

SPARSE MATRIX LIBRARY FOR POWER SYSTEM STATE ESTIMATION

BASED ON FULL KNUTH’S METHOD

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUNA YILDIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONIC ENGINEERING

JUNE 2021

Approval of the thesis:

SPARSE MATRIX LIBRARY FOR POWER SYSTEM STATE

ESTIMATION BASED ON FULL KNUTH’S METHOD

submitted by TUNA YILDIZ in partial fulfillment of the requirements for the degree

of Master of Science in Electrical and Electronic Engineering, Middle East

Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy

Head of the Department, Electrical and Electronics Eng.

Assoc. Prof. Dr. Murat Göl

Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Ali Nezih Güven

Electrical and Electronics Engineering Dep., METU

Assoc. Prof. Dr. Murat Göl

Electrical and Electronics Engineering Dep., METU

Prof. Dr. Ece Güran Schmidt

Electrical and Electronics Engineering Dep., METU

Assoc. Prof. Dr. Ozan Keysan

Electrical and Electronics Engineering Dep., METU

Assist. Prof. Dr. Oğuzhan Ceylan

Administrative and Social Sciences, Kadir Has Uni.

Date: 18.06.2021

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last Name: Tuna Yıldız

Signature :

v

ABSTRACT

SPARSE MATRIX LIBRARY FOR POWER SYSTEM STATE

ESTIMATION BASED ON FULL KNUTH’S METHOD

Yıldız, Tuna

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Murat Göl

June 2021, 72 pages

Considering the increase in power system size and the number of PMUs, it is

essential to use a computationally efficient state estimator. The Fast Decoupled State

Estimation is the most common method used in industrial applications, thanks to its

computational efficiency and ease of implementation. However, it can be improved

further by using sparse storage techniques, thanks to the sparse structure of the state

estimation matrices.

In literature, there are several types of sparse storage algorithms, however, only a

few of them is suitable for the power system state estimation operations. Considering

the possible frequent topology changes, Knuth’s method has a superiority in power

system applications. However, even Knuth’s Method can be enhanced further by

using additional information of the matrices.

This thesis proposes the full Knuth’s Method for sparse storage algorithm.

Considering that sparse storage libraries for real-time power system applications are

not available as open-source, firstly modified sparse storage library is built. After

that, by using the created sparse storage library, the features of the power system

vi

state estimator are built. Thanks to the designed sparse storage library, the

computational performance is increased further for power system state estimation.

Keywords: Sparse Storage, Knuth’s Method, Full Knuth’s Method, State Estimation,

Sparse Matrix Inversion

vii

ÖZ

GÜÇ SİSTEMİ DURUM KESTİRİMİ İÇİN TAM KNUTH YÖNTEMİNE

DAYALI SEYREK MATRİS KÜTÜPHANESİ

Yıldız, Tuna

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Murat Göl

Haziran 2021, 72 sayfa

Güç sistemi boyutundaki ve PMU’ların sayısındaki artış dikkate alındığında,

hesaplama açısından verimli bir durum kestirimcisi kullanmak önemlidir. Fast

Decoupled Durum Kestirimi, hesaplama verimliliği ve uygulama kolaylığı sayesinde

endüstriyel uygulamalarda kullanılan en yaygın yöntemdir. Buna ek olarak Fast

Decoupled Durum Kestirimi, güç sistemi durum kestiriminde kullanılan matrislerin

seyrek yapısı sayesinde seyrek depolama gibi depolama teknikleri kullanılarak daha

da geliştirilebilir.

Literatürde bir çok seyrek depolama algoritması vardır, ancak bunlardan sadece

birkaçı güç sistemi durum kestirimi işlemleri için uygundur. Olası sık topoloji

değişiklikleri göz önüne alındığında, Knuth Yönteminin güç sistemi

uygulamalarında bir üstünlüğü vardır. Bunlara ek olarak, Knuth Yöntemi bile

matrislerle ilgili ek bilgiler kullanılarak daha da geliştirilebilir.

Bu tez, seyrek depolama algoritması için tam Knuth Yöntemini önermektedir.

Gerçek zamanlı güç sistemi uygulamaları için seyrek depolama kütüphanelerinin

açık kaynak olara mevcut olmadığı düşünülerek, öncelikle modifiye edilmiş seyrek

depolama kitaplığı oluşturulmuştur. Daha sonra oluşturulan seyrek depolama

viii

kütüphanesi kullanılarak güç sistemi durum kestirimcisinin özellikleri

oluşturulmuştur. Tasarlanan seyrek depolama kütüphanesi sayesinde, güç sistemi

durum kestirimi için hesaplama performansı daha da artırılmıştır.

Anahtar Kelimeler: Seyrek Depolama, Knuth Yöntemi, Geliştirilmiş Knuth

Yöntemi, Durum Kestirimi, Seyrek Matris Tersi

ix

To my family

Osman Yıldız

Ulviye Yıldız

Gizem Yıldız

x

ACKNOWLEDGMENTS

First, I would like to thank my supervisor Murat Göl for his precious friendship,

support, and guidance. It was a great pleasure to work three years with him. He

always supported me and answered my questions whenever I had a problem with the

research. Also, my academic view was highly influenced by his guidance.

I would really appreciate Scientific and Technological Research Council of Turkey

(TUBITAK) for financial support via BIDEB 2210-A funding.

I would also to thank dearest experts who were involved in this thesis project: Emre

Rızvanoğlu, Ozkan Tanrıverdi, Umut Can Çay, Etki Açılan, and Batuhan Bülbül.

Without their help and participation in project, the validation of the thesis cannot

have successful results.

Significant support came from my family as specially my parents Osman Yıldız, and

Ulviye Yıldız. They have always encouraged me to continue my academic life

without considering the financial issues and mentally supported me in tough times.

Last but not least support came from my best friend Zeynep Suvacı. Thanks to her

love, patience, and morale support, I got to that point.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

LIST OF ABBREVIATIONS .. xv

CHAPTERS

1 INTRODUCTION ... 1

2 BACKGROUND INFORMATION .. 7

2.1 Weighted Least Squares State Estimator ... 7

2.2 Bad Data Analysis .. 15

2.2.1 Chi-Square Test .. 16

2.2.2 Normalize Residual Test ... 18

3 SPARSE STORAGE ... 23

3.1 Gustavson’s Method ... 23

3.1.1 Adding a Non-Zero Element ... 26

3.1.2 Deleting a Non-Zero Element ... 27

3.1.3 Changing the Value of Non-Zero Element 28

3.2 Knuth’s Method .. 29

3.2.1 Non-Zero Element Addition ... 31

3.2.2 Deleting a Non-Zero Element ... 34

xii

3.2.3 Changing a Non-Zero Value ... 36

3.3 Comparison of Sparse Storage Techniques .. 37

4 THE PROPOSED METHOD .. 39

4.1.1 Adding a Non-Zero Element ... 40

4.1.2 Deleting a Non-Zero Element ... 41

4.2 Matrix Multiplication .. 43

4.3 Cholesky Decomposition .. 47

4.4 The Matrix Inversion .. 50

4.4.1 Takahashi Method ... 50

5 VALIDATION OF THE PROPOSED METHOD WITH STATE

ESTIMATOR .. 57

5.1 Test Results of Proposed Method in Multiplication Process 59

5.2 The Test Results of the Proposed Method in Cholesky Decomposition

Process ... 61

5.3 Test Results of Proposed Method for Matrix Inversion 62

6 CONCLUSION ... 65

REFERENCES .. 69

xiii

LIST OF TABLES

TABLES

Table 5.1: The solution time of proposed method of state estimation and bad data

analysis process in IEEE 30-Bus system .. 58

Table 5.2: The solution time of proposed method of state estimation and bad data

analysis process in IEEE 118-Bus system .. 58

Table 5.3: The time consumption of matrix multiplication using the proposed

method, reference tool, and conventional multiplication. 60

Table 5.4: The time results of Cholesky Decomposition with the proposed method,

MATLAB built-in function, and Doolittle’s algorithm. ... 62

Table 5.5. The time results of the proposed method, the built-in function of

MATLAB, conventional matrix inversion, and calculation of all entries of the

inverse of Gain matrix. ... 63

xiv

LIST OF FIGURES

FIGURES

Figure 2.1: The generalized  model of a transformer. ... 8

Figure 2.2: The “H” matrix sparse structure. .. 13

Figure 2.3: The Gain Matrix sparse structure. ... 14

Figure 2.4: Probability density function for 𝑥2. .. 16

Figure 2.5: The part of the Chi-Square table. .. 17

Figure 2.6: The structure of the hat matrix (K). .. 20

Figure 4.1: The visualization of matrix multiplication for first row first column ... 43

Figure 4.2: The linked list search of row order “Knuth’s Method” in the

multiplication of the first row of Matrix A and fifth column of Matrix B 44

Figure 4.3: The linked list search of the proposed method in the multiplication

process of the first row of Matrix A and fifth column of Matrix B 45

Figure 4.4: The lower triangular matrix of the gain matrix in Figure 2.3 48

Figure 4.5: The upper triangular matrix of the gain matrix in Figure 2.3 48

Figure 4.6: The Gain matrix after Reverse Cuthill McKee algorithm applied 53

Figure 4.7: The lower triangular matrix of the Gain matrix after the decomposition

process ... 54

xv

LIST OF ABBREVIATIONS

WLS Weighted Least Squares

FD-WLS Fast Decoupled Weighted Least Squares

SE State Estimation

CSR Compressed Sparse Row

CSC Compressed Sparse Column

BLUE Best Linear Unbiased Estimator

RAM Read Access Memory

1

CHAPTER 1

1 INTRODUCTION

In power systems, a state estimation process is an essential tool for monitoring the

system. To solve the state estimation for monitoring purposes, it is necessary to have

the required number of measurements gathered from the field, and the number of

measurements is increasing day after day with the increasing system size. Those

measurement devices mainly measure the “ Active and Reactive Power Injections,

Active and Reactive Power Flows and Voltages.” However, in recent years, the

technologies behind the measurement devices are evolving rapidly and PMU

devices, which measure the voltage magnitude and voltage angle, current magnitude,

and current angle, penetrate the power systems. As a result of the high number of

measurements and the increased system size, the data processed in state estimation

increased. Due to these issues, the solution time of state estimation processes

increases, and taking action for problematic situations can be delayed. Therefore, to

monitor the power system properly, state estimators have to solve the given

measurement set before the next measurement set is collected from the field.

State estimators mainly contain two steps, and those steps are “Estimation of States”

and “Bad Data Analysis.” In the power system state estimation process, the states

are defined as “Voltage Magnitudes of Buses (V)” and “Voltage Angles of Buses

().” The purpose of the state estimators is to use the provided measurements that

are gathered from the field and trying to estimate the “V” and “” of each bus of the

power system. However, the outcome of the state estimation process may be affected

due to malfunctioned measurements included in the provided measurement set.

Therefore, bad data analysis becomes important to detect and correct malfunctioned

measurements among the provided measurement set.

2

In literature, there are several state estimators, which have their own advantages and

disadvantages to each other [1-4]. However, the most common state estimator in the

field applications is “WLS (Weighted Least Squares)” since it is easy to implement

and the computational time of the WLS is superior to other state estimators. In

addition, there are several shapes of the WLS state estimators to decrease the time

consumption of the estimation process. The most used one in the field is the “FD-

WLS (Fast Decoupled Weighted Least Squares)” state estimator [5]. In the FD-WLS

state estimator, the time consumption of the estimation processed decreased based

on the observations that states of “V” are strongly related with reactive power

measurements and states of “” are strongly related with active power measurements

[5]. As a result of these observations, the Jacobian matrix is calculated only once

during the process and is used for all iterations until the system converged.

Therefore, the time consumption of building the Jacobian matrix in each iteration is

eliminated.

Besides the state estimators, the next important step of the state estimation process

is “Bad Data Analysis.” Once the states of the system are obtained by using the

“WLS State Estimator” or “Fast Decoupled State Estimator,” bad data analysis is

performed to detect and identify the malfunctioned data among the provided

measurement set [6-9]. This identification and detection process of malfunctioned

measurement is performed under two steps. These steps are written as follows;

• Chi-square test,

• Normalize residual test.

