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ABSTRACT 

 

SPARSE MATRIX LIBRARY FOR POWER SYSTEM STATE 

ESTIMATION BASED ON FULL KNUTH’S METHOD 

 

 

 

Yıldız, Tuna 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Murat Göl 

 

 

June 2021, 72 pages 

 

 

Considering the increase in power system size and the number of PMUs, it is 

essential to use a computationally efficient state estimator. The Fast Decoupled State 

Estimation is the most common method used in industrial applications, thanks to its 

computational efficiency and ease of implementation. However, it can be improved 

further by using sparse storage techniques, thanks to the sparse structure of the state 

estimation matrices.  

In literature, there are several types of sparse storage algorithms, however, only a 

few of them is suitable for the power system state estimation operations. Considering 

the possible frequent topology changes, Knuth’s method has a superiority in power 

system applications. However, even Knuth’s Method can be enhanced further by 

using additional information of the matrices.  

This thesis proposes the full Knuth’s Method for sparse storage algorithm. 

Considering that sparse storage libraries for real-time power system applications are 

not available as open-source, firstly modified sparse storage library is built. After 

that, by using the created sparse storage library, the features of the power system 
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state estimator are built. Thanks to the designed sparse storage library, the 

computational performance is increased further for power system state estimation. 

Keywords: Sparse Storage, Knuth’s Method, Full Knuth’s Method, State Estimation,  

Sparse Matrix Inversion 
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ÖZ 

 

GÜÇ SİSTEMİ DURUM KESTİRİMİ İÇİN TAM KNUTH YÖNTEMİNE 

DAYALI SEYREK MATRİS KÜTÜPHANESİ 

 

 

 

Yıldız, Tuna 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Murat Göl 

 

 

Haziran 2021, 72 sayfa 

 

Güç sistemi boyutundaki ve PMU’ların sayısındaki artış dikkate alındığında, 

hesaplama açısından verimli bir durum kestirimcisi kullanmak önemlidir. Fast 

Decoupled Durum Kestirimi, hesaplama verimliliği ve uygulama kolaylığı sayesinde 

endüstriyel uygulamalarda kullanılan en yaygın yöntemdir. Buna ek olarak Fast 

Decoupled Durum Kestirimi, güç sistemi durum kestiriminde kullanılan matrislerin 

seyrek yapısı sayesinde seyrek depolama gibi depolama teknikleri kullanılarak daha 

da geliştirilebilir.  

Literatürde bir çok seyrek depolama algoritması vardır, ancak bunlardan sadece 

birkaçı güç sistemi durum kestirimi işlemleri için uygundur. Olası sık topoloji 

değişiklikleri göz önüne alındığında, Knuth Yönteminin güç sistemi 

uygulamalarında bir üstünlüğü vardır. Bunlara ek olarak, Knuth Yöntemi bile 

matrislerle ilgili ek bilgiler kullanılarak daha da geliştirilebilir.  

Bu tez, seyrek depolama algoritması için tam Knuth Yöntemini önermektedir. 

Gerçek zamanlı güç sistemi uygulamaları için seyrek depolama kütüphanelerinin 

açık kaynak olara mevcut olmadığı düşünülerek, öncelikle modifiye edilmiş seyrek 

depolama kitaplığı oluşturulmuştur. Daha sonra oluşturulan seyrek depolama 
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kütüphanesi kullanılarak güç sistemi durum kestirimcisinin özellikleri 

oluşturulmuştur. Tasarlanan seyrek depolama kütüphanesi sayesinde, güç sistemi 

durum kestirimi için hesaplama performansı daha da artırılmıştır. 

Anahtar Kelimeler: Seyrek Depolama, Knuth Yöntemi, Geliştirilmiş Knuth 

Yöntemi, Durum Kestirimi, Seyrek Matris Tersi 
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CHAPTER 1  

1 INTRODUCTION  

In power systems, a state estimation process is an essential tool for monitoring the 

system. To solve the state estimation for monitoring purposes, it is necessary to have 

the required number of measurements gathered from the field, and the number of 

measurements is increasing day after day with the increasing system size. Those 

measurement devices mainly measure the “ Active and Reactive Power Injections, 

Active and Reactive Power Flows and Voltages.” However, in recent years, the 

technologies behind the measurement devices are evolving rapidly and PMU 

devices, which measure the voltage magnitude and voltage angle, current magnitude, 

and current angle, penetrate the power systems. As a result of the high number of 

measurements and the increased system size, the data processed in state estimation 

increased. Due to these issues, the solution time of state estimation processes 

increases, and taking action for problematic situations can be delayed. Therefore, to 

monitor the power system properly, state estimators have to solve the given 

measurement set before the next measurement set is collected from the field.  

State estimators mainly contain two steps, and those steps are “Estimation of States” 

and “Bad Data Analysis.” In the power system state estimation process, the states 

are defined as “Voltage Magnitudes of Buses (V)” and “Voltage Angles of Buses 

().” The purpose of the state estimators is to use the provided measurements that 

are gathered from the field and trying to estimate the “V” and “” of each bus of the 

power system. However, the outcome of the state estimation process may be affected 

due to malfunctioned measurements included in the provided measurement set. 

Therefore, bad data analysis becomes important to detect and correct malfunctioned 

measurements among the provided measurement set.  
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In literature, there are several state estimators, which have their own advantages and 

disadvantages to each other [1-4]. However, the most common state estimator in the 

field applications is “WLS (Weighted Least Squares)” since it is easy to implement 

and the computational time of the WLS is superior to other state estimators.  In 

addition, there are several shapes of the WLS state estimators to decrease the time 

consumption of the estimation process. The most used one in the field is the “FD-

WLS (Fast Decoupled Weighted Least Squares)” state estimator [5]. In the FD-WLS 

state estimator, the time consumption of the estimation processed decreased based 

on the observations that states of “V” are strongly related with reactive power 

measurements and states of “” are strongly related with active power measurements 

[5]. As a result of these observations, the Jacobian matrix is calculated only once 

during the process and is used for all iterations until the system converged. 

Therefore, the time consumption of building the Jacobian matrix in each iteration is 

eliminated. 

Besides the state estimators, the next important step of the state estimation process 

is “Bad Data Analysis.” Once the states of the system are obtained by using the 

“WLS State Estimator” or “Fast Decoupled State Estimator,” bad data analysis is 

performed to detect and identify the malfunctioned data among the provided 

measurement set [6-9]. This identification and detection process of malfunctioned 

measurement is performed under two steps. These steps are written as follows; 

• Chi-square test, 

• Normalize residual test. 

In the bad data analysis process, the Chi-square test is performed for detection of 

whether there are malfunctioned measurements among the provided measurement 

set or not. The Normalized residual test is performed for identification of the bad 

data, which is detected by Chi-square [7]. 

In the state estimation algorithms, for both processes of “Estimation of States” and 

“Bad Data Analysis” the main time consumptions occurred during the three main 

matrix operations, which are matrix multiplications, Cholesky decompositions, and 
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matrix inversion. Although the solution time improvements were obtained with the 

“FD-WLS” state estimation, there are still a significant amount of time consumptions 

that occurred during these processes due to included zero-entry calculations in matrix 

operations. These unnecessary zero-entry calculations become important with 

increasing the number of measurements and the system sizes. 

Thanks to the super sparse structures of matrices in state estimators, it is possible to 

use sparse storage algorithms for further improvement to eliminate this unnecessary 

time consumption that occurred by zero entries and accelerate the state estimation 

and bad data analysis process. Sparse storage is a method that keeps the information 

of non-zero entries in matrices via linked lists to eliminate the zero-entry calculations 

during the matrix operations. 

In this thesis, it is aimed to propose a suitable solution for state estimation processes 

in order to decrease the solution time of solving each measurement set for a given 

power system structure by using sparse storage algorithms. 

In literature, there are several sparse storage methods [10-15]. However, sparse 

storage is mostly case needed process. The algorithms such as Compressed Sparse 

Row (CSR), Compressed Sparse Column (CSC), Skyline Storage (SKS) etc., are 

mostly used for fixed-size matrices, but in power system state estimation process 

matrix sizes are changing during the operations in real-time. Therefore, those 

algorithms do not provide enough flexibility for the power system state estimation. 

The most common sparse storage methods that satisfy power system state estimator 

needs are “Gustavson’s Method” and “Knuth’s Method.” Both methods contain two 

types of solutions under themselves. Those solutions are forming linked lists with 

row information of non-zero elements and column information of non-zero elements 

[13,14]. The privilege among these solutions is determined according to the 

programming language that is used for the applications.  

In power system state estimation process, flexibility and the linked list search time 

are considered as two key features of the sparse storage algorithms due to frequent 
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alterations in the topology, which reflects on the used matrices in applications. 

Considering these two key features, Knuth’s Method becomes superior to the 

Gustavson’s Method due to lack of flexibility in Gustavson’s Method. Therefore, in 

this work, “Knuth’s Method” is enhanced by combining both row ordered linked 

lists and column ordered linked lists together. Beside the increase flexibility, the time 

consumption of the linked list search is also decreased as a further enhancement with 

the help of the utilization of the proposed method. Nevertheless, thanks to the 

improvement of the technology behind the memory storage, using extra space in 

“RAMs (Read Access Memories)” does not create any burden due to the proposed 

method.  

There are several sparse storage methods in the literature, however, there are not any 

open-source algorithms that perform sparse storage for the power system state 

estimation process. Therefore, this work also develops an open-source sparse storage 

library for the state estimation process based on the utilized storage technique. 

In this work, it will be shown that the proposed method, which is combining the row 

ordered linked list and column ordered linked list for “Knuth’s Method” gives the 

desired results and enhances the “Knuth’s Method” in matrix operations for power 

system state estimator. 

As a result, this thesis provides new perspective for the Knuth’s Method which will 

contribute to the decreases in terms of solution time of power system state estimation 

processes. 

The main contributions of the proposed method are listed below; 

• The linked list search time was further decreased compared to the “Knuth’s 

Method”, 

• The flexibility of linked lists operations for sparse matrix operations was 

increased, 

• The solution time of the matrix operations were significantly decreased, 

• The open-source sparse storage library was provided. 
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In this thesis, in order to explain the proposed method, the work is divided into eight 

chapters. 

In the first chapter, which is the introduction part, the definition of the problem is 

explained. Moreover, the existing solutions in the literature for this defined problem 

are reviewed in this chapter. In addition, the innovation of the proposed method is 

given in the introduction part. Moreover, the contributions of the proposed method 

are given. 

In the second chapter, the background information, the details of the state estimation 

process, the details of the bad data analysis process will be given under the 

“Weighted Leas Square” and “Bad Data Analysis” parts. Under the “Bad Data 

Analysis” part, two steps which are “Chi-square Test” and “Normalize Residual 

Test” will be explained in detail. These explained processes in those parts are used 

in order to build a power system state estimator and then the built state estimator is 

further improved with the proposed method. 

In the third chapter, the sparse storage techniques which are suitable for the power 

system state estimation process will be explained in detail. The main operations, 

which are addition, deletion, and changing a value of a non-zero element in linked 

lists for sparse storage, will be explained. Moreover, the advantages and 

disadvantages of those sparse storage methods will be given. 

In the fourth chapter, matrix multiplication, the details of sparse matrix 

multiplication using “Knuth’s Method” and the proposed method will be explained. 

