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ABSTRACT

ENERGY CONSCIOUS MACHINE AND ROBOT SPEED DECISIONS IN
TWO MACHINE ROBOTIC CELL SCHEDULING

GÜZEL, BETÜL NECİBE
M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Sinan Gürel

June 2021, 63 pages

Minimizing cycle time has always been a critical objective in manufacturing cells.

Recently, energy efficient and environmentally conscious manufacturing practices

have received increasing attention from researchers and practitioners. Therefore,

in this thesis we consider a 2-machine manufacturing cell with a material handling

robot where two conflicting objectives exist: minimization of cycle time and energy

consumption. It is a flow type cell where identical parts are first processed on the

first machine and then on the second machine. All handling operations between part

buffers and machines and loading/unloading operations are done by a robot. Most

of the research on robotic cell scheduling problems focus on robot activity sequenc-

ing decisions and assume that robot and machines operate at a fixed pace. However,

both robot’s speed and machines’ processing times are controllable and they affect the

cycle time and energy consumption performance of a cell. To the best of our knowl-

edge, this is the first study that consider robot and machine speed controllability at the

same time. We study three well known cyclic robot activity sequences and develop

mathematical models that find efficient solutions for the problem. Our analysis on

mathematical models show that energy optimization with robot speed and machine
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processing time control leads to schedules in which robot’s arrival to a machine for

unloading operation and part completion time on the machine are synchronized. Fur-

thermore, we provide a numerical study that explores which robotic activity sequence

is better when and how much energy saving can be achieved by employing robot

speed and processing time control strategies.

Keywords: Robotic cell, Scheduling, Nonlinear optimization, Energy consumption,

Controllable processing times, Robot speed control
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ÖZ

İKİ MAKİNELİ BİR ROBOTİK HÜCREDE ENERJİ ETKİN MAKİNE VE
ROBOT HIZ KARARLARI İLE ÇİZELGELEME

GÜZEL, BETÜL NECİBE
Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Sinan Gürel

Haziran 2021 , 63 sayfa

Üretim hücrelerinin minimum çevrim süresi ile çalıştırılması her zaman kritik bir

amaç olmuştur. Son zamanlarda, enerji verimli ve çevreye duyarlı üretim uygulama-

ları araştırmacılar ve uygulayıcılar tarafından giderek artan bir ilgi görmeye başladı.

Bu nedenle, bu tezde, bir adet elleçleme robotuna sahip iki makineli bir üretim hüc-

resini birbiriyle çelişen iki amaç varlığında ele alıyoruz: çevrim süresi ve enerji tü-

ketimi. Ele alınan robotik hücre, özdeş parçaların önce birinci makinede daha sonra

ikinci makinede işlendiği akış tipi bir hücredir. Parça stok alanları ve makineler ara-

sındaki tüm taşıma işlemleri ve yükleme/boşaltma işlemleri bir robot tarafından ger-

çekleştirilir. Robotik hücre çizelgeleme problemleri üzerine yapılan araştırmaların

çoğu robot aktivite sıralama kararlarına odaklanır ve robot ile makinelerin sabit bir

hızda çalıştığını varsayar. Fakat, hem robot hızı hem de makine işlem süresi kontrol

edilebilirdir ve çizelgenin çevrim süresini ve enerji tüketimini etkilerler. Bildiğimiz

kadarıyla, bu çalışma robot ve makine hız kontrolünü aynı anda ele alan ilk çalışma-

dır. Bu çalışmada, iyi bilinen üç çevrimsel robot hareket dizisini inceledik ve problem

için etkin çözümler bulan matematiksel modeller geliştirdik. Matematiksel modeller
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üzerindeki analizlerimiz, robot hızı ve makine işlem süresi kontrolü ile sağladığımız

enerji optimizasyonunun, robotun boşaltma işlemi için bir makineye gelişi ile maki-

nedeki parça tamamlanma süresinin senkronize edildiği çizelgelerle mümkün oldu-

ğunu göstermektedir. Ayrıca, robot hızı ve işlem süresi kontrol stratejileri kullanıla-

rak hangi robotik hareket çizelgesinin ne zaman tercih edilebilir olduğunu ve ne kadar

enerji tasarrufu sağlanabileceğini keşfetmek için hesaplamalı çalışmalar yürüttük.

Anahtar Kelimeler: Robotik hücre, Çizelgeleme, Doğrusal olmayan optimizasyon,

Enerji tüketimi, Kontrol edilebilir işlem zamanı, Robot hız kontrolü
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CHAPTER 1

INTRODUCTION

Increasing the efficiency of production systems has always been an important topic

for engineers and scientists. Efficiency in the industry, as a term, is considered to be

the ability to produce the desired output with little or no wastage of time, manpower,

materials, energy, etc. Recently, energy efficiency in manufacturing has started to

attract increasing attention from researchers. Increasing energy prices, regulations

on CO2 consumption, increasing public awareness for green products can be shown

among the reasons for the popularity of energy efficiency [15]. Also, according to

BP’s report [8], there is an ever-increasing energy consumption around the world.

Experts estimate that increase in energy consumption will accelerate in the future.

This thesis is an attempt to find energy efficient robotic schedules in a manufacturing

cell.

U.S. Energy Information Administration points out that industry is the sector having

the highest energy consumption level all around the world (see Figure 1.1). Fysikopou-

los et. al. [29] mention that approximately 20%-40% of energy consumption in in-

dustry can be redundant. Considering the companies’ increasing energy costs and the

society’s growing sensitivity to energy consumption we see more studies on energy

efficient practices in different areas such as manufacturing and transportation.

As automation systems have become widespread in the industry, energy consumption

and carbon footprint levels due to industrial robots have increased. According to In-

ternational Federation of Robotics [41], especially in the last ten years, the demand

for industrial robots has increased significantly. The energy consumption of robots in

the automotive industry is accounted for about 8% of the total energy consumption in

this sector [27]. Reducing energy consumption of robots and machines will provide

1



Figure 1.1: Energy consumption levels (Quadrillion Btu) by sectors [64]

significant gains in terms of cost, sustainability and will be appealing to environmen-

tally conscious customers of production sector. Most importantly, by reducing energy

consumption, the damage to natural resources and the environment will be reduced.

There are manufacturing systems where robots and machines are widely used, one

of them is robotic cells. A robotic cell is a production system including one or more

programmable material handling robots and machines. In a robotic cell, while the

machines do manufacturing operations on a part, the robots perform material han-

dling, loading and unloading tasks between the machines/buffers. When identical

parts are produced, cyclic robot schedules are preferred. Cyclic scheduling problems

which aim to decrease cycle time, manufacturing cost and energy consumption are a

popular research area for the robotic cells.

Figure 1.2: An example figure of 2-machine robotic cell
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In this thesis, we study a manufacturing cell which has two machines, one input

buffer, one output buffer and a material handling robot (see Figure 1.2). The robot

in the cell moves on a line and carries the parts between buffers/machines. It is a

flow type production. Parts are first processed on Machine1 then on Machine2. The

two machines perform different operations on the part. The robot takes a part from

a machine or a buffer and starts moving to take it to its next location. Thus, a cycle

begins. Then, it performs the other tasks included in the cycle respectively. A robotic

cycle is completed by the robot when the robot returns to its initial position to do the

same operations in the same sequence again.

In this study, we study on 1-unit and 2-unit cycles, called S1, S2 and S12. The robot

move sequences in S1, S2 and S12 cycles are given in Figure 1.3, 1.4, 1.5, respectively.

Robot activities in cycles are explained in detail in the Section 3.2.

Figure 1.3: S1 cycle

Figure 1.4: S2 cycle

S1 and S2 cycles were introduced to the literature as 1-unit cycles. Sethi et al. [58]

showed that S1 and S2 are the feasible cycles that give the best robot move sequence

when cycle time minimization is considered in robotic cells with two machines pro-

3



Figure 1.5: S12 cycle

ducing identical parts. Then, Hall et al. [37] defined new robot cycles: S12, S21.

Basically, these cycles are based on S1 and S2 cycles. In their study, they explained

that the four cycles (S1, S2, S12 and S21) dominate the other cycles, and therefore any

robot cycle can be defined with these cycles.

In this study, we consider energy consumption (both for robot and machines) and

cycle time objectives at the same time in a two-machine robotic cell. Both robot and

machine speeds are controllable and energy consumption of the cell depends on robot

and machine speeds. We develop mathematical models that determine energy optimal

schedules for a given cycle time for the selected robotic cycles. We give analytical

results on these models and present an extensive numerical study.

Most of the robotic cell scheduling problems in the literature assume fixed robot speed

and fixed machine processing times. There are few studies that consider energy con-

sumption. These studies consider either robot speed control or machine processing

time control but not both. In this thesis, we study two strategies at the same time.

The rest of the thesis is organized as follows. Chapter 2 gives a review of related stud-

ies in the literature. In Chapter 3, we give problem definition, mathematical models

and their analysis. In Chapter 4, we present a numerical study. We give concluding

remarks in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we present a review of related literature. First, in Section 2.1, we

consider robotic cell scheduling problems. Within this context, we examine the de-

velopment of the subject in the literature by focusing on early and recent studies on

robotic cell scheduling. Then, in Section 2.2, we present the studies on energy con-

sumption of industrial robots. Finally, in Section 2.3, we mention the studies which

consider processing time control in machine scheduling literature.

2.1 Robotic Cell Scheduling

As mentioned before, robotic cell is a type of production system including machines

and robots together. Robotic cells are classified according to some of their character-

istics. Terms that are widely accepted in the literature and we have used throughout

our study are presented by Dawande et al. [23]. For instance, robotic cells are called

m-machine robotic cells according to the number of machines (m) in the cell. Other

problem classifications are based on number of robots (i.e., single / multiple) or robot

types (i.e., single or dual gripper) in a cell. There are also classifications depending

on the robot’s pickup selection, travel time options or variety of parts produced, etc.

Scheduling involves resource allocation, sequencing, timing decision for tasks/activ-

ities. There is a vast literature especially on machine scheduling problems. Lee et

al. [47] provided an extensive survey on scheduling problem. They summarized the

studies and the novel methods carried out in the field of scheduling until 1997. They

also mentioned the studies on robotic cell scheduling problems in their study.
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In the literature, number of robotic cell scheduling studies has increased with the

widespread use of robotic cells in industry. Several literature surveys exist on robotic

cell scheduling (see e.g., [19], [23], [24], [38], [48]). In one of these surveys, Levner

et al. [48] pointed out the NP-hardness of robotic cell scheduling problems and the

existence of unsolvable problems yet. Most of the work in robotic cell scheduling

assume fixed robot speed and fixed machine speed. We give a short review of these

studies in the next section.

2.1.1 Studies with fixed robot speed and fixed machine speed

Sethi et al. [58] studied finding the optimal robot activity sequences in 2-machine

and 3-machine robotic cells with a material handling robot. They considered cycle

time objective. They introduced two optimal 1-unit cycles namely S1 and S2 cycles

which will be studied in this thesis. In a later study, Crama et. al. [20] generalized the

study considered by Sethi et al. [58]. For an m-machine robotic cell with a material

handling robot, where m > 3, they showed that it is possible to find the optimal

cycle using dynamic programming which requires pseudo-polynomial time in m. For

identical parts, Geismar et al. [31] studied the problem of sequencing operations in

three-stage robotic cells with parallel machines and a material handling robot. They

assumed that the robot’s handling time between any two machines is constant and

defined the cycle time with a general expression. Then, they found optimal cycles for

considered robotic cell, and also constructed a formulation which provides how many

machines are needed to meet the demand.