In the bad data analysis process, the Chi-square test is performed for detection of

whether there are malfunctioned measurements among the provided measurement

set or not. The Normalized residual test is performed for identification of the bad

data, which is detected by Chi-square [7].

In the state estimation algorithms, for both processes of “Estimation of States” and

“Bad Data Analysis” the main time consumptions occurred during the three main

matrix operations, which are matrix multiplications, Cholesky decompositions, and

3

matrix inversion. Although the solution time improvements were obtained with the

“FD-WLS” state estimation, there are still a significant amount of time consumptions

that occurred during these processes due to included zero-entry calculations in matrix

operations. These unnecessary zero-entry calculations become important with

increasing the number of measurements and the system sizes.

Thanks to the super sparse structures of matrices in state estimators, it is possible to

use sparse storage algorithms for further improvement to eliminate this unnecessary

time consumption that occurred by zero entries and accelerate the state estimation

and bad data analysis process. Sparse storage is a method that keeps the information

of non-zero entries in matrices via linked lists to eliminate the zero-entry calculations

during the matrix operations.

In this thesis, it is aimed to propose a suitable solution for state estimation processes

in order to decrease the solution time of solving each measurement set for a given

power system structure by using sparse storage algorithms.

In literature, there are several sparse storage methods [10-15]. However, sparse

storage is mostly case needed process. The algorithms such as Compressed Sparse

Row (CSR), Compressed Sparse Column (CSC), Skyline Storage (SKS) etc., are

mostly used for fixed-size matrices, but in power system state estimation process

matrix sizes are changing during the operations in real-time. Therefore, those

algorithms do not provide enough flexibility for the power system state estimation.

The most common sparse storage methods that satisfy power system state estimator

needs are “Gustavson’s Method” and “Knuth’s Method.” Both methods contain two

types of solutions under themselves. Those solutions are forming linked lists with

row information of non-zero elements and column information of non-zero elements

[13,14]. The privilege among these solutions is determined according to the

programming language that is used for the applications.

In power system state estimation process, flexibility and the linked list search time

are considered as two key features of the sparse storage algorithms due to frequent

4

alterations in the topology, which reflects on the used matrices in applications.

Considering these two key features, Knuth’s Method becomes superior to the

Gustavson’s Method due to lack of flexibility in Gustavson’s Method. Therefore, in

this work, “Knuth’s Method” is enhanced by combining both row ordered linked

lists and column ordered linked lists together. Beside the increase flexibility, the time

consumption of the linked list search is also decreased as a further enhancement with

the help of the utilization of the proposed method. Nevertheless, thanks to the

improvement of the technology behind the memory storage, using extra space in

“RAMs (Read Access Memories)” does not create any burden due to the proposed

method.

There are several sparse storage methods in the literature, however, there are not any

open-source algorithms that perform sparse storage for the power system state

estimation process. Therefore, this work also develops an open-source sparse storage

library for the state estimation process based on the utilized storage technique.

In this work, it will be shown that the proposed method, which is combining the row

ordered linked list and column ordered linked list for “Knuth’s Method” gives the

desired results and enhances the “Knuth’s Method” in matrix operations for power

system state estimator.

As a result, this thesis provides new perspective for the Knuth’s Method which will

contribute to the decreases in terms of solution time of power system state estimation

processes.

The main contributions of the proposed method are listed below;

• The linked list search time was further decreased compared to the “Knuth’s

Method”,

• The flexibility of linked lists operations for sparse matrix operations was

increased,

• The solution time of the matrix operations were significantly decreased,

• The open-source sparse storage library was provided.

5

In this thesis, in order to explain the proposed method, the work is divided into eight

chapters.

In the first chapter, which is the introduction part, the definition of the problem is

explained. Moreover, the existing solutions in the literature for this defined problem

are reviewed in this chapter. In addition, the innovation of the proposed method is

given in the introduction part. Moreover, the contributions of the proposed method

are given.

In the second chapter, the background information, the details of the state estimation

process, the details of the bad data analysis process will be given under the

“Weighted Leas Square” and “Bad Data Analysis” parts. Under the “Bad Data

Analysis” part, two steps which are “Chi-square Test” and “Normalize Residual

Test” will be explained in detail. These explained processes in those parts are used

in order to build a power system state estimator and then the built state estimator is

further improved with the proposed method.

In the third chapter, the sparse storage techniques which are suitable for the power

system state estimation process will be explained in detail. The main operations,

which are addition, deletion, and changing a value of a non-zero element in linked

lists for sparse storage, will be explained. Moreover, the advantages and

disadvantages of those sparse storage methods will be given.

In the fourth chapter, matrix multiplication, the details of sparse matrix

multiplication using “Knuth’s Method” and the proposed method will be explained.

A comparison between the “Knuth’s Method” and the proposed method will be

given. Moreover, the advantages of the proposed method over the “Knuth’s Method”

will be shown. Then the results of the proposed method for the matrix multiplication

process and the comparison between the proposed method with “Knuth’s Method”

will be given.

In the fifth chapter, the processes of Cholesky decomposition and the importance of

the decomposition process for state estimation will be explained. Then the results of

6

the comparison of the proposed method for Cholesky decomposition with other

methods will be shown.

The importance of the matrix inversion process and the details of the used

“Takahashi Method” will be given in chapter six. Then the results of the comparison

for the proposed method with other solutions will be given.

In chapter seven, the details of the built real-time state estimator will be given. In

this state estimator, the solution time results of the state estimation and bad data

analysis processes that utilized the proposed method will be shown.

In the final chapter of this thesis, the discussion of the proposed method, observations

regarding the test results of the proposed method in state estimation process and

future works will be provided.

7

CHAPTER 2

2 BACKGROUND INFORMATION

In order to describe the importance of sparse storage algorithm for power system

monitoring, firstly state estimation process should be analyzed. In the state

estimation process there are several steps in order to estimate bus voltages and bus

voltage angles [6]. Those steps can vary, however, the main idea is the same for all

state estimators that are used for the power system monitoring.

In this part of the thesis, the well-known state estimator which is called as “Weighted

Least Squares – WLS” state estimator, will be discussed. The benefits of WLS over

the other estimators are:

• It is easy to implement,

• Computational performance is better among others,

• And it is the best linear unbiased estimator “(BLUE)[6]”.

And later, bad data analysis, which is performed after the WLS-SE in order to find

the corrupted bad data among the measurement set, will be analyzed.

In this Chapter, the discussion about the estimator will be given in the Weighted

Least Squares part, and the discussion about bad data analysis will be given under

the Bad Data Analysis part.

2.1 Weighted Least Squares State Estimator

In the power system monitoring, state estimation has a crucial role in finding the

system states, namely, bus voltage magnitudes and bus voltage angles, using the

provided measurement set. Those measurements are mainly divided into two

measurement types which are “SCADA” and “ PMU (Phasor Measurement Unit)”

measurements. SCADA measurements consist of power flow measurements, power

injection measurements, and voltage magnitude measurements, and PMU

8

measurements consist of voltage magnitude, voltage angle, current magnitude, and

current angle measurements. The state estimator aims to use those measurements to

find an optimum solution for system states via optimizing the objection function.

In order to achieve this, first of all, system components which are transmission lines,

transformers, shunt capacitors or rectors, and tap changing or phase shifting

transformers, should be modeled. To model these components, the generalized 

model is used.

Figure 2.1: The generalized  model of a transformer.

After modeling the components, the ybus matrix is obtained according to

formulation in [6]:

[
𝑖𝑘
𝑖𝑚

] = [
𝑦 𝑎2 + 𝑦𝑠ℎ/2⁄ −𝑦 𝑎⁄

−𝑦 𝑎⁄ 𝑦 + 𝑦𝑠ℎ/2
] [

𝑣𝑘

𝑣𝑚
] (2.1)

where,

𝑦 is the series admittance value of the line (leakage admittance for transformer),

𝑎 is the tap value of the transformer (𝑎 = 1 if this is transmission line),

𝑦𝑠ℎ is the line charging susceptance value.

With the use of equation (2.1) network model formed as follow:

9

𝐼 = [

𝑖1
𝑖2
⋮
𝑖𝑁

] = [

𝑌11 𝑌12 … 𝑌1𝑁

𝑌21 𝑌22 … 𝑌2𝑁

⋮ ⋮ ⋮ ⋮
𝑌𝑁1 𝑌𝑁2 … 𝑌𝑁𝑁

] [

𝑣1

𝑣2

⋮
𝑣𝑁

] = 𝑌 𝑉 (2.2)

where,

ik is the net current injection at bus k,

vk is the voltage phasor at bus k, and Ykm is the (𝑘,𝑚)𝑡ℎ element of Y matrix.

This network model is one of the key elements for WLS-SE since the calculation of

measurement function of state estimation needs network models. Once the network

model is obtained, according to [6], the definition of the state estimation formulation

can be written as follows:

 𝑧 = ℎ(𝑥) + 𝑒 (2.3)

where,

h(.) represents the measurement function which makes a relationship between

measurements to state vector 𝑥 (𝑛 × 1),

x represents the true state vector with the size of (𝑛 × 1),

e corresponds to the measurement error vector with the size of (𝑚 × 1),

z represents the measurement vector with the size of (𝑚 × 1),

n is the number of states, and m is the number of measurements.

In WLS-SE formulation, there are several assumptions are made for measurement

errors such as;

• E[e] = 0

• E[eiej] = 0

• cov(e) = E[eeT] = R

10

where,

R is named as measurement error covariance matrix, and it is a diagonal matrix.

The objective function of the WLS-SE can be written as follows:

 𝐽(𝑥) = ∑𝑊𝑖𝑖 (𝑧𝑖 − ℎ𝑖(𝑥))2

𝑚

𝑖=1

 (2.4)

In equation (2.4),

subscript i shows the ith entry of the related vector,

subscript ii represents the iith entry of the related vector, and W is equal to the R-1.

It can be seen that with the minimization of the x gradient of equation (2.4) will be

zero according to the first order optimality condition. For this reason, the following

relation will be held:

 𝑔(𝑥) =
𝜕𝐽(𝑥)

𝜕𝑥
= −𝐻𝑇(𝑥)𝑊[𝑧 − ℎ(𝑥)] = 0 (2.5)

Since 𝑔(𝑥) is a nonlinear function, to solve the nonlinear problem, an iterative

solution is required. Therefore, equation (2.5) is linearized around the state vector xk

by using the Taylor Series Expansion, and the following iterative solution

formulation is written as follows:

 Δ𝑥𝑘+1 = 𝐺(𝑥𝑘)−1𝐻𝑇(𝑥𝑘)𝑊[𝑧 − ℎ(𝑥𝑘)] (2.6)

where,

Δ𝑥𝑘+1 = 𝑥𝑘+1 − 𝑥𝑘 ,

𝐺(𝑥𝑘) = 𝐻𝑇(𝑥𝑘)𝑊𝐻(𝑥𝑘),

𝐻(𝑥𝑘) represents the measurement Jacobian matrix with a size of (𝑚 × 𝑛),

11

𝑥𝑘 represents the state vector that is estimated at iteration k and

h(.) is the measurement function that creates measurements by using 𝑥𝑘.