A comparison between the “Knuth’s Method” and the proposed method will be 

given. Moreover, the advantages of the proposed method over the “Knuth’s Method” 

will be shown. Then the results of the proposed method for the matrix multiplication 

process and the comparison between the proposed method with “Knuth’s Method” 

will be given. 

In the fifth chapter, the processes of Cholesky decomposition and the importance of 

the decomposition process for state estimation will be explained. Then the results of 
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the comparison of the proposed method for Cholesky decomposition with other 

methods will be shown. 

The importance of the matrix inversion process and the details of the used 

“Takahashi Method” will be given in chapter six. Then the results of the comparison 

for the proposed method with other solutions will be given. 

In chapter seven, the details of the built real-time state estimator will be given. In 

this state estimator, the solution time results of the state estimation and bad data 

analysis processes that utilized the proposed method will be shown. 

In the final chapter of this thesis, the discussion of the proposed method, observations 

regarding the test results of the proposed method in state estimation process and 

future works will be provided. 

  



 

 

7 

CHAPTER 2  

2 BACKGROUND INFORMATION 

In order to describe the importance of sparse storage algorithm for power system 

monitoring, firstly state estimation process should be analyzed. In the state 

estimation process there are several steps in order to estimate bus voltages and bus 

voltage angles [6]. Those steps can vary, however, the main idea is the same for all 

state estimators that are used for the power system monitoring. 

In this part of the thesis, the well-known state estimator which is called as “Weighted 

Least Squares – WLS” state estimator, will be discussed. The benefits of WLS over 

the other estimators are: 

• It is easy to implement, 

• Computational performance is better among others, 

• And it is the best linear unbiased estimator “(BLUE)[6]”. 

And later, bad data analysis, which is performed after the WLS-SE in order to find 

the corrupted bad data among the measurement set, will be analyzed. 

In this Chapter, the discussion about the estimator will be given in the Weighted 

Least Squares part, and the discussion about bad data analysis will be given under 

the Bad Data Analysis part. 

2.1 Weighted Least Squares State Estimator 

In the power system monitoring, state estimation has a crucial role in finding the 

system states, namely, bus voltage magnitudes and bus voltage angles, using the 

provided measurement set. Those measurements are mainly divided into two 

measurement types which are “SCADA” and “ PMU (Phasor Measurement Unit)” 

measurements. SCADA measurements consist of power flow measurements, power 

injection measurements, and voltage magnitude measurements, and PMU 
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measurements consist of voltage magnitude, voltage angle, current magnitude, and 

current angle measurements.  The state estimator aims to use those measurements to 

find an optimum solution for system states via optimizing the objection function. 

In order to achieve this, first of all, system components which are transmission lines, 

transformers, shunt capacitors or rectors, and tap changing or phase shifting 

transformers, should be modeled. To model these components, the generalized  

model is used.  

 

Figure 2.1: The generalized  model of a transformer. 

  

After modeling the components, the ybus matrix is obtained according to 

formulation in [6]: 

 
[
𝑖𝑘
𝑖𝑚

] =  [
𝑦 𝑎2 + 𝑦𝑠ℎ/2⁄ −𝑦 𝑎⁄

−𝑦 𝑎⁄ 𝑦 + 𝑦𝑠ℎ/2
] [

𝑣𝑘

𝑣𝑚
] (2.1) 

 

where,  

𝑦 is the series admittance value of the line (leakage admittance for transformer),  

𝑎 is the tap value of the transformer (𝑎 = 1 if this is transmission line), 

𝑦𝑠ℎ is the line charging susceptance value. 

With the use of equation (2.1) network model formed as follow: 
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𝐼 = [

𝑖1
𝑖2
⋮
𝑖𝑁

]  =  [

𝑌11 𝑌12 … 𝑌1𝑁

𝑌21 𝑌22 … 𝑌2𝑁

⋮ ⋮ ⋮ ⋮
𝑌𝑁1 𝑌𝑁2 … 𝑌𝑁𝑁

] [

𝑣1

𝑣2

⋮
𝑣𝑁

] = 𝑌 𝑉 (2.2) 

 

where,  

ik is the net current injection at bus k,  

vk is the voltage phasor at bus k, and Ykm is the (𝑘,𝑚)𝑡ℎ element of Y matrix. 

This network model is one of the key elements for WLS-SE since the calculation of 

measurement function of state estimation needs network models. Once the network 

model is obtained, according to [6], the definition of the state estimation formulation 

can be written as follows: 

 𝑧 = ℎ(𝑥) + 𝑒 (2.3) 

 

where,  

h(.) represents the measurement function which makes a relationship between 

measurements to state vector 𝑥 (𝑛 ×  1),  

x represents the true state vector with the size of (𝑛 × 1),  

e corresponds to the measurement error vector with the size of (𝑚 × 1),  

z represents the measurement vector with the size of (𝑚 × 1),  

n is the number of states, and m  is the number of measurements.  

In WLS-SE formulation, there are several assumptions are made for measurement 

errors such as; 

• E[e] = 0 

• E[eiej] = 0 

• cov(e) = E[eeT] = R 
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where,  

R is named as measurement error covariance matrix, and it is a diagonal matrix.  

The objective function of the WLS-SE can be written as follows: 

 𝐽(𝑥) =  ∑𝑊𝑖𝑖 (𝑧𝑖 − ℎ𝑖(𝑥))2

𝑚

𝑖=1

 (2.4) 

 

In equation (2.4),  

subscript i shows the ith entry of the related vector,  

subscript ii represents the iith entry of the related vector, and W  is equal to the R-1. 

It can be seen that with the minimization of the x gradient of equation (2.4) will be 

zero according to the first order optimality condition. For this reason, the following 

relation will be held: 

 𝑔(𝑥) =  
𝜕𝐽(𝑥)

𝜕𝑥
=  −𝐻𝑇(𝑥)𝑊[𝑧 − ℎ(𝑥)] = 0 (2.5) 

 

Since 𝑔(𝑥) is a nonlinear function, to solve the nonlinear problem, an iterative 

solution is required. Therefore, equation (2.5) is linearized around the state vector xk 

by using the Taylor Series Expansion, and the following iterative solution 

formulation is written as follows: 

 Δ𝑥𝑘+1 = 𝐺(𝑥𝑘)−1𝐻𝑇(𝑥𝑘)𝑊[𝑧 − ℎ(𝑥𝑘)] (2.6) 

 

where, 

Δ𝑥𝑘+1 = 𝑥𝑘+1 − 𝑥𝑘 , 

𝐺(𝑥𝑘) = 𝐻𝑇(𝑥𝑘)𝑊𝐻(𝑥𝑘), 

𝐻(𝑥𝑘) represents the measurement Jacobian matrix with a size of (𝑚 × 𝑛), 
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𝑥𝑘 represents the state vector that is estimated at iteration k and  

h(.) is the measurement function that creates measurements by using 𝑥𝑘.  

After forming equation (2.6), to solve the state estimation problem, the measurement 

function is formed as follows; 

 
𝐻 = 

[
 
 
 
 
 
 
 
 
 
 

𝜕𝑃𝑖𝑛𝑗

𝜕𝜃

𝜕𝑃𝑖𝑛𝑗

𝜕𝑉
𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝜃

𝜕𝑃𝑓𝑙𝑜𝑤

𝜕𝑉
𝜕𝑄𝑖𝑛𝑗

𝜕𝜃

𝜕𝑄𝑖𝑛𝑗

𝜕𝑉
𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝜃

𝜕𝑄𝑓𝑙𝑜𝑤

𝜕𝑉

0
𝜕𝑉𝑚𝑎𝑔

𝜕𝑉 ]
 
 
 
 
 
 
 
 
 
 

 

 

(2.7) 

The expressions for each partition in equation (2.6) are given as follows; 

•  Elements corresponding to real power injection measurements: 

 

∂𝑃𝑖

∂θ𝑖
= ∑𝑉𝑖

𝑁

𝑗=1

𝑉𝑗(−𝐺𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗 + 𝐵𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗) − 𝑉𝑖
2𝐵𝑖𝑖 

∂𝑃𝑖

∂θ𝑗
= 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗) 

∂𝑃𝑖

∂𝑉𝑖
= ∑𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)  + 𝑉𝑖𝐺𝑖𝑖 

𝑁

𝑗=1

 

𝜕𝑃𝑖

𝜕𝑉𝑗
= 𝑉𝑖(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) 

 

(2.8) 

• Elements corresponding to reactive power injection measurements: 

 
𝜕𝑄𝑖

𝜕𝜃𝑖
= ∑𝑉𝑖

𝑁

𝑗=1

𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) − 𝑉𝑖
2𝐺𝑖𝑖 
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𝜕𝑄𝑖

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(−𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 − 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) 

𝜕𝑄𝑖

𝜕𝑉𝑖
= ∑ 𝑉𝑖

𝑁

𝑗=1

𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗) − 𝑉𝑖𝐵𝑖𝑖 

∂𝑄𝑖

∂𝑉𝑗
= 𝑉𝑖𝑉𝑗(−𝐺𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗 − 𝐵𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗) 

 

 

(2.9) 

• Elements corresponding to real power flow measurements: 

 

∂𝑃𝑖𝑗

∂θ𝑖
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗) 

∂𝑃𝑖𝑗

∂θ𝑗
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑠𝑖𝑛θ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠θ𝑖𝑗) 

𝜕𝑃𝑖𝑗

𝜕𝑉𝑖
= −𝑉𝑗(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) + 2(𝑔𝑖𝑗 + 𝑔𝑠𝑖) 𝑉𝑖 

𝜕𝑃𝑖𝑗

𝜕𝑉𝑗
= −𝑉𝑖(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) 

 

(2.10) 

• Elements corresponding to reactive power flow measurements: 

 

𝜕𝑄𝑖𝑗

𝜕𝜃𝑖
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) 

𝜕𝑄𝑖𝑗

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) 

𝜕𝑄𝑖𝑗

𝜕𝑉𝑖
= −𝑉𝑖(𝑔𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗) − 2𝑉𝑖(𝑏𝑖𝑗 + 𝑏𝑠𝑖) 

𝜕𝑄𝑖𝑗

𝜕𝑉𝑗
= −𝑉𝑖(𝑔𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗) 

 

(2.11) 

• Elements corresponding to voltage magnitude measurements: 

 
𝜕𝑉𝑖

𝜕𝑉𝑖
 = 1,

𝜕𝑉𝑖

𝜕𝑉𝑗
= 0,

𝜕𝑉𝑖

𝜕𝜃𝑖
= 0,

𝜕𝑉𝑖

𝜕𝜃𝑗
= 0 (2.12) 
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where, 

𝑉𝑖, 𝜃𝑖 are the voltage magnitude and phase angle at bus i, 𝜃𝑖𝑗 is equal to phase angle 

differences between bus i  and bus j,  

𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗 is the ijth element of the bus admittance matrix, 

𝑔𝑖𝑗 + 𝑗𝑏𝑖𝑗 is the admittance value of the branch which is connecting the bus i  and j, 

𝑔𝑠𝑖 + 𝑗𝑏𝑠𝑖 is the admittance of the shunt branch connected to bus i,  

Ni is the bus number that is directly connected to bus i. 

In the power system, with the existence of super sparse structure in the network 

model, there occurs only a few non-zero elements for equations (2.8), (2.9), (2.10), 

(2.11), and (2.12). The example structure of the Jacobian “H” matrix for IEEE-30 

Bus system can be seen in Figure 2.2. 

