2.5  | 7.5  | 13.               | 0 2.5  | 2.5  | 9.2         | 2.5  | 2.5  | 2.5  | 2.5  | 2.5    | 2.5  | 5 2.5    | 2.5  | 5.5   |
| Cr, t                | 0.00 | 0.01 | 0.00 | 0.0               | 0 0.01 | 0.01 | 0.03        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.0  | 0 0.00   | 0.00 | 0.00  |
| Cu                   | 0.01 | 0.00 | 0.00 | 0.0               | 0 0.00 | 0.00 | 0.00        | 0.01 | 0.00 | 0.00 | 0.00 | 0.01   | 0.0  | 0 0.00   | 0.00 | 0.00  |
| F                    | 0.56 | 0.29 | 0.20 | 0.1               | 3 1.10 | 0.53 | 0.48        | 0.99 | 0.22 | 0.13 | 0.29 | 0.27   | 0.2  | 7 0.62   | 0.53 | 0.20  |
| Hg                   | 0.00 | 0.00 | 0.00 | 0.0               | 0 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.0  | 0 0.00   | 0.00 | 0.00  |
| Mo                   | 0.32 | 0.23 | 0.05 | 0.0               | 4 0.45 | 0.18 | 0.08        | 0.39 | 0.25 | 0.15 | 0.23 | 0.14   | 0.0  | 9 0.12   | 0.39 | 0.30  |
| Ni                   | 0.00 | 0.00 | 0.00 | 0.0               | 0 0.00 | 0.01 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.0  | 0 0.00   | 0.00 | 0.00  |
| Pb                   | 0.01 | 0.00 | 0.00 | $\frac{0.0}{0.0}$ | 0 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.0  | 0 0.00   | 0.00 | 0.00  |
| Se                   | 0.01 | 0.00 | 0.00 |                   |        | 0.00 | 0.00        | 0.01 | 0.00 | 0.00 | 0.00 | 0.00   | 0.0  |          | 0.00 | 0.00  |
| Sb<br>SO4            | 0.00 | 0.00 | 0.00 | 0.0               | 0 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.0  | 0 0.00   | 0.00 | 0.00  |
| 504                  | 130  | 18   | 0.00 | 30                |        | 19   | 15          | /    | 8    | 24   | /    | 10     | 0    | 1/8      | 43   | /9    |
| Ln                   | 0.00 | 0.00 | 0.00 | 0.0               | 0 0.00 | 0.00 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   | 0.0  | 0   0.00 | 0.00 | 0.00  |
|                      |      |      |      |                   |        |      |             |      |      |      |      |        |      |          |      |       |
| Parameter            | /    |      |      | D.2.5             | TIAC . | 1120 | <b>D</b> 40 | D 40 | DAA  | TTA  | - D  |        | . 40 | 1151     | D.52 | D.5.5 |
| Sample               | 03   | L B. | 55   | B35               | U36    | 038  | B40         | B42  | B44  | 04:  | S B  | •/   1 | 549  | 051      | B22  | B22   |
| EC μS/cm<br>at 25 °C | 482  | 2 44 | 14   | 273               | 96     | 2520 | 391         | 618  | 519  | 144  | 0 7  | 78 :   | 598  | 392      | 612  | 410   |
| pH                   | 9.2  | 8    | .6   | 8.2               | 8      | 7.4  | 8.2         | 8    | 7.8  | 8.1  | 7    | .9     | 7.9  | 8.2      | 8.3  | 8.4   |
| · ·                  |      |      |      |                   |        |      |             |      |      |      |      |        |      |          |      |       |

| at 25 °C   | 402  | 444  | 215  | 90   | 2320 | 391  | 018  | 519  | 1440 | 110  | 398  | 392  | 012  | 410  |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| pН         | 9.2  | 8.6  | 8.2  | 8    | 7.4  | 8.2  | 8    | 7.8  | 8.1  | 7.9  | 7.9  | 8.2  | 8.3  | 8.4  |
| Alkalinity | 176  | 124  | 110  | 40   | 83   | 134  | 91   | 54   | 117  | 58   | 59   | 119  | 196  | 190  |
| As         | 0.70 | 0.20 | 0.40 | 0.12 | 0.01 | 0.04 | 0.02 | 0.01 | 0.03 | 0.02 | 0.02 | 0.14 | 0.08 | 0.05 |
| Ba         | 0.00 | 0.02 | 0.01 | 0.01 | 0.06 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.01 | 0.01 | 0.00 |
| Cd         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Cl         | 6.5  | 2.5  | 5.7  | 5.1  | 15.0 | 7.5  | 12.0 | 10.0 | 9.3  | 12.0 | 6.2  | 7.7  | 7.6  | 5.6  |
| Cr, t      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Cu         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| F          | 0.63 | 0.31 | 0.27 | 0.16 | 0.49 | 1.10 | 0.73 | 0.17 | 0.28 | 0.42 | 0.28 | 0.63 | 0.40 | 0.86 |
| Hg         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Мо         | 0.26 | 0.28 | 3.90 | 0.63 | 0.02 | 0.32 | 1.17 | 1.08 | 0.05 | 0.20 | 0.20 | 0.21 | 0.37 | 0.25 |
| Ni         | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| Pb         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Se         | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 |
| Sb         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| SO4        | 43   | 66   | 26   | 3    | 1340 | 53   | 161  | 158  | 500  | 215  | 139  | 46   | 83   | 6    |
| Zn         | 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

\* No color: Inert, green: Non-Hazardous, yellow: Hazardous and red: Very Hazardous

### **APPENDIX-C Sample I Mixing Free Data Estimation**

Related explanations were given in the page 62. The effect of remaining (previous week) solution on each parameter concentration [P0] to the following (current) cycle is estimated by considering remaining solution volume (V1) and concentration [P1] and the next cycle irrigation water volume (V2):

$$C_f = \frac{C_i V_i}{V_f}$$

[P0] contributed from the previous week solution into the current week solution

$$C_f = \frac{[P1]x(V1)}{(V2) + (V1)}$$

Then;

Previous week contribution free current week concentration [P] = Current week concentration [P2] – [P0]

In the calculations, V1 (= 142 ml) is approximated by 1.5 cm height water column (out of 3 cm slurry) for each cycle. V2 is added volume of water in each cycle (Table 9.4). P1 for each parameter is listed in Table 15. In the case of pH calculations concentrations of H+ were subjected to the estimations and pH values were calculated afterwards.

The original laboratory measurements used for the estimations are listed in Table C-1. Both the mixing free and mixing effected values of some parameters are shown in Figure C.1. As can be seen from the figure the mixing effect is in fact negligible.

| Sample<br>No | Week | T ℃     | pH    | EC<br>(µS/cm) | Alkalinity | a     | <b>SO4</b> | Al     | As     | Ba       | Ca    | Cd     | Co     | Cr. t   | Cu       | Fe      |
|--------------|------|---------|-------|---------------|------------|-------|------------|--------|--------|----------|-------|--------|--------|---------|----------|---------|
| I-0          | 0    |         | 7.76  | 732           | 88         | 7     | 247.64     | 0.6855 | 0.082  | 0.078    | 30.95 | 0.0007 | 0.0141 | 0.001   | 0.015    | 1.140   |
| I-1          | 1    | 25.8    | 7.66  | 1473          | 76.2       | 6.65  | 498.53     | 0      | 0.104  | 0.080    | 56.84 | 0.004  | 0.0023 | 0       | 0        | 0       |
| I-2          | 2    | 27.7    | 7.81  | 715           | 96.6       | 9     | 246.14     | 0.0355 | 0.156  | 0.074    | 2.49  | 0.0017 | 0.0011 | 0       | 0        | 0       |
| I-3          | 3    | 26.7    | 8.37  | 772           | 184        | 71    | 189.16     | 0.0197 | 0.133  | 0.021    | nm    | 0      | 0      | 0       | 0.022    | 0       |
| I-4          | 4    | 24.3    | 8.8   | 648           | 132        | 18    | 114.26     | 0.2890 | 0.223  | 0.065    | nm    | 0      | 0.0005 | 0.003   | 0.005    | 0.085   |
| I-5          | 5    | 20.7    | 9.21  | 427.7         | 264        | 0     | 86.57      | 0.3994 | 0.128  | 0.039    | 2.583 | 0      | 0.0006 | 0.00055 | 5 0.005  | 0.11962 |
| I-6          | 6    | 22.4    | 8.78  | 340.2         | 128.1      | 0     | 35.15      | 0.9814 | 0.157  | 0.027    | 18.21 | 0      | 0      | 0       | 0.004    | 0.12069 |
| I-7          | 7    | 20.7    | 8.73  | 279.8         | 107        | 0     | 31.08      | 0.8135 | 0.158  | 0.018    | 32.35 | 0      | 0      | 0       | 0.003    | 0.19364 |
| I-8          | 8    | 20.5    | 8.56  | 236.3         | 99         | 0     | 21.31      | 1.57   | 0.307  | 0.014    | 9.705 | 0      | 0      | 0       | 0.003    | 8.899   |
| I-9          | 9    | 21.6    | 8.44  | 220.1         | 107.6      | 0     | 12.35      | 1.01   | 0.134  | 0.022    | 9.746 | 0      | 0      | 0       | 0.003    | 1.70659 |
| I-10         | 10   | 21.9    | 8.24  | 190           | 99         | 0     | 12.35      | 2.60   | 0.128  | 0.015    | 5.23  | 0      | 0      | 0       | 0.002    | 0.75543 |
| I-11         | 11   | 22      | 8.16  | 196.6         | 111.4      | 0     | 18.62      | 1.98   | 0.259  | 0.016    | 5.991 | 0      | 0      | 0       | 0.002    | 0.54717 |
| I-12         | 12   | 21.6    | 8.2   | 174.4         | 109.6      | 0     | 0          | 10.38  | 0.122  | 0.031    | 4.524 | 0      | 0      | 0.012   | 0        | 2.593   |
| I-13         | 13   | 22.4    | 8.16  | 162.3         | 87.2       | 2.4   | 16.42      | 5.96   | 0.089  | 0.051    | 3.193 | 0      | 0      | 0.0087  | 7 0      | 0.70665 |
| Sample<br>No | Week | К       | Li    | Mg            | Mn         | Мо    | Na         | Ni     | Рь     | Sb       | Si    | s      | r      | U       | v        | Zn      |
| I-0          | 0    | 23.18   | 0.044 | 8.35          | 0.048695   | 0.884 | 10.78      | 0.0169 | 0.0047 | 0        | 207.7 | 0.7    | 08     | 1.261   | 0.0036   | 0.0705  |
| I-1          | 1    | 3.161   | 0.085 | 20.24         | 0          | 2.847 | 20.24      | 0      | 0.0120 | 0.0005   | 13.66 | 2.6    | 17     | 2.079   | 0        | 0.0254  |
| I-2          | 2    | 21.06   | 0.044 | 6.97          | 0          | 0.909 | 113.3      | 0      | 0.0052 | 0.0008   | 14.52 | 0.6    | 49     | 1.461   | 0        | 0       |
| I-3          | 3    | nm      | 0.045 | nm            | 0          | 0.753 | nm         | 0      | 0.0009 | 0.0031   | 3.57  | 0.6    | 21     | 0.002   | 0.0029   | 0.0113  |
| I-4          | 4    | nm      | 0.053 | nm            | 0          | 0.781 | nm         | 0      | 0      | 0.001602 | 148.8 | 1.0    | 59     | 0.003   | 0.0034   | 0.0109  |
| I-5          | 5    | 23.88   | 0.027 | 9.42          | 0.010375   | 0.322 | 108.6      | 0      | 0.0044 | 0.0043   | 15.06 | 0.4    | 10     | 0.001   | 0.002954 | 0.0206  |
| I-6          | 6    | 12.73   | 0.020 | 4.29          | 0.050045   | 0.253 | 54.56      | 0      | 0      | 0        | 7.618 | 0.3    | 91     | 0       | 0.005351 | 0       |
| I-7          | 7    | 10.95   | 0.017 | 7.736         | 0.036232   | 0.151 | 50.64      | 0      | 0      | 0.001    | 11    | 0.6    | 48     | 0       | 0.0066   | 0       |
| I-8          | 8    | 10.19   | 0.014 | 3.504         | 0.015689   | 0.119 | 48.87      | 0      | 0      | 0        | 12.48 | 0.1    | 24     | 0       | 0.0089   | 0       |
| I-9          | 9    | 9.085   | 0.011 | 3.69          | 0.024425   | 0.086 | 41.34      | 0      | 0      | 0        | 13.85 | 0.1    | 26     | 0       | 0.008033 | 0       |
| I-10         | 10   | 8.038   | 0.000 | 2.92          | 0.015687   | 0.055 | 31.39      | 0      | 0.0028 | 0        | 17.01 | 0.0    | 95     | 0       | 0.010563 | 0       |
| I-11         | 11   | 9.926   | 0.014 | 2.9           | 0.016823   | 0.075 | 40.83      | 0      | 0.0073 | 0        | 10.71 | 0.1    | 11     | 0       | 0.0081   | 0       |
| I-12         | 12   | 6.059   | 0.014 | 2.894         | 0.019424   | 0.045 | 16.69      | 0      | 0.0008 | 0.000571 | 37.84 | 0.1    | 81     | 0       | 0.0200   | 0       |
| 1 1 1 3      | 13   | 3 3 5 5 | 0.014 | 1 57          | 0.012914   | 0.042 | 11 57      | 0      | 0.0007 | 0.0007   | 29.57 | 01     | 39     | 0       | 0.014297 | 0       |

Table C-1. Sample I original laboratory measurements.



**Figure C-1.** Mixing free and mixing effected values of SO<sub>4</sub>, pH, EC and Alkalinity.

### **APPENDIX-D Kinetic Test Rate Values**

| Unit       | Sample No      | Week | *Alkalinity | Cl   | SO4   | Al   | As   | в   | Ba    | Ca        | Cd    | Co     | Cr. t | Cu    | Fe   | к    |
|------------|----------------|------|-------------|------|-------|------|------|-----|-------|-----------|-------|--------|-------|-------|------|------|
| mg/kg/week |                |      | ·· •        | -    |       |      |      |     |       |           |       |        |       |       |      |      |
|            | I-1            | 1    | 51.8        | 4.7  | 349.0 | 0.00 | 0.07 | 0   | 0.056 | 39.8      | 0.003 | 0.0016 | 0.000 | 0.000 | 0.00 | 2.2  |
|            | I-2            | 2    | 43.8        | 4.2  | 88.7  | 0.02 | 0.07 | 0   | 0.033 | 1.3       | 0.001 | 0.0004 | 0.000 | 0.000 | 0.00 | 10.9 |
|            | I-3            | 3    | 94.0        | 39.5 | 85.0  | 0.01 | 0.06 | 0.0 | 0.005 | nm        | 0.000 | 0.0000 | 0.000 | 0.013 | 0.00 | nm   |
|            | I-4            | 4    | 66.1        | 4.4  | 55.3  | 0.19 | 0.13 | 0.0 | 0.040 | nm        | 0.000 | 0.0003 | 0.002 | 0.001 | 0.06 | nm   |
|            | 1-5            | 5    | 179.2       | 0    | 50.8  | 0.26 | 0.07 | 0   | 0.021 | 1.9       | 0.000 | 0.0004 | 0.000 | 0.003 | 0.08 | 17.8 |
|            | I-6            | 6    | 56.7        | 0    | 14.4  | 0.62 | 0.09 | 0   | 0.014 | 12.0      | 0.000 | 0.0000 | 0.000 | 0.002 | 0.07 | 6.0  |
| SAMPLE-I   | I-7            | 7    | 57.9        | 0    | 17.5  | 0.45 | 0.09 | 0   | 0.009 | 20.2      | 0.000 | 0.0000 | 0.000 | 0.002 | 0.12 | 6.1  |
|            | I-8            | 8    | 54.5        | 0    | 11.2  | 0.98 | 0.19 | 0   | 0.008 | 3.1       | 0.000 | 0.0000 | 0.000 | 0.002 | 6.06 | 5.8  |
|            | 1-9            | 9    | 57.7        | 0    | 5.8   | 0.49 | 0.05 | 0   | 0.013 | 5.3       | 0.000 | 0.0000 | 0.000 | 0.002 | 0.18 | 4.8  |
|            | 1-10           | 10   | 50.7        | 0    | 6.6   | 1.56 | 0.07 | 0   | 0.007 | 2.3       | 0.000 | 0.0000 | 0.000 | 0.001 | 0.30 | 4.2  |
|            | 1-11           | 11   | 63.2        | 0    | 11.3  | 1.05 | 0.16 | 0   | 0.009 | 3.5       | 0.000 | 0.0000 | 0.000 | 0.001 | 0.29 | 5.9  |
|            | 1-12           | 12   | 59.5        | 0    | 0     | 6.75 | 0.05 | 0   | 0.019 | 2.4       | 0.000 | 0.0000 | 0.008 | 0.000 | 1.68 | 2.9  |
|            | 1-13           | 13   | 45.6        | 1.6  | 11.2  | 2.89 | 0.05 | 0.0 | 0.031 | 1.7       | 0.000 | 0.0000 | 0.005 | 0.000 | 0.19 | 1.6  |
|            |                |      |             | -    |       |      |      | -   |       |           |       |        |       |       |      |      |
|            | II-1<br>II-2   |      | 50.6        | 0    | 91.1  | 0.01 | 0.01 | 0   | 0.023 | 5.6       | 0.000 | 0.0010 | 0.000 | 0.001 | 0.00 | 4.7  |
|            | II-2           | 2    | 43.0        | 2.6  | 38.4  | 0.01 | 0.01 | 0   | 0.014 | 3.2       | 0.000 | 0.0008 | 0.000 | 0.000 | 0.00 | 2.7  |
|            | 11-3           | 3    | 45.1        | 2.1  | 22.1  | 0.01 | 0.02 | 0   | 0.011 | nm        | 0.000 | 0.0000 | 0.000 | 0.002 | 0.02 | nm   |
|            | II-4           | 4    | 47.3        | 1.6  | 21.1  | 0.00 | 0.02 | 0   | 0.014 | nm        | 0.000 | 0.0000 | 0.001 | 0.003 | 0.00 | nm   |
|            | II-5           | 5    | 50.7        | 0    | 8.2   | 0.00 | 0.02 | 0   | 0.009 | 3.8       | 0.000 | 0.0000 | 0.000 | 0.001 | 0.00 | 1.4  |
|            | 11-6           | 6    | 44.1        | 0    | 0     | 0.02 | 0.01 | 0   | 0.008 | 3.2       | 0.000 | 0.0000 | 0.000 | 0.001 | 0.05 | 1.1  |
|            | п-/            | /    | 43.3        | 0    | 10.8  | 0.02 | 0.01 | 0   | 0.008 | 3.0       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.06 | 1.0  |
| SAMPLE-II  | 11-8           | 8    | 40.9        | 0.5  | 0     | 0.02 | 0.01 | 0   | 0.008 | 3.9       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.07 | 0.8  |
|            | II-9<br>II 10  | 9    | 40.8        | 0    | 0     | 0.02 | 0.01 | 0   | 0.000 | 3.5       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.06 | 0.8  |
|            | п-10           | 10   | 42.3        | 1.1  | 0     | 0.02 | 0.01 | 0   | 0.000 | 3.2       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.05 | 0.0  |
|            | п-11<br>п 12   | 12   | 43.0        | 0    | 0     | 0.02 | 0.01 | 0   | 0.000 | 5.5       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.06 | 0.0  |
|            | п-12<br>п.13   | 12   | 40.0        | 1.4  | 0     | 0.02 | 0.01 | 0   | 0.000 | 11.3      | 0.000 | 0.0000 | 0.000 | 0.000 | 0.00 | 3.8  |
|            | п-13<br>п-14   | 14   | 42.0        | 0    | 0     | 0.01 | 0.01 | 0   | 0.000 | 63        | 0.000 | 0.0000 | 0.000 | 0.000 | 0.00 | 0.0  |
|            | II-14<br>II-15 | 14   | 34.4        | 0    | 0     | 0.00 | 0.01 | 0   | 0.000 | 3.1       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.00 | 0.0  |
|            | П-16           | 15   | 39.0        | 0    | 0     | 0.00 | 0.02 | 0   | 0.000 | 2.8       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.00 | 0.0  |
|            | 11 10          | 10   | 57.0        | 0    | 0     | 0.00 | 0.01 | Ŭ   | 0.000 | 2.0       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.00 | 0.0  |
|            | Ш.1            | 1    | 45.4        | 3.0  | 176.5 | 0.00 | 0.05 | 0   | 0.030 | 16.0      | 0.002 | 0.0016 | 0.000 | 0.000 | 0.00 | 5.1  |
|            | ш.2            | 2    | 42.3        | 4.4  | 91.3  | 0.00 | 0.07 | 0   | 0.024 | 6.2       | 0.002 | 0.0024 | 0.000 | 0.000 | 0.00 | 5.6  |
|            | III-2<br>III-3 | 3    | 43.2        | 2.1  | 61.5  | 0.00 | 0.07 | 0   | 0.024 | 0.2<br>nm | 0.000 | 0.0000 | 0.000 | 0.003 | 0.00 | nm   |
|            | Ш-4            | 4    | 43.0        | 3.7  | 56.5  | 0.00 | 0.08 | 0   | 0.019 | nm        | 0.000 | 0.0000 | 0.000 | 0.002 | 0.00 | nm   |
|            | III-5          | 5    | 50.8        | 0    | 49.4  | 0.02 | 0.07 | 0   | 0.027 | 43        | 0.000 | 0.0004 | 0.001 | 0.002 | 0.06 | 4.0  |
|            | Ш-6            | 6    | 42.1        | 0    | 36.0  | 0.02 | 0.06 | 0   | 0.018 | 4.4       | 0.000 | 0.0000 | 0.000 | 0.001 | 0.07 | 3.6  |
|            | III-7          | 7    | 39.7        | 0    | 36.3  | 0.01 | 0.05 | 0   | 0.019 | 4.8       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.05 | 3.2  |
|            | III-8          | 8    | 41.8        | 0    | 29.1  | 0.03 | 0.05 | 0   | 0.017 | 4.5       | 0.000 | 0.0000 | 0.000 | 0.001 | 0.07 | 2.8  |
| SAMPLE-III | Ш-9            | 9    | 40.9        | 0    | 24.4  | 0.02 | 0.05 | 0   | 0.014 | 4.4       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.05 | 2.8  |
|            | III-10         | 10   | 37.5        | 0    | 18.0  | 0.01 | 0.04 | 0   | 0.011 | 3.3       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.03 | 2.0  |
|            | Ш-11           | 11   | 41.7        | 0    | 20.9  | 0.01 | 0.05 | 0   | 0.014 | 3.7       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.04 | 2.3  |
|            | III-12         | 12   | 42.0        | 0    | 16.7  | 0.00 | 0.04 | 0   | 0.010 | 7.0       | 0.000 | 0.0000 | 0.001 | 0.000 | 0.00 | 0.8  |
|            | III-13         | 13   | 43.4        | 1.6  | 15.6  | 0.00 | 0.04 | 0   | 0.009 | 2.2       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.00 | 0.7  |
|            | III-14         | 14   | 37.1        | 0    | 15.6  | 0.00 | 0.03 | 0   | 0.008 | 3.3       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.00 | 1.7  |
|            | III-15         | 15   | 34.4        | 0    | 13.5  | 0.00 | 0.03 | 0   | 0.009 | 3.1       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.00 | 1.5  |
|            | III-16         | 16   | 36.7        | 1.2  | 18.1  | 0.00 | 0.03 | 0   | 0.008 | 3.4       | 0.000 | 0.0000 | 0.000 | 0.000 | 0.00 | 1.7  |

# Table D-1. Kinetic test concentration rates (nm represents not measured)

\* Irrigation water contribution free values

### Table D-1. Cont'd

| Unit       | Sample No      | Week   | Li   | Mg   | Mn   | Mo   | Na   | Ni  | Pb     | Sb    | Se    | Si    | Sr   | U    | v     | Zn    |
|------------|----------------|--------|------|------|------|------|------|-----|--------|-------|-------|-------|------|------|-------|-------|
| mg/kg/week |                |        |      | 8    |      |      |      |     |        |       |       | ~~    | ~ ~  |      |       |       |
|            | I-1            | 1      | 0.06 | 14.2 | 0.00 | 1.99 | 14.2 | 0   | 0.008  | 0.000 | 0.000 | 9.6   | 1.83 | 1.45 | 0.000 | 0.018 |
|            | I-2            | 2      | 0.02 | 2.0  | 0.00 | 0.24 | 58.6 | 0   | 0.002  | 0.000 | 0.000 | 6.6   | 0.12 | 0.60 | 0.000 | 0.000 |
|            | I-3            | 3      | 0.02 | nm   | 0.00 | 0.34 | nm   | 0   | 0.000  | 0.002 | 0.000 | 0.7   | 0.29 | 0.00 | 0.002 | 0.006 |
|            | I-4            | 4      | 0.03 | nm   | 0.00 | 0.43 | nm   | 0   | 0.000  | 0.001 | 0.000 | 97.5  | 0.63 | 0.00 | 0.002 | 0.006 |
|            | 1-5            | 5      | 0.01 | 7.0  | 0.01 | 0.15 | 80.8 | 0   | 0.003  | 0.003 | 0.000 | 0.0   | 0.18 | 0.00 | 0.002 | 0.014 |
|            | 1-6            | 6      | 0.01 | 1.9  | 0.03 | 0.14 | 25.2 | 0   | 0.000  | 0.000 | 0.000 | 3.5   | 0.22 | 0.00 | 0.003 | 0.000 |
| SAMPLE-I   | 1-7            | 7      | 0.01 | 4.8  | 0.02 | 0.08 | 28.8 | 0   | 0.000  | 0.001 | 0.000 | 6.7   | 0.40 | 0.00 | 0.004 | 0.000 |
|            | 1-8            | 8      | 0.01 | 1.6  | 0.01 | 0.07 | 27.9 | 0   | 0.000  | 0.000 | 0.000 | 7.3   | 0.01 | 0.00 | 0.005 | 0.000 |
|            | 1-9<br>1-10    | 9      | 0.01 | 2.0  | 0.01 | 0.04 | 21.6 | 0   | 0.000  | 0.000 | 0.000 | 7.6   | 0.07 | 0.00 | 0.004 | 0.000 |
|            | 1-10           | 10     | 0.00 | 1.5  | 0.01 | 0.03 | 15.8 | 0   | 0.002  | 0.000 | 0.000 | 9.4   | 0.05 | 0.00 | 0.006 | 0.000 |
|            | 1-11           | 11     | 0.01 | 1.6  | 0.01 | 0.05 | 24.3 | 0   | 0.005  | 0.000 | 0.000 | 5.4   | 0.06 | 0.00 | 0.004 | 0.000 |
|            | 1-12           | 12     | 0.01 | 1.6  | 0.01 | 0.02 | 6.6  | 0   | 0.000  | 0.000 | 0.000 | 24.2  | 0.11 | 0.00 | 0.013 | 0.000 |
|            | 1-13           | 13     | 0.01 | 0.7  | 0.01 | 0.02 | 6.0  | 0.0 | 0.000  | 0.000 | 0.000 | 15.9  | 0.07 | 0.00 | 0.007 | 0.000 |
|            | TT 1           |        | 0.00 | 21.4 | 0.02 | 0.20 | 160  | 0   | 0.016  | 0.001 | 0.000 | 6.0   | 0.40 | 0.20 | 0.027 | 0.010 |
|            | 11-1           | 1      | 0.09 | 24.4 | 0.02 | 0.20 | 16.9 | 0   | 0.016  | 0.001 | 0.000 | 6.0   | 0.48 | 0.20 | 0.037 | 0.010 |
|            | II-2<br>II 2   | 2      | 0.07 | 16.5 | 0.01 | 0.11 | /.1  | 0   | 0.001  | 0.001 | 0.000 | 0.4   | 0.28 | 0.09 | 0.037 | 0.012 |
|            | II-3<br>II 4   | 3      | 0.06 | nm   | 0.01 | 0.07 | nm   | 0   | 0.010  | 0.001 | 0.000 | 0.1   | 0.30 | 0.00 | 0.048 | 0.010 |
|            | 11-4           | 4      | 0.07 | 11.0 | 0.01 | 0.05 | 2.5  | 0   | 0.007  | 0.002 | 0.000 | 2.0   | 0.29 | 0.00 | 0.049 | 0.010 |
|            | II-5           | 3      | 0.03 | 10.4 | 0.01 | 0.04 | 2.3  | 0   | 0.002  | 0.001 | 0.000 | 12.2  | 0.27 | 0.00 | 0.037 | 0.009 |
|            | 11-6           | 7      | 0.03 | 10.4 | 0.00 | 0.02 | 1.8  | 0   | 0.007  | 0.000 | 0.000 | 4.2   | 0.11 | 0.00 | 0.037 | 0.000 |
|            | П-/<br>П 9     | /<br>0 | 0.02 | 9.5  | 0.01 | 0.02 | 1.7  | 0   | 0.002  | 0.000 | 0.000 | 2.2   | 0.11 | 0.00 | 0.033 | 0.000 |
| SAMPLE-II  | 11-8           | 0      | 0.02 | 0.2  | 0.00 | 0.01 | 1.0  | 0   | 0.005  | 0.000 | 0.000 | 2.0   | 0.11 | 0.00 | 0.032 | 0.000 |
|            | П-9            | 10     | 0.02 | 9.2  | 0.00 | 0.01 | 0.0  | 0   | 0.007  | 0.000 | 0.000 | 2.9   | 0.10 | 0.00 | 0.031 | 0.000 |
|            | П-10           | 10     | 0.01 | 0.1  | 0.00 | 0.01 | 0.9  | 0   | 0.001  | 0.000 | 0.000 | 2.8   | 0.09 | 0.00 | 0.020 | 0.000 |
|            | II-11<br>II-12 | 12     | 0.02 | 3.0  | 0.00 | 0.01 | 0.9  | 0   | 0.007  | 0.000 | 0.000 | 6.9   | 0.10 | 0.00 | 0.029 | 0.000 |
|            | П-12           | 13     | 0.02 | 3.8  | 0.00 | 0.01 | 0.0  | 0   | 0.003  | 0.000 | 0.000 | 3.0   | 0.12 | 0.00 | 0.027 | 0.000 |
|            | П-14           | 14     | 0.02 | 7.8  | 0.00 | 0.01 | 0.0  | 0   | 0.000  | 0.000 | 0.000 | 2.9   | 0.12 | 0.00 | 0.112 | 0.000 |
|            | II-15          | 15     | 0.02 | 7.4  | 0.00 | 0.01 | 0.0  | 0   | 0.001  | 0.000 | 0.000 | 102.4 | 0.12 | 0.00 | 0.022 | 0.000 |
|            | П-16           | 16     | 0.01 | 6.3  | 0.00 | 0.00 | 0.0  | 0   | 0.003  | 0.000 | 0.000 | 92.4  | 0.09 | 0.00 | 0.021 | 0.000 |
|            |                |        |      |      | 0.00 | 0.00 |      |     | 010.00 | 01000 |       |       | ,    |      | 010-2 |       |
|            | III-1          | 1      | 0.28 | 28.8 | 0.00 | 0.98 | 31.8 | 0   | 0.011  | 0.006 | 0.016 | 7.9   | 0.63 | 0.43 | 0.018 | 0.011 |
|            | III-2          | 2      | 0.18 | 18.9 | 0.00 | 0.51 | 24.4 | 0   | 0.003  | 0.007 | 0.009 | 8.1   | 0.45 | 0.31 | 0.027 | 0.014 |
|            | Ш-3            | 3      | 0.19 | nm   | 0.00 | 0.27 | nm   | 0   | 0.006  | 0.007 | 0.000 | 1.8   | 0.38 | 0.00 | 0.033 | 0.006 |
|            | III-4          | 4      | 0.18 | nm   | 0.00 | 0.17 | nm   | 0   | 0.002  | 0.009 | 0.000 | 0.8   | 0.39 | 0.00 | 0.032 | 0.000 |
|            | III-5          | 5      | 0.12 | 12.6 | 0.00 | 0.09 | 12.4 | 0   | 0.013  | 0.008 | 0.000 | 13.6  | 0.26 | 0.00 | 0.028 | 0.000 |
|            | III-6          | 6      | 0.09 | 13.7 | 0.00 | 0.05 | 14.5 | 0   | 0.008  | 0.005 | 0.000 | 4.7   | 0.63 | 0.00 | 0.027 | 0.000 |
|            | III-7          | 7      | 0.08 | 11.5 | 0.00 | 0.04 | 14.9 | 0   | 0.004  | 0.004 | 0.000 | 3.3   | 0.63 | 0.00 | 0.025 | 0.000 |
|            | III-8          | 8      | 0.07 | 10.9 | 0.00 | 0.03 | 10.0 | 0   | 0.003  | 0.004 | 0.000 | 3.2   | 0.82 | 0.00 | 0.025 | 0.000 |
| SAMPLE-III | III-9          | 9      | 0.06 | 11.0 | 0.00 | 0.03 | 1.0  | 0   | 0.004  | 0.004 | 0.000 | 3.6   | 0.47 | 0.00 | 0.026 | 0.000 |
|            | III-10         | 10     | 0.05 | 8.7  | 0.00 | 0.02 | 5.4  | 0   | 0.003  | 0.003 | 0.000 | 2.9   | 0.91 | 0.00 | 0.022 | 0.000 |
|            | III-11         | 11     | 0.05 | 10.0 | 0.00 | 0.03 | 6.0  | 0   | 0.003  | 0.004 | 0.000 | 4.5   | 0.45 | 0.00 | 0.025 | 0.000 |
|            | III-12         | 12     | 0.06 | 3.9  | 0.00 | 0.02 | 2.3  | 0   | 0.018  | 0.004 | 0.000 | 6.3   | 0.16 | 0.00 | 0.023 | 0.000 |
|            | III-13         | 13     | 0.05 | 3.7  | 0.00 | 0.02 | 2.1  | 0   | 0.000  | 0.004 | 0.000 | 3.3   | 0.15 | 0.00 | 0.023 | 0.000 |
|            | III-14         | 14     | 0.04 | 7.3  | 0.00 | 0.02 | 3.8  | 0   | 0.000  | 0.003 | 0.000 | 2.2   | 0.13 | 0.00 | 0.072 | 0.000 |
|            | III-15         | 15     | 0.05 | 6.8  | 0.00 | 0.02 | 3.4  | 0   | 0.004  | 0.003 | 0.000 | 88.9  | 0.14 | 0.00 | 0.017 | 0.000 |
|            | III-16         | 16     | 0.05 | 8.0  | 0.00 | 0.02 | 3.8  | 0   | 0.002  | 0.003 | 0.000 | 98.9  | 0.14 | 0.00 | 0.017 | 0.000 |

# APPENDIX-E Example Thermodynamic Model Run Output

Initial solution 1. WSEEPAGE-1 KIN ORT

|                | Solution cc             | omposition       |
|----------------|-------------------------|------------------|
| Elements       | Molality                | Moles            |
| Al             | 2.348e-03 2.3           | 348e-03          |
| Alkalini       | tv 1.380e+00 1.3        | 380e+00          |
| As             | 1.348e-03 1.3           | 348e-03          |
| Ва             | 2.452e-04 2.4           | 452e-04          |
| Ca             | 2.212e-01 2.2           | 212e-01          |
| Cl             | 2.361e-04 2.3           | 361e-04          |
| Cr             | 1.600e-07 1.6           | 600e-07          |
| Cu             | 1.561e-05 1.5           | 561e-05          |
| Fe             | 2.105e-03 2.1           | 105e-03          |
| K              | 1.467e-01 1.4           | 467e-01          |
| Li             | 2.021e-02 2.0           | 021e-02          |
| Mg             | 9.018e-01 9.0           | 018e-01          |
| Mn             | 5.262e-06 5.2           | 262e-06          |
| Мо             | 7.548e-04 7.5           | 548e-04          |
| Na             | 9.082e-01 9.0           | 082e-01          |
| Pb             | 4.839e-05 4.8           | 839e-05          |
| S(6)           | 6.135e-01 6.1           | 135e-01          |
| Sb             | 6.204e-05 6.2           | 204e-05          |
| Si             | 2.700e-01 2.7           | 700e-01          |
| Sr             | 1.375e-02 1.3           | 375e-02          |
| V              | 1.041e-03 1.0           | 041e-03          |
|                | Description             | of solution      |
|                | q                       | pH = 4.481       |
|                | -<br>q                  | pe = 4.000       |
|                | Activity of wate        | er = 0.430       |
|                | Ionic strength (mol/kgw | w) = 1.457e+00   |
|                | Mass of water (kg       | g) = 1.000e+00   |
|                | Total carbon (mol/kg    | g) = 3.171e+01   |
|                | Total CO2 (mol/kg       | g) = 3.171e+01   |
|                | Temperature (°C         | C) = 25.00       |
|                | Electrical balance (eq  | q) = 7.518e-01   |
| Percent error, | 100*(Cat- An )/(Cat+ An | ) = 29.43        |
|                | Iteration               | ns = 68          |
|                | Total                   | H = 1.741380e+02 |
|                | Total                   | O = 1.541820e+02 |

# **Table E-1.** Thermodynamic model run of Leachate 3 and Case II Output

|     | Species          | Molality               | Activity               | Log<br>Molality  | Log<br>Activity  | Log<br>Gamma     | mole V<br>cm³/mol |
|-----|------------------|------------------------|------------------------|------------------|------------------|------------------|-------------------|
|     | Н+<br>ОН-        | 3.756e-05<br>2.377e-10 | 3.301e-05<br>1.313e-10 | -4.425<br>-9.624 | -4.481<br>-9.882 | -0.056<br>-0.258 | 0.00              |
| A1  | Н2О              | 5.551e+01<br>2.348e-03 | 4.304e-01              | 1.744            | -0.366           | 0.000            | 18.07             |
|     | AlSO4+           | 1.799e-03              | 1.081e-03              | -2.745           | -2.966           | -0.221           | (0)               |
|     | Al+3             | 1.623e-05              | 5.082e-06              | -4.790           | -5.294           | -0.504           | (0)               |
|     | AlOH+2           | 4.056e-06              | 6.671e-07              | -5.392           | -6.176           | -0.784           | (0)               |
|     | AL (OH) 2+       | 1.092e-07              | 6.956e-08              | -6.962           | -7.158           | -0.196           | (0)               |
|     | A1(OH) 3         | 1.822e-10              | 1.822e-10              | -9.739           | -9.739           | 0.000            | (0)               |
|     | Al(OH)4-         | 5.009e-12              | 3.011e-12              | -11.300          | -11.521          | -0.221           | (0)               |
| As  | (3)<br>H3AsO3    | 2.480e-04<br>2.480e-04 | 2 4800-04              | -3 606           | -3 606           | 0 000            | (0)               |
|     | H4AsO3+          | 1.674e-08              | 4.056e-09              | -7.776           | -8.392           | -0.616           | (0)               |
|     | H2AsO3-          | 1.590e-08              | 3.852e-09              | -7.799           | -8.414           | -0.616           | (0)               |
|     | HAsO3-2          | 3.086e-14              | 1.064e-16              | -13.511          | -15.973          | -2.462           | (0)               |
| As  | (5)              | 4.515e-20<br>1.100e-03 | 1.2430-23              | -19.303          | -24.900          | -5.540           | (0)               |
|     | H2AsO4-          | 8.908e-04              | 2.159e-04              | -3.050           | -3.666           | -0.616           | (0)               |
|     | HAsO4-2          | 2.079e-04              | 7.169e-07              | -3.682           | -6.145           | -2.462           | (0)               |
|     | H3AsO4           | 8.855e-07              | 1.238e-06              | -6.053           | -5.907           | 0.146            | (0)               |
| Ва  | 11504 5          | 2.452e-04              | 0.0070 14              | 1.023            | 13.105           | 5.540            | (0)               |
|     | BaHCO3+          | 1.912e-04              | 1.257e-04              | -3.718           | -3.901           | -0.182           | (0)               |
|     | Ba+2             | 5.398e-05              | 3.222e-05              | -4.268           | -4.492           | -0.224           | (0)               |
|     | BaOH+            | 2.970e-14              | 1.846e-14              | -13.527          | -13.734          | -0.206           | (0)               |
| С ( | 4)               | 3.171e+01              |                        |                  |                  |                  | ( • )             |
|     | H2CO3            | 3.033e+01              | 3.033e+01              | 1.482            | 1.482            | 0.000            | (0)               |
|     | HCO3-<br>MaHCO3+ | 6.414e-01<br>4.693e-01 | 4.085e-01<br>2.713e-01 | -0.193           | -0.389           | -0.196           | (0)               |
|     | CaHCO3+          | 1.311e-01              | 8.618e-02              | -0.882           | -1.065           | -0.182           | (0)               |
|     | NaHCO3           | 1.305e-01              | 1.305e-01              | -0.884           | -0.884           | 0.000            | (0)               |
|     | SrHCO3+          | 8.044e-03              | 5.288e-03              | -2.095           | -2.277           | -0.182           | (0)               |
|     | FeHCO3+          | 5.407e-05              | 3.555e-05              | -4.267           | -4.449           | -0.182           | (0)               |
|     | PbHCO3+          | 3.167e-05              | 7.675e-06              | -4.499           | -5.115           | -0.616           | (0)               |
|     | MgCO3            | 3.131e-05              | 3.131e-05              | -4.504           | -4.504           | 0.000            | (0)               |
|     | CuHCO3+<br>CaCO3 | 1.389e-05              | 3.36/e-06<br>1.042e-05 | -4.857           | -5.473           | -0.616           | (0)               |
|     | NaCO3-           | 9.636e-06              | 6.136e-06              | -5.016           | -5.212           | -0.196           | (0)               |
|     | CO3-2            | 9.717e-07              | 5.801e-07              | -6.012           | -6.237           | -0.224           | (0)               |
|     | CuCO3<br>SrCO3   | 4.462e-07<br>2.989e-07 | 4.462e-07<br>2 989e-07 | -6.350           | -6.350<br>-6.524 | 0.000            | (0)               |
|     | MnHCO3+          | 2.240e-07              | 1.392e-07              | -6.650           | -6.856           | -0.206           | (0)               |
|     | Cu(CO3)2-2       | 2.020e-07              | 6.966e-10              | -6.695           | -9.157           | -2.462           | (0)               |
|     | PbCO3            | 4.410e-08              | 4.410e-08              | -7.356           | -7.356           | 0.000            | (0)               |
|     | BaCO3            | 2.139e-08<br>9.586e-09 | 9.586e-09              | -8.018           | -10.132          | -2.462           | (0)               |
| Ca  |                  | 2.212e-01              |                        |                  |                  |                  |                   |
|     | CaHCO3+          | 1.311e-01              | 8.618e-02              | -0.882           | -1.065           | -0.182           | (0)               |
|     | CaSO4<br>Ca+2    | 1.898e-02              | 1.133e-02              | -1.148<br>-1.722 | -1.148           | -0.224           | (0)               |
|     | CaCO3            | 1.042e-05              | 1.042e-05              | -4.982           | -4.982           | 0.000            | (0)               |
|     | CaOH+            | 4.514e-11              | 2.967e-11              | -10.345          | -10.528          | -0.182           | (0)               |
| CT  | C1-              | 2.361e-04              | 2 0750-04              | -3 627           | -3 603           | -0.056           | (0)               |
|     | VOC1+            | 4.743e-09              | 1.149e-09              | -8.324           | -8.940           | -0.616           | (0)               |
|     | CuCl             | 1.671e-09              | 1.671e-09              | -8.777           | -8.777           | 0.000            | (0)               |
|     | PbCl+            | 7.683e-10              | 1.862e-10              | -9.114           | -9.730           | -0.616           | (0)               |
|     | CuCl+            | 7.432e-11              | 4.296e-11              | -9.902           | -10.140          | -0.238           | (0)               |
|     | MnCl+            | 7.178e-12              | 4.463e-12              | -11.144          | -11.350          | -0.206           | (0)               |

-----Distribution of species-----

| PbC12                 | 1.72              | 6e-13           | 1.726e-13              | -12.763 | -12.763 | 0.000  | (0)   |
|-----------------------|-------------------|-----------------|------------------------|---------|---------|--------|-------|
| CrCl+2                | 3.57              | 9e-14           | 1.234e-16              | -13.446 | -15.909 | -2.462 | (0)   |
| CuCl3-2               | 2.15              | 1e-14           | 3.214e-15              | -13.667 | -14.493 | -0.826 | (0)   |
| CuCl2                 | 3.09              | 1e-15           | 3.091e-15              | -14.510 | -14.510 | 0.000  | (0)   |
| MnCl2                 | 1.30              | 8e-15           | 1.308e-15              | -14.883 | -14.883 | 0.000  | (0)   |
| FeC1+2                | 2.69              | 3e-16           | 4.024e-17              | -15.570 | -16.395 | -0.826 | (0)   |
| PbC13-                | 5.88              | 2e-1/<br>1- 10  | 1.425e-1/              | -16.230 | -16.846 | -0.616 | (0)   |
| PDC14-2               | 3.92              | 1e-19<br>2- 10  | 1.352e-21              | -18.407 | -20.869 | -2.462 | (0)   |
| MACI3-                | 1.20              | 20-20           | 7.475e=20<br>3.729o=20 | -18.920 | -19.120 | -0.206 | (0)   |
| CuCl3-                | 1 03              | 5e-20           | 5 985e-21              | -19.222 | -20 223 | -0.238 | (0)   |
| CrCl2+                | 1 00              | 30-20           | 2 430e-21              | -19 999 | -20 614 | -0.616 | (0)   |
| CrOHC12               | 6.38              | 9e-23           | 6.389e-23              | -22.195 | -22.195 | 0.000  | (0)   |
| FeC13                 | 7.73              | 8e-25           | 7.738e-25              | -24.111 | -24.111 | 0.000  | (0)   |
| CuCl4-2               | 4.16              | 6e-26           | 6.224e-27              | -25.380 | -26.206 | -0.826 | (0)   |
| CrO3Cl-               | 0.00              | 0e+00           | 0.000e+00              | -47.252 | -47.867 | -0.616 | (0)   |
| Cr(2)                 | 3.184e-21         |                 |                        |         |         |        |       |
| Cr+2                  | 3.18              | 4e-21           | 1.098e-23              | -20.497 | -22.959 | -2.462 | (0)   |
| Cr(3)                 | 1.600e-07         |                 |                        |         |         |        |       |
| Cr+3                  | 1.59              | 5e-07           | 4.596e-13              | -6.797  | -12.338 | -5.540 | (0)   |
| Cr(OH)+2              | 3.82              | 8e-10           | 1.320e-12              | -9.417  | -11.879 | -2.462 | (0)   |
| CrSO4+                | 1.21              | 4e-10           | 2.942e-11              | -9.916  | -10.531 | -0.616 | (0)   |
| CrOHSO4               | 8.58              | 6e-12           | 8.586e-12              | -11.066 | -11.066 | 0.000  | (0)   |
| Cr(OH)2+              | 8.69              | 9e-14           | 2.108e-14              | -13.061 | -13.676 | -0.616 | (0)   |
| CrC1+2                | 3.57              | 9e-14           | 1.234e-16              | -13.446 | -15.909 | -2.462 | (0)   |
| Cr (OH) 3             | 1.04              | Ue-18<br>1. 10  | 1.040e-18              | -17.983 | -17.983 | 0.000  | (0)   |
| Cr2 (OH) 2SC          | 1 00              | 1e-19<br>2e 20  | 1.024e-21              | -18.52/ | -20.990 | -2.462 | (0)   |
| Cr2(OH)2(S            | 04)2 1 6          | 5e-20<br>686-21 | 1 6680-21              | -19.999 | -20.014 | -0.010 | (0)   |
| CI2(OR)2(3<br>CrO2-   | 1 /2              | 40-22<br>40-22  | 3 4740-23              | -20.770 | -20.770 | -0 616 | (0)   |
| CrOHC12               | 6 38              | 9e-23           | 6 389e-23              | -21.044 | -22.439 | 0 000  | (0)   |
| Cr (OH) 4-            | 2.24              | 2e-23           | 5.433e-24              | -22.649 | -23.265 | -0.616 | (0)   |
| Cr(6)                 | 0.000e+00         |                 |                        |         |         |        | ( • ) |
| HCrO4-                | 0.00              | 0e+00           | 0.000e+00              | -40.252 | -40.868 | -0.616 | (0)   |
| Cr03S04-2             | 0.00              | 0e+00           | 0.000e+00              | -41.599 | -44.061 | -2.462 | (0)   |
| NaCrO4-               | 0.00              | 0e+00           | 0.000e+00              | -41.830 | -42.446 | -0.616 | (0)   |
| Cr04-2                | 0.00              | 0e+00           | 0.000e+00              | -42.673 | -42.897 | -0.224 | (0)   |
| KCrO4-                | 0.00              | 0e+00           | 0.000e+00              | -42.704 | -43.319 | -0.616 | (0)   |
| H2CrO4                | 0.00              | 0e+00           | 0.000e+00              | -45.440 | -45.440 | 0.000  | (0)   |
| CrO3Cl-               | 0.00              | 0e+00           | 0.000e+00              | -47.252 | -47.867 | -0.616 | (0)   |
| Cr207-2               | 0.00              | 0e+00           | 0.000e+00              | -77.367 | -79.830 | -2.462 | (0)   |
| Cu(1)                 | 2.820e-08         |                 |                        |         |         |        |       |
| Cu+                   | 2.64              | 0e-08           | 6.398e-09              | -7.578  | -8.194  | -0.616 | (0)   |
| CuCI                  | 1.6/              | 1e-09           | 1.6/1e-09              | -8.///  | -8.///  | 0.000  | (0)   |
| CuCl2-                | 1.23              | 4e-10<br>10-14  | 7.246e-11<br>3.214o-15 | -9.902  | -10.140 | -0.238 | (0)   |
| $CuCIJ^{-2}$          | 1 5580-05         | 16-14           | 5.2140-15              | -13.007 | -14.495 | -0.020 | (0)   |
| C11HCO3+              | 1 38              | 9e-05           | 3 3670-06              | -4 857  | -5 473  | -0 616 | (0)   |
| CuSO4                 | 8.20              | 4e-07           | 8.204e-07              | -6.086  | -6.086  | 0.000  | (0)   |
| CuCO3                 | 4.46              | 2e-07           | 4.462e-07              | -6.350  | -6.350  | 0.000  | (0)   |
| Cu+2                  | 2.18              | 8e-07           | 1.306e-07              | -6.660  | -6.884  | -0.224 | (0)   |
| Cu (CO3) 2-2          | 2.02              | 0e-07           | 6.966e-10              | -6.695  | -9.157  | -2.462 | (0)   |
| CuOH+                 | 9.38              | 2e-11           | 5.423e-11              | -10.028 | -10.266 | -0.238 | (0)   |
| CuCl+                 | 7.43              | 2e-11           | 4.296e-11              | -10.129 | -10.367 | -0.238 | (0)   |
| Cu2 (OH) 2+2          | 2.14              | 2e-14           | 7.387e-17              | -13.669 | -16.132 | -2.462 | (0)   |
| CuCl2                 | 3.09              | 1e-15           | 3.091e-15              | -14.510 | -14.510 | 0.000  | (0)   |
| Cu (OH) 2             | 1.42              | 0e-15           | 1.420e-15              | -14.848 | -14.848 | 0.000  | (0)   |
| CuCl3-                | 1.03              | 5e-20           | 5.985e-21              | -19.985 | -20.223 | -0.238 | (0)   |
| Cu (OH) 3-            | 1.57              | ŏe−2⊥           | 3.824e-22              | -20.802 | -21.417 | -0.616 | (U)   |
| CuC14-2               | 4.16              | 6e-26           | 6.224e-27              | -25.380 | -26.206 | -0.826 | (0)   |
| Cu (OH) 4-2<br>Fe (2) | 1.14<br>2 1050-03 | 08-20           | 2.2016-31              | -21.941 | -30.403 | -2.402 | (0)   |
| FC(2)                 | 2.1026-03         | 50-03           | 6 9120-06              | -2 600  | -5 160  | -2 462 | (0)   |
| FETZ<br>Fehco3+       | 2.00<br>5 40      | Je-03<br>7e-05  | 3.5550-05              | -2.090  | -4 449  | -0.182 | (0)   |
| FeSO4                 | 4.65              | 1e-05           | 4.651e-05              | -4.332  | -4.332  | 0.000  | (0)   |
| FeOH+                 | 5.81              | 0e-11           | 3.612e-11              | -10.236 | -10.442 | -0.206 | (0)   |
| Fe (OH) 2             | 3.76              | 6e-18           | 3.766e-18              | -17.424 | -17.424 | 0.000  | (0)   |
| Fe (OH) 3-            | 2.51              | 5e-22           | 1.563e-22              | -21.599 | -21.806 | -0.206 | (0)   |
| Fe(3)                 | 5.540e-11         |                 |                        |         |         |        |       |
|                       |                   |                 |                        |         |         |        |       |