After forming equation (2.6), to solve the state estimation problem, the measurement

function is formed as follows;

𝐻 =

[

𝜕𝑃𝑖𝑛𝑗

𝜕𝜃

𝜕𝑃𝑖𝑛𝑗

𝜕𝑉
𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝜃

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉
𝜕𝑄𝑖𝑛𝑗

𝜕𝜃

𝜕𝑄𝑖𝑛𝑗

𝜕𝑉
𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝜃

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉

0
𝜕𝑉𝑚𝑎𝑔

𝜕𝑉]

(2.7)

The expressions for each partition in equation (2.6) are given as follows;

• Elements corresponding to real power injection measurements:

∂𝑃𝑖

∂θ𝑖
= ∑𝑉𝑖

𝑁

𝑗=1

𝑉𝑗(−𝐺𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗 + 𝐵𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗) − 𝑉𝑖
2𝐵𝑖𝑖

∂𝑃𝑖

∂θ𝑗
= 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗)

∂𝑃𝑖

∂𝑉𝑖
= ∑𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) + 𝑉𝑖𝐺𝑖𝑖

𝑁

𝑗=1

𝜕𝑃𝑖

𝜕𝑉𝑗
= 𝑉𝑖(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)

(2.8)

• Elements corresponding to reactive power injection measurements:

𝜕𝑄𝑖

𝜕𝜃𝑖
= ∑𝑉𝑖

𝑁

𝑗=1

𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) − 𝑉𝑖
2𝐺𝑖𝑖

12

𝜕𝑄𝑖

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(−𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 − 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)

𝜕𝑄𝑖

𝜕𝑉𝑖
= ∑ 𝑉𝑖

𝑁

𝑗=1

𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗) − 𝑉𝑖𝐵𝑖𝑖

∂𝑄𝑖

∂𝑉𝑗
= 𝑉𝑖𝑉𝑗(−𝐺𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗 − 𝐵𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗)

(2.9)

• Elements corresponding to real power flow measurements:

∂𝑃𝑖𝑗

∂θ𝑖
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗)

∂𝑃𝑖𝑗

∂θ𝑗
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗)

𝜕𝑃𝑖𝑗

𝜕𝑉𝑖
= −𝑉𝑗(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) + 2(𝑔𝑖𝑗 + 𝑔𝑠𝑖) 𝑉𝑖

𝜕𝑃𝑖𝑗

𝜕𝑉𝑗
= −𝑉𝑖(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)

(2.10)

• Elements corresponding to reactive power flow measurements:

𝜕𝑄𝑖𝑗

𝜕𝜃𝑖
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)

𝜕𝑄𝑖𝑗

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)

𝜕𝑄𝑖𝑗

𝜕𝑉𝑖
= −𝑉𝑖(𝑔𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗) − 2𝑉𝑖(𝑏𝑖𝑗 + 𝑏𝑠𝑖)

𝜕𝑄𝑖𝑗

𝜕𝑉𝑗
= −𝑉𝑖(𝑔𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗)

(2.11)

• Elements corresponding to voltage magnitude measurements:

𝜕𝑉𝑖

𝜕𝑉𝑖
 = 1,

𝜕𝑉𝑖

𝜕𝑉𝑗
= 0,

𝜕𝑉𝑖

𝜕𝜃𝑖
= 0,

𝜕𝑉𝑖

𝜕𝜃𝑗
= 0 (2.12)

13

where,

𝑉𝑖, 𝜃𝑖 are the voltage magnitude and phase angle at bus i, 𝜃𝑖𝑗 is equal to phase angle

differences between bus i and bus j,

𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗 is the ijth element of the bus admittance matrix,

𝑔𝑖𝑗 + 𝑗𝑏𝑖𝑗 is the admittance value of the branch which is connecting the bus i and j,

𝑔𝑠𝑖 + 𝑗𝑏𝑠𝑖 is the admittance of the shunt branch connected to bus i,

Ni is the bus number that is directly connected to bus i.

In the power system, with the existence of super sparse structure in the network

model, there occurs only a few non-zero elements for equations (2.8), (2.9), (2.10),

(2.11), and (2.12). The example structure of the Jacobian “H” matrix for IEEE-30

Bus system can be seen in Figure 2.2.

Figure 2.2: The “H” matrix sparse structure.

14

As is seen in Figure 2.2, the sparsity of the “H” matrix is around 9%. According to

[16], the shape as “H” matrices is defined as a super sparse structure. Moreover, in

equation (2.6), the Gain “(G)” matrix is constructed with the “H” matrix. Therefore,

thanks to a sparse structure of the “H” matrix, the “G” matrix is also has a super

sparse structure. The example figure for the Gain matrix (“G”) is in Figure 2.3.

Figure 2.3: The Gain Matrix sparse structure.

Once the “G” matrix and “H” matrix is calculated, equation (2.6) should be solved

for each iteration. However, since there is an inverse matrix operation in equation

(2.6), not to take an inverse of the “G” matrix, the “Cholesky Decomposition”

process is applied to the “G” matrix.

As a result, the “Cholesky Decomposition” method is utilized instead of taking an

inverse of the “G” to decrease computational time. According to [17,18], “Cholesky

Decomposition” formulation can be written as follows:

15

𝐴 = 𝐿𝐿𝑇 = [

𝑥 0 0
𝑥 𝑥 0
𝑥 𝑥 𝑥

] [
𝑥 𝑥 𝑥
0 𝑥 𝑥
0 0 𝑥

]

(2.13)

𝐿𝑖𝑗 = √𝐴𝑗𝑗 − ∑ 𝐿𝑗𝑘(𝐿𝑗𝑘)
∗𝑗−1

𝑘=1

𝐿𝑖𝑗 =
𝐴𝑗𝑗 − ∑ 𝐿𝑗𝑘(𝐿𝑗𝑘)

∗𝑗−1
𝑘=1

√𝐴𝑗𝑗 − ∑ 𝐿𝑗𝑘(𝐿𝑗𝑘)
∗𝑗−1

𝑘=1

(2.14)

where,

i and j are the row and column indices of the matrix.

Once the calculation is performed for “Cholesky Decomposition,” equation (2.14) is

solved for Δ𝑥𝑘+1 at each iteration until the determined threshold for the convergence

is satisfied.

During this calculation process of each iteration, a sparse storage method can be

applied for further improvement in terms of computational speed. Since the sparsity

of matrices is increasing with the increasing power system size, a zero-entry

calculations cause an undesired time-consumptions fo processes such as “Gain

Matrix” calculation and “Cholesky Decomposition”, since those calculations include

a lot of multiplication, addition, and subtraction operations. Therefore, this time-

consuming calculations, which are occurred due to the zero entries in matrices, can

be eliminated with the help of sparse storage in significant order.

2.2 Bad Data Analysis

Once WLS-SE is performed, the bad data analysis checks presence of an erroneous

measurement that biases system states during the state estimation process. In general,

bad data analysis is formed of two steps [6-9]. The first step is detecting the

16

erroneous measurement, and the second step is identifying the detected measurement

and eliminating them if possible. Those erroneous data occurs due to various reasons

such as having a finite accuracy among the meters, telecommunication medium, etc.

Therefore, eliminating those bad data among the measurement set provided to the

state estimator is crucial for power system operators in terms of proper system

monitoring.

To achieve this, two well-known approaches, which are the “Chi-Square Test” and

“Normalized Residual Test,” are used for the detection and identification purposes

of bad data, respectively [6, 19, 20].

2.2.1 Chi-Square Test

The main purpose of the Chi-square test is to detect the existence of the erroneous

measurement. According to [19], this is achieved by utilizing the x2 distribution.

Figure 2.4: Probability density function for 𝑥2.

17

Figure 2.5: The part of the Chi-Square table.

In Figure 2.4 area under the probability density function is related to the probability

of finding X in the corresponding region. In other words

 𝑃𝑟(𝑋 ≥ 𝑥𝑡ℎ) = ∫ 𝑥2(𝑢). 𝑑𝑢

∞

𝑥𝑡ℎ

 (2.15)

Equation (2.15) represents the probability of X being larger than a certain threshold

𝑥𝑡ℎ. With the increasing values of 𝑥𝑡ℎ value, the probability of X being a specified

region decreases since the tail of the distribution is decaying. In Figure 2.4, the

dashed line corresponds to a threshold value, representing the largest acceptable

0,99 0,95 0,9 0,8 0,75 0,5 0,25 0,1 0,05 0,01

1 0,00 0,00 0,02 0,06 0,10 0,45 1,32 2,71 3,84 6,63

2 0,02 0,10 0,21 0,45 0,58 1,39 2,77 4,61 5,99 9,21

3 0,11 0,35 0,58 1,01 1,21 2,37 4,11 6,25 7,81 11,34

4 0,30 0,71 1,06 1,65 1,92 3,36 5,39 7,78 9,49 13,28

5 0,55 1,15 1,61 2,34 2,67 4,35 6,63 9,24 11,07 15,09

6 0,87 1,64 2,20 3,07 3,45 5,35 7,84 10,64 12,59 16,81

7 1,24 2,17 2,83 3,82 4,25 6,35 9,04 12,02 14,07 18,48

8 1,65 2,73 3,49 4,59 5,07 7,34 10,22 13,36 15,51 20,09

9 2,09 3,33 4,17 5,38 5,90 8,34 11,39 14,68 16,92 21,67

10 2,56 3,94 4,87 6,18 6,74 9,34 12,55 15,99 18,31 23,21

11 3,05 4,57 5,58 6,99 7,58 10,34 13,70 17,28 19,68 24,72

12 3,57 5,23 6,30 7,81 8,44 11,34 14,85 18,55 21,03 26,22

13 4,11 5,89 7,04 8,63 9,30 12,34 15,98 19,81 22,36 27,69

14 4,66 6,57 7,79 9,47 10,17 13,34 17,12 21,06 23,68 29,14

15 5,23 7,26 8,55 10,31 11,04 14,34 18,25 22,31 25,00 30,58

16 5,81 7,96 9,31 11,15 11,91 15,34 19,37 23,54 26,30 32,00

17 6,41 8,67 10,09 12,00 12,79 16,34 20,49 24,77 27,59 33,41

18 7,01 9,39 10,86 12,86 13,68 17,34 21,60 25,99 28,87 34,81

19 7,63 10,12 11,65 13,72 14,56 18,34 22,72 27,20 30,14 36,19

20 8,26 10,85 12,44 14,58 15,45 19,34 23,83 28,41 31,41 37,57

21 8,90 11,59 13,24 15,44 16,34 20,34 24,93 29,62 32,67 38,93

22 9,54 12,34 14,04 16,31 17,24 21,34 26,04 30,81 33,92 40,29

23 10,20 13,09 14,85 17,19 18,14 22,34 27,14 32,01 35,17 41,64

24 10,86 13,85 15,66 18,06 19,04 23,34 28,24 33,20 36,42 42,98

25 11,52 14,61 16,47 18,94 19,94 24,34 29,34 34,38 37,65 44,31

26 12,20 15,38 17,29 19,82 20,84 25,34 30,43 35,56 38,89 45,64

27 12,88 16,15 18,11 20,70 21,75 26,34 31,53 36,74 40,11 46,96

28 13,56 16,93 18,94 21,59 22,66 27,34 32,62 37,92 41,34 48,28

29 14,26 17,71 19,77 22,48 23,57 28,34 33,71 39,09 42,56 49,59

30 14,95 18,49 20,60 23,36 24,48 29,34 34,80 40,26 43,77 50,89

Probability of Exceeding the Critical ValueDegree of

Freedom

18

value for X that will not imply any erroneous measurement. If the value of 𝑋 exceeds

the thresold value, then it is flagged as a bad data suspicion [6, 20]. These threshold

values can be found by using the chi-square table seen in Figure 2.5. Therefore, with

the utilization of the value of 𝑋 that corresponds to the cost of the objective function

in equation (2.4) and the threshold value found by using the chi-square table,

erroneous measurements can be detected among the given measurement set.

2.2.2 Normalize Residual Test

In the previous chapter, the detection of the erroneous measurement is explained for

the bad data analysis. In this part, the identification method will be given in detail

for measurements detected in the “Chi-Square Test.”

According to [6, 19], for WLS-SE equation shown in equation (2.3) changed to a

linearized measurement equation as follows:

 ∆𝑥̂ = 𝐻∆𝑥 + 𝑒 (2.16)

where, 𝐸(𝑒) = 0 and

 𝑐𝑜𝑣(𝑒) = 𝑅.

Then, the linearized state vector for WLS-SE can be written as:

 ∆𝑥̂ = (𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1∆𝑧

= 𝐺−1𝐻𝑇𝑅−1∆𝑧
(2.17)

and the esitmated value of ∆𝑧 is wrriten as:

 ∆𝑧̂ = 𝐻∆𝑥̂ = 𝐾∆𝑧 (2.18)

19

where,

 𝐾 = 𝐻𝐺−1𝐻𝑇𝑅−1 which is called a “hat matrix” for putting a hat on ∆𝑧.