 

Figure 2.2: The “H” matrix sparse structure. 
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As is seen in Figure 2.2, the sparsity of the “H” matrix is around 9%. According to 

[16], the shape as “H” matrices is defined as a super sparse structure.  Moreover, in 

equation (2.6), the Gain “(G)” matrix is constructed with the “H” matrix. Therefore, 

thanks to a sparse structure of the “H” matrix, the “G” matrix is also has a super 

sparse structure. The example figure for the Gain matrix (“G”) is in Figure 2.3. 

 

Figure 2.3: The Gain Matrix sparse structure. 

Once the “G”  matrix and “H”  matrix is calculated, equation (2.6) should be solved 

for each iteration. However, since there is an inverse matrix operation in equation 

(2.6), not to take an inverse of the “G”  matrix, the “Cholesky Decomposition” 

process is applied to the “G” matrix. 

As a result, the “Cholesky Decomposition” method is utilized instead of taking an 

inverse of the “G” to decrease computational time. According to [17,18], “Cholesky 

Decomposition” formulation can be written as follows: 
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𝐴 = 𝐿𝐿𝑇 = [

𝑥 0 0
𝑥 𝑥 0
𝑥 𝑥 𝑥

] [
𝑥 𝑥 𝑥
0 𝑥 𝑥
0 0 𝑥

] 

 

(2.13) 

 

𝐿𝑖𝑗 = √𝐴𝑗𝑗 − ∑ 𝐿𝑗𝑘(𝐿𝑗𝑘)
∗𝑗−1

𝑘=1
 

𝐿𝑖𝑗 =
𝐴𝑗𝑗 − ∑ 𝐿𝑗𝑘(𝐿𝑗𝑘)

∗𝑗−1
𝑘=1

√𝐴𝑗𝑗 − ∑ 𝐿𝑗𝑘(𝐿𝑗𝑘)
∗𝑗−1

𝑘=1

 

(2.14) 

 

where,  

i and j are the row and column indices of the matrix. 

Once the calculation is performed for “Cholesky Decomposition,” equation (2.14) is 

solved for Δ𝑥𝑘+1 at each iteration until the determined threshold for the convergence 

is satisfied.  

During this calculation process of each iteration, a sparse storage method can be 

applied for further improvement in terms of computational speed. Since the sparsity 

of matrices is increasing with the increasing power system size, a zero-entry 

calculations cause an undesired time-consumptions fo processes such as “Gain 

Matrix” calculation and “Cholesky Decomposition”, since those calculations include 

a lot of multiplication, addition, and subtraction operations. Therefore, this time-

consuming calculations, which are occurred due to the zero entries in matrices, can 

be eliminated with the help of sparse storage in significant order. 

2.2 Bad Data Analysis 

Once WLS-SE is performed, the bad data analysis checks presence of an erroneous 

measurement that biases system states during the state estimation process. In general, 

bad data analysis is formed of two steps [6-9]. The first step is detecting the 
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erroneous measurement, and the second step is identifying the detected measurement 

and eliminating them if possible. Those erroneous data occurs due to various reasons 

such as having a finite accuracy among the meters, telecommunication medium, etc. 

Therefore, eliminating those bad data among the measurement set provided to the 

state estimator is crucial for power system operators in terms of proper system 

monitoring. 

To achieve this, two well-known approaches, which are the “Chi-Square Test” and 

“Normalized Residual Test,” are used for the detection and identification purposes 

of bad data, respectively [6, 19, 20]. 

2.2.1 Chi-Square Test 

The main purpose of the Chi-square test is to detect the existence of the erroneous 

measurement. According to [19], this is achieved by utilizing the x2 distribution. 

 

Figure 2.4: Probability density function for 𝑥2. 
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Figure 2.5: The part of the Chi-Square table. 

 

In Figure 2.4 area under the probability density function is related to the probability 

of finding X  in the corresponding region. In other words 

 𝑃𝑟(𝑋 ≥ 𝑥𝑡ℎ) =  ∫ 𝑥2(𝑢). 𝑑𝑢

∞

𝑥𝑡ℎ

 (2.15) 

 

Equation (2.15) represents the probability of X being larger than a certain threshold 

𝑥𝑡ℎ. With the increasing values of 𝑥𝑡ℎ  value, the probability of X being a specified 

region decreases since the tail of the distribution is decaying. In Figure 2.4, the 

dashed line corresponds to a threshold value, representing the largest acceptable 

0,99 0,95 0,9 0,8 0,75 0,5 0,25 0,1 0,05 0,01

1 0,00 0,00 0,02 0,06 0,10 0,45 1,32 2,71 3,84 6,63

2 0,02 0,10 0,21 0,45 0,58 1,39 2,77 4,61 5,99 9,21

3 0,11 0,35 0,58 1,01 1,21 2,37 4,11 6,25 7,81 11,34

4 0,30 0,71 1,06 1,65 1,92 3,36 5,39 7,78 9,49 13,28

5 0,55 1,15 1,61 2,34 2,67 4,35 6,63 9,24 11,07 15,09

6 0,87 1,64 2,20 3,07 3,45 5,35 7,84 10,64 12,59 16,81

7 1,24 2,17 2,83 3,82 4,25 6,35 9,04 12,02 14,07 18,48

8 1,65 2,73 3,49 4,59 5,07 7,34 10,22 13,36 15,51 20,09

9 2,09 3,33 4,17 5,38 5,90 8,34 11,39 14,68 16,92 21,67

10 2,56 3,94 4,87 6,18 6,74 9,34 12,55 15,99 18,31 23,21

11 3,05 4,57 5,58 6,99 7,58 10,34 13,70 17,28 19,68 24,72

12 3,57 5,23 6,30 7,81 8,44 11,34 14,85 18,55 21,03 26,22

13 4,11 5,89 7,04 8,63 9,30 12,34 15,98 19,81 22,36 27,69

14 4,66 6,57 7,79 9,47 10,17 13,34 17,12 21,06 23,68 29,14

15 5,23 7,26 8,55 10,31 11,04 14,34 18,25 22,31 25,00 30,58

16 5,81 7,96 9,31 11,15 11,91 15,34 19,37 23,54 26,30 32,00

17 6,41 8,67 10,09 12,00 12,79 16,34 20,49 24,77 27,59 33,41

18 7,01 9,39 10,86 12,86 13,68 17,34 21,60 25,99 28,87 34,81

19 7,63 10,12 11,65 13,72 14,56 18,34 22,72 27,20 30,14 36,19

20 8,26 10,85 12,44 14,58 15,45 19,34 23,83 28,41 31,41 37,57

21 8,90 11,59 13,24 15,44 16,34 20,34 24,93 29,62 32,67 38,93

22 9,54 12,34 14,04 16,31 17,24 21,34 26,04 30,81 33,92 40,29

23 10,20 13,09 14,85 17,19 18,14 22,34 27,14 32,01 35,17 41,64

24 10,86 13,85 15,66 18,06 19,04 23,34 28,24 33,20 36,42 42,98

25 11,52 14,61 16,47 18,94 19,94 24,34 29,34 34,38 37,65 44,31

26 12,20 15,38 17,29 19,82 20,84 25,34 30,43 35,56 38,89 45,64

27 12,88 16,15 18,11 20,70 21,75 26,34 31,53 36,74 40,11 46,96

28 13,56 16,93 18,94 21,59 22,66 27,34 32,62 37,92 41,34 48,28

29 14,26 17,71 19,77 22,48 23,57 28,34 33,71 39,09 42,56 49,59

30 14,95 18,49 20,60 23,36 24,48 29,34 34,80 40,26 43,77 50,89

Probability of Exceeding the Critical ValueDegree of 

Freedom
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value for X that will not imply any erroneous measurement. If the value of 𝑋 exceeds 

the thresold value, then it is flagged as a bad data suspicion [6, 20]. These threshold 

values can be found by using the chi-square table seen in Figure 2.5. Therefore, with 

the utilization of the value of 𝑋 that corresponds to the cost of the objective function 

in equation (2.4) and the threshold value found by using the chi-square table, 

erroneous measurements can be detected among the given measurement set. 

 

2.2.2 Normalize Residual Test 

In the previous chapter, the detection of the erroneous measurement is explained for 

the bad data analysis. In this part, the identification method will be given in detail 

for measurements detected in the “Chi-Square Test.” 

According to [6, 19], for WLS-SE equation shown in equation (2.3) changed to a 

linearized measurement equation as follows: 

 ∆𝑥̂ = 𝐻∆𝑥 + 𝑒 (2.16) 

 

where, 𝐸(𝑒) = 0 and 

 𝑐𝑜𝑣(𝑒) = 𝑅.  

Then, the linearized state vector for WLS-SE can be written as: 

 ∆𝑥̂ = (𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1∆𝑧 

= 𝐺−1𝐻𝑇𝑅−1∆𝑧 
(2.17) 

 

and the esitmated value of ∆𝑧 is wrriten as: 

 ∆𝑧̂ = 𝐻∆𝑥̂ = 𝐾∆𝑧 (2.18) 
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where, 

 𝐾 = 𝐻𝐺−1𝐻𝑇𝑅−1 which is called a “hat matrix” for putting a hat on ∆𝑧. 

The structure of the hat matrix can be seen in Figure 2.6. To proceed further, firstly, 

the properties of the “K” matrix should be investigated. Those properties are; 

 𝐾.𝐾. 𝐾. 𝐾 … . 𝐾 = 𝐾 (2.19) 

 𝐾𝐻 = 𝐻 (2.20) 

 (𝐼–𝐾) 𝐻 = 0 (2.21) 

   

Moreover, the residuals of measurements can be described as follows: 

 𝑟 =  ∆𝑧 − ∆𝑧̂ 𝑎𝑠 

= (𝐼–𝐾)∆𝑧 

= (𝐼–𝐾)(𝐻∆𝑥 + 𝑒) 

= (𝐼–𝐾)𝑒 

= 𝑆𝑒  

(2.22) 

 

where,  

S is named as residual sensitivity matrix, and it represents the sensitivity of 

measurements residual to the measurement errors, and it has the following 

properties: 

 𝑆. 𝑆. 𝑆 … 𝑆 = 𝑆 (2.23) 

 𝑆. 𝑅. 𝑆𝑇 = 𝑆𝑅 (2.24) 

 

By using the relation between the residuals of measurements and errors with using 

equation (2.22), covariance and the mean of the measurement residuals can be 

obtained as follows: 
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Figure 2.6: The structure of the hat matrix (K). 

 

 𝐸(𝑟) = 𝐸(𝑆. 𝑒) = 𝑆𝐸(𝑒) = 0 

𝐶𝑜𝑣(𝑟) =  Ω = 𝐸[𝑟𝑟𝑇] 

= 𝑆𝐸[𝑒𝑒𝑇]𝑆𝑇 

= 𝑆𝑅𝑆𝑇 

          = 𝑆𝑅 

(2.25) 

 

Once the “S” matrix is calculated, the next step, which is finding the normalized 

residuals, is utilized by using the following formulations: 

 𝑟𝑖 = 𝑧𝑖– ℎ𝑖(𝑥̂), 𝑖 = 1, … . ,𝑚 (2.26) 

 
𝑟𝑖

𝑁 = 
| 𝑟𝑖 |

√Ω𝑖𝑖

 , 𝑖 = 1,… . ,𝑚 (2.27) 
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where, 

 𝑟𝑖
𝑁 represents the normalized value of residuals at ith indices and 

 Ω𝑖𝑖 represents the ith diagonal entry of the residual sensitivity matrix. 