Hall et al. [37] studied scheduling problems for 2-machine and 3-machine robotic

cells with a material handling robot in order to determine optimal robot cycle and

part sequences at the same time. For a 2-machine robotic cell with multiple part types,

they introduced an exact algorithm to solve the cycle time optimization problem. On

the other hand, for 3-machine robotic cells producing identical parts, they concluded

that 1-unit cycles give the lower cycle time than 2-unit cycles. Also, they showed

that defining any feasible robot cycle can be possible by utilizing the four cycle types

called S1, S2, S12 and S21. In this thesis, we consider S1, S2 cycles. In addition, we

also consider a 2-unit cycle represented by the two cycles (S12 and S21) described by
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Hall et al. [37]. We call this cycle as S12 cycle in the rest of the study. Based on the

study of Hall et al. [37], in the late 1990s and early 2000s, many studies considering

similar problems were done (e.g., [2], [10], [21]). Brauner and Finke [11] studied

the performance of 1-unit cycles for cycle time objective in an m-machine robotic

cell with a circular layout. They showed that a 1-unit cycle is not always optimal

by showing with a counterexample for a 4-machine robotic cell. In another study,

Brauner [9] stated that the proof given by Brauner and Finke [11] can be generalized

for robotic cells where m ≤ 15.

Single robot cells are simple to design and operate, but multiple robot cells also ex-

ist. Alcaide et al. [5] studied multi-robot cell scheduling by developing the methods

validated for single-robot cells. They presented a graph model based on critical path

problem to solve multi-robot scheduling problems and developed a polynomial time

algorithm. They carried out numerical experiments with one and two material han-

dling robots for 6-machine robotic cells. As a different type of robotic cell, Srishkan-

darajah et al. [62] considered a 2-machine robotic cell having a dual-gripper material

handling robot with the aim of increased long-run throughput rate. They also con-

sidered multiple part types and presented a heuristic approach to schedule robots and

parts.

For multiple part types, Kamoun et al. [43] presented heuristic algorithms with the

intent of obtaining optimal part sequences for 3-machine and 4-machine robotic cells

with a material handling robot. Their objective is to obtain minimum average steady-

state cycle time based on the specified robot cycles for 3-machine robotic cells. Be-

sides the scheduling problem, they also worked on the design of a robotic cell. In

robotic cells, when the number of machines or robots increase, and multiple part types

are considered, systems can become more complex. Hence, we see that meta-heuristic

algorithms are becoming more widely used in recent works (e.g., [26], [70]). For ex-

ample, Abdulkader et al. [1] aimed the minimum robot cycle time in a 4-machine

robotic cell served by a robot. They proposed a genetic algorithm finding effective

robot move and tasks sequences. They considered both identical and multiple part

types.

Existing studies differ from each other with respect to the robotic cell environment,
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such as the number of machines, the number and type of robots or the variety of part

types. Most of the studies on robotic cell scheduling problem consider fixed robot

speed and fixed processing times. Also, the majority of these studies focus on only

one objective, specifically the cycle time minimization.

2.1.2 Studies with controllable robot speed

In robotic cell scheduling studies mentioned so far, robot move times and machine

processing times are fixed. As cycle time is considered, operators may prefer to

operate both machines and robots at their maximum speeds to achieve high levels

of throughput. However, this requires higher energy consumption. For example,

Kobetski and Fabian [45] in their study stated that for flexible manufacturing systems,

robot speed and acceleration significantly affect robot’s energy consumption. Robot

speeds or move times are controllable and this can be used to prepare energy efficient

robotic schedules.

Bukata et al. [13] studied finding operation sequences, robot positions, robot’s power-

saving options and robot’s speed in order to reach optimal energy consumption level

in a robotic cell including up to 12 industrial robots performing operations such as

welding, assembly, etc. For this purpose, they proposed a Mixed Integer Program-

ming (MIP) model. However, as the number of robots in a cell increases, MIP cannot

be solved in a reasonable time, so they constructed a heuristic algorithm based on

a Linear Programming (LP) solver. They tested proposed methods in a case study

from Skoda Auto and showed that up to 20% energy savings can be achieved by

only determining robot speed level and standby times. Shortly afterwards, Bukata

et al. [14] considered the same problem and same cell environment as in their previ-

ous study [13] and presented a new method based on Branch and Bound to solve the

problem.

Gürel et al. [36] considered a 2-machine robotic cell scheduling problem with a ma-

terial handling robot and robot speed decisions. They considered two objectives at

the same time: minimizing cycle time and minimizing energy consumption, where

energy consumption of the robot is a convex function. They proposed a bicriteria

mathematical model and made a trade-off between the two objectives. They showed
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that reducing the energy consumption is possible by eliminating unnecessary waiting

times of the robot.

There are few robotic cell scheduling problems with robot speed control in the liter-

ature. However, the studies mentioned in this section show that by controlling robot

speed, significant energy saving can be achieved.

2.1.3 Studies with controllable machine processing times

In robotic cell scheduling literature, there are few studies that consider processing

time control on machines. Gültekin et al. [34] studied scheduling robot moves and

determining the processing times on machines for cyclic schedules in 2-machine and

3-machine robotic cells with a material handling robot. Besides cycle time minimiza-

tion, they focused on a novel objective in the literature; reducing manufacturing costs.

They constructed a convex manufacturing cost function composed of machining cost

and tooling cost. They proposed a bicriteria optimization model since they considered

the trade-off between cycle time and manufacturing costs. Thus, they obtained a set

of non-dominated cycles and corresponding processing time levels for the problem.

Similarly, Yıldız et al. [69] considered the same objective as Gültekin et al. [34], but

in an m-machine robotic cell with a material handling robot. They focused on the cy-

cles having flexible machines. They obtained the processing time values which give

the minimum cycle time and manufacturing cost for given robot move sequences.

Yan et al. [68] studied finding the processing times on machines producing identical

parts for an m-machine robotic cell with a material handling robot and a circular

layout. They studied finding processing times with an objective of minimizing the

cycle time. They proposed a Branch and Bound algorithm. Batur et al. [6] studied

a 2-machine robotic cell with multiple part types and single material handling robot

where processing times are controllable. They aimed at decreasing the cycle time.

They proposed a heuristic algorithm which finds part sequence, processing time levels

and robot moves that minimize the cycle time.

We noticed that there are few studies which consider processing time controllability

in robotic cells. These studies focus on machines only. However, there is no study
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considering both robot speed control and processing time control at the same time.

Also, these studies aim at mainly cycle time or manufacturing cost minimization. In

this thesis, we consider controllable robot speed and machine processing times at the

same time.

2.2 Robots and Energy Consumption

Although most of the studies in the literature focus on throughput maximization, Grau

et al. [33] state that energy efficiency of industrial robots will become a popular re-

search topic in near future. We see that energy consumption of industrial robots

receive significant attention in recent studies.

Meike and Ribickis [51] studied ways to reduce energy consumption of industrial

robots in automotive industry. They showed that up to 30% of energy can be saved

without a negative effect on the throughput rate by changing some mechanical prop-

erties. In addition, Meike et al. [50] studied defining energy consumption levels of

multi-robot assembly lines in automotive industry for cyclic production. By the help

of their optimization model, they carried out a case study with four industrial robots

and concluded that synchronized movement of all robots with each other can save

about 7% of energy consumption.

Carabin et al. [16] presented a review of existing methods and technologies to improve

the energy efficiency of industrial robotic systems. Efforts to reduce robot energy

consumption have generally focused on trajectory planning and operation schedul-

ing. By considering many electrical and mechanical properties of the robots, Hansen

et al. [39], Pellicciari et al. [56] and Pellegrinelli et al. [55] presented models that

find energy consumption optimized trajectories for industrial pick-and-place robots

in different settings. Riazi et al. [57] introduced a trajectory optimization procedure

decreasing energy consumption of multiple industrial robots in a manufacturing cell.

They worked with different cost functions considering acceleration, mechanical jerk

and power minimization. They tested their algorithm on real life production cell un-

der different cell conditions, i.e., different robot types and numbers, cycle time levels,

etc. As a result of their case study, they reduced the energy consumption of indus-
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trial robots by 30% and provided smooth distributed energy consumption without

changing the cycle time or trajectory. Also, during their study, they measured energy

consumption level of a real life industrial robot and showed that energy consumption

as a function of time has convex behaviour.

There are studies that use mathematical models to achieve energy-efficient trajec-

tories. For multiple industrial robots located in a manufacturing cell, Wigstrom et

al. [66] addressed a scheduling problem. They proposed a Mixed Integer Nonlinear

Programming (MINLP) model which reduces the cost of energy. They used a nonlin-

ear cost function representing total energy consumption in terms of operation times

of the robots. In another study, Wigstrom et al. [67] gave an optimization model

that produces new trajectories providing lower energy costs for multiple industrial

robots in the same manufacturing cell. For their optimization model, they proposed

a Mixed Integer Nonlinear Programming model with a convex, nonlinear cost func-

tion representing energy consumption. Their model revises an existing trajectory to

minimize execution time. Also, their computational results showed that lower energy

consumption levels were achieved. Glorieux et al. [32] studied a robotic cell with

multiple material handling robots. They proposed a Nonlinear Programming model

which finds the optimal trajectory. Proposed model can obtain 14% energy saving in

a case study on a robotic cell including 6 material handling robots.

Alatartsev et al. [4] proposed a Traveling Salesman Problem formulation which finds

optimal task sequence for execution time minimization problem where flexible tasks

exist for an industrial robot. They achieved near optimal task sequences within shorter

computation times than the available approaches in the literature. In a robotic assem-

bly line with four assembly robots, Janardhanan et al. [42] studied an assembly line

balancing problem by considering two objectives; cycle time and total energy con-

sumption. They proposed a heuristic algorithm based on particle swarm optimization.

In the literature, there are studies which consider the effect of robot speed on en-

ergy consumption. Paryanto et al. [12] gave a mechatronic model that estimates the

power consumption of an industrial robot. They showed that the parameters that af-

fect robot’s power consumption are robot operation speed, payload of the robot and

peak power level. Eggers et al. [25] studied finding energy saving levels for an indus-
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trial robot considering the travel time of the robot. On the other hand, for industrial

robots, Chemnitz et al. [17] showed that decreasing the robot speed is not always the

best option to reduce energy consumption. They conducted an experiment on two

industrial robots and observed the power measurements. They concluded that energy

consumption also depends on the model of the robot. In addition, Kolibal et al. [46]

found an energy-optimal speed value of an industrial robot for an operation. These

studies point out that the acceleration and deceleration of the robot’s motion between

two points also affect energy consumption. Gadaleta et al. [30] developed a program-

ming based simulation tool increasing energy efficiency by finding optimum motion

parameters such as velocity and acceleration limits for an industrial robot move.

Energy consumption of a robot depends on many factors. There are studies which car-

ried out laboratory tests for certain robot models and measure energy consumption of

robots for different speed, acceleration, deceleration profiles. There is no closed form

expression for robot energy consumption. Many studies have used nonlinear convex

energy consumption functions. Similarly, in this thesis, we use a convex energy con-

sumption function which can be used as an approximation for energy consumption of

a real material handling robot.

2.3 Machine Scheduling with Processing Time Control

Machine scheduling is a well established research area and processing time con-

trol is a well studied concept in machine scheduling problems. Therefore, the sur-

veys summarizing the studies on this subject are very helpful for us to understand

the developments in the literature. As an extensive survey, earlier studies on ma-

chine scheduling with controllable processing time were summarized by Nowicki and

Zdrzałka [53]. This survey mostly included studies on single-machine scheduling

problems. Hoogeveen [40] presented a detailed survey of multi-criteria scheduling

problems, and in his paper, he especially focused on the scheduling problems with

controllable processing times. Moreover, Shabtay and Steiner [60] presented a recent

and wide-range survey. Finally, the latest review on this subject was presented by

Shioura et al. [61].
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A pioneer study in this research area is conducted by Vickson [65]. He found sched-

ules with the lowest cost and completion time on a single machine where processing

times are controllable. He represented the processing cost as a linear function. We see

that most of the earlier works on this subject were on single-machine scheduling prob-

lems (see e.g., [7], [18], [22], [49], [54]). Liman et al. [49] studied single-machine

scheduling problems that minimizes earliness, tardiness objectives along with the cost

arising from shortening operation times. They also used a linear cost function. Simi-

larly, Biskup et al. [7] constructed a linear objective function for compression penal-

ties of the processing times, earliness and tardiness in single-machine environment.