|       |                    | 1 2 6 4 - 11 | 0 770 11   | 10 200      | 10 550  | 0 100   | (0) |
|-------|--------------------|--------------|------------|-------------|---------|---------|-----|
|       | Fe(OH)2+           | 4.364e-11    | 2.//9e-11  | -10.360     | -10.556 | -0.196  | (0) |
|       | Fe(SO4)2-          | 4.777e-12    | 1.158e-12  | -11.321     | -11.936 | -0.616  | (0) |
|       | FeOH+2             | 3.643e-12    | 5.442e-13  | -11.439     | -12.264 | -0.826  | (0) |
|       | FeSO4+             | 3.177e-12    | 1.975e-12  | -11.498     | -11.704 | -0.206  | (0) |
|       | Fe2 (OH) 2+4       | 6 9386-14    | 9 8070-24  | -13 159     | -23 008 | -9.850  | (0) |
|       | Eel2               | 2 0500 14    | 6 4210 15  | 12 600      | 14 102  | 0 504   | (0) |
|       | rets<br>Tr (out) 2 | 2.030e=14    | 0.4210-15  | -13.000     | -14.192 | -0.304  | (0) |
|       | Fe (OH) 3          | 3.918e-15    | 3.918e-15  | -14.40/     | -14.40/ | 0.000   | (0) |
|       | FeCl+2             | 2.693e-16    | 4.024e-17  | -15.570     | -16.395 | -0.826  | (0) |
|       | Fe3(OH)4+5         | 9.675e-18    | 3.940e-33  | -17.014     | -32.405 | -15.390 | (0) |
|       | Fe (OH) 4-         | 7 520e-20    | 4 789e-20  | -19 124     | -19 320 | -0 196  | (0) |
|       | FeC12+             | 5 9980-20    | 3 7290-20  | -19 222     | -19 /28 | -0.206  | (0) |
|       | Feci2              | 5.5500 20    | 5.7250 20  | 10.222      | 10.420  | 0.200   | (0) |
|       | FeC13              | 7.738e-25    | 7.738e-25  | -24.111     | -24.111 | 0.000   | (0) |
| Η((   | ))                 | 1.103e-20    |            |             |         |         |     |
|       | Н2                 | 5.517e-21    | 7.716e-21  | -20.258     | -20.113 | 0.146   | (0) |
| ĸ     |                    | 1.467e-01    |            |             |         |         |     |
|       | K+                 | 1 1570-01    | 1 017 = 01 | -0 937      | -0 993  | -0.056  | (0) |
|       | KGO4               | 2 000- 02    | 1.07/- 01  | 1 500       | 1 705   | 0.000   | (0) |
|       | KSO4-              | 3.099e-02    | 1.9/4e-02  | -1.509      | -1.705  | -0.196  | (0) |
|       | KCrO4-             | 0.000e+00    | 0.000e+00  | -42.704     | -43.319 | -0.616  | (0) |
| Li    |                    | 2.021e-02    |            |             |         |         |     |
|       | Li+                | 1.728e-02    | 1.519e-02  | -1.762      | -1.818  | -0.056  | (0) |
|       | T + 201-           | 2 0240-03    | 1 0100-03  | -2 534      | -2 740  | -0.206  | (0) |
| 16.00 | HIDO4              | 2.5240 05    | 1.0106 00  | 2.554       | 2.740   | 0.200   | (0) |
| мg    |                    | 9.0186-01    |            |             |         |         |     |
|       | MgHCO3+            | 4.693e-01    | 2.713e-01  | -0.329      | -0.567  | -0.238  | (0) |
|       | MqSO4              | 3.237e-01    | 3.237e-01  | -0.490      | -0.490  | 0.000   | (0) |
|       | Ma+2               | 1.087e-01    | 6.490e-02  | -0.964      | -1.188  | -0.224  | (0) |
|       | Maco3              | 3 1310-05    | 3 1310-05  | -4 504      | -4 504  | 0 000   | (0) |
|       | MgCOD              | 5.1510 05    | 3.1310 03  | 4.504       | 4.504   | 0.000   | (0) |
|       | MgOH+              | 5.041e-09    | 3.391e-09  | -8.298      | -8.4/0  | -0.1/2  | (0) |
| Mn    | (2)                | 5.262e-06    |            |             |         |         |     |
|       | Mn+2               | 4.955e-06    | 1.708e-08  | -5.305      | -7.767  | -2.462  | (0) |
|       | MnHCO3+            | 2.240e-07    | 1.392e-07  | -6.650      | -6.856  | -0.206  | (0) |
|       | MnSO/              | 8 3290-08    | 8 3290-08  | -7 079      | -7 079  | 0 000   | (0) |
|       | Migli              | 7 170- 10    | 0.5250 00  | 11 1 4 4    | 11 250  | 0.000   | (0) |
|       | MnC1+              | /.1/8e-12    | 4.463e-12  | -11.144     | -11.350 | -0.206  | (0) |
|       | MnOH+              | 9.061e-15    | 5.633e-15  | -14.043     | -14.249 | -0.206  | (0) |
|       | MnCl2              | 1.308e-15    | 1.308e-15  | -14.883     | -14.883 | 0.000   | (0) |
|       | MnCl3-             | 1.202e-19    | 7.475e-20  | -18,920     | -19,126 | -0.206  | (0) |
|       | Mp (OII) 2         | 0 6400 21    | 5 0000 21  | 20 015      | 20 222  | 0 206   | (0) |
|       | Mn (OH) 3-         | 9.6496-31    | 5.9996-31  | -30.015     | -30.222 | -0.206  | (0) |
|       | Mn (OH) 4-2        | 1.702e-39    | 2.542e-40  | -38.769     | -39.595 | -0.826  | (0) |
| Mn    | (3)                | 2.437e-29    |            |             |         |         |     |
|       | Mn+3               | 2.437e-29    | 7.632e-30  | -28.613     | -29.117 | -0.504  | (0) |
| Mn    | (6)                | 0 000e+00    |            |             |         |         | (-) |
|       | $M_{PO} = 2$       |              | 0 0000+00  | -71 079     | -75 004 | -0 926  | (0) |
|       | MI04-2             | 0.000000000  | 0.00000000 | -/4.9/0     | -/J.004 | -0.020  | (0) |
| Mn    | (7)                | 0.000e+00    |            |             |         |         |     |
|       | MnO4-              | 0.000e+00    | 0.000e+00  | -80.894     | -81.176 | -0.281  | (0) |
| Мо    |                    | 7.548e-04    |            |             |         |         |     |
|       | Mo7024-6           | 1.076e-04    | 7.410e-27  | -3.968      | -26.130 | -22.162 | (0) |
|       | HMOO/-             | 1 1030-06    | 2 6720-07  | -5 958      | -6 573  | -0 616  | (0) |
|       | MaQ4 Q             | 1.105C 00    | 2.0720 07  | C 1 C7      | C 201   | 0.010   | (0) |
|       | M004-2             | 6.815e-07    | 4.0686-07  | -0.10/      | -0.391  | -0.224  | (0) |
|       | H2MoO4             | 6.462e-08    | 6.462e-08  | -7.190      | -7.190  | 0.000   | (0) |
|       | HMo7024-5          | 1.464e-09    | 5.961e-25  | -8.835      | -24.225 | -15.390 | (0) |
|       | AlMo6021-3         | 1.276e-09    | 3.676e-15  | -8.894      | -14.435 | -5.540  | (0) |
|       | н2мо7024-4         | 8 4320-15    | 1 1920-24  | -14 074     | -23 924 | -9.850  | (0) |
|       | H2M-7024 4         | 0.4526 15    | 1.1J20 24  | 10 (10      | 23.724  | 5.030   | (0) |
|       | H3M0/024-3         | 2.406e-20    | 0.9336-20  | -19.019     | -25.159 | -5.540  | (0) |
| Na    |                    | 9.082e-01    |            |             |         |         |     |
|       | Na+                | 6.463e-01    | 5.681e-01  | -0.190      | -0.246  | -0.056  | (0) |
|       | NaSO4-             | 1.313e-01    | 8.364e-02  | -0.882      | -1.078  | -0.196  | (0) |
|       | NaHCO3             | 1.305e-01    | 1.305e-01  | -0.884      | -0.884  | 0.000   | (0) |
|       | NaCO2              | 0.6360.06    | 6 1260 06  | 5 01 C      | 5 010   | 0 106   | (0) |
|       | Nacus-             | 9.0300-00    | 0.1306-00  | -J.UI0      | -3.212  | -0.190  | (0) |
|       | NaCrO4-            | U.UUUe+00    | u.uuue+00  | -41.830     | -42.446 | -0.616  | (0) |
| 0((   | ))                 | 0.000e+00    |            |             |         |         |     |
|       | 02                 | 0.000e+00    | 0.000e+00  | -52.948     | -52.802 | 0.146   | (0) |
| Pb    |                    | 4.839e-05    |            |             |         |         | . , |
| - ~   | DPACO3+            | 3 167~=05    | 7 6750-06  | _/ /00      | _5 115  | -0 616  | (0) |
|       |                    | J.10/E-UJ    | 1.0/JE-00  | 7.422       | J.IIJ   | 0.010   | (0) |
|       | rb(SO4)2−2         | 1.627e-05    | 5.608e-08  | -4.789      | -7.251  | -2.462  | (0) |
|       | PbSO4              | 3.395e-07    | 3.395e-07  | -6.469      | -6.469  | 0.000   | (0) |
|       | PbCO3              | 4.410e-08    | 4.410e-08  | -7.356      | -7.356  | 0.000   | (0) |
|       | Pb+2               | 4.237e-08    | 2.529e-08  | -7.373      | -7.597  | -0.224  | (0) |
|       | Ph (CO3) 2- 2      | 2 1300-09    | 7 377~-11  | -7 670      | -10 130 | _2 /62  | (0) |
|       | ID(CU3)2=2         | 2.1398-00    | 1 000- 10  | - / . 0 / U | -10.132 | -2.402  | (0) |
|       | FDCT+              | /.683e-10    | 1.802e-10  | -9.114      | -9./30  | -0.616  | (U) |
|       | PbOH+              | 3.441e-11    | 8.339e-12  | -10.463     | -11.079 | -0.616  | (0) |

| Pb2OH+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.160e-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.342e-18                                                                                                                                                                                                                                                                                                                                      | -11.936                                                                                                                                                                                                                                                                                          | -17.476                                                                                                                                                                                                                                                                                            | -5.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PbC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.726e-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.726e-13                                                                                                                                                                                                                                                                                                                                      | -12.763                                                                                                                                                                                                                                                                                          | -12.763                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PbCl3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.882e-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.425e-17                                                                                                                                                                                                                                                                                                                                      | -16.230                                                                                                                                                                                                                                                                                          | -16.846                                                                                                                                                                                                                                                                                            | -0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pb(OH)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.461e-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.461e-17                                                                                                                                                                                                                                                                                                                                      | -16.461                                                                                                                                                                                                                                                                                          | -16.461                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PbCl4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.921e-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.352e-21                                                                                                                                                                                                                                                                                                                                      | -18.407                                                                                                                                                                                                                                                                                          | -20.869                                                                                                                                                                                                                                                                                            | -2.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pb(OH)3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.875e-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.544e-24                                                                                                                                                                                                                                                                                                                                      | -22.727                                                                                                                                                                                                                                                                                          | -23.343                                                                                                                                                                                                                                                                                            | -0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pb4 (OH) 4+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.592e-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.214e-34                                                                                                                                                                                                                                                                                                                                      | -24.066                                                                                                                                                                                                                                                                                          | -33.916                                                                                                                                                                                                                                                                                            | -9.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pb3(OH)4+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.753e-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.046e-31                                                                                                                                                                                                                                                                                                                                      | -27.756                                                                                                                                                                                                                                                                                          | -30.219                                                                                                                                                                                                                                                                                            | -2.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pb (OH) 4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.236e-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.461e-31                                                                                                                                                                                                                                                                                                                                      | -28.373                                                                                                                                                                                                                                                                                          | -30.835                                                                                                                                                                                                                                                                                            | -2.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.135e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 227 01                                                                                                                                                                                                                                                                                                                                       | 0 400                                                                                                                                                                                                                                                                                            | 0 400                                                                                                                                                                                                                                                                                              | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MgSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2120 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.237e-01                                                                                                                                                                                                                                                                                                                                      | -0.490                                                                                                                                                                                                                                                                                           | -0.490                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Na504-<br>CaSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.313e=01<br>7 115e=02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 115e=02                                                                                                                                                                                                                                                                                                                                      | -0.002                                                                                                                                                                                                                                                                                           | -1.1/8                                                                                                                                                                                                                                                                                             | -0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S04-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 592e-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 741e-02                                                                                                                                                                                                                                                                                                                                      | -1 338                                                                                                                                                                                                                                                                                           | -1 562                                                                                                                                                                                                                                                                                             | -0 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KS04-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 099e-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 974e-02                                                                                                                                                                                                                                                                                                                                      | -1 509                                                                                                                                                                                                                                                                                           | -1 705                                                                                                                                                                                                                                                                                             | -0 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SrS04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.366e-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.366e-03                                                                                                                                                                                                                                                                                                                                      | -2.360                                                                                                                                                                                                                                                                                           | -2.360                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LiSO4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.924e-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.818e-03                                                                                                                                                                                                                                                                                                                                      | -2.534                                                                                                                                                                                                                                                                                           | -2.740                                                                                                                                                                                                                                                                                             | -0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AlSO4+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.799e-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.081e-03                                                                                                                                                                                                                                                                                                                                      | -2.745                                                                                                                                                                                                                                                                                           | -2.966                                                                                                                                                                                                                                                                                             | -0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Al(SO4)2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.285e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.176e-04                                                                                                                                                                                                                                                                                                                                      | -3.277                                                                                                                                                                                                                                                                                           | -3.498                                                                                                                                                                                                                                                                                             | -0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HSO4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.471e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.844e-05                                                                                                                                                                                                                                                                                                                                      | -3.832                                                                                                                                                                                                                                                                                           | -4.053                                                                                                                                                                                                                                                                                             | -0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FeSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.651e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.651e-05                                                                                                                                                                                                                                                                                                                                      | -4.332                                                                                                                                                                                                                                                                                           | -4.332                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pb(SO4)2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.627e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.608e-08                                                                                                                                                                                                                                                                                                                                      | -4.789                                                                                                                                                                                                                                                                                           | -7.251                                                                                                                                                                                                                                                                                             | -2.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VOSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.491e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.491e-05                                                                                                                                                                                                                                                                                                                                      | -4.827                                                                                                                                                                                                                                                                                           | -4.827                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CuSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.204e-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.204e-07                                                                                                                                                                                                                                                                                                                                      | -6.086                                                                                                                                                                                                                                                                                           | -6.086                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PbSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.395e-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.395e-07                                                                                                                                                                                                                                                                                                                                      | -6.469                                                                                                                                                                                                                                                                                           | -6.469                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MnSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.329e-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.329e-08                                                                                                                                                                                                                                                                                                                                      | -7.079                                                                                                                                                                                                                                                                                           | -7.079                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V02S04-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.633e-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.380e-11                                                                                                                                                                                                                                                                                                                                      | -9.580                                                                                                                                                                                                                                                                                           | -10.195                                                                                                                                                                                                                                                                                            | -0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CrSO4+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.214e-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.942e-11                                                                                                                                                                                                                                                                                                                                      | -9.916                                                                                                                                                                                                                                                                                           | -10.531                                                                                                                                                                                                                                                                                            | -0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VS04+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3260-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.213e-12                                                                                                                                                                                                                                                                                                                                      | -10.877                                                                                                                                                                                                                                                                                          | -11.493                                                                                                                                                                                                                                                                                            | -0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CrOHSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.3860-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.386e-12                                                                                                                                                                                                                                                                                                                                      | -11.066                                                                                                                                                                                                                                                                                          | -11.066                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fe(304)2=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.///e=12<br>3.177e=12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.130e=12                                                                                                                                                                                                                                                                                                                                      | -11.321                                                                                                                                                                                                                                                                                          | -11.930                                                                                                                                                                                                                                                                                            | -0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cr2(04)290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0/+2 2 971e=19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0240-21                                                                                                                                                                                                                                                                                                                                      | -11.490                                                                                                                                                                                                                                                                                          | -20 990                                                                                                                                                                                                                                                                                            | -0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cr2(OH)230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(-4)^2 = 1 668 - 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 6680-21                                                                                                                                                                                                                                                                                                                                      | -20 778                                                                                                                                                                                                                                                                                          | -20.990                                                                                                                                                                                                                                                                                            | -2.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CrO3SO4 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000-100                                                                                                                                                                                                                                                                                                                                      | 11 500                                                                                                                                                                                                                                                                                           | 20.770                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00000000                                                                                                                                                                                                                                                                                                                                     | -41.599                                                                                                                                                                                                                                                                                          | -44.061                                                                                                                                                                                                                                                                                            | -2.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (())                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sb(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.519e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00000000                                                                                                                                                                                                                                                                                                                                     | -41.599                                                                                                                                                                                                                                                                                          | -44.061                                                                                                                                                                                                                                                                                            | -2.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sb (3)<br>HSb02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.519e-05<br>1.741e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.741e-05                                                                                                                                                                                                                                                                                                                                      | -41.599                                                                                                                                                                                                                                                                                          | -44.061                                                                                                                                                                                                                                                                                            | -2.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sb (3)<br>HSbO2<br>Sb (0H) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.519e-05<br>1.741e-05<br>7.675e-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.741e-05<br>7.675e-06                                                                                                                                                                                                                                                                                                                         | -41.599<br>-4.759<br>-5.115                                                                                                                                                                                                                                                                      | -44.061<br>-4.759<br>-5.115                                                                                                                                                                                                                                                                        | -2.462<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sb (3)<br>HSbO2<br>Sb (OH) 3<br>Sb (OH) 2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.741e-05<br>7.675e-06<br>1.430e-08                                                                                                                                                                                                                                                                                                            | -41.599<br>-4.759<br>-5.115<br>-7.229                                                                                                                                                                                                                                                            | -44.061<br>-4.759<br>-5.115<br>-7.845                                                                                                                                                                                                                                                              | -2.462<br>0.000<br>0.000<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08                                                                                                                                                                                                                                                                                               | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326                                                                                                                                                                                                                                                  | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941                                                                                                                                                                                                                                                    | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sb (3)<br>HSb02<br>Sb (0H) 3<br>Sb (0H) 2+<br>Sb0+<br>Sb02-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13                                                                                                                                                                                                                                                                                  | -41.399<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453                                                                                                                                                                                                                                       | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069                                                                                                                                                                                                                                         | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO+<br>SbO2-<br>Sb (0H) 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14                                                                                                                                                                                                                                                                     | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427                                                                                                                                                                                                                            | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043                                                                                                                                                                                                                              | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sb (3)<br>HSb02<br>Sb (0H) 3<br>Sb (0H) 2+<br>Sb0+<br>Sb02-<br>Sb (0H) 4-<br>Sb (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14                                                                                                                                                                                                                                                                     | -41.599<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427                                                                                                                                                                                                                                      | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043                                                                                                                                                                                                                              | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sb (3)<br>HSb02<br>Sb (0H) 3<br>Sb (0H) 2+<br>Sb0+<br>Sb02-<br>Sb (0H) 4-<br>Sb (5)<br>Sb03-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06                                                                                                                                                                                                                                                        | -41.599<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434                                                                                                                                                                                                                            | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049                                                                                                                                                                                                                    | -2.462<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sb (3)<br>HSb02<br>Sb (0H) 3<br>Sb (0H) 2+<br>Sb0+<br>Sb02-<br>Sb (0H) 4-<br>Sb (5)<br>Sb03-<br>Sb (0H) 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10                                                                                                                                                                                                                                           | -41.599<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023                                                                                                                                                                                                                  | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079                                                                                                                                                                                                          | -2.462<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sb (3)<br>HSb02<br>Sb (0H) 3<br>Sb (0H) 2+<br>Sb0+<br>Sb02-<br>Sb (0H) 4-<br>Sb (5)<br>Sb03-<br>Sb (0H) 6-<br>Sb02+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15                                                                                                                                                                                                                              | -41.599<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572                                                                                                                                                                                                       | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188                                                                                                                                                                                               | -2.462<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sb (3)<br>HSb02<br>Sb (0H) 3<br>Sb (0H) 2+<br>Sb0+<br>Sb02-<br>Sb (0H) 4-<br>Sb (5)<br>Sb03-<br>Sb (0H) 6-<br>Sb02+<br>Si<br>U40204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15                                                                                                                                                                                                                              | -41.599<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572                                                                                                                                                                                                       | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188                                                                                                                                                                                               | -2.462<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sb (3)<br>HSb02<br>Sb (0H) 3<br>Sb (0H) 2+<br>Sb0+<br>Sb02-<br>Sb (0H) 4-<br>Sb (5)<br>Sb03-<br>Sb (0H) 6-<br>Sb02+<br>Si<br>H4Si04<br>H3Si04-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.960e-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.6530-06                                                                                                                                                                                                    | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544                                                                                                                                                                         | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782                                                                                                                                                                           | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO+<br>Sb (0H) 4-<br>Sb (0H) 4-<br>Sb (0H) 4-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15                                                                                                                                                                                       | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716                                                                                                                                                              | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500                                                                                                                                                                | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO+<br>Sb(0H) 4-<br>Sb (0H) 4-<br>Sb (0H) 4-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4<br>H3SiO4-<br>H2SiO4-2<br>Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15                                                                                                                                                                                       | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716                                                                                                                                                              | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500                                                                                                                                                                | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03                                                                                                                                                                          | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095                                                                                                                                                    | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277                                                                                                                                                      | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03                                                                                                                                                             | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360                                                                                                                                          | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360                                                                                                                                            | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO4<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4<br>H3SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4<br>Sr+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04                                                                                                                                                | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874                                                                                                                                | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098                                                                                                                                  | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.784<br>-0.182<br>0.000<br>-0.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4<br>Sr+2<br>SrCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07                                                                                                                                   | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524                                                                                                                      | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524                                                                                                                        | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li> <li>(1)</li></ul> |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO4<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4<br>Sr+2<br>SrCO3<br>SrOH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07<br>1.113e-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13                                                                                                                      | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953                                                                                                           | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160                                                                                                             | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO4<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>Sr+2<br>SrCO3<br>SrOH+<br>V (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07<br>1.113e-12<br>3.527e-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13                                                                                                                      | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953                                                                                                           | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160                                                                                                             | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li></ul> |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrCO3<br>SrCO3<br>SrOH+<br>V (2)<br>V+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07<br>1.113e-12<br>3.527e-19<br>3.527e-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21                                                                                                         | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453                                                                                                | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915                                                                                                  | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.206<br>-2.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrCO3<br>SrCO3<br>SrOH+<br>V (2)<br>V+2<br>VOH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07<br>1.113e-12<br>3.527e-19<br>2.132e-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24                                                                                            | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453<br>-22.671                                                                                     | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287                                                                                       | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.206<br>-2.462<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO4<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrCO3<br>SrO4+<br>V (2)<br>V+2<br>VOH+<br>V (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07<br>1.113e-12<br>3.527e-19<br>3.527e-19<br>2.132e-23<br>4.531e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24                                                                                            | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453<br>-22.671                                                                                     | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287                                                                                       | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.224<br>0.000<br>-0.226<br>-2.462<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li></ul> |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrO4<br>SrO4<br>SrO3-<br>SrO4<br>SrO4<br>V(2)<br>V+2<br>VOH+<br>V(3)<br>V(0H) 3<br>V(0H) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07<br>1.113e-12<br>3.527e-19<br>2.132e-23<br>4.531e-04<br>4.530e-04<br>4.530e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24<br>4.530e-04                                                                               | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453<br>-22.671<br>-3.344                                                                           | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287<br>-3.344                                                                             | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.226<br>-2.462<br>-0.616<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li></ul> |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>Sb (0H) 6-<br>Sb (0H) 6-<br>Sb (0H) 6-<br>Sb (0H) 6-<br>Sb (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6-<br>Sto (0H) 6                                                                                                                                                                                                                                                                                                                                                        | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.700e-01<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07<br>1.113e-12<br>3.527e-19<br>3.527e-19<br>2.132e-23<br>4.531e-04<br>4.618e-08<br>5.57e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3                                                                                                                                                                                                                                                                                                                                                                            | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24<br>4.530e-04<br>2.483e-13                                                                  | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453<br>-22.671<br>-3.344<br>-7.065                                                                 | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287<br>-3.344<br>-12.605                                                                  | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.226<br>-2.462<br>-0.616<br>0.000<br>-5.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li></ul> |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO4<br>Sb (0H) 2+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4<br>Sr+2<br>SrCO3<br>SrOH+<br>V (2)<br>V+2<br>VOH+<br>V (3)<br>V (0H) 3<br>V+3<br>VOH+2<br>VOH+2<br>V(2) 2 +<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO4<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO4<br>SCO3<br>SCO3<br>SCO4<br>SCO3<br>SCO3<br>SCO4<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3<br>SCO3 | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07<br>1.113e-12<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>2.132e-23<br>4.531e-04<br>4.530e-04<br>8.618e-08<br>4.737e-09<br>2.677e-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24<br>4.530e-04<br>2.483e-13<br>1.634e-11                                                     | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-11.953<br>-18.453<br>-22.671<br>-3.344<br>-7.065<br>-8.324<br>-0.22                                                        | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287<br>-3.344<br>-12.605<br>-10.787                                                       | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.226<br>-2.462<br>-0.616<br>0.000<br>-5.540<br>-2.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li></ul> |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>Sb (0H) 4-<br>Sb (5)<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4<br>Sr+2<br>SrCO3<br>SrOH+<br>V (2)<br>V+2<br>VOH+<br>V (3)<br>V (0H) 3<br>V+3<br>VOH+2<br>V (0H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2H) 2+<br>V (2                                                                                                                                                                                                                                               | $\begin{array}{c} 2.519e-05\\ 1.741e-05\\ 7.675e-06\\ 5.899e-08\\ 4.726e-08\\ 3.524e-12\\ 3.741e-13\\ 3.685e-05\\ 3.685e-05\\ 3.685e-05\\ 9.475e-10\\ 2.677e-14\\ 2.700e-01\\ 2.700e-01\\ 2.860e-06\\ 1.921e-14\\ 1.375e-02\\ 8.044e-03\\ 4.366e-03\\ 1.337e-03\\ 2.989e-07\\ 1.113e-12\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24<br>4.530e-04<br>2.483e-13<br>1.634e-11<br>2.245e-11<br>2.245e-11                           | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453<br>-22.671<br>-3.344<br>-7.065<br>-8.324<br>-10.033<br>10.033                                  | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287<br>-3.344<br>-12.605<br>-10.787<br>-10.649<br>-11.602                                 | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.226<br>-2.462<br>-0.616<br>0.000<br>-5.540<br>-2.462<br>-0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li></ul> |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO4<br>Sb(0H) 2+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4<br>Sr+2<br>SrCO3<br>SrOH+<br>V (2)<br>V+2<br>VOH+<br>V (2)<br>V+2<br>VOH+<br>V (3)<br>V (0H) 3<br>V+3<br>VOH+2<br>V (0H) 2+<br>VSO4+<br>H2SiO4-2<br>Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.519e-05<br>1.741e-05<br>7.675e-06<br>5.899e-08<br>4.726e-08<br>3.524e-12<br>3.741e-13<br>3.685e-05<br>3.685e-05<br>9.475e-10<br>2.677e-14<br>2.700e-01<br>2.700e-01<br>2.860e-06<br>1.921e-14<br>1.375e-02<br>8.044e-03<br>4.366e-03<br>1.337e-03<br>2.989e-07<br>1.113e-12<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-19<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10<br>3.527e-10                                                                                                                                                                                                                                                                                                                                                                                | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24<br>4.530e-04<br>2.483e-13<br>1.634e-11<br>2.245e-11<br>3.213e-12                           | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453<br>-22.671<br>-3.344<br>-7.065<br>-8.324<br>-10.033<br>-10.877<br>-2.025                       | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287<br>-3.344<br>-12.605<br>-10.787<br>-10.649<br>-11.493<br>-2.277                       | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.226<br>-2.462<br>-0.616<br>0.000<br>-5.540<br>-2.462<br>-0.616<br>-0.616<br>-0.616<br>-0.000<br>-5.540<br>-2.462<br>-0.616<br>-0.616<br>-0.000<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.206<br>-0.616<br>-0.616<br>-0.206<br>-0.206<br>-0.206<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.6 | $ \begin{array}{c} (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4<br>Sr+2<br>SrCO3<br>SrOH+<br>V (2)<br>V+2<br>VOH+<br>V (2)<br>V (2)<br>V+2<br>VOH+<br>V (3)<br>V (0H) 3<br>V+3<br>VOH+2<br>V (0H) 2+<br>V 2(0H) 2+4<br>V2 (0H) 2+4<br>V2 (0H) 2+4<br>V2 (0H) 2+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 2.519e-05\\ 1.741e-05\\ 7.675e-06\\ 5.899e-08\\ 4.726e-08\\ 3.524e-12\\ 3.741e-13\\ 3.685e-05\\ 3.685e-05\\ 9.475e-10\\ 2.677e-14\\ 2.700e-01\\ 2.860e-06\\ 1.921e-14\\ 1.375e-02\\ 8.044e-03\\ 4.366e-03\\ 1.337e-03\\ 2.989e-07\\ 1.113e-12\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 2.132e-23\\ 4.531e-04\\ 4.530e-04\\ 8.618e-08\\ 4.737e-09\\ 9.266e-11\\ 1.326e-11\\ 1.91e-11\\ 2.604e-12\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24<br>4.530e-04<br>2.483e-13<br>1.634e-11<br>2.245e-11<br>3.213e-12<br>1.684e-21              | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453<br>-22.671<br>-3.344<br>-7.065<br>-8.324<br>-10.033<br>-10.877<br>-0.924<br>-17.42             | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287<br>-3.344<br>-12.605<br>-10.787<br>-10.649<br>-11.493<br>-20.774<br>-2.2074           | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.206<br>-2.462<br>-0.616<br>0.000<br>-5.540<br>-2.462<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.226<br>-2.462<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.556<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.556<br>-0.784<br>-0.600<br>-0.226<br>-0.616<br>-0.616<br>-0.616<br>-0.600<br>-0.266<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650<br>-0.650 | $ \begin{array}{c} (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO4<br>Sb(0H) 2+<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4<br>Sr+2<br>SrCO3<br>SrOH+<br>V (2)<br>V+2<br>VOH+<br>V (3)<br>V (0H) 3<br>V+3<br>VOH+2<br>V (0H) 2+<br>VSO4+<br>V2 (0H) 2+4<br>V2 (0H) 3+3<br>V (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{0.0000+00}\\ \text{2.519e-05}\\ \text{1.741e-05}\\ \text{7.675e-06}\\ \text{5.899e-08}\\ \text{4.726e-08}\\ \text{3.524e-12}\\ \text{3.741e-13}\\ \text{3.685e-05}\\ \text{3.685e-05}\\ \text{3.685e-05}\\ \text{9.475e-10}\\ \text{2.700e-01}\\ \text{2.700e-01}\\ \text{2.700e-01}\\ \text{2.700e-01}\\ \text{2.860e-06}\\ \text{1.921e-14}\\ \text{1.375e-02}\\ \text{8.044e-03}\\ \text{4.366e-03}\\ \text{1.337e-03}\\ \text{2.989e-07}\\ \text{1.113e-12}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ \text{3.527e-19}\\ 3.527e-$ | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24<br>4.530e-04<br>2.483e-13<br>1.634e-11<br>2.245e-11<br>3.213e-12<br>1.684e-21<br>1.038e-23 | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453<br>-22.671<br>-3.344<br>-7.065<br>-8.324<br>-10.033<br>-10.877<br>-10.924<br>-17.443           | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287<br>-3.344<br>-12.605<br>-10.787<br>-10.649<br>-11.493<br>-20.774<br>-22.984           | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.206<br>-2.462<br>-0.616<br>0.000<br>-5.540<br>-2.462<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.540<br>-5.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sb (3)<br>HSbO2<br>Sb (0H) 3<br>Sb (0H) 2+<br>SbO4<br>SbO2-<br>Sb (0H) 4-<br>Sb (5)<br>SbO3-<br>Sb (0H) 6-<br>SbO2+<br>Si<br>H4SiO4-<br>H2SiO4-2<br>Sr<br>SrHCO3+<br>SrSO4<br>Sr204<br>Sr204<br>Sr204<br>V(2)<br>V+2<br>VOH+<br>V (2)<br>V+2<br>VOH+<br>V (0H) 3<br>V+3<br>VOH+2<br>V (0H) 2+<br>VSO4+<br>V2 (0H) 2+4<br>V2 (0H) 3+3<br>V (4)<br>VO+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2.519e-05\\ 1.741e-05\\ 7.675e-06\\ 5.899e-08\\ 4.726e-08\\ 3.524e-12\\ 3.741e-13\\ 3.685e-05\\ 3.685e-05\\ 9.475e-10\\ 2.677e-14\\ 2.700e-01\\ 2.700e-01\\ 2.860e-06\\ 1.921e-14\\ 1.375e-02\\ 8.044e-03\\ 4.366e-03\\ 1.337e-03\\ 2.989e-07\\ 1.113e-12\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 3.527e-19\\ 2.132e-23\\ 4.531e-04\\ 4.530e-04\\ 8.618e-08\\ 4.737e-09\\ 9.266e-11\\ 1.326e-11\\ 1.91e-11\\ 3.604e-18\\ 5.877e-04\\ 5.726-04\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.741e-05<br>7.675e-06<br>1.430e-08<br>1.145e-08<br>8.539e-13<br>9.064e-14<br>8.930e-06<br>8.328e-10<br>6.486e-15<br>3.776e-01<br>1.653e-06<br>3.159e-15<br>5.288e-03<br>4.366e-03<br>7.982e-04<br>2.989e-07<br>6.923e-13<br>1.216e-21<br>5.166e-24<br>4.530e-04<br>2.483e-13<br>1.634e-11<br>2.245e-11<br>3.213e-12<br>1.684e-21<br>1.038e-23 | -41.599<br>-4.759<br>-5.115<br>-7.229<br>-7.326<br>-11.453<br>-12.427<br>-4.434<br>-9.023<br>-13.572<br>-0.569<br>-5.544<br>-13.716<br>-2.095<br>-2.360<br>-2.874<br>-6.524<br>-11.953<br>-18.453<br>-22.671<br>-3.344<br>-7.065<br>-8.324<br>-10.033<br>-10.877<br>-10.924<br>-17.443<br>-3.242 | -44.061<br>-4.759<br>-5.115<br>-7.845<br>-7.941<br>-12.069<br>-13.043<br>-5.049<br>-9.079<br>-14.188<br>-0.423<br>-5.782<br>-14.500<br>-2.277<br>-2.360<br>-3.098<br>-6.524<br>-12.160<br>-20.915<br>-23.287<br>-3.344<br>-12.605<br>-10.787<br>-10.649<br>-11.493<br>-20.774<br>-22.984<br>-5.705 | -2.462<br>0.000<br>0.000<br>-0.616<br>-0.616<br>-0.616<br>-0.616<br>-0.056<br>-0.616<br>0.146<br>-0.238<br>-0.784<br>-0.182<br>0.000<br>-0.224<br>0.000<br>-0.224<br>0.000<br>-0.226<br>-2.462<br>-0.616<br>0.000<br>-5.540<br>-2.462<br>-0.616<br>-0.616<br>-0.616<br>-0.5540<br>-2.462<br>-0.616<br>-0.616<br>-0.5540<br>-2.462<br>-0.616<br>-0.5540<br>-2.462<br>-0.616<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.616<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-2.462<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-0.5540<br>-                                 | $ \begin{array}{c} (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\ (0)\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| VOSO4<br>V (OH) 3+<br>H2V2O4+2 | 1.491e-05<br>9.184e-08<br>3.887e-08 | 1.49<br>2.22<br>1.34 | 1e-05<br>6e-08<br>0e-10 | -4.827<br>-7.037<br>-7.410 | -4.827<br>-7.653<br>-9.873 | 0.000<br>-0.616<br>-2.462 | (0)<br>(0)<br>(0) |
|--------------------------------|-------------------------------------|----------------------|-------------------------|----------------------------|----------------------------|---------------------------|-------------------|
| VOC1+                          | 4.743e-09                           | 1.14                 | 9e-09                   | -8.324                     | -8.940                     | -0.616                    | (0)               |
| V(5) 4.1                       | 121e-09                             | 0 00                 | 0 10                    | 0.465                      | 0 001                      | 0 61 6                    | (0)               |
| H2VO4-                         | 3.426e-09<br>2 741e-10              | 8.30                 | 2e-10<br>1e-10          | -8.465                     | -9.081                     | -0.616                    | (0)               |
| V02S04-                        | 2.633e-10                           | 6.38                 | 0e-11                   | -9.580                     | -10.195                    | -0.616                    | (0)               |
| V02+                           | 1.109e-10                           | 9.74                 | 7e-11                   | -9.955                     | -10.011                    | -0.056                    | (0)               |
| HVO4-2                         | 1.832e-11                           | 6.31                 | 7e-14                   | -10.737                    | -13.200                    | -2.462                    | (0)               |
| H3V207-                        | 1.409e-11                           | 3.41                 | 4e-12                   | -10.851                    | -11.467                    | -0.616                    | (0)               |
| HV207-3                        | 1.433e-14                           | 4.12                 | 9e-20                   | -13.844                    | -19.384                    | -5.540                    | (0)               |
| V309-3                         | 2.609e-15                           | 7.51                 | 7e-21                   | -14.584                    | -20.124                    | -5.540                    | (0)               |
| V207-4                         | 2.381e-16                           | 3.30                 | 6e-26                   | -15.623                    | -25.4/3                    | -9.850                    | (0)               |
| V04-3                          | 4.276e=17<br>3.329e=18              | 9.59                 | 0e-24                   | -17,478                    | -23.018                    | -5.540                    | (0)               |
| V10028-6                       | 5.346e-34                           | 0.00                 | 0e+00                   | -33.272                    | -55.434                    | -22.162                   | (0)               |
| HV10028-5                      | 4.589e-37                           | 0.00                 | 0e+00                   | -36.338                    | -51.728                    | -15.390                   | (0)               |
| H2V10028-4                     | 0.000e+00                           | 0.00                 | 0e+00                   | -41.152                    | -51.002                    | -9.850                    | (0)               |
|                                |                                     |                      |                         |                            |                            |                           |                   |
|                                |                                     | Satur                | ation ir                | ndices                     |                            |                           |                   |
| Phase                          | SI** 1                              | og IAP               | log K                   | (298 K,                    | 1 atm)                     |                           |                   |
|                                |                                     | - 5                  |                         | (,                         | ,                          |                           |                   |
| Al(OH)3(am)                    | -3.75                               | 7.05                 | 10.80                   | Al(OH)3                    |                            |                           |                   |
| Al2(MoO4)3                     | -32.13                              | -29.76               | 2.37                    | Al2(MoO4                   | 4)3                        |                           |                   |
| A1203                          | -4.45                               | 15.20                | 19.65                   | A1203                      |                            |                           |                   |
| A14 (OH) 10SO4                 | -4.29                               | 18.41                | 22.70                   | A14 (OH)                   | LUSO4                      |                           |                   |
| ALASU4:2HZU                    | -3.29                               | 1.51<br>_2 74        | 4.80                    | ALASU4:2                   | 2H20                       |                           |                   |
| Alsb                           | -112.38                             | -46.75               | 65.62                   | Alsb                       |                            |                           |                   |
| Alunite                        | 6.09                                | 4.69                 | -1.40                   | KA13(SO4                   | 4)2(OH)6                   |                           |                   |
| Anglesite                      | -1.37                               | -9.16                | -7.79                   | PbSO4                      |                            |                           |                   |
| Anhydrite                      | 0.85                                | -3.51                | -4.36                   | CaSO4                      |                            |                           |                   |
| Antlerite                      | -14.54                              | -5.75                | 8.79                    | Cu3(OH)4                   | 4SO4                       |                           |                   |
| Aragonite                      | 0.12                                | -8.18                | -8.30                   | CaCO3                      |                            |                           |                   |
| Arsenolite                     | -9.4/                               | -12.23               | -2.76                   | AS406<br>Maco3·Ma          | - (OU) 2 · 3U2O            |                           |                   |
| As205                          | -17 42                              | -10 72               | 6 71                    | As205                      | g (011) 2 • 51120          |                           |                   |
| Atacamite                      | -12.50                              | -5.11                | 7.39                    | Cu2 (OH) 3                 | 3C1                        |                           |                   |
| Azurite                        | -7.99                               | -24.89               | -16.91                  | Cu3 (OH) 2                 | 2 (CO3) 2                  |                           |                   |
| Ba (OH) 2:8H2O                 | -23.58                              | 0.81                 | 24.39                   | Ba(OH)2:                   | :8H2O                      |                           |                   |
| Ba2V207:2H2O                   | -19.82                              | -3.95                | 15.87                   | Ba2V207                    | :2H2O                      |                           |                   |
| Ba3 (As04) 2                   | 10.51                               | 1.60                 | -8.91                   | Ba3 (AsO4                  | 4)2                        |                           |                   |
| Ba3(V04)2:4H20<br>BaCr04       | -33.52                              | -0.58                | -9 67                   | Ba3(V04)<br>BaCr04         | 2:4H20                     |                           |                   |
| BaMoO4                         | -3.92                               | -10.88               | -6.96                   | BaMoO4                     |                            |                           |                   |
| Barite                         | 3.93                                | -6.05                | -9.98                   | BaSO4                      |                            |                           |                   |
| Birnessite                     | -26.02                              | -7.92                | 18.09                   | MnO2                       |                            |                           |                   |
| Bixbyite                       | -31.80                              | -32.45               | -0.64                   | Mn203                      |                            |                           |                   |
| Boehmite                       | -1.16                               | 7.42                 | 8.58                    | Alooh                      |                            |                           |                   |
| Brochantite                    | -19.63                              | -4.41                | 16.22                   | Cu4 (OH) (                 | 504                        |                           |                   |
| $C_{a}(VO3)^{2}$               | -10 44                              | -4 78                | 5 66                    | Ca (VO3)                   | >                          |                           |                   |
| Ca2V207                        | -15.62                              | 1.88                 | 17.50                   | Ca2V207                    | -                          |                           |                   |
| Ca2V207:2H2O                   | -20.41                              | 1.14                 | 21.55                   | Ca2V207                    | :2H2O                      |                           |                   |
| Ca3(AsO4)2:4H20                | 0 -14.53                            | 7.77                 | 22.30                   | Ca3 (AsO4                  | 4)2:4H2O                   |                           |                   |
| Ca3(VO4)2                      | -30.43                              | 8.53                 | 38.96                   | Ca3 (VO4)                  | 2                          |                           |                   |
| Ca3(VO4)2:4H2O                 | -32.80                              | /.06                 | 39.86                   | Ca3 (VO4)                  | 2:4H2O                     |                           |                   |
| CaCrO4                         | -42 58                              | -44 84               | -2 27                   | CaSSD2<br>CaCrO4           |                            |                           |                   |
| Calcite                        | 0.30                                | -8.18                | -8.48                   | CaCO3                      |                            |                           |                   |
| CaMoO4                         | -0.39                               | -8.34                | -7.95                   | CaMoO4                     |                            |                           |                   |
| Celestite                      | 1.96                                | -4.66                | -6.62                   | SrSO4                      |                            |                           |                   |
| Cerussite                      | -0.70                               | -13.83               | -13.13                  | PbCO3                      |                            |                           |                   |
| CH4 (g)                        | -40.91                              | -81.95               | -41.05                  | CH4                        | 100                        |                           |                   |
| Chalcedony                     | -1.64                               | -IU.28               | -2.64                   | cus04:51                   | 120                        |                           |                   |
| Chrvsotile                     | -10.09                              | 2.2.11               | 32.20                   | Ma3si204                   | 5 (OH) 4                   |                           |                   |
| 5111 J 0 0 0 1 1 0             | 10.00                               |                      | 02.20                   |                            |                            |                           |                   |

| Claudetite           | -9.16  | -12.23  | -3.06   | As406                              |
|----------------------|--------|---------|---------|------------------------------------|
| CO2 (g)              | 3.31   | -14.83  | -18.15  | CO2                                |
| Cotunnite            | -10.18 | -14.96  | -4.78   | PbC12                              |
| Cr(OH)2              | -25.55 | -14.73  | 10.82   | Cr(OH)2                            |
| Cr(OH)3              | -10.90 | -9.56   | 1.34    | Cr(OH) 3                           |
| Cr(OH)3(am)          | -8.81  | -9.56   | -0.75   | Cr (OH) 3                          |
| CrCl2                | -13.07 | -18.02  | -2.30   | Cr2U3                              |
| CrCl3                | -44.42 | -30.55  | 15 11   | CrCl3                              |
| Cristobalite         | 3.66   | 0.31    | -3.35   | sio2                               |
| Crmetal              | -61.44 | -30.96  | 30.48   | Cr                                 |
| Cr03                 | -48.28 | -51.49  | -3.21   | CrO3                               |
| Cu (OH) 2            | -7.33  | 1.35    | 8.67    | Cu (OH) 2                          |
| Cu(Sb03)2            | -19.44 | 25.77   | 45.21   | Cu(SbO3)2                          |
| Cu2Sb:3H2O           | -22.75 | -57.64  | -34.88  | Cu2Sb:3H2O                         |
| Cu2SO4               | -16.00 | -17.95  | -1.95   | Cu2SO4                             |
| Cu3 (AsO4) 2:2H2O    | -12.41 | -6.31   | 6.10    | Cu3 (AsO4) 2:2H2O                  |
| Cu3Sb                | -23.45 | -66.04  | -42.59  | Cu3Sb                              |
| CuCO3                | -1.62  | -13.12  | -11.50  | CuCo3                              |
| Cumetal              | -3 //  | -12 19  | -8 76   | Cucio4                             |
| CuMoO4               | -0.20  | -13.27  | -13.08  | CuMoO4                             |
| CuOCuSO4             | -17.04 | -6.73   | 10.30   | CuOCuSO4                           |
| Cupricferrite        | -6.87  | -0.88   | 5.99    | CuFe2O4                            |
| Cuprite              | -6.39  | -7.79   | -1.41   | Cu2O                               |
| Cuprousferrite       | 3.72   | -5.19   | -8.92   | CuFeO2                             |
| CuSO4                | -11.39 | -8.45   | 2.94    | CuSO4                              |
| Diaspore             | 0.54   | 7.42    | 6.87    | Alooh                              |
| Dolomite(disorde     | ered)  | 0.93 -1 | 5.61 -1 | 6.54 CaMg(CO3)2                    |
| Dolomite (ordered    | d) 1.4 | 8 -15.6 | 1 -17.0 | 9 CaMg(CO3)2                       |
| Epsomite             | -3.19  | -5.31   | -2.13   | MgSU4:/H2U                         |
| Fe(OH) 2 7C1 3       | -1 15  | -4 19   | -3 04   | Fe (OH) 2 7C1 3                    |
| Fe (UC3) 2           | -1.13  | -4.19   | -3.04   | Fe(Un) 2.7CI.5<br>Fe(UO3) 2        |
| Fe2 (SO4) 3          | -29.34 | -33.07  | -3.73   | Fe2(SO4)3                          |
| Fe3(OH)8             | -20.85 | -0.62   | 20.22   | Fe3(OH)8                           |
| FeAs04:2H20          | -7.79  | -7.39   | 0.40    | FeAs04:2H2O                        |
| FeCr2O4              | -21.79 | -14.59  | 7.20    | FeCr2O4                            |
| FeMoO4               | -1.46  | -11.55  | -10.09  | FeMoO4                             |
| Ferrihydrite         | -5.04  | -1.85   | 3.19    | Fe(OH)3                            |
| Gibbsite             | -1.24  | 7.05    | 8.29    | Al(OH)3                            |
| Goethite             | -1.97  | -1.48   | 0.49    | FeOOH                              |
| Greenalite           | -10.62 | 10.19   | 20.81   | Fe3Si2O5(OH)4                      |
| Gypsum<br>U Tawaaita | 12 70  | -4.24   | -4.61   | (H2O) = 2 (POA) 2 (OH) C           |
| H-Jarosite           | -13./6 | -25.86  | -12.10  | (H3O) Fe3 (SO4) 2 (OH) 6<br>H2MoO4 |
| Halite               | -5 53  | -3 93   | 1 60    | NaCl                               |
| Hallovsite           | 5.51   | 15.09   | 9.57    | A12Si2O5(OH)4                      |
| Hausmannite          | -41.95 | 19.08   | 61.03   | Mn 304                             |
| Hematite             | -1.18  | -2.60   | -1.42   | Fe203                              |
| Hercynite            | -4.26  | 18.64   | 22.89   | FeAl204                            |
| Huntite              | -0.49  | -30.46  | -29.97  | CaMg3 (CO3) 4                      |
| Hydrocerussite       | -8.26  | -27.03  | -18.77  | Pb3(OH)2(CO3)2                     |
| Hydromagnesite       | -15.35 | -24.12  | -8.77   | Mg5(CO3)4(OH)2:4H2O                |
| K-Alum               | -8.63  | -13.80  | -5.17   | KA1(SO4)2:12H2O                    |
| K-Jarosite           | -7.20  | -22.00  | -14.80  | KFe3(SO4)2(OH)6                    |
| K2Cr2O7              | -79.13 | -96.38  | -17.24  | K2Cr207                            |
| KZCIU4<br>K2MoOA     | -44.3/ | -44.88  | -0.51   | K2CrO4                             |
| Kaolinite            | 7 65   | 15 09   | 7 13    | A1291205(0H)/                      |
| Langite              | -22.26 | -4.77   | 17.49   | Cu4 (OH) 6SO4 : H2O                |
| Larnakite            | -7.73  | -8.16   | -0.43   | PbO:PbSO4                          |
| Laurionite           | -7.79  | -7.16   | 0.62    | PbOHCl                             |
| Lepidocrocite        | -2.85  | -1.48   | 1.37    | FeOOH                              |
| Li2CrO4              | -51.39 | -46.53  | 4.86    | Li2CrO4                            |
| Li2MoO4              | -12.47 | -10.03  | 2.44    | Li2MoO4                            |
| Lime                 | -26.05 | 6.65    | 32.70   | CaO                                |
| Litharge             | -11.69 | 1.00    | 12.69   | PbO                                |
| Maghemite            | -8.98  | -2.60   | 6.39    | Fe203                              |