Once the normalized residuals are calculated, the information of erroneous 

measurement is reached by searching the maximum of the normalized residuals. The 

maximum of normalized residuals identifies the measurement, which has errors and 

biases the state estimation process. To eliminate the biasing problem that occurred 

due to the bad data, identified measurement in normalize residual test should be 

eliminated or corrected. In general, system operators choose to correct instead of 

eliminating since once the bad data is eliminated, whole matrices such as 

measurement Jacobian matrix, Gain matrix, etc., should be reformed. However, if 

the found erroneous measurement is corrected, then only a simple modification is 

required among those matrices, and it is a faster operation. 

The steps for detecting and identifying the bad data among measurements set is given 

as; 

• Solving the WLS-SE and obtain the estimated states 

• With obtained estimated states cost of the objective function is calculated 

• Check whether there is erroneous data or not 

• If there is erroneous data, “Normalize Residual Test” is performed 

• In “Normalize Residual Test,” first residuals are found by using the estimated 

states and measurements 

• Then hat matrix (K) is calculated, and then sensitivity matrix (S) is found 

• Finally, with the calculation of normalized residuals using the sensitivity 

matrix, bad data is found among the measurement set. 

In the state estimation process, the identification of the bad data consumes a 

significant amount of time if there are multiple bad data in the measurement set due 

to the calculation of an inverse operation mentioned in equation (2.17) and 
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performation of state estimation for each bad data. Therefore, with the help of sparse 

storage, time consumption can be reduced.   



 

 

23 

CHAPTER 3  

3 SPARSE STORAGE 

In the power system state estimation process, there are several storage techniques to 

improve the computational speed [5]. However, the most suitable and the most 

common one is the sparse storage method since matrices in state estimation have a 

super sparse structure, and eliminating the processes of zero elements during matrix 

calculation provides desired computational improvement. In terms of the sparse 

storage method, there are several different approaches to store non-zero elements of 

the matrices, but all those approaches are based on the same principle, which is 

creating linked lists for non-zero elements and using these linked lists to make matrix 

calculations [10-15].  Among those sparse storage methods, two methods are 

commonly used in the power system state estimation process, namely “Gustavson’s 

Method” and “Knuth’s Method,” and with varying linked list creation in each 

method, the benefits from those can be further increased. Each of these methods has 

advantages and disadvantages over each other. However, in this thesis, “Knuth’s 

Method” is used for a storage technique to decrease the computational time of the 

state estimation process since it has flexibility for matrix reformations during the 

iterations of the state estimation process. 

In this Chapter, the details about the two main sparse storage techniques in state 

estimation will be given. The comparison between “Gustavson’s Method” and 

“Knuth’s Method” is given in the “Comparison of Sparse Storage Techniques” part. 

3.1 Gustavson’s Method 

Gustavson’s method is the most common sparse storage technique in terms of 

improving the computational performance of processes that have sparse structure 

matrices. In literature, it is called CRS (Compressed Row Storage), and the other 
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variation of  “Row Storage” is called CCS (Compressed Column Storage) [11]. The 

usage of those methods varies in terms of programming language in such that, for 

columned-based programming languages, CCS should be used to utilize sparse 

storage, and for rowed-based programming languages, CRS should be used. 

In Gustavson’s method, the way of storing non-zero elements of matrices is creating 

the three vectors in linked list, which are value vector, row index vector and index 

vector. The sample of method can be seen as follows; 

 

[
 
 
 
 
1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (3.1) 

 

where, 

𝑛 is the row number and  

𝑘 is the column number of the matrix. 

In equation (3.1), the sample sparse matrix can be seen. Moreover, the formulation 

of sparsity calculation of matrix can be written as follows; 

 
𝛿 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
× 100 (3.2) 

 

By using equation (3.2) for the matrix in equation (3.1), the sparsity of the sample 

matrix is calculated as “32%”. As seen, the non-zero elements place less than half of 

the total elements of the matrix. In power system applications, this sparsity 

percentage decreases with increasing system size. 

For sparse matrices exampled in equation (3.1), column-based linked lists are created 

for Gustavson’s method as follows; 
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 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 = [1 4 2 5 3 1 1 4]1×𝑚 

𝑖𝑛𝑑𝑒𝑥 =  [1 3 5 6 7 9]1×(𝑛+1) 

(3.3) 

 

where,  

𝑚 is the number of non-zero elements and  

𝑛 is the row number. 

Moreover, the same linked list with using row-based vectors for matrix in equation 

(3.1) can be written as follows; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 2 4 5 4 3 6 2]1×𝑚 

𝑟𝑜𝑤 𝑖𝑛𝑑𝑒𝑥 = [1 4 5 2 3 1 5 2]1×𝑚 

𝑖𝑛𝑑𝑒𝑥 =  [1 4 5 6 8 9]1×(𝑘+1) 

(3.4) 

 

where,  

𝑚 is the non-zero elements and  

𝑘 is the column number of the matrix.  

In both CRS and CCS methods, the approach is based on creating a linked list for 

non-zero elements of matrices.  

In the compressed row storage method, the way of creating a linked list is following 

non-zero elements in each row and storing their value in value array, column number 

in column index vector, and the number of non-zero elements for each row in index 

vector. For example, in equation (3.3), the number of non-zero elements in ith row 

can be found by investigating the difference between (ith+1)  and ith column of index 

array such that in the first row, there are two non-zero elements (𝑖𝑛𝑑𝑒𝑥(2) −

𝑖𝑛𝑑𝑒𝑥(1) = 2), in second row there are two non-zero elements (𝑖𝑛𝑑𝑒𝑥(3) −
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𝑖𝑛𝑑𝑒𝑥(2) = 2) etc. Therefore, with using these linked lists, non-zero elements in 

matrices can be stored, and also sparse stored matrices can be recreated. 

Besides creating the linked lists, there are three main operations for sparse stored 

matrices which are; 

• Adding an additional non-zero element to the matrix, 

• Deleting a non-zero element from the matrix, 

• Changing the value of non-zero elements of the matrix. 

These operations are given detailed in the following sub-sections. 

3.1.1 Adding a Non-Zero Element  

According to [11], adding a non-zero element to existed linked list of Gustavson’s 

method has three steps. Those steps are; 

• Finding the location where the column number or row number of added value 

takes place in column index vector or row index vector depending on the 

utilized method 

• Adding new value to value vector in found location 

• Changing the total number of non-zero elements in the index array 

The steps are visualized for matrix in equation (3.1) with the following equations. 

 

[
 
 
 
 
1 0 8 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (3.5) 

 

The new added value is shown with red color in equation (3.5). The new value is 

added to the first row and third column of the matrix. After adding the new value, 

linked lists for row storage method in equation (3.3) and column storage method in 

(3.4) changed respectively as follows; 
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 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 8 3 5 2 4 2 4 6]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 = [1 3 4 2 5 3 1 1 4]1×𝑚 

𝑖𝑛𝑑𝑒𝑥 =  [1 4 6 7 8 10]1×(𝑛+1) 

(3.6) 

   

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 2 4 5 8 4 3 6 2]1×𝑚 

𝑟𝑜𝑤 𝑖𝑛𝑑𝑒𝑥 = [1 4 5 2 1 3 1 5 2]1×𝑚 

𝑖𝑛𝑑𝑒𝑥 =  [1 4 5 7 9 10]1×(𝑘+1) 

(3.7) 

 

As seen in equations (3.6), (3.7), the value vector and column/row index vector size 

increased with the number of non-zero elements added to the matrix. However, index 

vector size does not change since it shows only the total number of non-zero elements 

in rows or columns for row storage or column storage, respectively, yet the 

corresponded values of the index array increase. 

3.1.2 Deleting a Non-Zero Element 

According to [11], deleting a non-zero element from existed linked list of 

Gustavson’s method has three steps as follows; 

• Finding the location where the column number or row number of deleted 

value takes place in column index vector or row index vector depending on 

utilized method, 

• Deleting the desired value from the value vector by using the found location, 

• Changing the total number of non-zero elements in the index array. 

The steps are visualized for matrix in equation (3.1) as follows; 
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[
 
 
 
 
1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
0 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (3.8) 

 

In equation (3.8),  the value in the fourth row and the first column is changed from 

“2”  to “0” in other words, it is deleted from the linked list. The changed linked lists 

for matrix in equation (3.8) is written as follows; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 4 6]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 = [1 4 2 5 3 1 4]1×𝑚 

𝑖𝑛𝑑𝑒𝑥 =  [1 3 5 6 6 8]1×(𝑛+1) 

(3.9) 

   

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 4 5 4 3 6 2]1×𝑚 

𝑟𝑜𝑤 𝑖𝑛𝑑𝑒𝑥 = [1 5 2 3 1 5 2]1×𝑚 

𝑖𝑛𝑑𝑒𝑥 =  [1 3 4 5 6 7]1×(𝑘+1) 

(3.10) 

 

As seen in equations (3.9) and (3.10), the value vector and column/row index vector 

size decreased with the number of non-zero elements deleted from the matrix. 

However, index vector size does not change since it shows only the total number of 

non-zero elements in rows or columns for row storage or column storage, 

respectively, yet the corresponded value of the index array decreases. 

3.1.3 Changing the Value of Non-Zero Element 

According to [11], changing a non-zero element in the linked list has two steps, and 

those steps are; 

• Finding the location where the column number or row number of changed 

non-zero element takes place in column index vector or row index vector, 

respectively, 
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• Updating the value vector by using the found location in the first step. 

The steps are visualized for matrix in equation (3.1) as follows; 

 

[
 
 
 
 
1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 10 0]

 
 
 
 

𝑛×𝑘

 (3.11) 

 

In equation (3.11), the existed non-zero element value in the fifth row and the fourth 

column is changed from “6” to “10”. The new linked lists are formed as follows; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 10]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 = [1 4 2 5 3 1 1 4]1×𝑚 

𝑖𝑛𝑑𝑒𝑥 =  [1 3 5 6 7 9]1×(𝑛+1) 

(3.12) 

   

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 2 4 5 4 3 10 2]1×𝑚 

𝑟𝑜𝑤 𝑖𝑛𝑑𝑒𝑥 = [1 4 5 2 3 1 5 2]1×𝑚 

𝑖𝑛𝑑𝑒𝑥 =  [1 4 5 6 8 9]1×(𝑘+1) 

(3.13) 

 

As seen in equations (3.12) and (3.13), the only changes occurred in the value vector 

since the change is made for existed non-zero element, and all other properties for 

non-zero elements in the linked list are kept same. 

3.2 Knuth’s Method 

Besides Gustavson’s method, there is another option for sparse storage named 

Knuth’s method for the power system state estimation process. In Knuth’s method, 

instead of three vectors to store information of non-zero elements, four vectors are 

utilized, namely as value vector, column/row vector, begin row/column vector, and 

next row/column vector. As Gustavson’s method, Knuth’s method also has two 



 

 

30 

options to store non-zero elements in row order or in column order depending on the 

programming language that is used for processes. 