They proposed a mathematical model which can be solved in polynomial time.

Shabtay and Kaspi [59] considered scheduling and resource allocation problem for

a single machine used in production. They aimed at minimizing total flow time

by weighting according to the importance and workload of the tasks and assumed

the processing time function as a nonlinear decreasing function associated with the

amount of resources consumed. They provided a dynamic programming algorithm.

While they suggested this algorithm for small-scale problems, they emphasized that

heuristic approaches can give better results as the size of the problem increases. Con-

sidering the same objective, Gürel and Aktürk [35] studied on a bicriteria scheduling

problem for a CNC turning machine. They aimed at making a trade-off between total

weighted flow time and manufacturing cost. They used a nonlinear function rep-

resenting manufacturing cost. They presented optimality properties and proposed a

heuristic method.

There are also studies which consider processing time control on parallel machines,

flow shop and job shop scheduling environments. Nowicki et al. [52] considered a

2-machine flow shop problem to determine the sequence of jobs and processing times

on both machines. They used a linear cost function comprised of maximum comple-

tion time cost and processing cost. Then, they showed that this problem is NP-hard

and proposed a heuristic algorithm to solve the problem. Also, Karabati and Kou-

velis [44] studied both selection of optimal processing times and scheduling of multi-

product m-machine flow-shop problems. Minimizing operation costs were aimed

considering throughput rate in the study. First, Karabati and Kouvelis constructed a

subproblem with LP formulation minimizing the operating cost in order to determine
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operation times when operation sequences are predetermined. Then, they proposed

an iterative solution procedure for finding optimal processing times and schedules.

Also, they stated that as machines with adjustable processing times become prevalent

with the development of the technology (i.e. CNC machines), the determination of

optimal processing times in machine scheduling problems has become increasingly

popular. In another study, Uruk et al. [63] considered both operation assignment and

processing time control in a 2-machine flow-shop environment. In their study, they

considered flexible operations, i.e., operations which can be performed on any ma-

chine which is available at that moment regardless of machine type. They proposed

a bicriteria scheduling model trying to minimize both makespan and manufacturing

cost.

Controllable processing times have been also practiced in machine rescheduling prob-

lems. To illustrate, Aktürk et al. [3] studied on the problem of rescheduling parallel

CNC machines. Considering the trade-off between match-up time and production

cost simultaneously, they proposed a conic mixed-integer programming model. They

used a convex cost function composed of fixed manufacturing cost and cost of expe-

diting jobs. They also proposed a heuristic algorithm for the problem.

In conclusion, it is seen that controllable processing time is a well studied concept in

machine scheduling literature. In this thesis, we study controllable processing times

and robot speed in a robotic cell environment. We give mathematical models for

processing time and speed selection decisions in alternative robot cycles. We show

that considering processing time and robot speed decisions together saves energy.

To the best of our knowledge, our work in this thesis is the first study that considers

machine processing time and robot speed control with the cycle time and energy

consumption objectives in a robotic cell environment.
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CHAPTER 3

PROBLEM DEFINITION AND SOLUTION PROCEDURE

In this thesis, we consider a two machine robotic cell with a material handling robot.

The cell produces identical parts flowing from input buffer to the first machine then

to the second machine and finally to output buffer. The cell follows a cyclic sched-

ule, i.e. robot moves and machines’ operations are done repetitively to produce the

parts. Robot’s move times between machines/buffers and machine processing times

are controllable, i.e. robot can be expedited and machines can run faster. However,

energy consumption of the cell (i.e. robot and machines) depends on the pace of the

robot and the machines. Energy consumption of each machine and robot is assumed

to be a nonlinear function. Here we study a bicriteria problem to minimize cycle time

and energy consumption objectives at the same time.

First, we give the notation used throughout the study below:

Notation

Sets and parameters:

m : number of machines in the cell, m = 2.

n : number of parts produced in a cycle.

x : index for the machines in the cell. 0 and 3 refer to the input

and output buffer, respectively.

l ∈ {1, 2, 12} : index for the cycle type, Sl.

(i, j) : moving direction of the robot, from machine i to machine j.

h ∈ {e, f} : robot’s status: f : full, e: empty

g : index for robot moves
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Dl : set of robot moves in cycle Sl.

Df
l , D

e
l : sets of full (f ) and empty (e) robot moves in cycle Sl.

dij : distance between machine i and machine j (in meters).

Ch : energy consumption constant for robot when moving in state h ∈ {e, f}
Cmx : energy consumption constant for machine x.

ε : machine loading and unloading time for robot (in seconds)

Decision variables:

Tijh: moving time of robot from machine i to j in state h. (in seconds)

px : processing time of a part on machine x (in seconds)

3.1 Energy Consumption Function of the Robot and Machines in the Robotic

Cell

We consider a robotic cell where the speed of the robot and the processing times of

machines are controllable. In this system, energy is consumed in two ways. First, the

robot requires energy for handling operations, in particular, during its move between

the machines. Second, the machines require energy for manufacturing operations

they do on parts.

We first consider robot’s energy consumption. In the robotic cell considered, the

robot follows a linear route. We assume that acceleration and deceleration times

of the robot and energy consumption during loading and unloading are negligible.

Between the machines and buffers, the robot travels at a constant speed. The robot

consumes energy during a move. The sum of energy requirements of all movements

comprises the total energy consumption of the robot. We use the formula in Gürel

et al.’s study [36] and we give the energy consumption of the robot during a move

below:

F (v) = C · d · vk (3.1)

In this formulation, C and k are constants. C represents the effects of weight and fric-

tional forces and can be different for full and empty moves. d is the distance traveled

by the robot. v is the robot’s speed during the move. Lastly, k is the exponent which
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gives the nonlinear relation between the speed of the robot and energy consumption.

C and k depends on the type or model of the robot. When the robot moves at a higher

speed, it needs more energy. In addition, it is more expensive to increase the speed at

higher speeds. So, we assume k ≥ 1 which also makes energy consumption function

convex.

Using Tijh =
dij
vijh

, we can express the energy consumption as a function of move time.

In this case, as shown in Figure 3.1, the function is a convex, decreasing function as

below:

F (T ) = C · dk+1 · T−k (3.2)

Figure 3.1: Energy consumption with respect to robot moving time

Second, we consider energy consumption of machines. It is correlated with pro-

cessing times on machines. Expediting jobs on a machine requires energy. As the

processing time of a job decreases by changing machining parameters, the machine

spends higher energy. An example is the CNC machining where processing times can

be decreased by increasing cutting speed and feed rate parameters. In order to formu-

late the energy consumption of machines, we considered the relationships between

manufacturing costs and processing times in the literature, (e.g., [3], [34], [35]). We

model energy consumption of a process on a machine using the function below:

F (p) = C · p−s (3.3)

C and s are constants where C > 0, s ≥ 1, and p is the processing time. s represents

the relation between the processing time and energy consumption. s can be different
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for different processes and machines. For instance, a CNC machine carrying out

milling operations can process a part at different milling modes. Depending on the

complication of operations, these modes might have different energy requirements.

Since s ≥ 1, function is convex and nonlinear for all s values (see Figure 3.2).

Figure 3.2: Energy consumption with respect to processing time

Since the energy consumption function of all system is sum of the robot’s and ma-

chines’ energy consumption, energy consumption function of the cell is convex, too

and it can be expressed as:

F (T, p) =
∑
(i,j,h)

Ch · dk+1
ij · T−kijh +

∑
x

Cmx · p−s (3.4)

Another objective which has been studied in most of the studies in robotic cell schedul-

ing is the cycle time. In the next section, we describe alternative cycles and give cycle

time calculations.

3.2 Cycle Time of the Robot

The robot performs a number of activities to complete a cycle. Duration of these

activities, i.e. robot’s travels, loading and unloading actions and waiting times, con-

stitute the cycle time. In an n-unit cycle, the cell produces n parts in one cycle. Cycle

time expression for n-unit cycle is given as in (3.5) where wx denotes waiting time of

the robot in front of machine x.

CT Sl = 2n(m+ 1)ε+
∑
g∈Dl

Tg +
m∑
x=1

wx (3.5)
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Each machine is loaded and unloaded once, when 1-unit cycle is considered. Also the

robot takes a part from input buffer once and loads the output buffer once. Therefore,

loading and unloading actions occur 2(m+1) times in a cycle. Similarly, total number

of loading and unloading actions in an n-unit cycle can be calculated as 2n(m + 1),

since there are n parts in a cycle.

In a cycle, the robot travels between machines and buffers continually. Total time for

these moves is given in the second term of equation (3.5).

The robot waiting time (wx), if exists, is the time the robot waits in front of the ma-

chine x until the process is over at that machine. If the robot loads a machine and

leaves for doing other activities, and return to the machine for unload then waiting

may still occur. This is called partial waiting. When the robot arrives at a machine

which is already loaded and running, the robot may have to wait in front of the ma-

chine until the process finishes. If the machine already finished its process when the

robot arrives for unloading, then the robot immediately unloads. So, waiting time of

the robot is less than or equal to the processing time. Alternatively, if the robot loads a

machine and stays until the process finishes, this waiting is called full waiting. Wait-

ing time of the robot can be expressed mathematically as in (3.6). µlx denotes the

set of moves between the loading and unloading of machine x in cycle Sl, and ηlx

denotes the number of loading/unloading operations done by the robot in the same

interval. If µlx = ∅ and ηlx = 0, then wx = Px, and it means full waiting.

wx = max

{
0, Px −

(
ηlx · ε+

∑
g∈µlx

Tg

)}
. (3.6)

In this thesis, we study three different robot cycles called S1, S2 and S12 given by

Sethi et al. [58], Hall et al. [37].

S1 cycle:

First, we define the robot move sequence in S1 cycle which is given in Figure 3.3. In

the figure, a dashed line indicates an empty move, i.e. robot moves without a part,

whereas a continuous line indicates a full move. In S1 cycle, the robot performs the

following operations: take a part (ε) from M0, then move to M1 (T01f ) and drop the

part (ε), wait in front of M1 during the process (w1), unload the part (ε) from M1, take
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it to M2 (T12f ) and load (ε), wait (w2) machining time in front of M2, finally unload

M2 (ε) and take the part to output buffer M3 (T23f ) and load (ε). Next, it returns to

M0 (T30e). Thus, a cycle is completed. Total time required for all these operations

gives the cycle time expressed as below:

CT S1 = ε+ T01f + ε+ w1 + ε+ T12f + ε+ w2 + ε+ T23f + ε+ T30e

= 6ε+ w1 + w2 + T01f + T12f + T23f + T30e

Figure 3.3: Robot activity sequence of S1 cycle

The robot waits in front of M1 and M2 (full waiting), w1 = p1, w2 = p2. Then, cycle

time expression takes its final form.

CT S1 = 6ε+ p1 + p2 + T01f + T12f + T23f + T30e (3.7)

S1 is a simple and easy to implement cycle.

S2 cycle:

In S2 cycle, the robot activity sequence is illustrated in Figure 3.4. At the beginning

of S2 cycle, M2 is full and already processing a part. First, the robot takes another

part (ε) from M0 and takes it to M1 (T01f ) and loads (ε), then M1 starts processing.

Meanwhile, the robot moves toM2 (T12e) and waits (w2) for the process to be finished

on M2, then it takes the processed part (ε) and takes it to M3 (T23f ) and drops (ε).

