SPARSE MATRIX LIBRARY FOR POWER SYSTEM STATE ESTIMATION
BASED ON FULL KNUTH’S METHOD

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUNAYILDIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONIC ENGINEERING

JUNE 2021






Approval of the thesis:

SPARSE MATRIX LIBRARY FOR POWER SYSTEM STATE
ESTIMATION BASED ON FULL KNUTH’S METHOD

submitted by TUNA YILDIZ in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronic Engineering, Middle East
Technical University by,

Prof. Dr. Halil Kalip¢ilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ilkay Ulusoy
Head of the Department, Electrical and Electronics Eng.

Assoc. Prof. Dr. Murat Gol
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Ali Nezih Giiven
Electrical and Electronics Engineering Dep., METU

Assoc. Prof. Dr. Murat Gol
Electrical and Electronics Engineering Dep., METU

Prof. Dr. Ece Giiran Schmidt
Electrical and Electronics Engineering Dep., METU

Assoc. Prof. Dr. Ozan Keysan
Electrical and Electronics Engineering Dep., METU

Assist. Prof. Dr. Oguzhan Ceylan
Administrative and Social Sciences, Kadir Has Uni.

Date: 18.06.2021



| hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last Name: Tuna Yildiz

Signature :



ABSTRACT

SPARSE MATRIX LIBRARY FOR POWER SYSTEM STATE
ESTIMATION BASED ON FULL KNUTH’S METHOD

Yildiz, Tuna
M.S., Department of Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Murat Gol

June 2021, 72 pages

Considering the increase in power system size and the number of PMUs, it is
essential to use a computationally efficient state estimator. The Fast Decoupled State
Estimation is the most common method used in industrial applications, thanks to its
computational efficiency and ease of implementation. However, it can be improved
further by using sparse storage techniques, thanks to the sparse structure of the state

estimation matrices.

In literature, there are several types of sparse storage algorithms, however, only a
few of them is suitable for the power system state estimation operations. Considering
the possible frequent topology changes, Knuth’s method has a superiority in power
system applications. However, even Knuth’s Method can be enhanced further by

using additional information of the matrices.

This thesis proposes the full Knuth’s Method for sparse storage algorithm.
Considering that sparse storage libraries for real-time power system applications are
not available as open-source, firstly modified sparse storage library is built. After

that, by using the created sparse storage library, the features of the power system



state estimator are built. Thanks to the designed sparse storage library, the

computational performance is increased further for power system state estimation.

Keywords: Sparse Storage, Knuth’s Method, Full Knuth’s Method, State Estimation,
Sparse Matrix Inversion

Vi



0z

GUC SISTEMI DURUM KESTIRIMi ICIN TAM KNUTH YONTEMINE
DAYALI SEYREK MATRIiS KUTUPHANESI

Yildiz, Tuna
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Murat Gol

Haziran 2021, 72 sayfa

Gli¢ sistemi boyutundaki ve PMU’larin sayisindaki artis dikkate alindiginda,
hesaplama agisindan verimli bir durum kestirimcisi kullanmak 6nemlidir. Fast
Decoupled Durum Kestirimi, hesaplama verimliligi ve uygulama kolaylig1 sayesinde
endistriyel uygulamalarda kullanilan en yaygin yontemdir. Buna ek olarak Fast
Decoupled Durum Kestirimi, gii¢ sistemi durum kestiriminde kullanilan matrislerin
seyrek yapisi sayesinde seyrek depolama gibi depolama teknikleri kullanilarak daha

da gelistirilebilir.

Literatiirde bir ¢cok seyrek depolama algoritmast vardir, ancak bunlardan sadece
birkac1 gii¢ sistemi durum kestirimi islemleri i¢in uygundur. Olas1 sik topoloji
degisiklikleri g6z Oniine alindiginda, Knuth YOnteminin gili¢ sistemi
uygulamalarinda bir dstlinliigii vardir. Bunlara ek olarak, Knuth Yontemi bile
matrislerle ilgili ek bilgiler kullanilarak daha da gelistirilebilir.

Bu tez, seyrek depolama algoritmasi i¢in tam Knuth Yontemini onermektedir.
Gergek zamanlh gili¢ sistemi uygulamalar i¢in seyrek depolama kiitiiphanelerinin
acik kaynak olara mevcut olmadig: diistiniilerek, dncelikle modifiye edilmis seyrek

depolama kitaplig1r olusturulmustur. Daha sonra olusturulan seyrek depolama

vii



kiitiphanesi  kullanilarak  giic sistemi  durum kestirimcisinin ~ 6zellikleri
olusturulmustur. Tasarlanan seyrek depolama kiitiiphanesi sayesinde, gii¢c sistemi

durum kestirimi i¢in hesaplama performansi daha da artirilmistir.

Anahtar Kelimeler: Seyrek Depolama, Knuth Yo6ntemi, Gelistirilmis Knuth
Yontemi, Durum Kestirimi, Seyrek Matris Tersi

viii



To my family

Osman Yildiz
Ulviye Yildiz

Gizem Yildiz



ACKNOWLEDGMENTS

First, I would like to thank my supervisor Murat G6l for his precious friendship,
support, and guidance. It was a great pleasure to work three years with him. He
always supported me and answered my questions whenever | had a problem with the

research. Also, my academic view was highly influenced by his guidance.

I would really appreciate Scientific and Technological Research Council of Turkey
(TUBITAK) for financial support via BIDEB 2210-A funding.

| would also to thank dearest experts who were involved in this thesis project: Emre
Rizvanoglu, Ozkan Tanriverdi, Umut Can Cay, Etki A¢ilan, and Batuhan Biilbiil.
Without their help and participation in project, the validation of the thesis cannot

have successful results.

Significant support came from my family as specially my parents Osman Y1ldiz, and
Ulviye Yildiz. They have always encouraged me to continue my academic life

without considering the financial issues and mentally supported me in tough times.

Last but not least support came from my best friend Zeynep Suvaci. Thanks to her

love, patience, and morale support, | got to that point.



TABLE OF CONTENTS

ABSTRACT et ne e v
OZ oo vii
ACKNOWLEDGMENTS ...ttt X
TABLE OF CONTENTS ...t Xi
LIST OF TABLES. ... ..o Xiii
LIST OF FIGURES ...ttt Xiv
LIST OF ABBREVIATIONS ... ..o XV
CHAPTERS
1 INTRODUCTION ... 1
2 BACKGROUND INFORMATION ...ooiiiiiiiiiiiee e 7
2.1  Weighted Least Squares State EStIMator ...........c.ccocvvierinieieieseseseseies 7
2.2 Bad Data ANAIYSIS .....ccviiiieiieiieiiises e 15
2.2.1  Chi-SQUAIE TESE ..ocueiiiiiieieesie et 16
2.2.2  Normalize Residual TeSt........cccooiiiiriieriiieneresesee e 18
3 SPARSE STORAGE ..ot 23
3.1 Gustavson’s Method........cccocuiiiiiiiiiii i 23
3.1.1 Adding a Non-Zero Element..........ccccooevviiiiiiie i 26
3.1.2  Deleting a Non-Zero Element............ccccoveviiieiicie e 27
3.1.3  Changing the Value of Non-Zero Element ...........ccccccvevveiiieiiieinnnns 28
3.2 Knuth’s Method.......cccoiiiiiiiiiiicic e 29
3.2.1  Non-Zero Element Addition ..........cccceviiiiiiiiiiiciecesc e 31
3.2.2  Deleting a Non-Zero EIement..........ccccevvveiiiiiiieiiie e 34

Xi



3.2.3  Changing a NoN-Zero Value .........cccccvevveieieeie e 36

3.3 Comparison of Sparse Storage TeChnIqUeS ..........cccceevevierecieceece e 37

4 THE PROPOSED METHOD ..ottt 39
4.1.1  Adding a Non-Zero Element ..........ccccoveviiiieieein e 40
4.1.2  Deleting a Non-Zero EIement ..........cocovvniiieiiiieneseee e 41

4.2 MatriX MUltIplCatIoN. .........cooeiiiiiee e 43
4.3  Cholesky DeCOMPOSITION.......ccoeiiiiieriiiiiiieiisiee e 47
4.4 The MatrixX INVEISION ......ccviiiiiieieiesie s 50
441  Takahashi Method ... 50

5 VALIDATION OF THE PROPOSED METHOD WITH STATE
ESTIMATOR .ot 57
5.1 Test Results of Proposed Method in Multiplication Process.................... 59

5.2  The Test Results of the Proposed Method in Cholesky Decomposition

PIOCESS ...t 61
5.3  Test Results of Proposed Method for Matrix Inversion ............cccccccevenen. 62
6 CONCLUSION ..ottt 65
REFERENGES ... .ot e nn e nre e e nnee e 69

Xii



LIST OF TABLES

TABLES

Table 5.1: The solution time of proposed method of state estimation and bad data
analysis process in IEEE 30-BUS SYSIEM ........cccviiiiiiiieiinieseeee s 58
Table 5.2: The solution time of proposed method of state estimation and bad data
analysis process in IEEE 118-BUS SYSIEM ........c.ccceiveiieiieie e 58
Table 5.3: The time consumption of matrix multiplication using the proposed
method, reference tool, and conventional multiplication..............cccccoiiiiininnns 60
Table 5.4: The time results of Cholesky Decomposition with the proposed method,
MATLAB built-in function, and Doolittle’s algorithm. ............cccoerereieieniiinnnnns 62
Table 5.5. The time results of the proposed method, the built-in function of
MATLAB, conventional matrix inversion, and calculation of all entries of the

INVEISE OF GAIN MALIIX. oo eeeeeeeeee e 63

Xiii



LIST OF FIGURES

FIGURES

Figure 2.1: The generalized © model of a transformer. ...........c.ccooeoviiencincicieen 8
Figure 2.2: The “H” matriX SParse StrUCIUIE..........ccovereerieiiierieie e 13
Figure 2.3: The Gain MatrixX Sparse StrUCIUIE. ..........c.ccververieereeriesieseesie e sie e 14
Figure 2.4: Probability density function for x2...........ccccooeiiiiniiiecee, 16
Figure 2.5: The part of the Chi-Square table. ..., 17
Figure 2.6: The structure of the hat matrix (K). .......ccccoiiiiiiiiniecee, 20

Figure 4.1: The visualization of matrix multiplication for first row first column...43
Figure 4.2: The linked list search of row order “Knuth’s Method” in the
multiplication of the first row of Matrix A and fifth column of Matrix B .............. 44
Figure 4.3: The linked list search of the proposed method in the multiplication

process of the first row of Matrix A and fifth column of Matrix B....................... 45
Figure 4.4: The lower triangular matrix of the gain matrix in Figure 2.3 ............... 48
Figure 4.5: The upper triangular matrix of the gain matrix in Figure 2.3 ............... 48

Figure 4.6: The Gain matrix after Reverse Cuthill McKee algorithm applied........ 53
Figure 4.7: The lower triangular matrix of the Gain matrix after the decomposition

PTOCESS ...ttt ettt ettt ettt e ettt e e bt e et e et e e e sttt e as e e es b e e enb e e e Rt e e e ebb e e e R e e et e e e e beeeane e e nnreeean 54

Xiv



WLS

FD-WLS

SE

CSR

CSC

BLUE

RAM

LIST OF ABBREVIATIONS

Weighted Least Squares

Fast Decoupled Weighted Least Squares
State Estimation

Compressed Sparse Row

Compressed Sparse Column

Best Linear Unbiased Estimator

Read Access Memory

XV






CHAPTER 1

INTRODUCTION

In power systems, a state estimation process is an essential tool for monitoring the
system. To solve the state estimation for monitoring purposes, it is necessary to have
the required number of measurements gathered from the field, and the number of
measurements is increasing day after day with the increasing system size. Those
measurement devices mainly measure the *“ Active and Reactive Power Injections,
Active and Reactive Power Flows and Voltages.” However, in recent years, the
technologies behind the measurement devices are evolving rapidly and PMU
devices, which measure the voltage magnitude and voltage angle, current magnitude,
and current angle, penetrate the power systems. As a result of the high number of
measurements and the increased system size, the data processed in state estimation
increased. Due to these issues, the solution time of state estimation processes
increases, and taking action for problematic situations can be delayed. Therefore, to
monitor the power system properly, state estimators have to solve the given

measurement set before the next measurement set is collected from the field.