In order to visualize Knuth’s method, the same matrix formed in equation (3.1) is 

used. The linked list that is created by utilizing column order and row order is formed 

as follows; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 =  [1 3 5 6 7]1×𝑛 

(3.14) 

   

 𝑣𝑎𝑙𝑢𝑒 𝑒𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6]1×𝑚 

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 = [1 1 2 2 3 4 5 5]1×𝑚 

𝑛𝑒𝑥𝑡𝐶 = [6 8 −1 −1 −1 7 −1 −1]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 =  [1 3 5 2 4]1×𝑘 

(3.15) 

 

where,  

𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦: storing the non-zero values of the matrix (can be arbitrary order),  

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦: Column index of the corresponding elements stored in value vector 

(𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑖) is the column index of 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑖)) 

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦: Row index of the corresponding elements stored in value vector (row 

𝑎𝑟𝑟𝑎𝑦 (𝑖) is the row index of 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑖)) 

𝑛𝑒𝑥𝑡𝐶: This array contains the pointer to the next non-zero element location in the 

same row (𝑛𝑒𝑥𝑡𝐶 (𝑖) =  𝑧 =>  𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑧) is the next non-zero element of 

𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦(𝑖)) 

𝑛𝑒𝑥𝑡𝑅: This array contains the pointer to the next non-zero element location in the 

same column (𝑛𝑒𝑥𝑡𝑅 (𝑖) =  𝑧 =>  𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑧) is the next non-zero entry of 

𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑖)) 
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𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤: This array contains the pointers to the beginning of each row 

(𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 (𝑖)  =  𝑧, first non-zero entry of row i is 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑧)) 

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛: This array contains the pointer to the beginning of each column 

(𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 (𝑖) = 𝑧, first non-zero entry of column i is 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑧)) 

𝑚 is the number of non-zero elements in the matrix 

𝑛 is the total column number, and k is total the row number of the matrix 

To form linked lists given in equations (3.14) and (3.15) for sparse matrix operations, 

there are three main processes to be considered. Those processes are; 

• Adding the additional non-zero element to the matrix, 

• Deleting the non-zero element from the matrix, 

• Changing the non-zero element of the matrix. 

3.2.1 Non-Zero Element Addition 

Adding an additional non-zero element to the linked list is more complicated than 

“Gustavson’s Method” since linked lists in “Knuth’s Method” can be formed 

arbitrarily [14]. Therefore, the operation for reforming linked lists varies with the 

location of the newly added non-zero element. In order to visualize the reformation 

of linked lists, the row order method is used. The processes are the same for the 

column order method as well. 

In order to visualize the reformation of linked lists, the used matrix for adding a non-

zero element at the beginning of the row is given as follows; 

 

[
 
 
 
 
1 0 0 3 0
8 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (3.16) 
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As seen in the matrix in equation (3.16), the new non-zero element “8” is added to 

the second row and first column.  

When the non-zero element is added at the beginning of the row, then the following 

process is performed the update linked lists. 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑀 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑗 

𝑛𝑒𝑥𝑡𝑅 (𝑚 + 1) = 𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 (𝑖) 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 (𝑖) = 𝑚 + 1 

(3.17) 

   

where,  

𝑚 is the number of the non-zero element before the new non-zero element, 

i is the row number of newly added non-zero element,  

j is the column number of new non-zero element and  

𝑀 is the value of the non-zero element.  

With utilizing the equation (3.17), the linked lists in equation (3.14) are updated as 

follows; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6 8]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4 1]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1 3]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 9 5 6 7]1×𝑛 

(3.18) 

 

The used matrix for adding a non-zero element neither the first entry nor the last 

entry is given as follows; 
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[
 
 
 
 
1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 8 6 0]

 
 
 
 

𝑛×𝑘

 (3.19) 

 

In the matrix in equation (3.19), the new non-zero element is added between the first 

column and fourth column of the fifth row. In order to update such cases, the 

following procedure was performed.  

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑀 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑗 

𝑛𝑒𝑥𝑡𝑅 (𝑚 + 1) =  𝑝𝑟𝑒𝑣 

𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣) = 𝑚 + 1 

(3.20) 

 

where,  

𝑝𝑟𝑒𝑣 is the previous non-zero element index in the same row of newly added non-

zero element at value array.  

Therefore, with utilizing equation (3.20), the linked lists created in equation (3.14) 

are updated as follows; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6 8]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4 3]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 9 −1 8]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 6 7]1×𝑛 

(3.21) 

 

Finally, the used matrix for adding a non-zero element to the end of the row 

visualized as follows; 
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[
 
 
 
 
1 0 0 3 8
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (3.22) 

  

𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑀 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑚 + 1) = 𝑗 

𝑛𝑒𝑥𝑡𝑅 (𝑚 + 1) =  −1 

𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣) = 𝑚 + 1 

(3.23) 

 

In the matrix given in equation (3.22), the non-zero element is added at the end of 

the first row. For such cases, the process in equation (3.23) is performed to update 

the linked lists. 

With the utilization of equation (3.23), linked lists created in equation (3.14) can be 

reformed as follows; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6 8]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4 5]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 9 4 −1 −1 −1 8 −1 −1]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 6 7]1×𝑛 

(3.24) 

3.2.2 Deleting a Non-Zero Element 

Besides “Gustavson’s Method”, deleting a non-zero element from the matrix is 

different in “Knuth’s Method.” During the deletion process of a non-zero entry in 

“Knuth’s Method”, deleted value is kept in linked lists, however, with the utilization 

of the “𝑛𝑒𝑥𝑡𝑅” vector or “𝑛𝑒𝑥𝑡𝐶” vector, the value that deleted from the matrix is 

skipped during the linked list search. There are three main consideration of deletion 

processes which are,  

• Deleting a non-zero element from the beginning of a row, 
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• Deleting a non-zero element from neither beginning nor end of a row, 

• Deleting a non-zero element from at the end of the row. 

To visualize the mentioned processes, the matrix in equation (3.1) is changed with 

the corresponding deletion process. 

The first problem is deleting a non-zero element from the beginning of a row. The 

changed matrix is given as follows; 

 

[
 
 
 
 
0 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (3.25) 

 

In order to reform the linked list in equation (3.14), the utilized step is given as 

follows; 

 𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 (𝑖) = 𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣) (3.26) 

 

By using equation (3.26), the created linked lists are reformed. The changed linked 

lists are; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [2 3 5 6 7]1×𝑛 

(3.27) 

 

When utilizing linked search to recreate a matrix by using the linked lists in equation 

(3.27), it is seen that the first value of the first row is skipped. In other words, it is 

deleted from a matrix. 

The second problem and third problem have the same approach for deleting a non-

zero element from the middle of a row or the non-zero element at the end of the row. 
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Therefore, the following matrix was created to visualize deleting a non-zero element 

from at the end of the row. 

 

[
 
 
 
 
1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 0 0]

 
 
 
 

𝑛×𝑘

 (3.28) 

 

The process for updating linked lists can be written as follow; 

 𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣) = 𝑛𝑒𝑥𝑡𝑅 (𝑖) (3.29) 

 

By using the equation (3.29), the created linked lists in equation (3.14) changed. 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 −1 −1]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 =  [1 3 5 6 7]1×𝑛 

(3.30) 

 

As seen in equation (3.30), the end of the fifth row, which is the value of “6”, is 

eliminated during the linked list search of the matrix recreation process. 

3.2.3 Changing a Non-Zero Value 

Changing a non-zero value is another process in “Knuth’s Method.” In order to 

change the desired non-zero value in the matrix, the linked list search was performed. 

During the process of linked list search, when the index of column number for 

changed value is found in column array, the value is changed to the desired value in 

value array at found index. For example, the first column at the first-row entry 

change from “1” to “10” for the matrix in equation (3.1). 
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[
 
 
 
 
10 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (3.31) 

 

For matrix in equation (3.31), the linked lists are changed as follows; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [10 3 5 2 4 2 4 6]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 3 5 6 7]1×𝑛 

(3.32) 

3.3 Comparison of Sparse Storage Techniques 

Sparse storage algorithms are formed according to need, and each of these sparse 

storage techniques has own advantages and disadvantages. The advantages of 

“Gustavson’s Method” are; 

• The process of building a linked list and recreation of the matrix from a linked 

list is easy, 

• It takes up less memory space, 

• The computational speed for adding, deleting, and changing a non-zero entry 

is high. 

However, there is one significant disadvantage of “Gustavson’s Method” for power 

system state estimation.  The disadvantage is; 

• Linked list cannot be reformed if the new column or row is added. 

In power system state estimation, several matrices, such as seen in equations (2.1) 

and (2.7), are formed in random order. Therefore, “Gustavson’s Method” does not 

meet the requirements for the state estimation process. In order to have the ability to 
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create linked lists in arbitrary order, the “Knuth’s Method” becomes the best suitable 

solution.  The advantages of “Knuth’s Method” are; 

• Linked lists can be formed in arbitrary order, 

• The flexibility of adding/deleting a column or row to a matrix. 

The disadvantages of “Knuth’s Method” are; 

• It consumes more memory space, 

• The implementation is complicated. 

Although “Knuth’s Method” desires high memory space, with the help of the 

significant improved memory technology in recent years, this disadvantage of the 

“Knuth’s Method” vanished. Therefore, the consumption of memory space is no 

longer to be considered as an important factor. Hence the “Knuth’s Method” is 

utilized to build a sparse storage library that contains all matrix operations such as 

multiplication, Cholesky Factorization, and inverse of a matrix in this thesis.  The 

detailed information for these operations is given in Chapter 4. 

  



 

 

39 

CHAPTER 4  

4 THE PROPOSED METHOD 

In previous chapters, background information of “WLS State Estimator, Bad Data 

Detection and Identification” are given. The importance of using the sparse storage 

techniques for these processes were mentioned. After that, the sparse storage 

methods namely Gustavson’s Method and the basis of the proposed method which 

is Knuth’s Method”, were explained in detail. 

According to “Knuth’s Method,” there are two options for building a linked list of a 

matrix. The first one is using the column method, and the second one is using the 

row method. In this thesis, to obtain a faster sparse library, these two methods 

combined and utilized a new linked list containing all seven vectors mentioned in 

Chapter 3.2. According to the following matrix, the example linked list that is used 

for the sparse storage technique is written as follows; 

 

[
 
 
 
 
1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (4.1) 

 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚 

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 = [1 1 2 2 3 4 5 5]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚 

𝑛𝑒𝑥𝑡𝐶 = [6 8 −1 −1 −1 7 −1 −1]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 =  [1 3 5 6 7]1×𝑛 

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 = [1 3 5 2 4]1×𝑘 

(4.2) 
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In equation (4.2), the new sparse storage technique is utilized to perform matrix 

operations mentioned state estimation operations. As it seen from the linked list that 

is created for the proposed method, the number of vectors in linked list are increased 

to keep additional information of non-zero entries. The required memory of the 

proposed method and Knuth’s method are shown as below; 

• Required memory of Knuth’s Method is (3 × 𝑛𝑛𝑧 × 𝑚) 

• Required memory of  The Proposed Method is (5 × 𝑛𝑛𝑧 + 𝑚 + 𝑛) 

where, 

𝑛𝑛𝑧 is the total non-zero element number, 

𝑚 is the row number of the matrix, 

𝑛 is the column number of the matrix, 

However, the use of additional space is not considered as a problem thanks to the 

improvements in “RAMs” technologies. Therefore, with the help of these additional 

informations linked list search time is further decreased.  

In this way, the operations for matrices such as multiplication, addition, and 

subtraction are aimed to be accelerated. The implementation of matrix multiplication 

process is given in Chapter 4.2. 