Thus, only one incompleted part remains in the cycle. Thereafter, the robot turns

back to M1 (T31e) and waits until the process is over (w1), then unloads the part (ε)

and moves to M2 (T12f ) and drops (ε). Lastly, the robot moves to its initial position,

i.e. to M0, (T20e). Thus, a cycle is over. Sum of the duration of all activities and
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waiting times give the cycle time:

CT S2 = ε+ T01f + ε+ T12e + w2 + ε+ T23f + ε+ T31e + w1 + ε+ T12f + ε+ T20e

= 6ε+ T01f + T12e + T23f + T31e + T12f + T20e + w1 + w2

Figure 3.4: Robot activity sequence of S2 cycle

Waiting times occurred by the robot in S2 can be expressed as below:

w1 = max{0, p1 − T12e − w2 − ε− T23f − ε− T31e} (3.8)

w2 = max{0, p2 − T20e − ε− T01f − ε− T12e} (3.9)

Substituting (3.8) and (3.9) with w1 and w2 respectively, we obtain:

CT S2 =6ε+ T01f + T12e + T23f + T31e + T12f + T20e + max{0, (3.10)

p1 − T12e − ε− T23f − ε− T31e, p2 − T20e − ε− T01f − ε− T12e}

S1 and S2 are the two possible 1-unit cycles in a 2-machine robotic cell. Next, we

describe a 2-unit cycle.

S12 cycle:

In S12 cycle, two parts are produced in one cycle. For this reason, this cycle has more

robot activities and machine operations than S1 (and S2) has. Similar to S1 and S2,

the robot starts the cycle in front of M0. Figure 3.5 gives the robot activity sequence

in S12 cycle. Different than Figure 3.3 and 3.4, in Figure 3.5, lines labeled as T (1)
ijf
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Figure 3.5: Robot activity sequence of S12 cycle

show the robot moves for the first part, and lines labeled as T (2)
ijf show the moves for

the second part.

Robot carries out the following operations in this cycle. Initially, both two machines

are idle. Robot takes the first part from M0 (ε). It carries the part to M1 (T (1)
01f ) and

loads (ε). It waits (p11) until processing is over on M1. Then, it unloads the part

(ε), takes it to M2 (T (1)
12f ) and loads (ε). The robot does not wait, comes back to M0

(T20e). It takes a new part (ε), moves to M1 (T (2)
01f ) and loads (ε). Next, it moves

to M2 (T12e), waits until the process is over (w2). Then, it takes the first part (ε),

moves to M3 (T (1)
23f ) and drops the part (ε). Thus, first part is finished. Then, the robot

moves to M1 (T31e). If the process on M1 is not over, robot waits (w1), then unloads

the second part (ε), and takes it to M2 (T (2)
12f ) and loads (ε). Then, it waits until the

operation finishes (p22), takes the part (ε) and goes to M3 (T (2)
23f ). Then, drops the

second part (ε). Finally, the robot returns to M0 (T30e), i.e. its initial position. Cycle

S12 is completed. Accordingly, mentioned steps create the cycle time.

CT S12 = ε+ T
(1)
01f + ε+ p11 + ε+ T

(1)
12f + ε+ T20e + ε+ T

(2)
01f + ε+ T12e + w2 + ε

+ T
(1)
23f + ε+ T31e + w1 + ε+ T

(2)
12f + ε+ p22 + ε+ T

(2)
23f + ε+ T30e

CT S12 = 12ε+ p11 + p22 + T
(1)
01f + T

(1)
12f + T20e + T

(2)
01f + T12e + T

(1)
23f + T31e + T

(2)
12f

+ T
(2)
23f + T30e + w2 + w1

In the formulation, w2 denotes waiting time for the first part in front of M2 and w1

denotes waiting time for the second part in front ofM1. Partial waiting times occurred
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in S12 can be expressed as below:

w2 = max{0, p12 − T20e − ε− T (2)
01f − ε− T12e} (3.11)

w1 = max{0, p21 − T12e − w2 − ε− T (1)
23f − ε− T31e} (3.12)

Then, cycle time expression converts to a new form due to waiting time expressions

(3.11) and (3.12).

CT S12 = 12ε+ p11 + p22 + T
(1)
01f + T

(1)
12f + T20e + T

(2)
01f

+ T12e + T
(1)
23f + T31e + T

(2)
12f + T

(2)
23f + T30e (3.13)

+ max{0, p12 − 2ε− T20e − T (2)
01f − T12e, p21 − 2ε− T12e − T (1)

23f − T31e}

In the next section, we will give mathematical models and analysis for all cycles.

3.3 Mathematical Models and Analysis

In this thesis, we study the robotic cell scheduling problem where we want to find

robot cycle, robot move times and machines’ processing times that minimize cycle

time and total energy consumption per part produced.

For the given cell, we formulate the problem as follows:

min F : FSl

min CT : CT Sl

s.t. SELECT ONE CYCLE l ∈ L

FS1 =Cf ·
∑
g∈Df

l

dk+1
g · T−kg + Ce ·

∑
g∈De

l

dk+1
g · T−kg +

2∑
x=1

Cmx · px−s ∀l (3.14)

CT Sl=2(m+ 1)ε+
∑
g∈Dl

Tg +
2∑

x=1

wx ∀l (3.15)

TLB ≤ Tg ≤ TUB ∀g ∈ Dl,∀l (3.16)

pLB ≤ px ≤ pUB ∀x = 1, 2 (3.17)

When a robot move time increases, robot’s energy consumption decreases. However,

in such a case, the cycle time may increase. Similarly, if processing time on a machine
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is decreased, then cycle time may decrease and energy consumption will increase. In

short, cycle time and energy consumption objectives conflicts with each other. We

need to find efficient solutions (Pareto optimal) for the problem.

In the literature, there are different methods used for these type of problem. These

methods accept different assumptions. For example, some methods are based on a

composite objective function including both goals, while there is also another method

evaluating the two goals by ranking them in order of importance. In this study, we

make use of ε-constraint approach which finds efficient solutions for a bicriteria prob-

lem. The method sets one of the goals as an objective function and tries to minimize it.

The other objective is handled as a constraint in the form of inequality. In this method,

an upper bound is determined for the constrainted objective. The upper bounds are

changeable and the effect of the change in the upper bounds on the solution can be

easily analyzed.

Given a certain demand level for produced parts, the decision maker can change the

cycle time level that would meet the demand. Given this cycle time level, the decision

maker would design a cycle that minimizes the robotic cell’s energy consumption.

Hence, we keep energy consumption function in the objective and move cycle time

objective to the constraints. We impose the target cycle time level (K) as an upper

bound on cycle time objective. Thus, for a given cycle Sl we obtain the following

mathematical model:

Min Cf ·
∑
g∈Df

l

dk+1
g · T−kg + Ce ·

∑
g∈De

l

dk+1
g · T−kg +

2∑
x=1

Cmx · px−s (3.18)

s.t.

2(m+ 1)ε+
∑
g∈Dl

Tg +
2∑

x=1

wx ≤ K (3.19)

TLB ≤ Tg ≤ TUB ∀g ∈ Dl (3.20)

pLB ≤ px ≤ pUB ∀x ∈ {1, 2} (3.21)

Cycle specific mathematical models are presented in next sections.
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3.3.1 S1 Cycle:

For S1 cycle, mathematical formulation is given below:

Min Cf ·
[
dk+1
01f · T

−k
01f + dk+1

12f · T
−k
12f + dk+1

23f · T
−k
23f

]
+ Ce · dk+1

30e · T−k30e+ (3.22)

Cm1 · p1−s + Cm2 · p2−s

s.t. 6ε+ p1 + p2 + T01f + T12f + T23f + T30e ≤ K (3.23)

0 ≤ T01f , T12f , T23f , T30e ≤ TUB (3.24)

0 ≤ p1, p2 ≤ pUB (3.25)

The objective function (3.22) consists of terms C ·dk+1 ·T−k and C ·p−s. Since k ≥ 1

and s ≥ 1, each term is convex and objective function is convex. All constraints are

linear, and they define a convex set. Therefore, the problem is a convex optimization

problem.

Constraint (3.23) is the cycle time constraint. Constraints (3.24) and (3.25) guarantee

that robot move time and processing times are within their bounds. Bounds of travel

time might vary depending on the distance traveled in a move. However, processing

time bounds are same for all machines.

We assume that lower bounds of all decision variables are zero. Also, we assume that

K > 6ε holds, otherwise, we cannot achieve a feasible solution for S1 cycle. It is

a Nonlinear Programming Problem (NLP). In order to achieve optimality properties,

we carry out Karush-Kuhn-Tucker (KKT) analysis.

If we omit upper bound constraints in (3.24) and (3.25), then Lagrange function is

expressed as below:

L(Tijh, px, µ) = Cf .
[
dk+1
01f · T

−k
01f + dk+1

12f · T
−k
12f + dk+1

23f · T
−k
23f

]
+ Ce · dk+1

30e · T−k30e

+ Cm1 · p1−s + Cm2 · p2−s

+ µ · [K − 6ε− p1 − p2 − T01f − T12f − T23f − T30e]

Where µ is the Lagrangian dual for constraint 3.23, it is known that in an optimal

solution partial derivatives of L(Tijh, px, µ) with respect to decision variables should
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be equal to zero i.e. ∂L
∂Tijh

= 0,∀ijh and ∂L
∂px

= 0,∀x. Then, gradient equations given

below must hold at optimality.

Gradient Equations:

∂L

∂T01f
=− k · Cf · dk+1

01f · T
−k−1
01f − µ = 0

∂L

∂T12f
=− k · Cf · dk+1

12f · T
−k−1
12f − µ = 0

∂L

∂T23f
=− k · Cf · dk+1

23f · T
−k−1
23f − µ = 0

∂L

∂T30e
=− k · Cf · dk+1

30e · T−k−130e − µ = 0

∂L

∂p1
=− s · Cm1 · p−s−11 − µ = 0

∂L

∂p2
=− s · Cm2 · p−s−12 − µ = 0

Other KKT conditions are given below.

Complementary Slackness:

µ · [K − 6ε− p1 − p2 − T01f − T12f − T23f − T30e] = 0

Primal feasibility:

6ε+ p1 + p2 + T01f + T12f + T23f + T30e ≤ K

T01f , T12f , T23f , T30e, p1, p2 ≥ 0

Lagrange multipliers sign restrictions: µ ≤ 0

Since this problem is a convex optimization problem as we discussed before, any

local minimum is also a global minimum.

In our thesis, we assume lower bounds of robot handling time and processing time

are zero. However, we know that robot travel and processing times can never be zero,

since zero value of traveling and processing times does not express a meaningful

solution. Therefore, dual variables for constraint (3.24) and (3.25) must be zero as

the upper bounds are assumed to be sufficiently large and lower bounds are never

achievable. Then, Proposition 1 states that cycle time constraint of the mathematical

model will be tight at optimality.
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Proposition 1. Suppose thatK is finite and TUBijh and pUBx values are sufficiently large,

then cycle time constraint (3.23) is always binding in an optimal solution.

Proof. If we use the gradient equations of S1 cycle problem, we can rewrite the equa-

tions as follows.

−k · Ch · dk+1
ijh · T

−k−1
ijh = µ (3.26)

−s · Cmx · p−s−1x = µ (3.27)

Because k ≥ 1, s ≥ 1 and all remaining parameters can have only positive values,

left hand side of the equations (3.26) and (3.27) are strictly lower than zero. Hence,

µ cannot be zero. Then, due to the complementary slackness, expression (3.23) must

be always tight at optimality.

Proposition 1 implies that at an efficient solution increasing Tijh or px to improve

energy objective will always increase cycle time.

We next consider the case where Cm1 = Cm2 and show that processing times at M1

and M2 must be equal at optimality.