State estimators mainly contain two steps, and those steps are “Estimation of States”
and “Bad Data Analysis.” In the power system state estimation process, the states
are defined as “Voltage Magnitudes of Buses (V)” and “Voltage Angles of Buses
(6).” The purpose of the state estimators is to use the provided measurements that
are gathered from the field and trying to estimate the “V”” and “0” of each bus of the
power system. However, the outcome of the state estimation process may be affected
due to malfunctioned measurements included in the provided measurement set.
Therefore, bad data analysis becomes important to detect and correct malfunctioned

measurements among the provided measurement set.



In literature, there are several state estimators, which have their own advantages and
disadvantages to each other [1-4]. However, the most common state estimator in the
field applications is “WLS (Weighted Least Squares)” since it is easy to implement
and the computational time of the WLS is superior to other state estimators. In
addition, there are several shapes of the WLS state estimators to decrease the time
consumption of the estimation process. The most used one in the field is the “FD-
WLS (Fast Decoupled Weighted Least Squares)” state estimator [5]. In the FD-WLS
state estimator, the time consumption of the estimation processed decreased based
on the observations that states of “V” are strongly related with reactive power
measurements and states of “6” are strongly related with active power measurements
[5]. As a result of these observations, the Jacobian matrix is calculated only once
during the process and is used for all iterations until the system converged.
Therefore, the time consumption of building the Jacobian matrix in each iteration is

eliminated.

Besides the state estimators, the next important step of the state estimation process
is “Bad Data Analysis.” Once the states of the system are obtained by using the
“WLS State Estimator” or “Fast Decoupled State Estimator,” bad data analysis is
performed to detect and identify the malfunctioned data among the provided
measurement set [6-9]. This identification and detection process of malfunctioned

measurement is performed under two steps. These steps are written as follows;

e Chi-square test,

e Normalize residual test.

In the bad data analysis process, the Chi-square test is performed for detection of
whether there are malfunctioned measurements among the provided measurement
set or not. The Normalized residual test is performed for identification of the bad
data, which is detected by Chi-square [7].

In the state estimation algorithms, for both processes of “Estimation of States” and
“Bad Data Analysis” the main time consumptions occurred during the three main

matrix operations, which are matrix multiplications, Cholesky decompositions, and



matrix inversion. Although the solution time improvements were obtained with the
“FD-WLS” state estimation, there are still a significant amount of time consumptions
that occurred during these processes due to included zero-entry calculations in matrix
operations. These unnecessary zero-entry calculations become important with

increasing the number of measurements and the system sizes.

Thanks to the super sparse structures of matrices in state estimators, it is possible to
use sparse storage algorithms for further improvement to eliminate this unnecessary
time consumption that occurred by zero entries and accelerate the state estimation
and bad data analysis process. Sparse storage is a method that keeps the information
of non-zero entries in matrices via linked lists to eliminate the zero-entry calculations

during the matrix operations.

In this thesis, it is aimed to propose a suitable solution for state estimation processes
in order to decrease the solution time of solving each measurement set for a given

power system structure by using sparse storage algorithms.

In literature, there are several sparse storage methods [10-15]. However, sparse
storage is mostly case needed process. The algorithms such as Compressed Sparse
Row (CSR), Compressed Sparse Column (CSC), Skyline Storage (SKS) etc., are
mostly used for fixed-size matrices, but in power system state estimation process
matrix sizes are changing during the operations in real-time. Therefore, those
algorithms do not provide enough flexibility for the power system state estimation.

The most common sparse storage methods that satisfy power system state estimator
needs are “Gustavson’s Method” and “Knuth’s Method.” Both methods contain two
types of solutions under themselves. Those solutions are forming linked lists with
row information of non-zero elements and column information of non-zero elements
[13,14]. The privilege among these solutions is determined according to the

programming language that is used for the applications.

In power system state estimation process, flexibility and the linked list search time

are considered as two key features of the sparse storage algorithms due to frequent



alterations in the topology, which reflects on the used matrices in applications.
Considering these two key features, Knuth’s Method becomes superior to the
Gustavson’s Method due to lack of flexibility in Gustavson’s Method. Therefore, in
this work, “Knuth’s Method” is enhanced by combining both row ordered linked
lists and column ordered linked lists together. Beside the increase flexibility, the time
consumption of the linked list search is also decreased as a further enhancement with
the help of the utilization of the proposed method. Nevertheless, thanks to the
improvement of the technology behind the memory storage, using extra space in
“RAMs (Read Access Memories)” does not create any burden due to the proposed

method.

There are several sparse storage methods in the literature, however, there are not any
open-source algorithms that perform sparse storage for the power system state
estimation process. Therefore, this work also develops an open-source sparse storage

library for the state estimation process based on the utilized storage technique.

In this work, it will be shown that the proposed method, which is combining the row
ordered linked list and column ordered linked list for “Knuth’s Method” gives the
desired results and enhances the “Knuth’s Method” in matrix operations for power

system state estimator.

As a result, this thesis provides new perspective for the Knuth’s Method which will
contribute to the decreases in terms of solution time of power system state estimation

processes.
The main contributions of the proposed method are listed below;

e The linked list search time was further decreased compared to the “Knuth’s
Method”,

e The flexibility of linked lists operations for sparse matrix operations was
increased,

e The solution time of the matrix operations were significantly decreased,

e The open-source sparse storage library was provided.



In this thesis, in order to explain the proposed method, the work is divided into eight

chapters.

In the first chapter, which is the introduction part, the definition of the problem is
explained. Moreover, the existing solutions in the literature for this defined problem
are reviewed in this chapter. In addition, the innovation of the proposed method is
given in the introduction part. Moreover, the contributions of the proposed method

are given.

In the second chapter, the background information, the details of the state estimation
process, the details of the bad data analysis process will be given under the
“Weighted Leas Square” and “Bad Data Analysis” parts. Under the “Bad Data
Analysis” part, two steps which are “Chi-square Test” and “Normalize Residual
Test” will be explained in detail. These explained processes in those parts are used
in order to build a power system state estimator and then the built state estimator is

further improved with the proposed method.

In the third chapter, the sparse storage techniques which are suitable for the power
system state estimation process will be explained in detail. The main operations,
which are addition, deletion, and changing a value of a non-zero element in linked
lists for sparse storage, will be explained. Moreover, the advantages and

disadvantages of those sparse storage methods will be given.

In the fourth chapter, matrix multiplication, the details of sparse matrix
multiplication using “Knuth’s Method” and the proposed method will be explained.
A comparison between the “Knuth’s Method” and the proposed method will be
given. Moreover, the advantages of the proposed method over the “Knuth’s Method”
will be shown. Then the results of the proposed method for the matrix multiplication
process and the comparison between the proposed method with “Knuth’s Method”

will be given.

In the fifth chapter, the processes of Cholesky decomposition and the importance of

the decomposition process for state estimation will be explained. Then the results of



the comparison of the proposed method for Cholesky decomposition with other

methods will be shown.

The importance of the matrix inversion process and the details of the used
“Takahashi Method” will be given in chapter six. Then the results of the comparison

for the proposed method with other solutions will be given.

In chapter seven, the details of the built real-time state estimator will be given. In
this state estimator, the solution time results of the state estimation and bad data

analysis processes that utilized the proposed method will be shown.

In the final chapter of this thesis, the discussion of the proposed method, observations
regarding the test results of the proposed method in state estimation process and

future works will be provided.



CHAPTER 2

BACKGROUND INFORMATION

In order to describe the importance of sparse storage algorithm for power system
monitoring, firstly state estimation process should be analyzed. In the state
estimation process there are several steps in order to estimate bus voltages and bus
voltage angles [6]. Those steps can vary, however, the main idea is the same for all
state estimators that are used for the power system monitoring.
In this part of the thesis, the well-known state estimator which is called as “Weighted
Least Squares — WLS” state estimator, will be discussed. The benefits of WLS over
the other estimators are:

e Itiseasy to implement,

e Computational performance is better among others,

e And itis the best linear unbiased estimator “(BLUE)[6]”.
And later, bad data analysis, which is performed after the WLS-SE in order to find
the corrupted bad data among the measurement set, will be analyzed.
In this Chapter, the discussion about the estimator will be given in the Weighted
Least Squares part, and the discussion about bad data analysis will be given under
the Bad Data Analysis part.

2.1  Weighted Least Squares State Estimator

In the power system monitoring, state estimation has a crucial role in finding the
system states, namely, bus voltage magnitudes and bus voltage angles, using the
provided measurement set. Those measurements are mainly divided into two
measurement types which are “SCADA” and “ PMU (Phasor Measurement Unit)”
measurements. SCADA measurements consist of power flow measurements, power

injection measurements, and voltage magnitude measurements, and PMU



measurements consist of voltage magnitude, voltage angle, current magnitude, and
current angle measurements. The state estimator aims to use those measurements to

find an optimum solution for system states via optimizing the objection function.

In order to achieve this, first of all, system components which are transmission lines,
transformers, shunt capacitors or rectors, and tap changing or phase shifting

transformers, should be modeled. To model these components, the generalized =

model is used.
ix 1:a im
—_—> y/a «—
K :}—@7 m
y(1-a)/a®+{ysp)2 H H y(1-a)/a + (ysnl/2

Figure 2.1: The generalized = model of a transformer.

After modeling the components, the ynus matrix is obtained according to

formulation in [6]:

- P el e

im

where,

v is the series admittance value of the line (leakage admittance for transformer),
a is the tap value of the transformer (a = 1 if this is transmission line),

Vs 1S the line charging susceptance value.

With the use of equation (2.1) network model formed as follow:



where,
ik is the net current injection at bus k,
Vi is the voltage phasor at bus k, and Ykm is the (k, m)t" element of Y matrix.

This network model is one of the key elements for WLS-SE since the calculation of
measurement function of state estimation needs network models. Once the network
model is obtained, according to [6], the definition of the state estimation formulation

can be written as follows:

z=h(x)+e (2.3)

where,

h(.) represents the measurement function which makes a relationship between

measurements to state vector x (n X 1),

X represents the true state vector with the size of (n x 1),

e corresponds to the measurement error vector with the size of (m x 1),
z represents the measurement vector with the size of (m x 1),

n is the number of states, and m is the number of measurements.

In WLS-SE formulation, there are several assumptions are made for measurement

errors such as;
e E[e]=0
e Eleigj] =0

e cov(e) =E[ee"] =R



where,
R is named as measurement error covariance matrix, and it is a diagonal matrix.

The objective function of the WLS-SE can be written as follows:

J6) = ) Wi (i = ha@)? 2.4)

In equation (2.4),
subscript i shows the i entry of the related vector,
subscript ii represents the ii™ entry of the related vector, and W is equal to the R™.

It can be seen that with the minimization of the x gradient of equation (2.4) will be
zero according to the first order optimality condition. For this reason, the following

relation will be held:

60= 2D o prowlz—nwi=0  @9)

Since g(x) is a nonlinear function, to solve the nonlinear problem, an iterative
solution is required. Therefore, equation (2.5) is linearized around the state vector x*
by using the Taylor Series Expansion, and the following iterative solution

formulation is written as follows:

Ax**1 = G(x®)THT (x*)W [z — h(x®)] (2.6)

where,

Axk+l = xk+1 _ gk

G(x*) = HT (x®)WH (x"),

H(x*) represents the measurement Jacobian matrix with a size of (m x n),

10



x* represents the state vector that is estimated at iteration k and

h(.) is the measurement function that creates measurements by using x*.