4.1.1 Adding a Non-Zero Element  

In order to visualize the reformation of linked list for the proposed method, the used 

matrix for adding a non-zero element is given as follows; 

 

[
 
 
 
 
1 0 0 3 0
8 5 0 0 2
0 0 4 0 0
2 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (4.3) 
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As seen in the matrix in equation (4.3), the new non-zero element “8” is added to the 

second row and first column. Addition a non-zero element to matrix is different in 

the proposed method since the proposed method is utilized both row ordered, and 

column ordered linked lists together. In example, when non-zero entry is added at 

the beginning of the row it does not mean that it must be for the beginning entry of 

the column. Therefore, to obtained linked list for the proposed method, all processes 

mentioned in Chapter 3.2.1 should be processed for vectors related with row ordered 

linked list and column ordered linked list separately. The reformed linked list for the 

prosed method when the new non-zero entry is added to matrix is shown below; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6 8]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4 1]1×𝑚 

row array = [1 1 2 2 3 4 5 5 2]
1×𝑚

 

nextC = [9 8 −1 −1 −1 7 −1 −1 6]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1 3]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 = [1 9 5 6 7]1×𝑛 

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 = [1 3 5 2 4]1×𝑘 

(4.4) 

 

As it seen in equation (4.4), to update the linked list, the process of adding a non-

zero entry to beginning of the row in Chapter 3.2.1 is followed for “𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦, 

𝑛𝑒𝑥𝑡𝑅, and 𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤”, and the process of adding a non-zero element neither the 

first entry nor the last entry in Chapter 3.1.1 is followed for “𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦, 𝑛𝑒𝑥𝑡𝐶 and 

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛”.  

4.1.2 Deleting a Non-Zero Element 

In order to visualize the reformation of linked list for the proposed method, the used 

matrix for deleting a non-zero element at the beginning of the row is given as follows; 
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[
 
 
 
 
1 0 0 3 0
0 5 0 0 2
0 0 4 0 0
0 0 0 0 0
4 0 0 6 0]

 
 
 
 

𝑛×𝑘

 (4.5) 

 

As seen in the matrix in equation (4.5), non-zero element “2” was deleted from the 

fourth row and first column of matrix in equation. The deletion process of a non-zero 

entry from the matrix has same considerations such as when non-zero entry is deleted 

from the beginning of the row it does not mean that it must be located at the 

beginning of the column. Therefore, the processes mentioned in Chapter 3.2.2, 

should be applied separately for vectors related with row ordered link list and column 

ordered link list. The reformed linked list for the prosed method when the non-zero 

entry is deleted from the matrix is shown below; 

 𝑣𝑎𝑙𝑢𝑒 𝑎𝑟𝑟𝑎𝑦 =  [1 3 5 2 4 2 4 6]1×𝑚 

𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 = [1 4 2 5 3 1 1 4]1×𝑚 

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 = [1 1 2 2 3 4 5 5]1×𝑚 

𝑛𝑒𝑥𝑡𝑅 = [2 −1 4 −1 −1 −1 8 −1]1×𝑚 

𝑛𝑒𝑥𝑡𝐶 = [7 8 −1 −1 −1 7 −1 −1]1×𝑚 

𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤 =  [1 3 5 −1 7]1×𝑛 

𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 = [1 3 5 2 4]1×𝑘 

(4.6) 

 

As it seen in equation (4.6), to update the linked list, the process of deleting a non-

zero entry from the beginning of the row in Chapter 3.2.2 is followed for 

“𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦, 𝑛𝑒𝑥𝑡𝑅, and 𝑏𝑒𝑔𝑖𝑛 𝑟𝑜𝑤”, and the process of deleting a non-zero 

entry from neither the first entry nor the last entry in Chapter 3.2.2 is followed for 

“𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦, 𝑛𝑒𝑥𝑡𝐶 and 𝑏𝑒𝑔𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛”. 

In conclusion, to update linked list for the proposed method, when non-zero entry is 

added, deleted, or changed, all processes under Chapter 3.2 should be considered for 

related vectors separately. 
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4.2 Matrix Multiplication 

Matrix multiplication process is the key operation in power system state estimation, 

since in each step of the state estimation, there is a multiplication process between 

super sparse matrices. Therefore, in order to speed up the operations, sparse storage 

plays a significant role. Before explaining the method that is used for the thesis, the 

matrix operation is visualized as follows; 

 

Figure 4.1: The visualization of matrix multiplication for first row first column 

In matrix multiplication seen in Figure 4.1, the time complexity is 𝑂(𝑛3) since each 

entry of matrix is considered during the process even the result is equal to “0”. 

However, when the row method of “Knuth’s Method” is used, the time complexity 

decreases from 𝑂(𝑛3) to 𝑂(𝑛2  ×  𝑚 ×  𝑙𝑖𝑛𝑘 𝑙𝑖𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑡𝑖𝑚𝑒), where “𝑚” is the 

total number of intersections of non-zero elements indexes between rows and 

columns. Linked list search time is the time for finding a required non-zero element 

in obtained linked lists. When the size of the matrix is increased, the time difference 

between normal operation and sparse storage technique increases as well. Therefore, 

sparse storage has a crucial role to obtain faster operations for bigger size of systems. 
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The visualization of the linked list search in the row ordered “Knuth’s Method” is 

given as follows; 

 

Figure 4.2: The linked list search of row order “Knuth’s Method” in the 

multiplication of the first row of Matrix A and fifth column of Matrix B 

As seen in Figure 4.2, to find the locations of non-zero elements in the fifth column 

of Matrix B, the linked list search is performed from the beginning for each row of 

the examined column. This issue makes additional time consumption, and the time 

consumption increases with increasing the size of matrices. 

Thanks to the proposed strategy in equation (4.2) for sparse storage, the time 

consumption of the multiplication process is decreased further by decreasing the 

linked list search time. This time reduction is done by eliminating the extra linked 

list searches to find column indexes of each row of Matrix B in the multiplication 

process by storing the non-zeros with row order and column order at the same time. 

The visualization of the multiplication process with the proposed sparse storage 

technique is given as follows;  
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Figure 4.3: The linked list search of the proposed method in the multiplication 

process of the first row of Matrix A and fifth column of Matrix B 

In Figure 4.3, it is seen that the linked list search can be performed both in row order 

and column order. In other words, instead of searching each row to find whether 

there is a non-zero element or not in the examined column, the linked list search 

performed directly to the desired column to find row indexes of non-zero elements.  

In that way, multiplication is performed if the column index of the non-zero element 

in a row of Matrix A is intersected with the row index of the non-zero element in a 

column of Matrix B.  

To achieve this process following steps are performed for each iteration: 

1. 𝑝𝑟𝑒𝑣 𝑟𝑜𝑤 = 1 (investigated row number = 1), 

2. 𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛 = 5 (investigated column number = 5), 

3. 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤) = 1, 

4. 𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛) = 1, 
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5. If column of the value and row of the value are same, multiplication occurs, 

6. 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤)) = 4, 

7. 𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛)) = 3 

8. If 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤)) = 4 >

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛)) = 3, 𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛 value updated as 

𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛 = 𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛), 

9. New value of 𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛) = 6, 

10. If 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤)) = 4 <

𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛)) = 6, 𝑝𝑟𝑒𝑣 𝑟𝑜𝑤 value updated as 

𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛 = 𝑛𝑒𝑥𝑡𝑅(𝑝𝑟𝑒𝑣 𝑟𝑜𝑤), 

11. When value of 𝑐𝑜𝑙𝑢𝑚 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤) and 𝑟𝑜𝑤 𝑎𝑟𝑟𝑎𝑦 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛), 

multiplication process occurs, 

12. When one of the 𝑛𝑒𝑥𝑡𝑅 (𝑝𝑟𝑒𝑣 𝑟𝑜𝑤) or 𝑛𝑒𝑥𝑡𝐶 (𝑝𝑟𝑒𝑣 𝑐𝑜𝑙𝑢𝑚𝑛) reaches to 

“ − 1” the multiplication process of that iteration terminates. 

This approach decreases the time complexity of the linked list search algorithm 

further to obtain a faster multiplication process where the time complexities of the 

proposed method and Knuth’s method for matrix multiplication operation are shown 

as below; 

• The Proposed Method has 𝑂(𝑚 × ∑ (𝑛𝑛𝑧𝑖 + 𝐷))𝑛
𝑖=1  

• Knuth’s Method has 𝑂(𝑚 × ∑ (𝑛𝑛𝑧𝑖 + 𝐷 × 𝑛𝑛𝑧𝑖)
𝑛
𝑖=1  

where, 

𝑛𝑛𝑧𝑖 is the total non-zero element number in 𝑖𝑡ℎ column, 

𝑚 is the row number of the matrix A, 

𝑛 is the column number of the matrix B, 

𝐷 is the link list search time to find the non-zero entry for desired location. 
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4.3 Cholesky Decomposition 

As seen in equation (2.6), there is an inverse calculation of the “Gain Matrix”, 

therefore, with applying the “Cholesky Decomposition” to “Gain Matrix,” the 

solution time of equation (2.6) decreased with the elimination of the inversion 

operation. In literature, there are several types of factorization algorithms [23-25]. 

Among these algorithms, the most used decomposition algorithm is the Cholesky 

Decomposition for power system state estimation processes since it is a 

computationally cheap algorithm for positive definite symmetrical matrices, as the 

gain matrix used in WLS procedure. After applying the Cholesky decomposition 

process to the “Gain Matrix” mentioned in (2.13), the new equation can be written 

as follows; 

 𝐿𝐿𝑇𝑥̂ =  𝐻𝑇(𝑧 − ℎ(𝑥̂)) (4.7)  

 

where,  

L is the lower triangular matrix of the Gain matrix, 

𝐿𝑇 is the upper triangular matrix of Gain matrix, 

z is the measurements and 

ℎ(𝑥̂) is the measurements which are created with measurement function by using the 

estimated states.  

The visualization of the lower and upper triangular matrices of the gain matrix in 

Figure 2.3 is given below. 
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Figure 4.4: The lower triangular matrix of the gain matrix in Figure 2.3 

 

Figure 4.5: The upper triangular matrix of the gain matrix in Figure 2.3 
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There are several methods of computation of the “Cholesky Decomposition” to find 

lower and upper triangular matrices in the literature. However, according to [24], the 

following algorithm is one of the best algorithms in terms of time complexity, among 

others. The Doolittle’s algorithm for “Cholesky Decomposition” is given in below. 

Algorithm 1 Cholesky Decomposition (Doolittle’s Algorithm) 

1: 𝒇𝒐𝒓 𝑗 = 1: 𝑛 

2:  𝒊𝒇 𝑗 >  1 

3:  𝐴(𝑗: 𝑛, 𝑗)  =  𝐴(𝑗: 𝑛, 𝑗)  −  𝐴(𝑗: 𝑛, 1: 𝑗 − 1)𝐴(𝑗, 1: 𝑗 − 1)𝑇 

4: 𝒆𝒏𝒅 

5: 𝐴(𝑗: 𝑛, 𝑗)  =  𝐴(𝑗: 𝑛, 𝑗)/√𝐴(𝑗, 𝑗) 

6: 𝒆𝒏𝒅 

 

where,  

n is the column number of matrix A. 