Proposition 2. If two machines have the same energy consumption function, process-

ing times must be equal at optimality.

Proof. Tijh and px variables can be expressed by using equations (3.26) and (3.27).

Tijh = −k−1

√
µ

−k · Ch · dk+1
ijh

∀(ijh) ∈ Dl (3.28)

px = −s−1

√
µ

−s · Cmx

where x = 1, 2 (3.29)

Also, it is known that the cycle time constraint is tight at optimality. Then;∑
(ijh)

−k−1

√
µ

−k · Ch · dk+1
ijh

= K − 6ε− p1 − p2 (3.30)

µ =

(∑
(ijh)(dijh ·

k+1
√
−k · Ch)

K − 6ε− p1 − p2

)k+1

(3.31)
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If we replace µ value with (3.31) in equation (3.28); then we get

Tijh =
[ k+1
√
−k · Ch · dijh] · [K − 6ε− p1 − p2]∑

(ijh)(dijh · k+1
√
−k · Ch1)

(3.32)

Using (3.29) and (3.31) we get:

px =

((∑
(ijh) dijh · k+1

√
−k · Ch1∑

(ijh) Tijh

)k+1

.
1

−s · Cmx

) 1
−s−1

(3.33)

Cmx and s depend on machine and process characteristics. Remaining parameters

are the same for both machines in the robotic cell. Therefore, energy consumption

functions are same and optimal processing time values will be equal on both ma-

chines.

Proposition 3. In an optimal solution, marginal cost of decreasing travel time of the

robot is equal to the marginal cost of decreasing the processing time.

Proof. This statement can be proved by comparing partial derivatives of the objective

function with respect to robot’s move time and machine processing time at an optimal

solution.

When partial derivatives of the objective function with respect to Tijh and px are

derived, marginal costs are equal to each other due to KKT conditions.

∂f

∂Tijh
= −k · Ch · T−k−1ijh · dk+1

ijh = µ

∂f

∂px
= −s · Cmx · p−s−1x = µ

Proposition 3 shows that at an optimal solution robot move times and processing

times are chosen in such a way that it is not possible to improve energy consumption

by increasing or decreasing robot move times and processing times.
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3.3.2 S2 Cycle:

Now, we give the mathematical model for S2 cycle. First, we obtain cycle time con-

straints by using equation (3.10). We obtain these constraints by linearizing the max

term in equation (3.10).

6ε+ T01f + T12e + T23f + T31e + T12f + T20e ≤ K

4ε+ p1 + T01f + T12f + T20e ≤ K

4ε+ p2 + T23f + T31e + T12f ≤ K

Then, mathematical model of S2 cycle is as follows:

Min Cf ·
[
dk+1
01f · T

−k
01f + dk+1

12f · T
−k
12f + dk+1

23f · T
−k
23f

]
+ (3.34)

Ce ·
[
dk+1
12e · T−k12e + dk+1

31e · T−k31e + dk+1
20e · T−k20e

]
+ Cm1 · p−s1 + Cm2 · p−s2

s.t. 6ε+ T01f + T12e + T23f + T31e + T12f + T20e ≤ K (3.35)

4ε+ p1 + T01f + T12f + T20e ≤ K (3.36)

4ε+ p2 + T23f + T31e + T12f ≤ K (3.37)

0 ≤ T01f , T12f , T23f , T12e, T31e, T20e ≤ TUB (3.38)

0 ≤ p1, p2 ≤ pUB (3.39)

Similar to the model given for S1 cycle, this model is also a convex optimization

problem. We write KKT conditions, and we deduce some optimality properties for

the problem.

First, we give the Lagrangian function.

L(Tijh, px, µ) = Cf ·
[
dk+1
01f · T

−k
01f + dk+1

12f · T
−k
12f + dk+1

23f · T
−k
23f

]
+ Ce ·

[
dk+1
12e · T−k12e + dk+1

31e · T−k31e + dk+1
20e · T−k20e

]
+ Cm1 · p−s1 + Cm2 · p−s2

+ µ1 · [K − 6ε− T01f − T12e − T23f − T31e − T12f − T20e]

+ µ2 · [K − 4ε− p1 − T01f − T12f − T20e]

+ µ3 · [K − 4ε− p2 − T23f − T31e − T12f ]
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µ1, µ2 and µ3 are the Lagrange multipliers for the constraints (3.35), (3.36) and (3.37),

respectively. Partial derivatives of the Lagrangian function with respect to decision

variables must be zero in an optimal solution. Then, following gradient equations

must hold.

Gradient Equations:

∂L

∂T01f
=− k · Cf · dk+1

01f · T
−k−1
01f − µ1 − µ2 = 0

∂L

∂T12f
=− k · Cf · dk+1

12f · T
−k−1
12f − µ1 − µ2 − µ3 = 0

∂L

∂T23f
=− k · Cf · dk+1

23f · T
−k−1
23f − µ1 − µ3 = 0

∂L

∂T12e
=− k · Ce · dk+1

12e · T−k−112e − µ1 = 0

∂L

∂T31e
=− k · Ce · dk+1

31e · T−k−131e − µ1 − µ3 = 0

∂L

∂T20e
=− k · Ce · dk+1

20e · T−k−120e − µ1 − µ2 = 0

∂L

∂p1
=− s · Cm1 · p−s−11 − µ2 = 0

∂L

∂p2
=− s · Cm2 · p−s−12 − µ3 = 0

We also write the other KKT conditions as below:

Complementary Slackness:

µ1 · [K − 6ε− T01f − T12e − T23f − T31e − T12f − T20e] = 0

µ2 · [K − 4ε− p1 − T01f − T12f − T20e] = 0

µ3 · [K − 4ε− p2 − T23f − T31e − T12f ] = 0

Primal Feasibility:

6ε+ T01f + T12e + T23f + T31e + T12f + T20e ≤ K

4ε+ p1 + T01f + T12f + T20e ≤ K

4ε+ p2 + T23f + T31e + T12f ≤ K

T01f , T12f , T23f , T12e, T31e, T20e, p1, p2 ≥ 0

Lagrange multipliers sign restrictions: µy ≤ 0 ∀y = 1, 2, 3
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The following proposition shows that all cycle time constraints of mathematical model

are always tight.

Proposition 4. Suppose that K is finite and TUBijh and pUBx are sufficiently large, then

cycle time constraints of S2 cycle, constraints (3.35), (3.36) and (3.37), are always

binding in an optimal solution.

Proof. Consider the following gradient equations;

−k · Ce · dk+1
12e · T−k−112e = µ1 (3.40)

−s · Cm1 · ps−11 = µ2 (3.41)

−s · Cm2 · ps−12 = µ3 (3.42)

As explained in proof of Proposition 1, µ1, µ2 and µ3 cannot be zero. Due to com-

plementary slackness (3.35), (3.36) and (3.37) are always binding in an optimal solu-

tion.

Proposition 4 shows that at optimality, cycle time of the schedule is always equal to

K, i.e. robot move times or processing times cannot be increased further to improve

energy consumption.

In robotic cell schedules, waiting times can exist, i.e., the robot can wait for the

machine or vice versa. Next, we show that, in S2 cycle, when energy consumption is

minimized for a given cycle time, neither the robot waits for unloading a full machine

nor a full machine waits robot after finishing its operation on a part.

Proposition 5. In S2 cycle, if K is sufficiently large, at optimality, part completion

time on a machine and robot arrival time at the machine are synchronized i.e. both

robot’s and machine’s waiting times are zero.

Proof. We have already given robot’s waiting times in (3.8) and (3.9):

w1 = max(0, p1 − 2ε− T12e − T23f − T31e − w2)

w2 = max(0, p2 − 2ε− T20e − T01f − T12e)
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As given in Proposition 4, constraints (3.35), (3.36) and (3.37) are tight in the optimal

solution. Then, p1 and p2 can be expressed as:

p1 = 2ε+ T12e + T23f + T31e (3.43)

p2 = 2ε+ T01f + T12e + T20e (3.44)

If we reconsider the robot’s waiting time equations by utilizing (3.43) and (3.44), it

is concluded that w1 = 0 and w2 = 0. Thus, robot’s waiting times are eliminated in

an optimal solution.

Let wM1 and wM2 denote the machines’ waiting times for the robot. Their mathemat-

ical expressions can be constructed as;

wM1 = max(0, T12e + ε+ T23f + w2 + ε+ T31e − p1) (3.45)

wM2 = max(0, T20e + ε+ T01f + ε+ T12e − p2) (3.46)

Similarly, if we use equations (3.43) and (3.44), we conclude that wM1 = 0 and

wM2 = 0. It means that the robot arrives at a machine just when the machine com-

pletes a part.

In S2 cycle, robot speed control and machine processing time control strategies elim-

inate waiting times by slowing down the operations and hence save energy.

3.3.3 S12 Cycle:

So far, we have examined 1-unit cycles. In this section, we will present our analysis

on a 2-unit cycle called S12. This is the only 2-unit cycle that is shown in the literature.

Now, we give the mathematical model for S12 cycle. First, we construct cycle time

constraints. We linearize the max term in the cycle time expression given in equation

(3.13). Then, we obtain three different constraints.
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12ε+ p11 + p22 + T
(1)
01f + T

(1)
12f + T20e + T

(2)
01f + T12e + T

(1)
23f + T31e + T

(2)
12f

+T
(2)
23f + T30e ≤ K

10ε+ p11 + p22 + p12 + T
(1)
01f + T

(1)
12f + T

(1)
23f + T31e + T

(2)
12f + T

(2)
23f + T30e ≤ K

10ε+ p11 + p22 + p21 + T
(1)
01f + T

(1)
12f + T20e + T

(2)
01f + T

(2)
12f + T

(2)
23f + T30e ≤ K

Then, mathematical formulation for S12 cycle is given below:

Min Cf .

[
dk+1
01f · T

(1)
01f

−k
+ dk+1

12f · T
(1)
12f

−k
+ dk+1

01f · T
(2)
01f

−k
+

dk+1
23f · T

(1)
23f

−k
+ dk+1

12f · T
(2)
12f

−k
+ dk+1

23f · T
(2)
23f

−k
]
+

Ce.

[
dk+1
20e · T−k20e + dk+1

12e · T−k12e + dk+1
31e · T−k31e + dk+1

30e · T−k30e

]
+

Cm1 ·
[
p−s11 + p−s21

]
+ Cm2 ·

[
p−s12 + p−s22

]
(3.47)

s.t. 12ε+ p11 + p22 + T
(1)
01f + T

(1)
12f + T20e + T

(2)
01f + T12e

+T
(1)
23f + T31e + T

(2)
12f + T

(2)
23f + T30e ≤ K (3.48)

10ε+ p11 + p22 + p12 + T
(1)
01f + T

(1)
12f + T

(1)
23f

+T31e + T
(2)
12f + T

(2)
23f + T30e ≤ K (3.49)

10ε+ p11 + p22 + p21 + T
(1)
01f + T

(1)
12f + T20e

+T
(2)
01f + T

(2)
12f + T

(2)
23f + T30e ≤ K (3.50)

0 ≤ T
(1)
01f , T

(1)
12f , T20e, T

(2)
01f , T12e, T

(1)
23f , T31e, T

(2)
12f , T

(2)
23f , T30e ≤ TUB (3.51)

0 ≤ p11, p12, p21, p22 ≤ pUB (3.52)
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We first derive KKT conditions for the model.