After forming equation (2.6), to solve the state estimation problem, the measurement

function is formed as follows;

[ 0Pinj 0Py ]
06 v
anlow anIOW
06 av
H = aQinj aQinj
26 v (2.7)
anlow aQflow
06 av
anag
0 —_—
v
The expressions for each partition in equation (2.6) are given as follows;
e Elements corresponding to real power injection measurements:
N
6Pi . 2
%5 = Z V; V;(—G;jsin®;; + B;jcos®;;) — V2B
L j=1
oP; .
6_9]- = ViVj(GijsmBij - Bijcoseij)
oP; c . (@8)
= Z Vi(Gijcos6y; + Byjsinby;) + V,Gy
L j=1
oP;

a_Vj — Vi(GijCOSHij + BUSlTleu)

e Elements corresponding to reactive power injection measurements:

N
a .
agl - 2 Vi Vj(Gijcos6;; + Byjsinby;) — VG
i -
j=1

11



00;
& = ViVj(—GijCOSHij - BUSlnHU)

26,
) 2.9)
aQ;
v = Vi Vj(GijCOSBij + BijCOSQij) - ViBii
l ]=1
d0; .
G_V; = ViVj(—GijCOSGij - Bl’jSlneij)
e Elements corresponding to real power flow measurements:
0P;; .
30, = ViVj(gijSlTleij — bl'jCOSGL'j)
l
dp;; )
W = —Vl-Vj(gijsmeij — bl'jCOSGij)
f)
oP;; _ (2.10)
aVU = _Vj(gijcoseij + bijSlnBij) + Z(QU + gsi) Vi
l
9P,
aVU = _Vi(gijcosgij + bijSlnBij)
]
e Elements corresponding to reactive power flow measurements:
00y, |
6_91-] = —ViVj(gijCOSeij + bijSlneij)
L
20, |
6_91:1 = VL'V}'(gl'jCOSHij + bijSlTlel'j)
j)
00Q;j . (2.11)
aVl] = —Vi(gijSlnBij — bijCOSBij) - ZVL(bU + bsi)
l
aVl] = —Vi(gijSlnBij — bijCOSBij)
)

e Elements corresponding to voltage magnitude measurements:

ovi _ Vi _ Vi oV o ) 19
v, oV, a6, a6; (212)

12



where,

Vi, 0; are the voltage magnitude and phase angle at bus i, 8;; is equal to phase angle

differences between bus i and bus j,

G;j + jB;; is the ij™ element of the bus admittance matrix,

gij + jbij is the admittance value of the branch which is connecting the bus i and j,

Jsi + jbg; 1s the admittance of the shunt branch connected to bus i,
Ni is the bus number that is directly connected to bus i.

In the power system, with the existence of super sparse structure in the network
model, there occurs only a few non-zero elements for equations (2.8), (2.9), (2.10),
(2.11), and (2.12). The example structure of the Jacobian “H” matrix for IEEE-30

Bus system can be seen in Figure 2.2.

rf)on-zero Elements in "H" Matrix
T e '® - .v

20 > 3%

:&.o.“.. = Rl
40 ". o ". o _ |

‘.,.‘-l- ‘.‘."h
:". * o.’.. *
60". om ". o-ﬁ'
*'Q°‘ “"°‘

S

R

Measurement Number

100

120

140 @ op o

0 20 40 60
System States

Figure 2.2: The “H” matrix sparse structure.

13



As is seen in Figure 2.2, the sparsity of the “H” matrix is around 9%. According to
[16], the shape as “H” matrices is defined as a super sparse structure. Moreover, in
equation (2.6), the Gain “(G) ” matrix is constructed with the “H”” matrix. Therefore,
thanks to a sparse structure of the “H” matrix, the “G” matrix is also has a super

sparse structure. The example figure for the Gain matrix (“G”) is in Figure 2.3.

Non-zero Elements in Gain Matrix

0
e L ] e @
o ® ® °
L] ® [ ] L]
® 9
[ ] (L1} L 3 L ] o009 e
L3 ®
[ 3 e
[ 000 [ 3 00 [ ]
10 r - ® 0000 o L ] e ® 0000 © e
(11} 00000 © @ (1 1] o000 ° [ ]
(1] ®
® o0 [ ] e o0 ° ®
e oo (1] L 1] e oo (1] o0
L ] [ ] L ]
@ (1] [ ] (1] e o0 ® (1)
® o0 o0 ® o0 (13
L 3 20 [ [ ] [ 34
20 e oo e oo
e [ 1] ® ® 3 ° [ 1 o @ ®
L] (1] e o0
e o0 L ] o0 o o0 L ] 0
» [ ] [ ] (11 1] [ ] [ ] (L[ 1]
2 ®
S o O e0000 200 © © 00000 200
[%5) 000 000
30 oo 444
g ° ° ° °
- @ 3 ® ®
2] [ ] [ ] [ ] ®
> ® [l
(45} ° (1 1) : [ ] o000 :
8 ®
[ (14 ® ® 000 [
40 ® 0000 O ® ® 0000 o [ ]
eed .I 00 o [ ] (L1} ...I.. L ] L ]
(1) 3@
® 00 o [ o o0 [ ] [
e o0 [ 1] L 1] : .Q. o0 L 1]
L] L 1] L] L 1] L ] L 1] L ] 0
® 00 o0 L] o o0 (13
[ [ ] 0 [ L ] [ 14
50 + e o0 e oo
[ 3 [ 13 [ ® ® [ 3 [ 1] o @ °
° o0 ® L ] L1} L ]
[ ] @ o0 LN L] 0
@ L ] 989 [ ] @ (11 1]
: ®
® 0 o000 ..‘ e @ oo0ee 200
k: 200 DO
60 1 1 b L I e
0 10 20 30 40 50 60
System States

Figure 2.3: The Gain Matrix sparse structure.

Once the “G” matrix and “H” matrix is calculated, equation (2.6) should be solved
for each iteration. However, since there is an inverse matrix operation in equation
(2.6), not to take an inverse of the “G” matrix, the “Cholesky Decomposition”

process is applied to the “G " matrix.

As a result, the “Cholesky Decomposition” method is utilized instead of taking an
inverse of the “G " to decrease computational time. According to [17,18], “Cholesky

Decomposition” formulation can be written as follows:

14



x 0 0]x x x
A=LLT=[x x 0]0 X x
x x xJ10 0 x (2.13)
j-1 .
Lij = \/A,-,-—Z Lire(Ljrc)
k=1
(2.14)

_ Ay~ T (L)

\/ Ajj = Zah Lie(Line)”

where,
i and j are the row and column indices of the matrix.

Once the calculation is performed for “Cholesky Decomposition,” equation (2.14) is
solved for Ax*** at each iteration until the determined threshold for the convergence

is satisfied.

During this calculation process of each iteration, a sparse storage method can be
applied for further improvement in terms of computational speed. Since the sparsity
of matrices is increasing with the increasing power system size, a zero-entry
calculations cause an undesired time-consumptions fo processes such as “Gain
Matrix” calculation and “Cholesky Decomposition”, since those calculations include
a lot of multiplication, addition, and subtraction operations. Therefore, this time-
consuming calculations, which are occurred due to the zero entries in matrices, can

be eliminated with the help of sparse storage in significant order.

2.2  Bad Data Analysis

Once WLS-SE is performed, the bad data analysis checks presence of an erroneous
measurement that biases system states during the state estimation process. In general,

bad data analysis is formed of two steps [6-9]. The first step is detecting the

15



erroneous measurement, and the second step is identifying the detected measurement
and eliminating them if possible. Those erroneous data occurs due to various reasons
such as having a finite accuracy among the meters, telecommunication medium, etc.
Therefore, eliminating those bad data among the measurement set provided to the
state estimator is crucial for power system operators in terms of proper system

monitoring.

To achieve this, two well-known approaches, which are the “Chi-Square Test” and
“Normalized Residual Test,” are used for the detection and identification purposes

of bad data, respectively [6, 19, 20].

2.2.1 Chi-Square Test

The main purpose of the Chi-square test is to detect the existence of the erroneous

measurement. According to [19], this is achieved by utilizing the x? distribution.

Chi? Probability Density Function

0.08 T
7,

0.07 f f\

005 \ Degree of Freedom = 15

0 5 10 15 20 25 30 35 40 45 50

Figure 2.4: Probability density function for x2.

16



Degree of Probability of Exceeding the Critical Value

Freedom 0,99 0,95 0,9] 0,8] 0,75] 0,5] 0,25] 0,1 0,05 0,01
1 0,00 0,00 0,02 0,06 0,10 0,45 1,32 2,71 3,84 6,63
2 0,02 0,10 0,21 0,45 0,58 1,39 2,77 4,61 5,99 9,21
3 0,11 0,35 0,58 1,01 1,21 2,37 4,11 6,25 7,81 11,34
4 0,30 0,71 1,06 1,65 1,92 3,36 5,39 7,78 9,49 13,28
5 0,55 1,15 1,61 2,34 2,67 4,35 6,63 9,24 11,07 15,09
6 0,87 1,64 2,20 3,07 3,45 5,35 7,84 10,64 12,59 16,81
7 1,24 2,17 2,83 3,82 4,25 6,35 9,04 12,02 14,07 18,48
8 1,65 2,73 3,49 4,59 5,07 7,34 10,22 13,36 15,51 20,09
9 2,09 3,33 4,17 5,38 5,90 8,34 11,39 14,68 16,92 21,67
10 2,56 3,94 4,87 6,18 6,74 9,34 12,55 15,99 18,31 23,21
11 3,05 4,57 5,58 6,99 7,58 10,34 13,70 17,28 19,68 24,72
12 3,57 5,23 6,30 7,81 8,44 11,34 14,85 18,55 21,03 26,22
13 4,11 5,89 7,04 8,63 9,30 12,34 15,98 19,81 22,36 27,69
14 4,66 6,57 7,79 9,47 10,17 13,34 17,12 21,06 23,68 29,14
15 5,23 7,26 8,55 10,31 11,04 14,34 18,25 22,31 25,00 30,58
16 5,81 7,96 9,31 11,15 11,91 15,34 19,37 23,54 26,30 32,00
17 6,41 8,67 10,09 12,00 12,79 16,34 20,49 24,77 27,59 33,41
18 7,01 9,39 10,86 12,86 13,68 17,34 21,60 25,99 28,87 34,81
19 7,63 10,12 11,65 13,72 14,56 18,34 22,72 27,20 30,14 36,19
20 8,26 10,85 12,44 14,58 15,45 19,34 23,83 28,41 31,41 37,57
21 8,90 11,59 13,24 15,44 16,34 20,34 24,93 29,62 32,67 38,93
22 9,54 12,34 14,04 16,31 17,24 21,34 26,04 30,81 33,92 40,29
23 10,20 13,09 14,85 17,19 18,14 22,34 27,14 32,01 35,17 41,64
24 10,86 13,85 15,66 18,06 19,04 23,34 28,24 33,20 36,42 42,98
25 11,52 14,61 16,47 18,94 19,94 24,34 29,34 34,38 37,65 44,31
26 12,20 15,38 17,29 19,82 20,84 25,34 30,43 35,56 38,89 45,64
27 12,88 16,15 18,11 20,70 21,75 26,34 31,53 36,74 40,11 46,96
28 13,56 16,93 18,94 21,59 22,66 27,34 32,62 37,92 41,34 48,28
29 14,26 17,71 19,77 22,48 23,57 28,34 33,71 39,09 42,56 49,59
30| 14,95 18,49 20,60 23,36 24,48 29,34 34,80 40,26 43,77 50,89

Figure 2.5: The part of the Chi-Square table.

In Figure 2.4 area under the probability density function is related to the probability

of finding X in the corresponding region. In other words

o

Pr(X = xy) = f x?(u).du

Xth

(2.15)

Equation (2.15) represents the probability of X being larger than a certain threshold

X¢n. With the increasing values of x;, value, the probability of X being a specified

region decreases since the tail of the distribution is decaying. In Figure 2.4, the

dashed line corresponds to a threshold value, representing the largest acceptable

17



value for X that will not imply any erroneous measurement. If the value of X exceeds
the thresold value, then it is flagged as a bad data suspicion [6, 20]. These threshold
values can be found by using the chi-square table seen in Figure 2.5. Therefore, with
the utilization of the value of X that corresponds to the cost of the objective function
in equation (2.4) and the threshold value found by using the chi-square table,

erroneous measurements can be detected among the given measurement set.