After obtaining the lower and upper triangular matrices of the Gain matrix by using 

Algorithm 1, with the help of the forward and the backward substitution, the 

estimated states are calculated by using the following formula; 

 

𝑡 =  𝐻𝑇(𝑧 − ℎ(𝑥̂)) 

𝐿𝑇𝑥̂ = 𝑦 

𝐿𝑦 = 𝑡 

(4.8) 

 

In equation (4.8), since L, LT and t are known, y is calculated by using the forward 

substitution, and then, with the calculated y, estimated states are found by using the 

backward substitution. 
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4.4 The Matrix Inversion 

The matrix inversion is the most time-consuming process among all other matrix 

operations such as multiplication, addition, subtraction, etc.  Unfortunately, the state 

estimation process (bad data identification) contains an inverse operation during the 

calculation of the hat matrix in equation (2.18). However, as a result of the super 

sparse structure of the Gain Matrix, this time consumption, which occurrs due to the 

matrix inversion, can be eliminated by using the proposed sparse library. In 

literature, there are several approaches for inverse operation, however, in this thesis, 

the “Takahashi Method” is applied to the sparse algorithms to calculate matrix 

inversion [23]. The details of a “Takahashi Method” are given in Chapter 4.4.1. 

4.4.1 Takahashi Method 

According to [26], the Takahashi method utilizes the “LDU” factorization for 

computing the inverse of a given matrix. In order to calculate matrix inversion, there 

are two equations written as follows; 

 𝑍 =  𝐷−1𝐿−1 + (𝐼 − 𝑈)𝑍 (4.9) 

 𝑍 = 𝑈−1𝐷−1 + 𝑍(𝐼 − 𝐿) (4.10) 

 

where,  

A is the given matrix and A = LDU (L, U, and D are unit lower triangular, unit upper, 

and diagonal matrices, respectively) and 

𝑍 =  𝐴−1.  

According to [26], by utilizing the equations (4.9) and (4.10), some observations are 

made for positive definite symmetrical matrices. These observations are; 

• The product of (𝐷−1𝐿−1)𝑖𝑖 = 𝐷𝑖𝑖
−1. This observation is used to eliminate 

calculation of the inverse of lower triangular matrix “L,” 
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• (𝐼 − 𝑈) is the strictly upper triangular matrix since U is the unit upper 

triangular matrix, 

Using these two observations, the Z matrix can be computed without calculating the 

L-1 matrix. The formulation to the calculation of inverse elements to the diagonal and 

upper triangular party of Z matrix can be written as follows; 

 𝑧𝑖𝑗 = 𝑑𝑖𝑗
−1 ∑𝑢𝑖𝑘𝑧𝑘𝑗       𝑓𝑜𝑟 𝑖≤𝑗

𝑛

𝑘>𝑖

 (4.11) 

  

According to [26], the example of performing formulation of the equation (4.11), 

can be seen below. 

 

        𝐴 =  [

𝑥 0 𝑥 𝑥
0 𝑥 𝑥 0
𝑥 𝑥 𝑥 0
𝑥 0 0 𝑥

] (4.12) 

 𝐿 + 𝑈 =  [

𝑥 0 𝑥 𝑥
0 𝑥 𝑥 0
𝑥 𝑥 𝑥 𝑥
𝑥 0 𝑥 𝑥

] (4.13) 

 

 

𝑧44 = 𝑑44
−1 

𝑧34 = −𝑢34𝑧44 

𝑧33 = 𝑑33
−1 − 𝑢34𝑧43 

𝑧32 = −𝑢23𝑧33 

𝑧22 = 𝑑22
−1 − 𝑢23𝑧32 

𝑧14 = −𝑢13𝑧34−𝑢14𝑧44 

𝑧13 = −𝑢13𝑧33−𝑢14𝑧44 

𝑧11 = 𝑑11
−1 − 𝑢13𝑧31−𝑢14𝑧41 

 

 (4.14) 
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where,  

A is the given matrix,  

dij is the ith row and jth column of the diagonal matrix,  

uij is the ith row and jth column of the unit upper triangular matrix and  

red values are “fill-in” values that occurred during the decomposition process.  

The used “Takahashi Algorithm” for matrix inversion is given as follows; 

Algorithm 2 Takahashi Algorithm 

1:𝒇𝒐𝒓 j =  m × 2:−1: 1 

2:    𝒇𝒐𝒓 𝑖 =  𝑚 × 2:−1: 1 

3:        𝒊𝒇 𝑖 ==  𝑗 

4:            𝑣𝑎𝑙𝑢𝑒 =  0; 

5:            𝒇𝒐𝒓 𝑘 =  𝑖 + 1:𝑚 × 2 

6:                    𝑣𝑎𝑙𝑢𝑒 =  𝑣𝑎𝑙𝑢𝑒 +  𝑈 (𝑖, 𝑘) ×  𝑍(𝑘, 𝑗); 

7:            𝒆𝒏𝒅 

8:            𝑍(𝑖, 𝑗)  =  (1/𝐷(𝑖, 𝑗))  −  𝑣𝑎𝑙𝑢𝑒; 

9:            𝑍(𝑗, 𝑖)  =  𝑍(𝑖, 𝑗); 

10:      𝒆𝒍𝒔𝒆𝒊𝒇 𝑖 < 𝑗 

11:          𝑣𝑎𝑙𝑢𝑒 =  0; 

12:          𝒇𝒐𝒓 𝑘 =  𝑖 + 1:𝑚 × 2 

13:                  𝑣𝑎𝑙𝑢𝑒 =  𝑣𝑎𝑙𝑢𝑒 −   𝑈 (𝑖, 𝑘) × 𝑍(𝑘, 𝑗); 

14:          𝒆𝒏𝒅 

15:          𝑍(𝑖, 𝑗)  =  𝑣𝑎𝑙𝑢𝑒; 

16:          𝑍(𝑗, 𝑖)  =  𝑍(𝑖, 𝑗); 

17:      𝒆𝒏𝒅    

18:𝒆𝒏𝒅 

where,  

m is the size of matrix 𝐴,  
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𝑍 is the A-1,  

𝑈 is the unit upper triangular matrix and  

𝐷 is the diagonal matrix. 

In equation (4.13), it is seen that, after the decomposition process applied to the given 

matrix, some non-zero elements, which do not exist in the given matrix, come up in 

lower triangular and upper triangular matrices. These non-zero entries create an 

additional time consumption during the matrix inversion process. Therefore, in the 

state estimation process, to decrease the number of fill-ins in matrices, the “Reverse 

Cuthill-McKee” algorithm is used to reorder bus numbers of system structure to 

centralize the non-zero entries around diagonals [27].  

In that way, the number of the “fill-in” values in matrices are being reduced. In an 

example, when the “Reverse Cuthill-McKee” algorithm applied to the Gain matrix 

in Figure 2.3, the new structure of the matrix becomes as follows; 

 

Figure 4.6: The Gain matrix after Reverse Cuthill McKee algorithm applied 
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Even the Gain matrix in Figure 4.6 and Figure 2.3 is the same matrix, when the 

decomposition applied, the lower and upper triangular matrix differs as follows; 

 

Figure 4.7: The lower triangular matrix of the Gain matrix after the decomposition 

process 

In Figure 4.7, it is seen that the number of non-zero entries is less than the non-zero 

entries in Figure 4.4. Therefore, this example shows the importance of the ordering 

process. The details of the “Reverse Cuthill-McKee” algorithm can be found in [24]. 

According to [28], for further time improvement during the inversion operation of 

the matrix, only non-zero entry locations of Gain Matrix are calculated in equation 

(4.11). However, when system size increases, the fill-ins become inevitable. As a 

result of this, calculating only non-zero entry locations of the Gain matrix, leads to 

the wrong solution in the inverse operation of the matrix. Therefore, instead of using 

the non-zero entry locations of the Gain matrix, utilizing the non-zero entry locations 

of the lower triangular matrix of the Gain matrix gives the desired result since, during 

the decomposition process, fill-ins are considered. The test results of the proposed 
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method, which is the sparse storage applied to the Takahashi method using only the 

non-zero entries locations of the lower triangular matrix, the Takahashi method with 

calculating all entry, the built-in function of MATLAB, and conventional Takahashi 

method is given in Chapter 5.3.
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CHAPTER 5  

5 VALIDATION OF THE PROPOSED METHOD WITH STATE 

ESTIMATOR 

In previous chapters the details of the operations in WLS State Estimation, Bad Data 

Analysis were given. Beside of these, to decrease the computational time during 

these operations, the importance of the sparse storage methods was mentioned. 

Moreover, the proposed method and the further improvements with the help of the 

proposed method for the matrix multiplication, Cholesky decomposition and the 

matrix inversion operation was given in detail. 

In this thesis, to test the proposed strategy in real-life matrix operations, the state 

estimator is built. This state estimator contains the state estimation and bad data 

analysis. With the use of a built state estimator, all matrix operations mentioned in 

Chapter 4 are tested with the proposed sparse library, and the solution time of the 

proposed methods is investigated. The proposed method built in MATLAB 

environment with “Object Oriented” manner. However, MATLAB has still an issue 

of the solution time consumption of “Object Oriented” algorithms. In other words, 

when algorithm is implemented as “Object Oriented” in MATLAB environment it 

takes more time to be computed. 

In this thesis, three main methods are proposed. These methods are; 

• Sparse multiplication with the “Full Knuth’s Method” 

• Sparse Cholesky Decomposition with the “Full Knuth’s Method” 

• Sparse Takahashi matrix inversion with the “Full Knuth’s Method” 

Besides these three main methods, a complete sparse library for the “Full Knuth’s 

Method” is established, which contains entry search, entry deletion, graph search 

algorithms, etc., to perform state estimation process in real life.  
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The solution time of state estimation and bad data analysis with built sparse library 

for IEEE 30-Bus system is given below [29]. 

Table 5.1: The solution time of proposed method of state estimation and bad data 

analysis process in IEEE 30-Bus system 

System Size 

Density of H 

Matrix 

Density of 

Gain Matrix 

Solution Time 

of State 

Estimation (ms) 

Solution Time of 

Bad Data Analysis 

(ms) 

IEEE 30-Bus 9% 29% 15.6 9.4 

 

In Table 5.1, the solution time of the state estimation process and bad data analysis 

process for the IEEE 30-Bus system is shown. For the state estimation process, the 

solution time is dependent on the iteration number. For the IEEE 30-Bus system, 

system states converged to a threshold value in 10 iterations. Therefore, for each 

iteration, the solution time of the state estimation with the proposed method is equal 

to 2.56 ms. In bad data analysis of the IEEE 30-Bus system, the main time 

consumption is the matrix multiplication since in equation (2.18), during the 

calculation of hat matrix “K,” there is an inverse of the Gain matrix. The inverse of 

the Gain matrix is almost a full matrix, and this issue causes the extra linked list 

search time. 

The solution time of the state estimation and bad data analysis for the IEEE 118-Bus 

system is given below. 

Table 5.2: The solution time of proposed method of state estimation and bad data 

analysis process in IEEE 118-Bus system 

System Size 

Density of H 

Matrix 

Density of 

Gain Matrix 

Solution Time 

of State 

Estimation (ms) 

Solution Time of 

Bad Data Analysis 

(ms) 

IEEE 118-Bus 2% 10% 90.2 84.3 
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5.1 Test Results of Proposed Method in Multiplication Process 

In the power system state estimation, the multiplication process has a crucial role for 

time consumption. Therefore, with the proposed method, this time kept as minimum 

as possible. The time consumption for these multiplication processes in state 

estimation is compared with the multiplication process without using the sparse 

storage technique seen in Algorithm 3. To compare the proposed method and the 

normal method, matrices are randomly created with different sizes and sparse 

density. In addition to that, the real 2383-bus Polish power system, real 3120-bus 

power system and 9241-bus power system grid are used to investigate the 

computation time difference between the proposed method with other methods [30]. 