| Magnesioferrite     | -12.05          | 4.81    | 16.86  | Fe2MqO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|-----------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Magnesite           | 0.04            | -7.42   | -7.46  | MaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Magnetite           | -2.56           | 0.84    | 3.40   | Fe304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Malachite           | -6 47           | -11 77  | -5 31  | Cu2 (OH) 2CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Manganite           | -16.40          | 8 9/    | 25 34  | Mn00H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Magginet            | _11 89          | 1 00    | 12 89  | PhO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Melanothallite      | -20 51          | -14 25  | 6 26   | CuCl 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Melantorito         | -7 09           | _0 20   | -2 21  | E0001.7420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | -7.00           | -9.29   | 10 70  | resourtesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourcesourceso |
| Mg (UH) Z (aCLIVE)  | -11.75          | 1.04    | 18.79  | Mg (UP) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mg (V03) 2          | -15.30          | -4.02   | 11.28  | Mg (VU3) Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mg2Sb3              | -181.44         | -106.76 | /4.68  | Mg2Sb3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mg2V207             | -22.97          | 3.39    | 26.36  | Mg2V207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MgCr2O4             | -26.82          | -10.61  | 16.20  | MgCr2O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MgCrO4              | -49.46          | -44.08  | 5.38   | MgCrO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MgMoO4              | -5.73           | -7.58   | -1.85  | MgMoO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minium              | -53.93          | 19.59   | 73.52  | Pb304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mirabilite          | -4.60           | -5.71   | -1.11  | Na2SO4:10H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mn (VO3) 2          | -15.50          | -10.60  | 4.90   | Mn (VO3) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mn2(SO4)3           | -57.21          | -62.92  | -5.71  | Mn2(SO4)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mn2Sb               | -122.07         | -61.00  | 61.08  | Mn2Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mn3(AsO4)2:8H2O     | -23.66          | -11.16  | 12.50  | Mn3(AsO4)2:8H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MnCl2:4H2O          | -19.31          | -16.60  | 2.72   | MnCl2:4H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MnSb                | -67.67          | -70.58  | -2.91  | MnSb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MnSO4               | -11.91          | -9.33   | 2.58   | MnSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MoO3                | -6.99           | -14.99  | -8.00  | MoO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Na-Jarosite         | -10 06          | -21 26  | -11 20 | NaFe3 (SO4) 2 (OH) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Na2Cr207            | -84 99          | -94 88  | -9 90  | Na2Cr2O7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Na2CrO4             | -16 32          | -13 39  | 2 93   | Na2CrO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Na2CIO4<br>Na2Mo2O7 | -5 27           | -21 87  | -16 60 | Na20104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Na2Mo207            | 0.27            | 21.07   | 1 40   | Na2MaQ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NaZMOU4             | -8.3/           | -0.88   | 1.49   | Na2MoO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NaZMOU4:ZHZU        | -0.04<br>12C CE | -7.01   | 1.22   | Na2M004:2H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NASSD               | -136.65         | -42.20  | 94.45  | Nasso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Na3VO4              | -30.24          | 6.45    | 36.68  | Na3VO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Na4V207             | -32.62          | 4.78    | 37.40  | Na4V207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nantokite           | -5.15           | -11.88  | -6.73  | CuCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NaSb                | -56.87          | -33.71  | 23.17  | NaSb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Natron              | -9.08           | -10.39  | -1.31  | Na2CO3:10H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NaVO3               | -5.52           | -1.66   | 3.86   | NaVO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nesquehonite        | -3.85           | -8.52   | -4.67  | MgCO3:3H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nsutite             | -25.43          | -7.92   | 17.50  | MnO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 02 (g)              | -49.90          | 33.19   | 83.09  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pb(OH)2             | -7.52           | 0.63    | 8.15   | Pb(OH)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pb10(OH)60(CO3)     | 6 -71.34        | -80.10  | -8.76  | Pb10(OH)60(CO3)6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pb2(OH)3Cl          | -15.32          | -6.53   | 8.79   | Pb2(OH)3Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pb20(OH)2           | -24.56          | 1.63    | 26.19  | Pb20(OH)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pb203               | -42.44          | 18.60   | 61.04  | Pb203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pb20C03             | -12.28          | -12.83  | -0.56  | Pb20C03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pb2V207             | -7.53           | -9.43   | -1.90  | Pb2V207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pb3(As04)2          | -13.52          | -7.72   | 5.80   | Pb3(AsO4)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pb3 (VO4) 2         | -14.57          | -8.43   | 6.14   | Pb3 (VO4) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ph302003            | -22 85          | -11 83  | 11 02  | Ph302C03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ph302504            | -17 85          | -7 16   | 10 69  | Pb302504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ph4 (OH) 6504       | -28 36          | -7 26   | 21 10  | Pb4 (0H) 6504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Db402004            | 20.00           | 6 16    | 21.10  | Pb403204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PD403504            | -20.04          | =0.10   | 12 60  | Pb403504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PDCIU4<br>Dhmatal   | -37.09          | -30.49  | -12.00 | PDCI04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Philecal            | -19.04          | -13.00  | 4.23   | PD<br>DIM-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PDMOU4              | 1.63            | -13.99  | -15.62 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pb0:0.3H20          | -12.10          | 0.88    | 12.98  | Pb0:0.33H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Periclase           | -14.18          | /.41    | 21.58  | MdO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Phosgenite          | -8.99           | -28.80  | -19.81 | PbC12:PbC03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Plattnerite         | -32.00          | 17.60   | 49.60  | PbO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Portlandite         | -16.52          | 6.28    | 22.80  | Ca(OH)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pyrochroite         | -14.73          | 0.46    | 15.19  | Mn (OH) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pyrolusite          | -23.95          | 17.43   | 41.38  | MnO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Quartz              | 4.31            | 0.31    | -4.00  | SiO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rhodochrosite       | -3.42           | -14.00  | -10.58 | MnCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sb (OH) 3           | 1.99            | -5.11   | -7.11  | Sb(OH)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sb204               | 4.06            | 7.47    | 3.40   | Sb204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sh205               | -14 89          | -24 56  | -9 67  | Sh205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Sb406(cubic)                                                                                                                                                                                                                                                             | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -18.26                                                                                                                                                                                                                                                                                                               | -18.26                                                                                                                                                                                                                                                               | Sb406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sb406(orth)                                                                                                                                                                                                                                                              | -0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -18.26                                                                                                                                                                                                                                                                                                               | -17.90                                                                                                                                                                                                                                                               | Sb406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SbCl3                                                                                                                                                                                                                                                                    | -29.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -28.51                                                                                                                                                                                                                                                                                                               | 0.57                                                                                                                                                                                                                                                                 | SbCl3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sbmetal                                                                                                                                                                                                                                                                  | -17.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -29.46                                                                                                                                                                                                                                                                                                               | -11.69                                                                                                                                                                                                                                                               | Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sb02                                                                                                                                                                                                                                                                     | 7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -20.58                                                                                                                                                                                                                                                                                                               | -27.82                                                                                                                                                                                                                                                               | Sb02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Senarmontite                                                                                                                                                                                                                                                             | 3.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -9.13                                                                                                                                                                                                                                                                                                                | -12.37                                                                                                                                                                                                                                                               | SD2U3<br>Ma2gi307 504,3420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sepiolite(A)                                                                                                                                                                                                                                                             | -4 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.40                                                                                                                                                                                                                                                                                                                | 18 78                                                                                                                                                                                                                                                                | Mg2Si307.50H.3H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Siderite                                                                                                                                                                                                                                                                 | -1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -11.40                                                                                                                                                                                                                                                                                                               | -10.24                                                                                                                                                                                                                                                               | FeC03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SiO2(am-gel)                                                                                                                                                                                                                                                             | 3.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.31                                                                                                                                                                                                                                                                                                                 | -2.71                                                                                                                                                                                                                                                                | Si02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SiO2(am-ppt)                                                                                                                                                                                                                                                             | 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.31                                                                                                                                                                                                                                                                                                                 | -2.74                                                                                                                                                                                                                                                                | SiO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spinel                                                                                                                                                                                                                                                                   | -14.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.61                                                                                                                                                                                                                                                                                                                | 36.85                                                                                                                                                                                                                                                                | MgAl204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SrCrO4                                                                                                                                                                                                                                                                   | -41.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -45.99                                                                                                                                                                                                                                                                                                               | -4.65                                                                                                                                                                                                                                                                | SrCrO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Strontianite                                                                                                                                                                                                                                                             | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -9.33                                                                                                                                                                                                                                                                                                                | -9.27                                                                                                                                                                                                                                                                | SrCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tenorite                                                                                                                                                                                                                                                                 | -5.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.71                                                                                                                                                                                                                                                                                                                 | 7.64                                                                                                                                                                                                                                                                 | CuO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Thenardite                                                                                                                                                                                                                                                               | -2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2.05                                                                                                                                                                                                                                                                                                                | 0.32                                                                                                                                                                                                                                                                 | Na2S04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Thermonatrite                                                                                                                                                                                                                                                            | -/./3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -7.09                                                                                                                                                                                                                                                                                                                | U.64<br>7 50                                                                                                                                                                                                                                                         | Nazcus:Hzu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| V(OR)S<br>V205                                                                                                                                                                                                                                                           | -10 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -11 /3                                                                                                                                                                                                                                                                                                               | -1 36                                                                                                                                                                                                                                                                | V (OH) 5<br>W205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| V205<br>V305                                                                                                                                                                                                                                                             | -9.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -7.92                                                                                                                                                                                                                                                                                                                | 1.84                                                                                                                                                                                                                                                                 | V305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V407                                                                                                                                                                                                                                                                     | -12.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -5.03                                                                                                                                                                                                                                                                                                                | 7.19                                                                                                                                                                                                                                                                 | V407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V6013                                                                                                                                                                                                                                                                    | -6.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -67.47                                                                                                                                                                                                                                                                                                               | -60.86                                                                                                                                                                                                                                                               | V6013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Valentinite                                                                                                                                                                                                                                                              | -0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -9.13                                                                                                                                                                                                                                                                                                                | -8.48                                                                                                                                                                                                                                                                | Sb203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VC12                                                                                                                                                                                                                                                                     | -42.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -23.97                                                                                                                                                                                                                                                                                                               | 18.87                                                                                                                                                                                                                                                                | VC12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VC13                                                                                                                                                                                                                                                                     | -47.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -23.65                                                                                                                                                                                                                                                                                                               | 23.43                                                                                                                                                                                                                                                                | VC13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Vmetal                                                                                                                                                                                                                                                                   | -68.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -24.61                                                                                                                                                                                                                                                                                                               | 44.03                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VO                                                                                                                                                                                                                                                                       | -22.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -8.01                                                                                                                                                                                                                                                                                                                | 14.76                                                                                                                                                                                                                                                                | VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VO(OH)2                                                                                                                                                                                                                                                                  | -2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.53                                                                                                                                                                                                                                                                                                                 | 5.15                                                                                                                                                                                                                                                                 | VO (OH) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VOZCI                                                                                                                                                                                                                                                                    | -16.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -13.69                                                                                                                                                                                                                                                                                                               | 2.84                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VOCI 2                                                                                                                                                                                                                                                                   | -18.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -13 07                                                                                                                                                                                                                                                                                                               | 12 76                                                                                                                                                                                                                                                                | VOCI 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| V0C12<br>V0S04                                                                                                                                                                                                                                                           | -10 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -7 27                                                                                                                                                                                                                                                                                                                | 3 61                                                                                                                                                                                                                                                                 | V0504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10001                                                                                                                                                                                                                                                                    | 2 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10.73                                                                                                                                                                                                                                                                                                               | -8 57                                                                                                                                                                                                                                                                | BaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Witherite<br>**For a gas, SI =<br>For ideal gases                                                                                                                                                                                                                        | -2.10<br>= log10(fu<br>s, phi = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gacity).                                                                                                                                                                                                                                                                                                             | Fugacity                                                                                                                                                                                                                                                             | = pressure * phi / 1 atm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution                                                                                                                                                                                                    | -2.10<br>= log10(fu<br>s, phi = 1<br>2. WSEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gacity).<br>•<br>PAGE2-alk                                                                                                                                                                                                                                                                                           | Fugacity<br>% KIN OR                                                                                                                                                                                                                                                 | = pressure * phi / 1 atm.<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution                                                                                                                                                                                                    | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gacity).<br>•<br>PAGE2-alk<br>Solutio                                                                                                                                                                                                                                                                                | Fugacity<br>% KIN OR<br>on compo                                                                                                                                                                                                                                     | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br><br>Elements                                                                                                                                                                                    | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gacity).<br>•<br>PAGE2-alk<br>Solutio<br>Molality                                                                                                                                                                                                                                                                    | Fugacity<br>% KIN OR<br>on compo<br>Mc                                                                                                                                                                                                                               | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br><br>Elements<br>Al                                                                                                                                                                              | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gacity).<br>PAGE2-alk<br>Solutio<br>Molality<br>2.348e-03                                                                                                                                                                                                                                                            | Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e                                                                                                                                                                                                                     | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br><br>Elements<br>Al<br>Alkalinity                                                                                                                                                                | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>y 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gacity).<br>PAGE2-alk<br>Solution<br>Molality<br>2.348e-03<br>.237e+00                                                                                                                                                                                                                                               | Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e                                                                                                                                                                                                           | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>e-03<br>e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As                                                                                                                                                              | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>Y 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gacity).<br>PAGE2-alk<br>Solution<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03                                                                                                                                                                                                                                   | Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e                                                                                                                                                                                                 | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>2-03<br>2+00<br>2-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba                                                                                                                                                        | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>Y 1<br>2<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gacity).<br>PAGE2-alk<br>Solution<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>2.452e-04                                                                                                                                                                                                                      | Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e                                                                                                                                                                                       | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>e-03<br>e-03<br>e-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca                                                                                                                                                  | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>Y 1<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gacity).<br>PAGE2-alk<br>Solution<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>2.452e-04<br>2.212e-01                                                                                                                                                                                                         | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e                                                                                                                                                                 | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>2-03<br>2-03<br>2-04<br>2-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl                                                                                                                                            | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>Y 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gacity).<br>PAGE2-alk<br>Solution<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>2.452e-04<br>2.212e-01<br>2.361e-04                                                                                                                                                                                            | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e<br>2.212e<br>2.361e                                                                                                                                             | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>2-03<br>2-04<br>2-04<br>2-01<br>2-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cr                                                                                                                                | -2.10<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>Y 1<br>2<br>2<br>2<br>2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gacity).<br>PAGE2-alk<br>Solution<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>2.452e-04<br>2.212e-01<br>.361e-04<br>.600e-07<br>.510 05                                                                                                                                                                      | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e<br>2.361e<br>1.600e                                                                                                                                             | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>2-03<br>2-04<br>2-01<br>2-04<br>2-07<br>2-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>En                                                                                                                          | -2.10<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>Y 1<br>2<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gacity).<br>PAGE2-alk<br>Solution<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.022                                                                                                                                                               | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e<br>2.361e<br>1.600e<br>1.561e<br>2.105e                                                                                                                         | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>2-03<br>2-04<br>2-01<br>2-04<br>2-07<br>2-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K                                                                                                                     | -2.10<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>2<br>y 1<br>2<br>2<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gacity).<br>PAGE2-alk<br>Solution<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01                                                                                                                                               | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e<br>2.361e<br>1.600e<br>1.561e<br>2.105e<br>1.467e                                                                                                               | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>03<br>++00<br>03<br>04<br>01<br>04<br>07<br>05<br>03<br>03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li                                                                                                               | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>y 1<br>2<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gacity).<br>PAGE2-alk<br>Solution<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>0.21e-02                                                                                                                                   | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e<br>2.361e<br>1.600e<br>1.561e<br>2.105e<br>1.467e<br>2.021e                                                                                                     | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>2-03<br>2-04<br>2-01<br>2-04<br>2-01<br>2-04<br>2-05<br>2-05<br>2-03<br>2-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg                                                                                                         | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>y 1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gacity).<br>PAGE2-alk<br>Solutio<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.021e-02<br>.018e-01                                                                                                                        | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e<br>2.361e<br>1.600e<br>1.561e<br>1.561e<br>2.105e<br>1.467e<br>2.021e<br>9.018e                                                                                 | = pressure * phi / 1 atm.<br>T<br>sition<br>oles<br>03<br>++00<br>03<br>04<br>01<br>04<br>07<br>05<br>03<br>01<br>02<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn                                                                                                   | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>y 1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gacity).<br>PAGE2-alk<br>Soluti<br>Molality<br>2.348e-03<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.021e-02<br>.018e-01<br>.262e-06                                                                                                                         | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e<br>2.361e<br>1.600e<br>1.561e<br>2.105e<br>1.467e<br>2.021e<br>9.018e<br>5.262e                                                                                 | = pressure * phi / 1 atm.<br>T<br>sition<br>ples<br>=-03<br>+00<br>-03<br>-04<br>-01<br>-04<br>-07<br>-05<br>-03<br>-01<br>-04<br>-01<br>-05<br>-03<br>-01<br>-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo                                                                                             | -2.16<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>y 1<br>1<br>2<br>2<br>1<br>1<br>2<br>5<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gacity).<br>PAGE2-alk<br>Soluti<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.021e-02<br>.018e-01<br>.262e-06<br>.548e-04                                                                                                 | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e<br>2.361e<br>1.600e<br>1.561e<br>2.105e<br>1.467e<br>2.021e<br>9.018e<br>5.262e<br>7.548e                                                                             | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na                                                                                       | -2.16<br>= log10 (fu<br>s, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>y 1<br>1<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>5<br>7<br>9<br>5<br>7<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gacity).<br>PAGE2-alk<br>Soluti<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.021e-02<br>.018e-01<br>.262e-06<br>.548e-04<br>.082e-01                                                                                     | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.361e<br>1.600e<br>1.561e<br>2.105e<br>1.467e<br>2.021e<br>9.018e<br>5.262e<br>7.548e<br>9.082e                                                                             | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na<br>Pb                                                                                 | -2.16<br>= log10 (fu<br>s, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>y 1<br>2<br>2<br>4<br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gacity).<br>PAGE2-alk<br>Soluti<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.021e-02<br>.018e-01<br>.262e-06<br>.548e-04<br>.082e-01<br>.839e-05                                                                         | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.452e<br>2.212e<br>2.361e<br>1.600e<br>1.561e<br>2.105e<br>1.467e<br>2.021e<br>9.018e<br>5.262e<br>7.548e<br>9.082e<br>4.839e                                               | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na<br>Pb<br>S(6)                                                                         | -2.10<br>= log10(fu<br>s, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>y 1<br>2<br>2<br>4<br>5<br>7<br>9<br>4<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gacity).<br>PAGE2-alk<br>Soluti<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.262e-06<br>.548e-04<br>.082e-01<br>.839e-05<br>.135e-01                                                                                     | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.452e<br>2.361e<br>1.600e<br>1.561e<br>2.021e<br>2.021e<br>0.18e<br>5.262e<br>7.548e<br>9.082e<br>4.839e<br>6.135e                                                          | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na<br>Pb<br>S(6)<br>Sb                                                                   | -2.10<br>= log10(fu<br>;, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>2<br>y 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>5<br>5<br>7<br>9<br>4<br>6<br>6<br>6<br>6<br>6<br>7<br>9<br>4<br>6<br>6<br>6<br>7<br>9<br>1<br>1<br>2. WSEE<br>1<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WSEE<br>2. WS | gacity).<br>PAGE2-alk<br>Soluti<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.021e-02<br>.018e-01<br>.262e-06<br>.548e-04<br>.082e-01<br>.839e-05<br>.135e-01<br>.204e-05                                                 | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.361e<br>1.600e<br>1.561e<br>2.021e<br>9.018e<br>5.262e<br>5.262e<br>7.548e<br>9.082e<br>4.839e<br>6.135e<br>6.204e                                                         | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na<br>Pb<br>S(6)<br>Sb<br>Si<br>C:<br>C:<br>C:<br>C:<br>C:<br>C:<br>C:<br>C:<br>C:<br>C: | -2.10<br>= log10(fu<br>;, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>2<br>y 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>5<br>5<br>5<br>5<br>4<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>9<br>4<br>6<br>6<br>7<br>7<br>9<br>1<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gacity).<br>PAGE2-alk<br>Soluti<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.262e-06<br>.548e-04<br>.082e-01<br>.839e-05<br>.135e-01<br>.204e-05<br>.700e-01<br>.275e-02                                                 | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.361e<br>2.361e<br>2.105e<br>1.600e<br>1.561e<br>2.021e<br>9.018e<br>5.262e<br>7.548e<br>9.082e<br>4.839e<br>6.135e<br>6.204e<br>2.700e                                     | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na<br>Pb<br>S(6)<br>Sb<br>Si<br>Sr<br>V                                                  | -2.10<br>= log10(fu<br>;, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>2<br>y 1<br>1<br>2<br>2<br>2<br>3<br>1<br>1<br>2<br>5<br>5<br>7<br>6<br>6<br>6<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gacity).<br>PAGE2-alk<br>Solutio<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.212e-01<br>.361e-05<br>.105e-03<br>.467e-01<br>.021e-02<br>.018e-01<br>.262e-06<br>.548e-04<br>.839e-05<br>.135e-01<br>.204e-05<br>.700e-01<br>.375e-02<br>.041e-03                        | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.361e<br>1.600e<br>1.600e<br>1.600e<br>1.600e<br>1.605e<br>2.021e<br>9.018e<br>5.262e<br>7.548e<br>9.082e<br>4.839e<br>6.135e<br>6.204e<br>2.700e<br>1.375e<br>1.041e | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na<br>Pb<br>S(6)<br>Sb<br>Si<br>Sr<br>V                                                  | <pre>-2.16 = log10 (fu s, phi = 1 2. WSEE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>gacity). 3 PAGE2-alk Molality 348e-03 348e-03 348e-03 452e-04 212e-01 361e-04 600e-07 561e-05 105e-03 467e-01 2021e-02 018e-01 262e-06 548e-04 082e-01 839e-05 135e-01 204e-05 700e-01 375e-02 041e-03Descrip</pre>                                                                                             | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.212e<br>2.361e<br>1.600e<br>1.600e<br>1.601e<br>2.021e<br>9.018e<br>5.262e<br>7.548e<br>9.082e<br>4.839e<br>6.135e<br>6.204e<br>2.700e<br>1.375e<br>1.041e           | = pressure * phi / 1 atm.<br>T<br>sition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na<br>Pb<br>S(6)<br>Sb<br>Si<br>Sr<br>V                                                  | -2.10<br>= log10 (fu<br>s, phi = 1<br>2. WSEE<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gacity).<br>PAGE2-alk<br>Solutio<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.021e-02<br>.018e-01<br>.262e-06<br>.548e-04<br>.082e-01<br>.839e-05<br>.135e-01<br>.204e-05<br>.700e-01<br>.375e-02<br>.041e-03<br>Descrip | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.361e<br>1.600e<br>1.561e<br>2.021e<br>9.018e<br>5.262e<br>7.548e<br>9.082e<br>4.839e<br>6.135e<br>6.204e<br>2.700e<br>1.375e<br>1.041e<br>tion of                    | <pre>= pressure * phi / 1 atm. T sition ples03 +-0003 +-000304010401040105050301050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501</pre> |
| Witherite<br>**For a gas, SI =<br>For ideal gases<br>Initial solution<br>Elements<br>Al<br>Alkalinity<br>As<br>Ba<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na<br>Pb<br>S(6)<br>Sb<br>Si<br>Sr<br>V                                                  | -2.10<br>= log10 (fu<br>s, phi = 1<br>2. WSEE<br><br>y 1<br>2<br>2<br>y 1<br>1<br>2<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>2<br>4<br>6<br>6<br>2<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gacity).<br>PAGE2-alk<br>Solutio<br>Molality<br>2.348e-03<br>.237e+00<br>.348e-03<br>.452e-04<br>.212e-01<br>.361e-04<br>.600e-07<br>.561e-05<br>.105e-03<br>.467e-01<br>.262e-06<br>.548e-04<br>.082e-01<br>.839e-05<br>.135e-01<br>.204e-05<br>.700e-01<br>.375e-02<br>.041e-03<br>Descrip                         | Fugacity<br>Fugacity<br>% KIN OR<br>on compo<br>Mc<br>2.348e<br>1.237e<br>1.348e<br>2.452e<br>2.361e<br>1.600e<br>1.561e<br>2.021e<br>9.018e<br>5.262e<br>7.548e<br>9.082e<br>4.839e<br>6.135e<br>6.204e<br>2.700e<br>1.375e<br>1.041e<br>tion of<br>pH              | <pre>= pressure * phi / 1 atm. T sition ples030401040104010401050503010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501050105010501</pre>       |

|                | Activity of water         | = | 0.479            |
|----------------|---------------------------|---|------------------|
|                | Ionic strength (mol/kgw)  | = | 1.433e+00        |
|                | Mass of water (kg)        | = | 1.000e+00        |
|                | Total carbon (mol/kg)     | = | 2.883e+01        |
|                | Total CO2 (mol/kg)        | = | 2.883e+01        |
|                | Temperature (°C)          | = | 25.00            |
|                | Electrical balance (eq)   | = | 8.947e-01        |
| Percent error, | 100*(Cat- An )/(Cat+ An ) | = | 36.14            |
|                | Iterations                | = | 56 (124 overall) |
|                | Total H                   | = | 1.685122e+02     |
|                | Total O                   | = | 1.455285e+02     |
|                |                           |   |                  |

-----Distribution of species-----

|    |            |           |           | Log      | Log      | Log    | mole V  |
|----|------------|-----------|-----------|----------|----------|--------|---------|
|    | Species    | Molality  | Activity  | Molality | Activity | Gamma  | cm³/mol |
|    | H+         | 4.039e-05 | 3.529e-05 | -4.394   | -4.452   | -0.059 | 0.00    |
|    | OH-        | 2.468e-10 | 1.366e-10 | -9.608   | -9.865   | -0.257 | (0)     |
|    | Н2О        | 5.551e+01 | 4.787e-01 | 1.744    | -0.320   | 0.000  | 18.07   |
| Al |            | 2.348e-03 |           |          |          |        |         |
|    | AlSO4+     | 1.829e-03 | 1.101e-03 | -2.738   | -2.958   | -0.220 | (0)     |
|    | Al(SO4)2-  | 4.951e-04 | 2.980e-04 | -3.305   | -3.526   | -0.220 | (0)     |
|    | A1+3       | 1.891e-05 | 5.617e-06 | -4.723   | -5.251   | -0.527 | (0)     |
|    | AlOH+2     | 4.643e-06 | 7.671e-07 | -5.333   | -6.115   | -0.782 | (0)     |
|    | Al(OH)2+   | 1.305e-07 | 8.321e-08 | -6.884   | -7.080   | -0.195 | (0)     |
|    | AlMo6021-3 | 1.790e-09 | 5.717e-15 | -8.747   | -14.243  | -5.496 | (0)     |
|    | Al(OH)3    | 2.267e-10 | 2.267e-10 | -9.644   | -9.644   | 0.000  | (0)     |
|    | Al(OH)4-   | 6.476e-12 | 3.898e-12 | -11.189  | -11.409  | -0.220 | (0)     |
| As | (3)        | 2.740e-04 |           |          |          |        |         |
|    | H3AsO3     | 2.740e-04 | 2.740e-04 | -3.562   | -3.562   | 0.000  | (0)     |
|    | H4AsO3+    | 1.955e-08 | 4.791e-09 | -7.709   | -8.320   | -0.611 | (0)     |
|    | H2AsO3-    | 1.624e-08 | 3.981e-09 | -7.789   | -8.400   | -0.611 | (0)     |
|    | HAsO3-2    | 2.850e-14 | 1.029e-16 | -13.545  | -15.988  | -2.443 | (0)     |
|    | As03-3     | 3.518e-20 | 1.124e-25 | -19.454  | -24.949  | -5.496 | (0)     |
| As | (5)        | 1.074e-03 |           |          |          |        |         |
|    | H2AsO4-    | 8.858e-04 | 2.171e-04 | -3.053   | -3.663   | -0.611 | (0)     |
|    | HAsO4-2    | 1.869e-04 | 6.745e-07 | -3.728   | -6.171   | -2.443 | (0)     |
|    | H3AsO4     | 9.573e-07 | 1.332e-06 | -6.019   | -5.876   | 0.143  | (0)     |
|    | As04-3     | 1.892e-08 | 6.043e-14 | -7.723   | -13.219  | -5.496 | (0)     |
| Вa |            | 2.452e-04 |           |          |          |        |         |
|    | BaHCO3+    | 1.830e-04 | 1.204e-04 | -3.738   | -3.919   | -0.182 | (0)     |
|    | Ba+2       | 6.222e-05 | 3.628e-05 | -4.206   | -4.440   | -0.234 | (0)     |
|    | BaCO3      | 8.589e-09 | 8.589e-09 | -8.066   | -8.066   | 0.000  | (0)     |
|    | BaOH+      | 3.474e-14 | 2.163e-14 | -13.459  | -13.665  | -0.206 | (0)     |
| С( | 4)         | 2.883e+01 |           |          |          |        |         |
|    | H2CO3      | 2.759e+01 | 2.759e+01 | 1.441    | 1.441    | 0.000  | (0)     |
|    | HCO3-      | 5.451e-01 | 3.476e-01 | -0.263   | -0.459   | -0.195 | (0)     |
|    | MgHCO3+    | 4.448e-01 | 2.575e-01 | -0.352   | -0.589   | -0.237 | (0)     |
|    | CaHCO3+    | 1.255e-01 | 8.259e-02 | -0.901   | -1.083   | -0.182 | (0)     |
|    | NaHCO3     | 1.143e-01 | 1.143e-01 | -0.942   | -0.942   | 0.000  | (0)     |
|    | SrHCO3+    | 7.686e-03 | 5.058e-03 | -2.114   | -2.296   | -0.182 | (0)     |
|    | BaHCO3+    | 1.830e-04 | 1.204e-04 | -3.738   | -3.919   | -0.182 | (0)     |
|    | FeHCO3+    | 4.829e-05 | 3.178e-05 | -4.316   | -4.498   | -0.182 | (0)     |
|    | PbHCO3+    | 3.204e-05 | 7.854e-06 | -4.494   | -5.105   | -0.611 | (0)     |
|    | MgCO3      | 2.781e-05 | 2.781e-05 | -4.556   | -4.556   | 0.000  | (0)     |
|    | CuHCO3+    | 1.385e-05 | 3.395e-06 | -4.859   | -5.469   | -0.611 | (0)     |
|    | CaCO3      | 9.337e-06 | 9.337e-06 | -5.030   | -5.030   | 0.000  | (0)     |
|    | NaCO3-     | 7.887e-06 | 5.029e-06 | -5.103   | -5.299   | -0.195 | (0)     |
|    | CO3-2      | 7.918e-07 | 4.617e-07 | -6.101   | -6.336   | -0.234 | (0)     |
|    | CuCO3      | 4.208e-07 | 4.208e-07 | -6.376   | -6.376   | 0.000  | (0)     |
|    | SrCO3      | 2.675e-07 | 2.675e-07 | -6.573   | -6.573   | 0.000  | (0)     |
|    | MnHCO3+    | 2.003e-07 | 1.247e-07 | -6.698   | -6.904   | -0.206 | (0)     |
|    | Cu(CO3)2-2 | 1.449e-07 | 5.229e-10 | -6.839   | -9.282   | -2.443 | (0)     |
|    | PbC03      | 4.221e-08 | 4.221e-08 | -/.375   | -7.375   | 0.000  | (0)     |
|    | Pb(CO3)2-2 | 1.557e-08 | 5.620e-11 | -7.808   | -10.250  | -2.443 | (0)     |
| ~  | BaCO3      | 8.589e-09 | 8.589e-09 | -8.066   | -8.066   | 0.000  | (0)     |
| Ca |            | 2.212e-01 | 0.055.55  |          |          |        |         |
|    | CaHCO3+    | 1.255e-01 | 8.259e-02 | -0.901   | -1.083   | -0.182 | (0)     |

|     | CaSO4            | 7.383e-02  | 7.383e-02              | -1.132  | -1.132  | 0.000   | (0)   |
|-----|------------------|------------|------------------------|---------|---------|---------|-------|
|     | Ca+2             | 2.189e-02  | 1.276e-02              | -1.660  | -1.894  | -0.234  | (0)   |
|     | CaCO3            | 9.337e-06  | 9.337e-06              | -5.030  | -5.030  | 0.000   | (0)   |
|     | CaOH+            | 5.284e-11  | 3.477e-11              | -10.277 | -10.459 | -0.182  | (0)   |
| CT  | 2.36             | ble-04     |                        | 0 605   |         | 0 0 5 0 | (     |
|     | CI-              | 2.361e-04  | 2.063e-04              | -3.627  | -3.686  | -0.059  | (0)   |
|     | VUCI+            | 4.4/10-09  | 1.0966-09              | -8.350  | -8.960  | -0.011  | (0)   |
|     | DhCl+            | 9.0910-10  | 2 2260-10              | -0.042  | -0.653  | -0 611  | (0)   |
|     |                  | 1 466e-10  | 2.220e-10<br>8.486e-11 | -9.042  | -10 071 | -0.011  | (0)   |
|     | CuCl+            | 8.741e-11  | 5.061e-11              | -10.058 | -10.296 | -0.237  | (0)   |
|     | MnCl+            | 7.500e-12  | 4.669e-12              | -11.125 | -11.331 | -0.206  | (0)   |
|     | PbC12            | 2.051e-13  | 2.051e-13              | -12.688 | -12.688 | 0.000   | (0)   |
|     | CrCl+2           | 3.767e-14  | 1.360e-16              | -13.424 | -15.867 | -2.443  | (0)   |
|     | CuCl3-2          | 2.492e-14  | 3.742e-15              | -13.603 | -14.427 | -0.823  | (0)   |
|     | CuCl2            | 3.620e-15  | 3.620e-15              | -14.441 | -14.441 | 0.000   | (0)   |
|     | MnCl2            | 1.360e-15  | 1.360e-15              | -14.866 | -14.866 | 0.000   | (0)   |
|     | FeCl+2           | 2.798e-16  | 4.203e-17              | -15.553 | -16.376 | -0.823  | (0)   |
|     | PbCl3-           | 6.871e-17  | 1.684e-17              | -16.163 | -16.774 | -0.611  | (0)   |
|     | PbCl4-2          | 4.399e-19  | 1.588e-21              | -18.357 | -20.799 | -2.443  | (0)   |
|     | MnCl3-           | 1.242e-19  | 7.729e-20              | -18.906 | -19.112 | -0.206  | (0)   |
|     | FeCl2+           | 6.220e-20  | 3.872e-20              | -19.206 | -19.412 | -0.206  | (0)   |
|     | CuCl3-           | 1.203e-20  | 6.968e-21              | -19.920 | -20.157 | -0.237  | (0)   |
|     | CrCl2+           | 1.086e-20  | 2.661e-21              | -19.964 | -20.575 | -0.611  | (0)   |
|     | CrOHC12          | 7.280e-23  | 7.280e-23              | -22.138 | -22.138 | 0.000   | (0)   |
|     | FeCI3            | 7.98/e-25  | 7.987e-25              | -24.098 | -24.098 | 0.000   | (0)   |
|     | CuCl4-2          | 4./9/e-26  | 7.204e-27              | -25.319 | -26.142 | -0.823  | (0)   |
| Cr  | (2) 3 37         | 0.000e+00  | 0.00000000             | -47.250 | -4/.801 | -0.011  | (0)   |
| CL  | $(2) \qquad 5.5$ | 3 3710-21  | 1 2170-23              | -20 472 | -22 015 | -2 443  | (0)   |
| Cr  | (3) 1.60         | )0e=07     | 1.21/8-25              | -20.472 | -22.913 | -2.445  | (0)   |
| CT. | Cr+3             | 1.595e-07  | 5.093e-13              | -6.797  | -12,293 | -5.496  | (0)   |
|     | Cr(OH) + 2       | 4.216e-10  | 1.522e-12              | -9.375  | -11.818 | -2.443  | (0)   |
|     | CrSO4+           | 1.225e-10  | 3.004e-11              | -9.912  | -10.522 | -0.611  | (0)   |
|     | CrOHSO4          | 9.120e-12  | 9.120e-12              | -11.040 | -11.040 | 0.000   | (0)   |
|     | Cr(OH)2+         | 1.032e-13  | 2.529e-14              | -12.986 | -13.597 | -0.611  | (0)   |
|     | CrCl+2           | 3.767e-14  | 1.360e-16              | -13.424 | -15.867 | -2.443  | (0)   |
|     | Cr(OH)3          | 1.297e-18  | 1.297e-18              | -17.887 | -17.887 | 0.000   | (0)   |
|     | Cr2(OH)2SO4+2    | 3.475e-19  | 1.254e-21              | -18.459 | -20.902 | -2.443  | (0)   |
|     | CrCl2+           | 1.086e-20  | 2.661e-21              | -19.964 | -20.575 | -0.611  | (0)   |
|     | Cr2(OH)2(SO4)2   | 1.882e-21  | 1.882e-21              | -20.725 | -20.725 | 0.000   | (0)   |
|     | Cr02-            | 1.488e-22  | 3.647e-23              | -21.827 | -22.438 | -0.611  | (0)   |
|     | CrOHC12          | 7.280e-23  | 7.280e-23              | -22.138 | -22.138 | 0.000   | (0)   |
|     | Cr(OH)4-         | 2.877e-23  | 7.053e-24              | -22.541 | -23.152 | -0.611  | (0)   |
| Cr  | (6) 0.00         | )0e+00     |                        | 40.001  | 40.040  | 0 (11   | ( ) ) |
|     | HCrO4-           | 0.000e+00  | 0.000e+00              | -40.231 | -40.842 | -0.611  | (0)   |
|     | Cr03S04-2        | 0.000e+00  | 0.000e+00              | -41.645 | -44.088 | -2.443  | (0)   |
|     | Nacro4-          | 0.000e+00  | 0.000e+00              | -41.825 | -42.436 | -0.611  | (0)   |
|     | CI04-2<br>KCr04- | 0.00000+00 | 0.00000000             | -42.005 | -42.099 | -0.234  | (0)   |
|     | H2CrOA           | 0.00000+00 | 0.0000+00              | -45 385 | -45 385 | 0.011   | (0)   |
|     | Cr03C1-          | 0.00000000 | 0.00000+00             | -47 250 | -47 861 | -0 611  | (0)   |
|     | Cr207-2          | 0.000e+00  | 0.000e+00              | -77.381 | -79.823 | -2.443  | (0)   |
| Cu  | (1) 3.30         | )5e-08     |                        |         |         |         | ( - ) |
| οu  | Cu+              | 3.093e-08  | 7.582e-09              | -7.510  | -8.120  | -0.611  | (0)   |
|     | CuCl             | 1.969e-09  | 1.969e-09              | -8.706  | -8.706  | 0.000   | (0)   |
|     | CuCl2-           | 1.466e-10  | 8.486e-11              | -9.834  | -10.071 | -0.237  | (0)   |
|     | CuCl3-2          | 2.492e-14  | 3.742e-15              | -13.603 | -14.427 | -0.823  | (0)   |
| Cu  | (2) 1.55         | 58e-05     |                        |         |         |         |       |
|     | CuHCO3+          | 1.385e-05  | 3.395e-06              | -4.859  | -5.469  | -0.611  | (0)   |
|     | CuSO4            | 8.957e-07  | 8.957e-07              | -6.048  | -6.048  | 0.000   | (0)   |
|     | CuCO3            | 4.208e-07  | 4.208e-07              | -6.376  | -6.376  | 0.000   | (0)   |
|     | Cu+2             | 2.655e-07  | 1.548e-07              | -6.576  | -6.810  | -0.234  | (0)   |
|     | Cu (CO3) 2-2     | 1.449e-07  | 5.229e-10              | -6.839  | -9.282  | -2.443  | (0)   |
|     | CuOH+            | 1.155e-10  | 6.685e-11              | -9.938  | -10.175 | -0.237  | (0)   |
|     | CuCl+            | 8.741e-11  | 5.061e-11              | -10.058 | -10.296 | -0.237  | (0)   |
|     | Cu2 (OH) 2+2     | 3.110e-14  | 1.123e-16              | -13.507 | -15.950 | -2.443  | (U)   |
|     |                  | 3.02Ue-15  | 3.02UE-15              | -14.441 | -14.441 | 0.000   | (0)   |
|     | Cu (OH) 2        | 1.022e-15  | 1.822e-15              | -14./40 | -14./40 | 0.000   | (U)   |
|            | CuCl3-              | 1.203e-20              | 6.968e-21              | -19.920 | -20.157 | -0.237  | (0) |
|------------|---------------------|------------------------|------------------------|---------|---------|---------|-----|
|            | Cu(OH)3-            | 2.082e-21              | 5.103e-22              | -20.682 | -21.292 | -0.611  | (0) |
|            | CuCl4-2             | 4.797e-26              | 7.204e-27              | -25.319 | -26.142 | -0.823  | (0) |
|            | Cu(OH)4-2           | 1.519e-28              | 5.485e-31              | -27.818 | -30.261 | -2.443  | (0) |
| Fe         | (2)                 | 2.105e-03              |                        |         |         |         |     |
|            | Fe+2                | 2.012e-03              | 7.262e-06              | -2.696  | -5.139  | -2.443  | (0) |
|            | FeHCO3+             | 4.829e-05              | 3.1/8e-05              | -4.316  | -4.498  | -0.182  | (0) |
|            | FeSU4               | 4.5U2e-U5              | 4.502e-05              | -4.34/  | -4.34/  | 0.000   | (0) |
|            | Feort               | 0.3420-11              | 3.948e-11<br>4.293o-19 | -17 369 | -17 369 | -0.206  | (0) |
|            | Fe(OH)2<br>Fe(OH)3- | 4.203E=10<br>2.971e=22 | 4.203e=10<br>1 850e=22 | -21 527 | -21 733 | -0.206  | (0) |
| Fo         | (3)                 | 6 0980-11              | 1.0306 22              | 21.521  | 21.755  | 0.200   | (0) |
| TC         | Fe(OH)2+            | 4.957e-11              | 3.160e-11              | -10.305 | -10.500 | -0.195  | (0) |
|            | Fe(SO4)2-           | 4.211e-12              | 1.032e-12              | -11.376 | -11.986 | -0.611  | (0) |
|            | FeOH+2              | 3.961e-12              | 5.949e-13              | -11,402 | -12,226 | -0.823  | (0) |
|            | FeSO4+              | 3.071e-12              | 1.912e-12              | -11.513 | -11.719 | -0.206  | (0) |
|            | Fe2(OH)2+4          | 6.902e-14              | 1.172e-23              | -13.161 | -22.931 | -9.770  | (0) |
|            | Fe+3                | 2.271e-14              | 6.746e-15              | -13.644 | -14.171 | -0.527  | (0) |
|            | Fe(OH)3             | 4.635e-15              | 4.635e-15              | -14.334 | -14.334 | 0.000   | (0) |
|            | FeCl+2              | 2.798e-16              | 4.203e-17              | -15.553 | -16.376 | -0.823  | (0) |
|            | Fe3(OH)4+5          | 9.873e-18              | 5.353e-33              | -17.006 | -32.271 | -15.266 | (0) |
|            | Fe(OH)4-            | 9.245e-20              | 5.894e-20              | -19.034 | -19.230 | -0.195  | (0) |
|            | FeCl2+              | 6.220e-20              | 3.872e-20              | -19.206 | -19.412 | -0.206  | (0) |
|            | FeC13               | 7.987e-25              | 7.987e-25              | -24.098 | -24.098 | 0.000   | (0) |
| Н(С        | ))                  | 1.268e-20              |                        |         |         |         |     |
|            | Н2                  | 6.340e-21              | 8.819e-21              | -20.198 | -20.055 | 0.143   | (0) |
| K          |                     | 1.467e-01              |                        |         |         |         |     |
|            | K+                  | 1.178e-01              | 1.029e-01              | -0.929  | -0.987  | -0.059  | (0) |
|            | KSO4-               | 2.88/e-02              | 1.841e-02              | -1.540  | -1./35  | -0.195  | (0) |
| <b>T</b> 2 | KCrO4-              | 0.000e+00              | 0.000e+00              | -42.706 | -43.31/ | -0.611  | (0) |
| ЦЦ         | T I L               | 1 7500-02              | 1 5200-02              | _1 757  | _1 016  | -0.059  | (0) |
|            | Tisov-              | 2 7080-03              | 1.5290-02              | -1.757  | -1.010  | -0.009  | (0) |
| Mα         | TT204-              | 9 0180-01              | 1.0006-03              | -2.507  | -2.115  | -0.200  | (0) |
| 1.19       | MaHCO3+             | 4.448e-01              | 2.575e-01              | -0.352  | -0.589  | -0.237  | (0) |
|            | MaSO4               | 3.328e-01              | 3.328e-01              | -0.478  | -0.478  | 0.000   | (0) |
|            | Mg+2                | 1.242e-01              | 7.241e-02              | -0.906  | -1.140  | -0.234  | (0) |
|            | MqCO3               | 2.781e-05              | 2.781e-05              | -4.556  | -4.556  | 0.000   | (0) |
|            | MqOH+               | 5.846e-09              | 3.937e-09              | -8.233  | -8.405  | -0.172  | (0) |
| Mn         | (2)                 | 5.262e-06              |                        |         |         |         | . , |
|            | Mn+2                | 4.981e-06              | 1.798e-08              | -5.303  | -7.745  | -2.443  | (0) |
|            | MnHCO3+             | 2.003e-07              | 1.247e-07              | -6.698  | -6.904  | -0.206  | (0) |
|            | MnSO4               | 8.075e-08              | 8.075e-08              | -7.093  | -7.093  | 0.000   | (0) |
|            | MnCl+               | 7.500e-12              | 4.669e-12              | -11.125 | -11.331 | -0.206  | (0) |
|            | MnOH+               | 9.908e-15              | 6.168e-15              | -14.004 | -14.210 | -0.206  | (0) |
|            | MnCl2               | 1.360e-15              | 1.360e-15              | -14.866 | -14.866 | 0.000   | (0) |
|            | MnCl3-              | 1.242e-19              | 7.729e-20              | -18.906 | -19.112 | -0.206  | (0) |
|            | Mn (OH) 3-          | 1.142e-30              | 7.109e-31              | -29.942 | -30.148 | -0.206  | (0) |
|            | Mn (OH) 4-2         | 2.087e-39              | 3.134e-40              | -38.680 | -39.504 | -0.823  | (0) |
| MU         | (3)                 | 2.704e-29              | 0 0 0 1 - 0 0          | 20 500  | 00 005  | 0 507   | (0) |
| Mm         | Mn+3                | 2./U4e-29              | 8.031e-30              | -28.568 | -29.095 | -0.527  | (0) |
| MU         | $Mn \cap A = 2$     | 0.0000+00              | 0 0000+00              | -75 005 | -75 829 | -0 823  | (0) |
| Mm         | MII04-2             | 0.00000000             | 0.00000000             | -75.005 | -/J.029 | -0.025  | (0) |
| MIII       | (/)<br>MpO4=        |                        | 0 0000+00              | -80 921 | -81 201 | -0 280  | (0) |
| Mo         | 11104               | 7 548e-04              | 0.00000100             | 00.521  | 01.201  | 0.200   | (0) |
| 110        | Mo7024-6            | 1 075e-04              | 1 1190-26              | -3 968  | -25 951 | -21 983 | (0) |
|            | HMoO4-              | 1.217e-06              | 2.983e-07              | -5.915  | -6.525  | -0.611  | (0) |
|            | MoO4-2              | 7.286e-07              | 4.248e-07              | -6.138  | -6.372  | -0.234  | (0) |
|            | H2MoO4              | 7.712e-08              | 7.712e-08              | -7.113  | -7.113  | 0.000   | (0) |
|            | AlMo6021-3          | 1.790e-09              | 5.717e-15              | -8.747  | -14.243 | -5.496  | (0) |
|            | HMo7024-5           | 1.774e-09              | 9.620e-25              | -8.751  | -24.017 | -15.266 | (0) |
|            | H2Mo7O24-4          | 1.211e-14              | 2.056e-24              | -13.917 | -23.687 | -9.770  | (0) |
|            | H3Mo7O24-3          | 4.004e-20              | 1.279e-25              | -19.398 | -24.893 | -5.496  | (0) |
| Na         |                     | 9.082e-01              |                        |         |         |         |     |
|            | Na+                 | 6.694e-01              | 5.850e-01              | -0.174  | -0.233  | -0.059  | (0) |
|            | NaSO4-              | 1.244e-01              | 7.934e-02              | -0.905  | -1.101  | -0.195  | (0) |
|            | NaHCO3              | 1.143e-01              | 1.143e-01              | -0.942  | -0.942  | 0.000   | (0) |
|            | NaCO3-              | 7.887e-06              | 5.029e-06              | -5.103  | -5.299  | -0.195  | (0) |