2.2.2 Normalize Residual Test

In the previous chapter, the detection of the erroneous measurement is explained for
the bad data analysis. In this part, the identification method will be given in detail

for measurements detected in the “Chi-Square Test.”

According to [6, 19], for WLS-SE equation shown in equation (2.3) changed to a

linearized measurement equation as follows:

A% = HAx + e (2.16)

where, E(e) = 0 and
cov(e) = R.
Then, the linearized state vector for WLS-SE can be written as:

A% = (HTR™H)"'HTR 1Az

(2.17)
= G 'HTR 1Az
and the esitmated value of Az is wrriten as:
AZ = HAX = KAz (2.18)

18



where,
K = HG"*HTR™! which is called a “hat matrix” for putting a hat on Az.

The structure of the hat matrix can be seen in Figure 2.6. To proceed further, firstly,
the properties of the “K” matrix should be investigated. Those properties are;

K.K.K.K..K=K (2.19)
KH=H (2.20)
(I-K)H =0 (2.21)

Moreover, the residuals of measurements can be described as follows:

r= Az— AZas

= (I-K)Az

= (I-K)(HAx + e) (2.22)
= (I-K)e

= Se

where,

S is named as residual sensitivity matrix, and it represents the sensitivity of
measurements residual to the measurement errors, and it has the following

properties:

S.5.5..S=S (2.23)
S.R.ST = SR (2.24)

By using the relation between the residuals of measurements and errors with using
equation (2.22), covariance and the mean of the measurement residuals can be

obtained as follows:

19



Measurement Number

0 20 40 60 80 100 120
Measurement Number

Figure 2.6: The structure of the hat matrix (K).

E(r) =E(S.e) =SE(e) =0
Cov(r) = Q=E[rrT]
= SE[eeT]ST (2.25)
= SRST
= SR

Once the “S” matrix is calculated, the next step, which is finding the normalized

residuals, is utilized by using the following formulations:

= Zi—- hl(J,C\),l = 1, e, M (226)
|| .
N=-—,i=1...,m (2.27)
Qi



where,
;N represents the normalized value of residuals at i indices and
Q;; represents the it diagonal entry of the residual sensitivity matrix.

Once the normalized residuals are calculated, the information of erroneous
measurement is reached by searching the maximum of the normalized residuals. The
maximum of normalized residuals identifies the measurement, which has errors and
biases the state estimation process. To eliminate the biasing problem that occurred
due to the bad data, identified measurement in normalize residual test should be
eliminated or corrected. In general, system operators choose to correct instead of
eliminating since once the bad data is eliminated, whole matrices such as
measurement Jacobian matrix, Gain matrix, etc., should be reformed. However, if
the found erroneous measurement is corrected, then only a simple modification is

required among those matrices, and it is a faster operation.

The steps for detecting and identifying the bad data among measurements set is given

as;

e Solving the WLS-SE and obtain the estimated states

e With obtained estimated states cost of the objective function is calculated

e Check whether there is erroneous data or not

e Ifthere is erroneous data, “Normalize Residual Test” is performed

e In“Normalize Residual Test,” first residuals are found by using the estimated

states and measurements
e Then hat matrix (K) is calculated, and then sensitivity matrix (S) is found
e Finally, with the calculation of normalized residuals using the sensitivity

matrix, bad data is found among the measurement set.

In the state estimation process, the identification of the bad data consumes a
significant amount of time if there are multiple bad data in the measurement set due

to the calculation of an inverse operation mentioned in equation (2.17) and

21



performation of state estimation for each bad data. Therefore, with the help of sparse

storage, time consumption can be reduced.

22



CHAPTER 3

SPARSE STORAGE

In the power system state estimation process, there are several storage techniques to
improve the computational speed [5]. However, the most suitable and the most
common one is the sparse storage method since matrices in state estimation have a
super sparse structure, and eliminating the processes of zero elements during matrix
calculation provides desired computational improvement. In terms of the sparse
storage method, there are several different approaches to store non-zero elements of
the matrices, but all those approaches are based on the same principle, which is
creating linked lists for non-zero elements and using these linked lists to make matrix
calculations [10-15]. Among those sparse storage methods, two methods are
commonly used in the power system state estimation process, namely “Gustavson’s
Method” and “Knuth’s Method,” and with varying linked list creation in each
method, the benefits from those can be further increased. Each of these methods has
advantages and disadvantages over each other. However, in this thesis, “Knuth’s
Method” is used for a storage technique to decrease the computational time of the
state estimation process since it has flexibility for matrix reformations during the

iterations of the state estimation process.

In this Chapter, the details about the two main sparse storage techniques in state
estimation will be given. The comparison between “Gustavson’s Method” and

“Knuth’s Method” is given in the “Comparison of Sparse Storage Techniques” part.

3.1  Gustavson’s Method
Gustavson’s method is the most common sparse storage technique in terms of

improving the computational performance of processes that have sparse structure

matrices. In literature, it is called CRS (Compressed Row Storage), and the other

23



variation of “Row Storage” is called CCS (Compressed Column Storage) [11]. The
usage of those methods varies in terms of programming language in such that, for
columned-based programming languages, CCS should be used to utilize sparse
storage, and for rowed-based programming languages, CRS should be used.

In Gustavson’s method, the way of storing non-zero elements of matrices is creating
the three vectors in linked list, which are value vector, row index vector and index

vector. The sample of method can be seen as follows;

100 30
[05002]
00 400 (3.1)
2 000 0
40 0 6 0l

where,
n is the row number and
k is the column number of the matrix.

In equation (3.1), the sample sparse matrix can be seen. Moreover, the formulation

of sparsity calculation of matrix can be written as follows;

number of non — zeros

= 1 .
number of total elements 00 (3:2)

By using equation (3.2) for the matrix in equation (3.1), the sparsity of the sample
matrix is calculated as “32%”. As seen, the non-zero elements place less than half of
the total elements of the matrix. In power system applications, this sparsity

percentage decreases with increasing system size.

For sparse matrices exampled in equation (3.1), column-based linked lists are created

for Gustavson’s method as follows;

24



valuearray=1[1 3 5 2 4 2 4 6lixm
columnindex=[1 4 2 5 3 1 1 4lixm (3.3)
index=1[1 3 5 6 7 9lixm+1)

where,
m is the number of non-zero elements and
n is the row number.

Moreover, the same linked list with using row-based vectors for matrix in equation

(3.1) can be written as follows;

valuearray=[1 2 4 5 4 3 6 2lixm
rowindex=[1 4 5 2 3 1 5 2lixm (3.4)
index=1[1 4 5 6 8 9lixw+1)

where,
m is the non-zero elements and
k is the column number of the matrix.

In both CRS and CCS methods, the approach is based on creating a linked list for

non-zero elements of matrices.

In the compressed row storage method, the way of creating a linked list is following
non-zero elements in each row and storing their value in value array, column number
in column index vector, and the number of non-zero elements for each row in index
vector. For example, in equation (3.3), the number of non-zero elements in i™" row
can be found by investigating the difference between (i"+1) and i column of index
array such that in the first row, there are two non-zero elements (index(2) —

index(1) = 2), in second row there are two non-zero elements (index(3) —

25



index(2) = 2) etc. Therefore, with using these linked lists, non-zero elements in

matrices can be stored, and also sparse stored matrices can be recreated.

Besides creating the linked lists, there are three main operations for sparse stored

matrices which are;

¢ Adding an additional non-zero element to the matrix,
e Deleting a non-zero element from the matrix,

e Changing the value of non-zero elements of the matrix.

These operations are given detailed in the following sub-sections.

3.11 Adding a Non-Zero Element

According to [11], adding a non-zero element to existed linked list of Gustavson’s

method has three steps. Those steps are;

¢ Finding the location where the column number or row number of added value
takes place in column index vector or row index vector depending on the
utilized method

e Adding new value to value vector in found location

e Changing the total number of non-zero elements in the index array

The steps are visualized for matrix in equation (3.1) with the following equations.

108 3 0
0500 2
00 400 (3.5)
2 0 000
40 0 6 0y

The new added value is shown with red color in equation (3.5). The new value is
added to the first row and third column of the matrix. After adding the new value,
linked lists for row storage method in equation (3.3) and column storage method in

(3.4) changed respectively as follows;

26



valuearray=1[1 8 3 5 2 4 2 4 6lixm
columnindex=1[1 3 4 2 5 3 1 1 4lixm (3.6)
index=1[1 4 6 7 8 10lixme)

valuearray=[1 2 4 5 8 4 3 6 2lixm
rowindex=[1 4 5 2 1 3 1 5 2lixm (3.7)
index=1[1 4 5 7 9 10lix@+n

As seen in equations (3.6), (3.7), the value vector and column/row index vector size
increased with the number of non-zero elements added to the matrix. However, index
vector size does not change since it shows only the total number of non-zero elements
in rows or columns for row storage or column storage, respectively, yet the

corresponded values of the index array increase.

3.1.2 Deleting a Non-Zero Element

According to [11], deleting a non-zero element from existed linked list of

Gustavson’s method has three steps as follows;

e Finding the location where the column number or row number of deleted
value takes place in column index vector or row index vector depending on

utilized method,
e Deleting the desired value from the value vector by using the found location,

e Changing the total number of non-zero elements in the index array.

The steps are visualized for matrix in equation (3.1) as follows;

27



100 3 0
0500 2
00 4 0 0 (3.8)
0000 O
4 0 0 6 0l

In equation (3.8), the value in the fourth row and the first column is changed from
“2” to “0” in other words, it is deleted from the linked list. The changed linked lists

for matrix in equation (3.8) is written as follows;

valuearray=[1 3 5 2 4 4 6]ixm
columnindex=[1 4 2 5 3 1 4lixm (3.9)
index=1[1 3 5 6 6 8lixm+n

valuearray=[1 4 5 4 3 6 2lixm
rowindex=[1 5 2 3 1 5 2lixm (3.10)
index=1[1 3 4 5 6 7lixwk+n

As seen in equations (3.9) and (3.10), the value vector and column/row index vector
size decreased with the number of non-zero elements deleted from the matrix.
However, index vector size does not change since it shows only the total number of
non-zero elements in rows or columns for row storage or column storage,

respectively, yet the corresponded value of the index array decreases.

3.1.3 Changing the Value of Non-Zero Element
According to [11], changing a non-zero element in the linked list has two steps, and
those steps are;

e Finding the location where the column number or row number of changed
non-zero element takes place in column index vector or row index vector,

respectively,

28



e Updating the value vector by using the found location in the first step.

The steps are visualized for matrix in equation (3.1) as follows;

100 3 0
050 0 2
004 0 0 (3.11)
2 00 0 0
400100Jm

In equation (3.11), the existed non-zero element value in the fifth row and the fourth

column is changed from “6” to “10”. The new linked lists are formed as follows;

valuearray=[1 3 5 2 4 2 4 10]ixm
columnindex=1[1 4 2 5 3 1 1 4lixm (3.12)
index=1[1 3 5 6 7 9lixm+n

valuearray=[1 2 4 5 4 3 10 2lixm
rowindex=[1 4 5 2 3 1 5 2lixm (3.13)
index=[1 4 5 6 8 9lixw+1)

As seen in equations (3.12) and (3.13), the only changes occurred in the value vector
since the change is made for existed non-zero element, and all other properties for

non-zero elements in the linked list are kept same.

3.2 Knuth’s Method

Besides Gustavson’s method, there is another option for sparse storage named
Knuth’s method for the power system state estimation process. In Knuth’s method,
instead of three vectors to store information of non-zero elements, four vectors are
utilized, namely as value vector, column/row vector, begin row/column vector, and

next row/column vector. As Gustavson’s method, Knuth’s method also has two

29



options to store non-zero elements in row order or in column order depending on the

programming language that is used for processes.