Lagrangian function of this model is given below:

L(Tijh, px, µ) = Cf ·
[
dk+1
01f · T

(1)
01f

−k
+ dk+1

12f · T
(1)
12f

−k
+ dk+1

01f · T
(2)
01f

−k
+

dk+1
23f · T

(1)
23f

−k
+ dk+1

12f · T
(2)
12f

−k
+ dk+1

23f · T
(2)
23f

−k
]
+

+ Ce ·
[
dk+1
20e · T−k20e + dk+1

12e · T−k12e + dk+1
31e · T−k31e + dk+1

30e · T−k30e

]
+ Cm1 ·

[
p−s11 + p−s21

]
+ Cm2 ·

[
p−s12 + p−s22

]
+ µ1 ·

[
K − 12ε− p11 − p22 − T (1)

01f − T
(1)
12f − T20e − T

(2)
01f − T12e − T

(1)
23f

− T31e − T (2)
12f − T

(2)
23f − T30e

]
+ µ2 ·

[
K − 10ε− p11 − p22 − p12 − T (1)

01f − T
(1)
12f − T

(1)
23f − T31e − T

(2)
12f

− T (2)
23f − T30e

]
+ µ3 ·

[
K − 10ε− p11 − p22 − p21 − T (1)

01f − T
(1)
12f − T20e − T

(2)
01f − T

(2)
12f

− T (2)
23f − T30e

]

Then, following KKT conditions must hold, where µ1, µ2 and µ3 are the Lagrange

multipliers for constrains (3.48), (3.49) and (3.50), respectively.

Gradient Equations:

∂L

∂T
(1)
01f

=− k.Cf · dk+1
01f · T

(1)
01f

−k−1
− µ1 − µ2 − µ3 = 0

∂L

∂T
(1)
12f

=− k · Cf · dk+1
12f .T

(1)
12f

−k−1
− µ1 − µ2 − µ3 = 0

∂L

∂T
(2)
01f

=− k · Cf · dk+1
01f .T

(2)
01f

−k−1
− µ1 − µ3 = 0

∂L

∂T
(1)
23f

=− k · Cf · dk+1
23f .T

(1)
23f

−k−1
− µ1 − µ2 = 0

∂L

∂T
(2)
12f

=− k · Cf · dk+1
12f .T

(2)
12f

−k−1
− µ1 − µ2 − µ3 = 0
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∂L

∂T
(2)
23f

=− k · Cf · dk+1
23f .T

(2)
23f

−k−1
− µ1 − µ2 − µ3 = 0

∂L

∂T20e
=− k · Ce · dk+1

20e · T−k−120e − µ1 − µ3 = 0

∂L

∂T12e
=− k · Ce · dk+1

12e · T−k−112e − µ1 = 0

∂L

∂T31e
=− k · Ce · dk+1

31e · T−k−131e − µ1 − µ2 = 0

∂L

∂T30e
=− k · Ce · dk+1

30e · T−k−130e − µ1 − µ2 − µ3 = 0

∂L

∂p11
=− s · Cm1 · p−s−111 − µ1 − µ2 − µ3 = 0

∂L

∂p21
=− s · Cm1 · p−s−121 − µ3 = 0

∂L

∂p12
=− s · Cm2 · p−s−112 − µ2 = 0

∂L

∂p22
=− s · Cm2 · p−s−122 − µ1 − µ2 − µ3 = 0

Complementary Slackness:

µ1 ·
[
K − 12ε− p11 − p22 − T (1)

01f − T
(1)
12f − T20e − T

(2)
01f − T12e − T

(1)
23f

− T31e − T (2)
12f − T

(2)
23f − T30e

]
= 0

µ2 ·
[
K − 10ε− p11 − p22 − p12 − T (1)

01f − T
(1)
12f − T

(1)
23f − T31e − T

(2)
12f

− T (2)
23f − T30e

]
= 0

µ3 ·
[
K − 10ε− p11 − p22 − p21 − T (1)

01f − T
(1)
12f − T20e − T

(2)
01f − T

(2)
12f

+ T
(2)
23f + T30e

]
= 0

Primal feasibility:

12ε+ p11 + p22 + T
(1)
01f + T

(1)
12f + T20e + T

(2)
01f + T12e + T

(1)
23f + T31e + T

(2)
12f

+T
(2)
23f + T30e ≤ K

10ε+ p11 + p22 + p12 + T
(1)
01f + T

(1)
12f + T

(1)
23f + T31e + T

(2)
12f + T

(2)
23f + T30e ≤ K

10ε+ p11 + p22 + p21 + T
(1)
01f + T

(1)
12f + T20e + T

(2)
01f + T

(2)
12f + T

(2)
23f + T30e ≤ K

T
(1)
01f , T

(1)
12f , T20e, T

(2)
01f , T12e, T

(1)
23f , T31e, T

(2)
12f , T

(2)
23f , T30e, p11, p12, p21, p22 ≥ 0
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Lagrange multipliers sign restrictions: µy ≤ 0 ∀y = 1, 2, 3

If we assume TUB and pUB are sufficiently large, i.e. time bounds are loose at an opti-

mal solution, then corresponding dual variables are zero due to complementary slack-

ness. Proposition 6 shows that cycle time related constraints (3.48), (3.49), (3.50)

must be tight at optimality.

Proposition 6. Suppose that K is finite and TUBijh and pUBx are sufficiently large, then

cycle time constraints of S12 cycle, constraints (3.48), (3.49), (3.50) are always bind-

ing in an optimal solution.

Proof. Let µ1, µ2 and µ3 be the Lagrange multipliers corresponding to constraints

(3.48), (3.49), (3.50), respectively. Consider the gradient equations below:

−k · Ce · dk+1
12e · T−k−112e = µ1 (3.53)

−s · Cm1 · p−s−121 = µ3 (3.54)

−s · Cm2 · p−s−112 = µ2 (3.55)

We can see left hand side of the equations above cannot be zero, then µ1, µ2 and µ3

values are not zero. Then, complementary slackness theorem says that constraints

(3.48), (3.49), (3.50) are always equal to cycle time value K in an optimal solution.

Similar to Propositions 1 and 4, Proposition 6 shows that at an efficient solution ob-

tained by mathematical model above, energy consumption cannot be improved with-

out increasing cycle time.

Proposition 7 shows that machine and robot partial waiting times are eliminated at an

optimal solution.

Proposition 7. If K is large enough, in an optimal solution, when both first part

is processing on M2 and second part is processing on M1, robot’s arrival and part

completion on machines are synchronized i.e. both robot’s and machine’s waiting

times are zero at optimality.
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Proof. We have already defined robot’s partial waiting times in equations (3.11) and

(3.12) as follows:

w2 = max{0, p12 − T20e − ε− T (2)
01f − ε− T12e}

w1 = max{0, p21 − T12e − w2 − ε− T (1)
23f − ε− T31e}

When we consider constraints (3.48), (3.49) and (3.50) in the mathematical model,

we know the all constraints are tight.

12ε+ p11 + p22 + T
(1)
01f + T

(1)
12f + T20e + T

(2)
01f + T12e + T

(1)
23f + T31e + T

(2)
12f (3.56)

+T
(2)
23f + T30e = K

10ε+ p11 + p22 + p12 + T
(1)
01f + T

(1)
12f + T

(1)
23f + T31e + T

(2)
12f + T

(2)
23f (3.57)

+T30e = K

10ε+ p11 + p22 + p21 + T
(1)
01f + T

(1)
12f + T20e + T

(2)
01f + T

(2)
12f + T

(2)
23f (3.58)

+T30e = K

If we subtract equation (3.57) from (3.56), we get following expression:

p12 = 2ε+ T20e + T
(2)
01f + T12e (3.59)

which gives w2 = 0. Similarly, if we consider equations (3.56) and (3.58), we get:

p21 = 2ε+ T12e + T
(1)
23f + T31e (3.60)

which together with w2 = 0 gives w1 = 0.

LetwM2 andwM1 denote the waiting time ofM2 for the robot after processing first part

and the waiting time of M1 for the robot after processing second part, respectively.

Their mathematical expressions are:

wM2 = max(0, 2ε+ T12e + T
(1)
23f + T31e + w2 + w1 − p21) (3.61)

wM1 = max(0, 2ε+ T20e + T
(2)
01f + T12e + w2 − p12) (3.62)

We can conclude that wM2 = 0 and wM1 = 0 by utilizing equations (3.59) and

(3.60). Therefore, the moment M1 completes the second part, the robot arrives at M1

without any delay. Similarly, the robot arrives atM2 as soon asM2 completes the first

part.
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Proposition 7 shows that in S12 cycle, in an efficient solution robot’s arrival time to

a full machine and the machine’s task completion time are equal, so that no waiting

occurs. Eliminating waiting times by slowing down robot and machines saves energy.

In this chapter, we first gave the problem definition. We defined energy consumption

functions of the robot and machines. We introduced robot activities for S1, S2 and S12

cycles and give cycle time calculations for these cycles. Then, using ε-constraint ap-

proach that finds efficient solution, we developed mathematical models. Finally, we

carried out Karush-Kuhn-Tucker (KKT) analysis and gave several optimality proper-

ties for the efficient solutions.

In the next chapter, we will present our numerical experiments for problems.
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CHAPTER 4

COMPUTATIONAL RESULTS

In this section, first we give a numerical study on the efficient frontier for the energy

consumption and the cycle time objectives for three cycles: S1, S2 and S12. Then, we

compare these robotic cycles in terms of energy consumption and cycle time objec-

tives. Lastly, we evaluate how speed control and processing time control strategies

can contribute to energy savings in robotic cells.

4.1 Cycle Time vs. Energy Consumption

In this section, for a selected problem instance, we find a set of efficient solutions.

We solve the mathematical models for S1, S2 and S12 cycles for selected cycle time

levels.

In this instance, d01 = d12 = d23 = 2, d20 = d31 = 4 , d30 = 6, Cf = 4, Ce = 2,

Cm1 = Cm2 = 400, vUB = 2.2, pLB = 5, k = 2, s = 1 and ε = 4. All values

with increment of five in the range [45, 85] are used for K, i.e. 45, 50, 55, 60.., 85. We

consider machines and buffers are located within a linear layout in the robotic cell,

and we assume that there are 2 meters between any pair of successive machines or

a buffer and closest machine. In addition, we assume that when the robot is loaded,

it consumes more energy during the move than when it is empty. Also, we consider

identical machines. In the literature, we encounter studies taking maximum speed

of a robot as 2.2m/s. Therefore, we choose 2.2m/s as the upper limit of robot’s

speed. We solve all mathematical models via MS Excel Solver [28]. First, we solve

S1 model, and find the optimal energy consumption levels for all K values. A set of

solutions representing the efficient frontier is given in Figure 4.1.
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Figure 4.1: A set of efficient solutions for S1 cycle

Figure 4.1 shows that as cycle time (K) increases, efficient solutions have smaller

energy consumption. The reason is that when cycle time is lower, the robot intends to

move faster and the machines try to complete jobs in shorter times. The robot and the

machines consume more energy to complete the cycle at shorter times as cycle time

is decreased. As seen in Figure 4.1, as cycle time gets smaller, decreasing cycle time

further becomes more costly in terms of energy consumption. This behaviour is due

to convexity of energy consumption functions.

Operation planner can make use of the trade-off between energy consumption and

cycle time to save energy. For example, if high throughput rate is required, the cell

would work at lower cycle times albeit consuming more energy. On the other hand,

energy consumption may be more crucial for decision maker when due dates for

customer orders are relatively flexible. Then, the robotic cell can work at higher

cycle times which would decrease the energy consumption. As can be concluded

from Figure 4.1, operation planner can achieve energy saving by carefully planning

robot speeds and processing times.

We summarize the results of S1 cycle in Table 4.1. It includes energy consumption

level, optimal robot move times and optimal processing times for given cycle time

levels. When optimal travel times are examined, it can be realized that travel times

for loaded moves are equal to each other. On the other hand, when the robot is empty,

it moves faster compared to full moves, i.e. T30e has the highest value. This is because
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Ce < Cf . Also, as we mention in Proposition 2, we see that p1 = p2 for considered

cases given in Table 4.1, since we use the same energy consumption function for both

machines.