The methods are tested with, Intel i9 9900 2.3 GHz 8 Core processor and 16 GB 

2666 MHz RAM in MATLAB 2020b environment. 

Algorithm 3 Conventional Matrix Multiplication 

1: 𝒇𝒐𝒓 𝑖 = 1:𝑚 

2:  𝒇𝒐𝒓 𝑗 =  1: 𝑛 

3:               𝒇𝒐𝒓 𝑘=1:m 

4:     S(𝑖, 𝑗) =  𝑆(𝑖, 𝑗) +  𝐴(𝑖, 𝑘) × 𝐴(𝑘, 𝑗) 

5:               𝒆𝒏𝒅 

6: 𝒆𝒏𝒅 

7: 𝒆𝒏𝒅 

 

where,  

m, n are row number and column number of matrix A respectively, and 

𝑆 is the resulted matrix for multiplication. 
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Table 5.3: The time consumption of matrix multiplication using the proposed 

method, reference tool, and conventional multiplication. 

Matrix Size 

Density of 

Matrix 

The Proposed 

Method (ms) 

Reference Tool 

(ms) 

Algorithm 3 

Conventional 

Algorithm (ms) 

(60x60) 1% 0.19794 0.03680 0.1450 

(60x60) 5% 0.2662 0.04341 0.1449 

(236x236) 1% 1.8 0.05003 7.2 

(236x236) 5% 5.2 0.056652 9.6 

(600x600) 1% 19.2 1.5 115.5 

(2383x2383) 0.36% 508.4 76.8 22165.8 

(3120x3120) 0.25% 1187.0 194.2 58623.4 

(9241x9241) 0.12% 8502.3 4107.3 ~ 

 

In Table 5.3, the solution times for the algorithm of the proposed method, the 

reference matrix multiplication and conventional algorithm are given. The 

algorithms are compared in MATLAB environment. However, according to [31], 

MATLAB uses “c++” for the built-in functions, and according to [32], the 

algorithms written in MATLAB are a few hundred times slower than the algorithms 

written with “c++” language. Moreover, built-in functions of MATLAB are well-

optimized and uses all available cores to utilize the parallel processing. On the 

contrary, codes written in MATLAB environment are using only a single core to 

perform an algorithm. 

Therefore, instead of directly comparing the computation time of reference tool with 

the proposed method, the scaling of computation time between two different matrix 

sizes for the reference tool and the proposed method should be compared.  

In Table 5.3, it is seen that when the size increases, the solution time of conventional 

algorithm increases more than the proposed method and, it is seen that, computation 
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time of the reference tool, which is the built-in function of MATLAB, is approaching 

the computation time of proposed method, with increasing measurement size, which 

means that the scaling of the built-in functions is higher than the proposed method. 

Beside of that, for the conventional algorithm, when the matrix size increases the 

solution time of the matrix operation increases dramatically. Therefore, the 

computation time of the conventional algorithm is shown as “~” symbol.  

In Table 5.3, when density increases, using sparse storage methods becomes 

meaningless since the time consumption of the number of linked list searches 

increases. However, thanks to matrix structures in the power system in real life, the 

density of matrices is less then the 1%. Therefore, using a sparse structure to hold 

matrices in linked list form is important. 

5.2 The Test Results of the Proposed Method in Cholesky Decomposition 

Process 

In the power system state estimation process, as seen in Figure 2.3, the sparsity of 

the Gain matrix is around 25%. However, when the size of the system increases, the 

sparsity of the matrix decreases less than the 1%. Therefore, it is important to use 

sparse storage methods to reduce the time consumption of non-zero elements in 

matrices. 

The proposed strategy mentioned in Chapter 3.2 is applied to the “Cholesky 

Decomposition” algorithm given in Algorithm 1. After applying the sparse storage 

technique, the time results of built Cholesky Decomposition with sparse storage 

technique, the MATLAB built-in function for Cholesky Decomposition, and the 

Doolittle’s algorithm given in Algorithm 1 are investigated and given in the table 

below. 

In Table 5.4, it is seen that when the proposed sparse algorithm is applied to the 

“Cholesky Decomposition,” the solution time decreases. As it is mentioned in 

Chapter 5.1, the built-in functions of MATLAB are processed with well-optimized 
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“c++” algorithm. As a result, there is a huge solution time gap between the proposed 

method and the built-in function of MATLAB, but the scaling of the built-in function 

between two matrix size is higher than the proposed method and the computation 

time of the built-in function is approaching the computation time of proposed 

method. Again, the computation time of the conventional algorithm is shown as “~” 

symbol since the computation time of the conventional algorithm increases 

dramatically when the matrix size increases. 

Table 5.4: The time results of Cholesky Decomposition with the proposed method, 

MATLAB built-in function, and Doolittle’s algorithm. 

Matrix Size 
Density of 

Matrix 

Proposed 

Method (ms) 

Built-in 

Function (ms) 

Algorithm 1 

Doolittle’s 

Algorithm (ms) 

(60x60) 1% 0.34 0.01745 0.9118 

(60x60) 5% 0.36 0.01656 0.9043 

(236x236) 1% 5.6 0.23671 13.1 

(236x236) 5% 7.2 0.27640 14.3 

(600x600) 1% 11.2 0.77697 85.2 

(2383x2383) 0.36% 253.8 24.6 16533.1 

(3120x3120) 0.25% 439.4 55.8 65732.1 

(9241x9241) 0.12% 1023.1 950.5 ~ 

  

5.3 Test Results of Proposed Method for Matrix Inversion 

In bad data analysis of state estimation process, to calculate the hat matrix mentioned 

in equation (2.18), the proposed sparse method is applied to Algorithm 2 for 

Takahashi method. As opposed to Algorithm 2, the proposed method avoids 

calculating “0” values while performing the inversion process. The methods are 
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tested with different matrix sizes and matrix sparsity densities. The test results are 

given in below. 

In Table 5.5, solution times of the inverse operation with different methods for 

different matrices are investigated. It is seen that the proposed method has better 

solution time comparing with the conventional matrix inversion. However, the 

proposed method still slower than the built-in function of MATLAB due to the 

programming language difference mentioned in Chapter 5.1. In addition, there is one 

more performance improvement with the proposed method, as seen in Error! Not a 

valid bookmark self-reference.. That performance improvement is achieved by 

calculating only the non-zero entry locations in the lower triangular matrix for the 

inverse of the Gain matrix instead of calculation all entries of the inverse of the Gain 

matrix. 

Table 5.5. The time results of the proposed method, the built-in function of 

MATLAB, conventional matrix inversion, and calculation of all entries of the 

inverse of Gain matrix. 

Matrix Size 
Density 

of Matrix 

Proposed 

Method 

(ms) 

Built-in 

Function 

(ms) 

Algorithm 2 

Conventional 

Takahashi 

Method (ms) 

Sparse 

Method with 

Calculation 

All Entries 

(ms) 

(60x60) 1% 0.9042 0.0599 0.23875 0.9571 

(60x60) 5% 1.8 0.067325 0.24427 2.4 

(236x236) 1% 3.8 1.5 13.4 4.7 

(236x236) 5% 5.6 1.5 19.9 30.9 

(600x600) 1% 14.9 11.4 378.7 69.3 

(2383x2383) 0.36% 2732.3 166.1 40342.2 65907.6 

(3120x3120) 0.25% 5670.2 360.8 ~ ~ 

(9241x9241) 0.12% 9998.5 6401.9 ~ ~ 
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CHAPTER 6  

6 CONCLUSION 

In order to meet the power demand of the customers, power systems are enlarging 

each year, and with the increasing system size new measurements are placed to 

gather data from the field for improve the situational awareness. In addition, PMUs 

are also deployed in power systems in the recent years. The high refresh rates  of 

those devices creates an additional computational burden for the monitoring systems 

and energy management systems. Considering this situation, the SE has a crucial role 

in real time monitoring of the power system. Thanks to the sparse matrix structures 

of the SE applications, sparse matrix storage methods are utilized to improve the 

computational performance. 

In the literature there are several types of sparse storage methods, however, power 

system operation has unique properties and hence, only few of sparse storage 

methods can satisfy the flexibility condition for power system SE. One of those 

proper techniques is the well-known Knuth’s Method. Despite the widely known 

necessity for sparse storage in state estimation applications, there is no open-source 

sparse storage library. 

In this thesis, the main purpose is to build the open-source sparse library for matrix 

operations and decrease the computation time of the matrix operations which are 

included in power system state estimation processes. Therefore, the proposed 

method, which is the full Knuth’s Method is built, and with the help of the proposed 

method, the major time-consuming processes such as “Matrix Multiplication, 

Cholesky Decomposition and Matrix Inversion”, are improved and the computation 

time of the overall SE process is decreased further with decreasing the linked list 

search time. In order to achieve the decrease the computation time of the linked list 

search process, Knuth’s Method is enhanced with utilizing both the column ordered 
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method and row ordered method together which are utilized separately for sparse 

storage algorithms. By this way, undesired linked list searches are minimized during 

the matrix operations. 

The main challenge encountered during the implementation of the proposed method 

is, storing the row ordered and column ordered linked list together for the results of 

the matrix operations since, the matrix operations are accomplished in one way, 

which is either row manner or column manner. This issue has been overcome and 

flexibility of the sparse storage for SE processes is achieved with the proposed 

method. 

In this thesis three different algorithms were compared for main matrix operations in 

SE which includes “WLS-SE and Bad Data Analysis” processes. The results show 

that, the MATLAB built-in functions have lower computation time results than the 

proposed method in smaller size matrices, since MATLAB built-in functions are 

implemented with the “c++” language which is a few hundred times faster than the 

codes written directly in MATLAB environment. However, when the system size 

increases, it is seen from the results, the scaling of the proposed method is lower than 

the built-in functions of MATLAB. With increasing matrix sizes the results show 

that the computation time of the built-in functions becomes closer to the proposed 

method even the built-in functions are written with “c++” language. In addition, the 

importance of using sparse storage algorithms is revealed, since the computation 

times of normal matrix processing algorithms written in MATLAB environment are 

considerably higher than the proposed method. 

In order to validate the proposed method, full state estimation process, which 

contains all type of matrix operations, is built and tested in different IEEE bus 

systems. During the tests, it was seen that the matrix operations work properly, and 

provides satisfactory computation time results for the full state estimation process 

considering the performance of MATLAB environment. 

Note that, the proposed method is not well-optimized. In order to optimize the 

proposed method in future, first of all, parallel processing can be added as a feature 
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wherever it is appliable. Moreover, with investigating the properties of the state 

estimation process, further decrease in computation time can be achieved by utilizing 

the block calculations in matrix operations since the matrices matrix in state 

estimation processes has a specific shape. By this way, the solution time of matrix 

operations such as matrix multiplications, matrix addition, Cholesky Decomposition, 

matrix inversion etc. can be decreased dramatically. Finally, for the proposed method 

to reach its real capacity, the algorithms can be written in the “c++” language. In 

addition to that, in this thesis for ordering purposes the Reverse Cuthill McKee 

algorithm is used. To further improve the ordering process Tinney-2 algorithm can 

be implemented instead of Cholesky Decomposition process. 
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