| 0(0   | NaCrO4-               | 0.000e+00              | 0.000e+00              | -41.825          | -42.436 | -0.611  | (0)   |
|-------|-----------------------|------------------------|------------------------|------------------|---------|---------|-------|
| 0 ( 0 | 02                    | 0.000e+00              | 0.000e+00              | -52.969          | -52.826 | 0.143   | (0)   |
| Pb    |                       | 4.839e-05              |                        |                  |         |         |       |
|       | PbHCO3+               | 3.204e-05              | 7.854e-06              | -4.494           | -5.105  | -0.611  | (0)   |
|       | PD (SU4) 2-2<br>Phs04 | 1.5860-05              | 5.725e-08<br>3.762e-07 | -4.800           | -7.242  | -2.443  | (0)   |
|       | Ph+2                  | 5.216e-08              | 3.041e-08              | -7.283           | -7.517  | -0.234  | (0)   |
|       | PbCO3                 | 4.221e-08              | 4.221e-08              | -7.375           | -7.375  | 0.000   | (0)   |
|       | Pb(CO3)2-2            | 1.557e-08              | 5.620e-11              | -7.808           | -10.250 | -2.443  | (0)   |
|       | PbCl+                 | 9.081e-10              | 2.226e-10              | -9.042           | -9.653  | -0.611  | (0)   |
|       | PbOH+                 | 4.256e-11              | 1.043e-11              | -10.371          | -10.982 | -0.611  | (0)   |
|       | Pb2OH+3               | 1.575e-12              | 5.029e-18              | -11.803          | -17.299 | -5.496  | (0)   |
|       | PbC12                 | 2.051e-13              | 2.051e-13              | -12.688          | -12.688 | 0.000   | (0)   |
|       | PDCI3-                | 6.8/1e=1/<br>4 505e=17 | 1.084e-17<br>4 505e-17 | -16.103          | -16 346 | -0.611  | (0)   |
|       | PbC14-2               | 4.399e-19              | 1.588e-21              | -18.357          | -20.799 | -2.443  | (0)   |
|       | Pb (OH) 3-            | 2.510e-23              | 6.153e-24              | -22.600          | -23.211 | -0.611  | (0)   |
|       | Pb4 (OH) 4+4          | 1.753e-24              | 2.976e-34              | -23.756          | -33.526 | -9.770  | (0)   |
|       | Pb3(OH)4+2            | 3.412e-28              | 1.232e-30              | -27.467          | -29.909 | -2.443  | (0)   |
|       | Pb(OH)4-2             | 5.701e-29              | 2.058e-31              | -28.244          | -30.687 | -2.443  | (0)   |
| S(6   | )                     | 6.135e-01              | 2 200 - 01             | 0 470            | 0 470   | 0 000   | (0)   |
|       | MgSO4                 | 3.328e-UI              | 3.328e-01              | -0.4/8           | -0.4/8  | 0.000   | (0)   |
|       | Na504-<br>Ca504       | 7 3830-02              | 7.383e=02              | -0.905           | -1.132  | -0.195  | (0)   |
|       | S04-2                 | 4.332e-02              | 2.526e-02              | -1.363           | -1.598  | -0.234  | (0)   |
|       | KSO4-                 | 2.887e-02              | 1.841e-02              | -1.540           | -1.735  | -0.195  | (0)   |
|       | SrSO4                 | 4.522e-03              | 4.522e-03              | -2.345           | -2.345  | 0.000   | (0)   |
|       | LiSO4-                | 2.708e-03              | 1.686e-03              | -2.567           | -2.773  | -0.206  | (0)   |
|       | AlSO4+                | 1.829e-03              | 1.101e-03              | -2.738           | -2.958  | -0.220  | (0)   |
|       | Al(SO4)2-             | 4.951e-04              | 2.980e-04              | -3.305           | -3.526  | -0.220  | (0)   |
|       | HSO4-                 | 1.44/e-04              | 8./11e-05              | -3.839           | -4.060  | -0.220  | (0)   |
|       | Pb (SOA) 2=2          | 4.502e-05              | 4.302e-03<br>5.725e-08 | -4.347           | -4.347  | -2 443  | (0)   |
|       | VOSO4                 | 1.317e-05              | 1.317e-05              | -4.880           | -4.880  | 0.000   | (0)   |
|       | CuSO4                 | 8.957e-07              | 8.957e-07              | -6.048           | -6.048  | 0.000   | (0)   |
|       | PbSO4                 | 3.762e-07              | 3.762e-07              | -6.425           | -6.425  | 0.000   | (0)   |
|       | MnSO4                 | 8.075e-08              | 8.075e-08              | -7.093           | -7.093  | 0.000   | (0)   |
|       | V02S04-               | 2.238e-10              | 5.486e-11              | -9.650           | -10.261 | -0.611  | (0)   |
|       | CrSO4+                | 1.225e-10              | 3.004e-11              | -9.912           | -10.522 | -0.611  | (0)   |
|       | VSO4+                 | 1.190e-11<br>9.120o-12 | 2.91/e-12<br>9.120o-12 | -10.924          | -11.535 | -0.611  | (0)   |
|       | Fe (SO4) 2-           | 4.211e-12              | 1.032e-12              | -11.376          | -11.986 | -0.611  | (0)   |
|       | FeSO4+                | 3.071e-12              | 1.912e-12              | -11.513          | -11.719 | -0.206  | (0)   |
|       | Cr2 (OH) 2SO4         | 4+2 3.475e-19          | 1.254e-21              | -18.459          | -20.902 | -2.443  | (0)   |
|       | Cr2(OH)2(SC           | 04)2 1.882e-21         | 1.882e-21              | -20.725          | -20.725 | 0.000   | (0)   |
|       | Cr03S04-2             | 0.000e+00              | 0.000e+00              | -41.645          | -44.088 | -2.443  | (0)   |
| Sb (  | 3)                    | 2.729e-05              | 1 004- 05              | 4 7 2 0          | 4 7 2 0 | 0 000   | (0)   |
|       | Sh (OH) 3             | 1.824e-05<br>8.943e-06 | 1.824e-05<br>8.943e-06 | -4.739           | -4.739  | 0.000   | (0)   |
|       | Sb (OH) 2+            | 6.533e-08              | 1.601e-08              | -7.185           | -7.796  | -0.611  | (0)   |
|       | SbO+                  | 4.705e-08              | 1.153e-08              | -7.327           | -7.938  | -0.611  | (0)   |
|       | Sb02-                 | 3.414e-12              | 8.369e-13              | -11.467          | -12.077 | -0.611  | (0)   |
|       | Sb(OH)4-              | 4.483e-13              | 1.099e-13              | -12.348          | -12.959 | -0.611  | (0)   |
| Sb (  | 5)                    | 3.475e-05              | 0 545 04               |                  |         | 0 64.4  | ( ) ) |
|       | Sb03-                 | 3.4/5e-05              | 8.51/e-06              | -4.459           | -5.070  | -0.611  | (0)   |
|       | SD (OH) 6-<br>Sh02+   | 1.251e-09<br>2.593e-14 | 1.093e-09<br>6 357e-15 | -8.903           | -8.961  | -0.039  | (0)   |
| Si    | 00021                 | 2.700e-01              | 0.0070 10              | 10.000           | 11.101  | 0.011   | (0)   |
|       | H4SiO4                | 2.700e-01              | 3.756e-01              | -0.569           | -0.425  | 0.143   | (0)   |
|       | H3SiO4-               | 2.656e-06              | 1.538e-06              | -5.576           | -5.813  | -0.237  | (0)   |
|       | H2SiO4-2              | 1.664e-14              | 2.750e-15              | -13.779          | -14.561 | -0.782  | (0)   |
| Sr    |                       | 1.375e-02              |                        | 0.111            | 0 00 0  | 0 1 0 5 | (0)   |
|       | SrHCO3+               | 7.686e-03              | 5.058e-03              | -2.114           | -2.296  | -0.182  | (0)   |
|       | S1504<br>9r+2         | 4.522e-U3<br>1.530a-03 | 4.322e-U3<br>8.9730-04 | -2.345           | -2.345  | 0.000   | (0)   |
|       | STC03                 | 1.JJ9e-UJ<br>2.675e-07 | 2.675e-04              | -∠.º⊥3<br>-6.573 | -3.047  | -0.234  | (0)   |
|       | SrOH+                 | 1.301e-12              | 8.096e-13              | -11.886          | -12.092 | -0.206  | (0)   |
| V(2   | )                     | 3.321e-19              |                        |                  |         |         |       |

| V+2                                   | 3.320e-19                                     | 1.19                                   | 9e-21                                    | -18.479                                                      | -20.921           | -2.443  | (0) |
|---------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------------------------|-------------------|---------|-----|
| VOH+                                  | 2.161e-23                                     | 5.29                                   | 7e-24                                    | -22.665                                                      | -23.276           | -0.611  | (0) |
| V(3)                                  | 5.029e-04                                     |                                        |                                          |                                                              |                   |         |     |
| V (OH) 3                              | 5.028e-04                                     | 5.02                                   | 8e-04                                    | -3.299                                                       | -3.299            | 0.000   | (0) |
| V+3                                   | 7.662e-08                                     | 2.44                                   | 7e-13                                    | -7.116                                                       | -12.611           | -5.496  | (0) |
| VOH+2                                 | 4.640e-09                                     | 1.67                                   | 5e-11                                    | -8.333                                                       | -10.776           | -2.443  | (0) |
| V(OH)2+                               | 9.772e-11                                     | 2.39                                   | 5e-11                                    | -10.010                                                      | -10.621           | -0.611  | (0) |
| VSO4+                                 | 1.190e-11                                     | 2.91                                   | 7e-12                                    | -10.924                                                      | -11.535           | -0.611  | (0) |
| V2 (OH) 2+4                           | 1.043e-11                                     | 1.77                                   | 0e-21                                    | -10.982                                                      | -20.752           | -9.770  | (0) |
| V2 (OH) 3+3                           | 3.556e-18                                     | 1.13                                   | 6e-23                                    | -17.449                                                      | -22.945           | -5.496  | (0) |
| ∨(4)                                  | 5.380e-04                                     |                                        |                                          |                                                              |                   |         |     |
| VO+2                                  | 5.246e-04                                     | 1.89                                   | 4e-06                                    | -3.280                                                       | -5.723            | -2.443  | (0) |
| VOSO4                                 | 1.31/e-05                                     | 1.31                                   | 7e-05                                    | -4.880                                                       | -4.880            | 0.000   | (0) |
| V(OH)3+                               | 1.008e-07                                     | 2.47                                   | 0e-08                                    | -6.997                                                       | -7.607            | -0.611  | (0) |
| H2V2O4+2                              | 3.697e-08                                     | 1.33                                   | 4e-10                                    | -7.432                                                       | -9.875            | -2.443  | (0) |
| VOC1+                                 | 4.471e-09                                     | 1.09                                   | 6e-09                                    | -8.350                                                       | -8.960            | -0.611  | (0) |
| V (5)                                 | 4.090e-09                                     | 0 00                                   | - 10                                     | 0.466                                                        | 0.076             | 0 (11   | (0) |
| H2VO4-                                | 3.422e-09                                     | 8.38                                   | 7e-10                                    | -8.466                                                       | -9.076            | -0.611  | (0) |
| H3VO4                                 | 2.960e-10                                     | 2.96                                   | 0e-10                                    | -9.529                                                       | -9.529            | 0.000   | (0) |
| V02S04-                               | 2.238e-10                                     | 5.48                                   | 6e-11                                    | -9.650                                                       | -10.261           | -0.611  | (0) |
| V02+                                  | 1.041e-10                                     | 9.09                                   | 8e-11                                    | -9.982                                                       | -10.041           | -0.059  | (0) |
| HVO4-2                                | 1.654e-11                                     | 5.96                                   | 9e-14                                    | -10.782                                                      | -13.224           | -2.443  | (0) |
| H3V20/-                               | 1.366e-11                                     | 3.34                                   | 9e-12                                    | -10.864                                                      | -11.4/5           | -0.611  | (0) |
| HV207-3                               | 1.110e-14                                     | 3.54                                   | 4e-20                                    | -13.955                                                      | -19.451           | -5.496  | (0) |
| V309-3                                | 1.764e-15                                     | 5.63                                   | 3e-21                                    | -14.754                                                      | -20.249           | -5.496  | (0) |
| V207-4                                | 1.592e-16                                     | 2.70                                   | 3e-26                                    | -15.798                                                      | -25.568           | -9.770  | (0) |
| V4012-4                               | 2.424e-17                                     | 4.11                                   | 4e-27                                    | -16.616                                                      | -26.386           | -9.770  | (0) |
| VO4-3                                 | 2.654e-18                                     | 8.47                                   | 6e-24                                    | -17.576                                                      | -23.072           | -5.496  | (0) |
| V10028-6                              | 1.429e-34                                     | 0.00                                   | 0e+00                                    | -33.845                                                      | -55.828           | -21.983 | (0) |
| HV10028-5                             | 1.487e-37                                     | 0.00                                   | 0e+00                                    | -36.828                                                      | -52.093           | -15.266 | (0) |
| H2V10028-4                            | 0.000e+00                                     | 0.00                                   | 0e+00                                    | -41.568                                                      | -51.338           | -9.770  | (0) |
|                                       |                                               |                                        |                                          |                                                              |                   |         |     |
|                                       |                                               | Satur                                  | ation ir                                 | ndices                                                       |                   |         |     |
| Phase                                 | SI** 1                                        | og IAP                                 | log K                                    | (298 K,                                                      | 1 atm)            |         |     |
| 71 (OH) 3 (om)                        | -3 65                                         | 7 15                                   | 10 00                                    | 71 (04) 3                                                    |                   |         |     |
| $\lambda 12 (M_{\odot} O A) 3$        | -31 98                                        | -29 62                                 | 2 37                                     | A12(MoO/                                                     | 1) 3              |         |     |
| A1203                                 | -1 10                                         | 15 25                                  | 10 65                                    | 71203                                                        | 1) 5              |         |     |
| A1203<br>A14 (OH) 10904               | -4.40                                         | 18 72                                  | 22 70                                    | A1203                                                        | 0904              |         |     |
| A14 (OH) 10304                        | -3.90                                         | 1 50                                   | 22.70                                    |                                                              | 00004             |         |     |
| A1A304.2020                           | 0 51                                          | -2 72                                  | -3.00                                    | A1A904.2                                                     | .1120             |         |     |
| Alch                                  | _112 32                                       | -2.72                                  | -5.25                                    | Alch                                                         |                   |         |     |
| ALSD                                  | -112.32                                       | 1 86                                   | -1 40                                    | KVJ3(GU)                                                     | 1)2(04)6          |         |     |
| Aralocito                             | 1 22                                          | 4.00<br>0.11                           | 7 70                                     | Dhco4                                                        | 1)2(011)0         |         |     |
| Anglesite                             | -1.32                                         | -3 10                                  | -1.19                                    | PD504<br>Co204                                               |                   |         |     |
| Annyarite                             | 14 20                                         | -3.49                                  | -4.30                                    | CaSU4                                                        | 1004              |         |     |
| Antierite                             | -14.29                                        | -3.30                                  | 0.79                                     | Cu3 (OH) 4                                                   | 1504              |         |     |
| Aragonite                             | 0.07                                          | -0.23                                  | -8.30                                    | LaCU3                                                        |                   |         |     |
| Arsenoiice                            | -10 01                                        | -12.33                                 | -2.70                                    | AS400<br>MacO3·Ma                                            | · (OU) 2 · 3U2O   |         |     |
| ALCINICE                              | -10.91                                        | 10 70                                  | 9.00                                     | MgCO3:Mg                                                     | g(On)2:3n20       | 1       |     |
| AS205                                 | -17.50                                        | -10.79                                 | 6./1                                     | ASZU5                                                        |                   |         |     |
| Atacamite                             | -12.30                                        | -4.91                                  | 1.39                                     | Cu2 (OH) 3                                                   |                   |         |     |
| Azurile                               | =7.93                                         | -24.84                                 | -16.91                                   | CU3 (OH) 2                                                   | 2 (CO3) 2         |         |     |
| Ba (OH) 2:8H2O                        | -23.13                                        | 1.26                                   | 24.39                                    | Ba (OH) 2:                                                   | :8H2O             |         |     |
| Ba2V20/:2H2O                          | -19.72                                        | -3.85                                  | 15.8/                                    | Ba2V207:                                                     | ZHZO              |         |     |
| Ba3 (As04) 2                          | 10.55                                         | 1.64                                   | -8.91                                    | Ba3 (AsO4                                                    | 1)2               |         |     |
| Ba3(VO4)2:4H                          | 20 -33.28                                     | -0.34                                  | 32.94                                    | Ba3(VO4)                                                     | 2:4H2O            |         |     |
| BaCr04                                | -3/.67                                        | -4/.34                                 | -9.67                                    | Bacr04                                                       |                   |         |     |
| BaMOU4                                | -3.85                                         | -10.81                                 | -6.96                                    | вамо04                                                       |                   |         |     |
| Barite                                | 3.94                                          | -6.04                                  | -9.98                                    | BaSO4                                                        |                   |         |     |
| Birnessite                            | -20.02                                        | -/.93                                  | T8.03                                    |                                                              |                   |         |     |
| BIXDYITE                              | -31./9                                        | -32.44                                 | -0.64                                    | MIIZO3                                                       |                   |         |     |
| Boehmite                              | -1 11                                         | 1.41                                   | 8.58                                     | ALOOH                                                        |                   |         |     |
| Brochantite                           | 10 07                                         | 1 0 1                                  | 1 5 0 0                                  | 0 / ( OTT ) (                                                | - a o 4           |         |     |
|                                       | -19.27                                        | -4.04                                  | 15.22                                    | Cu4 (OH) 6                                                   | 5SO4              |         |     |
| Brucile                               | -19.27<br>-9.72                               | -4.04<br>7.12                          | 15.22                                    | Cu4 (OH) 6<br>Mg (OH) 2                                      | 5SO4              |         |     |
| Ca (VO3) 2                            | -19.27<br>-9.72<br>-10.47                     | -4.04<br>7.12<br>-4.81                 | 15.22<br>16.84<br>5.66                   | Cu4 (OH) 6<br>Mg (OH) 2<br>Ca (VO3) 2                        | 5SO4<br>2         |         |     |
| Ca (VO3) 2<br>Ca2V207                 | -19.27<br>-9.72<br>-10.47<br>-15.62           | -4.04<br>7.12<br>-4.81<br>1.88         | 15.22<br>16.84<br>5.66<br>17.50          | Cu4 (OH) 6<br>Mg (OH) 2<br>Ca (VO3) 2<br>Ca2V207             | 5SO4              |         |     |
| Ca (VO3) 2<br>Ca2V207<br>Ca2V207:2H20 | -19.27<br>-9.72<br>-10.47<br>-15.62<br>-20.31 | -4.04<br>7.12<br>-4.81<br>1.88<br>1.24 | 15.22<br>16.84<br>5.66<br>17.50<br>21.55 | Cu4 (OH) 6<br>Mg (OH) 2<br>Ca (VO3) 2<br>Ca2V207<br>Ca2V207: | 5804<br>2<br>2H20 |         |     |

| Ca3(VO4)2                 | -30.39  | 8.57   | 38.96        | Ca3(VO4)2                |
|---------------------------|---------|--------|--------------|--------------------------|
| Ca3(V04)2:4H20            | -32.57  | 7.29   | 39.86        | Ca3(V04)2:4H20           |
| Ca3Sh2 .                  | -231 55 | -88 57 | 142 97       | Ca3Sh2                   |
| CaCrOA                    | _12 53  | -11 79 | _2 27        | Cacrol                   |
|                           | -42.33  | -44.79 | -2.27        | CaC104                   |
| Calcite                   | 0.25    | -8.23  | -8.48        |                          |
| CaMoO4                    | -0.32   | -8.27  | -7.95        | CaMo04                   |
| Celestite                 | 1.98    | -4.64  | -6.62        | SrSO4                    |
| Cerussite                 | -0.72   | -13.85 | -13.13       | PbCO3                    |
| CH4 (g)                   | -40.85  | -81.90 | -41.05       | CH4                      |
| Chalcanthite              | -7.37   | -10.01 | -2.64        | CuSO4:5H2O               |
| Chalcedony                | 3.76    | 0.21   | -3.55        | SiO2                     |
| Chrvsotile                | -10.08  | 22.12  | 32.20        | Ma3Si2O5(OH)4            |
| Claudetite                | -9.26   | -12.33 | -3.06        | As406                    |
| CO2 (a)                   | 3 23    | -14 92 | -18 15       | CO2                      |
| Cotuppito                 | 10 11   | 14 00  | 10.10        | DhCl2                    |
|                           | 25 47   | -14.09 | 10 02        |                          |
|                           | -23.47  | -14.05 | 10.02        |                          |
| Cr(OH)3                   | -10.80  | -9.46  | 1.34         | Cr(OH)3                  |
| Cr(OH)3(am)               | -8.71   | -9.46  | -0.75        | Cr(OH)3                  |
| Cr2O3                     | -15.61  | -17.97 | -2.36        | Cr203                    |
| CrCl2                     | -44.38  | -30.29 | 14.09        | CrCl2                    |
| CrCl3                     | -48.03  | -32.92 | 15.11        | CrCl3                    |
| Cristobalite              | 3.56    | 0.21   | -3.35        | SiO2                     |
| Crmetal                   | -61.40  | -30.91 | 30.48        | Cr                       |
| Cr03                      | -48.27  | -51.48 | -3.21        | Cr03                     |
| C11 (OH) 2                | _7 22   | 1 45   | 8 67         | C11 (OH) 2               |
| Cu(Ch(2))                 | 10.40   | 25 01  | 45 21        |                          |
|                           | -19.40  | 23.01  | 43.21        |                          |
| Cu2Sb:3H2O                | -22.45  | -57.34 | -34.88       | Cu2Sb:3H2O               |
| Cu2SO4                    | -15.89  | -17.84 | -1.95        | Cu2SO4                   |
| Cu3(AsO4)2:2H2O           | -12.21  | -6.11  | 6.10         | Cu3 (AsO4) 2:2H2O        |
| Cu3Sb                     | -23.21  | -65.81 | -42.59       | Cu3Sb                    |
| CuCO3                     | -1.65   | -13.15 | -11.50       | CuCO3                    |
| CuCrO4                    | -44.27  | -49.71 | -5.44        | CuCrO4                   |
| Cumetal                   | -3.36   | -12.12 | -8.76        | Cu                       |
| CuMoO4                    | -0.11   | -13.18 | -13.08       | CuMoO4                   |
| C110C11S04                | -16.94  | -6.63  | 10.30        | C110C11S04               |
| Cupriaforrito             | -6.80   | -0.91  | 5 99         | Cureo204                 |
| Cupricientice             | -0.00   | -0.01  | J.99<br>1 41 | Curez04                  |
| Cupille                   | -0.25   | -7.00  | -1.41        | Cu20                     |
| cuprousierrice            | 3.80    | -5.12  | -8.92        | CureOz                   |
| CuSO4                     | -11.35  | -8.41  | 2.94         | CuSO4                    |
| Diaspore                  | 0.59    | 7.47   | 6.87         | Alooh                    |
| Dolomite(disord           | ered) 0 | .83 -1 | 5.71 -1      | 6.54 CaMg(CO3)2          |
| Dolomite(ordered          | d) 1.38 | -15.7  | 1 -17.0      | 9 CaMg(CO3)2             |
| Epsomite                  | -2.85   | -4.98  | -2.13        | MgSO4:7H2O               |
| Fe (OH) 2                 | -10.44  | 3.13   | 13.56        | Fe (OH) 2                |
| Fe(OH)2.7Cl.3             | -1.08   | -4.12  | -3.04        | Fe(OH)2.7C1.3            |
| Fe (VO3) 2                | -4.33   | -8.05  | -3.72        | Fe (VO3) 2               |
| Fe2 (SO4) 3               | -29.40  | -33.13 | -3.73        | Fe2 (SO4) 3              |
| Fe3(OH)8                  | -20 64  | -0.42  | 20 22        | Fe3 (OH) 8               |
| FoldOII)0                 | 20.04   | -7 33  | 20.22        | Fe3(01)0                 |
| FeASU4.2HZU               | 21 72   | -7.55  | 7 20         | Feasure 204              |
| reciz04                   | -21.72  | -14.52 | 7.20         | reciz04                  |
| FeMoO4                    | -1.42   | -11.51 | -10.09       | FeMoO4                   |
| Ferrihydrite              | -4.96   | -1. 77 | 3.19         | Fe(OH) 3                 |
| Gibbsite                  | -1.14   | 7.15   | 8.29         | Al (OH) 3                |
| Goethite                  | -1.94   | -1.45  | 0.49         | FeOOH                    |
| Greenalite                | -10.68  | 10.13  | 20.81        | Fe3Si2O5(OH)4            |
| Gypsum                    | 0.48    | -4.13  | -4.61        | CaSO4:2H2O               |
| H-Jarosite                | -13.59  | -25.69 | -12.10       | (H3O) Fe3 (SO4) 2 (OH) 6 |
| H2MoO4                    | -2 40   | -15 28 | -12 88       | H2MoO4                   |
| Halite                    | -5 52   | -3 92  | 1 60         | NaCl                     |
| Ualleveite                | 5.52    | 15 04  | 0.57         | A120-205 (OU) 4          |
| nalloysile<br>Navamannita | J.47    | 10.10  | 9.57         | A1251205 (0H) 4          |
| nausmannite               | -41.93  | TA.TO  | 1.03         | MII304                   |
| nematite                  | -1.1/   | -2.59  | -1.42        | rezU3                    |
| Hercynite                 | -4.19   | 18.70  | 22.89        | FeAl204                  |
| Huntite                   | -0.69   | -30.66 | -29.97       | CaMg3 (CO3) 4            |
| Hydrocerussite            | -8.19   | -26.96 | -18.77       | Pb3(OH)2(CO3)2           |
| Hydromagnesite            | -15.29  | -24.06 | -8.77        | Mg5(CO3)4(OH)2:4H2O      |
| K-Alum                    | -8.10   | -13.27 | -5.17        | KAl(SO4)2:12H2O          |
| K-Jarosite                | -7.10   | -21.90 | -14.80       | KFe3(SO4)2(OH)6          |
| K2Cr207                   | -79,12  | -96.36 | -17.24       | K2Cr207                  |
|                           |         |        |              |                          |

| K2CrO4              | -44.36   | -44.87  | -0.51          | K2CrO4               |
|---------------------|----------|---------|----------------|----------------------|
| K2MoO4              | -11.61   | -8.35   | 3.26           | К2МоО4               |
| Kaolinite           | 7.61     | 15.04   | 7.43           | Al2Si2O5(OH)4        |
| Langite             | -21.85   | -4.36   | 17.49          | Cu4(OH)6SO4:H2O      |
| Larnakite           | -7.61    | -8.05   | -0.43          | PbO:PbSO4            |
| Laurionite          | -7.69    | -7.07   | 0.62           | PbOHCl               |
| Lepidocrocite       | -2.82    | -1.45   | 1.37           | FeOOH                |
| Li2CrO4             | -51.39   | -46.53  | 4.86           | Li2CrO4              |
| Li2MoO4             | -12.44   | -10.00  | 2.44           | Li2MoO4              |
| Lime                | -26.01   | 6.69    | 32.70          | CaO                  |
| Litharge            | -11.63   | 1.07    | 12.69          | PbO                  |
| Maghemite           | -8.97    | -2.59   | 6.39           | Fe203                |
| Magnesioferrite     | -12.00   | 4.86    | 16.86          | Fe2MqO4              |
| Magnesite           | -0.02    | -7.48   | -7.46          | MqCO3                |
| Magnetite           | -2.55    | 0.86    | 3.40           | Fe.304               |
| Malachite           | -6.39    | -11.69  | -5.31          | Cu2 (OH) 2CO3        |
| Manganite           | -16.37   | 8.97    | 25.34          | MnOOH                |
| Massicot            | -11.83   | 1.07    | 12.89          | PbO                  |
| Melanothallite      | -20.44   | -14.18  | 6.26           | CuCl2                |
| Melanterite         | -6.77    | -8.98   | -2.21          | FeS04:7H20           |
| Mg(OH)2(active)     | -11 67   | 7 12    | 18 79          | Ma (OH) 2            |
| Mg (VO3) 2          | -15 33   | -4 05   | 11 28          | Ma (VO3) 2           |
| Mg2Sb3              | -181 30  | -106.62 | 74 68          | Mg2Sh3               |
| Mg2V207             | -22 97   | 3 39    | 26.36          | Mg2V207              |
| Macr201             | -26 73   | -10 53  | 16 20          | MgCr20/              |
| MaCrOA              | -19 12   | -44 04  | 5 38           | Macrol               |
| MgMcO4              | -5 66    | -7 51   | _1 95          | MgClO4               |
| Minium              | -53 73   | -/.J1   | -1.0J<br>73 52 | Pb304                |
| Minium              | -33.75   | -5 26   | /J.JZ<br>_1 11 | PD304                |
| MILADILICE          | -4.1J    | -5.20   | -1.11          | Na2304.10h20         |
| Mn2(003)2           | -13.30   | -10.00  | 4.90           | Mil(VO3)2            |
| Mn2Ch               | 122 02   | -02.90  | -J./I          | Mil2 (304) 3         |
| Mn2(1=04)2-0000     | -122.02  | -00.94  | 12 50          |                      |
| Mn3 (ASU4) 2:8H2U   | -23.33   | -10.83  | 12.50          | Mn3 (ASO4) 2:8H2O    |
| MnCl2:4H2O          | -19.11   | -16.40  | 2.72           | MnCl2:4H2O           |
| MISD                | -07.03   | -70.34  | -2.91          | MISD                 |
| MnSO4               | -11.93   | -9.34   | 2.58           | MnSO4                |
| Mous<br>Na Taragita | -0.90    | -14.90  | -0.00          | MOUS                 |
| Na-Jarosile         | =9.95    | -21.15  | -11.20         | Nafe3 (S04) 2 (OH) 6 |
| Na2Cr207            | -84.95   | -94.85  | -9.90          | Na2Cr207             |
| NaZUrU4             | -46.30   | -43.30  | 2.93           | Nazero4              |
| NazMoz07            | -5.20    | -21.79  | -10.60         | Nazmozo /            |
| Na2MoU4             | -8.33    | -6.84   | 1.49           | Na2MoO4              |
| Na2MOU4:2H2U        | -8.70    | -/.48   | 1.22           | NazMoO4:2HZO         |
| Nasso               | -136.60  | -42.14  | 94.45          | Nasso                |
| Na3VO4              | -30.25   | 6.43    | 36.68          | Na3VO4               |
| Na4V207             | -32.66   | 4./4    | 37.40          | Na4V207              |
| Nantokite           | -5.08    | -11.81  | -6./3          | CuCl                 |
| NaSb                | -56.84   | -33.68  | 23.17          | NaSb                 |
| Natron              | -8.69    | -10.00  | -1.31          | Na2CO3:10H2O         |
| Nav03               | -5.55    | -1.69   | 3.86           | Nav03                |
| Nesquehonite        | -3.77    | -8.44   | -4.67          | MgCO3:3H2O           |
| Nsutite             | -25.43   | -7.93   | 17.50          | MnO2                 |
| 02 (g)              | -49.92   | 33.17   | 83.09          | 02                   |
| Pb (OH) 2           | -7.40    | 0.75    | 8.15           | Pb (OH) 2            |
| Pb10(OH)60(CO3)     | 6 -71.04 | -79.80  | -8.76          | Pb10(OH)60(CO3)6     |
| Pb2 (OH) 3C1        | -15.12   | -6.32   | 8.79           | Pb2(OH)3C1           |
| Pb20 (OH) 2         | -24.37   | 1.82    | 26.19          | Pb20(OH)2            |
| Pb203               | -42.32   | 18.72   | 61.04          | Pb203                |
| Pb20C03             | -12.23   | -12.78  | -0.56          | Pb20C03              |
| Pb2V207             | -7.46    | -9.36   | -1.90          | Pb2V207              |
| Pb3(AsO4)2          | -13.39   | -7.59   | 5.80           | Pb3 (AsO4) 2         |
| Pb3(VO4)2           | -14.43   | -8.29   | 6.14           | Pb3 (VO4) 2          |
| Pb302C03            | -22.74   | -11.72  | 11.02          | Pb302C03             |
| Pb302S04            | -17.67   | -6.98   | 10.69          | Pb302S04             |
| Pb4 (OH) 6SO4       | -27.97   | -6.87   | 21.10          | Pb4 (OH) 6SO4        |
| Pb403S04            | -27.79   | -5.91   | 21.88          | Pb403S04             |
| PbCrO4              | -37.82   | -50.42  | -12.60         | PbCrO4               |
| Pbmetal             | -19.76   | -15.52  | 4.25           | Pb                   |
| PbMoO4              | 1.73     | -13.89  | -15.62         | PbMoO4               |

| B                                                                                                                                                                                                                                       | -12.02                                                              | 0.96                                                                                    | 12.98                                                                                       | Pb0:0.33H20                                                                                            |                                                 |                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|
| rericlase                                                                                                                                                                                                                               | -14.14                                                              | 7.44                                                                                    | 21.58                                                                                       | MgO                                                                                                    |                                                 |                                                                           |
| Phosgenite                                                                                                                                                                                                                              | -8.93                                                               | -28.74                                                                                  | -19.81                                                                                      | PbCl2:PbCO3                                                                                            |                                                 |                                                                           |
| Plattnerite                                                                                                                                                                                                                             | -31.95                                                              | 17.65                                                                                   | 49.60                                                                                       | PbO2                                                                                                   |                                                 |                                                                           |
| Portlandite                                                                                                                                                                                                                             | -16.43                                                              | 6.37                                                                                    | 22.80                                                                                       | Ca (OH) 2                                                                                              |                                                 |                                                                           |
| Pyrochroite                                                                                                                                                                                                                             | -14.6/                                                              | 0.52                                                                                    | 15.19                                                                                       | Mn (OH) 2                                                                                              |                                                 |                                                                           |
| Ouartz                                                                                                                                                                                                                                  | -23.90                                                              | 0 21                                                                                    | -1 00                                                                                       | S102                                                                                                   |                                                 |                                                                           |
| Phodochrosite                                                                                                                                                                                                                           | -3 50                                                               | -14 08                                                                                  | -10 58                                                                                      | MnCO3                                                                                                  |                                                 |                                                                           |
| SP (OH) 3                                                                                                                                                                                                                               | 2.06                                                                | -5 05                                                                                   | -7 11                                                                                       | Sh (OH) 3                                                                                              |                                                 |                                                                           |
| Sb204                                                                                                                                                                                                                                   | 4.05                                                                | 7.45                                                                                    | 3.40                                                                                        | Sb (011) 5<br>Sb204                                                                                    |                                                 |                                                                           |
| Sh205                                                                                                                                                                                                                                   | -14 92                                                              | -24 59                                                                                  | -9 67                                                                                       | Sh205                                                                                                  |                                                 |                                                                           |
| Sb406(cubic)                                                                                                                                                                                                                            | -0.01                                                               | -18.27                                                                                  | -18.26                                                                                      | Sb200<br>Sb406                                                                                         |                                                 |                                                                           |
| Sb406(orth)                                                                                                                                                                                                                             | -0.37                                                               | -18.27                                                                                  | -17.90                                                                                      | Sb406                                                                                                  |                                                 |                                                                           |
| SbC13                                                                                                                                                                                                                                   | -29.07                                                              | -28.50                                                                                  | 0.57                                                                                        | SbC13                                                                                                  |                                                 |                                                                           |
| Sbmetal                                                                                                                                                                                                                                 | -17.76                                                              | -29.45                                                                                  | -11.69                                                                                      | Sb                                                                                                     |                                                 |                                                                           |
| Sb02                                                                                                                                                                                                                                    | 7.24                                                                | -20.59                                                                                  | -27.82                                                                                      | Sb02                                                                                                   |                                                 |                                                                           |
| Senarmontite                                                                                                                                                                                                                            | 3.23                                                                | -9.14                                                                                   | -12.37                                                                                      | Sb203                                                                                                  |                                                 |                                                                           |
| Sepiolite                                                                                                                                                                                                                               | -1.35                                                               | 14.41                                                                                   | 15.76                                                                                       | Mg2Si307.50H:3H20                                                                                      |                                                 |                                                                           |
| Sepiolite(A)                                                                                                                                                                                                                            | -4.37                                                               | 14.41                                                                                   | 18.78                                                                                       | Mg2Si307.50H:3H20                                                                                      |                                                 |                                                                           |
| Siderite                                                                                                                                                                                                                                | -1.23                                                               | -11.47                                                                                  | -10.24                                                                                      | FeCO3                                                                                                  |                                                 |                                                                           |
| SiO2(am-gel)                                                                                                                                                                                                                            | 2.92                                                                | 0.21                                                                                    | -2.71                                                                                       | SiO2                                                                                                   |                                                 |                                                                           |
| SiO2(am-ppt)                                                                                                                                                                                                                            | 2.95                                                                | 0.21                                                                                    | -2.74                                                                                       | SiO2                                                                                                   |                                                 |                                                                           |
| Spinel                                                                                                                                                                                                                                  | -14.15                                                              | 22.70                                                                                   | 36.85                                                                                       | MgAl2O4                                                                                                |                                                 |                                                                           |
| SrCrO4                                                                                                                                                                                                                                  | -41.30                                                              | -45.95                                                                                  | -4.65                                                                                       | SrCrO4                                                                                                 |                                                 |                                                                           |
| Strontianite                                                                                                                                                                                                                            | -0.11                                                               | -9.38                                                                                   | -9.27                                                                                       | SrCO3                                                                                                  |                                                 |                                                                           |
| Tenorite                                                                                                                                                                                                                                | -5.87                                                               | 1.77                                                                                    | 7.64                                                                                        | CuO                                                                                                    |                                                 |                                                                           |
| Thenardite                                                                                                                                                                                                                              | -2.39                                                               | -2.06                                                                                   | 0.32                                                                                        | Na2SO4                                                                                                 |                                                 |                                                                           |
| Thermonatrite                                                                                                                                                                                                                           | -/./6                                                               | -7.12                                                                                   | 0.64                                                                                        | Nazcos:Hzo                                                                                             |                                                 |                                                                           |
| V (OH) 3<br>V205                                                                                                                                                                                                                        | -/.81<br>-10 14                                                     | -0.21                                                                                   | -1 36                                                                                       | V (OH) 3<br>V205                                                                                       |                                                 |                                                                           |
| V205<br>V305                                                                                                                                                                                                                            | -10.14                                                              | -11.50                                                                                  | -1.50                                                                                       | V205<br>V305                                                                                           |                                                 |                                                                           |
| V407                                                                                                                                                                                                                                    | -12 32                                                              | -5 14                                                                                   | 7 19                                                                                        | V407                                                                                                   |                                                 |                                                                           |
| V 407                                                                                                                                                                                                                                   | -6.80                                                               | -67 66                                                                                  | -60 86                                                                                      | V 601 3                                                                                                |                                                 |                                                                           |
| Valentinite                                                                                                                                                                                                                             | -0.66                                                               | -9.14                                                                                   | -8.48                                                                                       | Sb203                                                                                                  |                                                 |                                                                           |
| VC12                                                                                                                                                                                                                                    | -42.86                                                              | -23.98                                                                                  | 18.87                                                                                       | VC12                                                                                                   |                                                 |                                                                           |
| VC13                                                                                                                                                                                                                                    | -47.10                                                              | -23.67                                                                                  | 23.43                                                                                       | VC13                                                                                                   |                                                 |                                                                           |
| Vmetal                                                                                                                                                                                                                                  | -68.64                                                              | -24.61                                                                                  | 44.03                                                                                       | V                                                                                                      |                                                 |                                                                           |
| VO                                                                                                                                                                                                                                      | -22.78                                                              | -8.03                                                                                   | 14.76                                                                                       | VO                                                                                                     |                                                 |                                                                           |
| VO (OH) 2                                                                                                                                                                                                                               | -2.61                                                               | 2.54                                                                                    | 5.15                                                                                        | VO (OH) 2                                                                                              |                                                 |                                                                           |
| VO2C1                                                                                                                                                                                                                                   | -16.57                                                              | -13.73                                                                                  | 2.84                                                                                        | VO2C1                                                                                                  |                                                 |                                                                           |
|                                                                                                                                                                                                                                         | -18.86                                                              | -7.71                                                                                   | 11.15                                                                                       | VOCl                                                                                                   |                                                 |                                                                           |
| VOCl                                                                                                                                                                                                                                    | -25.85                                                              | -13.09                                                                                  | 12.76                                                                                       | VOC12                                                                                                  |                                                 |                                                                           |
| VOC1<br>VOC12                                                                                                                                                                                                                           | -10.93                                                              | -7.32                                                                                   | 3.61                                                                                        | VOSO4                                                                                                  |                                                 |                                                                           |
| VOC1<br>VOC12<br>VOSO4                                                                                                                                                                                                                  |                                                                     | 10 50                                                                                   | 0 57                                                                                        | D=000                                                                                                  |                                                 |                                                                           |
| VOC1<br>VOC12<br>VOSO4<br>Witherite                                                                                                                                                                                                     | -2.21                                                               | -10./8                                                                                  | -0.37                                                                                       | Bacos                                                                                                  |                                                 |                                                                           |
| <pre>VOC1<br/>VOC12<br/>VOS04<br/>Witherite<br/>*For a gas, SI =<br/>For ideal gases<br/>eginning of batcl</pre>                                                                                                                        | -2.21<br>log10(fuc<br>, phi = 1<br>h-reaction                       | -10.78<br>gacity).<br>n calcula                                                         | Fugacity<br>tions.                                                                          | = pressure * phi                                                                                       | / 1 atm                                         | 1.                                                                        |
| <pre>VOC1<br/>VOC12<br/>VOS04<br/>Witherite<br/>*For a gas, SI =<br/>For ideal gases<br/>eginning of batch<br/>eaction step 1.</pre>                                                                                                    | -2.21<br>log10(fud<br>, phi = 1                                     | -10.78<br>gacity).<br>n calcula                                                         | Fugacity                                                                                    | = pressure * phi                                                                                       | / 1 atm                                         | 1.                                                                        |
| <pre>VOC1<br/>VOC12<br/>VOS04<br/>Witherite<br/>*For a gas, SI =<br/>For ideal gases<br/>egginning of batch<br/>.eaction step 1.<br/>sing solution 3.<br/>ising pure phase</pre>                                                        | -2.21<br>log10(fud<br>, phi = 1<br>                                 | -10.78<br>gacity).<br>n calcula<br><br>zion afte                                        | Fugacity<br>tions.                                                                          | = pressure * phi<br>tion 1.                                                                            | / 1 atm                                         | ι.                                                                        |
| <pre>VOC1<br/>VOC12<br/>VOS04<br/>Witherite<br/>*For a gas, SI =<br/>For ideal gases<br/>egginning of batch<br/>teaction step 1.<br/>(sing solution 3.<br/>(sing pure phase of the second<br/>teaction step 1)</pre>                    | -2.21<br>log10(fud<br>, phi = 1<br>h-reaction<br>Solu<br>assemblage | -10.78<br>gacity).<br>n calcula                                                         | Fugacity<br>tions.                                                                          | = pressure * phi<br>tion 1.                                                                            | / 1 atm                                         | ı.                                                                        |
| <pre>VOC1<br/>VOC12<br/>VOS04<br/>Witherite<br/>*For a gas, SI =<br/>For ideal gases<br/>eginning of batcl<br/><br/>eaction step 1.<br/>sing solution 3.<br/>sing pure phase a<br/></pre>                                               | -2.21<br>log10(fud<br>, phi = 1<br>h-reaction<br>Solu<br>assemblage | -10.78<br>gacity).<br>n calcula<br>tion afte<br>≥ 5.<br>Phas                            | Fugacity<br>Fugacity<br>tions.                                                              | = pressure * phi<br>tion 1.                                                                            | / 1 atm                                         | ı.<br>                                                                    |
| <pre>VOC1<br/>VOC12<br/>VOS04<br/>Witherite<br/>*For a gas, SI =<br/>For ideal gases<br/>eginning of batch<br/>eaction step 1.<br/>sing solution 3.<br/>sing pure phase a<br/>mase</pre>                                                | -2.21<br>log10(fud<br>, phi = 1<br>                                 | <pre>-10.78 gacity) n calcula control afte &gt; 5Phas g IAP lo</pre>                    | Fugacity<br>Fugacity<br>tions.<br>r simula<br>e assemb<br>g K(T, P                          | = pressure * phi<br>tion 1.<br>lage<br>) Initial                                                       | / 1 atm<br><br>n assem<br>Final                 | n.<br>nblage<br>Delta                                                     |
| <pre>VOC1<br/>VOC12<br/>VOS04<br/>Witherite<br/>*For a gas, SI =<br/>For ideal gases<br/>equivalent of batch<br/>eaction step 1.<br/>sing solution 3.<br/>sing pure phase of<br/>hase<br/>1203</pre>                                    | -2.21<br>log10(fud<br>, phi = 1<br>                                 | -10.78<br>gacity).                                                                      | Fugacity<br>Fugacity<br>tions.<br>r simula<br>g K(T, P<br>19 65                             | <pre>= pressure * phi tion 1. lage ) Initial 0.000e+00</pre>                                           | / 1 atm<br>n assen<br>Final                     | n.<br>nblage<br>Delta                                                     |
| <pre>VOC1<br/>VOC12<br/>VOS04<br/>Witherite<br/>*For a gas, SI =<br/>For ideal gases<br/>eginning of batcl<br/></pre>                                                                                                                   | -2.21<br>log10(fud, phi = 1<br>                                     | -10.78<br>gacity).                                                                      | Fugacity<br>Fugacity<br>tions.<br>r simula<br>e assemb<br>g K(T, P<br>19.65<br>-4.36        | <pre>bac03 = pressure * phi tion 1. lage Moles i Initial 0.000e+00 0.000e+00</pre>                     | / 1 atm<br>n assem<br>Final<br>0<br>0           | n.<br>mblage<br>Delta<br>0.000e+00<br>0.000e+00                           |
| VOC1<br>VOC12<br>VOS04<br>Witherite<br>*For a gas, SI =<br>For ideal gases<br>deginning of batch<br>eaction step 1.<br>Vising solution 3.<br>Vising pure phase<br>hase<br>                                                              | -2.21<br>log10(fud, phi = 1<br>                                     | -10.78<br>gacity).<br>n calcula<br>tion afte<br>a 5.                                    | <br>Fugacity<br><br>er simula<br>e assemb<br>g K(T, P<br>19.65<br>-4.36<br>-31.88           | <pre>= pressure * phi tion 1. lage Moles i Initial 0.000e+00 0.000e+00 0.000e+00</pre>                 | / 1 atm<br>n assem<br>Final<br>0<br>0<br>0      | n.<br>nblage<br>Delta<br>0.000e+00<br>0.000e+00<br>0.000e+00              |
| <pre>VOC1<br/>VOC12<br/>VOS04<br/>Witherite<br/>*For a gas, SI =<br/>For ideal gases<br/>egginning of batcl<br/>eaction step 1.<br/>Sing solution 3.<br/>Sing pure phase<br/>hase<br/>.1203<br/>.nhydrite<br/>nilite<br/>ragonite</pre> | -2.21<br>log10(fud, phi = 1<br>                                     | -10.78<br>gacity).<br>n calcula<br>Phas<br>g IAP lo<br>13.75<br>-5.18<br>40.80<br>-9.63 | <br>Fugacity<br><br>er simula<br>ee assemb<br>g K(T, P<br>19.65<br>-4.36<br>-31.88<br>-8.30 | <pre>bacos = pressure * phi tion 1. lage Moles i Initial 0.000e+00 0.000e+00 0.000e+00 0.000e+00</pre> | / 1 atm<br>n assen<br>Final<br>0<br>0<br>0<br>0 | n.<br>nblage<br>Delta<br>0.000e+00<br>0.000e+00<br>0.000e+00<br>0.000e+00 |

| Ba3(AsO4)2               | -0.00   | -8.91     | -8.91       | 0.000e+00 | 8.173e-05 | 8.173e-05   |
|--------------------------|---------|-----------|-------------|-----------|-----------|-------------|
| Barite                   | -2.13   | -12.11    | -9.98       | 0.000e+00 | 0         | 0.000e+00   |
| Boehmite                 | -1.71   | 6.87      | 8.58        | 0.000e+00 | 0         | 0.000e+00   |
| Brucite                  | -3.45   | 13.40     | 16.84       | 0.000e+00 | 0         | 0.000e+00   |
| CaMoO4                   | 0.00    | -7.95     | -7.95       | 0.000e+00 | 5.047e-04 | 5.047e-04   |
| Calcite                  | -1.15   | -9.63     | -8.48       | 0.000e+00 | 0         | 0.000e+00   |
| Celestite                | 0.00    | -6.62     | -6.62       | 0.000e+00 | 1.363e-02 | 1.363e-02   |
| Chalcedony               | -0.45   | -4.00     | -3.55       | 0.000e+00 | 0         | 0.000e+00   |
| Chalcocite               | -8.53   | -43.45    | -34.92      | 0.000e+00 | 0         | 0.000e+00   |
| Chrysotile               | -0.00   | 32.20     | 32.20       | 0.000e+00 | 1.087e-02 | 1.087e-02   |
| Cr(OH)3(am)              | -0.44   | -1.19     | -0.75       | 0.000e+00 | 0         | 0.000e+00   |
| Cr203                    | 0.00    | -2.36     | -2.36       | 0.000e+00 | 7.138e-08 | 7.138e-08   |
| Cristobalite             | -0.65   | -4.00     | -3.35       | 0.000e+00 | 0         | 0.000e+00   |
| Cu2Sb:3H2O               | -20.67  | -55.55    | -34.88      | 0.000e+00 | 0         | 0.000e+00   |
| Cu3Sb                    | -23.53  | -66.13    | -42.59      | 0.000e+00 | 0         | 0.000e+00   |
| Cumetal                  | -4.53   | -13.29    | -8.76       | 0.000e+00 | 0         | 0.000e+00   |
| Cupricferrite            | -13.22  | -7.24     | 5.99        | 0.000e+00 | 0         | 0.000e+00   |
| Cuprite                  | -13.80  | -15.21    | -1.41       | 0.000e+00 | 0         | 0.000e+00   |
| Cuprousferrite           | -0.00   | -8.92     | -8.92       | 0.000e+00 | 1.561e-05 | 1.561e-05   |
| iaspore                  | -0.00   | 6.87      | 6.87        | 0.000e+00 | 2.348e-03 | 2.348e-03   |
| jurleite                 | -8.83   | -42.75    | -33.92      | 0.000e+00 | 0         | 0.000e+00   |
| olomite(disorde).000e+00 | ered) - | 0.55 -17  | .09 -16     | .54 0.000 | e+00      | 0           |
| olomite(ordered          | d) 0.0  | 0 -17.09  | -17.09      | 0.000e+00 | 2.173e-0  | 1 2.173e-01 |
| Ге (ОН) 2                | -7.54   | 6.02      | 13.56       | 0.000e+00 | 0         | 0.000e+00   |
| 'е(ОН)2.7Cl.3            | -1.70   | -4.74     | -3.04       | 0.000e+00 | 0         | 0.000e+00   |
| 'e3(OH)8                 | -16.85  | 3.37      | 20.22       | 0.000e+00 | 0         | 0.000e+00   |
| eCr2O4                   | -3.53   | 3.67      | 7.20        | 0.000e+00 | 0         | 0.000e+00   |
| 'eMoO4                   | -3.06   | -13.15    | -10.09      | U.000e+00 | 0         | U.000e+00   |
| errihydrite              | -4.52   | -1.33     | 3.19        | 0.000e+00 | 0         | 0.000e+00   |
| ibbsite                  | -1.43   | 6.87      | 8.29        | 0.000e+00 | 0         | 0.000e+00   |
| oethite                  | -1.81   | -1.32     | 0.49        | 0.000e+00 | 0         | 0.000e+00   |
| reenalite                | -10.73  | 10.08     | 20.81       | 0.000e+00 | 0         | 0.000e+00   |
| ypsum                    | -0.59   | -5.20     | -4.61       | 0.000e+00 | 0         | 0.000e+00   |
| la⊥loysite               | -3.84   | 5.74      | 9.57        | 0.000e+00 | 0         | U.000e+00   |
| lematite                 | -1.21   | -2.63     | -1.42       | 0.000e+00 | 0         | 0.000e+00   |
| lercynite                | -3.11   | 19.79     | 22.89       | 0.000e+00 | 0         | 0.000e+00   |
| luntite                  | -2.04   | -32.01    | -29.97      | 0.000e+00 | 0         | 0.000e+00   |
| lydromagnesite           | -7.71   | -16.47    | -8.77       | 0.000e+00 | 0         | 0.000e+00   |
| -Jarosite                | -15.79  | -30.59    | -14.80      | 0.000e+00 | 0         | 0.000e+00   |
| Caolinite                | -1.70   | 5.74      | 7.43        | 0.000e+00 | 0         | 0.000e+00   |
| epidocrocite             | -2.69   | -1.32     | 1.37        | 0.000e+00 | 0         | 0.000e+00   |
| laghemite                | -9.01   | -2.63     | 6.39        | 0.000e+00 | 0         | 0.000e+00   |
| lagnesioferrite          | -6.08   | 10.78     | 16.86       | 0.000e+00 | 0         | 0.000e+00   |
| lagnesite                | 0.00    | -7.46     | -7.46       | 0.000e+00 | 2.148e-01 | 2.148e-01   |
| lagnetite                | -0.00   | 3.40      | 3.40        | 0.000e+00 | 6.965e-04 | 6.965e-04   |
| lgCr2O4                  | -5.15   | 11.05     | 16.20       | 0.000e+00 | 0         | 0.000e+00   |
| Ia-Jarosite              | -18.58  | -29.78    | -11.20      | 0.000e+00 | 0         | 0.000e+00   |
| lesquehonite             | -2.81   | -7.48     | -4.67       | 0.000e+00 | 0         | 0.000e+00   |
| uartz                    | 0.00    | -4.00     | -4.00       | 0.000e+00 | 2.481e-01 | 2.481e-01   |
| hodochrosite             | -2.65   | -13.23    | -10.58      | 0.000e+00 | 0         | 0.000e+00   |
| Sb (OH) 3                | -2.10   | -9.21     | -7.11       | 0.000e+00 | 0         | 0.000e+00   |
| b02                      | 0.00    | -27.82    | -27.82      | 0.000e+00 | 6.204e-05 | 6.204e-05   |
| enarmontite              | -6.04   | -18.40    | -12.37      | 0.000e+00 | 0         | 0.000e+00   |
| epiolite                 | -0.98   | 14.78     | 15.76       | 0.000e+00 | 0         | 0.000e+00   |
| epiolite(A)              | -4.00   | 14.78     | 18.78       | 0.000e+00 | 0         | 0.000e+00   |
| iO2(am-gel)              | -1.29   | -4.00     | -2.71       | 0.000e+00 | 0         | 0.000e+00   |
| iO2(am-ppt)              | -1.26   | -4.00     | -2.74       | 0.000e+00 | 0         | 0.000e+00   |
| iderite                  | -4.59   | -14.83    | -10.24      | 0.000e+00 | 0         | 0.000e+00   |
| pinel                    | -9.69   | 27.16     | 36.85       | 0.000e+00 | 0         | 0.000e+00   |
| Strontianite             | -1.80   | -11.07    | -9.27       | 0.000e+00 | 0         | 0.000e+00   |
| litherite                | -7.99   | -16.56    | -8.57       | 0.000e+00 | 0         | 0.000e+00   |
|                          |         | Solut:    | ion compos: | ition     |           |             |
| Elements                 |         | Molality  | Mol         | es        |           |             |
| Al                       |         | 6.664e-09 | 1.045e-     | 08        |           |             |
| AS                       |         | /.JJLe-04 | 1.1846-     | 0.0       |           |             |