Table 4.1: Cycle time, energy consumption and optimal results for S1 cycle

K̄ EC (KJ) T01f T12f T23f T30e p1 p2

Avg. Robot

Speed (m/s)

45 194.4 1.8 1.8 1.8 4.2 5.8 5.8 1.2

50 147.8 2.1 2.1 2.1 4.9 7.4 7.4 1.0

55 118.3 2.4 2.4 2.4 5.6 9.1 9.1 0.9

60 98.1 2.7 2.7 2.7 6.3 10.8 10.8 0.8

65 83.5 2.9 2.9 2.9 7.0 12.6 12.6 0.7

70 72.4 3.2 3.2 3.2 7.6 14.4 14.4 0.7

75 63.8 3.5 3.5 3.5 8.3 16.2 16.2 0.6

80 56.9 3.7 3.7 3.7 8.9 18.0 18.0 0.6

85 51.3 4.0 4.0 4.0 9.5 19.8 19.8 0.5

Similarly, we generated a set of efficient solutions for S2 cycle. The behavior of

obtained solutions is given in Figure 4.2 and details are provided in Table 4.2.

Figure 4.2: A set of efficient solutions for S2 cycle

Table 4.2 shows that all processing times are equal to each other in each efficient

solution. In S1 cycle, we have full waiting times that cannot be eliminated. In order

to catch target cycle time level, the robot and machines have to run faster. On the other

hand, in S2 cycle, although the robot travels a longer distance, it can move at a slower
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pace and save energy. Similarly, machines can run slower and save energy. As shown

in Proposition 5, robot’s arrival time to a machine for unloading and job completion

time on the machine are synchronized. This is also observed in this example. In

Table 4.3, we give the sum of duration of the operations performed by the robot

during machine processing and the machine’s processing time. It is seen that total

handling time is exactly equal to machines’ processing times. Neither the robot nor

the machine waits the other, both finish their operations at the same time and the robot

immediately unloads the machine after it arrives.

Table 4.2: Cycle time, energy consumption and optimal times for S2 cycle

K̄ EC (KJ) T01f T12e T23f T31e T12f T20e p1 p2
Avg. Robot

Speed (m/s)

45 68.0 3.0 2.9 3.0 4.7 2.6 4.7 18.7 18.7 0.7

50 54.0 3.6 4.1 3.6 5.8 3.1 5.8 21.5 21.5 0.6

55 45.0 4.2 5.6 4.2 6.7 3.5 6.7 24.6 24.6 0.5

60 38.5 4.8 7.5 4.8 7.6 3.9 7.6 27.8 27.8 0.4

65 33.6 5.2 9.7 5.2 8.3 4.2 8.3 31.2 31.2 0.4

70 29.8 5.7 12.1 5.7 9.0 4.5 9.0 34.8 34.8 0.4

75 26.7 6.1 14.6 6.1 9.7 4.9 9.7 38.4 38.4 0.3

80 24.2 6.5 17.2 6.5 10.3 5.2 10.3 42.0 42.0 0.3

85 22.1 6.9 19.9 6.9 10.9 5.5 10.9 45.7 45.7 0.3

Table 4.3: Synchronization of robot and machines in S2 cycle

Robot handling times while M1 is busy Robot handling times while M2 is busy

K̄ T12e T23f T31e 2ε p1 T01f T12e T20e 2ε p2

45 2.9 3.0 4.7 8.0 18.7 3.0 2.9 4.7 8.0 18.7

50 4.1 3.6 5.8 8.0 21.5 3.6 4.1 5.8 8.0 21.5

55 5.6 4.2 6.7 8.0 24.6 4.2 5.6 6.7 8.0 24.6

60 7.5 4.8 7.6 8.0 27.8 4.8 7.5 7.6 8.0 27.8

65 9.7 5.2 8.3 8.0 31.2 5.2 9.7 8.3 8.0 31.2

70 12.1 5.7 9.0 8.0 34.8 5.7 12.1 9.0 8.0 34.8

75 14.6 6.1 9.7 8.0 38.4 6.1 14.6 9.7 8.0 38.4

80 17.2 6.5 10.3 8.0 42.0 6.5 17.2 10.3 8.0 42.0

85 19.9 6.9 10.9 8.0 45.7 6.9 19.9 10.9 8.0 45.7
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Lastly, we find the efficient solutions for S12 cycle. Different from the previous cycles,

we use 2K cycle time for this time i.e. we work with the range [90, 170] because in

S12, each cycle produces two parts. Figure 4.3 shows the efficient frontier of S12

cycle.

Figure 4.3: A set of efficient solutions for S12 cycle

All optimal results obtained from solving mathematical model of S12 cycle are given

in Table 4.4.

Table 4.4: Cycle time, energy consumption and optimal times for S12 cycle

K̄ EC (KJ) T
(1)
01f T

(1)
12f T20e T

(2)
01f T12e T

(1)
23f T31e T

(2)
12f T

(2)
23f T30e p11 p21 p12 p22

Avg. Robot Avg. Processing

Speed (m/s) Time (s)

90 240.5 2.1 2.1 3.6 2.3 2.0 2.3 3.6 2.1 2.1 5.0 7.5 15.9 15.9 7.5 1.0 11.7

100 185.3 2.5 2.5 4.4 2.8 2.6 2.8 4.4 2.5 2.5 5.9 9.7 17.8 17.8 9.7 0.8 13.8

110 150.4 2.8 2.8 5.2 3.3 3.4 3.3 5.2 2.8 2.8 6.7 11.8 19.9 19.9 11.8 0.7 15.9

120 126.3 3.2 3.2 6.0 3.8 4.4 3.8 6.0 3.2 3.2 7.5 14.0 22.1 22.1 14.0 0.6 18.1

130 108.7 3.5 3.5 6.7 4.2 5.6 4.2 6.7 3.5 3.5 8.3 16.2 24.5 24.5 16.2 0.6 20.4

140 95.3 3.8 3.8 7.4 4.6 7.0 4.6 7.4 3.8 3.8 9.0 18.4 27.1 27.1 18.4 0.5 22.8

150 84.7 4.1 4.1 8.0 5.0 8.8 5.0 8.0 4.1 4.1 9.7 20.6 29.8 29.8 20.6 0.5 25.2

160 76.2 4.4 4.4 8.6 5.4 10.7 5.4 8.6 4.4 4.4 10.4 22.7 32.7 32.7 22.7 0.4 27.7

170 69.1 4.6 4.6 9.2 5.8 12.7 5.8 9.2 4.6 4.6 11.0 24.9 35.7 35.7 24.9 0.4 30.3

As shown in Proposition 7, robot’s arrival time to a machine for unloading and job

completion time on the machine are synchronized. This is also validated with the

results given in Table 4.4. It is seen that total robot handling time while the second

part is processing on M1 is exactly equal to processing times of the second part on

M1. Similarly, total robot handling time while the first part is processing on M2 is

exactly equal to processing times of the first part on M2.
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In addition, we give average robot speed and average machine processing times in Ta-

ble 4.4. We observe that as cycle time increases, robot speed and machine processing

times decreases on the average. Since, higher cycle times give room to slow down the

robot and machines.

4.2 Which Robot Cycle to Choose? S1, S2 or S12 Cycle?

In this study, we present S1, S2 and S12 cycles. The productivity of the cycles may

vary depending on conditions. Therefore, choosing the right robot cycle is important.

Cycle time is the significant restriction for decision makers, so working with different

cycle times may cause to choose different robot cycles. We analyze energy consump-

tion for different cycle times with the same parameter values as used in previous

section. We work with the range [45, 85] for cycle time values.

Figure 4.4: The efficiency of cycles in terms of cycle times

In Figure 4.4, S2 is the best cycle for the considered instance because it gives the

lowest energy consumption for all cycle time levels.

However, S2 is not always the best cycle in terms of energy consumption. As param-

eters change, it is possible that the lowest energy consumption is given by a different

cycle. We compute optimal energy consumption levels for three cycles assuming all

machines and buffers are equidistant to each other, where d is in the range [4, 12].

44



Also, we assume cycle time is 65 seconds for S1 and S2 cycles. For S12 cycle, we

use the cycle time as 130 seconds and find the optimal energy consumption level per

part produced. Remaining parameters we used for analysis are Cf = 4, Ce = 2,

Cm1 = Cm2 = 400, vUB = 2.2, pLB = 5, k = 2, s = 1 and ε = 4. Then, obtained

results are summarized in Figure 4.5.

In Figure 4.5, we see that as the distance between machines and buffers increases, S2

is no longer the most energy efficient alternative robot cycle. For d < 10, S2 cycle has

the lowest energy consumption. While S12 provides the lowest energy consumption

level for a quite narrow range of distance (d ∈ [9.65, 9.73]), for d ≥ 10, S1 cycle gives

the lowest energy consumption as compared with other cycles. Hence, we understand

from the Figure 4.5 that all cycles can be preferable under different conditions. When

S2 cycle is compared to S1 and S12 cycles, the robot is required to travel a longer

distance to complete a cycle in S2 cycle. As distance increases, it gets more expensive

for S2 cycle to achieve a given cycle time level. Since, S2 cycle needs faster robot

moves for the same cycle time. Thus, S2 cycle becomes the worst alternative for

energy consumption.

Figure 4.5: The efficiency of cycles in terms of distance

In practice, sometimes cycle time objective can be more important than energy con-

sumption. In such a case, it is required to use the cycle which gives the minimum
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cycle time. We experiment considering the same parameters and the same assump-

tions as previous and observe which cycle gives feasible solutions for which cycle

time levels. We consider the range [32,40] for K. In Table 4.5, for the instance under

consideration, S2 cycle gives the lowest cycle time level. Then, S12 cycle gives the

second lowest cycle time.

Table 4.5: Minimum cycle time levels

EC (KJ)

K S1 S2 S12

32 Infeasible 236.4 Infeasible

33 Infeasible 198.3 Infeasible

34 Infeasible 170.4 Infeasible

35 Infeasible 149.3 Infeasible

36 Infeasible 132.9 267.5

37 Infeasible 119.8 229.9

38 Infeasible 109.1 203.8

39 Infeasible 100.2 184.8

40 298.7 92.7 169.9

To sum up, we conclude that there is no one cycle as the best cycle for all conditions in

the robotic cells. Different conditions require to use a different cycle to obtain lowest

energy consumption. Therefore, decision makers should carefully decide which robot

cycle type to use and plan robot and machine speeds.

4.3 Benefits of Processing Time and Robot Speed Control

Typically, in practice, robots and machines operate at their maximum speed so as to

obtain maximum throughput via achieving minimum cycle time. However, process-

ing time and robot speed control can be used to achieve lower energy consumption

levels. In this section, we analyze how much energy we save by utilizing the idea of

processing time control along with robot speed control.
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Table 4.6 gives experimental parameters and their values used in this study. In our

experiments, we use four types of distance scenarios to analyze how different cell

layout may affect energy consumption. Details of distance scenarios are given in

Table 4.7. Constant scenario implies that all machines and buffers are equidistant to

each other. Additive Identical and Additive General represent that all machines and

buffers are located on a line in the robotic cell. Thus, additivity assumption is valid

for these layouts, so dij + djk = dik always holds where i, j, k ∈ 0, 1, 2, 3. There is

a difference between two Additive General scenarios. Additive General I represents

that machines are close to each other while the buffers are far from the machines. In

contrast, in Additive General II, the buffers are close to the machines while machines

are far from each other.