The structure of the hat matrix can be seen in Figure 2.6. To proceed further, firstly,

the properties of the “K” matrix should be investigated. Those properties are;

 𝐾.𝐾. 𝐾. 𝐾 … . 𝐾 = 𝐾 (2.19)

 𝐾𝐻 = 𝐻 (2.20)

 (𝐼–𝐾) 𝐻 = 0 (2.21)

Moreover, the residuals of measurements can be described as follows:

 𝑟 = ∆𝑧 − ∆𝑧̂ 𝑎𝑠

= (𝐼–𝐾)∆𝑧

= (𝐼–𝐾)(𝐻∆𝑥 + 𝑒)

= (𝐼–𝐾)𝑒

= 𝑆𝑒

(2.22)

where,

S is named as residual sensitivity matrix, and it represents the sensitivity of

measurements residual to the measurement errors, and it has the following

properties:

 𝑆. 𝑆. 𝑆 … 𝑆 = 𝑆 (2.23)

 𝑆. 𝑅. 𝑆𝑇 = 𝑆𝑅 (2.24)

By using the relation between the residuals of measurements and errors with using

equation (2.22), covariance and the mean of the measurement residuals can be

obtained as follows:

20

Figure 2.6: The structure of the hat matrix (K).

 𝐸(𝑟) = 𝐸(𝑆. 𝑒) = 𝑆𝐸(𝑒) = 0

𝐶𝑜𝑣(𝑟) = Ω = 𝐸[𝑟𝑟𝑇]

= 𝑆𝐸[𝑒𝑒𝑇]𝑆𝑇

= 𝑆𝑅𝑆𝑇

 = 𝑆𝑅

(2.25)

Once the “S” matrix is calculated, the next step, which is finding the normalized

residuals, is utilized by using the following formulations:

 𝑟𝑖 = 𝑧𝑖– ℎ𝑖(𝑥̂), 𝑖 = 1, … . ,𝑚 (2.26)

𝑟𝑖

𝑁 =
| 𝑟𝑖 |

√Ω𝑖𝑖

 , 𝑖 = 1,… . ,𝑚 (2.27)

21

where,

 𝑟𝑖
𝑁 represents the normalized value of residuals at ith indices and

 Ω𝑖𝑖 represents the ith diagonal entry of the residual sensitivity matrix.

Once the normalized residuals are calculated, the information of erroneous

measurement is reached by searching the maximum of the normalized residuals. The

maximum of normalized residuals identifies the measurement, which has errors and

biases the state estimation process. To eliminate the biasing problem that occurred

due to the bad data, identified measurement in normalize residual test should be

eliminated or corrected. In general, system operators choose to correct instead of

eliminating since once the bad data is eliminated, whole matrices such as

measurement Jacobian matrix, Gain matrix, etc., should be reformed. However, if

the found erroneous measurement is corrected, then only a simple modification is

required among those matrices, and it is a faster operation.

The steps for detecting and identifying the bad data among measurements set is given

as;

• Solving the WLS-SE and obtain the estimated states

• With obtained estimated states cost of the objective function is calculated

• Check whether there is erroneous data or not

• If there is erroneous data, “Normalize Residual Test” is performed

• In “Normalize Residual Test,” first residuals are found by using the estimated

states and measurements

• Then hat matrix (K) is calculated, and then sensitivity matrix (S) is found

• Finally, with the calculation of normalized residuals using the sensitivity

matrix, bad data is found among the measurement set.

In the state estimation process, the identification of the bad data consumes a

significant amount of time if there are multiple bad data in the measurement set due

to the calculation of an inverse operation mentioned in equation (2.17) and

22

performation of state estimation for each bad data. Therefore, with the help of sparse

storage, time consumption can be reduced.

23

CHAPTER 3

3 SPARSE STORAGE

In the power system state estimation process, there are several storage techniques to

improve the computational speed [5]. However, the most suitable and the most

common one is the sparse storage method since matrices in state estimation have a

super sparse structure, and eliminating the processes of zero elements during matrix

calculation provides desired computational improvement. In terms of the sparse

storage method, there are several different approaches to store non-zero elements of

the matrices, but all those approaches are based on the same principle, which is

creating linked lists for non-zero elements and using these linked lists to make matrix

calculations [10-15]. Among those sparse storage methods, two methods are

commonly used in the power system state estimation process, namely “Gustavson’s

Method” and “Knuth’s Method,” and with varying linked list creation in each

method, the benefits from those can be further increased. Each of these methods has

advantages and disadvantages over each other. However, in this thesis, “Knuth’s

Method” is used for a storage technique to decrease the computational time of the

state estimation process since it has flexibility for matrix reformations during the

iterations of the state estimation process.

In this Chapter, the details about the two main sparse storage techniques in state

estimation will be given. The comparison between “Gustavson’s Method” and

“Knuth’s Method” is given in the “Comparison of Sparse Storage Techniques” part.

3.1 Gustavson’s Method

Gustavson’s method is the most common sparse storage technique in terms of

improving the computational performance of processes that have sparse structure

matrices. In literature, it is called CRS (Compressed Row Storage), and the other

24

variation of “Row Storage” is called CCS (Compressed Column Storage) [11]. The

usage of those methods varies in terms of programming language in such that, for

columned-based programming languages, CCS should be used to utilize sparse

storage, and for rowed-based programming languages, CRS should be used.

In Gustavson’s method, the way of storing non-zero elements of matrices is creating

the three vectors in linked list, which are value vector, row index vector and index

vector. The sample of method can be seen as follows;

[

1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (3.1)

where,

𝑛 is the row number and

𝑘 is the column number of the matrix.

In equation (3.1), the sample sparse matrix can be seen. Moreover, the formulation

of sparsity calculation of matrix can be written as follows;

𝛿 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
× 100 (3.2)

By using equation (3.2) for the matrix in equation (3.1), the sparsity of the sample

matrix is calculated as “32%”. As seen, the non-zero elements place less than half of

the total elements of the matrix. In power system applications, this sparsity

percentage decreases with increasing system size.

For sparse matrices exampled in equation (3.1), column-based linked lists are created

for Gustavson’s method as follows;

25

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 = [1 4 2 5 3 1 1 4]1×𝑚

𝑖𝑛𝑑𝑒𝑥 = [1 3 5 6 7 9]1×(𝑛+1)

(3.3)

where,

𝑚 is the number of non-zero elements and

𝑛 is the row number.

Moreover, the same linked list with using row-based vectors for matrix in equation

(3.1) can be written as follows;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 2 4 5 4 3 6 2]1×𝑚

𝑟𝑜𝑤 𝑖𝑛𝑑𝑒𝑥 = [1 4 5 2 3 1 5 2]1×𝑚

𝑖𝑛𝑑𝑒𝑥 = [1 4 5 6 8 9]1×(𝑘+1)

(3.4)

where,

𝑚 is the non-zero elements and

𝑘 is the column number of the matrix.

In both CRS and CCS methods, the approach is based on creating a linked list for

non-zero elements of matrices.

In the compressed row storage method, the way of creating a linked list is following

non-zero elements in each row and storing their value in value array, column number

in column index vector, and the number of non-zero elements for each row in index

vector. For example, in equation (3.3), the number of non-zero elements in ith row

can be found by investigating the difference between (ith+1) and ith column of index

array such that in the first row, there are two non-zero elements (𝑖𝑛𝑑𝑒𝑥(2) −

𝑖𝑛𝑑𝑒𝑥(1) = 2), in second row there are two non-zero elements (𝑖𝑛𝑑𝑒𝑥(3) −

26

𝑖𝑛𝑑𝑒𝑥(2) = 2) etc. Therefore, with using these linked lists, non-zero elements in

matrices can be stored, and also sparse stored matrices can be recreated.

Besides creating the linked lists, there are three main operations for sparse stored

matrices which are;

• Adding an additional non-zero element to the matrix,

• Deleting a non-zero element from the matrix,

• Changing the value of non-zero elements of the matrix.

These operations are given detailed in the following sub-sections.

3.1.1 Adding a Non-Zero Element

According to [11], adding a non-zero element to existed linked list of Gustavson’s

method has three steps. Those steps are;

• Finding the location where the column number or row number of added value

takes place in column index vector or row index vector depending on the

utilized method

• Adding new value to value vector in found location

• Changing the total number of non-zero elements in the index array

The steps are visualized for matrix in equation (3.1) with the following equations.

[

1 0 8 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (3.5)

The new added value is shown with red color in equation (3.5). The new value is

added to the first row and third column of the matrix. After adding the new value,

linked lists for row storage method in equation (3.3) and column storage method in

(3.4) changed respectively as follows;

27

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 8 3 5 2 4 2 4 6]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 = [1 3 4 2 5 3 1 1 4]1×𝑚

𝑖𝑛𝑑𝑒𝑥 = [1 4 6 7 8 10]1×(𝑛+1)

(3.6)

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 2 4 5 8 4 3 6 2]1×𝑚

𝑟𝑜𝑤 𝑖𝑛𝑑𝑒𝑥 = [1 4 5 2 1 3 1 5 2]1×𝑚

𝑖𝑛𝑑𝑒𝑥 = [1 4 5 7 9 10]1×(𝑘+1)

(3.7)

As seen in equations (3.6), (3.7), the value vector and column/row index vector size

increased with the number of non-zero elements added to the matrix. However, index

vector size does not change since it shows only the total number of non-zero elements

in rows or columns for row storage or column storage, respectively, yet the

corresponded values of the index array increase.

3.1.2 Deleting a Non-Zero Element

According to [11], deleting a non-zero element from existed linked list of

Gustavson’s method has three steps as follows;

• Finding the location where the column number or row number of deleted

value takes place in column index vector or row index vector depending on

utilized method,

• Deleting the desired value from the value vector by using the found location,

• Changing the total number of non-zero elements in the index array.

The steps are visualized for matrix in equation (3.1) as follows;

28

[

1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
0 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (3.8)

In equation (3.8), the value in the fourth row and the first column is changed from

“2” to “0” in other words, it is deleted from the linked list. The changed linked lists

for matrix in equation (3.8) is written as follows;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 4 6]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 = [1 4 2 5 3 1 4]1×𝑚

𝑖𝑛𝑑𝑒𝑥 = [1 3 5 6 6 8]1×(𝑛+1)

(3.9)

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 4 5 4 3 6 2]1×𝑚

𝑟𝑜𝑤 𝑖𝑛𝑑𝑒𝑥 = [1 5 2 3 1 5 2]1×𝑚

𝑖𝑛𝑑𝑒𝑥 = [1 3 4 5 6 7]1×(𝑘+1)

(3.10)

As seen in equations (3.9) and (3.10), the value vector and column/row index vector

size decreased with the number of non-zero elements deleted from the matrix.

However, index vector size does not change since it shows only the total number of

non-zero elements in rows or columns for row storage or column storage,

respectively, yet the corresponded value of the index array decreases.

3.1.3 Changing the Value of Non-Zero Element

According to [11], changing a non-zero element in the linked list has two steps, and

those steps are;

• Finding the location where the column number or row number of changed

non-zero element takes place in column index vector or row index vector,

respectively,

29

• Updating the value vector by using the found location in the first step.

The steps are visualized for matrix in equation (3.1) as follows;

[

1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 10 0]

𝑛×𝑘

 (3.11)

In equation (3.11), the existed non-zero element value in the fifth row and the fourth

column is changed from “6” to “10”. The new linked lists are formed as follows;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 10]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 = [1 4 2 5 3 1 1 4]1×𝑚

𝑖𝑛𝑑𝑒𝑥 = [1 3 5 6 7 9]1×(𝑛+1)

(3.12)

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 2 4 5 4 3 10 2]1×𝑚

𝑟𝑜𝑤 𝑖𝑛𝑑𝑒𝑥 = [1 4 5 2 3 1 5 2]1×𝑚

𝑖𝑛𝑑𝑒𝑥 = [1 4 5 6 8 9]1×(𝑘+1)

(3.13)

As seen in equations (3.12) and (3.13), the only changes occurred in the value vector

since the change is made for existed non-zero element, and all other properties for

non-zero elements in the linked list are kept same.

3.2 Knuth’s Method

Besides Gustavson’s method, there is another option for sparse storage named

Knuth’s method for the power system state estimation process. In Knuth’s method,

instead of three vectors to store information of non-zero elements, four vectors are

utilized, namely as value vector, column/row vector, begin row/column vector, and

next row/column vector. As Gustavson’s method, Knuth’s method also has two

30

options to store non-zero elements in row order or in column order depending on the

programming language that is used for processes.