| Ba<br>C<br>Ca<br>Cl<br>Cr<br>Cu<br>Fe<br>K<br>Li<br>Mg<br>Mn<br>Mo<br>Na<br>Pb<br>S<br>Sb<br>Si<br>Sr<br>V | 8.04<br>1.91<br>2.19<br>1.50<br>1.10<br>2.56<br>8.67<br>9.35<br>1.28<br>2.78<br>3.35<br>1.59<br>5.79<br>3.08<br>3.82<br>1.22<br>8.20<br>7.26<br>6.63 | 4e-11       1.2         6e-03       3.0         8e-03       3.4         5e-04       2.3         1e-08       1.7         7e-15       4.03         8e-02       1.4         9e-02       2.00         7e-01       4.3         6e-06       5.2         5e-04       2.50         2e-01       9.00         6e-05       4.8         5e-04       5.9         8e-09       1.9         5e-05       1.2         4e-05       1.1         7e-04       1.0 | 51e-10<br>05e-03<br>46e-03<br>51e-04<br>27e-08<br>26e-15<br>51e-07<br>57e-01<br>21e-02<br>70e-01<br>52e-06<br>01e-04<br>32e-01<br>39e-05<br>39e-01<br>26e-09<br>37e-04<br>37e-04<br>39e-04<br>41e-03 |                                                                           |                  |                   |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------|-------------------|
|                                                                                                            | D                                                                                                                                                    | escription c                                                                                                                                                                                                                                                                                                                                                                                                                                | of solution                                                                                                                                                                                          | 1                                                                         |                  |                   |
|                                                                                                            |                                                                                                                                                      | pH                                                                                                                                                                                                                                                                                                                                                                                                                                          | i = 7.45                                                                                                                                                                                             | 2 Char                                                                    | ge balanc        | e                 |
| Percent erro                                                                                               | Activ.<br>Ionic streng<br>Mass o<br>Total alkali:<br>Total (<br>Temp<br>Electrical 1<br>r, 100*(Cat- An                                              | ity of water<br>th (mol/kgw)<br>f water (kg)<br>nity (eq/kg)<br>CO2 (mol/kg)<br>erature (°C)<br>balance (eq)<br>)/(Cat+ An )<br>Iterations<br>Total f<br>Total C                                                                                                                                                                                                                                                                            | $\begin{array}{rcl} & = & 0.98 \\ & = & 7.34 \\ & = & 1.56 \\ & = & 2.26 \\ & = & 1.91 \\ & = & 25.00 \\ & = & 7.51 \\ & = & 44.47 \\ & = & 19 \\ & = & 1.7409 \\ & = & 8.9458 \end{array}$          | 2<br>6e-01<br>58e+00<br>51e-03<br>.6e-03<br>.8e-01<br>.222e+02<br>381e+01 |                  |                   |
|                                                                                                            | D                                                                                                                                                    | istribution                                                                                                                                                                                                                                                                                                                                                                                                                                 | of species                                                                                                                                                                                           | ;                                                                         |                  |                   |
| Species                                                                                                    | Molality                                                                                                                                             | Activity                                                                                                                                                                                                                                                                                                                                                                                                                                    | Log<br>Molality                                                                                                                                                                                      | Log<br>Activity                                                           | Log<br>Gamma     | mole V<br>cm³/mol |
| OH-                                                                                                        | 4.646e-07                                                                                                                                            | 2.798e-07                                                                                                                                                                                                                                                                                                                                                                                                                                   | -6.333                                                                                                                                                                                               | -6.553                                                                    | -0.220           | (0)               |
| H+                                                                                                         | 4.690e-08                                                                                                                                            | 3.533e-08                                                                                                                                                                                                                                                                                                                                                                                                                                   | -7.329                                                                                                                                                                                               | -7.452                                                                    | -0.123           | 0.00              |
| H20<br>Al                                                                                                  | 5.5510+U1<br>6.664e-09                                                                                                                               | 9.8196-01                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1./44                                                                                                                                                                                                | -0.008                                                                    | 0.000            | 18.07             |
| Al (OH) 4-                                                                                                 | 6.514e-09                                                                                                                                            | 4.178e-09                                                                                                                                                                                                                                                                                                                                                                                                                                   | -8.186                                                                                                                                                                                               | -8.379                                                                    | -0.193           | (0)               |
| Al(OH)3                                                                                                    | 1.186e-10                                                                                                                                            | 1.186e-10                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9.926                                                                                                                                                                                               | -9.926                                                                    | 0.000            | (0)               |
| Al(OH)2+                                                                                                   | 3.167e-11                                                                                                                                            | 2.124e-11                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.499                                                                                                                                                                                              | -10.673                                                                   | -0.173           | (0)               |
| ALOH+Z                                                                                                     | 4./21e=13<br>1.250o=13                                                                                                                               | 9.555e-14                                                                                                                                                                                                                                                                                                                                                                                                                                   | -12.326                                                                                                                                                                                              | -13.020                                                                   | -0.694           | (0)               |
| A1 (SO4) 2-                                                                                                | 4.050e-14                                                                                                                                            | 2.598e-14                                                                                                                                                                                                                                                                                                                                                                                                                                   | -13.393                                                                                                                                                                                              | -13.585                                                                   | -0.193           | (0)               |
| Al+3                                                                                                       | 4.368e-15                                                                                                                                            | 3.415e-16                                                                                                                                                                                                                                                                                                                                                                                                                                   | -14.360                                                                                                                                                                                              | -15.467                                                                   | -1.107           | (0)               |
| AlMo6021-3                                                                                                 | 1.085e-27                                                                                                                                            | 1.263e-31                                                                                                                                                                                                                                                                                                                                                                                                                                   | -26.964                                                                                                                                                                                              | -30.899                                                                   | -3.934           | (0)               |
| As (3)                                                                                                     | 4.112e-04                                                                                                                                            | 2 055 04                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 402                                                                                                                                                                                                | 2 402                                                                     | 0 000            | (0)               |
| HOASUO                                                                                                     | 3.955e-04<br>1.571e-05                                                                                                                               | 5.955e-04                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3.403                                                                                                                                                                                               | -5.403                                                                    | -0.437           | (0)               |
| HAs03-2                                                                                                    | 8.305e-09                                                                                                                                            | 1.482e-10                                                                                                                                                                                                                                                                                                                                                                                                                                   | -8.081                                                                                                                                                                                               | -9.829                                                                    | -1.748           | (0)               |
| H4AsO3+                                                                                                    | 1.894e-11                                                                                                                                            | 6.923e-12                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.723                                                                                                                                                                                              | -11.160                                                                   | -0.437           | (0)               |
| As03-3                                                                                                     | 1.389e-12                                                                                                                                            | 1.617e-16                                                                                                                                                                                                                                                                                                                                                                                                                                   | -11.857                                                                                                                                                                                              | -15.791                                                                   | -3.934           | (0)               |
| As(5)                                                                                                      | 3.439e-04                                                                                                                                            | E 0.01 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · ·                                                                                                                                                                                            |                                                                           | 1 5 4 6          |                   |
| HASO4-2                                                                                                    | 3.341e-04                                                                                                                                            | 5.96le-06                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3.476                                                                                                                                                                                               | -5.225                                                                    | -1.748           | (0)               |
| n∠ASU4-<br>AsO4-3                                                                                          | 2.∠36e-U6<br>4.585e-06                                                                                                                               | 1.9210-06<br>5.336e-10                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.2/9                                                                                                                                                                                               | -3./16<br>-9.273                                                          | -U.43/<br>-3 934 | (U)<br>(O)        |
| H3As04                                                                                                     | 9.959e-12                                                                                                                                            | 1.179e-11                                                                                                                                                                                                                                                                                                                                                                                                                                   | -11.002                                                                                                                                                                                              | -10.928                                                                   | 0.073            | (0)               |
| Ba                                                                                                         | 8.044e-11                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                           |                  | . ,               |
| Ba+2                                                                                                       | 8.014e-11                                                                                                                                            | 2.582e-11                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.096                                                                                                                                                                                              | -10.588                                                                   | -0.492           | (0)               |
| BaHCO3+                                                                                                    | 2.898e-13                                                                                                                                            | 1.993e-13                                                                                                                                                                                                                                                                                                                                                                                                                                   | -12.538                                                                                                                                                                                              | -12.700                                                                   | -0.163           | (0)               |
| Bacos                                                                                                      | 1.42Ue-14                                                                                                                                            | ⊥.4∠Ue-14                                                                                                                                                                                                                                                                                                                                                                                                                                   | -13.848                                                                                                                                                                                              | -13.848                                                                   | υ.υυυ            | (U)               |

|      | BaOH+             | 4.790e-17     | 3.153e-17              | -16.320         | -16.501 | -0.182 | (0)   |
|------|-------------------|---------------|------------------------|-----------------|---------|--------|-------|
| С (4 | 4)                | 1.916e-03     |                        |                 |         |        |       |
| - (  | HCO3-             | 1.205e-03     | 8.084e-04              | -2,919          | -3.092  | -0.173 | (0)   |
|      | MaHCO3+           | 4.293e-04     | 2.674e-04              | -3.367          | -3.573  | -0.206 | (0)   |
|      | NaHCO3            | 1.677e-04     | 1.677e-04              | -3.775          | -3.775  | 0.000  | (0)   |
|      | H2CO3             | 6.424e-05     | 6.424e-05              | -4.192          | -4.192  | 0.000  | (0)   |
|      | MaCO3             | 2.884e-05     | 2.884e-05              | -4.540          | -4.540  | 0.000  | (0)   |
|      | NaCO3-            | 1 0990-05     | 7 3680-06              | -4 959          | -5 133  | -0 173 | (0)   |
|      | Concost<br>Maccos | 1.7930-06     | 3 2000-06              | -5 320          | -5 193  | -0 163 | (0)   |
|      |                   | 2 2200 06     | 1 0720 06              | -J.JZU<br>5 470 | -5.405  | -0.103 | (0)   |
|      | DbCO3             | 5.530e-00     | 1.073e-00<br>5.634o-07 | -6.240          | -5.970  | -0.492 | (0)   |
|      | PDCUS             | 3.8340-07     | 3.0340-07              | -0.249          | -0.249  | 0.000  | (0)   |
|      | CaCO3             | 3./15e-0/     | 3./15e-0/              | -6.430          | -6.430  | 0.000  | (0)   |
|      | PDHCO3+           | 2.8/2e-0/     | 1.050e-07              | -6.542          | -6.979  | -0.437 | (0)   |
|      | SrHCO3+           | 1.512e-07     | 1.040e-07              | -6.820          | -6.983  | -0.163 | (0)   |
|      | Pb(CO3)2-2        | 9.768e-08     | 1.743e-09              | -7.010          | -8.759  | -1.748 | (0)   |
|      | SrCO3             | 5.493e-09     | 5.493e-09              | -8.260          | -8.260  | 0.000  | (0)   |
|      | MnHCO3+           | 1.338e-09     | 8.809e-10              | -8.874          | -9.055  | -0.182 | (0)   |
|      | FeHCO3+           | 2.022e-11     | 1.391e-11              | -10.694         | -10.857 | -0.163 | (0)   |
|      | BaHCO3+           | 2.898e-13     | 1.993e-13              | -12.538         | -12.700 | -0.163 | (0)   |
|      | BaCO3             | 1.420e-14     | 1.420e-14              | -13.848         | -13.848 | 0.000  | (0)   |
|      | CuCO3             | 1.987e-19     | 1.987e-19              | -18.702         | -18.702 | 0.000  | (0)   |
|      | Cu(CO3)2-2        | 3.215e-20     | 5.737e-22              | -19.493         | -21.241 | -1.748 | (0)   |
|      | CuHCO3+           | 4.390e-21     | 1.605e-21              | -20.358         | -20.795 | -0.437 | (0)   |
| Ca   |                   | 2 1986-03     |                        |                 |         |        | (-)   |
| ou   | CaS04             | 1 5140-03     | 1 5140-03              | -2 820          | -2 820  | 0 000  | (0)   |
|      | Ca+2              | 6 7840-04     | 2 1850-04              | -3 169          | -3 660  | -0 492 | (0)   |
|      |                   | 0.7040-04     | 2.1050-04              | -3.109          | -5.000  | -0.492 | (0)   |
|      | CaHCO3+           | 4./830-06     | 3.290e-06              | -5.320          | -5.483  | -0.163 | (0)   |
|      | CaCO3             | 3./15e-0/     | 3./15e-0/              | -6.430          | -6.430  | 0.000  | (0)   |
|      | CaOH+             | 1.//4e-09     | 1.220e-09              | -8.751          | -8.914  | -0.163 | (0)   |
| Cl   |                   | 1.505e-04     |                        |                 |         |        |       |
|      | C1-               | 1.505e-04     | 1.134e-04              | -3.822          | -3.945  | -0.123 | (0)   |
|      | PbCl+             | 1.924e-09     | 7.031e-10              | -8.716          | -9.153  | -0.437 | (0)   |
|      | MnCl+             | 1.184e-11     | 7.798e-12              | -10.926         | -11.108 | -0.182 | (0)   |
|      | PbCl2             | 3.562e-13     | 3.562e-13              | -12.448         | -12.448 | 0.000  | (0)   |
|      | MnCl2             | 1.249e-15     | 1.249e-15              | -14.903         | -14.903 | 0.000  | (0)   |
|      | CuCl              | 1.271e-16     | 1.271e-16              | -15.896         | -15.896 | 0.000  | (0)   |
|      | CrCl+2            | 9.152e-17     | 1.633e-18              | -16.038         | -17.787 | -1.748 | (0)   |
|      | PbC13-            | 4.400e-17     | 1.608e-17              | -16.357         | -16.794 | -0.437 | (0)   |
|      | CuCl2=            | / 8330-18     | 3 0110-18              | -17 316         | -17 521 | -0.206 | (0)   |
|      | VOCL              | 9 9630-19     | 3 2760-10              | _10 0/0         | _10 /05 | -0.437 | (0)   |
|      | MpC12             | 5.0000 10     | 3 0020 20              | 10.010          | 10.400  | 0.100  | (0)   |
|      | MICLS-            | J.927e-20     | 3.9020-20              | -19.227         | -19.409 | -0.102 | (0)   |
|      | PDC14-2           | 4.6/2e-20     | 8.33/e-22              | -19.330         | -21.079 | -1./48 | (0)   |
|      | CrOHC12           | 9.852e-22     | 9.852e-22              | -21.006         | -21.006 | 0.000  | (0)   |
|      | CuCl3-2           | 3.886e-22     | 7.300e-23              | -21.410         | -22.137 | -0.726 | (0)   |
|      | CrCl2+            | 4.809e-23     | 1.757e-23              | -22.318         | -22.755 | -0.437 | (0)   |
|      | CuCl+             | 9.078e-24     | 5.654e-24              | -23.042         | -23.248 | -0.206 | (0)   |
|      | FeCl+2            | 4.008e-26     | 7.529e-27              | -25.397         | -26.123 | -0.726 | (0)   |
|      | CuCl2             | 2.224e-28     | 2.224e-28              | -27.653         | -27.653 | 0.000  | (0)   |
|      | FeCl2+            | 5.793e-30     | 3.814e-30              | -29.237         | -29.419 | -0.182 | (0)   |
|      | CuCl3-            | 3.778e-34     | 2.353e-34              | -33.423         | -33.628 | -0.206 | (0)   |
|      | FeC13             | 4.326e-35     | 4.326e-35              | -34.364         | -34.364 | 0.000  | (0)   |
|      | CuCl4-2           | 7.122e-40     | 1.338e-40              | -39.147         | -39.874 | -0.726 | (0)   |
|      | CrO3Cl-           | 0.000e+00     | 0.000e+00              | -47.696         | -48.133 | -0.437 | (0)   |
| Cr   | (2)               | 8 604e-18     |                        |                 |         |        | ( - / |
| OT.  | Cr+2              | 8 604e-18     | 1 5350-19              | -17 065         | -18 814 | -1 748 | (0)   |
| Cr   | (3)               | 1 1010-08     | 1.00000 10             | 17.000          | 10.011  | 1.710  | (0)   |
| OT.  | (J)<br>Cr(OU)2+   | 6 3460-00     | 2 3200-00              | _9 107          | -9 635  | -0 437 | (0)   |
|      |                   | 0.5400-09     | 2.3208-09              | -0.197          | 10 107  | -0.437 | (0)   |
|      | Cr(UH)+2          | 3.8180-09     | 6.812e-11              | -8.418          | -10.167 | -1./48 | (0)   |
|      | CTOHS04           | 4.8890-10     | 4.8896-10              | -9.311          | -9.311  | 0.000  | (0)   |
|      | Cr(OH)3           | 2.438e-10     | 2.438e-10              | -9.613          | -9.613  | 0.000  | (U)   |
|      | Cr+3              | 9.561e-11     | 1.113e-14              | -10.020         | -13.954 | -3.934 | (0)   |
|      | Cr02-             | 9.133e-12     | 3.338e-12              | -11.039         | -11.477 | -0.437 | (0)   |
|      | Cr(OH)4-          | 7.433e-12     | 2.717e-12              | -11.129         | -11.566 | -0.437 | (0)   |
|      | CrSO4+            | 2.150e-12     | 7.858e-13              | -11.668         | -12.105 | -0.437 | (0)   |
|      | Cr2(OH)2SO4       | +2 1.687e-16  | 3.010e-18              | -15.773         | -17.521 | -1.748 | (0)   |
|      | CrCl+2            | 9.152e-17     | 1.633e-18              | -16.038         | -17.787 | -1.748 | (0)   |
|      | Cr2(OH)2(SO       | 4)2 5.408e-18 | 5.408e-18              | -17.267         | -17.267 | 0.000  | (0)   |
|      | CrOHC12           | 9.852e-22     | 9.852e-22              | -21.006         | -21.006 | 0.000  | (0)   |
|      | CrCl2+            | 4.809e-23     | 1.757e-23              | -22.318         | -22.755 | -0.437 | (0)   |
|      |                   |               |                        |                 |         | -      |       |

| Cr   | (6)               | 2.262e-36  |            |         |         |         |     |
|------|-------------------|------------|------------|---------|---------|---------|-----|
|      | NaCrO4-           | 1.259e-36  | 4.602e-37  | -35.900 | -36.337 | -0.437  | (0) |
|      | Cr04-2            | 7.793e-37  | 2.510e-37  | -36.108 | -36.600 | -0.492  | (0) |
|      | KCrO4-            | 1.450e-37  | 5.299e-38  | -36.839 | -37.276 | -0.437  | (0) |
|      | HCrO4-            | 7.853e-38  | 2.870e-38  | -37.105 | -37.542 | -0.437  | (0) |
|      | Cr03S04-2         | 0.000e+00  | 0.000e+00  | -42.273 | -44.022 | -1.748  | (0) |
|      | H2CrO4            | 0.000e+00  | 0.000e+00  | -45.085 | -45.085 | 0.000   | (0) |
|      | CrO3Cl-           | 0.000e+00  | 0.000e+00  | -47.696 | -48.133 | -0.437  | (0) |
|      | Cr207-2           | 0.000e+00  | 0.000e+00  | -71.788 | -73.536 | -1.748  | (0) |
| Cu   | (1)               | 2.567e-15  |            |         |         |         |     |
|      | Cu+               | 2.435e-15  | 8.899e-16  | -14.614 | -15.051 | -0.437  | (0) |
|      | CuCl              | 1.271e-16  | 1.271e-16  | -15.896 | -15.896 | 0.000   | (0) |
|      | CuCl2-            | 4.833e-18  | 3.011e-18  | -17.316 | -17.521 | -0.206  | (0) |
|      | CuCl3-2           | 3.886e-22  | 7.300e-23  | -21.410 | -22.137 | -0.726  | (0) |
|      | Cu(S4)2-3         | 1.468e-38  | 4.370e-39  | -37.833 | -38.360 | -0.526  | (0) |
|      | CuS4S5-3          | 2.511e-39  | 8.136e-40  | -38.600 | -39.090 | -0.489  | (0) |
| Cu   | (2)               | 5.971e-19  |            |         |         |         |     |
|      | CuSO4             | 2.179e-19  | 2.179e-19  | -18.662 | -18.662 | 0.000   | (0) |
|      | CuCO3             | 1.987e-19  | 1.987e-19  | -18.702 | -18.702 | 0.000   | (0) |
|      | Cu+2              | 9.765e-20  | 3.146e-20  | -19.010 | -19.502 | -0.492  | (0) |
|      | CuOH+             | 4.469e-20  | 2.784e-20  | -19.350 | -19.555 | -0.206  | (0) |
|      | Cu(CO3)2-2        | 3.215e-20  | 5.737e-22  | -19.493 | -21.241 | -1.748  | (0) |
|      | CuHCO3+           | 4.390e-21  | 1.605e-21  | -20.358 | -20.795 | -0.437  | (0) |
|      | Cu (OH) 2         | 1.554e-21  | 1.554e-21  | -20.808 | -20.808 | 0.000   | (0) |
|      | CuCl+             | 9.078e-24  | 5.654e-24  | -23.042 | -23.248 | -0.206  | (0) |
|      | Cu (OH) 3-        | 2.441e-24  | 8.922e-25  | -23.612 | -24.050 | -0.437  | (0) |
|      | CuCl2             | 2.224e-28  | 2.224e-28  | -27.653 | -27.653 | 0.000   | (0) |
|      | Cu (OH) 4-2       | 1.101e-28  | 1.965e-30  | -27.958 | -29.707 | -1.748  | (0) |
|      | Cu2 (OH) 2+2      | 1.091e-33  | 1.947e-35  | -32.962 | -34.711 | -1.748  | (0) |
|      | CuCl3-            | 3.778e-34  | 2.353e-34  | -33,423 | -33.628 | -0.206  | (0) |
|      | CuC14-2           | 7.122e-40  | 1.338e-40  | -39.147 | -39.874 | -0.726  | (0) |
|      | Cu (HS) 3-        | 0.000e+00  | 0.000e+00  | -55.570 | -56.007 | -0.437  | (0) |
| Fe   | (2)               | 8.678e-08  |            |         |         |         | (-) |
| 20   | Fe+2              | 7.659e-08  | 1.367e-09  | -7.116  | -8.864  | -1.748  | (0) |
|      | FeSO4             | 1.015e-08  | 1.015e-08  | -7.994  | -7.994  | 0.000   | (0) |
|      | FeOH+             | 2 3130-11  | 1 5230-11  | -10 636 | -10 817 | -0 182  | (0) |
|      | FeHCO3+           | 2.022e-11  | 1 3910-11  | -10 694 | -10.857 | -0 163  | (0) |
|      | Fe (OH) 2         | 3 385e-15  | 3 385e-15  | -14 470 | -14 470 | 0 000   | (0) |
|      | Fe (OH) 3=        | 4 550e=16  | 2 9950-16  | -15 3/2 | -15 524 | -0 182  | (0) |
|      | Fe (HS) 2         | 0.0000+00  | 0 0000+00  | -41 517 | -41 517 | 0.102   | (0) |
|      | Fe (HS) 3-        | 0.00000+00 | 0.00000+00 | -59 844 | -60 281 | -0 437  | (0) |
| Fo   | (3)               | 7 7970-14  | 0.00000000 | 55.011  | 00.201  | 0.157   | (0) |
| тe   | (J)<br>Fe (OH) 2+ | 6 447e=14  | 1 3240-14  | -13 191 | -13 364 | -0 173  | (0) |
|      | Fe (OH) 3         | 1 3000-14  | 1 3000-14  | -13 886 | -13 886 | 0.175   | (0) |
|      | Fe (OH) 4-        | 5 0490-16  | 3 3960-16  | -15 207 | _15.000 | -0 173  | (0) |
|      | Fe(Un)4-          | 2 11/0-18  | 3 9720-10  | -17 675 | -13.470 | -0.173  | (0) |
|      | Fe(SO(1) 2=       | 1 3200-21  | 1 8236-22  | -20 880 | -21 317 | -0.437  | (0) |
|      | TC(004)2          | 1 1330-21  | 7 4590-22  | -20.000 | _21.317 | -0 192  | (0) |
|      | Fet3              | 2 8126-23  | 2 1986-24  | -22 551 | -23 658 | -1 107  | (0) |
|      | FeC1+2            | 4 0080-26  | 7 5296-27  | -25 397 | -26 123 | -0 726  | (0) |
|      | ECCT - 2          | 5 1520-20  | 5 2230-36  | _20.007 | _35 202 | -6 994  | (0) |
|      | Fe2 (On) 2+4      | 5 7030-30  | 3 9140-30  | -20.200 | -20 /10 | -0.192  | (0) |
|      | Feci2+            | 1 3260-35  | 1 3260-35  | -29.237 | -20.419 | -0.102  | (0) |
|      | Fecto             | 4.5208-55  | 4.5208-55  | -34.304 | -34.304 | 10.000  | (0) |
| u (( | res(On)4+5        | 2.707e=37  | 0.00000000 | -30.330 | -4/.400 | -10.920 | (0) |
| п((  | 7)                | 2 4000 15  | 2 0/0 15   | 14 604  | 14 520  | 0 072   | (0) |
| T.7  | п∠                | 2.409e=1J  | 2.9400-13  | -14.004 | -14.330 | 0.075   | (0) |
| ĸ    | 77.1              | 9.354e-UZ  | E (01 - 00 | 1 100   | 1 040   | 0 100   | (0) |
|      | K+                | 1.012-02   | 5.681e-02  | -1.123  | -1.240  | -0.123  | (0) |
|      | KS04-             | 1.8130-02  | 1.2160-02  | -1.741  | -1.915  | -0.173  | (0) |
| - ·  | KCrO4-            | 1.450e-37  | 5.∠99e-38  | -30.839 | -3/.2/6 | -0.437  | (0) |
| ы    | T - L             | 1 110- 00  | 0 122- 02  | 1 051   | 2 074   | 0 100   | (0) |
|      | тт+<br>тт         | 1.1190-02  | 0.4330-03  | -1.921  | -2.0/4  | -0.123  | (U) |
|      | L1SO4-            | 1.691e-03  | 1.113e-03  | -2.172  | -2.953  | -0.182  | (0) |
| мg   | Magod             | 2./8/e-UI  | 1 770- 01  | 0 750   | 0 750   | 0 000   | (0) |
|      | MgSU4             | 1.//9e-Ul  | 1.//9e-Ul  | -0./50  | -0./50  | 0.000   | (0) |
|      | Mg+2              | 1.003e-01  | 3.232e-02  | -0.999  | -1.490  | -0.492  | (0) |
|      | MgHCO3+           | 4.293e-04  | 2.6/4e-04  | -3.367  | -3.5/3  | -0.206  | (0) |
|      | MgCO3             | 2.884e-05  | ∠.884e-05  | -4.540  | -4.540  | 0.000   | (0) |
|      | MgOH+             | 5.139e-06  | 3.601e-06  | -5.289  | -5.444  | -0.154  | (0) |

| Mn    | (2)          | 3.356e-06                               |            |           |         |         |     |
|-------|--------------|-----------------------------------------|------------|-----------|---------|---------|-----|
|       | Mn+2         | 3.061e-06                               | 5.461e-08  | -5.514    | -7.263  | -1.748  | (0) |
|       | MnSO4        | 2.937e-07                               | 2.937e-07  | -6.532    | -6.532  | 0.000   | (0) |
|       | MnHCO3+      | 1.338e-09                               | 8.809e-10  | -8.874    | -9.055  | -0.182  | (0) |
|       | MnOH+        | 5 831e-11                               | 3 8390-11  | -10 234   | -10 416 | -0 182  | (0) |
|       | MpCl         | 1 1040 11                               | 7 7000 12  | 10.234    | 11 100  | 0.102   | (0) |
|       | MnC12        | 1 2400 15                               | 1 2400 15  | -10.920   | -11.100 | -0.102  | (0) |
|       | MACIZ        | 1.2496-15                               | 1.2490-15  | -14.903   | -14.903 | 0.000   | (0) |
|       | MnC13-       | 5.92/e-20                               | 3.902e-20  | -19.227   | -19.409 | -0.182  | (0) |
|       | Mn (OH) 3-   | 2.822e-20                               | 1.858e-20  | -19.549   | -19.731 | -0.182  | (0) |
|       | Mn (OH) 4-2  | 8.937e-26                               | 1.679e-26  | -25.049   | -25.775 | -0.726  | (0) |
| Mn    | (3)          | 5.403e-34                               |            |           |         |         |     |
|       | Mn+3         | 5.403e-34                               | 4.224e-35  | -33.267   | -34.374 | -1.107  | (0) |
| Mn    | (6)          | 0.000e+00                               |            |           |         |         |     |
|       | Mn04-2       | 0 000e+00                               | 0 0000+00  | -72 422   | -73 148 | -0 726  | (0) |
| Mro   | (7)          | 0.0000000000                            | 0.00000000 | , 2 . 122 | /0.110  | 0.720   | (0) |
| 14111 | Mr O 4       | 0.0000000000000000000000000000000000000 | 0 0000100  | 01 015    | 01 202  | 0 227   | (0) |
|       | Mn04-        | 1 505 01                                | 0.0000+00  | -84.045   | -84.282 | -0.237  | (0) |
| МО    |              | 1.595e-04                               |            |           |         |         |     |
|       | MoO4-2       | 1.594e-04                               | 5.134e-05  | -3.798    | -4.290  | -0.492  | (0) |
|       | НМоО4-       | 9.875e-08                               | 3.609e-08  | -7.005    | -7.443  | -0.437  | (0) |
|       | H2MoO4       | 9.341e-12                               | 9.341e-12  | -11.030   | -11.030 | 0.000   | (0) |
|       | Mo7024-6     | 1.308e-21                               | 2.400e-37  | -20.883   | -36.620 | -15.736 | (0) |
|       | HMo7024-5    | 1.751e-27                               | 2.067e-38  | -26.757   | -37.685 | -10.928 | (0) |
|       | A1M06021-3   | 1 0.85e - 27                            | 1 263e-31  | -26 964   | -30 899 | -3 934  | (0) |
|       | 111100021 J  | 4 2610 24                               | 0.0000100  | 20.004    | 40 254  | 6 004   | (0) |
|       | H2M07024-4   | 4.3010-34                               | 0.00000000 | -33.300   | -40.334 | -0.994  | (0) |
|       | H3M0/024-3   | 0.000e+00                               | 0.000e+00  | -40.626   | -44.560 | -3.934  | (0) |
| Na    |              | 5.792e-01                               |            |           |         |         |     |
|       | Na+          | 4.897e-01                               | 3.689e-01  | -0.310    | -0.433  | -0.123  | (0) |
|       | NaSO4-       | 8.933e-02                               | 5.992e-02  | -1.049    | -1.222  | -0.173  | (0) |
|       | NaHCO3       | 1.677e-04                               | 1.677e-04  | -3.775    | -3.775  | 0.000   | (0) |
|       | NaCO3-       | 1 0996-05                               | 7 368e-06  | -4 959    | -5 133  | -0 173  | (0) |
|       | NaCrO4-      | 1 2596-36                               | 4 6020-37  | -35 900   | -36 337 | -0 437  | (0) |
| ~ / ( | Nacion       | 0.0000100                               | 1.0020 57  | 55.900    | 50.557  | 0.457   | (0) |
| 0((   | ))           | 0.00000000                              | 0 000 000  | 60,000    | CO 050  | 0 070   | (0) |
|       | 02           | 0.000e+00                               | 0.000e+00  | -63.323   | -63.250 | 0.073   | (0) |
| Pb    |              | 3.086e-05                               |            |           |         |         |     |
|       | Pb(SO4)2-2   | 2.643e-05                               | 4.717e-07  | -4.578    | -6.326  | -1.748  | (0) |
|       | PbSO4        | 2.588e-06                               | 2.588e-06  | -5.587    | -5.587  | 0.000   | (0) |
|       | PbCO3        | 5.634e-07                               | 5.634e-07  | -6.249    | -6.249  | 0.000   | (0) |
|       | Pb+2         | 5.424e-07                               | 1.747e-07  | -6.266    | -6.758  | -0.492  | (0) |
|       | DhOUL        | 3 3610-07                               | 1 2290-07  | -6 474    | -6 011  | -0 437  | (0) |
|       | PDUIT        | 3.3010-07                               | 1.2200-07  | -0.4/4    | -0.911  | -0.437  | (0) |
|       | PDHCU3+      | 2.8720-07                               | 1.050e-07  | -0.542    | -6.979  | -0.437  | (0) |
|       | Pb (CO3) 2-2 | 9.768e-08                               | 1.743e-09  | -7.010    | -8.759  | -1.748  | (0) |
|       | Pb2OH+3      | 2.923e-09                               | 3.402e-13  | -8.534    | -12.468 | -3.934  | (0) |
|       | PbCl+        | 1.924e-09                               | 7.031e-10  | -8.716    | -9.153  | -0.437  | (0) |
|       | Pb(OH)2      | 1.087e-09                               | 1.087e-09  | -8.964    | -8.964  | 0.000   | (0) |
|       | Pb4 (OH) 4+4 | 5.639e-11                               | 5.717e-18  | -10.249   | -17.243 | -6.994  | (0) |
|       | Pb (OH) 3-   | 8 322e-13                               | 3 042e-13  | -12 080   | -12 517 | -0 437  | (0) |
|       | DhC12        | 3 5620-13                               | 3 5620-13  | -12.000   | _12.017 | 0.000   | (0) |
|       |              | 2 200- 12                               | J.JUZE 15  | 10 027    | 14 205  | 1 740   | (0) |
|       | PD3 (OH) 4+2 | 2.308e-13                               | 4.119e-15  | -12.63/   | -14.385 | -1.748  | (0) |
|       | Pb (OH) 4-2  | 1.168e-15                               | 2.085e-1/  | -14.932   | -16.681 | -1./48  | (0) |
|       | PbCl3-       | 4.400e-17                               | 1.608e-17  | -16.357   | -16.794 | -0.437  | (0) |
|       | PbCl4-2      | 4.672e-20                               | 8.337e-22  | -19.330   | -21.079 | -1.748  | (0) |
|       | Pb(HS)2      | 8.125e-34                               | 8.125e-34  | -33.090   | -33.090 | 0.000   | (0) |
|       | Pb(HS)3-     | 0.000e+00                               | 0.000e+00  | -52,154   | -52.591 | -0.437  | (0) |
| s (.  | -2)          | 6 640e=21                               |            |           |         |         | (-) |
| 5(-   | -2)          | 4 2220 21                               | 1 5000 21  | 20 264    | 20 001  | 0 427   | (0) |
|       | п <b>5</b> - | 4.3230-21                               | 1.3000-21  | -20.364   | -20.001 | -0.437  | (0) |
|       | \$5-2        | 1.081e-21                               | 1.930e-23  | -20.966   | -22./15 | -1./48  | (0) |
|       | H2S          | 5.846e-22                               | 5.846e-22  | -21.233   | -21.233 | 0.000   | (0) |
|       | S6-2         | 3.296e-22                               | 5.882e-24  | -21.482   | -23.230 | -1.748  | (0) |
|       | S4-2         | 2.743e-22                               | 4.895e-24  | -21.562   | -23.310 | -1.748  | (0) |
|       | S3-2         | 4.289e-23                               | 7.653e-25  | -22.368   | -24,116 | -1.748  | (0) |
|       | s2-2         | 4.1336-24                               | 7.3750-26  | -23 384   | -25 132 | -1.748  | (0) |
|       | S_ 2         | 1 1030-30                               | 2 2420-31  | -20 022   | -30 640 | _0 726  | (0) |
|       |              | 1.1958-50                               | 2.2428-31  | 23.323    | 20.049  | 0.720   | (0) |
|       | PD(HS)2      | 8.125e-34                               | 8.125e-34  | -33.090   | -33.090 | 0.000   | (0) |
|       | Cu(S4)2-3    | 1.468e-38                               | 4.370e-39  | -37.833   | -38.360 | -0.526  | (0) |
|       | CuS4S5-3     | 2.511e-39                               | 8.136e-40  | -38.600   | -39.090 | -0.489  | (0) |
|       | Fe(HS)2      | 0.000e+00                               | 0.000e+00  | -41.517   | -41.517 | 0.000   | (0) |
|       | Pb(HS)3-     | 0.000e+00                               | 0.000e+00  | -52.154   | -52.591 | -0.437  | (0) |
|       | Cu(HS)3-     | 0.000e+00                               | 0.000e+00  | -55.570   | -56.007 | -0.437  | (0) |
|       | Fo(HC)3-     |                                         | 0 0000+00  | -59 9/1   | -60 201 | -0 437  | (0) |
|       | r = (110) 2- | 0.000e+00                               | J. JUJETUU | JJ.044    | 00.201  | 0.407   | (0) |

| Sb2S           | 4-2        | 0.000e+00              | 0.000e+00              | -65.349           | -67.097           | -1.748 | (0) |
|----------------|------------|------------------------|------------------------|-------------------|-------------------|--------|-----|
| S(6)           | 3.82       | 25e-01                 |                        |                   |                   |        |     |
| MgSO           | 4          | 1.779e-01              | 1.779e-01              | -0.750            | -0.750            | 0.000  | (0) |
| S04-           | 2          | 9.389e-02              | 3.024e-02              | -1.027            | -1.519            | -0.492 | (0) |
| Nasu           | 4-         | 8.933e-UZ              | 5.992e-02              | -1.049            | -1.222<br>1.015   | -0.173 | (0) |
| LiSO           | _<br>4 _   | 1.613e-02<br>1.691e-03 | 1.113e-03              | -2 772            | -2 953            | -0.182 | (0) |
| CaSO           | 4          | 1.514e-03              | 1.514e-03              | -2.820            | -2.820            | 0.000  | (0) |
| SrSO           | 4          | 4.786e-05              | 4.786e-05              | -4.320            | -4.320            | 0.000  | (0) |
| Pb (S          | 04)2-2     | 2.643e-05              | 4.717e-07              | -4.578            | -6.326            | -1.748 | (0) |
| PbSO           | 4          | 2.588e-06              | 2.588e-06              | -5.587            | -5.587            | 0.000  | (0) |
| MnSO           | 4          | 2.937e-07              | 2.937e-07              | -6.532            | -6.532            | 0.000  | (0) |
| HSO4           | -          | 1.628e-07              | 1.044e-07              | -6.788            | -6.981            | -0.193 | (0) |
| FeSO           | 4          | 1.015e-08              | 1.015e-08              | -7.994            | -7.994            | 0.000  | (0) |
| CrOH           | SO4<br>4+  | 4.889e-10<br>2.150o-12 | 4.889e-10<br>7.8580-13 | -9.311<br>-11 669 | -9.311<br>-12 105 | 0.000  | (0) |
| A150           | 4+<br>4+   | 1 250e-13              | 8 016e-14              | -12 903           | -13 096           | -0.437 | (0) |
| Al (S          | 04)2-      | 4.050e-14              | 2.598e-14              | -13.393           | -13.585           | -0.193 | (0) |
| VOSO           | 4          | 8.577e-15              | 8.577e-15              | -14.067           | -14.067           | 0.000  | (0) |
| Cr2(           | OH)2SO4+2  | 1.687e-16              | 3.010e-18              | -15.773           | -17.521           | -1.748 | (0) |
| Cr2(           | OH)2(SO4)2 | 5.408e-18              | 5.408e-18              | -17.267           | -17.267           | 0.000  | (0) |
| VO2S           | 04-        | 3.464e-19              | 1.266e-19              | -18.460           | -18.898           | -0.437 | (0) |
| CuSO           | 4          | 2.179e-19              | 2.179e-19              | -18.662           | -18.662           | 0.000  | (0) |
| VSO4           | +          | 1.467e-21              | 5.360e-22              | -20.834           | -21.271           | -0.437 | (0) |
| re(S<br>Foso   | 04)2-      | 1.320e-21              | 4.823e=22<br>7.459e=22 | -20.880           | -21.317           | -0.437 | (0) |
| CrO3           | s04-2      | 0 000e+00              | 0 000e+00              | -42 273           | -44 022           | -1 748 | (0) |
| Sb(3)          | 1.22       | 23e-09                 | 0.00000000             | 12.275            | 11.022            | 1.,10  | (0) |
| Sb (0          | н) З       | 6.134e-10              | 6.134e-10              | -9.212            | -9.212            | 0.000  | (0) |
| HSbO           | 2          | 6.098e-10              | 6.098e-10              | -9.215            | -9.215            | 0.000  | (0) |
| Sb02           | -          | 7.648e-14              | 2.795e-14              | -13.116           | -13.554           | -0.437 | (0) |
| Sb (0          | H)4-       | 4.226e-14              | 1.544e-14              | -13.374           | -13.811           | -0.437 | (0) |
| Sb (0          | Н)2+       | 1.466e-15              | 5.360e-16              | -14.834           | -15.271           | -0.437 | (0) |
| Sb0+           | 1-2        | 5.149e-16              | 1.882e-16              | -15.288           | -15./25           | -0.43/ | (0) |
| SD25           | 4-2        | 790-12                 | 0.00000000             | -03.349           | -07.097           | -1./40 | (0) |
| Sb(3)<br>Sb03  |            | 4.776e-12              | 1.746e-12              | -11.321           | -11.758           | -0.437 | (0) |
| Sb (O          | н) 6-      | 2.566e-15              | 1.933e-15              | -14.591           | -14.714           | -0.123 | (0) |
| Sb02           | +          | 1.741e-27              | 6.365e-28              | -26.759           | -27.196           | -0.437 | (0) |
| Si             | 8.20       | )5e-05                 |                        |                   |                   |        |     |
| H4Si           | 04         | 8.141e-05              | 9.642e-05              | -4.089            | -4.016            | 0.073  | (0) |
| H3Si           | 04-        | 6.333e-07              | 3.944e-07              | -6.198            | -6.404            | -0.206 | (0) |
| H2S1           | 04-2       | 3.480e-12              | 7.044e-13              | -11.458           | -12.152           | -0.694 | (0) |
| ST SYSO        | 1.20       | 4 7860-05              | 1 7860-05              | -1 320            | -4 320            | 0 000  | (0) |
| Sr+2           | -          | 2.462e-05              | 7.932e-06              | -4.609            | -5.101            | -0.492 | (0) |
| SrHC           | 03+        | 1.512e-07              | 1.040e-07              | -6.820            | -6.983            | -0.163 | (0) |
| SrCO           | 3          | 5.493e-09              | 5.493e-09              | -8.260            | -8.260            | 0.000  | (0) |
| SrOH           | +          | 2.228e-11              | 1.466e-11              | -10.652           | -10.834           | -0.182 | (0) |
| V(2)           | 8.58       | 34e-24                 |                        |                   |                   |        |     |
| V+2            |            | 5.952e-24              | 1.062e-25              | -23.225           | -24.974           | -1.748 | (0) |
| VOH+           | 6 63       | 2.632e-24              | 9.618e-25              | -23.580           | -24.01/           | -0.43/ | (0) |
| V(J)<br>V(OH   | 13         | 6 637e-04              | 6 6370-04              | -3 178            | -3 178            | 0 000  | (0) |
| V (OH<br>V (OH | ) 2+       | 4.222e-14              | 1.543e-14              | -13.374           | -13.812           | -0.437 | (0) |
| VOH+           | 2          | 2.951e-16              | 5.266e-18              | -15.530           | -17.279           | -1.748 | (0) |
| V+3            |            | 3.226e-19              | 3.754e-23              | -18.491           | -22.425           | -3.934 | (0) |
| VSO4           | +          | 1.467e-21              | 5.360e-22              | -20.834           | -21.271           | -0.437 | (0) |
| V2 (O          | Н)2+4      | 1.726e-27              | 1.750e-34              | -26.763           | -33.757           | -6.994 | (0) |
| V2 (O          | H)3+3      | 1.976e-29              | 2.300e-33              | -28.704           | -32.638           | -3.934 | (0) |
| V (4)<br>V/∩™  | 2.20       | 1 5/50-13              | 5 6150-11              | -12 811           | -13 2/0           | -0 /37 | (0) |
|                | 1          | 1.J4Je=13<br>5 770a=14 | 1 0300-15              | -13 230           | -14 987           | -1 748 | (0) |
| VOSO           | 4          | 8.577e-15              | 8.577e-15              | -14.067           | -14.067           | 0.000  | (0) |
| VOCL           | +          | 8.963e-19              | 3.276e-19              | -18.048           | -18.485           | -0.437 | (0) |
| H2V2           | 04+2       | 9.283e-21              | 1.657e-22              | -20.032           | -21.781           | -1.748 | (0) |
| V(5)           | 4.50       | 51e-11                 |                        |                   |                   |        |     |
| HVO4           | -2         | 2.704e-11              | 4.825e-13              | -10.568           | -12.317           | -1.748 | (0) |
| H2VO           | 4 -        | 1.857e-11              | 6.787e-12              | -10.731           | -11.168           | -0.437 | (0) |

| H3VO4                             | 2.398e-1 | 5 2.39           | 8e-15          | -14.620        | -14.620          | 0.000   | (0) |
|-----------------------------------|----------|------------------|----------------|----------------|------------------|---------|-----|
| VO4-3                             | 5.881e-1 | 6 6.84           | 4e-20          | -15.231        | -19.165          | -3.934  | (0) |
| HV207-3                           | 9.709e-1 | 8 1.13           | 0e-21          | -17.013        | -20.947          | -3.934  | (0) |
| V207-4                            | 8.490e-1 | 8 8.60           | 8e-25          | -17.071        | -24.065          | -6.994  | (0) |
| V02S04-                           | 3.464e-1 | 9 1.26           | 6e-19          | -18.460        | -18.898          | -0.437  | (0) |
| H3V207-                           | 2.928e-1 | 9 1.07<br>0 1.75 | 0e-19<br>20 10 | -18.533        | -18.971          | -0.437  | (0) |
| V02+<br>V309-3                    | 2.3270-1 | 9 1.75<br>A 3.45 | 3e=19<br>7o=28 | -10.033        | -27 461          | -3 934  | (0) |
| V4012-4                           | 9 8246-3 | - 33<br>0 9.96   | 1e-37          | -29 008        | -36 002          | -6 994  | (0) |
| V10028-6                          | 0.000e+0 | 0 0.00           | 0e+00          | -76.754        | -92.490          | -15.736 | (0) |
| HV10028-5                         | 0.000e+0 | 0 0.00           | 0e+00          | -80.827        | -91.755          | -10.928 | (0) |
| H2V10028-4                        | 0.000e+0 | 0 0.00           | 0e+00          | -87.005        | -93.999          | -6.994  | (0) |
|                                   |          |                  |                |                |                  |         |     |
| <br>                              |          | Satur            | ation ir       | ndices         |                  |         |     |
| Phase                             | ST**     | log TAP          | log K          | 298 K          | 1 a+m)           |         |     |
| 111450                            | 01       | 109 1111         | 109 10         | 200 10,        | i aciii)         |         |     |
| Al(OH)3(am)                       | -3.93    | 6.87             | 10.80          | Al(OH)3        |                  |         |     |
| Al2(MoO4)3                        | -46.17   | -43.80           | 2.37           | Al2(MoO4       | 4)3              |         |     |
| A1203                             | -5.90    | 13.75            | 19.65          | A1203          |                  |         |     |
| Al4(OH)10SO4                      | -11.65   | 11.05            | 22.70          | Al4(OH)1       | L0SO4            |         |     |
| ALASO4:2H2O                       | -8.86    | -4.06            | 4.80           | ALASO4:2       | 2H2O             |         |     |
| ALCHSU4                           | -0.31    | -9.54            | -3.23          | ALOHSU4        |                  |         |     |
| Albunite                          | -102.07  | -50.44           | -1 40          | KTJ3(207       | 1)2(OH)6         |         |     |
| Anglesite                         | -0.49    | -8.28            | -7.79          | PbS04          | 1)2(011)0        |         |     |
| Anhydrite                         | -0.82    | -5.18            | -4.36          | CaSO4          |                  |         |     |
| Anilite                           | -8.92    | -40.80           | -31.88         | Cu0.25Cu       | 1.5S             |         |     |
| Antlerite                         | -39.04   | -30.25           | 8.79           | Cu3(OH)4       | 4SO4             |         |     |
| Aragonite                         | -1.33    | -9.63            | -8.30          | CaCO3          |                  |         |     |
| Arsenolite                        | -10.80   | -13.56           | -2.76          | As406          |                  |         |     |
| Artinite                          | -3.69    | 5.91             | 9.60           | MgCO3:Mg       | g(OH)2:3H2O      |         |     |
| As205                             | -28.54   | -21.83           | 6.71           | As205          |                  |         |     |
| Atacamite                         | -28.01   | -20.62           | -16 91         | Cu2 (OH) 3     | 3CI<br>2 (CO3) 2 |         |     |
| Ra (OH) 2 · 8H2O                  | -20 16   | 4 24             | 24 39          | Ba (OH) 2      | · 8H20           |         |     |
| Ba2V207:2H20                      | -29.89   | -14.02           | 15.87          | Ba2V207        | 2H2O             |         |     |
| Ba3(AsO4)2                        | -0.00    | -8.91            | -8.91          | Ba3 (AsO4      | 4)2              |         |     |
| Ba3(VO4)2:4H2O                    | -42.67   | -9.73            | 32.94          | Ba3 (VO4)      | 2:4H2O           |         |     |
| BaCrO4                            | -37.52   | -47.19           | -9.67          | BaCrO4         |                  |         |     |
| BaMoO4                            | -7.92    | -14.88           | -6.96          | BaMoO4         |                  |         |     |
| Barite                            | -2.13    | -12.11           | -9.98          | BaSO4          |                  |         |     |
| BaS                               | -40.12   | -23.94           | 10.18          | BaS<br>Mp02    |                  |         |     |
| Birnessite                        | -24.44   | -0.34            | 18.09          | MnO2           |                  |         |     |
| BlaubleiT                         | -23.42   | -24.00           | -24 16         | C110 9C110     | 1 25             |         |     |
| BlaubleiII                        | -9.81    | -37.09           | -27.28         | Cu0.6Cu        | ).8S             |         |     |
| Boehmite                          | -1.71    | 6.87             | 8.58           | Alooh          |                  |         |     |
| Brochantite                       | -50.09   | -34.86           | 15.22          | Cu4(OH)6       | 6SO4             |         |     |
| Brucite                           | -3.45    | 13.40            | 16.84          | Mg (OH) 2      |                  |         |     |
| Ca (VO3) 2                        | -17.04   | -11.38           | 5.66           | Ca(VO3)2       | 2                |         |     |
| Ca2V207                           | -17.65   | -0.15            | 17.50          | Ca2V207        | 0                |         |     |
| Ca2V207:2H20                      | -21./1   | -0.16            | 21.55          | Ca2V207:       | :2H2O            |         |     |
| Ca3 (ASU4) 2:4H2U                 | -10.46   | 11.84<br>11 09   | 22.30          | Ca3 (ASU4      | 4)Z:4HZO         |         |     |
| Ca3(V04)2<br>$Ca3(V04)2\cdot4H20$ | -28.80   | 11.09            | 39.86          | Ca3 (VO4)      | 2·4H20           |         |     |
| Ca3Sb2                            | -195.90  | -52.93           | 142.97         | Ca3Sb2         | 2.11120          |         |     |
| CaCrO4                            | -38.00   | -40.26           | -2.27          | CaCrO4         |                  |         |     |
| Calcite                           | -1.15    | -9.63            | -8.48          | CaCO3          |                  |         |     |
| CaMoO4                            | 0.00     | -7.95            | -7.95          | CaMoO4         |                  |         |     |
| Celestite                         | 0.00     | -6.62            | -6.62          | SrSO4          |                  |         |     |
| Cerussite                         | 0.40     | -12.73           | -13.13         | PbCO3          |                  |         |     |
| CH4 (g)                           | -25.33   | -66.37           | -41.05         | CH4            | 120              |         |     |
| Chalcedony                        | -10.42   | -21.06           | -2.64          | cuSO4:51       | 120              |         |     |
| Chalcocite                        | -0.40    | -4.00            | -31 00         | 01129<br>C1129 |                  |         |     |
| Chalcopvrite                      | -19.80   | -55.07           | -35.27         | CuFeS2         |                  |         |     |
| Chrysotile                        | -0.00    | 32.20            | 32.20          | Mg3Si2O5       | 5 (OH) 4         |         |     |
| Claudetite                        | -10.50   | -13.56           | -3.06          | As406          |                  |         |     |
|                                   |          |                  |                |                |                  |         |     |