In order to visualize Knuth’s method, the same matrix formed in equation (3.1) is

used. The linked list that is created by utilizing column order and row order is formed

as follows;
valuearray=[1 3 5 2 4 2 4 6lixm
columnarray=[1 4 2 5 3 1 1 4]
pam (3.14)
nextR=1[2 -1 4 -1 -1 -1 8 —1lixm
beginrow=[1 3 5 6 7]ixn
valueerray=[1 3 5 2 4 2 4 6lixm
rowarray=[1 1 2 2 3 4 5 5]
am (3.15)
nextC=[6 8 -1 -1 -1 7 -1 —-1lixm
begincolumn=[1 3 5 2 4]ix
where,

value array: storing the non-zero values of the matrix (can be arbitrary order),

column array: Column index of the corresponding elements stored in value vector

(column array (i) is the column index of value array (i))

row array: Row index of the corresponding elements stored in value vector (row

array (i) is the row index of value array (i))

nextC: This array contains the pointer to the next non-zero element location in the
same row (nextC (i) = z => value array (z) is the next non-zero element of

value array(i))

nextR: This array contains the pointer to the next non-zero element location in the
same column (nextR (i) = z => wvalue array (z) is the next non-zero entry of

value array (1))

30



beginrow: This array contains the pointers to the beginning of each row

(beginrow (i) = z, first non-zero entry of row i is value array (z))

begin column: This array contains the pointer to the beginning of each column

(begin column (i) = z, first non-zero entry of column i is value array (z))
m is the number of non-zero elements in the matrix
n is the total column number, and k is total the row number of the matrix

To form linked lists given in equations (3.14) and (3.15) for sparse matrix operations,

there are three main processes to be considered. Those processes are;

e Adding the additional non-zero element to the matrix,
e Deleting the non-zero element from the matrix,

e Changing the non-zero element of the matrix.

3.21 Non-Zero Element Addition

Adding an additional non-zero element to the linked list is more complicated than
“Gustavson’s Method” since linked lists in “Knuth’s Method” can be formed
arbitrarily [14]. Therefore, the operation for reforming linked lists varies with the
location of the newly added non-zero element. In order to visualize the reformation
of linked lists, the row order method is used. The processes are the same for the

column order method as well.

In order to visualize the reformation of linked lists, the used matrix for adding a non-

zero element at the beginning of the row is given as follows;

100 3 0
8 50 0 2
00 4 0 0 (3.16)
2 00 0 0
4 0 0 6 0l

31



As seen in the matrix in equation (3.16), the new non-zero element “8” is added to

the second row and first column.

When the non-zero element is added at the beginning of the row, then the following

process is performed the update linked lists.

value array (im+1) =M

columnarray(m+1) =j
(3.17)
nextR (m+ 1) = begin row (i)

beginrow (i) =m+ 1

where,

m is the number of the non-zero element before the new non-zero element,
i is the row number of newly added non-zero element,

j is the column number of new non-zero element and

M is the value of the non-zero element.

With utilizing the equation (3.17), the linked lists in equation (3.14) are updated as

follows;

valuearray=[1 3 5 2 4 2 4 6 8lixm
columnarray=[1 4 2 5 3 1 1 4 1lixm
nextR=1[2 -1 4 -1 -1 -1 8 -1 3lixm
beginrow=[1 9 5 6 7lixn

(3.18)

The used matrix for adding a non-zero element neither the first entry nor the last

entry is given as follows;

32



100 3 0
050 0 2
00 4 0 0 (3.19)
2 00 0 0
4 0 8 6 0l

In the matrix in equation (3.19), the new non-zero element is added between the first
column and fourth column of the fifth row. In order to update such cases, the

following procedure was performed.

value array (m+1) =M
columnarray(m+1) =j

g (3.20)
nextR (m+ 1) = prev

nextR (prev) =m+1

where,

prev is the previous non-zero element index in the same row of newly added non-

zero element at value array.

Therefore, with utilizing equation (3.20), the linked lists created in equation (3.14)
are updated as follows;

valuearray=1[1 3 5 2 4 2 4 6 8lixm
columnarray=[1 4 2 5 3 1 1 4 3lixm

(3.21)
nextR=[2 -1 4 -1 -1 -1 9 -1 8lixm

begintrow=[1 3 5 6 7lixn

Finally, the used matrix for adding a non-zero element to the end of the row

visualized as follows;

33



1 0 0 3 8
0 5 0 0 2
00 40 0 (3.22)
2 0 0 0 O
4 0 0 6 04«
value array (im+1) =M
column array (m+1) =j (3.23)

nextR(m+1) = —1
nextR (prev) =m+1

In the matrix given in equation (3.22), the non-zero element is added at the end of
the first row. For such cases, the process in equation (3.23) is performed to update

the linked lists.

With the utilization of equation (3.23), linked lists created in equation (3.14) can be

reformed as follows;

valuearray=[1 3 5 2 4 2 4 6 8lixm
columnarray=[1 4 2 5 3 1 1 4 5]

T (3.24)
nextR=1[2 9 4 -1 -1 -1 8 -1 —1lixm

beginrow=[1 3 5 6 7lixn

3.2.2 Deleting a Non-Zero Element

Besides “Gustavson’s Method”, deleting a non-zero element from the matrix is
different in “Knuth’s Method.” During the deletion process of a non-zero entry in
“Knuth’s Method”, deleted value is kept in linked lists, however, with the utilization
of the “nextR” vector or “nextC” vector, the value that deleted from the matrix is
skipped during the linked list search. There are three main consideration of deletion

processes which are,

e Deleting a non-zero element from the beginning of a row,

34



e Deleting a non-zero element from neither beginning nor end of a row,

e Deleting a non-zero element from at the end of the row.

To visualize the mentioned processes, the matrix in equation (3.1) is changed with

the corresponding deletion process.

The first problem is deleting a non-zero element from the beginning of a row. The

changed matrix is given as follows;

00030
[05002]
00 4 0 0 (3.25)
2 00 00
40 0 6 0l

In order to reform the linked list in equation (3.14), the utilized step is given as

follows;

begin row (i) = nextR (prev) (3.26)

By using equation (3.26), the created linked lists are reformed. The changed linked
lists are;

valuearray=[{1 3 5 2 4 2 4 6lixm
columnarray=[1 4 2 5 3 1 1 4]

DT (3.27)
nextR=[2 -1 4 -1 -1 -1 8 —1lixm

beginrow=[2 3 5 6 7lixn

When utilizing linked search to recreate a matrix by using the linked lists in equation
(3.27), it is seen that the first value of the first row is skipped. In other words, it is

deleted from a matrix.

The second problem and third problem have the same approach for deleting a non-

zero element from the middle of a row or the non-zero element at the end of the row.

35



Therefore, the following matrix was created to visualize deleting a non-zero element

from at the end of the row.

1 0 0 3 0
0 50 0 2
0 0 4 0 0 (3.28)
2 0 00O
4 0 0 0 Odxk
The process for updating linked lists can be written as follow;
nextR (prev) = nextR (i) (3.29)

By using the equation (3.29), the created linked lists in equation (3.14) changed.

valuearray=[1 3 5 2 4 2 4 6lixm
columnarray=1[1 4 2 5 3 1 1 4]

tam (3.30)
nextR=1[2 -1 4 -1 -1 -1 -1 -1lixm

beginrow=[1 3 5 6 7lixn

As seen in equation (3.30), the end of the fifth row, which is the value of “6”, is

eliminated during the linked list search of the matrix recreation process.

3.2.3 Changing a Non-Zero Value

Changing a non-zero value is another process in “Knuth’s Method.” In order to
change the desired non-zero value in the matrix, the linked list search was performed.
During the process of linked list search, when the index of column number for
changed value is found in column array, the value is changed to the desired value in
value array at found index. For example, the first column at the first-row entry

change from “1” to “10” for the matrix in equation (3.1).

36



10 0 0 3 0

0 50 0 2

0 0 4 00 (3.31)
2 0 0 0O

4 0 0 6 04«

For matrix in equation (3.31), the linked lists are changed as follows;
valuearray = [10 3 5 2 4 2 4 6lixm
columnarray=[1 4 2 5 3 1 1 4]

y 1xm (3.32)

nextR=1[2 -1 4 -1 -1 -1 8 —1lixm
begintrow=[1 3 5 6 7lixn

3.3  Comparison of Sparse Storage Techniques

Sparse storage algorithms are formed according to need, and each of these sparse
storage techniques has own advantages and disadvantages. The advantages of

“Gustavson’s Method” are;

e The process of building a linked list and recreation of the matrix from a linked
list is easy,
e |t takes up less memory space,
e The computational speed for adding, deleting, and changing a non-zero entry
is high.
However, there is one significant disadvantage of “Gustavson’s Method” for power

system state estimation. The disadvantage is;
e Linked list cannot be reformed if the new column or row is added.

In power system state estimation, several matrices, such as seen in equations (2.1)
and (2.7), are formed in random order. Therefore, “Gustavson’s Method” does not

meet the requirements for the state estimation process. In order to have the ability to

37



create linked lists in arbitrary order, the “Knuth’s Method” becomes the best suitable

solution. The advantages of “Knuth’s Method” are;

e Linked lists can be formed in arbitrary order,

e The flexibility of adding/deleting a column or row to a matrix.
The disadvantages of “Knuth’s Method” are;

e |t consumes more memory space,

e The implementation is complicated.

Although “Knuth’s Method” desires high memory space, with the help of the
significant improved memory technology in recent years, this disadvantage of the
“Knuth’s Method” vanished. Therefore, the consumption of memory space is no
longer to be considered as an important factor. Hence the “Knuth’s Method” is
utilized to build a sparse storage library that contains all matrix operations such as
multiplication, Cholesky Factorization, and inverse of a matrix in this thesis. The

detailed information for these operations is given in Chapter 4.

38



CHAPTER 4

THE PROPOSED METHOD

In previous chapters, background information of “WLS State Estimator, Bad Data
Detection and Identification” are given. The importance of using the sparse storage
techniques for these processes were mentioned. After that, the sparse storage
methods namely Gustavson’s Method and the basis of the proposed method which

is Knuth’s Method”, were explained in detail.

According to “Knuth’s Method,” there are two options for building a linked list of a
matrix. The first one is using the column method, and the second one is using the
row method. In this thesis, to obtain a faster sparse library, these two methods
combined and utilized a new linked list containing all seven vectors mentioned in
Chapter 3.2. According to the following matrix, the example linked list that is used

for the sparse storage technique is written as follows;

100 30
050 0 2
00 40 0 (4.1)
2 00 00
4 0 0 6 0l

valuearray=1[1 3 5 2 4 2 4 6lixm
columnarray=1[1 4 2 5 3 1 1 4lixm
rowarray=[1 1 2 2 3 4 5 5lixm

nextR=[2 -1 4 -1 -1 -1 8 —1lixm 4.2)
nextC=[6 8 -1 -1 -1 7 -1 —-1lixm
beginrow=[1 3 5 6 7lixn

begincolumn=[1 3 5 2 4]ixk

39



In equation (4.2), the new sparse storage technique is utilized to perform matrix
operations mentioned state estimation operations. As it seen from the linked list that
is created for the proposed method, the number of vectors in linked list are increased
to keep additional information of non-zero entries. The required memory of the

proposed method and Knuth’s method are shown as below;

e Required memory of Knuth’s Method is (3 X nnz X m)

e Required memory of The Proposed Method is (5 X nnz + m + n)

where,
nnz is the total non-zero element number,
m is the row number of the matrix,

n is the column number of the matrix,

However, the use of additional space is not considered as a problem thanks to the
improvements in “RAMs” technologies. Therefore, with the help of these additional
informations linked list search time is further decreased.

In this way, the operations for matrices such as multiplication, addition, and
subtraction are aimed to be accelerated. The implementation of matrix multiplication
process is given in Chapter 4.2.