In order to visualize Knuth’s method, the same matrix formed in equation (3.1) is

used. The linked list that is created by utilizing column order and row order is formed

as follows;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 6 7]1×𝑛

(3.14)

 𝑣𝑎𝑙𝑢𝑒 𝑒𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6]1×𝑚

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 = [1 1 2 2 3 4 5 5]1×𝑚

𝑛𝑒𝑥𝑡𝐶 = [6 8 −1 −1 −1 7 −1 −1]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 = [1 3 5 2 4]1×𝑘

(3.15)

where,

𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦: storing the non-zero values of the matrix (can be arbitrary order),

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦: Column index of the corresponding elements stored in value vector

(𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑖) is the column index of 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑖))

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦: Row index of the corresponding elements stored in value vector (row

𝑎𝑟𝑟𝑎𝑦 (𝑖) is the row index of 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑖))

𝑛𝑒𝑥𝑡𝐶: This array contains the pointer to the next non-zero element location in the

same row (𝑛𝑒𝑥𝑡𝐶 (𝑖) = 𝑧 => 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑧) is the next non-zero element of

𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦(𝑖))

𝑛𝑒𝑥𝑡𝑅: This array contains the pointer to the next non-zero element location in the

same column (𝑛𝑒𝑥𝑡𝑅 (𝑖) = 𝑧 => 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑧) is the next non-zero entry of

𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑖))

31

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤: This array contains the pointers to the beginning of each row

(𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 (𝑖) = 𝑧, first non-zero entry of row i is 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑧))

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛: This array contains the pointer to the beginning of each column

(𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 (𝑖) = 𝑧, first non-zero entry of column i is 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑧))

𝑚 is the number of non-zero elements in the matrix

𝑛 is the total column number, and k is total the row number of the matrix

To form linked lists given in equations (3.14) and (3.15) for sparse matrix operations,

there are three main processes to be considered. Those processes are;

• Adding the additional non-zero element to the matrix,

• Deleting the non-zero element from the matrix,

• Changing the non-zero element of the matrix.

3.2.1 Non-Zero Element Addition

Adding an additional non-zero element to the linked list is more complicated than

“Gustavson’s Method” since linked lists in “Knuth’s Method” can be formed

arbitrarily [14]. Therefore, the operation for reforming linked lists varies with the

location of the newly added non-zero element. In order to visualize the reformation

of linked lists, the row order method is used. The processes are the same for the

column order method as well.

In order to visualize the reformation of linked lists, the used matrix for adding a non-

zero element at the beginning of the row is given as follows;

[

1 0 0 3 0
8 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (3.16)

32

As seen in the matrix in equation (3.16), the new non-zero element “8” is added to

the second row and first column.

When the non-zero element is added at the beginning of the row, then the following

process is performed the update linked lists.

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑀

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑗

𝑛𝑒𝑥𝑡𝑅 (𝑚 + 1) = 𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 (𝑖)

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 (𝑖) = 𝑚 + 1

(3.17)

where,

𝑚 is the number of the non-zero element before the new non-zero element,

i is the row number of newly added non-zero element,

j is the column number of new non-zero element and

𝑀 is the value of the non-zero element.

With utilizing the equation (3.17), the linked lists in equation (3.14) are updated as

follows;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6 8]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4 1]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1 3]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 9 5 6 7]1×𝑛

(3.18)

The used matrix for adding a non-zero element neither the first entry nor the last

entry is given as follows;

33

[

1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 8 6 0]

𝑛×𝑘

 (3.19)

In the matrix in equation (3.19), the new non-zero element is added between the first

column and fourth column of the fifth row. In order to update such cases, the

following procedure was performed.

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑀

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑗

𝑛𝑒𝑥𝑡𝑅 (𝑚 + 1) = 𝑝𝑟𝑒𝑣

𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣) = 𝑚 + 1

(3.20)

where,

𝑝𝑟𝑒𝑣 is the previous non-zero element index in the same row of newly added non-

zero element at value array.

Therefore, with utilizing equation (3.20), the linked lists created in equation (3.14)

are updated as follows;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6 8]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4 3]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 9 −1 8]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 6 7]1×𝑛

(3.21)

Finally, the used matrix for adding a non-zero element to the end of the row

visualized as follows;

34

[

1 0 0 3 8
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (3.22)

𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑀

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑗

𝑛𝑒𝑥𝑡𝑅 (𝑚 + 1) = −1

𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣) = 𝑚 + 1

(3.23)

In the matrix given in equation (3.22), the non-zero element is added at the end of

the first row. For such cases, the process in equation (3.23) is performed to update

the linked lists.

With the utilization of equation (3.23), linked lists created in equation (3.14) can be

reformed as follows;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6 8]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4 5]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 9 4 −1 −1 −1 8 −1 −1]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 6 7]1×𝑛

(3.24)

3.2.2 Deleting a Non-Zero Element

Besides “Gustavson’s Method”, deleting a non-zero element from the matrix is

different in “Knuth’s Method.” During the deletion process of a non-zero entry in

“Knuth’s Method”, deleted value is kept in linked lists, however, with the utilization

of the “𝑛𝑒𝑥𝑡𝑅” vector or “𝑛𝑒𝑥𝑡𝐶” vector, the value that deleted from the matrix is

skipped during the linked list search. There are three main consideration of deletion

processes which are,

• Deleting a non-zero element from the beginning of a row,

35

• Deleting a non-zero element from neither beginning nor end of a row,

• Deleting a non-zero element from at the end of the row.

To visualize the mentioned processes, the matrix in equation (3.1) is changed with

the corresponding deletion process.

The first problem is deleting a non-zero element from the beginning of a row. The

changed matrix is given as follows;

[

0 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (3.25)

In order to reform the linked list in equation (3.14), the utilized step is given as

follows;

 𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 (𝑖) = 𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣) (3.26)

By using equation (3.26), the created linked lists are reformed. The changed linked

lists are;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [2 3 5 6 7]1×𝑛

(3.27)

When utilizing linked search to recreate a matrix by using the linked lists in equation

(3.27), it is seen that the first value of the first row is skipped. In other words, it is

deleted from a matrix.

The second problem and third problem have the same approach for deleting a non-

zero element from the middle of a row or the non-zero element at the end of the row.

36

Therefore, the following matrix was created to visualize deleting a non-zero element

from at the end of the row.

[

1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 0 0]

𝑛×𝑘

 (3.28)

The process for updating linked lists can be written as follow;

 𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣) = 𝑛𝑒𝑥𝑡𝑅 (𝑖) (3.29)

By using the equation (3.29), the created linked lists in equation (3.14) changed.

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 −1 −1]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 6 7]1×𝑛

(3.30)

As seen in equation (3.30), the end of the fifth row, which is the value of “6”, is

eliminated during the linked list search of the matrix recreation process.

3.2.3 Changing a Non-Zero Value

Changing a non-zero value is another process in “Knuth’s Method.” In order to

change the desired non-zero value in the matrix, the linked list search was performed.

During the process of linked list search, when the index of column number for

changed value is found in column array, the value is changed to the desired value in

value array at found index. For example, the first column at the first-row entry

change from “1” to “10” for the matrix in equation (3.1).

37

[

10 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (3.31)

For matrix in equation (3.31), the linked lists are changed as follows;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [10 3 5 2 4 2 4 6]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 6 7]1×𝑛

(3.32)

3.3 Comparison of Sparse Storage Techniques

Sparse storage algorithms are formed according to need, and each of these sparse

storage techniques has own advantages and disadvantages. The advantages of

“Gustavson’s Method” are;

• The process of building a linked list and recreation of the matrix from a linked

list is easy,

• It takes up less memory space,

• The computational speed for adding, deleting, and changing a non-zero entry

is high.

However, there is one significant disadvantage of “Gustavson’s Method” for power

system state estimation. The disadvantage is;

• Linked list cannot be reformed if the new column or row is added.

In power system state estimation, several matrices, such as seen in equations (2.1)

and (2.7), are formed in random order. Therefore, “Gustavson’s Method” does not

meet the requirements for the state estimation process. In order to have the ability to

38

create linked lists in arbitrary order, the “Knuth’s Method” becomes the best suitable

solution. The advantages of “Knuth’s Method” are;

• Linked lists can be formed in arbitrary order,

• The flexibility of adding/deleting a column or row to a matrix.

The disadvantages of “Knuth’s Method” are;

• It consumes more memory space,

• The implementation is complicated.

Although “Knuth’s Method” desires high memory space, with the help of the

significant improved memory technology in recent years, this disadvantage of the

“Knuth’s Method” vanished. Therefore, the consumption of memory space is no

longer to be considered as an important factor. Hence the “Knuth’s Method” is

utilized to build a sparse storage library that contains all matrix operations such as

multiplication, Cholesky Factorization, and inverse of a matrix in this thesis. The

detailed information for these operations is given in Chapter 4.

39

CHAPTER 4

4 THE PROPOSED METHOD

In previous chapters, background information of “WLS State Estimator, Bad Data

Detection and Identification” are given. The importance of using the sparse storage

techniques for these processes were mentioned. After that, the sparse storage

methods namely Gustavson’s Method and the basis of the proposed method which

is Knuth’s Method”, were explained in detail.

According to “Knuth’s Method,” there are two options for building a linked list of a

matrix. The first one is using the column method, and the second one is using the

row method. In this thesis, to obtain a faster sparse library, these two methods

combined and utilized a new linked list containing all seven vectors mentioned in

Chapter 3.2. According to the following matrix, the example linked list that is used

for the sparse storage technique is written as follows;

[

1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (4.1)

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 = [1 1 2 2 3 4 5 5]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚

𝑛𝑒𝑥𝑡𝐶 = [6 8 −1 −1 −1 7 −1 −1]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 6 7]1×𝑛

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 = [1 3 5 2 4]1×𝑘

(4.2)

40

In equation (4.2), the new sparse storage technique is utilized to perform matrix

operations mentioned state estimation operations. As it seen from the linked list that

is created for the proposed method, the number of vectors in linked list are increased

to keep additional information of non-zero entries. The required memory of the

proposed method and Knuth’s method are shown as below;

• Required memory of Knuth’s Method is (3 × 𝑛𝑛𝑧 × 𝑚)

• Required memory of The Proposed Method is (5 × 𝑛𝑛𝑧 + 𝑚 + 𝑛)

where,

𝑛𝑛𝑧 is the total non-zero element number,

𝑚 is the row number of the matrix,

𝑛 is the column number of the matrix,

However, the use of additional space is not considered as a problem thanks to the

improvements in “RAMs” technologies. Therefore, with the help of these additional

informations linked list search time is further decreased.

In this way, the operations for matrices such as multiplication, addition, and

subtraction are aimed to be accelerated. The implementation of matrix multiplication

process is given in Chapter 4.2.

4.1.1 Adding a Non-Zero Element

In order to visualize the reformation of linked list for the proposed method, the used

matrix for adding a non-zero element is given as follows;

[

1 0 0 3 0
8 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (4.3)

41

As seen in the matrix in equation (4.3), the new non-zero element “8” is added to the

second row and first column. Addition a non-zero element to matrix is different in

the proposed method since the proposed method is utilized both row ordered, and

column ordered linked lists together. In example, when non-zero entry is added at

the beginning of the row it does not mean that it must be for the beginning entry of

the column. Therefore, to obtained linked list for the proposed method, all processes

mentioned in Chapter 3.2.1 should be processed for vectors related with row ordered

linked list and column ordered linked list separately. The reformed linked list for the

prosed method when the new non-zero entry is added to matrix is shown below;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6 8]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4 1]1×𝑚

row array = [1 1 2 2 3 4 5 5 2]
1×𝑚

nextC = [9 8 −1 −1 −1 7 −1 −1 6]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1 3]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 9 5 6 7]1×𝑛

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 = [1 3 5 2 4]1×𝑘

(4.4)

As it seen in equation (4.4), to update the linked list, the process of adding a non-

zero entry to beginning of the row in Chapter 3.2.1 is followed for “𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦,

𝑛𝑒𝑥𝑡𝑅, and 𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤”, and the process of adding a non-zero element neither the

first entry nor the last entry in Chapter 3.1.1 is followed for “𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦, 𝑛𝑒𝑥𝑡𝐶 and

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛”.