| CO2 (g)           | -2.72     | -20.87  | -18.15  | C02                      |
|-------------------|-----------|---------|---------|--------------------------|
| Cotunnite         | -9.87     | -14.65  | -4.78   | PbCl2                    |
| Covellite         | -10.55    | -32.85  | -22.30  | CuS                      |
| Cr(OH)2           | -14.74    | -3.93   | 10.82   | Cr(OH)2                  |
| Cr(OH)3           | -2.53     | -1.19   | 1.34    | Cr(OH)3                  |
| Cr(OH)3(am)       | -0.44     | -1.19   | -0.75   | Cr (OH) 3                |
| Cr203             | 0.00      | -2.36   | -2.36   | Cr203                    |
| CrCl2             | -40.80    | -26 70  | 14 09   | CrCl2                    |
| CrCl3             | -50.47    | -35 36  | 15 11   | CrCl3                    |
|                   | -30.47    | -33.30  | 13.11   |                          |
| Cristopalite      | -0.65     | -4.00   | -3.35   | 5102                     |
| Criticial         | -45.77    | -15.29  | 30.48   | Cr                       |
| Cr03              | -48.29    | -51.50  | -3.21   | Cr03                     |
| Cu (OH) 2         | -13.29    | -4.61   | 8.67    | Cu (OH) 2                |
| Cu(SbO3)2         | -45.47    | -0.26   | 45.21   | Cu (SbO3) 2              |
| Cu2Sb:3H2O        | -20.67    | -55.55  | -34.88  | Cu2Sb:3H2O               |
| Cu2SO4            | -29.67    | -31.62  | -1.95   | Cu2SO4                   |
| Cu3(AsO4)2:2H2O   | -41.77    | -35.67  | 6.10    | Cu3(AsO4)2:2H2O          |
| Cu3Sb             | -23.53    | -66.13  | -42.59  | Cu3Sb                    |
| CuCO3             | -13.97    | -25.47  | -11.50  | CuCO3                    |
| CuCrO4            | -50.66    | -56.10  | -5.44   | CuCrO4                   |
| Cumetal           | -4.53     | -13.29  | -8.76   | Cu                       |
| CuMoO4            | -10 72    | -23 79  | -13 08  |                          |
|                   | -35 93    | -25.63  | 10 30   |                          |
| Cupriafornito     | 12 22     | 23.05   | 10.50   | Cuccuso4                 |
| Cupricierrice     | -13.22    | -7.24   | J.99    | Curez04                  |
| Cuprite           | -13.80    | -15.21  | -1.41   |                          |
| Cuprousierrite    | -0.00     | -8.92   | -8.92   | CuFeO2                   |
| CuSO4             | -23.96    | -21.02  | 2.94    | CuSO4                    |
| Diaspore          | -0.00     | 6.87    | 6.87    | Alooh                    |
| Djurleite         | -8.83     | -42.75  | -33.92  | Cu0.066Cu1.868S          |
| Dolomite(disorde  | ered) -0  | .55 -1  | 7.09 -1 | 6.54 CaMg(CO3)2          |
| Dolomite (ordered | i) 0.00   | -17.0   | 9 -17.0 | 9 CaMg(CO3)2             |
| Epsomite          | -0.94     | -3.07   | -2.13   | MgSO4:7H2O               |
| Fe(OH)2           | -7.54     | 6.02    | 13.56   | Fe(OH)2                  |
| Fe(OH)2.7C1.3     | -1.70     | -4.74   | -3.04   | Fe(OH)2.7C1.3            |
| Fe (VO3) 2        | -12.87    | -16.59  | -3.72   | Fe (VO3) 2               |
| Fo2 (SO4) 3       | _19 11    | -51 07  | _3 73   | $E_{0}(100)$             |
| Fe2 (504) 5       | -16 95    | 3 37    | 20.22   | Fe2 (04) 9               |
| Fe3 (OR) 0        | 10.05     | 10 05   | 20.22   | Fe3 (OH) 8               |
| FEASU4:2HZU       | -12.05    | -12.23  | 0.40    | FEASO4:2H20              |
| FeCr204           | -3.53     | 3.6/    | 7.20    | FeCr204                  |
| FeMoU4            | -3.06     | -13.15  | -10.09  | FeMOU4                   |
| Ferrihydrite      | -4.52     | -1.33   | 3.19    | Fe(OH)3                  |
| FeS(ppt)          | -19.26    | -22.21  | -2.95   | FeS                      |
| Galena            | -6.14     | -20.11  | -13.97  | PbS                      |
| Gibbsite          | -1.43     | 6.87    | 8.29    | Al(OH)3                  |
| Goethite          | -1.81     | -1.32   | 0.49    | FeOOH                    |
| Greenalite        | -10.73    | 10.08   | 20.81   | Fe3Si2O5(OH)4            |
| Greigite          | -64.54    | -109.58 | -45.03  | Fe3S4                    |
| Gypsum            | -0.59     | -5.20   | -4.61   | CaSO4:2H2O               |
| H-Jarosite        | -24.71    | -36.81  | -12.10  | (H3O) Fe3 (SO4) 2 (OH) 6 |
| Н2МоО4            | -6.32     | -19.19  | -12.88  | H2MoO4                   |
| H2S(a)            | -20.24    | -28.25  | -8.01   | H2S                      |
| Halite            | -5 98     | -4 38   | 1 60    | NaCl                     |
| Hallovsite        | -3.84     | 5 74    | 9 57    | A12Si2O5(OH)4            |
| Hauropoito        | 26.76     | 24 27   | 61 02   | Mn 204                   |
| Hausmannice       | -20.70    | 24.27   | 1 40    | MII304                   |
| nemacice          | -1.21     | -2.03   | -1.42   | Fe205                    |
| Hercynice         | -3.11     | 19.79   | 22.89   | real204                  |
| Huntite           | -2.04     | -32.01  | -29.97  | CaMg3 (CO3) 4            |
| Hydrocerussite    | 1.45      | -17.32  | -18.77  | Pb3 (OH) 2 (CO3) 2       |
| Hydromagnesite    | - / . / 1 | -16.47  | -8.77   | Mg5(CO3)4(OH)2:4H2O      |
| K-Alum            | -14.68    | -19.85  | -5.17   | KAl(SO4)2:12H2O          |
| K-Jarosite        | -15.79    | -30.59  | -14.80  | KFe3(SO4)2(OH)6          |
| K2Cr207           | -73.35    | -90.59  | -17.24  | K2Cr207                  |
| K2CrO4            | -38.58    | -39.09  | -0.51   | K2CrO4                   |
| K2MoO4            | -10.04    | -6.78   | 3.26    | K2MoO4                   |
| Kaolinite         | -1.70     | 5.74    | 7.43    | Al2Si2O5(OH)4            |
| Langite           | -52.36    | -34.87  | 17.49   | Cu4(OH)6SO4:H2O          |
| Larnakite         | 0.30      | -0.14   | -0.43   | PbO: PbSO4               |
| Laurionite        | -3.88     | -3.26   | 0.62    | PbOHCl                   |
| Lepidocrocite     | -2 69     | -1 30   | 1 37    | FeOOH                    |
|                   | 2.00      | 1.52    | ±•07    | 2 0 0 0 11               |

| Li2CrO4         | -45.61   | -40.75 | 4.86   | Li2CrO4              |
|-----------------|----------|--------|--------|----------------------|
| Li2MoO4         | -10.88   | -8.44  | 2.44   | Li 2Mo04             |
| T.ime           | -21 46   | 11 24  | 32 70  | CaO                  |
| I i thorac      | 1 56     | 0 1 /  | 12 60  | PhO                  |
| Litharge        | -4.56    | 8.14   | 12.69  | PDO                  |
| Mackinawite     | -18.61   | -22.21 | -3.60  | r'es                 |
| Maghemite       | -9.01    | -2.63  | 6.39   | Fe203                |
| Magnesioferrite | -6.08    | 10.78  | 16.86  | Fe2MgO4              |
| Magnesite       | 0.00     | -7.46  | -7.46  | MgCO3                |
| Magnetite       | -0.00    | 3.40   | 3.40   | Fe304                |
| Malachite       | -24.78   | -30.09 | -5.31  | Cu2 (OH) 2CO3        |
| Manganite       | -12.02   | 13.32  | 25.34  | MnOOH                |
| Maggicot        | -4 76    | 8 1 /  | 12 89  | PhO                  |
| Malanathallita  | 22 65    | 27 20  | 6 26   | CuCl 2               |
| Melantenite     | -33.03   | 10 44  | 0.20   |                      |
| Melanterite     | -8.23    | -10.44 | -2.21  | reso4:/H20           |
| Mg(OH)2(active) | -5.40    | 13.40  | 18.79  | Mg(OH)2              |
| Mg (VO3) 2      | -20.49   | -9.21  | 11.28  | Mg (VO3) 2           |
| Mg2Sb3          | -149.40  | -74.71 | 74.68  | Mg2Sb3               |
| Mg2V207         | -22.17   | 4.19   | 26.36  | Mg2V207              |
| MgCr2O4         | -5.15    | 11.05  | 16.20  | MgCr2O4              |
| MgCrO4          | -43.47   | -38.09 | 5.38   | MgCrO4               |
| MaMoO4          | -3.93    | -5.78  | -1.85  | MaMoO4               |
| Minium          | -37 73   | 35 79  | 73 52  | Pb304                |
| Mirabilite      | -1 35    | -2 46  | -1 11  | Na2SO4 · 10H2O       |
| Mp (MO2) 2      | 10.00    | 1/ 00  | 1 00   | Mp (102) 2           |
| MII (VOS) Z     | -19.00   | -14.90 | 4.90   | MII (VO3) 2          |
| Mn2(S04)3       | -67.60   | -/3.31 | -5./1  | Mn2 (S04) 3          |
| Mn2Sb           | -94.82   | -33.74 | 61.08  | Mn2Sb                |
| Mn3(AsO4)2:8H2O | -11.50   | 1.00   | 12.50  | Mn3(AsO4)2:8H2O      |
| MnCl2:4H2O      | -17.90   | -15.19 | 2.72   | MnCl2:4H2O           |
| MnS(grn)        | -20.78   | -20.61 | 0.17   | MnS                  |
| MnS(pnk)        | -23.95   | -20.61 | 3.34   | MnS                  |
| MnSb            | -52.44   | -55.35 | -2.91  | MnSb                 |
| MnSO4           | -11.37   | -8.78  | 2.58   | MnSO4                |
| MoO3            | -11 19   | -19 19 | -8 00  | MoO3                 |
| Mog2            | -16 79   | -87 05 | -70.26 | Mos2                 |
| No Torocito     | 10.79    | -07.05 | 11 20  | MOSZ                 |
| Na-Jarosite     | -10.30   | -29.70 | -11.20 | Nares (S04) 2 (OH) 6 |
| Na2Cr207        | -79.07   | -88.96 | -9.90  | Na2Cr207             |
| Na2CrO4         | -40.40   | -37.47 | 2.93   | Na2CrO4              |
| Na2Mo2O7        | -7.74    | -24.34 | -16.60 | Na2Mo2O7             |
| Na2MoO4         | -6.65    | -5.16  | 1.49   | Na2MoO4              |
| Na2MoO4:2H2O    | -6.40    | -5.17  | 1.22   | Na2MoO4:2H2O         |
| Na3Sb           | -116.73  | -22.27 | 94.45  | Na3Sb                |
| Na3VO4          | -26.95   | 9.74   | 36.68  | Na3VO4               |
| Na 4V207        | -31,96   | 5.44   | 37.40  | Na4V207              |
| Nantokite       | -12.27   | -19.00 | -6.73  | CuCl                 |
| Nach            | -49 10   | -24 03 | 23 17  | Nash                 |
| Nation          | -5 60    | -6 01  | _1 31  | Na3D                 |
| Nation          | -3.00    | -0.91  | -1.31  | Nazcos.ionzo         |
| Nav03           | -8.15    | -4.29  | 3.80   | Navos                |
| Nesquehonite    | -2.81    | -/.48  | -4.6/  | MgCO3:3H2O           |
| Nsutite         | -23.85   | -6.34  | 17.50  | MnO2                 |
| 02 (g)          | -60.34   | 22.75  | 83.09  | 02                   |
| Orpiment        | -30.45   | -91.52 | -61.07 | As2S3                |
| Pb(OH)2         | -0.02    | 8.13   | 8.15   | Pb(OH)2              |
| Pb10(OH)60(CO3) | 6 -35.07 | -43.83 | -8.76  | Pb10(OH)60(CO3)6     |
| Pb2(OH)3C1      | -3.92    | 4.87   | 8.79   | Pb2(OH)3Cl           |
| Pb20 (OH) 2     | -9.92    | 16.27  | 26.19  | Pb20(0H)2            |
| Pb203           | -33.39   | 27.65  | 61.04  | Pb203                |
| Ph20C03         | -4.03    | -1 59  | -0.56  | Ph20003              |
| Db200000        | -1.05    | -6.34  | _1 00  | Ph202000             |
| Db2(20)         | -4.44    | -0.54  | -1.90  | Pb2(200)             |
| PD5 (AS04) Z    | -3.22    | 2.30   | 5.00   | PD3 (ASU4) 2         |
| Pb3(V04)2       | -4.34    | 1.80   | 6.14   | Pb3 (VO4) 2          |
| Pb302C03        | -/.4/    | 3.55   | 11.02  | Pb302C03             |
| Pb302S04        | -2.69    | 8.00   | 10.69  | Pb302S04             |
| Pb4 (OH) 6SO4   | -4.99    | 16.11  | 21.10  | Pb4 (OH) 6SO4        |
| Pb403S04        | -5.74    | 16.14  | 21.88  | Pb403S04             |
| PbCrO4          | -30.76   | -43.36 | -12.60 | PbCrO4               |
| Pbmetal         | -7.48    | -3.23  | 4.25   | Pb                   |
| PbMoO4          | 4.57     | -11.05 | -15.62 | PbMoO4               |
| Pb0:0.3H20      | -4.84    | 8.14   | 12,98  | Pb0:0.33H20          |
| Periclase       | -8.18    | 13 41  | 21.58  | ΜαΟ                  |
|                 | 0.TO     |        |        | , ~                  |

| Phosgenite                                            | -7.57                                  | -27.38        | -19.81   | PbCl2:PbCO3               |
|-------------------------------------------------------|----------------------------------------|---------------|----------|---------------------------|
| Plattnerite                                           | -30.09                                 | 19.51         | 49.60    | Pb02                      |
| Portlandite                                           | -11.58                                 | 11.23         | 22.80    | Ca(OH)2                   |
| Pyrite                                                | -20.58                                 | -39.09        | -18.51   | FeS2                      |
| Pyrochroite                                           | -7.57                                  | 7.63          | 15.19    | Mn (OH) 2                 |
| Pyrolusite                                            | -22.37                                 | 19.01         | 41.38    | MnO2                      |
| Quartz                                                | 0.00                                   | -4.00         | -4.00    | SiO2                      |
| Realgar                                               | -17.58                                 | -37.32        | -19.75   | AsS                       |
| Rhodochrosite                                         | -2.65                                  | -13.23        | -10.58   | MnCO3                     |
| Sb(OH)3                                               | -2.10                                  | -9.21         | -/.11    | SD (OH) 3                 |
| SD204                                                 | -10.43                                 | -7.03         | 3.40     | SD204                     |
| SD205<br>Sb406 (aubia)                                | -34.61<br>10 54                        | -44.28        | -9.6/    | SD2U5<br>Sb406            |
| Sb406 (Cubic)<br>Sb406 (orth)                         | -10.34                                 | -36.00        | -17 90   | SD406                     |
| SD400 (OI CII)                                        | -10.90                                 | -30.00        | -17.90   | SD400                     |
| SDC13<br>Shmotal                                      | -43.95                                 | -43.38        | -11 69   | SDC13<br>Sh               |
| Sh02                                                  | -14.57                                 | -20.20        | -27.82   | SD<br>ShO2                |
| Separmontite                                          | -6.04                                  | -18 40        | -12 37   | SD02<br>Sh203             |
| Seniolite                                             | -0.98                                  | 14 78         | 15 76    | Ma2si307 50H·3H20         |
| Sepiolite(A)                                          | -4.00                                  | 14.78         | 18.78    | Mg251307.50H:3H20         |
| Siderite                                              | -4.59                                  | -14.83        | -10.24   | FeCO3                     |
| SiO2(am-gel)                                          | -1.29                                  | -4.00         | -2.71    | si02                      |
| SiO2(am-ppt)                                          | -1.26                                  | -4.00         | -2.74    | SiO2                      |
| Spinel                                                | -9.69                                  | 27.16         | 36.85    | MgA1204                   |
| SrCrO4                                                | -37.05                                 | -41.70        | -4.65    | SrCrO4                    |
| Stibnite                                              | -52.68                                 | -103.14       | -50.46   | Sb2S3                     |
| Strontianite                                          | -1.80                                  | -11.07        | -9.27    | SrCO3                     |
| Sulfur                                                | -14.73                                 | -16.87        | -2.14    | S                         |
| Tenorite                                              | -12.25                                 | -4.61         | 7.64     | CuO                       |
| Thenardite                                            | -2.71                                  | -2.39         | 0.32     | Na2SO4                    |
| Thermonatrite                                         | -7.48                                  | -6.84         | 0.64     | Na2CO3:H2O                |
| V (OH) 3                                              | -7.68                                  | -0.09         | 7.59     | V (OH) 3                  |
| V205                                                  | -21.26                                 | -22.62        | -1.36    | V205                      |
| V305                                                  | -13.48                                 | -11.65        | 1.84     | V305                      |
| V407                                                  | -18.93                                 | -11.74        | 7.19     | V407                      |
| V6013                                                 | -29.73                                 | -90.59        | -60.86   | V6013                     |
| Valentinite                                           | -9.92                                  | -18.40        | -8.48    | Sb203                     |
| VC12                                                  | -47.43                                 | -28.55        | 18.87    | VC12                      |
| VC13                                                  | -57.69                                 | -34.26        | 23.43    | VC13                      |
| Vmetal                                                | -61.17                                 | -17.14        | 44.03    | V                         |
| VO                                                    | -20.52                                 | -5.77         | 14./6    | VO<br>VO                  |
| VO(OH)2                                               | -5.25                                  | -0.10         | 5.15     | VO (OH) Z                 |
| VOZCI                                                 | -25.54                                 | -22.70        | 2.84     | VOZCI                     |
| VOCI                                                  | -22.03                                 | -11.40        | 10.70    | VOCI                      |
| VOCIZ                                                 | -35.64                                 | -22.88        | 12.76    | VOC12                     |
| Witherite                                             | -20.12                                 | -16.51        | -8 57    | V0304<br>Baco3            |
| WICHEIICE                                             | -7.99                                  | -10.00        | -0.57    | Bacos                     |
| **For a gas, SI<br>For ideal gase<br>End of simulatio | = log10(fu<br>s, phi = 1<br><br>n.<br> | gacity).<br>• | Fugacity | = pressure * phi / 1 atm. |
|                                                       |                                        |               | _        |                           |
| Reading input da                                      | ta for sim                             | ulation 6     |          |                           |
|                                                       |                                        |               | -        |                           |
|                                                       |                                        |               |          |                           |
| USE SOLU<br>EQUILIBRI                                 | JTION 4<br>UM_PHASES                   | 6             |          |                           |
| A1203 0                                               | 0                                      |               |          |                           |
| Anhydrite                                             | e 0                                    | 0             |          |                           |
| Anilite O                                             | 0                                      |               |          |                           |
| Aragonite                                             | e 0                                    | 0             |          |                           |
| Artinite                                              | 0                                      | 0             |          |                           |
| Ba3 (AsO4)                                            | 2 0                                    | 0             |          |                           |
| Barite O                                              | 0                                      | -             |          |                           |
| BlaubleiI                                             | I 0                                    | 0             |          |                           |
|                                                       |                                        |               |          |                           |

| Boehmite        | 0     | 0      |   |   |
|-----------------|-------|--------|---|---|
| Brucite 0       | 0     |        |   |   |
| Calcite0        | 0     |        |   |   |
| CaMoO4 0        | 0     |        |   |   |
| Chrysotile      | 0     | 0      |   |   |
| Chalcocite      | 0     | 0      |   |   |
| Chalcedony      | 0     | 0      |   |   |
| Celestite       | 0     | 0      |   |   |
| Cr(OH)3(am)     | 0     | 0      |   |   |
| Cr2O3 0         | 0     |        |   |   |
| Cristobalite    | 0     | 0      |   |   |
| Cu2Sb:3H2O      | 0     | 0      |   |   |
| Cuprousferrite  | 0     | 0      |   |   |
| Cuprite 0       | 0     |        |   |   |
| Cupricferrite   | 0     | 0      |   |   |
| Cumetal 0       | 0     | 0      |   |   |
| Cu3Sb 0         | 0     |        |   |   |
| Dissoore        | 0     | 0      |   |   |
| Diaspoie        | 0     | 0      |   |   |
| Dolomito (disor | Jorod | ۰<br>۱ |   | 0 |
|                 | Jereu | ) 0    |   | 0 |
|                 | 20)   | 0      |   | 0 |
| Fe(OH) 2 0      | 0     | 0      |   |   |
| Fe(OH) 2.7CL.3  | 0     | 0      |   |   |
| Greenalite      | 0     | 0      |   |   |
| Goethite        | 0     | 0      |   |   |
| Gibbsite        | 0     | 0      |   |   |
| Ferrihydrite    | 0     | 0      |   |   |
| FeMoO4 0        | 0     |        |   |   |
| FeCr2O40        | 0     |        |   |   |
| Fe3(OH)8        | 0     | 0      |   |   |
| Gypsum O        | 0     |        |   |   |
| Halloysite      | 0     | 0      |   |   |
| Hematite        | 0     | 0      |   |   |
| Hercynite       | 0     | 0      |   |   |
| Huntite O       | 0     |        |   |   |
| Hydromagnesite  | 0     | 0      |   |   |
| MgCr2O40        | 0     |        |   |   |
| Magnetite       | 0     | 0      |   |   |
| Magnesite       | 0     |        | 0 |   |
| Magnesioferrite | Э -   | 0      |   | 0 |
| Maghemite       | 0     | 0      |   |   |
| Kaolinite       | 0     | 0      |   |   |
| K-Jarosite      | 0     | Õ      |   |   |
| Lepidocrocite   | 0     | 0      |   |   |
| Negruebenite    | 0     | 0      |   |   |
| Ouartz 0        | 0     | 0      |   |   |
| DhMoO4 0        | 0     |        |   |   |
| PDM004 0        | 0     | 0      |   |   |
| SIUZ (am-gel)   | 0     | 0      |   |   |
| Siderile        | 0     | 0      |   |   |
| S102 (am-ppt)   | 0     | 0      |   |   |
| Sepiolite(A)    | 0     | 0      |   |   |
| Sepiolite       | 0     | 0      |   |   |
| Senarmontite    | U     | 0      |   |   |
| Rhodochrosite   | 0     | 0      |   |   |
| Sb(OH)30        | 0     |        |   |   |
| SbO2 0          | 0     |        |   |   |
| Strontianite    | 0     | 0      |   |   |
| Spinel O        | 0     |        |   |   |
| Witherite       | 0     | 0      |   |   |
| SAVE SOLUTION   | 4     |        |   |   |
| END             |       |        |   |   |
| <br>            |       |        |   |   |

Beginning of batch-reaction calculations.

Reaction step 1.

Using solution 4. Solution after simulation 2. Using pure phase assemblage 6.

|                         |          | P              | hase assemb            | lage            |                        |                         |
|-------------------------|----------|----------------|------------------------|-----------------|------------------------|-------------------------|
|                         |          |                |                        | ۸۸ -            | les in secon           | blace                   |
| Phase                   | ST       | ίοα ταρ        | ןטע ג(ה <sup>-</sup> ה | Mc<br>) Tnitial | rinal Ti assem         | Delta                   |
| 111450                  | 01       | 109 1111       | 109 10(1, 1            | ) INICIAI       | I IIIGI                | Derea                   |
| A1203                   | -5.90    | 13.75          | 19.65                  | 0.000e+00       | 0                      | 0.000e+00               |
| Anhydrite               | -0.75    | -5.11          | -4.36                  | 0.000e+00       | 0                      | 0.000e+00               |
| Anilite                 | -8.78    | -40.66         | -31.88                 | 0.000e+00       | 0                      | 0.000e+00               |
| Aragonite               | -1.33    | -9.63          | -8.30                  | 0.000e+00       | 0                      | 0.000e+00               |
| Artinite                | -3.69    | 5.91           | 9.60                   | 0.000e+00       | 0                      | 0.000e+00               |
| Ba3(AsO4)2              | 0.00     | -8.91          | -8.91                  | 0.000e+00       | 8.173e-05              | 8.173e-05               |
| Barite                  | -2.08    | -12.06         | -9.98                  | 0.000e+00       | 0                      | 0.000e+00               |
| BlaubleiII              | -9.68    | -36.96         | -27.28                 | 0.000e+00       | 0                      | 0.000e+00               |
| Boehmite                | -1.70    | 6.87           | 8.58                   | 0.000e+00       | 0                      | 0.000e+00               |
| Brucite                 | -3.45    | 13.40          | 16.84                  | 0.000e+00       | 0                      | 0.000e+00               |
| CaMoO4                  | -0.00    | -7.95          | -7.95                  | 0.000e+00       | 5.246e-04              | 5.246e-04               |
| Calcite                 | -1.15    | -9.63          | -8.48                  | 0.000e+00       | 0                      | 0.000e+00               |
| Celestite               | 0.00     | -6.62          | -6.62                  | 0.000e+00       | 1.363e-02              | 1.363e-02               |
| Chalcedony              | -0.45    | -4.00          | -3.55                  | 0.000e+00       | 0                      | 0.000e+00               |
| Chalcocite              | -8.39    | -43.31         | -34.92                 | 0.000e+00       | 0                      | 0.000e+00               |
| Chrysotile              | 0.00     | 32.20          | 32.20                  | 0.000e+00       | 1.090e-02              | 1.090e-02               |
| Cr(OH)3(am)             | -0.44    | -1.19          | -0.75                  | U.UUUe+00       | 0                      | U.UUUe+00               |
| Cr203                   | 0.00     | -2.36          | -2.36                  | 0.000e+00       | 6.943e-08              | 6.943e-08               |
| Cristobalite            | -0.65    | -4.00          | -3.35                  | 0.000e+00       | 0                      | U.000e+00               |
| Cu2Sb: 3H2O             | -20.61   | -55.49         | -34.88                 | 0.000e+00       | 0                      | 0.000e+00               |
| Cu3Sb                   | -23.46   | -66.06         | -42.59                 | 0.000e+00       | 0                      | 0.000e+00               |
| Cumetal                 | -4.52    | -13.28         | -8.76                  | 0.000e+00       | 0                      | 0.000e+00               |
| Cupricferrite           | -13.23   | -/.25          | 5.99                   | U.UUUe+00       | 0                      | U.UUUe+00               |
| Cuprite                 | -13.79   | -15.20         | -1.41                  | 0.000e+00       | 0                      | 0.000e+00               |
| Cuprousferrite          | 0.00     | -8.92          | -8.92                  | 0.000e+00       | 1.561e-05              | 1.561e-05               |
| Diaspore                | 0.00     | 6.87           | 6.87                   | 0.000e+00       | 2.348e-03              | 2.348e-03               |
| Djurleite               | -8.69    | -42.61         | -33.92                 | 0.000e+00       | 0                      | 0.000e+00               |
| Dolomite (disord        | ered) -  | -0.55 -        | 17.09 -1               | 6.54 0.000      | )e+00                  | 0                       |
| 0.000e+00               | -1) 0 (  | 17             | 0.0 17.0               | 0 0 0 0 0 - 1 0 | 0 0 1 6 7 - 0          | 1 0 1 6 7 . 0           |
| Dolomite (ordere        | a) $0.0$ | JU -17.        | 13 56                  | 9 0.000e+l      | 10 2.16/e-0            | 1 2.16/e-U              |
| Fe(OH) 2 7C1 3          | -1.54    | -4 72          | -3 04                  | 0.00000000      | 0                      | 0.00000000              |
| Fe(OII) 2.701.3         | -16 95   | 3 37           | 20 22                  | 0.000e+00       | 0                      | 0.0000+00               |
| FeCr204                 | -10.00   | 3.57           | 20.22                  | 0.00000+00      | 0                      | 0.00000000              |
| FeMo04                  | -3.06    | -13 15         | -10 09                 | 0.00000+00      | 0                      | 0.00000+00              |
| Ferribudrite            | -4 52    | -1 33          | 3 19                   | 0.00000+00      | 0                      | 0.0000+00               |
| Cibbeite                | -1 /3    | 6 86           | 8 29                   | 0.00000000      | 0                      | 0.0000+00               |
| Gibbblite               | -1 81    | -1 32          | 0.29                   | 0.00000+00      | 0                      | 0.00000+00              |
| Croonalito              | -10 72   | 10 09          | 20 91                  | 0.00000+00      | 0                      | 0.0000+00               |
| Greenarice              | -10.72   | -5 13          | -4 61                  | 0.00000+00      | 0                      | 0.00000000              |
| Hallovsite              | -3 84    | 5 74           | 9.57                   |                 | 0                      |                         |
| Hematite                | -1 22    | -2 63          | _1 /2                  |                 | 0                      |                         |
| Hercunite               | -3 10    | 10 70          | 22 80                  |                 | 0                      |                         |
| Huntite                 | -2 04    | -32 01         | -29 97                 | $0.0000 \pm 00$ | 0                      | 0.000e+00               |
| Hydromagnesite          | _7 71    | -16 /0         | -2 77                  | 0.00000100      | 0                      |                         |
| K-Jarosito              | -15 70   | -10.40         | -0.//                  | 0.000000000     | 0                      | 0.000000000             |
| Kaolinite               | -1 70    | -30.30<br>5 71 | -14.0U<br>7 43         | 0.00000+00      | 0                      | 0.00000+00              |
| Iepidogragita           | -2 60    | -1 30          | 1 27                   |                 | 0                      |                         |
| Maghemite               | -2.09    | -1.32          | T.3/                   | 0.00000+00      | 0                      |                         |
| Magnesioferrite         | -6 00    | 2.03<br>10 77  | 16 Q6                  |                 | 0                      |                         |
| Magnesito               | 0.09     | -7 16          | -7 16                  |                 | 1 44601                | 1 11601                 |
| Magnetito               | 0.00     | - / . 40       | - / . 40               | 0.000000000     |                        | 6 9650-01               |
| Magnetite<br>Macr204    | -5 15    | J.40<br>11 AS  | 16 20                  | 0.000000000     | 0.9050-04              | 0.0000+00               |
| Normichanita            | -0.10    | - 7 .0J        | 10.20                  | 0.00000000      | 0                      | 0.00000000              |
| Nesquenonite            | -2.82    | -1.49          | -4.6/                  | 0.00000+00      | U<br>1 83905           | 0.00000+00<br>1 8390-05 |
| Cuarte                  | -0.00    | -10.02         | -10.02                 | 0.00000000      | 4.0398-U3<br>2 /91~ 01 | 4.0390-U3<br>2 4010 01  |
| Quditz<br>Dhadaahaa ''' | 0.00     | -4.00          | -4.00                  | 0.00000000      | 2.4016-UI              | 2.4010-UI               |
| KHOGOCHTOSITE           | -2.19    | -13.3/         | -10.58                 | 0.000-000       | U                      | 0.000e+00               |
| SD (UH) 3<br>Sho2       | -2.09    | -9.20          | -/.11                  | 0.000-+00       |                        | 0.000e+00               |
| SUUZ                    | 0.00     | -27.82         | -27.82                 | 0.0000+00       | 0.2U4e-U5              | 0.2040-05               |
| Senarmontite            | -0.02    | -14.38         | -12.3/                 | 0.000-000       | U                      | 0.000e+00               |
| Sepiolite (7)           | -0.98    | 14./8          | 10 70                  | 0.0000+00       | U                      | 0.0000+00               |
| Septotice(A)            | -4.00    | 14./8          | 10./0                  | 0.0000+00       | U                      | 0.0000+00               |
| S102(am-gel)            | -1.29    | -4.00          | -2.1/1                 | 0.000e+00       | U                      | u.uuue+00               |

| Sic<br>Sic<br>Spi<br>Str<br>Wit | D2(am-ppt)<br>derite<br>inel<br>rontianite<br>therite | -1.26 -4.<br>-4.59 -14.<br>-9.69 27.<br>-1.87 -11.<br>-8.01 -16.                                     | 00         -2.7           33         -10.2           16         36.8           14         -9.2           58         -8.5                                 | 4 0.000¢<br>4 0.000¢<br>5 0.000¢<br>7 0.000¢<br>7 0.000¢                                                                    | e+00<br>e+00<br>e+00<br>e+00<br>e+00                                                   | 0 0.<br>0 0.<br>0 0.<br>0 0.<br>0 0. | 000e+00<br>000e+00<br>000e+00<br>000e+00<br>000e+00 |
|---------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|
|                                 |                                                       | ;                                                                                                    | Solution co                                                                                                                                              | mposition                                                                                                                   |                                                                                        |                                      |                                                     |
|                                 | Elements                                              | Mol                                                                                                  | ality                                                                                                                                                    | Moles                                                                                                                       |                                                                                        |                                      |                                                     |
|                                 | Al                                                    | 5.89                                                                                                 | 8e-09 8.9                                                                                                                                                | 50e-09                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | As                                                    | 7.80                                                                                                 | 4e-04 1.1                                                                                                                                                | 84e-03                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | Ba                                                    | 9.64                                                                                                 | 2e-11 1.4                                                                                                                                                | 63e-10                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | С                                                     | 1.81                                                                                                 | 9e-03 2.7                                                                                                                                                | 60e-03                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | Ca                                                    | 2.62                                                                                                 | 7e-03 3.9                                                                                                                                                | 87e-03                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | Cl                                                    | 1.55                                                                                                 | 6e-04 2.3                                                                                                                                                | 861e-04                                                                                                                     |                                                                                        |                                      |                                                     |
|                                 | Cr                                                    | 1.39                                                                                                 | 5e-08 2.1                                                                                                                                                | 18e-08                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | Cu                                                    | 3.02                                                                                                 | 7e-15 4.5                                                                                                                                                | 93e-15                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | Fe                                                    | 1.24                                                                                                 | 4e-0/ 1.8                                                                                                                                                | 888e-07                                                                                                                     |                                                                                        |                                      |                                                     |
|                                 | K.                                                    | 9.66                                                                                                 | 7e-02 1.4                                                                                                                                                | 16/e-UI                                                                                                                     |                                                                                        |                                      |                                                     |
|                                 | Ll<br>M~                                              | 1.33                                                                                                 | 2e-02 2.0                                                                                                                                                | 21e-02                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | Mg<br>Mn                                              | 3.34                                                                                                 | 8e=06 5.0                                                                                                                                                | 2620-06                                                                                                                     |                                                                                        |                                      |                                                     |
|                                 | Min                                                   | 1 10                                                                                                 | 80-04 1 9                                                                                                                                                | 2180-04                                                                                                                     |                                                                                        |                                      |                                                     |
|                                 | Na                                                    | 5 98                                                                                                 | 5e-01 9 0                                                                                                                                                | 1820-01                                                                                                                     |                                                                                        |                                      |                                                     |
|                                 | Ph                                                    | 9.63                                                                                                 | 0e-10 1.4                                                                                                                                                | 61e-09                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | S                                                     | 3,95                                                                                                 | 3e-01 5.9                                                                                                                                                | 99e-01                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | Sb                                                    | 1.25                                                                                                 | 1e-09 1.8                                                                                                                                                | 98e-09                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | Si                                                    | 8.10                                                                                                 | 2e-05 1.2                                                                                                                                                | 29e-04                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | Sr                                                    | 7.47                                                                                                 | 1e-05 1.1                                                                                                                                                | 34e-04                                                                                                                      |                                                                                        |                                      |                                                     |
|                                 | V                                                     | 6.85                                                                                                 | 9e-04 1.0                                                                                                                                                | 41e-03                                                                                                                      |                                                                                        |                                      |                                                     |
| eqt<br>Pe                       | uilibrium<br>ercent error,                            | Activ.<br>Ionic streng<br>Mass o<br>Total alkalin<br>Total (<br>Temp<br>Electrical 1<br>100*(Cat- An | p<br>ity of wate<br>th (mol/kgw<br>f water (kg<br>nity (eq/kg<br>CO2 (mol/kg<br>erature (°C<br>calance (eq<br>)/(Cat+ An <br>Iteration<br>Total<br>Total | e = -1.13 $r = 0.98$ $) = 7.75$ $) = 1.51$ $) = 2.13$ $) = 25.00$ $) = 8.94$ $) = 52.15$ $s = 21$ $H = 1.6846$ $O = 8.6644$ | Adju<br>31<br>56e-01<br>7e+00<br>38e-03<br>19e-03<br>17e-01<br>5<br>562e+02<br>483e+01 | isted to r                           | edox                                                |
|                                 |                                                       | D                                                                                                    | istribution                                                                                                                                              | of species                                                                                                                  | 3                                                                                      |                                      |                                                     |
|                                 | Species                                               | Molality                                                                                             | Activity                                                                                                                                                 | Log<br>Molality                                                                                                             | Log<br>Activity                                                                        | Log<br>Gamma                         | mole V<br>cm³/mol                                   |
|                                 | OH-                                                   | 4.108e-07                                                                                            | 2.457e-07                                                                                                                                                | -6.386                                                                                                                      | -6.610                                                                                 | -0.223                               | (0)                                                 |
|                                 | H+                                                    | 5.301e-08                                                                                            | 4.020e-08                                                                                                                                                | -7.276                                                                                                                      | -7.396                                                                                 | -0.120                               | 0.00                                                |
|                                 | H2O                                                   | 5.551e+01                                                                                            | 9.808e-01                                                                                                                                                | 1.744                                                                                                                       | -0.008                                                                                 | 0.000                                | 18.07                                               |
| Al                              | 5                                                     | .898e-09                                                                                             |                                                                                                                                                          |                                                                                                                             |                                                                                        |                                      |                                                     |
|                                 | Al(OH)4-                                              | 5.742e-09                                                                                            | 3.664e-09                                                                                                                                                | -8.241                                                                                                                      | -8.436                                                                                 | -0.195                               | (0)                                                 |
|                                 | Al(OH)3                                               | 1.185e-10                                                                                            | 1.185e-10                                                                                                                                                | -9.926                                                                                                                      | -9.926                                                                                 | 0.000                                | (0)                                                 |
|                                 | A1 (OH) 2+                                            | 3.618e-11                                                                                            | 2.416e-11                                                                                                                                                | -10.442                                                                                                                     | -10.617                                                                                | -0.175                               | (0)                                                 |
|                                 | ALOH+2                                                | 6.223e-13                                                                                            | 1.238e-13                                                                                                                                                | -12.206                                                                                                                     | -12.907                                                                                | -0.701                               | (0)                                                 |
|                                 | ALSO4+                                                | 1.666e-13                                                                                            | 1.063e-13                                                                                                                                                | -12.778                                                                                                                     | -12.973                                                                                | -0.195                               | (0)                                                 |
|                                 | AL (SU4) 2-                                           | 4.853e-14                                                                                            | 3.096e-14                                                                                                                                                | -13.314                                                                                                                     | -13.509                                                                                | -0.195                               | (0)                                                 |
|                                 | ALTJ                                                  | 0.U/9e-15                                                                                            | 5.U4Ue-16                                                                                                                                                | -14.216                                                                                                                     | -13.298                                                                                | -1.081                               | (U)                                                 |
| As                              | AIMO6021-3<br>(3) 4                                   | 9.40/e-28<br>.599e-04                                                                                | v.52/e−32                                                                                                                                                | -27.027                                                                                                                     | -31.069                                                                                | -4.043                               | (U)                                                 |
|                                 | H2ASO3-                                               | 4.4390-04<br>1 5936-05                                                                               | 4.439e-04<br>5 664o-06                                                                                                                                   | -3.303<br>-4 798                                                                                                            | -3.303<br>-5.247                                                                       | -0 449                               | (0)                                                 |
|                                 |                                                       | T. J. J. J. J. J. J. J. J. J. J. J. J. J.                                                            | J.JJJE 00                                                                                                                                                |                                                                                                                             | J. 471                                                                                 | 0.119                                | (0)                                                 |