411 Adding a Non-Zero Element

In order to visualize the reformation of linked list for the proposed method, the used

matrix for adding a non-zero element is given as follows;

100 3 0
8 50 0 2
00 400 (4.3)
2 0000
4 0 0 6 0l

40



As seen in the matrix in equation (4.3), the new non-zero element “8” is added to the
second row and first column. Addition a non-zero element to matrix is different in
the proposed method since the proposed method is utilized both row ordered, and
column ordered linked lists together. In example, when non-zero entry is added at
the beginning of the row it does not mean that it must be for the beginning entry of
the column. Therefore, to obtained linked list for the proposed method, all processes
mentioned in Chapter 3.2.1 should be processed for vectors related with row ordered
linked list and column ordered linked list separately. The reformed linked list for the

prosed method when the new non-zero entry is added to matrix is shown below;

valuearray=[1 3 5 2 4 2 4 6 8lixm
columnarray=[1 4 2 5 3 1 1 4 1lixm
rowarray=[1 1 2 2 3 4 5 5 2]

1xm

nextC=[9 8 -1 -1 -1 7 -1 -1 6lixm (44
nextR=[2 -1 4 -1 -1 -1 8 -1 3lixm
begintrow=[1 9 5 6 7lixn

begincolumn=[1 3 5 2 4]ix

As it seen in equation (4.4), to update the linked list, the process of adding a non-
zero entry to beginning of the row in Chapter 3.2.1 is followed for “column array,
nextR, and begin row ”, and the process of adding a non-zero element neither the
first entry nor the last entry in Chapter 3.1.1 is followed for “row array, nextC and

begin column”.

4.1.2 Deleting a Non-Zero Element

In order to visualize the reformation of linked list for the proposed method, the used

matrix for deleting a non-zero element at the beginning of the row is given as follows;

41



100 3 0
0500 2

00 40 0 (4.5)
0000 O

40 0 6 0l

As seen in the matrix in equation (4.5), non-zero element “2” was deleted from the
fourth row and first column of matrix in equation. The deletion process of a non-zero
entry from the matrix has same considerations such as when non-zero entry is deleted
from the beginning of the row it does not mean that it must be located at the
beginning of the column. Therefore, the processes mentioned in Chapter 3.2.2,
should be applied separately for vectors related with row ordered link list and column
ordered link list. The reformed linked list for the prosed method when the non-zero
entry is deleted from the matrix is shown below;

valuearray=1[1 3 5 2 4 2 4 6lixm
columnarray=1[1 4 2 5 3 1 1 4lixm
rowarray=[1 1 2 2 3 4 5 5lixm

nextR=[2 -1 4 -1 -1 -1 8 —1lixm (4.6)
nextC=1[7 8 -1 -1 -1 7 -1 —1lixm
beginrow=[1 3 5 —1 T7lixn

begincolumn=[1 3 5 2 4]ixk

As it seen in equation (4.6), to update the linked list, the process of deleting a non-
zero entry from the beginning of the row in Chapter 3.2.2 is followed for
“column array, nextR, and begin row ”, and the process of deleting a non-zero
entry from neither the first entry nor the last entry in Chapter 3.2.2 is followed for

“row array, nextC and begin column”.

In conclusion, to update linked list for the proposed method, when non-zero entry is
added, deleted, or changed, all processes under Chapter 3.2 should be considered for

related vectors separately.

42



4.2 Matrix Multiplication

Matrix multiplication process is the key operation in power system state estimation,
since in each step of the state estimation, there is a multiplication process between
super sparse matrices. Therefore, in order to speed up the operations, sparse storage
plays a significant role. Before explaining the method that is used for the thesis, the

matrix operation is visualized as follows;

Matrix A Matrix B

T

- 1Ol 0|O0O|O | O

OO0 |O0O|W|O
OO0 |O|H

aOIN|IO|IO|O|| —
OO0 | OO ([N O
OO |—=|HO
O[—=|IN|N|O| W
WO |O|O | = O
OO0 |0 | O O
O|loo|loo|lOo(N|—
O|O0O| =2 |INIO|W
N ] O|O|O|O

Figure 4.1: The visualization of matrix multiplication for first row first column

In matrix multiplication seen in Figure 4.1, the time complexity is 0 (n3) since each
entry of matrix is considered during the process even the result is equal to “0”.
However, when the row method of “Knuth’s Method” is used, the time complexity
decreases from 0(n3) to 0(n? x m X link list search time), where “m” is the
total number of intersections of non-zero elements indexes between rows and
columns. Linked list search time is the time for finding a required non-zero element
in obtained linked lists. When the size of the matrix is increased, the time difference
between normal operation and sparse storage technique increases as well. Therefore,

sparse storage has a crucial role to obtain faster operations for bigger size of systems.

43



The visualization of the linked list search in the row ordered “Knuth’s Method” is

given as follows;

First Row of Matrix A Matrix B
+—+-06+06+31+0 0 +—+-3+0
21010

o|lo|®|w|®

NN[(—=[O|D
OO |OoO||lo | O &
O[O [|O|O|O

OO |O|O
OIO(=1N

Figure 4.2: The linked list search of row order “Knuth’s Method” in the

multiplication of the first row of Matrix A and fifth column of Matrix B

As seen in Figure 4.2, to find the locations of non-zero elements in the fifth column
of Matrix B, the linked list search is performed from the beginning for each row of
the examined column. This issue makes additional time consumption, and the time

consumption increases with increasing the size of matrices.

Thanks to the proposed strategy in equation (4.2) for sparse storage, the time
consumption of the multiplication process is decreased further by decreasing the
linked list search time. This time reduction is done by eliminating the extra linked
list searches to find column indexes of each row of Matrix B in the multiplication
process by storing the non-zeros with row order and column order at the same time.
The visualization of the multiplication process with the proposed sparse storage

technique is given as follows;

44



First Row of Matrix A Matrix B

+6161316re+ |1(3[0]0[ 4]0
2|olo|3]ad]o
o|2]0]|o0]3]|lo
o[1]|ofo]qd]o
o|o|1{o]dlo
o|o|2]o] g

\J

Figure 4.3: The linked list search of the proposed method in the multiplication

process of the first row of Matrix A and fifth column of Matrix B

In Figure 4.3, it is seen that the linked list search can be performed both in row order
and column order. In other words, instead of searching each row to find whether
there is a non-zero element or not in the examined column, the linked list search

performed directly to the desired column to find row indexes of non-zero elements.

In that way, multiplication is performed if the column index of the non-zero element
in a row of Matrix A is intersected with the row index of the non-zero element in a

column of Matrix B.
To achieve this process following steps are performed for each iteration:

1. prevrow = 1 (investigated row number = 1),

2. prev column =5 (investigated column number = 5),
3. column array (prevrow) = 1,
4

. row array (prev column) = 1,

45



© N o O

10.

11.

12.

where,

If column of the value and row of the value are same, multiplication occurs,
column array (nextR (prevrow)) = 4,

row array (nextC (prev column)) = 3

If column array (nextR (prev row)) =4 >

row array (nextC (prev column)) = 3, prev column value updated as
prev column = nextC (prev column),

New value of row array (prev column) = 6,

If column array (nextR (prevrow)) = 4 <

row array (nextC (prev column)) = 6, prev row value updated as
prev column = nextR(prev row),

When value of colum array (prev row) and row array (prev column),
multiplication process occurs,

When one of the nextR (prev row) or nextC (prev column) reaches to

“ —1” the multiplication process of that iteration terminates.

This approach decreases the time complexity of the linked list search algorithm
further to obtain a faster multiplication process where the time complexities of the
proposed method and Knuth’s method for matrix multiplication operation are shown

as below;

The Proposed Method has O(m x Y.I*;(nnz; + D))
Knuth’s Method has O(m X Yi-,(nnz; + D X nnz;)

nnz; is the total non-zero element number in i* column,
m is the row number of the matrix A,
n is the column number of the matrix B,

D is the link list search time to find the non-zero entry for desired location.

46



4.3  Cholesky Decomposition

As seen in equation (2.6), there is an inverse calculation of the “Gain Matrix”,
therefore, with applying the “Cholesky Decomposition” to “Gain Matrix,” the
solution time of equation (2.6) decreased with the elimination of the inversion
operation. In literature, there are several types of factorization algorithms [23-25].
Among these algorithms, the most used decomposition algorithm is the Cholesky
Decomposition for power system state estimation processes since it is a
computationally cheap algorithm for positive definite symmetrical matrices, as the
gain matrix used in WLS procedure. After applying the Cholesky decomposition
process to the “Gain Matrix” mentioned in (2.13), the new equation can be written

as follows;

LLT% = HT(z — h(®)) (4.7)

where,

L is the lower triangular matrix of the Gain matrix,
LT is the upper triangular matrix of Gain matrix,

z is the measurements and

h(x) is the measurements which are created with measurement function by using the

estimated states.

The visualization of the lower and upper triangular matrices of the gain matrix in

Figure 2.3 is given below.

47



Mon-zero Elements in Lower Triangular Matrix

ppppp

State Mumber

0 10 20 30 40 50 60
State Number

Figure 4.4: The lower triangular matrix of the gain matrix in Figure 2.3

Non-zero Elements in Upper Triangular Matrix

*353Etaees -
25 33 :
1oy o : HHEHT :
"e3Raases: S3sssssstssats £as
20+ 8 so2ss: 28 1
o %, 4, sessanninel e
530_ 3i3asessrsansanesy sassssseiti:
s s Ha
7 3353388 338
40 r tHAH 33!
t+
50 e
!
60 t s , , , , H
0 10 20 30 40 50 60

State Number

Figure 4.5: The upper triangular matrix of the gain matrix in Figure 2.3

48



There are several methods of computation of the “Cholesky Decomposition” to find
lower and upper triangular matrices in the literature. However, according to [24], the
following algorithm is one of the best algorithms in terms of time complexity, among

others. The Doolittle’s algorithm for “Cholesky Decomposition” is given in below.

Algorithm 1 Cholesky Decomposition (Doolittle’s Algorithm)

1: forj=1:n

2: ifj>1

3: A(:n,j) = A(:n,)) — A(G:in, 1:j — DA, 1:j — DT
4: end

5. A(:inj) = AG:n /AU

6: end
where,

n is the column number of matrix A.

After obtaining the lower and upper triangular matrices of the Gain matrix by using
Algorithm 1, with the help of the forward and the backward substitution, the

estimated states are calculated by using the following formula;
t= HT(z— h(X))

't =y (4.8)
Ly=t

In equation (4.8), since L, L and t are known, y is calculated by using the forward
substitution, and then, with the calculated y, estimated states are found by using the
backward substitution.

49



4.4 The Matrix Inversion

The matrix inversion is the most time-consuming process among all other matrix
operations such as multiplication, addition, subtraction, etc. Unfortunately, the state
estimation process (bad data identification) contains an inverse operation during the
calculation of the hat matrix in equation (2.18). However, as a result of the super
sparse structure of the Gain Matrix, this time consumption, which occurrs due to the
matrix inversion, can be eliminated by using the proposed sparse library. In
literature, there are several approaches for inverse operation, however, in this thesis,
the “Takahashi Method” is applied to the sparse algorithms to calculate matrix
inversion [23]. The details of a “Takahashi Method” are given in Chapter 4.4.1.

4.4.1 Takahashi Method

According to [26], the Takahashi method utilizes the “LDU” factorization for
computing the inverse of a given matrix. In order to calculate matrix inversion, there

are two equations written as follows;

Z=D L'+ (U-U)Z (4.9)
Z=U"D1+Z(I-1L) (4.10)

where,

A is the given matrix and A = LDU (L, U, and D are unit lower triangular, unit upper,
and diagonal matrices, respectively) and

Z= A1

According to [26], by utilizing the equations (4.9) and (4.10), some observations are

made for positive definite symmetrical matrices. These observations are;

e The product of (D™1L™1);; = D;;*. This observation is used to eliminate

calculation of the inverse of lower triangular matrix “L,”

50



e (I —U) is the strictly upper triangular matrix since U is the unit upper
triangular matrix,

Using these two observations, the Z matrix can be computed without calculating the
L matrix. The formulation to the calculation of inverse elements to the diagonal and

upper triangular party of Z matrix can be written as follows;

n

Zij = dl_]1 UikZkj forisj (411)
k>i

According to [26], the example of performing formulation of the equation (4.11),
can be seen below.

x 0 x x
0 x x O
A= 4.12
x x x O ( )
x 0 0 x
x 0 x x
0 x x O
L+U-= (4.13)
X X X X
x 0 x x
—_ g-1
Zyg = diy
Z34 = —U34Z44
_ -1
Z33 = d33 — U3sZy3
Z3p = —Up3Z33
(4.14)
_ g-1
Zyy = dyy — UpzZsy
Z1g = TU 32347 Uq4Zy4
Z13 = —Uq13Z33~Uq4Z44

— g-1
Zyy = dii — Ug3Z31—UgaZyq

51



where,

A is the given matrix,

dij is the i row and j™ column of the diagonal matrix,

ujj is the i row and j™ column of the unit upper triangular matrix and

red values are “fill-in” values that occurred during the decomposition process.