4.1.2 Deleting a Non-Zero Element

In order to visualize the reformation of linked list for the proposed method, the used

matrix for deleting a non-zero element at the beginning of the row is given as follows;

42

[

1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
0 0 0 0 0
4 0 0 6 0]

𝑛×𝑘

 (4.5)

As seen in the matrix in equation (4.5), non-zero element “2” was deleted from the

fourth row and first column of matrix in equation. The deletion process of a non-zero

entry from the matrix has same considerations such as when non-zero entry is deleted

from the beginning of the row it does not mean that it must be located at the

beginning of the column. Therefore, the processes mentioned in Chapter 3.2.2,

should be applied separately for vectors related with row ordered link list and column

ordered link list. The reformed linked list for the prosed method when the non-zero

entry is deleted from the matrix is shown below;

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 = [1 3 5 2 4 2 4 6]1×𝑚

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 = [1 1 2 2 3 4 5 5]1×𝑚

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚

𝑛𝑒𝑥𝑡𝐶 = [7 8 −1 −1 −1 7 −1 −1]1×𝑚

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 −1 7]1×𝑛

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 = [1 3 5 2 4]1×𝑘

(4.6)

As it seen in equation (4.6), to update the linked list, the process of deleting a non-

zero entry from the beginning of the row in Chapter 3.2.2 is followed for

“𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦, 𝑛𝑒𝑥𝑡𝑅, and 𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤”, and the process of deleting a non-zero

entry from neither the first entry nor the last entry in Chapter 3.2.2 is followed for

“𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦, 𝑛𝑒𝑥𝑡𝐶 and 𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛”.

In conclusion, to update linked list for the proposed method, when non-zero entry is

added, deleted, or changed, all processes under Chapter 3.2 should be considered for

related vectors separately.

43

4.2 Matrix Multiplication

Matrix multiplication process is the key operation in power system state estimation,

since in each step of the state estimation, there is a multiplication process between

super sparse matrices. Therefore, in order to speed up the operations, sparse storage

plays a significant role. Before explaining the method that is used for the thesis, the

matrix operation is visualized as follows;

Figure 4.1: The visualization of matrix multiplication for first row first column

In matrix multiplication seen in Figure 4.1, the time complexity is 𝑂(𝑛3) since each

entry of matrix is considered during the process even the result is equal to “0”.

However, when the row method of “Knuth’s Method” is used, the time complexity

decreases from 𝑂(𝑛3) to 𝑂(𝑛2 × 𝑚 × 𝑙𝑖𝑛𝑘 𝑙𝑖𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑡𝑖𝑚𝑒), where “𝑚” is the

total number of intersections of non-zero elements indexes between rows and

columns. Linked list search time is the time for finding a required non-zero element

in obtained linked lists. When the size of the matrix is increased, the time difference

between normal operation and sparse storage technique increases as well. Therefore,

sparse storage has a crucial role to obtain faster operations for bigger size of systems.

44

The visualization of the linked list search in the row ordered “Knuth’s Method” is

given as follows;

Figure 4.2: The linked list search of row order “Knuth’s Method” in the

multiplication of the first row of Matrix A and fifth column of Matrix B

As seen in Figure 4.2, to find the locations of non-zero elements in the fifth column

of Matrix B, the linked list search is performed from the beginning for each row of

the examined column. This issue makes additional time consumption, and the time

consumption increases with increasing the size of matrices.

Thanks to the proposed strategy in equation (4.2) for sparse storage, the time

consumption of the multiplication process is decreased further by decreasing the

linked list search time. This time reduction is done by eliminating the extra linked

list searches to find column indexes of each row of Matrix B in the multiplication

process by storing the non-zeros with row order and column order at the same time.

The visualization of the multiplication process with the proposed sparse storage

technique is given as follows;

45

Figure 4.3: The linked list search of the proposed method in the multiplication

process of the first row of Matrix A and fifth column of Matrix B

In Figure 4.3, it is seen that the linked list search can be performed both in row order

and column order. In other words, instead of searching each row to find whether

there is a non-zero element or not in the examined column, the linked list search

performed directly to the desired column to find row indexes of non-zero elements.

In that way, multiplication is performed if the column index of the non-zero element

in a row of Matrix A is intersected with the row index of the non-zero element in a

column of Matrix B.

To achieve this process following steps are performed for each iteration:

1. 𝑝𝑟𝑒𝑣 𝑟𝑜𝑤 = 1 (investigated row number = 1),

2. 𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛 = 5 (investigated column number = 5),

3. 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤) = 1,

4. 𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛) = 1,

46

5. If column of the value and row of the value are same, multiplication occurs,

6. 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤)) = 4,

7. 𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛)) = 3

8. If 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤)) = 4 >

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛)) = 3, 𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛 value updated as

𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛 = 𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛),

9. New value of 𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛) = 6,

10. If 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤)) = 4 <

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛)) = 6, 𝑝𝑟𝑒𝑣 𝑟𝑜𝑤 value updated as

𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛 = 𝑛𝑒𝑥𝑡𝑅(𝑝𝑟𝑒𝑣 𝑟𝑜𝑤),

11. When value of 𝑐𝑜𝑙𝑢𝑚 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤) and 𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛),

multiplication process occurs,

12. When one of the 𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤) or 𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛) reaches to

“ − 1” the multiplication process of that iteration terminates.

This approach decreases the time complexity of the linked list search algorithm

further to obtain a faster multiplication process where the time complexities of the

proposed method and Knuth’s method for matrix multiplication operation are shown

as below;

• The Proposed Method has 𝑂(𝑚 × ∑ (𝑛𝑛𝑧𝑖 + 𝐷))𝑛
𝑖=1

• Knuth’s Method has 𝑂(𝑚 × ∑ (𝑛𝑛𝑧𝑖 + 𝐷 × 𝑛𝑛𝑧𝑖)
𝑛
𝑖=1

where,

𝑛𝑛𝑧𝑖 is the total non-zero element number in 𝑖𝑡ℎ column,

𝑚 is the row number of the matrix A,

𝑛 is the column number of the matrix B,

𝐷 is the link list search time to find the non-zero entry for desired location.

47

4.3 Cholesky Decomposition

As seen in equation (2.6), there is an inverse calculation of the “Gain Matrix”,

therefore, with applying the “Cholesky Decomposition” to “Gain Matrix,” the

solution time of equation (2.6) decreased with the elimination of the inversion

operation. In literature, there are several types of factorization algorithms [23-25].

Among these algorithms, the most used decomposition algorithm is the Cholesky

Decomposition for power system state estimation processes since it is a

computationally cheap algorithm for positive definite symmetrical matrices, as the

gain matrix used in WLS procedure. After applying the Cholesky decomposition

process to the “Gain Matrix” mentioned in (2.13), the new equation can be written

as follows;

 𝐿𝐿𝑇𝑥̂ = 𝐻𝑇(𝑧 − ℎ(𝑥̂)) (4.7)

where,

L is the lower triangular matrix of the Gain matrix,

𝐿𝑇 is the upper triangular matrix of Gain matrix,

z is the measurements and

ℎ(𝑥̂) is the measurements which are created with measurement function by using the

estimated states.

The visualization of the lower and upper triangular matrices of the gain matrix in

Figure 2.3 is given below.

48

Figure 4.4: The lower triangular matrix of the gain matrix in Figure 2.3

Figure 4.5: The upper triangular matrix of the gain matrix in Figure 2.3

49

There are several methods of computation of the “Cholesky Decomposition” to find

lower and upper triangular matrices in the literature. However, according to [24], the

following algorithm is one of the best algorithms in terms of time complexity, among

others. The Doolittle’s algorithm for “Cholesky Decomposition” is given in below.

Algorithm 1 Cholesky Decomposition (Doolittle’s Algorithm)

1: 𝒇𝒐𝒓 𝑗 = 1: 𝑛

2: 𝒊𝒇 𝑗 > 1

3: 𝐴(𝑗: 𝑛, 𝑗) = 𝐴(𝑗: 𝑛, 𝑗) − 𝐴(𝑗: 𝑛, 1: 𝑗 − 1)𝐴(𝑗, 1: 𝑗 − 1)𝑇

4: 𝒆𝒏𝒅

5: 𝐴(𝑗: 𝑛, 𝑗) = 𝐴(𝑗: 𝑛, 𝑗)/√𝐴(𝑗, 𝑗)

6: 𝒆𝒏𝒅

where,

n is the column number of matrix A.

After obtaining the lower and upper triangular matrices of the Gain matrix by using

Algorithm 1, with the help of the forward and the backward substitution, the

estimated states are calculated by using the following formula;

𝑡 = 𝐻𝑇(𝑧 − ℎ(𝑥̂))

𝐿𝑇𝑥̂ = 𝑦

𝐿𝑦 = 𝑡

(4.8)

In equation (4.8), since L, LT and t are known, y is calculated by using the forward

substitution, and then, with the calculated y, estimated states are found by using the

backward substitution.

50

4.4 The Matrix Inversion

The matrix inversion is the most time-consuming process among all other matrix

operations such as multiplication, addition, subtraction, etc. Unfortunately, the state

estimation process (bad data identification) contains an inverse operation during the

calculation of the hat matrix in equation (2.18). However, as a result of the super

sparse structure of the Gain Matrix, this time consumption, which occurrs due to the

matrix inversion, can be eliminated by using the proposed sparse library. In

literature, there are several approaches for inverse operation, however, in this thesis,

the “Takahashi Method” is applied to the sparse algorithms to calculate matrix

inversion [23]. The details of a “Takahashi Method” are given in Chapter 4.4.1.

4.4.1 Takahashi Method

According to [26], the Takahashi method utilizes the “LDU” factorization for

computing the inverse of a given matrix. In order to calculate matrix inversion, there

are two equations written as follows;

 𝑍 = 𝐷−1𝐿−1 + (𝐼 − 𝑈)𝑍 (4.9)

 𝑍 = 𝑈−1𝐷−1 + 𝑍(𝐼 − 𝐿) (4.10)

where,

A is the given matrix and A = LDU (L, U, and D are unit lower triangular, unit upper,

and diagonal matrices, respectively) and

𝑍 = 𝐴−1.

According to [26], by utilizing the equations (4.9) and (4.10), some observations are

made for positive definite symmetrical matrices. These observations are;

• The product of (𝐷−1𝐿−1)𝑖𝑖 = 𝐷𝑖𝑖
−1. This observation is used to eliminate

calculation of the inverse of lower triangular matrix “L,”

51

• (𝐼 − 𝑈) is the strictly upper triangular matrix since U is the unit upper

triangular matrix,

Using these two observations, the Z matrix can be computed without calculating the

L-1 matrix. The formulation to the calculation of inverse elements to the diagonal and

upper triangular party of Z matrix can be written as follows;

 𝑧𝑖𝑗 = 𝑑𝑖𝑗
−1 ∑𝑢𝑖𝑘𝑧𝑘𝑗 𝑓𝑜𝑟 𝑖≤𝑗

𝑛

𝑘>𝑖

 (4.11)

According to [26], the example of performing formulation of the equation (4.11),

can be seen below.

 𝐴 = [

𝑥 0 𝑥 𝑥
0 𝑥 𝑥 0
𝑥 𝑥 𝑥 0
𝑥 0 0 𝑥

] (4.12)

 𝐿 + 𝑈 = [

𝑥 0 𝑥 𝑥
0 𝑥 𝑥 0
𝑥 𝑥 𝑥 𝑥
𝑥 0 𝑥 𝑥

] (4.13)

𝑧44 = 𝑑44
−1

𝑧34 = −𝑢34𝑧44

𝑧33 = 𝑑33
−1 − 𝑢34𝑧43

𝑧32 = −𝑢23𝑧33

𝑧22 = 𝑑22
−1 − 𝑢23𝑧32

𝑧14 = −𝑢13𝑧34−𝑢14𝑧44

𝑧13 = −𝑢13𝑧33−𝑢14𝑧44

𝑧11 = 𝑑11
−1 − 𝑢13𝑧31−𝑢14𝑧41

 (4.14)

52

where,

A is the given matrix,

dij is the ith row and jth column of the diagonal matrix,

uij is the ith row and jth column of the unit upper triangular matrix and

red values are “fill-in” values that occurred during the decomposition process.