|                | HAsO3-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.048e-09                                                                                                                                                                                                                                                                                                                                                                | 1.285e-10                                                                                                                                                                                                                                                                                                            | -8.094                                                                                                                                                                                                                                                                                   | -9.891                                                                                                                                                                                                                                                                        | -1.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | H4AsO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.487e-11                                                                                                                                                                                                                                                                                                                                                                | 8.841e-12                                                                                                                                                                                                                                                                                                            | -10.604                                                                                                                                                                                                                                                                                  | -11.054                                                                                                                                                                                                                                                                       | -0.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | As03-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.360e-12                                                                                                                                                                                                                                                                                                                                                                | 1.232e-16                                                                                                                                                                                                                                                                                                            | -11.867                                                                                                                                                                                                                                                                                  | -15.909                                                                                                                                                                                                                                                                       | -4.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| As             | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.205e-04                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | HAsO4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.111e-04                                                                                                                                                                                                                                                                                                                                                                | 4.967e-06                                                                                                                                                                                                                                                                                                            | -3.507                                                                                                                                                                                                                                                                                   | -5.304                                                                                                                                                                                                                                                                        | -1.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | H2AsO4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.123e-06                                                                                                                                                                                                                                                                                                                                                                | 1.821e-06                                                                                                                                                                                                                                                                                                            | -5.291                                                                                                                                                                                                                                                                                   | -5.740                                                                                                                                                                                                                                                                        | -0.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | As04-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.311e-06                                                                                                                                                                                                                                                                                                                                                                | 3.908e-10                                                                                                                                                                                                                                                                                                            | -5.365                                                                                                                                                                                                                                                                                   | -9.408                                                                                                                                                                                                                                                                        | -4.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | H3AsO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.064e-11                                                                                                                                                                                                                                                                                                                                                                | 1.272e-11                                                                                                                                                                                                                                                                                                            | -10.973                                                                                                                                                                                                                                                                                  | -10.896                                                                                                                                                                                                                                                                       | 0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ва             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.642e-11                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( - )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | Ba+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.609e-11                                                                                                                                                                                                                                                                                                                                                                | 3.177e-11                                                                                                                                                                                                                                                                                                            | -10.017                                                                                                                                                                                                                                                                                  | -10,498                                                                                                                                                                                                                                                                       | -0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | BaHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.140e-13                                                                                                                                                                                                                                                                                                                                                                | 2.152e-13                                                                                                                                                                                                                                                                                                            | -12.503                                                                                                                                                                                                                                                                                  | -12.667                                                                                                                                                                                                                                                                       | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | BaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 3480-14                                                                                                                                                                                                                                                                                                                                                                | 1 3480-14                                                                                                                                                                                                                                                                                                            | -13 870                                                                                                                                                                                                                                                                                  | -13 870                                                                                                                                                                                                                                                                       | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | BaOH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 2000-17                                                                                                                                                                                                                                                                                                                                                                | 3 4070-17                                                                                                                                                                                                                                                                                                            | -16 284                                                                                                                                                                                                                                                                                  | -16 468                                                                                                                                                                                                                                                                       | -0 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CL             | 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 8190-03                                                                                                                                                                                                                                                                                                                                                                | 3.10/0 1/                                                                                                                                                                                                                                                                                                            | 10.201                                                                                                                                                                                                                                                                                   | 10.100                                                                                                                                                                                                                                                                        | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 (*           | uco3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 0620-03                                                                                                                                                                                                                                                                                                                                                                | 7 0920-04                                                                                                                                                                                                                                                                                                            | -2 074                                                                                                                                                                                                                                                                                   | -3 149                                                                                                                                                                                                                                                                        | _0 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | MaHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.002e-03                                                                                                                                                                                                                                                                                                                                                                | 3 0420-04                                                                                                                                                                                                                                                                                                            | -2.974                                                                                                                                                                                                                                                                                   | -3.149                                                                                                                                                                                                                                                                        | -0.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Nouco3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 5520-04                                                                                                                                                                                                                                                                                                                                                                | 1 5520-04                                                                                                                                                                                                                                                                                                            | _3 000                                                                                                                                                                                                                                                                                   | -3 000                                                                                                                                                                                                                                                                        | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | иансоз                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.JJ2E-04                                                                                                                                                                                                                                                                                                                                                                | 1.JJ2e-04                                                                                                                                                                                                                                                                                                            | -3.009                                                                                                                                                                                                                                                                                   | -3.009                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | HZCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.411e-0J                                                                                                                                                                                                                                                                                                                                                                | 0.411e-05                                                                                                                                                                                                                                                                                                            | -4.195                                                                                                                                                                                                                                                                                   | -4.195                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | MgCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.004E-UJ                                                                                                                                                                                                                                                                                                                                                                | 2.0040-05                                                                                                                                                                                                                                                                                                            | -4.340                                                                                                                                                                                                                                                                                   | -4.340                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Nacos-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.970e-00                                                                                                                                                                                                                                                                                                                                                                | 3.9956-00                                                                                                                                                                                                                                                                                                            | -3.047                                                                                                                                                                                                                                                                                   | -3.222                                                                                                                                                                                                                                                                        | -0.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | CaHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.462e-06                                                                                                                                                                                                                                                                                                                                                                | 3.743e-06                                                                                                                                                                                                                                                                                                            | -5.263                                                                                                                                                                                                                                                                                   | -5.42/                                                                                                                                                                                                                                                                        | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 003-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.502e-06                                                                                                                                                                                                                                                                                                                                                                | 8.2/2e-0/                                                                                                                                                                                                                                                                                                            | -5.602                                                                                                                                                                                                                                                                                   | -6.082                                                                                                                                                                                                                                                                        | -0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3./15e-0/                                                                                                                                                                                                                                                                                                                                                                | 3./15e-0/                                                                                                                                                                                                                                                                                                            | -6.430                                                                                                                                                                                                                                                                                   | -6.430                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | SrHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.482e-07                                                                                                                                                                                                                                                                                                                                                                | 1.015e-07                                                                                                                                                                                                                                                                                                            | -6.829                                                                                                                                                                                                                                                                                   | -6.993                                                                                                                                                                                                                                                                        | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | SrCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.714e-09                                                                                                                                                                                                                                                                                                                                                                | 4.714e-09                                                                                                                                                                                                                                                                                                            | -8.327                                                                                                                                                                                                                                                                                   | -8.327                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | MnHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.110e-09                                                                                                                                                                                                                                                                                                                                                                | 7.272e-10                                                                                                                                                                                                                                                                                                            | -8.955                                                                                                                                                                                                                                                                                   | -9.138                                                                                                                                                                                                                                                                        | -0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | FeHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.339e-11                                                                                                                                                                                                                                                                                                                                                                | 1.602e-11                                                                                                                                                                                                                                                                                                            | -10.631                                                                                                                                                                                                                                                                                  | -10.795                                                                                                                                                                                                                                                                       | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | PbCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.507e-11                                                                                                                                                                                                                                                                                                                                                                | 1.507e-11                                                                                                                                                                                                                                                                                                            | -10.822                                                                                                                                                                                                                                                                                  | -10.822                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | PbHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.982e-12                                                                                                                                                                                                                                                                                                                                                                | 3.193e-12                                                                                                                                                                                                                                                                                                            | -11.047                                                                                                                                                                                                                                                                                  | -11.496                                                                                                                                                                                                                                                                       | -0.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Pb(CO3)2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.251e-12                                                                                                                                                                                                                                                                                                                                                                | 3.594e-14                                                                                                                                                                                                                                                                                                            | -11.648                                                                                                                                                                                                                                                                                  | -13.444                                                                                                                                                                                                                                                                       | -1.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | BaHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.140e-13                                                                                                                                                                                                                                                                                                                                                                | 2.152e-13                                                                                                                                                                                                                                                                                                            | -12.503                                                                                                                                                                                                                                                                                  | -12.667                                                                                                                                                                                                                                                                       | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | BaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.348e-14                                                                                                                                                                                                                                                                                                                                                                | 1.348e-14                                                                                                                                                                                                                                                                                                            | -13.870                                                                                                                                                                                                                                                                                  | -13.870                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | CuCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.959e-19                                                                                                                                                                                                                                                                                                                                                                | 1.959e-19                                                                                                                                                                                                                                                                                                            | -18.708                                                                                                                                                                                                                                                                                  | -18.708                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Cu(CO3)2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.731e-20                                                                                                                                                                                                                                                                                                                                                                | 4.362e-22                                                                                                                                                                                                                                                                                                            | -19.564                                                                                                                                                                                                                                                                                  | -21.360                                                                                                                                                                                                                                                                       | -1.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | CuHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.063e-21                                                                                                                                                                                                                                                                                                                                                                | 1.800e-21                                                                                                                                                                                                                                                                                                            | -20.296                                                                                                                                                                                                                                                                                  | -20.745                                                                                                                                                                                                                                                                       | -0.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ca             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.627e-03                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | CaSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.765e-03                                                                                                                                                                                                                                                                                                                                                                | 1.765e-03                                                                                                                                                                                                                                                                                                            | -2.753                                                                                                                                                                                                                                                                                   | -2.753                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Ca+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.571e-04                                                                                                                                                                                                                                                                                                                                                                | 2.834e-04                                                                                                                                                                                                                                                                                                            | -3.067                                                                                                                                                                                                                                                                                   | -3.548                                                                                                                                                                                                                                                                        | -0.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | CaHCO3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.462e-06                                                                                                                                                                                                                                                                                                                                                                | 3.743e-06                                                                                                                                                                                                                                                                                                            | -5.263                                                                                                                                                                                                                                                                                   | -5,427                                                                                                                                                                                                                                                                        | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.715e-07                                                                                                                                                                                                                                                                                                                                                                | 3.715e-07                                                                                                                                                                                                                                                                                                            | -6.430                                                                                                                                                                                                                                                                                   | -6.430                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | CaOH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.028e-09                                                                                                                                                                                                                                                                                                                                                                | 1.389e-09                                                                                                                                                                                                                                                                                                            | -8.693                                                                                                                                                                                                                                                                                   | -8.857                                                                                                                                                                                                                                                                        | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C1             | CaOH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.028e-09                                                                                                                                                                                                                                                                                                                                                                | 1.389e-09                                                                                                                                                                                                                                                                                                            | -8.693                                                                                                                                                                                                                                                                                   | -8.857                                                                                                                                                                                                                                                                        | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cl             | CaOH+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.028e-09<br>1.556e-04<br>1.556e-04                                                                                                                                                                                                                                                                                                                                      | 1.389e-09                                                                                                                                                                                                                                                                                                            | -8.693                                                                                                                                                                                                                                                                                   | -8.857                                                                                                                                                                                                                                                                        | -0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cl             | CaOH+<br>Cl-<br>MnCl+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11                                                                                                                                                                                                                                                                                                                         | 1.389e-09<br>1.180e-04<br>7.632e-12                                                                                                                                                                                                                                                                                  | -8.693<br>-3.808<br>-10.934                                                                                                                                                                                                                                                              | -8.857<br>-3.928<br>-11.117                                                                                                                                                                                                                                                   | -0.164<br>-0.120<br>-0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cl             | Cl-<br>MnCl+<br>PbCl+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7 134e-14                                                                                                                                                                                                                                                                                                            | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14                                                                                                                                                                                                                                                                     | -8.693<br>-3.808<br>-10.934<br>-13.147                                                                                                                                                                                                                                                   | -8.857<br>-3.928<br>-11.117<br>-13.596                                                                                                                                                                                                                                        | -0.164<br>-0.120<br>-0.184<br>-0.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15                                                                                                                                                                                                                                                                                               | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15                                                                                                                                                                                                                                                        | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896                                                                                                                                                                                                                                        | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896                                                                                                                                                                                                                             | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.028-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569-16                                                                                                                                                                                                                                                                                    | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18                                                                                                                                                                                                                                           | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804                                                                                                                                                                                                                             | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601                                                                                                                                                                                                                  | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1 797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.028-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16                                                                                                                                                                                                                                                                      | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16                                                                                                                                                                                                                              | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820                                                                                                                                                                                                                  | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820                                                                                                                                                                                                       | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.028-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17                                                                                                                                                                                                                                                         | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16                                                                                                                                                                                                                              | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874                                                                                                                                                                                                       | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874                                                                                                                                                                                            | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18                                                                                                                                                                                                                                           | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-18                                                                                                                                                                                                                 | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220                                                                                                                                                                                            | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428                                                                                                                                                                                 | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-<br>VuCl4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18                                                                                                                                                                                                                                           | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18                                                                                                                                                                                                    | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220                                                                                                                                                                                            | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428                                                                                                                                                                                 | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-<br>VOCl+<br>VoCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18                                                                                                                                                                                                                              | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19                                                                                                                                                                                       | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.820                                                                                                                                                                                 | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-10.024                                                                                                                                                           | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208<br>-0.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>DbCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.028-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20                                                                                                                                                                                                                  | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276-22                                                                                                                                                              | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>20.753                                                                                                                                                            | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-19.384                                                                                                                                                | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208<br>-0.449<br>-0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.028-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21                                                                                                                                                                                                     | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.2004-21                                                                                                                                                | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753                                                                                                                                                           | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202                                                                                                                                                | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li></ul> |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.028-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21                                                                                                                                                                                        | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21                                                                                                                                                | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860                                                                                                                                                | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860                                                                                                                                     | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2<br>PbCl2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22                                                                                                                                                                          | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23                                                                                                                                   | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292                                                                                                                                     | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026                                                                                                                          | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000<br>-0.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23                                                                                                                                                             | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>2.805e-23                                                                                                                      | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103                                                                                                                          | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552                                                                                                               | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000<br>-0.734<br>-0.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl+<br>CuCl2+<br>CuCl3-2<br>CrCl2+<br>CuCl2+<br>CuCl2+<br>CuCl3-2<br>CrCl2+<br>CuCl2+<br>CuCl3-2<br>CrCl2+<br>CuCl3-2<br>CrCl2+<br>CuCl3-2<br>CrCl2+<br>CuCl2+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>CuCl4+<br>C | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>1.215e-23                                                                                                                                   | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>2.805e-23<br>7.520e-24                                                                                                         | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916                                                                                                               | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124                                                                                                    | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000<br>-0.734<br>-0.449<br>-0.208<br>-0.449<br>-0.5734<br>-0.449<br>-0.5734<br>-0.449<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754<br>-0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.5754 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.57 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.575 -0.57                                                                                                                                                                                                                                                                                          | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl+<br>PbCl4-2<br>CuCl+<br>PbCl4-2<br>CuCl+<br>PbCl4-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2-<br>CuCl2 | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24                                                                                                                                   | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>2.805e-23<br>7.520e-24<br>3.384e-26                                                                                            | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674                                                                                                    | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471                                                                                         | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000<br>-0.734<br>-0.449<br>-0.208<br>-1.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl+<br>PbCl4-2<br>FeCl+2<br>FeCl+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.028-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26                                                                                                                       | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>7.520e-24<br>3.384e-26<br>1.447e-26                                                                                            | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206                                                                                         | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940                                                                              | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000<br>-0.734<br>-0.449<br>-0.208<br>-1.797<br>-0.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl+<br>PbCl4-2<br>FeCl+2<br>CuCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.028-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26<br>3.076e-28                                                                                                          | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>7.520e-24<br>3.384e-26<br>1.147e-26<br>3.076e-28                                                                               | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206<br>-27.512                                                                   | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940<br>-27.512                                                                   | $\begin{array}{c} -0.164 \\ -0.120 \\ -0.184 \\ -0.449 \\ 0.000 \\ -1.797 \\ 0.000 \\ 0.000 \\ -0.208 \\ -0.449 \\ -0.184 \\ -0.449 \\ 0.000 \\ -0.734 \\ -0.449 \\ -0.208 \\ -1.797 \\ -0.734 \\ 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl+<br>PbCl4-2<br>FeCl+2<br>CuCl2<br>FeCl2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26<br>3.076e-28<br>9.228e-30                                                                                            | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>2.805e-23<br>3.824e-26<br>1.147e-26<br>3.076e-28<br>6.047e-30                                                                  | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206<br>-27.512<br>-29.035                                                                   | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940<br>-27.512<br>-29.218                                                        | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000<br>-0.734<br>-0.449<br>-0.208<br>-1.797<br>-0.734<br>0.000<br>-0.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl4-2<br>FeCl4-2<br>FeCl4-2<br>FeCl2+<br>CuCl2<br>FeCl2+<br>CuCl3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26<br>3.076e-28<br>9.228e-30<br>5.470e-34                                                                               | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>2.805e-23<br>7.520e-24<br>3.384e-26<br>1.147e-26<br>3.076e-28<br>6.047e-30<br>3.387e-34                                        | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206<br>-27.512<br>-29.035<br>-33.262                                                        | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940<br>-27.512<br>-29.218<br>-33.470                                             | $\begin{array}{c} -0.164 \\ -0.120 \\ -0.184 \\ -0.449 \\ 0.000 \\ -1.797 \\ 0.000 \\ 0.000 \\ -0.208 \\ -0.449 \\ -0.449 \\ 0.000 \\ -0.734 \\ -0.449 \\ -0.208 \\ -1.797 \\ -0.734 \\ 0.000 \\ -0.184 \\ -0.208 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl+<br>PbCl4-2<br>FeCl+2<br>CuCl2<br>FeCl2+<br>CuCl2<br>FeCl2+<br>CuCl2<br>FeCl3-<br>FeCl3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26<br>3.076e-28<br>9.228e-30<br>5.470e-34<br>7.133e-35                                                                  | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>2.805e-23<br>7.520e-24<br>3.384e-26<br>1.47e-26<br>3.076e-28<br>6.047e-30<br>3.387e-34<br>7.133e-35                            | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206<br>-27.512<br>-29.035<br>-33.262<br>-34.147                                             | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940<br>-27.512<br>-29.218<br>-33.470<br>-34.147                                  | $\begin{array}{c} -0.164 \\ -0.120 \\ -0.184 \\ -0.449 \\ 0.000 \\ -1.797 \\ 0.000 \\ 0.000 \\ -0.208 \\ -0.449 \\ -0.449 \\ -0.184 \\ -0.449 \\ 0.000 \\ -0.734 \\ -0.208 \\ -1.797 \\ -0.734 \\ 0.000 \\ -0.184 \\ -0.208 \\ 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl4-2<br>FeCl4-2<br>FeCl3-<br>CuCl3-<br>FeCl3<br>CuCl4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26<br>3.076e-28<br>9.228e-30<br>5.470e-34<br>7.133e-35<br>1.086e-39                                                     | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>2.805e-23<br>7.520e-24<br>3.384e-26<br>1.47e-26<br>3.076e-28<br>6.047e-30<br>3.387e-34<br>7.133e-35<br>2.002e-40               | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206<br>-27.512<br>-29.035<br>-33.262<br>-34.147<br>-38.964                                  | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940<br>-27.512<br>-29.218<br>-33.470<br>-34.147<br>-39.698                       | $\begin{array}{c} -0.164 \\ -0.120 \\ -0.184 \\ -0.449 \\ 0.000 \\ -1.797 \\ 0.000 \\ 0.000 \\ -0.208 \\ -0.449 \\ -0.449 \\ 0.000 \\ -0.734 \\ -0.449 \\ 0.208 \\ -1.797 \\ -0.734 \\ 0.000 \\ -0.184 \\ -0.208 \\ 0.000 \\ -0.184 \\ -0.208 \\ 0.000 \\ -0.734 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl4-2<br>FeCl4-2<br>FeCl4-2<br>FeCl3<br>CuCl4-2<br>CrO3CL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.028-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26<br>3.076e-28<br>9.228e-30<br>5.470e-34<br>7.133e-35<br>1.086e-39<br>0.000e+00                                         | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>7.520e-24<br>3.84e-26<br>1.147e-26<br>3.076e-28<br>6.047e-30<br>3.387e-34<br>7.133e-35<br>2.002e-40<br>0.000e+00               | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206<br>-27.512<br>-29.035<br>-33.262<br>-34.147<br>-38.964<br>-47.692            | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940<br>-27.512<br>-29.218<br>-33.470<br>-34.147<br>-39.698<br>-48.142            | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000<br>-0.734<br>-0.208<br>-1.797<br>-0.734<br>0.000<br>-0.734<br>0.000<br>-0.184<br>-0.208<br>0.000<br>-0.208<br>-0.449<br>-0.208<br>0.000<br>-0.734<br>-0.208<br>0.000<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208 | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl4-2<br>FeCl4-2<br>FeCl3<br>CuCl4-2<br>CrO3Cl-<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26<br>3.076e-28<br>9.228e-30<br>5.470e-34<br>7.133e-35<br>1.086e-39<br>0.000e+00<br>1.271e-17                           | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>7.520e-24<br>3.384e-26<br>1.147e-26<br>3.076e-28<br>6.047e-30<br>3.387e-34<br>7.133e-35<br>2.002e-40<br>0.000e+00              | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.804<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206<br>-27.512<br>-29.035<br>-33.262<br>-34.147<br>-38.964<br>-47.692                                  | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940<br>-27.512<br>-29.218<br>-33.470<br>-34.147<br>-33.698<br>-48.142            | $\begin{array}{c} -0.164 \\ -0.120 \\ -0.184 \\ -0.449 \\ 0.000 \\ -1.797 \\ 0.000 \\ 0.000 \\ -0.208 \\ -0.449 \\ -0.184 \\ -0.449 \\ 0.000 \\ -0.734 \\ -0.208 \\ -1.797 \\ -0.734 \\ 0.000 \\ -0.184 \\ -0.208 \\ -1.797 \\ -0.734 \\ 0.000 \\ -0.184 \\ -0.208 \\ -0.734 \\ -0.208 \\ -0.734 \\ -0.208 \\ -0.734 \\ -0.208 \\ -0.734 \\ -0.449 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cl             | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl<br>PbCl2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl4-2<br>FeCl4-2<br>FeCl3<br>CuCl4-2<br>CrO3Cl-<br>(2)<br>Cr+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26<br>3.076e-28<br>9.228e-30<br>5.470e-34<br>7.133e-35<br>1.086e-39<br>0.000e+00<br>1.271e-17<br>1.271e-17              | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>7.520e-24<br>3.884e-26<br>1.147e-26<br>3.076e-28<br>6.047e-30<br>3.387e-34<br>7.133e-35<br>2.002e-40<br>0.000e+00<br>2.030e-19 | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206<br>-27.512<br>-29.035<br>-33.262<br>-34.147<br>-38.964<br>-47.692<br>-16.896 | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940<br>-27.512<br>-29.218<br>-33.470<br>-34.147<br>-39.698<br>-48.142<br>-18.693 | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000<br>-0.734<br>-0.208<br>-1.797<br>-0.734<br>0.000<br>-0.184<br>-0.208<br>-0.184<br>-0.208<br>-0.734<br>0.000<br>-0.184<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0.747<br>-0. | (0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)<br>(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cl<br>Cr<br>Cr | CaOH+<br>Cl-<br>MnCl+<br>PbCl+<br>MnCl2<br>CrCl+2<br>CuCl2-<br>VOCl+<br>MnCl3-<br>PbCl3-<br>CrOHCl2<br>CuCl3-2<br>CrCl2+<br>CuCl4-2<br>FeCl4-2<br>FeCl4-2<br>FeCl4-2<br>FeCl4-2<br>FeCl3-<br>CuCl4-2<br>CrO3Cl-<br>(2)<br>Cr+2<br>(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.028e-09<br>1.556e-04<br>1.556e-04<br>1.165e-11<br>7.134e-14<br>1.272e-15<br>1.569e-16<br>1.514e-16<br>1.336e-17<br>6.029e-18<br>1.260e-18<br>6.307e-20<br>1.766e-21<br>1.380e-21<br>5.107e-22<br>7.890e-23<br>1.215e-23<br>2.119e-24<br>6.225e-26<br>3.076e-28<br>9.228e-30<br>5.470e-34<br>7.133e-35<br>1.086e-39<br>0.000e+00<br>1.271e-17<br>1.271e-17<br>1.395e-08 | 1.389e-09<br>1.180e-04<br>7.632e-12<br>2.536e-14<br>1.272e-15<br>2.506e-18<br>1.514e-16<br>1.336e-17<br>3.733e-18<br>4.481e-19<br>4.132e-20<br>6.276e-22<br>1.380e-21<br>9.415e-23<br>2.805e-23<br>3.84e-26<br>1.147e-26<br>3.076e-28<br>6.047e-30<br>3.387e-34<br>7.133e-35<br>2.002e-40<br>0.000e+00<br>2.030e-19  | -8.693<br>-3.808<br>-10.934<br>-13.147<br>-14.896<br>-15.804<br>-15.804<br>-15.820<br>-16.874<br>-17.220<br>-17.899<br>-19.200<br>-20.753<br>-20.860<br>-21.292<br>-22.103<br>-22.916<br>-23.674<br>-25.206<br>-27.512<br>-29.035<br>-33.262<br>-34.147<br>-38.964<br>-47.692<br>-16.896 | -8.857<br>-3.928<br>-11.117<br>-13.596<br>-14.896<br>-17.601<br>-15.820<br>-16.874<br>-17.428<br>-18.349<br>-19.384<br>-21.202<br>-20.860<br>-22.026<br>-22.552<br>-23.124<br>-25.471<br>-25.940<br>-27.512<br>-29.218<br>-33.470<br>-34.147<br>-39.698<br>-48.142<br>-18.693 | -0.164<br>-0.120<br>-0.184<br>-0.449<br>0.000<br>-1.797<br>0.000<br>0.000<br>-0.208<br>-0.449<br>-0.184<br>-0.449<br>0.000<br>-0.734<br>-0.208<br>-1.797<br>-0.734<br>0.000<br>-0.184<br>-0.208<br>-0.734<br>0.000<br>-0.184<br>-0.208<br>-0.734<br>0.000<br>-0.184<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.208<br>-0.734<br>-0.207<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.734<br>-0.737<br>-0.734<br>-0.737<br>-0.734<br>-0.737<br>-0.734<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.734<br>-0.737<br>-0.734<br>-0.737<br>-0.737<br>-0.737<br>-0.734<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.734<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.737<br>-0.73 | <ul> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li> <li>(0)</li></ul> |

| Cr(OH)+2     |      | 5.525e-09 | 8.822e-11  | -8.258  | -10.054 | -1.797  | (0) |
|--------------|------|-----------|------------|---------|---------|---------|-----|
| CrOHSO4      |      | 5.690e-10 | 5.690e-10  | -9.245  | -9.245  | 0.000   | (0) |
| Cr(OH)3      |      | 2.434e-10 | 2.434e-10  | -9.614  | -9.614  | 0.000   | (0) |
| Cr+3         |      | 1.811e-10 | 1.641e-14  | -9.742  | -13.785 | -4.043  | (0) |
| Cr02-        |      | 8.249e-12 | 2.932e-12  | -11.084 | -11.533 | -0.449  | (0) |
| Cr(OH)4-     |      | 6.698e-12 | 2.381e-12  | -11.174 | -11.623 | -0.449  | (0) |
| CrSO4+       |      | 2.930e-12 | 1.042e-12  | -11.533 | -11.982 | -0.449  | (0) |
| Cr2(OH)2SC   | 4+2  | 2.841e-16 | 4.537e-18  | -15.547 | -17.343 | -1.797  | (0) |
| CrCl+2       |      | 1.569e-16 | 2.506e-18  | -15.804 | -17.601 | -1.797  | (0) |
| Cr2(OH)2(S   | 04)2 | 7.325e-18 | 7.325e-18  | -17.135 | -17.135 | 0.000   | (0) |
| CrOHC12      |      | 1.380e-21 | 1.380e-21  | -20.860 | -20.860 | 0.000   | (0) |
| CrCl2+       |      | 7.890e-23 | 2.805e-23  | -22.103 | -22.552 | -0.449  | (0) |
| Cr(6)        | 1.72 | 6e-36     |            |         |         |         |     |
| NaCrO4-      |      | 9.928e-37 | 3.529e-37  | -36.003 | -36.452 | -0.449  | (0) |
| Cr04-2       |      | 5.518e-37 | 1.825e-37  | -36.258 | -36.739 | -0.481  | (0) |
| KCrO4-       |      | 1.147e-37 | 4.078e-38  | -36.940 | -37.390 | -0.449  | (0) |
| HCrO4-       |      | 6.676e-38 | 2.373e-38  | -37.175 | -37.625 | -0.449  | (0) |
| Cr03S04-2    |      | 0.000e+00 | 0.000e+00  | -42.297 | -44.094 | -1.797  | (0) |
| H2CrO4       |      | 0.000e+00 | 0.000e+00  | -45.112 | -45.112 | 0.000   | (0) |
| CrO3Cl-      |      | 0.000e+00 | 0.000e+00  | -47.692 | -48.142 | -0.449  | (0) |
| Cr207-2      |      | 0.000e+00 | 0.000e+00  | -71.904 | -73.701 | -1.797  | (0) |
| Cu(1)        | 3.02 | 6e-15     |            |         |         |         |     |
| Cu+          |      | 2.869e-15 | 1.020e-15  | -14.542 | -14.992 | -0.449  | (0) |
| CuCl         |      | 1.514e-16 | 1.514e-16  | -15.820 | -15.820 | 0.000   | (0) |
| CuCl2-       |      | 6.029e-18 | 3.733e-18  | -17.220 | -17.428 | -0.208  | (0) |
| CuCl3-2      |      | 5.107e-22 | 9.415e-23  | -21.292 | -22.026 | -0.734  | (0) |
| Cu(S4)2-3    |      | 1.878e-38 | 5.566e-39  | -37.726 | -38.254 | -0.528  | (0) |
| CuS4S5-3     |      | 3.211e-39 | 1.036e-39  | -38.493 | -38.984 | -0.491  | (0) |
| Cu(2)        | 6.52 | 4e-19     |            |         |         |         |     |
| CuSO4        |      | 2.504e-19 | 2.504e-19  | -18.601 | -18.601 | 0.000   | (0) |
| CuCO3        |      | 1.959e-19 | 1.959e-19  | -18.708 | -18.708 | 0.000   | (0) |
| Cu+2         |      | 1.216e-19 | 4.022e-20  | -18.915 | -19.396 | -0.481  | (0) |
| CuOH+        |      | 5.048e-20 | 3.125e-20  | -19.297 | -19.505 | -0.208  | (0) |
| Cu(CO3)2-2   |      | 2.731e-20 | 4.362e-22  | -19.564 | -21.360 | -1.797  | (0) |
| CuHCO3+      |      | 5.063e-21 | 1.800e-21  | -20.296 | -20.745 | -0.449  | (0) |
| Cu (OH) 2    |      | 1.532e-21 | 1.532e-21  | -20.815 | -20.815 | 0.000   | (0) |
| CuCl+        |      | 1.215e-23 | 7.520e-24  | -22.916 | -23.124 | -0.208  | (0) |
| Cu(OH)3-     |      | 2.172e-24 | 7.721e-25  | -23.663 | -24.112 | -0.449  | (0) |
| CuCl2        |      | 3.076e-28 | 3.076e-28  | -27.512 | -27.512 | 0.000   | (0) |
| Cu (OH) 4-2  |      | 9.349e-29 | 1.493e-30  | -28.029 | -29.826 | -1.797  | (0) |
| Cu2 (OH) 2+2 |      | 1.536e-33 | 2.453e-35  | -32.814 | -34.610 | -1.797  | (0) |
| CuCl3-       |      | 5.470e-34 | 3.387e-34  | -33.262 | -33.470 | -0.208  | (0) |
| CuCl4-2      |      | 1.086e-39 | 2.002e-40  | -38.964 | -39.698 | -0.734  | (0) |
| Cu(HS)3-     |      | 0.000e+00 | 0.000e+00  | -55.214 | -55.663 | -0.449  | (0) |
| Fe(2)        | 1.24 | 4e-07     |            |         |         |         |     |
| Fe+2         |      | 1.124e-07 | 1.795e-09  | -6.949  | -8.746  | -1.797  | (0) |
| FeSO4        |      | 1.197e-08 | 1.197e-08  | -7.922  | -7.922  | 0.000   | (0) |
| FeOH+        |      | 2.679e-11 | 1.755e-11  | -10.572 | -10.756 | -0.184  | (0) |
| FeHCO3+      |      | 2.339e-11 | 1.602e-11  | -10.631 | -10.795 | -0.164  | (0) |
| Fe (OH) 2    |      | 3.426e-15 | 3.426e-15  | -14.465 | -14.465 | 0.000   | (0) |
| Fe(OH)3-     |      | 4.062e-16 | 2.662e-16  | -15.391 | -15.575 | -0.184  | (0) |
| Fe(HS)2      |      | 0.000e+00 | 0.000e+00  | -41.241 | -41.241 | 0.000   | (0) |
| Fe(HS)3-     |      | 0.000e+00 | 0.000e+00  | -59.477 | -59.926 | -0.449  | (0) |
| Fe (3)       | 8.64 | 6e-14     | 4 004 - 14 | 10 100  | 10 011  | 0 175   | (0) |
| Fe (OH) 2+   |      | /.313e-14 | 4.884e-14  | -13.136 | -13.311 | -0.1/5  | (0) |
| Fe (OH) 3    |      | 1.289e-14 | 1.289e-14  | -13.890 | -13.890 | 0.000   | (0) |
| Fe (OH) 4-   |      | 4.414e-16 | 2.948e-16  | -15.355 | -15.530 | -0.1/5  | (0) |
| FeOH+2       |      | 2.//Ze-18 | 5.109e-19  | -1/.55/ | -18.292 | -0./34  | (0) |
| re(S04)2-    |      | 1.605e-21 | 5./U/e-22  | -20./94 | -21.244 | -0.449  | (U) |
| FeSO4+       |      | 1.499e-21 | 9.822e-22  | -20.824 | -21.008 | -U.184  | (0) |
| Fe+3         |      | 3.885e-23 | 3.221e-24  | -22.411 | -23.492 | -1.081  | (0) |
| FeC1+2       |      | 6.225e-26 | 1.14/e-26  | -25.206 | -25.940 | -0./34  | (0) |
| Fe2 (OH) 2+4 |      | 1.329e-28 | 8.644e-36  | -27.876 | -35.063 | -7.187  | (0) |
| FeC12+       |      | 9.228e-30 | 0.04/e-30  | -29.035 | -29.218 | -0.184  | (0) |
| FeC13        |      | /.133e-35 | /.133e-35  | -34.147 | -34.147 | 0.000   | (0) |
| Fe3(OH)4+5   |      | 1.035e-36 | U.000e+00  | -35.985 | -47.215 | -11.230 | (0) |
| H(U)         | 5.12 | 2 5620 15 | 3 065- 15  | _1/ 501 | _1/ 51/ | 0 070   | (0) |
| П∠<br>V      | 0    | 2.JUJE-13 | 2.0006-10  | -14.391 | -14.314 | 0.0/8   | (0) |
| L.           | 9.00 | 10-02     |            |         |         |         |     |

|       | K+           | 7.934e-02 | 6.016e-02              | -1.101  | -1.221  | -0.120  | (0) |
|-------|--------------|-----------|------------------------|---------|---------|---------|-----|
|       | KS04-        | 1 733e-02 | 1 158e-02              | -1 761  | -1 936  | -0 175  | (0) |
|       | KCr04-       | 1 1476-37 | 4 078e-38              | -36 940 | -37 390 | -0 449  | (0) |
| T. i  | 110101       | 1 332e-02 | 1.0700 00              | 30.910  | 37.330  | 0.115   | (0) |
| ЧΤ    | T i +        | 1 1710-02 | 8 8780-03              | -1 932  | -2 052  | -0 120  | (0) |
|       | TigO/-       | 1 6070-03 | 1 0530-03              | -2 794  | -2 977  | -0 184  | (0) |
| Μα    | 11204        | 3 3460-01 | 1.0006 00              | 2.754   | 2.511   | 0.104   | (0) |
| ing   | Mas04        | 2 0730-01 | 2 0730-01              | -0 683  | -0 683  | 0 000   | (0) |
|       | Mg+2         | 1 2680-01 | 1 1920-02              | -0.897  | -1 378  | -0.481  | (0) |
|       | MgHCO3+      | 1.2000 01 | 3 0/20-0/              | -3 309  | -3 517  | -0 208  | (0) |
|       | MgCO3        | 2 8840-05 | 2 8840-05              | -4 540  | -4 540  | 0.200   | (0) |
|       | MgCUJ        | 5 9710-06 | 4 1000-06              | -5 221  | -5 397  | -0 156  | (0) |
| Mn    | Mg0n+<br>(2) | 3 4680-06 | 4.1008-00              | -3.231  | -3.307  | -0.130  | (0) |
| 1.111 | Mn+2         | 3 2180-06 | 5 1390-08              | -5 492  | -7 289  | -1 797  | (0) |
|       | MnSOA        | 2 4840-07 | 2 4840-07              | -6 605  | -6 605  | 0 000   | (0) |
|       | MnHCO3+      | 1 1100-09 | 2.404e-07<br>7.272e=10 | -0.005  | -0.003  | -0 184  | (0) |
|       | MnOH+        | 1.1100 05 | 3 1720-11              | -10 315 | -10 /99 | -0 184  | (0) |
|       | MnCl+        | 1 1650-11 | 7 6320-12              | -10.034 | _11 117 | _0 194  | (0) |
|       | MnCl2        | 1.1050-11 | 1 2720-15              | -14 996 | -11.006 | -0.104  | (0) |
|       | MnCl3-       | 6 3070-20 | 1.2720-13              | -19 200 | -14.090 | -0 184  | (0) |
|       | Mm (OU) 2    | 1.00(- 20 | 1 102- 20              | 10 742  | 10 007  | 0.104   | (0) |
|       | Mn (OH) 3-   | 1.8060-20 | 1.1030-20              | -19.743 | -19.927 | -0.184  | (0) |
| Mro   | MII (OR) 4-2 | J.0928-20 | 9.3036-27              | -23.295 | -20.020 | -0.734  | (0) |
| 14111 | (J)          | 5.3490-34 | 4 425 - 25             | 22 272  | 24 252  | 1 001   | (0) |
|       | Mn+3         | 5.3496-34 | 4.4350-35              | -33.272 | -34.353 | -1.081  | (0) |
| Mn    | (6)          | 0.0000+00 | 0 000 - 100            | 70 700  | 70 404  | 0 704   | (0) |
|       | Mn04-2       | 0.000e+00 | 0.000e+00              | -72.700 | -/3.434 | -0./34  | (0) |
| Mn    | (/)          | 0.000e+00 | 0 000 000              | 04.000  | 04 500  | 0 0 4 0 | (0) |
| ×.    | MnO4-        | 0.000e+00 | 0.000e+00              | -84.280 | -84.520 | -0.240  | (0) |
| MO    |              | 1.1980-04 |                        |         |         |         |     |
|       | MoO4-2       | 1.197e-04 | 3.959e-05              | -3.922  | -4.402  | -0.481  | (0) |
|       | HM004-       | 8.907e-08 | 3.166e-08              | -7.050  | -7.499  | -0.449  | (0) |
|       | H2MoO4       | 9.323e-12 | 9.323e-12              | -11.030 | -11.030 | 0.000   | (0) |
|       | Mo7024-6     | 1.625e-21 | 1.097e-37              | -20.789 | -36.960 | -16.171 | (0) |
|       | HMo7024-5    | 1.823e-27 | 1.075e-38              | -26.739 | -37.969 | -11.230 | (0) |
|       | AIM06021-3   | 9.40/e-28 | 8.527e-32              | -27.027 | -31.069 | -4.043  | (0) |
|       | H2Mo7O24-4   | 4.023e-34 | 0.000e+00              | -33.395 | -40.582 | -7.187  | (0) |
|       | H3Mo7O24-3   | 0.000e+00 | 0.000e+00              | -40.690 | -44.732 | -4.043  | (0) |
| Na    |              | 5.985e-01 |                        |         |         |         |     |
|       | Na+          | 5.133e-01 | 3.892e-01              | -0.290  | -0.410  | -0.120  | (0) |
|       | NaSO4-       | 8.506e-02 | 5.681e-02              | -1.070  | -1.246  | -0.175  | (0) |
|       | NaHCO3       | 1.552e-04 | 1.552e-04              | -3.809  | -3.809  | 0.000   | (0) |
|       | NaCO3-       | 8.976e-06 | 5.995e-06              | -5.047  | -5.222  | -0.175  | (0) |
|       | NaCrO4-      | 9.928e-37 | 3.529e-37              | -36.003 | -36.452 | -0.449  | (0) |
| 0((   | ))           | 0.000e+00 |                        |         |         |         |     |
|       | 02           | 0.000e+00 | 0.000e+00              | -63.362 | -63.285 | 0.078   | (0) |
| Pb    |              | 9.630e-10 |                        |         |         |         |     |
|       | Pb(SO4)2-2   | 8.272e-10 | 1.321e-11              | -9.082  | -10.879 | -1.797  | (0) |
|       | PbSO4        | 8.066e-11 | 8.066e-11              | -10.093 | -10.093 | 0.000   | (0) |
|       | Pb+2         | 1.832e-11 | 6.059e-12              | -10.737 | -11.218 | -0.481  | (0) |
|       | PbCO3        | 1.507e-11 | 1.507e-11              | -10.822 | -10.822 | 0.000   | (0) |
|       | PbOH+        | 1.052e-11 | 3.739e-12              | -10.978 | -11.427 | -0.449  | (0) |
|       | PbHCO3+      | 8.982e-12 | 3.193e-12              | -11.047 | -11.496 | -0.449  | (0) |
|       | Pb(CO3)2-2   | 2.251e-12 | 3.594e-14              | -11.648 | -13.444 | -1.797  | (0) |
|       | PbCl+        | 7.134e-14 | 2.536e-14              | -13.147 | -13.596 | -0.449  | (0) |
|       | Pb (OH) 2    | 2.905e-14 | 2.905e-14              | -13.537 | -13.537 | 0.000   | (0) |
|       | Pb(OH)3-     | 2.008e-17 | 7.138e-18              | -16.697 | -17.146 | -0.449  | (0) |
|       | PbCl2        | 1.336e-17 | 1.336e-17              | -16.874 | -16.874 | 0.000   | (0) |
|       | Pb2OH+3      | 3.961e-18 | 3.591e-22              | -17.402 | -21.445 | -4.043  | (0) |
|       | Pb(OH)4-2    | 2.690e-20 | 4.295e-22              | -19.570 | -21.367 | -1.797  | (0) |
|       | PbCl3-       | 1.766e-21 | 6.276e-22              | -20.753 | -21.202 | -0.449  | (0) |
|       | PbCl4-2      | 2.119e-24 | 3.384e-26              | -23.674 | -25.471 | -1.797  | (0) |
|       | Pb3(OH)4+2   | 6.390e-27 | 1.020e-28              | -26.194 | -27.991 | -1.797  | (0) |
|       | Pb4(OH)4+4   | 7.553e-29 | 4.911e-36              | -28.122 | -35.309 | -7.187  | (0) |
|       | Pb(HS)2      | 4.053e-38 | 4.053e-38              | -37.392 | -37.392 | 0.000   | (0) |
|       | Pb(HS)3-     | 0.000e+00 | 0.000e+00              | -56.365 | -56.814 | -0.449  | (0) |
| S (-  | -2)          | 8.171e-21 |                        |         |         |         |     |
|       | HS-          | 5.332e-21 | 1.895e-21              | -20.273 | -20.722 | -0.449  | (0) |
|       | S5-2         | 1.274e-21 | 2.034e-23              | -20.895 | -22.692 | -1.797  | (0) |
|       | H2S          | 7.978e-22 | 7.978e-22              | -21.098 | -21.098 | 0.000   | (0) |

|            | S6-2                 | 3.884e-22              | 6.202e-24              | -21.411 | -23.207     | -1.797 | (0) |
|------------|----------------------|------------------------|------------------------|---------|-------------|--------|-----|
|            | \$4-2                | 3 2320-22              | 5 161e-24              | -21 491 | -23 287     | -1 797 | (0) |
|            | S3-2                 | 5.053e-23              | 8.069e-25              | -22.296 | -24.093     | -1.797 | (0) |
|            | S2-2                 | 4.869e-24              | 7.775e-26              | -23,313 | -25.109     | -1.797 | (0) |
|            | S=2                  | 1 2826-30              | 2 3630-31              | -29 892 | -30 626     | -0 734 | (0) |
|            | Dh (HG) 2            | 1.2028 30              | 2.303e 31<br>1 053e=38 | -37 392 | -37 392     | 0.000  | (0) |
|            | $r_{D}(n_{3}) \ge 0$ | 1 8780-38              | 5 5660-39              | -37.392 | -38 254     | -0.528 | (0) |
|            | Cu(34)2-3            | 2 2110-30              | 1 0360-39              | -39 103 | -30.234     | -0.328 | (0) |
|            |                      | 0.000+00               | 1.0308-39              | -30.495 | 41 241      | -0.491 | (0) |
|            | Fe(HS)2              | 0.000e+00              | 0.000e+00              | -41.241 | -41.241     | 0.000  | (0) |
|            | Cu (HS) 3-           | 0.000e+00              | 0.000e+00              | -55.214 | -55.663     | -0.449 | (0) |
|            | PD(HS)3-             | 0.000e+00              | 0.000e+00              | -56.365 | -56.814     | -0.449 | (0) |
|            | Fe(HS)3-             | 0.000e+00              | 0.000e+00              | -59.477 | -59.926     | -0.449 | (0) |
|            | Sb2S4-2              | 0.000e+00              | 0.000e+00              | -64.854 | -66.650     | -1.797 | (0) |
| S (        | 6) 3.9               | 53e-01                 |                        |         |             |        |     |
|            | MgSO4                | 2.073e-01              | 2.073e-01              | -0.683  | -0.683      | 0.000  | (0) |
|            | NaSO4-               | 8.506e-02              | 5.681e-02              | -1.070  | -1.246      | -0.175 | (0) |
|            | SO4-2                | 8.220e-02              | 2.718e-02              | -1.085  | -1.566      | -0.481 | (0) |
|            | KSO4-                | 1.733e-02              | 1.158e-02              | -1.761  | -1.936      | -0.175 | (0) |
|            | CaSO4                | 1.765e-03              | 1.765e-03              | -2.753  | -2.753      | 0.000  | (0) |
|            | LiSO4-               | 1.607e-03              | 1.053e-03              | -2.794  | -2.977      | -0.184 | (0) |
|            | SrS04                | 4 786e-05              | 4 7860-05              | -4 320  | -4 320      | 0 000  | (0) |
|            | MnSOA                | 2 18/0=07              | 2 1810-07              | -6 605  | -6 605      | 0.000  | (0) |
|            | 111004<br>USO4-      | 1 6730-07              | 1 0690-07              | -6 776  | -6 972      | -0 105 | (0) |
|            | H304-                | 1.107.00               | 1.107-00               | -0.770  | -0.972      | -0.195 | (0) |
|            | FeSU4                | 1.19/e-08              | 1.19/e-08              | -7.922  | -7.922      | 0.000  | (0) |
|            | Pb (SO4) 2-2         | 8.2/2e-10              | 1.321e-11              | -9.082  | -10.8/9     | -1./9/ | (0) |
|            | CrOHSO4              | 5.690e-10              | 5.690e-10              | -9.245  | -9.245      | 0.000  | (0) |
|            | PbSO4                | 8.066e-11              | 8.066e-11              | -10.093 | -10.093     | 0.000  | (0) |
|            | CrSO4+               | 2.930e-12              | 1.042e-12              | -11.533 | -11.982     | -0.449 | (0) |
|            | AlSO4+               | 1.666e-13              | 1.063e-13              | -12.778 | -12.973     | -0.195 | (0) |
|            | Al(SO4)2-            | 4.853e-14              | 3.096e-14              | -13.314 | -13.509     | -0.195 | (0) |
|            | VOSO4                | 1.013e-14              | 1.013e-14              | -13.994 | -13.994     | 0.000  | (0) |
|            | Cr2(OH)2SO4+2        | 2.841e-16              | 4.537e-18              | -15.547 | -17.343     | -1.797 | (0) |
|            | Cr2(OH)2(SO4)2       | 7 325e-18              | 7 325e-18              | -17 135 | -17 135     | 0 000  | (0) |
|            | V0290/-              | 3 62/0=19              | 1 2880=19              | -18 //1 | _18 890     | -0 119 | (0) |
|            | Cu2004               | 2 50/0-19              | 2 5040-10              | _10.441 | _10.000     | 0.445  | (0) |
|            |                      | 2.3040-19              | 2.3040-19              | -10.001 | -10.001     | 0.000  | (0) |
|            | VS04+                | 2.069e-21              | 7.3566-22              | -20.684 | -21.133     | -0.449 | (0) |
|            | Fe(SO4)2-            | 1.605e-21              | 5./0/e-22              | -20.794 | -21.244     | -0.449 | (0) |
|            | FeSO4+               | 1.499e-21              | 9.822e-22              | -20.824 | -21.008     | -0.184 | (0) |
|            | Cr03S04-2            | 0.000e+00              | 0.000e+00              | -42.297 | -44.094     | -1.797 | (0) |
| Sb         | (3) 1.2              | 47e-09                 |                        |         |             |        |     |
|            | Sb(OH)3              | 6.247e-10              | 6.247e-10              | -9.204  | -9.204      | 0.000  | (0) |
|            | HSbO2                | 6.217e-10              | 6.217e-10              | -9.206  | -9.206      | 0.000  | (0) |
|            | Sb02-                | 7.047e-14              | 2.505e-14              | -13.152 | -13.601     | -0.449 | (0) |
|            | Sb(OH)4-             | 3.885e-14              | 1.381e-14              | -13.411 | -13.860     | -0.449 | (0) |
|            | Sb(OH)2+             | 1.749e-15              | 6.217e-16              | -14.757 | -15.206     | -0.449 | (0) |
|            | SbO+                 | 6.147e-16              | 2.185e-16              | -15.211 | -15.660     | -0.449 | (0) |
|            | Sb2S4-2              | 0.000e+00              | 0.000e+00              | -64.854 | -66.650     | -1.797 | (0) |
| Sh         | (5) 4 2              | 31e-12                 |                        |         |             |        | (-) |
| ~~~        | sh03-                | 4 228e-12              | 1 503e-12              | -11 374 | -11 823     | -0 449 | (0) |
|            | Sb(OH) 6-            | 2 188e-15              | 1 659e-15              | -14 660 | -14 780     | -0 120 | (0) |
|            | sb(011/0             | 1 0080-27              | 7 1020-29              | -26 600 | -27 149     | -0.449 | (0) |
| <u>c</u> : | 0 1                  | 1.9908-27              | 1.1026-20              | -20.099 | -27.149     | -0.449 | (0) |
| SI         | 0.1<br>140-104       | 020-05                 | 0 (10- 05              | 4 004   | 4 017       | 0 070  | (0) |
|            | H4SIO4               | 8.0466-05              | 9.6190-05              | -4.094  | -4.01/      | 0.078  | (0) |
|            | H3SiO4-              | 5.58%e-0%              | 3.459e-07              | -6.253  | -6.461      | -0.208 | (0) |
|            | H2SiO4-2             | 2.729e-12              | 5.430e-13              | -11.564 | -12.265     | -0.701 | (0) |
| Sr         | 7.4                  | 71e-05                 |                        |         |             |        |     |
|            | SrSO4                | 4.786e-05              | 4.786e-05              | -4.320  | -4.320      | 0.000  | (0) |
|            | Sr+2                 | 2.669e-05              | 8.826e-06              | -4.574  | -5.054      | -0.481 | (0) |
|            | SrHCO3+              | 1.482e-07              | 1.015e-07              | -6.829  | -6.993      | -0.164 | (0) |
|            | SrCO3                | 4.714e-09              | 4.714e-09              | -8.327  | -8.327      | 0.000  | (0) |
|            | SrOH+                | 2.187e-11              | 1.433e-11              | -10.660 | -10.844     | -0.184 | (0) |
| V ()       | 2) 1.2               | 35e-23                 |                        |         |             |        |     |
|            | V+2                  | 9.102e-24              | 1.453e-25              | -23.041 | -24.838     | -1.797 | (0) |
|            | VOH+                 | 3.251e-24              | 1.156e-24              | -23.488 | -23.937     | -0.449 | (0) |
| vr         | 3) 6.8               | 59e-04                 |                        | 20.100  | 20.001      | 0.110  | (3) |
| • ( •      | _, 0.0<br>V(ОН)3     | 6 8590-00              | 6 8590-04              | -3 164  | -3 164      | 0 000  | (0) |
|            | V (OH) 2+            | 5 100 <u>0</u> 11      | 1 816-14               | -13 202 | -13 7/1     | -0 4/9 | (0) |
|            | VOU+2                | J.IU98-14<br>A A210-16 | 7 0600-19              | -15 254 | _17 151     | -0.449 | (0) |
|            |                      | 4.4210-10<br>C 205- 10 | 7.000e-10              | 10 100  | .T.1.T.J.T. | -1.191 | (0) |
|            | V+3                  | 6.325e-19              | 5./33e-23              | -10.199 | -22.242     | -4.043 | (U) |