The used “Takahashi Algorithm” for matrix inversion is given as follows;

Algorithm 2 Takahashi Algorithm

liforj = mx2:-1:1

2: fori =mx2:-1:1

3 ifi ==j

4 value = 0;

5: fork = i+1:mx?2

6 value = value + U (i,k) x Z(k,));
7 end

8 Z(i,j) = (1/D(i,j)) — value;

9 Z(G, 1) = Z(i,));

10:  elseifi <j

11: value = 0;

12: fork = i+1:mx?2

13: value = value — U (i,k) X Z(k, ));
14: end

15: Z(i,j) = value;

16: Z3j,0) = Z(i,));

17:  end

18:end

where,

m is the size of matrix A4,

52



Z isthe A1,
U is the unit upper triangular matrix and
D is the diagonal matrix.

In equation (4.13), it is seen that, after the decomposition process applied to the given
matrix, some non-zero elements, which do not exist in the given matrix, come up in
lower triangular and upper triangular matrices. These non-zero entries create an
additional time consumption during the matrix inversion process. Therefore, in the
state estimation process, to decrease the number of fill-ins in matrices, the “Reverse
Cuthill-McKee” algorithm is used to reorder bus numbers of system structure to

centralize the non-zero entries around diagonals [27].

In that way, the number of the “fill-in” values in matrices are being reduced. In an
example, when the “Reverse Cuthill-McKee” algorithm applied to the Gain matrix

in Figure 2.3, the new structure of the matrix becomes as follows;

Non-zero Entries in Gain Matrix

107

201

0T

State Number

40 [

S0

B0 E . .
0 10 20 30 40 50 &0
State Number

Figure 4.6: The Gain matrix after Reverse Cuthill McKee algorithm applied

53



Even the Gain matrix in Figure 4.6 and Figure 2.3 is the same matrix, when the

decomposition applied, the lower and upper triangular matrix differs as follows;

Non-zero Elements in Lower Triangular Matrix

0=

State Number

o 10 20 30 40 50 60
State Number
Figure 4.7: The lower triangular matrix of the Gain matrix after the decomposition

process

In Figure 4.7, it is seen that the number of non-zero entries is less than the non-zero
entries in Figure 4.4. Therefore, this example shows the importance of the ordering

process. The details of the “Reverse Cuthill-McKee” algorithm can be found in [24].

According to [28], for further time improvement during the inversion operation of
the matrix, only non-zero entry locations of Gain Matrix are calculated in equation
(4.11). However, when system size increases, the fill-ins become inevitable. As a
result of this, calculating only non-zero entry locations of the Gain matrix, leads to
the wrong solution in the inverse operation of the matrix. Therefore, instead of using
the non-zero entry locations of the Gain matrix, utilizing the non-zero entry locations
of the lower triangular matrix of the Gain matrix gives the desired result since, during

the decomposition process, fill-ins are considered. The test results of the proposed

54



method, which is the sparse storage applied to the Takahashi method using only the
non-zero entries locations of the lower triangular matrix, the Takahashi method with
calculating all entry, the built-in function of MATLAB, and conventional Takahashi
method is given in Chapter 5.3.

55



56



CHAPTER 5

VALIDATION OF THE PROPOSED METHOD WITH STATE
ESTIMATOR

In previous chapters the details of the operations in WLS State Estimation, Bad Data
Analysis were given. Beside of these, to decrease the computational time during
these operations, the importance of the sparse storage methods was mentioned.
Moreover, the proposed method and the further improvements with the help of the
proposed method for the matrix multiplication, Cholesky decomposition and the

matrix inversion operation was given in detail.

In this thesis, to test the proposed strategy in real-life matrix operations, the state
estimator is built. This state estimator contains the state estimation and bad data
analysis. With the use of a built state estimator, all matrix operations mentioned in
Chapter 4 are tested with the proposed sparse library, and the solution time of the
proposed methods is investigated. The proposed method built in MATLAB
environment with “Object Oriented” manner. However, MATLAB has still an issue
of the solution time consumption of “Object Oriented” algorithms. In other words,
when algorithm is implemented as “Object Oriented” in MATLAB environment it

takes more time to be computed.
In this thesis, three main methods are proposed. These methods are;

e Sparse multiplication with the “Full Knuth’s Method”
e Sparse Cholesky Decomposition with the “Full Knuth’s Method”

e Sparse Takahashi matrix inversion with the “Full Knuth’s Method”

Besides these three main methods, a complete sparse library for the “Full Knuth’s
Method” is established, which contains entry search, entry deletion, graph search

algorithms, etc., to perform state estimation process in real life.

57



The solution time of state estimation and bad data analysis with built sparse library

for IEEE 30-Bus system is given below [29].

Table 5.1: The solution time of proposed method of state estimation and bad data

analysis process in IEEE 30-Bus system

] ) Solution Time | Solution Time of
Density of H | Density of _
) ) ) of State Bad Data Analysis
) Matrix Gain Matrix o
System Size Estimation (ms) (ms)

IEEE 30-Bus 9% 29% 15.6 9.4

In Table 5.1, the solution time of the state estimation process and bad data analysis
process for the IEEE 30-Bus system is shown. For the state estimation process, the
solution time is dependent on the iteration number. For the IEEE 30-Bus system,
system states converged to a threshold value in 10 iterations. Therefore, for each
iteration, the solution time of the state estimation with the proposed method is equal
to 2.56 ms. In bad data analysis of the IEEE 30-Bus system, the main time
consumption is the matrix multiplication since in equation (2.18), during the
calculation of hat matrix “K, ” there is an inverse of the Gain matrix. The inverse of
the Gain matrix is almost a full matrix, and this issue causes the extra linked list

search time.

The solution time of the state estimation and bad data analysis for the IEEE 118-Bus

system is given below.

Table 5.2: The solution time of proposed method of state estimation and bad data

analysis process in IEEE 118-Bus system

) ) Solution Time | Solution Time of
Density of H | Density of _
) ) ) of State Bad Data Analysis
] Matrix Gain Matrix o
System Size Estimation (ms) (ms)

IEEE 118-Bus 2% 10% 90.2 84.3

58



5.1  Test Results of Proposed Method in Multiplication Process

In the power system state estimation, the multiplication process has a crucial role for
time consumption. Therefore, with the proposed method, this time kept as minimum
as possible. The time consumption for these multiplication processes in state
estimation is compared with the multiplication process without using the sparse
storage technique seen in Algorithm 3. To compare the proposed method and the
normal method, matrices are randomly created with different sizes and sparse
density. In addition to that, the real 2383-bus Polish power system, real 3120-bus
power system and 9241-bus power system grid are used to investigate the
computation time difference between the proposed method with other methods [30].
The methods are tested with, Intel i9 9900 2.3 GHz 8 Core processor and 16 GB
2666 MHz RAM in MATLAB 2020b environment.

Algorithm 3 Conventional Matrix Multiplication

1 fori=1m

2 forj= 1:n

3 for k=1:m

4: S(i,j) = S(,j) + A(i, k) x A(k, j)
5 end

6 end

7

end

where,
m, n are row number and column number of matrix A respectively, and

S is the resulted matrix for multiplication.

59



Table 5.3: The time consumption of matrix multiplication using the proposed

method, reference tool, and conventional multiplication.

Density of | The Proposed | Reference Tool Algorithm 3
Matrix Method (ms) (ms) Conventional

Matrix Size Algorithm (ms)
(60x60) 1% 0.19794 0.03680 0.1450
(60x60) 5% 0.2662 0.04341 0.1449
(236x236) 1% 1.8 0.05003 7.2
(236x236) 5% 5.2 0.056652 9.6
(600x600) 1% 19.2 1.5 115.5
(2383x2383) 0.36% 508.4 76.8 22165.8
(3120x3120) 0.25% 1187.0 194.2 58623.4
(9241x9241) 0.12% 8502.3 4107.3 ~

In Table 5.3, the solution times for the algorithm of the proposed method, the
reference matrix multiplication and conventional algorithm are given. The
algorithms are compared in MATLAB environment. However, according to [31],
MATLAB uses “c++” for the built-in functions, and according to [32], the
algorithms written in MATLAB are a few hundred times slower than the algorithms
written with “c++” language. Moreover, built-in functions of MATLAB are well-
optimized and uses all available cores to utilize the parallel processing. On the
contrary, codes written in MATLAB environment are using only a single core to

perform an algorithm.

Therefore, instead of directly comparing the computation time of reference tool with
the proposed method, the scaling of computation time between two different matrix

sizes for the reference tool and the proposed method should be compared.

In Table 5.3, it is seen that when the size increases, the solution time of conventional

algorithm increases more than the proposed method and, it is seen that, computation

60



time of the reference tool, which is the built-in function of MATLAB, is approaching
the computation time of proposed method, with increasing measurement size, which
means that the scaling of the built-in functions is higher than the proposed method.
Beside of that, for the conventional algorithm, when the matrix size increases the
solution time of the matrix operation increases dramatically. Therefore, the

computation time of the conventional algorithm is shown as “~” symbol.

In Table 5.3, when density increases, using sparse storage methods becomes
meaningless since the time consumption of the number of linked list searches
increases. However, thanks to matrix structures in the power system in real life, the
density of matrices is less then the 1%. Therefore, using a sparse structure to hold

matrices in linked list form is important.

5.2  The Test Results of the Proposed Method in Cholesky Decomposition

Process

In the power system state estimation process, as seen in Figure 2.3, the sparsity of
the Gain matrix is around 25%. However, when the size of the system increases, the
sparsity of the matrix decreases less than the 1%. Therefore, it is important to use
sparse storage methods to reduce the time consumption of non-zero elements in

matrices.

The proposed strategy mentioned in Chapter 3.2 is applied to the “Cholesky
Decomposition” algorithm given in Algorithm 1. After applying the sparse storage
technique, the time results of built Cholesky Decomposition with sparse storage
technique, the MATLAB built-in function for Cholesky Decomposition, and the
Doolittle’s algorithm given in Algorithm 1 are investigated and given in the table

below.

In Table 5.4, it is seen that when the proposed sparse algorithm is applied to the
“Cholesky Decomposition,” the solution time decreases. As it is mentioned in

Chapter 5.1, the built-in functions of MATLAB are processed with well-optimized

61



“c++ algorithm. As a result, there is a huge solution time gap between the proposed
method and the built-in function of MATLAB, but the scaling of the built-in function
between two matrix size is higher than the proposed method and the computation
time of the built-in function is approaching the computation time of proposed
method. Again, the computation time of the conventional algorithm is shown as “~”
symbol since the computation time of the conventional algorithm increases

dramatically when the matrix size increases.

Table 5.4: The time results of Cholesky Decomposition with the proposed method,
MATLAB built-in function, and Doolittle’s algorithm.

) o Algorithm 1
o Density of Proposed Built-in
Matrix Size i ) Doolittle’s
Matrix Method (ms) Function (ms) _
Algorithm (ms)

(60x60) 1% 0.34 0.01745 0.9118
(60x60) 5% 0.36 0.01656 0.9043
(236x236) 1% 5.6 0.23671 13.1
(236x236) 5% 7.2 0.27640 14.3
(600x600) 1% 11.2 0.77697 85.2
(2383x2383) | 0.36% 253.8 24.6 16533.1
(3120x3120) | 0.25% 439.4 55.8 65732.1
(9241x9241) | 0.12% 1023.1 950.5 ~

5.3  Test Results of Proposed Method for Matrix Inversion

In bad data analysis of state estimation process, to calculate the hat matrix mentioned
in equation (2.18), the proposed sparse method is applied to Algorithm 2 for
Takahashi method. As opposed to Algorithm 2, the proposed method avoids

calculating “0” values while performing the inversion process. The methods are

62



tested with different matrix sizes and matrix sparsity densities. The test results are

given in below.