The used “Takahashi Algorithm” for matrix inversion is given as follows;

Algorithm 2 Takahashi Algorithm

1:𝒇𝒐𝒓 j = m × 2:−1: 1

2: 𝒇𝒐𝒓 𝑖 = 𝑚 × 2:−1: 1

3: 𝒊𝒇 𝑖 == 𝑗

4: 𝑣𝑎𝑙𝑢𝑒 = 0;

5: 𝒇𝒐𝒓 𝑘 = 𝑖 + 1:𝑚 × 2

6: 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒 + 𝑈 (𝑖, 𝑘) × 𝑍(𝑘, 𝑗);

7: 𝒆𝒏𝒅

8: 𝑍(𝑖, 𝑗) = (1/𝐷(𝑖, 𝑗)) − 𝑣𝑎𝑙𝑢𝑒;

9: 𝑍(𝑗, 𝑖) = 𝑍(𝑖, 𝑗);

10: 𝒆𝒍𝒔𝒆𝒊𝒇 𝑖 < 𝑗

11: 𝑣𝑎𝑙𝑢𝑒 = 0;

12: 𝒇𝒐𝒓 𝑘 = 𝑖 + 1:𝑚 × 2

13: 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒 − 𝑈 (𝑖, 𝑘) × 𝑍(𝑘, 𝑗);

14: 𝒆𝒏𝒅

15: 𝑍(𝑖, 𝑗) = 𝑣𝑎𝑙𝑢𝑒;

16: 𝑍(𝑗, 𝑖) = 𝑍(𝑖, 𝑗);

17: 𝒆𝒏𝒅

18:𝒆𝒏𝒅

where,

m is the size of matrix 𝐴,

53

𝑍 is the A-1,

𝑈 is the unit upper triangular matrix and

𝐷 is the diagonal matrix.

In equation (4.13), it is seen that, after the decomposition process applied to the given

matrix, some non-zero elements, which do not exist in the given matrix, come up in

lower triangular and upper triangular matrices. These non-zero entries create an

additional time consumption during the matrix inversion process. Therefore, in the

state estimation process, to decrease the number of fill-ins in matrices, the “Reverse

Cuthill-McKee” algorithm is used to reorder bus numbers of system structure to

centralize the non-zero entries around diagonals [27].

In that way, the number of the “fill-in” values in matrices are being reduced. In an

example, when the “Reverse Cuthill-McKee” algorithm applied to the Gain matrix

in Figure 2.3, the new structure of the matrix becomes as follows;

Figure 4.6: The Gain matrix after Reverse Cuthill McKee algorithm applied

54

Even the Gain matrix in Figure 4.6 and Figure 2.3 is the same matrix, when the

decomposition applied, the lower and upper triangular matrix differs as follows;

Figure 4.7: The lower triangular matrix of the Gain matrix after the decomposition

process

In Figure 4.7, it is seen that the number of non-zero entries is less than the non-zero

entries in Figure 4.4. Therefore, this example shows the importance of the ordering

process. The details of the “Reverse Cuthill-McKee” algorithm can be found in [24].

According to [28], for further time improvement during the inversion operation of

the matrix, only non-zero entry locations of Gain Matrix are calculated in equation

(4.11). However, when system size increases, the fill-ins become inevitable. As a

result of this, calculating only non-zero entry locations of the Gain matrix, leads to

the wrong solution in the inverse operation of the matrix. Therefore, instead of using

the non-zero entry locations of the Gain matrix, utilizing the non-zero entry locations

of the lower triangular matrix of the Gain matrix gives the desired result since, during

the decomposition process, fill-ins are considered. The test results of the proposed

55

method, which is the sparse storage applied to the Takahashi method using only the

non-zero entries locations of the lower triangular matrix, the Takahashi method with

calculating all entry, the built-in function of MATLAB, and conventional Takahashi

method is given in Chapter 5.3.

56

57

CHAPTER 5

5 VALIDATION OF THE PROPOSED METHOD WITH STATE

ESTIMATOR

In previous chapters the details of the operations in WLS State Estimation, Bad Data

Analysis were given. Beside of these, to decrease the computational time during

these operations, the importance of the sparse storage methods was mentioned.

Moreover, the proposed method and the further improvements with the help of the

proposed method for the matrix multiplication, Cholesky decomposition and the

matrix inversion operation was given in detail.

In this thesis, to test the proposed strategy in real-life matrix operations, the state

estimator is built. This state estimator contains the state estimation and bad data

analysis. With the use of a built state estimator, all matrix operations mentioned in

Chapter 4 are tested with the proposed sparse library, and the solution time of the

proposed methods is investigated. The proposed method built in MATLAB

environment with “Object Oriented” manner. However, MATLAB has still an issue

of the solution time consumption of “Object Oriented” algorithms. In other words,

when algorithm is implemented as “Object Oriented” in MATLAB environment it

takes more time to be computed.

In this thesis, three main methods are proposed. These methods are;

• Sparse multiplication with the “Full Knuth’s Method”

• Sparse Cholesky Decomposition with the “Full Knuth’s Method”

• Sparse Takahashi matrix inversion with the “Full Knuth’s Method”

Besides these three main methods, a complete sparse library for the “Full Knuth’s

Method” is established, which contains entry search, entry deletion, graph search

algorithms, etc., to perform state estimation process in real life.

58

The solution time of state estimation and bad data analysis with built sparse library

for IEEE 30-Bus system is given below [29].

Table 5.1: The solution time of proposed method of state estimation and bad data

analysis process in IEEE 30-Bus system

System Size

Density of H

Matrix

Density of

Gain Matrix

Solution Time

of State

Estimation (ms)

Solution Time of

Bad Data Analysis

(ms)

IEEE 30-Bus 9% 29% 15.6 9.4

In Table 5.1, the solution time of the state estimation process and bad data analysis

process for the IEEE 30-Bus system is shown. For the state estimation process, the

solution time is dependent on the iteration number. For the IEEE 30-Bus system,

system states converged to a threshold value in 10 iterations. Therefore, for each

iteration, the solution time of the state estimation with the proposed method is equal

to 2.56 ms. In bad data analysis of the IEEE 30-Bus system, the main time

consumption is the matrix multiplication since in equation (2.18), during the

calculation of hat matrix “K,” there is an inverse of the Gain matrix. The inverse of

the Gain matrix is almost a full matrix, and this issue causes the extra linked list

search time.

The solution time of the state estimation and bad data analysis for the IEEE 118-Bus

system is given below.

Table 5.2: The solution time of proposed method of state estimation and bad data

analysis process in IEEE 118-Bus system

System Size

Density of H

Matrix

Density of

Gain Matrix

Solution Time

of State

Estimation (ms)

Solution Time of

Bad Data Analysis

(ms)

IEEE 118-Bus 2% 10% 90.2 84.3

59

5.1 Test Results of Proposed Method in Multiplication Process

In the power system state estimation, the multiplication process has a crucial role for

time consumption. Therefore, with the proposed method, this time kept as minimum

as possible. The time consumption for these multiplication processes in state

estimation is compared with the multiplication process without using the sparse

storage technique seen in Algorithm 3. To compare the proposed method and the

normal method, matrices are randomly created with different sizes and sparse

density. In addition to that, the real 2383-bus Polish power system, real 3120-bus

power system and 9241-bus power system grid are used to investigate the

computation time difference between the proposed method with other methods [30].

The methods are tested with, Intel i9 9900 2.3 GHz 8 Core processor and 16 GB

2666 MHz RAM in MATLAB 2020b environment.

Algorithm 3 Conventional Matrix Multiplication

1: 𝒇𝒐𝒓 𝑖 = 1:𝑚

2: 𝒇𝒐𝒓 𝑗 = 1: 𝑛

3: 𝒇𝒐𝒓 𝑘=1:m

4: S(𝑖, 𝑗) = 𝑆(𝑖, 𝑗) + 𝐴(𝑖, 𝑘) × 𝐴(𝑘, 𝑗)

5: 𝒆𝒏𝒅

6: 𝒆𝒏𝒅

7: 𝒆𝒏𝒅

where,

m, n are row number and column number of matrix A respectively, and

𝑆 is the resulted matrix for multiplication.

60

Table 5.3: The time consumption of matrix multiplication using the proposed

method, reference tool, and conventional multiplication.

Matrix Size

Density of

Matrix

The Proposed

Method (ms)

Reference Tool

(ms)

Algorithm 3

Conventional

Algorithm (ms)

(60x60) 1% 0.19794 0.03680 0.1450

(60x60) 5% 0.2662 0.04341 0.1449

(236x236) 1% 1.8 0.05003 7.2

(236x236) 5% 5.2 0.056652 9.6

(600x600) 1% 19.2 1.5 115.5

(2383x2383) 0.36% 508.4 76.8 22165.8

(3120x3120) 0.25% 1187.0 194.2 58623.4

(9241x9241) 0.12% 8502.3 4107.3 ~

In Table 5.3, the solution times for the algorithm of the proposed method, the

reference matrix multiplication and conventional algorithm are given. The

algorithms are compared in MATLAB environment. However, according to [31],

MATLAB uses “c++” for the built-in functions, and according to [32], the

algorithms written in MATLAB are a few hundred times slower than the algorithms

written with “c++” language. Moreover, built-in functions of MATLAB are well-

optimized and uses all available cores to utilize the parallel processing. On the

contrary, codes written in MATLAB environment are using only a single core to

perform an algorithm.

Therefore, instead of directly comparing the computation time of reference tool with

the proposed method, the scaling of computation time between two different matrix

sizes for the reference tool and the proposed method should be compared.

In Table 5.3, it is seen that when the size increases, the solution time of conventional

algorithm increases more than the proposed method and, it is seen that, computation

61

time of the reference tool, which is the built-in function of MATLAB, is approaching

the computation time of proposed method, with increasing measurement size, which

means that the scaling of the built-in functions is higher than the proposed method.

Beside of that, for the conventional algorithm, when the matrix size increases the

solution time of the matrix operation increases dramatically. Therefore, the

computation time of the conventional algorithm is shown as “~” symbol.

In Table 5.3, when density increases, using sparse storage methods becomes

meaningless since the time consumption of the number of linked list searches

increases. However, thanks to matrix structures in the power system in real life, the

density of matrices is less then the 1%. Therefore, using a sparse structure to hold

matrices in linked list form is important.

5.2 The Test Results of the Proposed Method in Cholesky Decomposition

Process

In the power system state estimation process, as seen in Figure 2.3, the sparsity of

the Gain matrix is around 25%. However, when the size of the system increases, the

sparsity of the matrix decreases less than the 1%. Therefore, it is important to use

sparse storage methods to reduce the time consumption of non-zero elements in

matrices.

The proposed strategy mentioned in Chapter 3.2 is applied to the “Cholesky

Decomposition” algorithm given in Algorithm 1. After applying the sparse storage

technique, the time results of built Cholesky Decomposition with sparse storage

technique, the MATLAB built-in function for Cholesky Decomposition, and the

Doolittle’s algorithm given in Algorithm 1 are investigated and given in the table

below.

In Table 5.4, it is seen that when the proposed sparse algorithm is applied to the

“Cholesky Decomposition,” the solution time decreases. As it is mentioned in

Chapter 5.1, the built-in functions of MATLAB are processed with well-optimized

62

“c++” algorithm. As a result, there is a huge solution time gap between the proposed

method and the built-in function of MATLAB, but the scaling of the built-in function

between two matrix size is higher than the proposed method and the computation

time of the built-in function is approaching the computation time of proposed

method. Again, the computation time of the conventional algorithm is shown as “~”

symbol since the computation time of the conventional algorithm increases

dramatically when the matrix size increases.

Table 5.4: The time results of Cholesky Decomposition with the proposed method,

MATLAB built-in function, and Doolittle’s algorithm.