| VSO4+                                                                                                                                                                                                                | 2.069e-2                                                                                                                                                                     | 1 7.35                                                                                                                                                                              | 6e-22                                                                                                                                                          | -20.684                                                                                                                                                                                    | -21.133                                                                 | -0.449  | (0) |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------|-----|--|
| V2 (OH) 2+4                                                                                                                                                                                                          | 4.836e-2                                                                                                                                                                     | 7 3.14                                                                                                                                                                              | 5e-34                                                                                                                                                          | -26.316                                                                                                                                                                                    | -33.502                                                                 | -7.187  | (0) |  |
| V2 (OH) 3+3                                                                                                                                                                                                          | 4.004e-2                                                                                                                                                                     | 9 3.63                                                                                                                                                                              | 0e-33                                                                                                                                                          | -28.398                                                                                                                                                                                    | -32.440                                                                 | -4.043  | (0) |  |
| V(4) 2.                                                                                                                                                                                                              | 780e-13                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                |                                                                                                                                                                                            |                                                                         |         |     |  |
| V(OH)3+                                                                                                                                                                                                              | 1.831e-1                                                                                                                                                                     | 3 6.50                                                                                                                                                                              | 9e-14                                                                                                                                                          | -12.737                                                                                                                                                                                    | -13.186                                                                 | -0.449  | (0) |  |
| VO+2                                                                                                                                                                                                                 | 8.478e-1                                                                                                                                                                     | 4 1.35                                                                                                                                                                              | 4e-15                                                                                                                                                          | -13.072                                                                                                                                                                                    | -14.868                                                                 | -1.797  | (0) |  |
| VOSO4                                                                                                                                                                                                                | 1.013e-1                                                                                                                                                                     | 4 1.01                                                                                                                                                                              | 3e-14                                                                                                                                                          | -13.994                                                                                                                                                                                    | -13.994                                                                 | 0.000   | (0) |  |
| VOC1+                                                                                                                                                                                                                | 1.260e-1                                                                                                                                                                     | 8 4.48                                                                                                                                                                              | 1e-19                                                                                                                                                          | -17.899                                                                                                                                                                                    | -18.349                                                                 | -0.449  | (0) |  |
| H2V2O4+2                                                                                                                                                                                                             | 1.383e-2                                                                                                                                                                     | 0 2.20                                                                                                                                                                              | 8e-22                                                                                                                                                          | -19.859                                                                                                                                                                                    | -21.656                                                                 | -1.797  | (0) |  |
| V(5) 3.                                                                                                                                                                                                              | 985e-11                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                |                                                                                                                                                                                            |                                                                         |         |     |  |
| HVO4-2                                                                                                                                                                                                               | 2.318e-1                                                                                                                                                                     | 1 3.70                                                                                                                                                                              | 2e-13                                                                                                                                                          | -10.635                                                                                                                                                                                    | -12.432                                                                 | -1.797  | (0) |  |
| H2VO4-                                                                                                                                                                                                               | 1.666e-1                                                                                                                                                                     | 1 5.92                                                                                                                                                                              | 3e-12                                                                                                                                                          | -10.778                                                                                                                                                                                    | -11.227                                                                 | -0.449  | (0) |  |
| H3VO4                                                                                                                                                                                                                | 2.381e-1                                                                                                                                                                     | 5 2.38                                                                                                                                                                              | 1e-15                                                                                                                                                          | -14.623                                                                                                                                                                                    | -14.623                                                                 | 0.000   | (0) |  |
| VO4-3                                                                                                                                                                                                                | 5.091e-1                                                                                                                                                                     | 6 4.61                                                                                                                                                                              | 5e-20                                                                                                                                                          | -15.293                                                                                                                                                                                    | -19.336                                                                 | -4.043  | (0) |  |
| HV207-3                                                                                                                                                                                                              | 8.356e-1                                                                                                                                                                     | 8 7.57                                                                                                                                                                              | 5e-22                                                                                                                                                          | -17.078                                                                                                                                                                                    | -21.121                                                                 | -4.043  | (0) |  |
| V207-4                                                                                                                                                                                                               | 7.800e-1                                                                                                                                                                     | 8 5.07                                                                                                                                                                              | 2e-25                                                                                                                                                          | -17.108                                                                                                                                                                                    | -24.295                                                                 | -7.187  | (0) |  |
| V02S04-                                                                                                                                                                                                              | 3.624e-1                                                                                                                                                                     | 9 1.28                                                                                                                                                                              | 8e-19                                                                                                                                                          | -18.441                                                                                                                                                                                    | -18.890                                                                 | -0.449  | (0) |  |
| VO2+                                                                                                                                                                                                                 | 2.618e-1                                                                                                                                                                     | 9 1.98                                                                                                                                                                              | 5e-19                                                                                                                                                          | -18.582                                                                                                                                                                                    | -18.702                                                                 | -0.120  | (0) |  |
| H3V207-                                                                                                                                                                                                              | 2.612e-1                                                                                                                                                                     | 9 9.28                                                                                                                                                                              | 4e-20                                                                                                                                                          | -18.583                                                                                                                                                                                    | -19.032                                                                 | -0.449  | (0) |  |
| V309-3                                                                                                                                                                                                               | 2.545e-2                                                                                                                                                                     | 4 2.30                                                                                                                                                                              | 7e-28                                                                                                                                                          | -23.594                                                                                                                                                                                    | -27.637                                                                 | -4.043  | (0) |  |
| V4012-4                                                                                                                                                                                                              | 8.930e-3                                                                                                                                                                     | 0 5.80                                                                                                                                                                              | 7e-37                                                                                                                                                          | -29.049                                                                                                                                                                                    | -36.236                                                                 | -7.187  | (0) |  |
| V10028-6                                                                                                                                                                                                             | 0.000e+0                                                                                                                                                                     | 0 0.00                                                                                                                                                                              | 0e+00                                                                                                                                                          | -76.680                                                                                                                                                                                    | -92.851                                                                 | -16.171 | (0) |  |
| HV10028-5                                                                                                                                                                                                            | 0.000e+0                                                                                                                                                                     | 0 0.00                                                                                                                                                                              | 0e+00                                                                                                                                                          | -80.830                                                                                                                                                                                    | -92.060                                                                 | -11.230 | (0) |  |
| H2V10028-4                                                                                                                                                                                                           | 0.000e+0                                                                                                                                                                     | 0 0.00                                                                                                                                                                              | 0e+00                                                                                                                                                          | -87.061                                                                                                                                                                                    | -94.248                                                                 | -7.187  | (0) |  |
|                                                                                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                                |                                                                                                                                                                                            |                                                                         |         |     |  |
|                                                                                                                                                                                                                      |                                                                                                                                                                              | Satur                                                                                                                                                                               | ation in                                                                                                                                                       | dices                                                                                                                                                                                      |                                                                         |         |     |  |
|                                                                                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                                |                                                                                                                                                                                            |                                                                         |         |     |  |
| Phase                                                                                                                                                                                                                | SI**                                                                                                                                                                         | log IAP                                                                                                                                                                             | log K(                                                                                                                                                         | 298 K,                                                                                                                                                                                     | 1 atm)                                                                  |         |     |  |
|                                                                                                                                                                                                                      | 2 . 4 .                                                                                                                                                                      | c 0.c                                                                                                                                                                               | 10 00                                                                                                                                                          |                                                                                                                                                                                            |                                                                         |         |     |  |
| Al(OH)3(am)                                                                                                                                                                                                          | -3.94                                                                                                                                                                        | 6.86                                                                                                                                                                                | 10.80                                                                                                                                                          | AL (OH) 3                                                                                                                                                                                  | 4                                                                       |         |     |  |
| AIZ (MOU4) 3                                                                                                                                                                                                         | -46.17                                                                                                                                                                       | -43.80                                                                                                                                                                              | 2.3/                                                                                                                                                           | AIZ (MOU                                                                                                                                                                                   | 4)3                                                                     |         |     |  |
| ALZUS                                                                                                                                                                                                                | -5.90                                                                                                                                                                        | 13.75                                                                                                                                                                               | 19.65                                                                                                                                                          | ALZUS                                                                                                                                                                                      | 10004                                                                   |         |     |  |
| AI4 (OH) IUSO4                                                                                                                                                                                                       | -11.58                                                                                                                                                                       | 11.12                                                                                                                                                                               | 22.70                                                                                                                                                          | AL4(OH)                                                                                                                                                                                    | 10504                                                                   |         |     |  |
| ALASU4:ZHZU                                                                                                                                                                                                          | -8.82                                                                                                                                                                        | -4.02                                                                                                                                                                               | 4.80                                                                                                                                                           | ALASU4:                                                                                                                                                                                    | ZHZU                                                                    |         |     |  |
| Aloh                                                                                                                                                                                                                 | 102.00                                                                                                                                                                       | -9.40                                                                                                                                                                               | -5.25                                                                                                                                                          | Aloh                                                                                                                                                                                       |                                                                         |         |     |  |
| ALSD                                                                                                                                                                                                                 | -102.00                                                                                                                                                                      | -30.30                                                                                                                                                                              | 05.02                                                                                                                                                          | ALSD (CO                                                                                                                                                                                   | 4) 2 (04) 6                                                             |         |     |  |
| Aralogito                                                                                                                                                                                                            | -4.52                                                                                                                                                                        | -12 79                                                                                                                                                                              | -1.40                                                                                                                                                          | Dheod                                                                                                                                                                                      | 4)2(OH)0                                                                |         |     |  |
| Angresite                                                                                                                                                                                                            | 1.55                                                                                                                                                                         | 5 11                                                                                                                                                                                | 1.15                                                                                                                                                           | C2204                                                                                                                                                                                      |                                                                         |         |     |  |
| Annyarice                                                                                                                                                                                                            | -0.73                                                                                                                                                                        | -40 66                                                                                                                                                                              | -4.30                                                                                                                                                          | Cup0 25C                                                                                                                                                                                   | 11 59                                                                   |         |     |  |
| Antlerite                                                                                                                                                                                                            | -38 99                                                                                                                                                                       | -30.20                                                                                                                                                                              | 8 79                                                                                                                                                           | Cu3 (OH)                                                                                                                                                                                   | 4904                                                                    |         |     |  |
| Aragonite                                                                                                                                                                                                            | -1 33                                                                                                                                                                        | -9 63                                                                                                                                                                               | -8 30                                                                                                                                                          | CaCO3                                                                                                                                                                                      | 1001                                                                    |         |     |  |
| Arsenolite                                                                                                                                                                                                           | -10 60                                                                                                                                                                       | -13 36                                                                                                                                                                              | -2 76                                                                                                                                                          | As406                                                                                                                                                                                      |                                                                         |         |     |  |
| Artinite                                                                                                                                                                                                             | -3.69                                                                                                                                                                        | 5.91                                                                                                                                                                                | 9.60                                                                                                                                                           | MaCO3:M                                                                                                                                                                                    | a (OH) 2:3H2O                                                           |         |     |  |
| As205                                                                                                                                                                                                                | -28 47                                                                                                                                                                       | -21 77                                                                                                                                                                              | 6 71                                                                                                                                                           | As205                                                                                                                                                                                      | 9 (011) 2 . 01120                                                       |         |     |  |
| Atacamite                                                                                                                                                                                                            | -27.95                                                                                                                                                                       | -20.56                                                                                                                                                                              | 7.39                                                                                                                                                           | C112 (OH)                                                                                                                                                                                  | 301                                                                     |         |     |  |
| Azurite                                                                                                                                                                                                              | -38.67                                                                                                                                                                       | -55.58                                                                                                                                                                              | -16.91                                                                                                                                                         | Cu3 (OH)                                                                                                                                                                                   | 2 (CO3) 2                                                               |         |     |  |
| Ba (OH) 2:8H2O                                                                                                                                                                                                       | -20.18                                                                                                                                                                       | 4.21                                                                                                                                                                                | 24.39                                                                                                                                                          | Ba (OH) 2                                                                                                                                                                                  | :8H2O                                                                   |         |     |  |
| Ba2V207:2H20                                                                                                                                                                                                         | -29.94                                                                                                                                                                       | -14.07                                                                                                                                                                              | 15.87                                                                                                                                                          | Ba2V207                                                                                                                                                                                    | :2H2O                                                                   |         |     |  |
| Ba3(AsO4)2                                                                                                                                                                                                           | 0.00                                                                                                                                                                         | -8.91                                                                                                                                                                               | -8.91                                                                                                                                                          | Ba3 (AsO                                                                                                                                                                                   | 4)2                                                                     |         |     |  |
| Ba3 (VO4) 2:4H2O                                                                                                                                                                                                     |                                                                                                                                                                              |                                                                                                                                                                                     |                                                                                                                                                                | ,                                                                                                                                                                                          | -/-                                                                     |         |     |  |
| 5 6 61                                                                                                                                                                                                               | -42.74                                                                                                                                                                       | -9.80                                                                                                                                                                               | 32.94                                                                                                                                                          | Ba3 (VO4                                                                                                                                                                                   | )2:4H2O                                                                 |         |     |  |
| BaCrO4                                                                                                                                                                                                               | -42.74<br>-37.57                                                                                                                                                             | -9.80<br>-47.24                                                                                                                                                                     | 32.94<br>-9.67                                                                                                                                                 | Ba3(VO4<br>BaCrO4                                                                                                                                                                          | )2:4H2O                                                                 |         |     |  |
| BaCrO4<br>BaMoO4                                                                                                                                                                                                     | -42.74<br>-37.57<br>-7.94                                                                                                                                                    | -9.80<br>-47.24<br>-14.90                                                                                                                                                           | 32.94<br>-9.67<br>-6.96                                                                                                                                        | Ba3(VO4<br>BaCrO4<br>BaMoO4                                                                                                                                                                | )2:4H2O                                                                 |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite                                                                                                                                                                                           | -42.74<br>-37.57<br>-7.94<br>-2.08                                                                                                                                           | -9.80<br>-47.24<br>-14.90<br>-12.06                                                                                                                                                 | 32.94<br>-9.67<br>-6.96<br>-9.98                                                                                                                               | Ba3(VO4<br>BaCrO4<br>BaMoO4<br>BaSO4                                                                                                                                                       | )2:4H2O                                                                 |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS                                                                                                                                                                                    | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00                                                                                                                                 | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82                                                                                                                                       | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18                                                                                                                      | Ba3(VO4<br>BaCrO4<br>BaMoO4<br>BaSO4<br>BaS                                                                                                                                                | )2:4H2O                                                                 |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite                                                                                                                                                                      | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59                                                                                                                       | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50                                                                                                                              | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09                                                                                                             | Ba3(VO4<br>BaCrO4<br>BaMoO4<br>BaSO4<br>BaS<br>MnO2                                                                                                                                        | )2:4H2O                                                                 |         |     |  |
| BACTO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite                                                                                                                                                          | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71                                                                                                             | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50<br>-24.36                                                                                                                    | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64                                                                                                    | Ba3(V04<br>BaCr04<br>BaMo04<br>BaS04<br>BaS<br>Mn02<br>Mn203                                                                                                                               | )2:4H2O                                                                 |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI                                                                                                                                             | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62                                                                                                    | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78                                                                                                          | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16                                                                                          | Ba3(V04<br>BaCr04<br>BaMo04<br>BaS04<br>BaS<br>Mn02<br>Mn203<br>Cu0.9Cu                                                                                                                    | 0.2s                                                                    |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI<br>BlaubleiII                                                                                                                               | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68                                                                                           | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78<br>-36.96                                                                                                | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16<br>-27.28                                                                                | Ba3(VO4<br>BaCrO4<br>BaMoO4<br>BaSO4<br>BaS<br>MnO2<br>Mn2O3<br>Cu0.9Cu<br>Cu0.6Cu                                                                                                         | 0.25<br>0.85                                                            |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI<br>BlaubleiII<br>BlaubleiII                                                                                                                 | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68<br>-1.70                                                                                  | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78<br>-36.96<br>6.87                                                                                        | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16<br>-27.28<br>8.58                                                                        | Ba3 (VO4<br>BaCrO4<br>BaMoO4<br>BaSO4<br>BaS<br>MnO2<br>Mn2O3<br>Cu0.9Cu<br>Cu0.6Cu<br>AlOOH                                                                                               | 0.2S<br>0.8S                                                            |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI<br>BlaubleiII<br>BlaubleiII<br>Boehmite<br>Brochantite                                                                                      | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68<br>-1.70<br>-50.05                                                                        | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78<br>-36.96<br>6.87<br>-34.82                                                                              | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16<br>-27.28<br>8.58<br>15.22                                                               | Ba3 (VO4<br>BaCrO4<br>BaMoO4<br>BaSO4<br>BaS<br>MnO2<br>Mn2O3<br>Cu0.9Cu<br>Cu0.6Cu<br>AlOOH<br>Cu4 (OH)                                                                                   | 0.25<br>0.85<br>6504                                                    |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI<br>BlaubleiII<br>BlaubleiII<br>Boehmite<br>Brochantite<br>Brucite                                                                           | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68<br>-1.70<br>-50.05<br>-3.45                                                               | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78<br>-36.96<br>6.87<br>-34.82<br>13.40                                                                     | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16<br>-27.28<br>8.58<br>15.22<br>16.84                                                      | Ba3 (VO4<br>BaCrO4<br>BaMoO4<br>BaSO4<br>BaS<br>Mn02<br>Mn2O3<br>Cu0.9Cu<br>Cu0.6Cu<br>AlOOH<br>Cu4 (OH)<br>Mg (OH)2                                                                       | 0.2s<br>0.8s<br>6s04                                                    |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI<br>BlaubleiII<br>BlaubleiII<br>Boehmite<br>Brochantite<br>Brucite<br>Ca(VO3)2                                                               | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68<br>-1.70<br>-50.05<br>-3.45<br>-17.05                                                     | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78<br>-36.96<br>6.87<br>-34.82<br>13.40<br>-11.39                                                           | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16<br>-27.28<br>8.58<br>15.22<br>16.84<br>5.66                                              | Ba3 (V04<br>BaCr04<br>BaMo04<br>BaS04<br>BaS<br>Mn02<br>Mn0203<br>Cu0.9Cu<br>Cu0.6Cu<br>AlOOH<br>Cu4 (OH)<br>Mg (OH) 2<br>Ca (V03)                                                         | 0.25<br>0.25<br>0.85<br>6504<br>2                                       |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI<br>BlaubleiII<br>BlaubleiII<br>Boehmite<br>Brochantite<br>Brucite<br>Ca(VO3)2<br>Ca2V2O7                                                    | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68<br>-1.70<br>-50.05<br>-3.45<br>-17.05<br>-17.65                                           | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78<br>-36.96<br>6.87<br>-34.82<br>13.40<br>-11.39<br>-0.15                                                  | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16<br>-27.28<br>8.58<br>15.22<br>16.84<br>5.66<br>17.50                                     | Ba3 (V04<br>BaCr04<br>BaMo04<br>BaS04<br>BaS<br>Mn02<br>Mn0203<br>Cu0.9Cu<br>Cu0.6Cu<br>AlOOH<br>Cu4 (OH)<br>Mg (OH) 2<br>Ca (V03)<br>Ca2V207                                              | 0.25<br>0.85<br>6504<br>2                                               |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI<br>BlaubleiII<br>Boehmite<br>Brochantite<br>Brucite<br>Ca(VO3)2<br>Ca2V207<br>Ca2V207:2H2O                                                  | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68<br>-1.70<br>-50.05<br>-3.45<br>-17.05<br>-17.65<br>-21.72                                 | -9.80<br>-47.24<br>-14.90<br>-12.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78<br>-36.96<br>6.87<br>-34.82<br>13.40<br>-11.39<br>-0.15<br>-0.17                                         | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16<br>-27.28<br>8.58<br>15.22<br>16.84<br>5.66<br>17.50<br>21.55                            | Ba3 (V04<br>BaCr04<br>BaMo04<br>BaS04<br>BaS<br>Mn02<br>Mn203<br>Cu0.9Cu<br>Cu0.6Cu<br>AlOOH<br>Cu4 (OH)<br>Mg (OH)2<br>Ca (V03)<br>Ca2V207<br>Ca2V207                                     | 0.25<br>0.25<br>0.85<br>6SO4<br>2<br>:2H2O                              |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>BlaubleiI<br>BlaubleiII<br>Boehmite<br>Brochantite<br>Brucite<br>Ca(VO3)2<br>Ca2V207<br>Ca2V207:2H20<br>Ca3(AsO4)2:4H2                                            | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68<br>-1.70<br>-50.05<br>-3.45<br>-17.05<br>-17.65<br>-21.72<br>0 -10.39                     | $\begin{array}{c} -9.80 \\ -47.24 \\ -14.90 \\ -22.06 \\ -23.82 \\ -6.50 \\ -24.36 \\ -33.78 \\ -36.96 \\ 6.87 \\ -34.82 \\ 13.40 \\ -11.39 \\ -0.15 \\ -0.17 \\ 11.91 \end{array}$ | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16<br>-27.28<br>8.58<br>15.22<br>16.84<br>5.66<br>17.50<br>21.55<br>22.30                   | Ba3 (V04<br>BaCr04<br>BaMo04<br>BaS04<br>BaS<br>Mn02<br>Mn203<br>Cu0.9Cu<br>Cu0.6Cu<br>AlOOH<br>Cu4 (OH)<br>Mg (OH) 2<br>Ca (V03)<br>Ca2V207<br>Ca2V207<br>Ca3 (AsO                        | 0.2S<br>0.2S<br>0.8S<br>6SO4<br>2<br>:2H2O<br>4)2:4H2O                  |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI<br>BlaubleiII<br>Boehmite<br>Brochantite<br>Brucite<br>Ca(VO3)2<br>Ca2V207<br>Ca2V207:2H20<br>Ca3(AsO4)2:4H2<br>Ca3(VO4)2                   | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68<br>-1.70<br>-50.05<br>-3.45<br>-17.05<br>-17.65<br>-21.72<br>0 -10.39<br>-27.87           | -9.80<br>-47.24<br>-14.90<br>-22.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78<br>-36.96<br>6.87<br>-34.82<br>13.40<br>-11.39<br>-0.15<br>-0.17<br>11.91<br>11.09                       | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-27.28<br>8.58<br>15.22<br>16.84<br>5.66<br>17.50<br>21.55<br>22.30<br>38.96                    | Ba3 (V04<br>BaCr04<br>BaMo04<br>BaS04<br>BaS<br>Mn02<br>Mn203<br>Cu0.9Cu<br>Cu0.6Cu<br>AlOOH<br>Cu4 (OH)<br>Mg (OH) 2<br>Ca (V03)<br>Ca2V207<br>Ca2V207<br>Ca2V207<br>Ca3 (ASO<br>Ca3 (V04 | 0.2S<br>0.2S<br>0.8S<br>6SO4<br>2<br>:2H2O<br>4)2:4H2O<br>)2            |         |     |  |
| BaCrO4<br>BaMoO4<br>Barite<br>BaS<br>Birnessite<br>Bixbyite<br>BlaubleiI<br>BlaubleiII<br>Boehmite<br>Brochantite<br>Brucite<br>Ca(VO3)2<br>Ca2V207<br>Ca2V207:2H20<br>Ca3(AsO4)2:4H2<br>Ca3(VO4)2<br>Ca3(VO4)2:4H20 | -42.74<br>-37.57<br>-7.94<br>-2.08<br>-40.00<br>-24.59<br>-23.71<br>-9.62<br>-9.68<br>-1.70<br>-50.05<br>-3.45<br>-17.05<br>-17.65<br>-21.72<br>0 -10.39<br>-27.87<br>-28.81 | -9.80<br>-47.24<br>-14.90<br>-22.06<br>-23.82<br>-6.50<br>-24.36<br>-33.78<br>-36.96<br>6.87<br>-34.82<br>13.40<br>-11.39<br>-0.15<br>-0.17<br>11.91<br>11.09<br>11.05              | 32.94<br>-9.67<br>-6.96<br>-9.98<br>16.18<br>18.09<br>-0.64<br>-24.16<br>-27.28<br>8.58<br>15.22<br>16.84<br>5.66<br>17.50<br>21.55<br>22.30<br>38.96<br>39.86 | Ba3 (V04<br>BaCr04<br>BaMo04<br>BaS04<br>BaS04<br>BaS04<br>Mn02<br>Mn203<br>Cu0.9Cu<br>Cu0.6Cu<br>AlOOH<br>Cu4 (OH) 2<br>Ca(V03)<br>Ca2V207<br>Ca2V207<br>Ca2V207<br>Ca3 (AsO<br>Ca3 (V04  | 0.2S<br>0.2S<br>0.8S<br>6SO4<br>2<br>:2H2O<br>4)2:4H2O<br>)2<br>)2:4H2O |         |     |  |

| CaCrO4               | -38.02   | -40.29         | -2.27   | CaCrO4                   |
|----------------------|----------|----------------|---------|--------------------------|
| Calcite              | -1.15    | -9.63          | -8.48   | CaCO3                    |
| CaMoO4               | -0.00    | -7.95          | -7.95   | CaMoO4                   |
| Celestite            | 0.00     | -6.62          | -6.62   | SrSO4                    |
| Cerussite            | -4.17    | -17.30         | -13.13  | PbCO3                    |
| CH4 (g)              | -25.26   | -66.30         | -41.05  | CH4                      |
| Chalcanthite         | -18.36   | -21.00         | -2.64   | CuSO4:5H2O               |
| Chalcedony           | -0.45    | -4.00          | -3.55   | SiO2                     |
| Chalcocite           | -8.39    | -43.31         | -34.92  | C112S                    |
| Chalconvrite         | -19 52   | -54 79         | -35 27  | CuFeS2                   |
| Chrysotile           | 0.00     | 32.20          | 32.20   | Ma3Si2O5(OH)4            |
| Claudetite           | -10 30   | -13 36         | -3 06   | As406                    |
| $CO2(\alpha)$        | -2 72    | -20.87         | -18 15  | CO2                      |
| Cotunnite            | -14 29   | -19 07         | -4 78   | PhC12                    |
| Covollito            | _10 42   | -32 72         | -22 30  | C19612                   |
| Cr(OH) 2             | -10.42   | -32.72         | 10 92   | Cr (OH) 2                |
| Cr (OH) 3            | -2 53    | _1 10          | 1 3/    | Cr (OH) 3                |
| Cr (OII) 2 (am)      | -2.55    | -1.19          | 1.34    | CT (OH) 3                |
| Cr (On) 5 (all)      | -0.44    | -1.19          | -0.75   | Cr (OH) 3                |
| Cr2U3                | 10.00    | -2.50          | -2.50   | Cr203                    |
|                      | -40.04   | -20.33         | 14.09   |                          |
| CrC13                | -50.25   | -35.14         | 15.11   | CrCI3                    |
| Cristobalite         | -0.65    | -4.00          | -3.35   | 5102                     |
| Crmetal              | -45.75   | -15.26         | 30.48   | Cr                       |
| Cr03                 | -48.31   | -51.52         | -3.21   | Cr03                     |
| Cu (OH) 2            | -13.29   | -4.62          | 8.67    | Cu (OH) 2                |
| Cu (SbO3) 2          | -45.50   | -0.29          | 45.21   | Cu (SbO3) 2              |
| Cu2Sb:3H2O           | -20.61   | -55.49         | -34.88  | Cu2Sb:3H2O               |
| Cu2SO4               | -29.60   | -31.55         | -1.95   | Cu2SO4                   |
| Cu3(AsO4)2:2H2O      | -41.72   | -35.62         | 6.10    | Cu3(AsO4)2:2H2O          |
| Cu3Sb                | -23.46   | -66.06         | -42.59  | Cu3Sb                    |
| CuCO3                | -13.98   | -25.48         | -11.50  | CuCO3                    |
| CuCrO4               | -50.69   | -56.13         | -5.44   | CuCrO4                   |
| Cumetal              | -4.52    | -13.28         | -8.76   | Cu                       |
| CuMoO4               | -10.72   | -23.80         | -13.08  | CuMoO4                   |
| CuOCuSO4             | -35.88   | -25.57         | 10.30   | CuOCuSO4                 |
| Cupricferrite        | -13.23   | -7.25          | 5.99    | CuFe2O4                  |
| Cuprite              | -13.79   | -15.20         | -1.41   | Cu2O                     |
| Cuprousferrite       | 0.00     | -8.92          | -8.92   | CuFeO2                   |
| CuSO4                | -23.90   | -20.96         | 2.94    | CuSO4                    |
| Diaspore             | 0.00     | 6.87           | 6.87    | Alooh                    |
| Djurleite            | -8.69    | -42.61         | -33.92  | Cu0.066Cu1.868S          |
| Dolomite (disorde    | ered) -0 | .55 -1         | 7.09 -1 | 6.54 CaMg(CO3)2          |
| Dolomite (ordered    | d) 0.00  | -17.0          | 9 -17.0 | 9 CaMg(CO3)2             |
| Epsomite             | -0.88    | -3.00          | -2.13   | MqSO4:7H20               |
| Fe (OH) 2            | -7.54    | 6.03           | 13.56   | Fe(OH)2                  |
| Fe(OH)2.7C1.3        | -1.68    | -4.72          | -3.04   | Fe(OH)2.7C1.3            |
| Fe (VO3) 2           | -12.86   | -16.58         | -3.72   | Fe (VO3) 2               |
| Fe2(SO4)3            | -47.95   | -51.68         | -3.73   | Fe2 (SO4) 3              |
| Fe3(OH)8             | -16.85   | 3.37           | 20.22   | Fe3(OH)8                 |
| FeAs04:2H20          | -12.62   | -12.22         | 0.40    | FeAs04:2H20              |
| FeCr204              | -3.52    | 3.68           | 7.20    | FeCr204                  |
| FeMo04               | -3.06    | -13.15         | -10.09  | FeMo04                   |
| Ferrihvdrite         | -4.52    | -1.33          | 3.19    | Fe (OH) 3                |
| FeS(nnt)             | _19 12   | -22 07         | -2 95   | Fog                      |
| Galena               | -10 57   | -24 54         | -13 97  | PhS                      |
| Gibbsite             | -1 43    | 6 86           | 8 29    | A1 (OH) 3                |
| Coethite             | _1 81    | -1 32          | 0.29    | FeOOH                    |
| Greenalite           | _10 72   | 10 09          | 20 81   | Fe0011                   |
| Greigite             | -64 00   | -109 04        | -45 03  | Fe394                    |
| Curray               | 0 52     | ±05.04<br>5 10 | 4 61    | C-204-2020               |
| Gypsum<br>U-Tarogito | -24 59   | -36 60         | -12 10  | (H30) Eo3 (SO4) 2 (OH) 6 |
| H2MoOA               | -24.39   | -10.09         | -12.10  | (H30) Fe3 (304) 2 (0H) 0 |
| H2MOO4               | -0.52    | -19.19         | -12.00  | H2M004                   |
| nzə(y)               | -2U.II   | -20.12         | -0.UI   | NDC1                     |
| Hallowaita           | -3.94    | -4.34          | 1.00    |                          |
| narroystie           | -3.84    | 5./4           | 9.5/    | A1231203 (UH) 4          |
| Hausmannite          | -21.19   | 33.84          | 01.UJ   | MI1304                   |
| Hergunite            | -1.22    | -2.63          | -1.42   | rezus<br>Forland         |
| петсуптте            | -3.10    | 19./9          | 22.09   | FEAL204                  |
| ниптіте              | -2.04    | -32.Ul         | -29.9/  | CaM93(CU3)4              |

| Hydrocerussite     | -12.27   | -31.04       | -18.77 | Pb3 (OH) 2 (CO3) 2    |
|--------------------|----------|--------------|--------|-----------------------|
| Hydromagnesite     | -7.71    | -16.48       | -8.77  | Mq5(CO3)4(OH)2:4H2O   |
| K-Alum             | -14 58   | -19 75       | -5 17  | KA1 (SO4) 2 · 12H2O   |
|                    | 15 70    | 10.75        | 14 00  | KR 2 (204) 2 (201) C  |
| K-Jarosite         | -15.70   | -30.50       | -14.80 | KFe3(S04)2(OH)6       |
| K2Cr2O7            | -73.46   | -90.70       | -17.24 | K2Cr2O7               |
| K2CrO4             | -38.67   | -39.18       | -0.51  | K2CrO4                |
| K2M004             | -10 11   | -6.84        | 3 26   | K2M004                |
| 1211004            | 1 20     | 0.04         | 5.20   |                       |
| Kaolinite          | -1./0    | 5./4         | 1.43   | A12S12O5(OH)4         |
| Langite            | -52.32   | -34.83       | 17.49  | Cu4 (OH) 6SO4:H2O     |
| Larnakite          | -8.78    | -9.22        | -0.43  | Pb0:PbS04             |
| Laurionito         | _0.30    | -7 76        | 0 62   | Phouel                |
| Laurionice         | -0.50    | -/./0        | 0.02   | FDONCI                |
| Lepidocrocite      | -2.69    | -1.32        | 1.37   | FeOOH                 |
| Li2CrO4            | -45.70   | -40.84       | 4.86   | Li2CrO4               |
| T.12M004           | -10 95   | -8 51        | 2 44   | Li2Mo04               |
|                    | 10.55    | 11 04        | 2.11   | 2 0                   |
| Lime               | -21.46   | 11.24        | 32.70  | CaO                   |
| Litharge           | -9.13    | 3.57         | 12.69  | PbO                   |
| Mackinawite        | -18.47   | -22.07       | -3.60  | FeS                   |
| Maghomito          | -9.02    | -2 63        | 6 30   | E-203                 |
| Magnemitce         | -9.02    | -2.03        | 0.39   | rezos                 |
| Magnesioferrite    | -6.09    | 10.77        | 16.86  | Fe2Mg04               |
| Magnesite          | 0.00     | -7.46        | -7.46  | MgCO3                 |
| Magnetite          | 0 00     | 3 40         | 3 40   | Fe304                 |
| Malachite          | 24 70    | 20 10        | 5.10   | Cu 2 (OII) 2CO 2      |
| Malachille         | -24.79   | -30.10       | = 3.31 | Cu2 (OH) 2003         |
| Manganite          | -12.17   | 13.17        | 25.34  | MnOOH                 |
| Massicot           | -9.33    | 3.57         | 12.89  | PbO                   |
| Melanothallite     | -33 51   | -27 25       | 6 26   | CuCl 2                |
| Meranocharrice     | 0.16     | 27.23        | 0.20   |                       |
| Melanterite        | -8.10    | -10.3/       | -2.21  | FeS04:/H20            |
| Mg(OH)2(active)    | -5.40    | 13.40        | 18.79  | Mg (OH) 2             |
| Mg (V03)2          | -20.50   | -9.22        | 11.28  | Ma (VO3) 2            |
| Maraba             | -140.26  | -74 57       | 74 69  | Ma2ch3                |
| Mg23D3             | -149.20  | -/4.5/       | 74.00  | Myzobo                |
| Mg2V207            | -22.17   | 4.19         | 26.36  | Mg2V207               |
| MgCr2O4            | -5.15    | 11.05        | 16.20  | MgCr2O4               |
| MaCrO4             | -43 50   | -38 12       | 5 38   | MaCrO4                |
| 1190101            | 2.00     | 50.12        | 1 05   | 1190101               |
| MgMoO4             | -3.93    | -5./8        | -1.85  | MgMoO4                |
| Minium             | -51.47   | 22.05        | 73.52  | Pb304                 |
| Mirabilite         | -1.36    | -2.47        | -1.11  | Na2SO4:10H2O          |
| Mp (102) 2         | 20 02    | 15 12        | 1 00   | Mp (102) 2            |
| MII (VOS) 2        | -20.03   | -13.13       | 4.90   | MII (VOS) 2           |
| Mn2(SO4)3          | -67.69   | -73.40       | -5.71  | Mn2(SO4)3             |
| Mn2Sb              | -95.03   | -33.95       | 61.08  | Mn2Sb                 |
| Mn3 (As04) 2.8H20  | -11 85   | 0 65         | 12 50  | Mn3(AsO4)2.8H2O       |
| MpC12.4U20         | 17 00    | 15 10        | 2 70   | MpC12.4U20            |
| MIC12.4H20         | -17.09   | -13.10       | 2.12   | MIC12.4H20            |
| MnS(grn)           | -20.79   | -20.62       | 0.17   | MnS                   |
| MnS (pnk)          | -23.96   | -20.62       | 3.34   | MnS                   |
| MnSh               | -52 53   | -55 44       | -2 91  | MnSh                  |
| Ma CO 4            | 11 44    | 0.05         | 2.51   | Magod                 |
| MNS04              | -11.44   | -8.85        | 2.58   | MIIS04                |
| MoO3               | -11.19   | -19.19       | -8.00  | MoO3                  |
| MoS2               | -16.50   | -86.76       | -70.26 | MoS2                  |
| Na-Jarosito        | -18 /9   | -29 69       | -11 20 | NaFe3 (SO4) 2 (OH) 6  |
|                    | 10.40    | 29.09        | 11.20  | Nares (504) 2 (011) 0 |
| Na2Cr207           | -79.19   | -89.08       | -9.90  | Na2Cr207              |
| Na2CrO4            | -40.49   | -37.56       | 2.93   | Na2CrO4               |
| Na2Mo2O7           | -7.81    | -24.41       | -16.60 | Na2Mo2O7              |
| N-2M-04            | -6 71    | _5 22        | 1 / 0  | No 2Mo 04             |
| Nazmoo4            | -0.71    | -3.22        | 1.49   | NazMOO4               |
| Na2MoO4:2H2O       | -6.46    | -5.24        | 1.22   | Na2MoO4:2H2O          |
| Na3Sb ·            | -116.76  | -22.31       | 94.45  | Na3Sb                 |
| Na 3VO4            | -27 05   | 9 63         | 36 68  | Na 3VO4               |
| N= 417007          | 27.00    | 5.00<br>E 01 | 27.40  | Na 417207             |
| Na4V207            | -32.09   | 5.31         | 37.40  | Na4V207               |
| Nantokite          | -12.19   | -18.92       | -6.73  | CuCl                  |
| NaSb               | -48.09   | -24.92       | 23.17  | NaSb                  |
| Natron             | -5 68    | -6 99        | -1 31  | Na2CO3.10H2O          |
| Nacion             | 0.10     | 0.00         | 1.01   | Nazcoj.101120         |
| INAVUS             | -0.19    | -4.33        | 3.00   | ING VUS               |
| Nesquehonite       | -2.82    | -7.49        | -4.67  | MgCO3:3H2O            |
| Nsutite            | -24.00   | -6.50        | 17.50  | MnO2                  |
| 02(a)              | -60 39   | 22 71        | 83 00  | 02                    |
| ~~ (y)             | 00.00    | 22.11        | 03.09  |                       |
| Orpiment           | -29.94   | -91.01       | -61.07 | ASZS3                 |
| Pb(OH)2            | -4.59    | 3.56         | 8.15   | Pb (OH) 2             |
| Pb10 (OH) 60 (CO3) | 5 -80.80 | -89.56       | -8.76  | Pb10(OH)60(CO3)6      |
| ph2 (04) 201       | _12 00   | _4 20        | 0 70   | Dh2 (04) 301          |
|                    | 10 07    | -4.20        | 0.19   |                       |
| PDZU (UH) Z        | -19.0%   | 7.12         | 26.19  | 2 (UH) 2              |
| Pb203              | -42.55   | 18.49        | 61.04  | Pb203                 |
| Pb20C03            | -13.18   | -13.73       | -0.56  | Pb20C03               |
|                    |          |              |        |                       |

| Pb2V207                   | -13.59     | -15.49     | -1.90         | Pb2V207                   |
|---------------------------|------------|------------|---------------|---------------------------|
| Pb3(AsO4)2                | -16.87     | -11.07     | 5.80          | Pb3 (AsO4) 2              |
| Pb3(VO4)2                 | -18.06     | -11.92     | 6.14          | Pb3 (VO4) 2               |
| Pb302C03                  | -21.19     | -10.17     | 11.02         | Pb302C03                  |
| Pb302S04                  | -16.34     | -5.65      | 10.69         | Pb302S04                  |
| Pb4 (OH) 6SO4             | -23.21     | -2.11      | 21.10         | Pb4 (OH) 6SO4             |
| Pb403504                  | -23.96     | -2 09      | 21 88         | Pb403S04                  |
| PhCrOA                    | -35.36     | -17 96     | -12 60        | PhCrOA                    |
| Demotel                   | 10.04      | -7.70      | 12.00         | DCIO4                     |
| Philetal                  | -12.04     | = 7.79     | 4.20          | PD<br>PLN 04              |
| PbMoO4                    | -0.00      | -15.62     | -15.62        | PbMo04                    |
| Pb0:0.3H20                | -9.42      | 3.56       | 12.98         | Pb0:0.33H20               |
| Periclase                 | -8.18      | 13.41      | 21.58         | MgO                       |
| Phosgenite                | -16.56     | -36.37     | -19.81        | PbCl2:PbCO3               |
| Plattnerite               | -34.68     | 14.92      | 49.60         | Pb02                      |
| Portlandite               | -11.58     | 11.23      | 22.80         | Ca(OH)2                   |
| Pyrite                    | -20.32     | -38.83     | -18.51        | FeS2                      |
| Pvrochroite               | -7.71      | 7.49       | 15.19         | Mn(OH)2                   |
| Pyrolusite                | -22 53     | 18 85      | 41 38         | MnO2                      |
| Ouartz                    | 0.00       | -4 00      | -4.00         | SiO2                      |
| Pealgar                   | -17 38     | -37 13     | -19 75        | 7 - 6                     |
| Realyar<br>Dhadaahaaa'iya | 17.50      | 10 07      | 10 50         | A35                       |
| Rhodochrosite             | -2.79      | -13.37     | -10.58        | MICO3                     |
| SD (OH) 3                 | -2.09      | -9.20      | -/.11         | SD (OH) 3                 |
| Sb204                     | -10.43     | -7.03      | 3.40          | Sb204                     |
| Sb205                     | -34.63     | -44.29     | -9.67         | Sb205                     |
| Sb406(cubic)              | -18.51     | -36.77     | -18.26        | Sb406                     |
| Sb406(orth)               | -18.87     | -36.77     | -17.90        | Sb406                     |
| SbCl3                     | -43.72     | -43.15     | 0.57          | SbC13                     |
| Sbmetal                   | -14.54     | -26.22     | -11.69        | Sb                        |
| Sb02                      | 0.00       | -27.82     | -27.82        | Sb02                      |
| Senarmontite              | -6.02      | -18.38     | -12.37        | Sb203                     |
| Sepiolite                 | -0.98      | 14.78      | 15.76         | Mg2Si307.50H:3H20         |
| Sepiolite(A)              | -4.00      | 14.78      | 18.78         | Mg2Si307.50H:3H20         |
| Siderite                  | -4.59      | -14.83     | -10.24        | FeCO3                     |
| SiO2(am-gel)              | -1.29      | -4.00      | -2.71         | sio2                      |
| SiO2 (am-ppt)             | -1.26      | -4.00      | -2.74         | SiO2                      |
| Spinel                    | -9 69      | 27 16      | 36.85         | May 1504                  |
| SrCrO4                    | -37 14     | -41 79     | -4 65         | SrCrO4                    |
| Stibnite                  | -52 25     | -102 71    | -50.46        | Sh293                     |
| Strontionito              | 1 07       | 11 11      | 0.27          | 52253                     |
| Sulfanite                 | -1.8/      | -11.14     | -9.27         | SECOS                     |
| Sullur                    | -14.01     | -10.75     | -2.14         | 5                         |
| Tenorite                  | -12.20     | -4.01      | 7.64          |                           |
| Thenardite                | -2.71      | -2.39      | 0.32          | Na2SO4                    |
| Thermonatrite             | -7.55      | -6.91      | 0.64          | Na2CO3:H2O                |
| V (OH) 3                  | -7.67      | -0.08      | 7.59          | V (OH) 3                  |
| V205                      | -21.26     | -22.62     | -1.36         | V205                      |
| V305                      | -13.45     | -11.61     | 1.84          | V305                      |
| V407                      | -18.88     | -11.70     | 7.19          | V407                      |
| V6013                     | -29.71     | -90.57     | -60.86        | V6013                     |
| Valentinite               | -9.90      | -18.38     | -8.48         | Sb203                     |
| VC12                      | -47.26     | -28.38     | 18.87         | VC12                      |
| VC13                      | -57.46     | -34.03     | 23.43         | VC13                      |
| Vmetal                    | -61.12     | -17.10     | 44.03         | V                         |
| VO                        | -20.50     | -5.74      | 14.76         | VO                        |
| VO (OH) 2                 | -5 24      | -0 09      | 5 1 5         | VO (OH) 2                 |
| V02C1                     | -25 47     | -22 63     | 2 84          | V02C1                     |
| VOCI                      | -22 54     | -11 39     | 11 15         | VOCI                      |
| VOC12                     | _35 10     | -20 70     | 10 76         | VOC12                     |
| VOCIZ                     | -33.49     | -22.12     | 2 61          | VOC12                     |
| VUSU4<br>Withorito        | -20.04     | -10.43     | J.01<br>_0 57 | VUSU4<br>Baco3            |
| WILHEIILE                 | -0.01      | -10.08     | -0.57         | Dacus                     |
| ** 202 2 222 07 -         | - log10/f- | 10001+m    | Fugaatte      | - processo t shi / 1      |
| For ideal action          | - IOGIU(IL | uyacıty).  | ruyaCity      | - pressure ~ pni / i atm. |
| ror ruear yases           | , hut – 1  | - <b>·</b> |               |                           |
|                           |            |            |               |                           |

End of simulation.

Reading input data for simulation 7.

End of Run after 0.532 Seconds.

## APPENDIX-F Previous Study Groundwater Analyses

| Sample Name  | PW-2      |           | PW7       |           |           | PW9       | CE        | L35       | CEL44     | CEL51     |           |
|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Date         | Sep.13    | July.14   | Oct.14    | Dec.13    | July.14   | Oct.14    | Mar.15    | Sep.13    | Sep.14    | Oct.13    | Oct.13    |
| Ag(d)        | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 |
| Ag(t)        | < 0.00005 | < 0.0001  | < 0.00005 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 | < 0.00001 |
| Al(d)        | 0.084     | < 0.015   | 0.04      | < 0.003   | < 0.003   | 0.0033    | 0.0118    | 0.0082    | 0.0058    | 0.0035    | 0.0069    |
| Al(t)        | 1.05      | 0.099     | 0.314     | 0.276     | 0.0088    | 0.038     | 0.0313    | 0.0088    | 0.0093    | 0.541     | 0.521     |
| Alk.(t)      | 327       | 267       | 256       | 322       | 315       | 353       | 237       | 451       | 473       | 377       | 380       |
| As(d)        | 0.133     | 0.0752    | 0.0638    | 0.0317    | 0.033     | 0.0336    | 0.0418    | 0.0056    | 0.00654   | 0.00094   | 0.00144   |
| As(t)        | 0.138     | 0.0806    | 0.0668    | 0.0352    | 0.0333    | 0.0342    | 0.0422    | 0.00546   | 0.00643   | 0.00153   | 0.00256   |
| B(d)         | 22.3      | 25.6      | 23.9      | 0.256     | 0.275     | 0.24      | 0.197     | 0.241     | 0.203     | 0.173     | 0.277     |
| B(t)         | 22.8      | 22.8      | 25.1      | 0.285     | 0.298     | 0.264     | 0.198     | 0.281     | 0.216     | 0.195     | 0.282     |
| Ba(d)        | 0.0567    | 0.0676    | 0.0829    | 0.0257    | 0.0171    | 0.0136    | 0.0547    | 0.201     | 0.154     | 0.106     | 0.14      |
| Ba(t)        | 0.0758    | 0.0684    | 0.0884    | 0.0276    | 0.0167    | 0.0136    | 0.0558    | 0.206     | 0.15      | 0.22      | 0.144     |
| Be(d)        | < 0.0025  | < 0.0025  | < 0.0025  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  |
| Be(t)        | < 0.0025  | < 0.005   | < 0.0025  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  |
| Bi(d)        | < 0.0025  | < 0.0025  | < 0.0025  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  |
| Bi(t)        | < 0.0025  | < 0.005   | < 0.0025  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  |
| Ca(d)        | 17.9      | 12.9      | 8.47      | 92        | 92.9      | 92.6      | 40.9      | 6.41      | 6.24      | 7.29      | 4.06      |
| Ca(t)        | 28.1      | 15.2      | 12.2      | 89.8      | 91.9      | 90.7      | 41.4      | 6.47      | 6.23      | 9.95      | 8.79      |
| Cd(d)        | < 0.00025 | < 0.00025 | < 0.00025 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 |
| Cd(t)        | < 0.00025 | < 0.0005  | < 0.00025 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 |
| Cl           | 882       | 1250      | 1330      | 45.8      | 43.4      | 45        | 15.5      | <5        | <5        | 7.1       | 7.9       |
| CN           | -         | -         | -         | 0.00024   | 0.00022   | 0.00028   | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001  | 0.00015   |
| Co(d)        | 0.00082   | 0.00139   | 0.00146   | 0.00029   | 0.00024   | 0.00032   | < 0.0001  | < 0.0001  | < 0.0001  | 0.00031   | 0.00045   |
| Co(t)        | 0.00128   | 0.0014    | 0.00163   | <2        | <2        | <2        | <2        | 19.4      | <2        | 29.6      | 39.2      |
| CO3          | 256       | 253       | 123       | <20       | <20       | <20       | <20       | <20       | <20       | <20       | <20       |
| COD          | 147       | 202       | 198       | 804       | 812       | 813       | 491       | 819       | 820       | 770       | 755       |
| EClab        | 3270      | 4160      | 4310      | < 0.0005  | < 0.0005  | < 0.0005  | 0.00102   | < 0.0005  | < 0.0005  | 0.00128   | 0.00153   |
| Cr(d)        | 0.0164    | < 0.0025  | < 0.0025  | 0.00084   | < 0.0005  | 0.00067   | 0.00112   | < 0.0005  | < 0.0005  | 0.00862   | 0.0105    |
| Cr(t)        | 0.0617    | 0.0092    | 0.0153    | < 0.0005  | 0.00083   | 0.00105   | 0.00066   | < 0.0005  | < 0.0005  | < 0.0005  | < 0.0005  |
| Cu(d)        | < 0.0025  | < 0.0025  | < 0.0025  | 0.00055   | 0.00111   | 0.0024    | 0.00081   | 0.0015    | 0.00756   | 0.00134   | 0.00146   |
| Cu(t)        | 0.0034    | < 0.005   | < 0.0025  | 0.41      | 0.38      | 0.24      | 0.316     | 0.30      | 0.35      | 0.44      | 0.33      |
| F            | 0.52      | 0.92      | 0.61      | < 0.03    | < 0.03    | < 0.03    | < 0.03    | 0.16      | 0.09      | 0.03      | < 0.03    |
| Fe(d)        | < 0.03    | < 0.03    | 0.04      | 0.312     | < 0.03    | 0.114     | 0.032     | 0.096     | 0.099     | 0.515     | 0.426     |
| Fe(t)        | 0.941     | 0.077     | 0.316     | 413       | 419       | 422       | 235       | 325       | 331       | 321       | 324       |
| Hard.(t)     | 44.7      | 34.7      | 28.4      | 322.0     | 315       | 353.0     | 237       | 432.0     | 473.0     | 347       | 341       |
| HCO3         | <1        | 13.5      | 133.0     | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00001 | < 0.00005 | < 0.00005 | < 0.00005 |
| Hg(d)        | < 0.00001 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00005 | < 0.00001 | < 0.00005 | < 0.00005 | < 0.00005 |
| Hg(t)        | < 0.00001 | < 0.00005 | < 0.00005 | 5.7       | 5.4       | 5.7       | 3.2       | 7.2       | 6.9       | 10.3      | 8.6       |
| K(d)         | 33        | 19.6      | 15.7      | 5.6       | 5.3       | 5.4       | 3.3       | 7.2       | 7         | 9.7       | 7.9       |
| <b>K</b> (t) | 31.6      | 20        | 15.7      | 0.105     | 0.0949    | 0.0966    | 0.102     | 0.71      | 0.596     | 0.377     | 0.949     |
| Li(d)        | 1.02      | 1.42      | 1.59      | 0.106     | 0.0969    | 0.0987    | 0.098     | 0.739     | 0.591     | 0.38      | 0.916     |
| Li(t)        | 1.05      | 1.39      | 1.63      | 44.6      | 45.4      | 46.3      | 32.2      | 75        | 76.5      | 73.5      | 76.3      |
| Mg(d)        | < 0.1     | 0.63      | 1.76      | 46.5      | 44.9      | 45        | 33        | 75.6      | 77        | 69.3      | 71        |
| Mg(t)        | 5.36      | 0.95      | 2.86      | 0.00993   | 0.00318   | 0.00353   | 0.00506   | 0.128     | 0.0633    | 0.0548    | 0.0713    |

## Table F-1. Previous study groundwater analyses (Yazıcıgil et. al, 2015)

## Table F-2. Cont'd

| Sample Name |           | PW-2      |          | PW7       |           | PW9      | CEL35    |          | CEL44    | CEL51    |           |
|-------------|-----------|-----------|----------|-----------|-----------|----------|----------|----------|----------|----------|-----------|
| Date        | Sep.13    | July.14   | Oct.14   | Dec.13    | July.14   | Oct.14   | Mar.15   | Sep.13   | Sep.14   | Oct.13   | Oct.13    |
| Mn(d)       | 0.00044   | 0.00609   | 0.0267   | 0.0137    | 0.00351   | 0.00376  | 0.00554  | 0.135    | 0.0625   | 0.0682   | 0.0875    |
| Mn(t)       | 0.0479    | 0.011     | 0.0415   | 0.00375   | 0.00337   | 0.00332  | 0.0132   | 0.000772 | 0.000891 | 0.00156  | 0.000998  |
| Mo(d)       | 0.0299    | 0.0238    | 0.0206   | 0.00395   | 0.0033    | 0.00343  | 0.0137   | 0.000872 | 0.000962 | 0.00176  | 0.00115   |
| Mo(t)       | 0.0293    | 0.0225    | 0.0208   | < 0.05    | < 0.05    | < 0.05   | 0.188    | 0.61     | 0.597    | 1.06     | 1.19      |
| N(Kjel)     | 5.94      | 4.66      | 4.83     | < 0.06    | < 0.06    | < 0.06   | 0.114    | < 0.08   | < 0.08   | 0.406    | 0.309     |
| N(Org)      | 0.71      | 1.98      | 2.35     | 24.4      | 23.2      | 22.9     | 25.2     | 82.6     | 74.4     | 64.6     | 62.1      |
| Na(d)       | 766       | 891       | 927      | 23.5      | 22.7      | 22.1     | 26.4     | 82.6     | 76.4     | 60.9     | 52.6      |
| Na(t)       | 753       | 890       | 929      | 0.001     | 0.00098   | 0.001    | 0.00061  | 0.001    | 0.005    | < 0.0005 | 0.00054   |
| Ni(d)       | 0.003     | 0.0049    | 0.005    | 0.00121   | 0.00092   | 0.00082  | 0.00061  | < 0.0005 | 0.00736  | 0.0015   | 0.00202   |
| Ni(t)       | 0.006     | 0.0052    | 0.0051   | < 0.01    | < 0.01    | 0.011    | 0.0471   | < 0.01   | < 0.01   | 0.019    | < 0.01    |
| N-NO2       | < 0.02    | < 0.02    | < 0.02   | 0.0174    | 0.0124    | 0.0058   | 0.0746   | 0.569    | 0.538    | 0.651    | 0.885     |
| N-NH3       | 5.23      | 2.69      | 2.47     | 8.44      | 10.6      | 8.69     | 1.19     | < 0.05   | < 0.05   | < 0.05   | < 0.05    |
| N-NO3       | < 0.1     | < 0.1     | < 0.1    | <2        | <2        | <2       | <2       | <1       | <2       | <1       | <1        |
| OH          | 70.9      | <1        | <1       | 0.0524    | -         | -        | 0.0678   | 0.114    | -        | 0.066    | 0.216     |
| OrthoP)     | 0.0799    | -         | -        | 0.0716    | 0.0268    | 0.0298   | 0.0175   | 0.137    | 0.126    | 0.0814   | 0.273     |
| P(t)        | 0.156     | 0.0618    | 0.216    | 7.84      | 8.09      | 7.94     | 7.99     | 8.52     | 8.27     | 8.48     | 8.64      |
| pHlab       | 10.18     | 9.51      | 9.07     | < 0.00005 | < 0.00005 | 0.000392 | 0.000187 | 0.000061 | 0.000188 | 0.000127 | < 0.00005 |
| Pb(d)       | < 0.00025 | < 0.00025 | 0.00108  | 0.000348  | 0.000426  | 0.0009   | 0.00023  | 0.000117 | 0.000159 | 0.0102   | 0.015     |
| Pb(t)       | 0.00156   | < 0.0005  | 0.00149  | 0.0001    | < 0.0001  | 0.00011  | 0.00016  | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001  |
| Sb(d)       | 0.0007    | 0.00054   | < 0.0005 | 0.00012   | < 0.0001  | < 0.0001 | 0.0002   | < 0.0001 | < 0.0001 | 0.00039  | 0.00032   |
| Sb(t)       | 0.00055   | < 0.001   | < 0.0005 | < 0.001   | < 0.001   | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001   |
| Se(d)       | < 0.005   | < 0.005   | < 0.005  | < 0.001   | < 0.001   | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001   |
| Se(t)       | < 0.005   | < 0.01    | < 0.005  | 29.4      | 28.6      | 29.4     | 18       | 14.5     | 14.7     | 20.1     | 13.6      |
| Si(d)       | 41.2      | 21.8      | 18.1     | 29.9      | 27.9      | 28.8     | 18.3     | 14.7     | 14.9     | 21.2     | 14.6      |
| Si(t)       | 46.3      | 21.5      | 19.9     | < 0.0001  | < 0.0001  | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | 0.00012   |
| Sn(d)       | < 0.0005  | < 0.0005  | < 0.0005 | < 0.0001  | < 0.0001  | 0.000    | < 0.0001 | < 0.0001 | < 0.0001 | 0.0002   | 0.00044   |
| Sn(t)       | < 0.0005  | < 0.001   | < 0.0005 | 37.1      | 37.7      | 38.5     | 21.8     | 43.2     | 46.8     | 76.5     | 65.9      |
| SO4         | 45        | 26        | 17       | 1.02      | 0.977     | 0.965    | 0.506    | 0.585    | 0.616    | 0.886    | 0.894     |
| Sr(d)       | 0.562     | 0.466     | 0.427    | 1.02      | 0.974     | 0.973    | 0.528    | 0.596    | 0.621    | 0.887    | 0.915     |
| Sr(t)       | 0.636     | 0.453     | 0.463    | 555       | 591       | 538      | 304      | 474      | 457      | 454      | 426       |
| TDS         | 2060      | 2610      | 2630     | < 0.01    | < 0.01    | 0.011    | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01    |
| Ti(d)       | < 0.01    | < 0.01    | < 0.01   | < 0.01    | < 0.01    | 0.012    | < 0.01   | < 0.01   | < 0.01   | 0.015    | 0.015     |
| Ti(t)       | 0.03      | < 0.01    | < 0.01   | < 0.0001  | < 0.0001  | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001  |
| Tl(d)       | < 0.0005  | < 0.0005  | < 0.0005 | < 0.0001  | < 0.0001  | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001  |
| Tl(t)       | < 0.0005  | < 0.001   | < 0.0005 | 1.36      | 1.02      | 1.21     | 1.35     | 1.39     | 1.59     | 3.97     | 3.99      |
| TOC         | 34.5      | 43.7      | 49.6     | 7.4       | 6.4       | <3       | <3       | <3       | <3       | 12.2     | 17.5      |
| TSS         | 121       | 11.4      | 19.4     | 0.00551   | 0.00596   | 0.00615  | 0.00228  | 0.000022 | 0.000024 | 0.000022 | 0.000068  |
| U(d)        | < 0.00005 | 0.00031   | 0.000305 | 0.00611   | 0.00588   | 0.00618  | 0.00236  | 0.000025 | 0.000032 | 0.000061 | 0.000148  |
|             | 0.000145  | 0.00032   | 0.000319 | 0.0094    | 0.0097    | 0.01     | 0.0075   | <0.001   | < 0.001  | < 0.001  | <0.001    |
| V(d)        | 0.0652    | 0.0113    | <0.005   | 0.0102    | 0.0098    | 0.0101   | 0.0079   | <0.001   | <0.001   | 0.0015   | 0.0022    |
|             | 0.0717    | 0.013     | < 0.005  | 0.0038    | <0.003    | 0.0042   | 0.0412   | 0.0054   | 0.0037   | 0.004    | <0.003    |
| Zn(d)       | <0.015    | < 0.015   | 0.111    | 0.0034    | 0.0038    | 0.0037   | 0.046    | < 0.003  | 0.0118   | 0.138    | 0.164     |
| Zn(t)       | 0.053     | < 0.03    | 0.246    |           |           |          |          |          |          |          |           |