In Table 5.5, solution times of the inverse operation with different methods for
different matrices are investigated. It is seen that the proposed method has better
solution time comparing with the conventional matrix inversion. However, the
proposed method still slower than the built-in function of MATLAB due to the
programming language difference mentioned in Chapter 5.1. In addition, there is one
more performance improvement with the proposed method, as seen in Error! Not a
valid bookmark self-reference.. That performance improvement is achieved by
calculating only the non-zero entry locations in the lower triangular matrix for the
inverse of the Gain matrix instead of calculation all entries of the inverse of the Gain

matrix.

Table 5.5. The time results of the proposed method, the built-in function of
MATLAB, conventional matrix inversion, and calculation of all entries of the

inverse of Gain matrix.

) Sparse
o Algorithm 2 )
) Proposed | Built-in ) Method with
o Density _ Conventional )
Matrix Size | Method | Function _ Calculation
of Matrix Takahashi )
(ms) (ms) All Entries
Method (ms)
(ms)
(60x60) 1% 0.9042 0.0599 0.23875 0.9571
(60x60) 5% 1.8 0.067325 0.24427 24
(236x236) 1% 3.8 1.5 13.4 4.7
(236x236) 5% 5.6 1.5 19.9 30.9
(600x600) 1% 14.9 11.4 378.7 69.3
(2383x2383) | 0.36% | 2732.3 166.1 40342.2 65907.6
(3120x3120) | 0.25% | 5670.2 360.8 ~ ~
(9241x9241) | 0.12% | 9998.5 6401.9 ~ ~

63




64



CHAPTER 6

CONCLUSION

In order to meet the power demand of the customers, power systems are enlarging
each year, and with the increasing system size new measurements are placed to
gather data from the field for improve the situational awareness. In addition, PMUs
are also deployed in power systems in the recent years. The high refresh rates of
those devices creates an additional computational burden for the monitoring systems
and energy management systems. Considering this situation, the SE has a crucial role
in real time monitoring of the power system. Thanks to the sparse matrix structures
of the SE applications, sparse matrix storage methods are utilized to improve the

computational performance.

In the literature there are several types of sparse storage methods, however, power
system operation has unique properties and hence, only few of sparse storage
methods can satisfy the flexibility condition for power system SE. One of those
proper techniques is the well-known Knuth’s Method. Despite the widely known
necessity for sparse storage in state estimation applications, there is no open-source

sparse storage library.

In this thesis, the main purpose is to build the open-source sparse library for matrix
operations and decrease the computation time of the matrix operations which are
included in power system state estimation processes. Therefore, the proposed
method, which is the full Knuth’s Method is built, and with the help of the proposed
method, the major time-consuming processes such as “Matrix Multiplication,
Cholesky Decomposition and Matrix Inversion”, are improved and the computation
time of the overall SE process is decreased further with decreasing the linked list
search time. In order to achieve the decrease the computation time of the linked list

search process, Knuth’s Method is enhanced with utilizing both the column ordered

65



method and row ordered method together which are utilized separately for sparse
storage algorithms. By this way, undesired linked list searches are minimized during

the matrix operations.

The main challenge encountered during the implementation of the proposed method
is, storing the row ordered and column ordered linked list together for the results of
the matrix operations since, the matrix operations are accomplished in one way,
which is either row manner or column manner. This issue has been overcome and
flexibility of the sparse storage for SE processes is achieved with the proposed

method.

In this thesis three different algorithms were compared for main matrix operations in
SE which includes “WLS-SE and Bad Data Analysis” processes. The results show
that, the MATLAB built-in functions have lower computation time results than the
proposed method in smaller size matrices, since MATLAB built-in functions are
implemented with the “c++” language which is a few hundred times faster than the
codes written directly in MATLAB environment. However, when the system size
increases, it is seen from the results, the scaling of the proposed method is lower than
the built-in functions of MATLAB. With increasing matrix sizes the results show
that the computation time of the built-in functions becomes closer to the proposed
method even the built-in functions are written with “c++" language. In addition, the
importance of using sparse storage algorithms is revealed, since the computation
times of normal matrix processing algorithms written in MATLAB environment are

considerably higher than the proposed method.

In order to validate the proposed method, full state estimation process, which
contains all type of matrix operations, is built and tested in different IEEE bus
systems. During the tests, it was seen that the matrix operations work properly, and
provides satisfactory computation time results for the full state estimation process

considering the performance of MATLAB environment.

Note that, the proposed method is not well-optimized. In order to optimize the

proposed method in future, first of all, parallel processing can be added as a feature

66



wherever it is appliable. Moreover, with investigating the properties of the state
estimation process, further decrease in computation time can be achieved by utilizing
the block calculations in matrix operations since the matrices matrix in state
estimation processes has a specific shape. By this way, the solution time of matrix
operations such as matrix multiplications, matrix addition, Cholesky Decomposition,
matrix inversion etc. can be decreased dramatically. Finally, for the proposed method
to reach its real capacity, the algorithms can be written in the “c++” language. In
addition to that, in this thesis for ordering purposes the Reverse Cuthill McKee
algorithm is used. To further improve the ordering process Tinney-2 algorithm can

be implemented instead of Cholesky Decomposition process.

67



68



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

M. Meriem, C. Bouchra, B. Abdelaziz, S. O. B. Jamal, E. M. Faissal and C.
Nazha, "Study of state estimation using weighted-least-squares method
(WLS)," 2016 International Conference on Electrical Sciences and
Technologies in Maghreb (CISTEM), 2016, pp. 1-5.

M. G0l and A. Abur, "LAV Based Robust State Estimation for Systems
Measured by PMUs," in IEEE Transactions on Smart Grid, vol. 5, no. 4, pp.
1808-1814, July 2014.

L. Mili, M. G. Cheniae and P. J. Rousseeuw, "Robust state estimation of
electric power systems,” in IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 41, no. 5, pp. 349-358, May
1994,

A. Kumar and S. Chakrabarti, "ANN-based hybrid state estimation and
enhanced visualization of power systems,” ISGT2011-India, 2011, pp. 78-83.

A. Monticelli and A. Garcia, "Fast decoupled state estimators,” in IEEE

Transactions on Power Systems, vol. 5, no. 2, pp. 556-564, May 1990.

Exposito, A.G., & Abur, A. (2004). Power System State Estimation: Theory
and Implementation (1st ed.). CRC Press.

G. D'Antona and L. Perfetto, "Bad data detection and identification in power
system state estimation with network parameters uncertainty,” 2015 2nd
International Conference on Knowledge-Based Engineering and Innovation
(KBEI), 2015, pp. 26-31.

E. Handschin, F. C. Schweppe, J. Kohlas and A. Fiechter, "Bad data analysis
for power system state estimation,” in IEEE Transactions on Power
Apparatus and Systems, vol. 94, no. 2, pp. 329-337, March 1975, doi:
10.1109/T-PAS.1975.31858., J., Michel, J. and Westaway, R.W.C. 2000.

69



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Neogene and Quaternary volcanics of southeastern Turkey. The Geological
Society, London, Special Publications, 173,459-487

A. Monticelli, "Reliable Bad Data Processing for Real-Time State
Estimation,” in IEEE Power Engineering Review, vol. PER-3, no. 5, pp. 31-
32, May 1983.

M. Shah, "Sparse Matrix Sparse Vector Multiplication - A Novel Approach,”
2015 44th International Conference on Parallel Processing Workshops, 2015,
pp. 67-73.

Farzaneh, Aiyoub & Kbheiri, Hossein & Abbaspour, Mehdi. (2009). An
efficient storage format for large sparse matrices. Communications de la

Faculté des Sciences de 1’Université d’ Ankara. Séries A1l: Mathematics and

Statistics. 58. 10.1501.

R. C. Agarwal, F. G. Gustavson and M. Zubair, "A high performance
algorithm using pre-processing for the sparse matrix-vector multiplication,”
Supercomputing '92:Proceedings of the 1992 ACM/IEEE Conference on
Supercomputing, 1992, pp. 32-41.

Dongarra, Jack & Lumsdaine, Andrew & Niu, Xinhiu & Pozo, Roldan &
Remington, Karin. (1997). A Sparse Matrix Library in C++ for High
Performance Architectures. Proceedings of the Second Object Oriented

Numerics Conference.

Knuth, D. (1973). The Art Of Computer Programming, vol. 3: Sorting And
Searching. Addison-Wesley.

Java Sparse Matrix Library. Available: https://java-matrix.org/

N. Hurley and S. Rickard, "Comparing Measures of Sparsity," in IEEE
Transactions on Information Theory, vol. 55, no. 10, pp. 4723-4741, Oct.
20009.

70



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Krishnamoorthy and D. Menon, "Matrix inversion using Cholesky
decomposition,” 2013 Signal Processing: Algorithms, Architectures,
Arrangements, and Applications (SPA), 2013, pp. 70-72.

Ntekim, OE & Esuabana, Ita & Edeke, Uwe. (2013). On Lu Factorization
Algorithm With Multipliers. Global Journal of Mathematical Sciences. 12.
10.4314/gjmas.v12i1.3.

T. P. Vishnu, V. Viswan and A. M. Vipin, "Power system state estimation
and bad data analysis using weighted least squares method,” 2015
International Conference on Power, Instrumentation, Control and Computing
(PICC), 2015, pp. 1-5.

E. Handschin, F. C. Schweppe, J. Kohlas, and A. Fiechter, “Bad data analysis
for power systems state estimation,” IEEE Trans. Power App. Syst., vol. 94,

pp. 329-337, Mar./Apr. 1975.

A. Monticelli and A. Garcia, "Reliable Bad Data Processing for Real-Time
State Estimation,” in IEEE Transactions on Power Apparatus and Systems,
vol. PAS-102, no. 5, pp. 1126-1139, May 1983.

Y. Saad, ModiOed from SPARSKIT: a basic tool kit for sparse matrix
computations,(June6, 1994).

J. Chen, K. Ji, Z. Shi and W. Liu, "Implementation of Block Algorithm for
LU Factorization,” 2009 WRI World Congress on Computer Science and
Information Engineering, 2009, pp. 569-573.

Golub, Gene H.& Van Loan, Charles F. (1983), “Matrix
computations,” Baltimore: Johns Hopkins University Press.

H. Yamashita and E. Nakamae, "A pivot ordering algorithm aimed at
minimizing computation time," in IEEE Transactions on Circuits and
Systems, vol. 25, no. 8, pp. 634-637, August 1978.

71



[26]

[27]

[28]

[29]

[30]

[31]

[32]

Campbell, Yogin & Davis, Tim. (1995). Computing The Sparse Inverse
Subset: An Inverse Multifrontal Approach.

E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric
matrices, Proc. 24th Nat. Conf., ACM Publ. p. 69, 1122 Ave. of the Americas,
New York, N.Y. 1969.

B. Bilir and A. Abur, "Bad data processing when using the coupled
measurement model and Takahashi's sparse inverse method,” IEEE PES

Innovative Smart Grid Technologies, Europe, 2014, pp. 1-5.

Ali R. Al-Roomi (2015). Power Flow Test Systems Repository [https://al-
roomi.org/power-flow]. Halifax, Nova Scotia, Canada: Dalhousie

University, Electrical and Computer Engineering.
R. D. Zimmerman, C. E. Murillo-Sanchez, Matpower (2021).

MATLAB. (2010). version 7.10.0 (R2010a). Natick, Massachusetts: The
MathWorks Inc.

Andrews, Tyler. (2012). Computation Time Comparison Between Matlab
and C++ Using Launch Windows.

72