Matrix Size
Density of

Matrix

Proposed

Method (ms)

Built-in

Function (ms)

Algorithm 1

Doolittle’s

Algorithm (ms)

(60x60) 1% 0.34 0.01745 0.9118

(60x60) 5% 0.36 0.01656 0.9043

(236x236) 1% 5.6 0.23671 13.1

(236x236) 5% 7.2 0.27640 14.3

(600x600) 1% 11.2 0.77697 85.2

(2383x2383) 0.36% 253.8 24.6 16533.1

(3120x3120) 0.25% 439.4 55.8 65732.1

(9241x9241) 0.12% 1023.1 950.5 ~

5.3 Test Results of Proposed Method for Matrix Inversion

In bad data analysis of state estimation process, to calculate the hat matrix mentioned

in equation (2.18), the proposed sparse method is applied to Algorithm 2 for

Takahashi method. As opposed to Algorithm 2, the proposed method avoids

calculating “0” values while performing the inversion process. The methods are

63

tested with different matrix sizes and matrix sparsity densities. The test results are

given in below.

In Table 5.5, solution times of the inverse operation with different methods for

different matrices are investigated. It is seen that the proposed method has better

solution time comparing with the conventional matrix inversion. However, the

proposed method still slower than the built-in function of MATLAB due to the

programming language difference mentioned in Chapter 5.1. In addition, there is one

more performance improvement with the proposed method, as seen in Error! Not a

valid bookmark self-reference.. That performance improvement is achieved by

calculating only the non-zero entry locations in the lower triangular matrix for the

inverse of the Gain matrix instead of calculation all entries of the inverse of the Gain

matrix.

Table 5.5. The time results of the proposed method, the built-in function of

MATLAB, conventional matrix inversion, and calculation of all entries of the

inverse of Gain matrix.

Matrix Size
Density

of Matrix

Proposed

Method

(ms)

Built-in

Function

(ms)

Algorithm 2

Conventional

Takahashi

Method (ms)

Sparse

Method with

Calculation

All Entries

(ms)

(60x60) 1% 0.9042 0.0599 0.23875 0.9571

(60x60) 5% 1.8 0.067325 0.24427 2.4

(236x236) 1% 3.8 1.5 13.4 4.7

(236x236) 5% 5.6 1.5 19.9 30.9

(600x600) 1% 14.9 11.4 378.7 69.3

(2383x2383) 0.36% 2732.3 166.1 40342.2 65907.6

(3120x3120) 0.25% 5670.2 360.8 ~ ~

(9241x9241) 0.12% 9998.5 6401.9 ~ ~

64

65

CHAPTER 6

6 CONCLUSION

In order to meet the power demand of the customers, power systems are enlarging

each year, and with the increasing system size new measurements are placed to

gather data from the field for improve the situational awareness. In addition, PMUs

are also deployed in power systems in the recent years. The high refresh rates of

those devices creates an additional computational burden for the monitoring systems

and energy management systems. Considering this situation, the SE has a crucial role

in real time monitoring of the power system. Thanks to the sparse matrix structures

of the SE applications, sparse matrix storage methods are utilized to improve the

computational performance.

In the literature there are several types of sparse storage methods, however, power

system operation has unique properties and hence, only few of sparse storage

methods can satisfy the flexibility condition for power system SE. One of those

proper techniques is the well-known Knuth’s Method. Despite the widely known

necessity for sparse storage in state estimation applications, there is no open-source

sparse storage library.

In this thesis, the main purpose is to build the open-source sparse library for matrix

operations and decrease the computation time of the matrix operations which are

included in power system state estimation processes. Therefore, the proposed

method, which is the full Knuth’s Method is built, and with the help of the proposed

method, the major time-consuming processes such as “Matrix Multiplication,

Cholesky Decomposition and Matrix Inversion”, are improved and the computation

time of the overall SE process is decreased further with decreasing the linked list

search time. In order to achieve the decrease the computation time of the linked list

search process, Knuth’s Method is enhanced with utilizing both the column ordered

66

method and row ordered method together which are utilized separately for sparse

storage algorithms. By this way, undesired linked list searches are minimized during

the matrix operations.

The main challenge encountered during the implementation of the proposed method

is, storing the row ordered and column ordered linked list together for the results of

the matrix operations since, the matrix operations are accomplished in one way,

which is either row manner or column manner. This issue has been overcome and

flexibility of the sparse storage for SE processes is achieved with the proposed

method.

In this thesis three different algorithms were compared for main matrix operations in

SE which includes “WLS-SE and Bad Data Analysis” processes. The results show

that, the MATLAB built-in functions have lower computation time results than the

proposed method in smaller size matrices, since MATLAB built-in functions are

implemented with the “c++” language which is a few hundred times faster than the

codes written directly in MATLAB environment. However, when the system size

increases, it is seen from the results, the scaling of the proposed method is lower than

the built-in functions of MATLAB. With increasing matrix sizes the results show

that the computation time of the built-in functions becomes closer to the proposed

method even the built-in functions are written with “c++” language. In addition, the

importance of using sparse storage algorithms is revealed, since the computation

times of normal matrix processing algorithms written in MATLAB environment are

considerably higher than the proposed method.

In order to validate the proposed method, full state estimation process, which

contains all type of matrix operations, is built and tested in different IEEE bus

systems. During the tests, it was seen that the matrix operations work properly, and

provides satisfactory computation time results for the full state estimation process

considering the performance of MATLAB environment.

Note that, the proposed method is not well-optimized. In order to optimize the

proposed method in future, first of all, parallel processing can be added as a feature

67

wherever it is appliable. Moreover, with investigating the properties of the state

estimation process, further decrease in computation time can be achieved by utilizing

the block calculations in matrix operations since the matrices matrix in state

estimation processes has a specific shape. By this way, the solution time of matrix

operations such as matrix multiplications, matrix addition, Cholesky Decomposition,

matrix inversion etc. can be decreased dramatically. Finally, for the proposed method

to reach its real capacity, the algorithms can be written in the “c++” language. In

addition to that, in this thesis for ordering purposes the Reverse Cuthill McKee

algorithm is used. To further improve the ordering process Tinney-2 algorithm can

be implemented instead of Cholesky Decomposition process.

68

69

REFERENCES

[1] M. Meriem, C. Bouchra, B. Abdelaziz, S. O. B. Jamal, E. M. Faissal and C.

Nazha, "Study of state estimation using weighted-least-squares method

(WLS)," 2016 International Conference on Electrical Sciences and

Technologies in Maghreb (CISTEM), 2016, pp. 1-5.

[2] M. Göl and A. Abur, "LAV Based Robust State Estimation for Systems

Measured by PMUs," in IEEE Transactions on Smart Grid, vol. 5, no. 4, pp.

1808-1814, July 2014.

[3] L. Mili, M. G. Cheniae and P. J. Rousseeuw, "Robust state estimation of

electric power systems," in IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, vol. 41, no. 5, pp. 349-358, May

1994.

[4] A. Kumar and S. Chakrabarti, "ANN-based hybrid state estimation and

enhanced visualization of power systems," ISGT2011-India, 2011, pp. 78-83.

[5] A. Monticelli and A. Garcia, "Fast decoupled state estimators," in IEEE

Transactions on Power Systems, vol. 5, no. 2, pp. 556-564, May 1990.

[6] Expósito, A.G., & Abur, A. (2004). Power System State Estimation: Theory

and Implementation (1st ed.). CRC Press.

[7] G. D'Antona and L. Perfetto, "Bad data detection and identification in power

system state estimation with network parameters uncertainty," 2015 2nd

International Conference on Knowledge-Based Engineering and Innovation

(KBEI), 2015, pp. 26-31.

[8] E. Handschin, F. C. Schweppe, J. Kohlas and A. Fiechter, "Bad data analysis

for power system state estimation," in IEEE Transactions on Power

Apparatus and Systems, vol. 94, no. 2, pp. 329-337, March 1975, doi:

10.1109/T-PAS.1975.31858., J., Michel, J. and Westaway, R.W.C. 2000.

70

Neogene and Quaternary volcanics of southeastern Turkey. The Geological

Society, London, Special Publications, 173,459-487

[9] A. Monticelli, "Reliable Bad Data Processing for Real-Time State

Estimation," in IEEE Power Engineering Review, vol. PER-3, no. 5, pp. 31-

32, May 1983.

[10] M. Shah, "Sparse Matrix Sparse Vector Multiplication - A Novel Approach,"

2015 44th International Conference on Parallel Processing Workshops, 2015,

pp. 67-73.

[11] Farzaneh, Aiyoub & Kheiri, Hossein & Abbaspour, Mehdi. (2009). An

efficient storage format for large sparse matrices. Communications de la

Faculté des Sciences de l’Université d’Ankara. Séries A1: Mathematics and

Statistics. 58. 10.1501.

[12] R. C. Agarwal, F. G. Gustavson and M. Zubair, "A high performance

algorithm using pre-processing for the sparse matrix-vector multiplication,"

Supercomputing '92:Proceedings of the 1992 ACM/IEEE Conference on

Supercomputing, 1992, pp. 32-41.

[13] Dongarra, Jack & Lumsdaine, Andrew & Niu, Xinhiu & Pozo, Roldan &

Remington, Karin. (1997). A Sparse Matrix Library in C++ for High

Performance Architectures. Proceedings of the Second Object Oriented

Numerics Conference.

[14] Knuth, D. (1973). The Art Of Computer Programming, vol. 3: Sorting And

Searching. Addison-Wesley.

[15] Java Sparse Matrix Library. Available: https://java-matrix.org/

[16] N. Hurley and S. Rickard, "Comparing Measures of Sparsity," in IEEE

Transactions on Information Theory, vol. 55, no. 10, pp. 4723-4741, Oct.

2009.

71

[17] A. Krishnamoorthy and D. Menon, "Matrix inversion using Cholesky

decomposition," 2013 Signal Processing: Algorithms, Architectures,

Arrangements, and Applications (SPA), 2013, pp. 70-72.

[18] Ntekim, OE & Esuabana, Ita & Edeke, Uwe. (2013). On Lu Factorization

Algorithm With Multipliers. Global Journal of Mathematical Sciences. 12.

10.4314/gjmas.v12i1.3.

[19] T. P. Vishnu, V. Viswan and A. M. Vipin, "Power system state estimation

and bad data analysis using weighted least squares method," 2015

International Conference on Power, Instrumentation, Control and Computing

(PICC), 2015, pp. 1-5.

[20] E. Handschin, F. C. Schweppe, J. Kohlas, and A. Fiechter, “Bad data analysis

for power systems state estimation,” IEEE Trans. Power App. Syst., vol. 94,

pp. 329–337, Mar./Apr. 1975.

[21] A. Monticelli and A. Garcia, "Reliable Bad Data Processing for Real-Time

State Estimation," in IEEE Transactions on Power Apparatus and Systems,

vol. PAS-102, no. 5, pp. 1126-1139, May 1983.

[22] Y. Saad, ModiÖed from SPARSKIT: a basic tool kit for sparse matrix

computations,(June6, 1994).

[23] J. Chen, K. Ji, Z. Shi and W. Liu, "Implementation of Block Algorithm for

LU Factorization," 2009 WRI World Congress on Computer Science and

Information Engineering, 2009, pp. 569-573.

[24] Golub, Gene H. & Van Loan, Charles F. (1983), “Matrix

computations,” Baltimore: Johns Hopkins University Press.

[25] H. Yamashita and E. Nakamae, "A pivot ordering algorithm aimed at

minimizing computation time," in IEEE Transactions on Circuits and

Systems, vol. 25, no. 8, pp. 634-637, August 1978.

72

[26] Campbell, Yogin & Davis, Tim. (1995). Computing The Sparse Inverse

Subset: An Inverse Multifrontal Approach.

[27] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric

matrices, Proc. 24th Nat. Conf., ACM Publ. p. 69, 1122 Ave. of the Americas,

New York, N.Y. 1969.

[28] B. Bilir and A. Abur, "Bad data processing when using the coupled

measurement model and Takahashi's sparse inverse method," IEEE PES

Innovative Smart Grid Technologies, Europe, 2014, pp. 1-5.

[29] Ali R. Al-Roomi (2015). Power Flow Test Systems Repository [https://al-

roomi.org/power-flow]. Halifax, Nova Scotia, Canada: Dalhousie

University, Electrical and Computer Engineering.

[30] R. D. Zimmerman, C. E. Murillo-Sanchez, Matpower (2021).

[31] MATLAB. (2010). version 7.10.0 (R2010a). Natick, Massachusetts: The

MathWorks Inc.

[32] Andrews, Tyler. (2012). Computation Time Comparison Between Matlab

and C++ Using Launch Windows.