Table 4.6: Experimental settings

Distance Scenarios: Constant, Additive Identical, Additive General I, Additive General II

k: 1, 2

s: 1, 2

Cf − Ce: 2.0− 2.0, 4.0− 4.0, 4.0− 2.0

Cm1 − Cm2: 400.0− 400.0, 600.0− 600.0, 400.0− 600.0

vUB: 1.5, 2.0

pLB: 5-5, 15-15, 15-20

Table 4.7: The sets of distance values (given in meters) for each distance case

Distance Case d01 d12 d23 d31 d20 d30

Constant 2 2 2 2 2 2

Additive-Identical 1.5 1.5 1.5 3 3 4.5

Additive-General I 2 1 2 3 3 5

Additive General II 1 2 1 3 3 4

In order to see how the shapes of energy consumption functions affect the results we

considered two different values for both k and s, k = 1, k = 2 and s = 1, s = 2.

Also, we consider three alternative cases for Cf and Ce. In two cases Cf = Ce,

in the third case Cf > Ce. We want to see how the levels of Cf and Ce affect the
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results and also check the situation where loaded robot moves require higher energy.

In order to see the effects of Cm1 and Cm2 , we considered three cases, Cm1 = Cm2

(low and high) and Cm1 < Cm2 . This will show us how different machine energy

consumption functions affect robot speed and processing time decisions. The studies

in the literature point out that speed of a handling robot varies from 0.05 m/s to 2.2

m/s. Hence, we use two speed upper bound levels: 1.5 m/s and 2.0 m/s. Also, we

want to analyze the energy consumption when the machines can work fast, slow or

they have different speeds, pLB : 5− 5, 15− 15, 15− 20. In the experiments, we take

ε = 4.

In our experiments, for robotic cycles S2 and S12, we create robotic cell schedules

using four scenarios and then compare energy consumption levels. In the baseline

scenario, both the robot and machines operate at their fastest pace to achieve the low-

est possible cycle time (CT Sl
B ). In the second scenario, only robot speed control is

allowed and the mathematical model for cycle Sl is solved to achieve CT Sl
B . Note that

processing time decision variables are fixed at lower bounds. In the third scenario,

only processing time control is allowed and robot moving time decision variables

are fixed at lower bounds. Finally, both robot speed and processing time control is

allowed. The energy consumption values are denoted by FSl
B , FSl

RC , FSl
PC , FSl

RC+PC

where RC means robot speed control, PC means processing time control. In the

rest of the study, we will refer to these scenarios as ScenarioRC , ScenarioPC and

ScenarioRC+PC , respectively. Since there is no possibility that improvement on en-

ergy consumption occurs without worsening cycle time in S1 cycle, we analyze only

S2 and S12 cycles here.

In our experiments, for our three scenarios, we focus on how much energy savings

can be obtained compared to the baseline situation. We present the improvement of

saving on energy consumption as SavingRC , SavingPC and SavingRC+PC . Saving

is calculated as F
Sl
B −F

Sl
t

FSl
B

where t ∈ {RC,PC,RC + PC} and l ∈ {2}, {12}.

4.3.1 Effects of different machine energy consumption functions

We compare the energy consumption savings for different machine energy consump-

tion functions. For this analysis, we solve the mathematical models for different
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values of parameters s, pLB and Cm1 − Cm2 . Also, we use the Additive Identical

distance scenario with k = 1, Cf = 4, Ce = 2, vUB = 1.5 and ε = 4. We give the

results in Table 4.8 for S2 and S12 cycles, respectively.

Table 4.8: Energy saving levels on different machine energy consumption functions

S2 S12

s pLB Cm1 − Cm2

SavingRC SavingPC SavingRC+PC SavingRC SavingPC SavingRC+PC

(%) (%) (%) (%) (%) (%)

s = 1

5 - 5

400 - 400 0.0 44.6 44.6 0.0 22.8 22.8

600 - 600 0.0 48.4 48.4 0.0 24.6 24.6

400 - 600 0.0 46.8 46.8 0.0 23.8 23.8

15 - 15

400 - 400 3.3 0.0 3.3 1.7 0.0 1.7

600 - 600 2.6 0.0 2.6 1.4 0.0 1.4

400 - 600 2.9 0.0 2.9 1.5 0.0 1.5

15 - 20

400 - 400 15.4 6.9 16.8 5.9 3.6 8.8

600 - 600 12.4 8.4 15.1 4.7 4.4 7.8

400 - 600 14.0 6.3 15.2 7.3 3.3 7.9

s = 2

5 - 5

400 - 400 0.0 32.5 32.5 0.0 17.2 17.2

600 - 600 0.1 40.7 40.7 0.0 21.3 21.3

400 - 600 0.1 36.9 36.9 0.0 19.4 19.4

15 - 15

400 - 400 6.4 0.0 6.4 3.5 0.0 3.5

600 - 600 6.2 0.0 6.2 3.4 0.0 3.4

400 - 600 6.3 0.0 6.3 3.4 0.0 3.4

15 - 20

400 - 400 28.3 1.5 28.4 15.5 0.8 15.5

600 - 600 27.6 2.2 27.6 11.1 1.2 15.1

400 - 600 28.1 1.5 28.1 11.3 0.8 15.4

Usually, it is possible to say that both cycles show similar trends when parameters

change. First, we consider different levels of pLB. When pLB is low, SavingRC is low

as the robot still has to move fast to catch up the machines and achieve corresponding

CT Sl
B . On the other hand, when pLB is low, robot speed determines corresponding

CT Sl
B and there is room for slowing down the machines. Therefore, processing time

control provides high savings on energy (SavingPC). In contrast, as pLB rises, it

becomes possible to slow down the robot speed as processing time of machines deter-

mine corresponding CT Sl
B . This time, robot speed control strategy gives high saving

49



rates. In the case where the machines have high and different processing times from

each other, pLB = 15− 20, robot speed control provides its highest improvements.

Moreover, we encounter the highest energy saving (up to 48.4%) by processing time

control strategy when s is low and Cm1 − Cm2 are high. In this setting, machine en-

ergy consumption forms a larger portion of the total energy consumption. This leads

to a higher saving by processing time control strategy. According to the selected

parameters, the portion of the robot energy consumption in the total energy consump-

tion can be quite low. In this case, as the level of improvement obtained from robot

speed control is also low, the saving rate in the total energy consumption is small.

On the contrary, when studied with a quadratic energy consumption function with

lower Cm1 − Cm2 , i.e. the robot has larger portion of the total energy consumption,

we see that scenarios controlling robot speed provides higher improvements. These

observations hold for both cycles.

Table 4.9: Overall savings in terms of machine energy consumption function

S2 S12

Parameters Levels
Avg. SavingRC Avg. SavingPC Avg. SavingRC+PC Avg. SavingRC Avg. SavingPC Avg. SavingRC+PC

(%) (%) (%) (%) (%) (%)

s

1 5.6 17.9 21.7 2.5 9.2 11.1

2 11.4 12.8 23.7 5.3 6.8 12.7

pLB

5 - 5 0.0 41.6 41.6 0.0 21.5 21.5

15 - 15 4.6 0.0 4.6 2.5 0.0 2.5

15 - 20 21.0 4.5 21.9 9.3 2.4 11.8

Cm1 − Cm2

400 - 400 8.9 14.2 22.0 4.4 7.4 11.6

600 - 600 8.1 16.6 23.4 3.4 8.6 12.3

400 - 600 8.6 15.2 22.7 3.9 7.9 11.9

Overall 8.5 15.4 22.7 3.9 8.0 11.9

We summarize all the results from this analysis in Table 4.9 based on parameters and

scenarios. For both cycles, when robot speed and processing times are controllable,

we observe the highest energy saving as 22.7% and 11.9%, for S2 and S12 cycles,

respectively. Then, when we could only control processing time, we calculate the

second highest improvement on energy consumption with 15.4% and 8.0%, respec-

tively. ScenarioRC also gives the effective results in both cycles. When we consider

overall results in terms of cycles, we can see that the saving rates getting from the S2

cycle are better than the S12 cycle for all scenarios.
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4.3.2 Effects of different robot energy consumption function

We analyze energy savings for different robot energy consumption functions. We use

different levels of k, vUB and Cf − Ce. We use Additive Identical distance scenario

with s = 1, Cm1 = Cm2 = 400, Cf = 4, Ce = 2, pLB = 15 or 20 and ε = 4. We

present the results in Table 4.10 for S2 and S12 cycles.

Table 4.10: Energy saving levels on different robot energy consumption functions

S2 S12

k vUB Cf − Ce
SavingRC SavingPC SavingRC+PC SavingRC SavingPC SavingRC+PC

(%) (%) (%) (%) (%) (%)

k = 1

1.5

2.0 - 2.0 14.3 8.1 16.6 7.6 4.3 8.8

4.0 - 4.0 20.0 5.6 20.5 10.8 3.0 10.8

4.0 - 2.0 15.5 6.9 16.8 5.9 3.6 8.8

2.0

2.0 - 2.0 18.5 7.0 19.8 9.9 3.8 9.9

4.0 - 4.0 24.5 4.7 24.7 13.4 2.6 13.5

4.0 - 2.0 19.4 5.9 20.0 10.2 3.1 10.2

k = 2

1.5

2.0 - 2.0 23.6 6.6 24.8 12.6 3.6 12.6

4.0 - 4.0 30.8 4.3 30.9 16.8 2.4 16.9

4.0 - 2.0 24.6 5.5 25.2 13.0 2.9 13.0

2.0

2.0 - 2.0 31.0 4.7 31.4 16.9 2.6 16.9

4.0 - 4.0 37.1 2.8 37.1 20.6 1.6 20.6

4.0 - 2.0 31.0 3.7 31.1 16.6 2.0 16.6

From the results given in Table 4.10, it can be seen that when the robot has a cubic

energy consumption function instead of quadratic, ScenarioRC and ScenarioRC+PC ,

can achieve higher savings compared to the ScenarioPC . In other words, as robot

energy consumption function gets steeper robot speed decisions become more critical

for energy consumption.

When k and Cf − Ce are increased, speeding up the robot becomes more expensive

which also means slowing down gives higher energy saving. This is observed in Table

4.10 as expected. For our instances, we obtain up to 37.1% energy savings with high

k and Cf − Ce values.

51



In addition, differentiating upper bound of robot speed affects energy saving. Higher

vUB values, in other words faster robot, have more potential for the use of robot

speed control strategy. In Table 4.10, we observe that when vUB increases more robot

energy saving is possible.

Improvements on ScenarioPC are relatively lower than ScenarioRC and ScenarioRC+PC .

The highest savings in terms of processing time control strategy are achieved when

parameter values are low. In base scenario, when k, Cf − Ce and vUB are low, the

portion of robot energy consumption in total consumption decreases. In this case,

percent saving achieved by processing time control increases.

Table 4.11: Overall savings in terms of robot energy consumption function

S2 S12

Parameters Levels
Avg. SavingRC Avg. SavingPC Avg. SavingRC+PC Avg. SavingRC Avg. SavingPC Avg. SavingRC+PC

(%) (%) (%) (%) (%) (%)

k

1 18.7 6.4 19.7 9.6 3.4 10.3

2 29.7 4.6 30.1 16.1 2.5 16.1

vUB
1.5 21.5 6.2 22.5 11.1 3.3 11.8

2.0 26.9 4.8 27.3 14.6 2.6 14.6

Cf − Ce

2.0 - 2.0 21.9 6.6 23.2 11.7 3.5 12.1

4.0 - 4.0 28.1 4.4 28.3 15.4 2.4 15.4

4.0 - 2.0 22.6 5.5 23.3 11.4 2.9 12.2

Overall 24.2 5.5 24.9 12.9 3.0 13.2

Overall results for this experiment is given in Table 4.11. As can be seen from the

table, ScenarioRC+PC gives the best energy consumption levels for our experiments.

On the average, we can provide 24.9% and 13.2% energy savings for S2 and S12

cycle, respectively. The results show that energy saving due to robot speed control is

sensitive to robot energy cost function parameters.

4.3.3 Effects of the robot’s and machines’ speed

In this experiment, we change vUB and pLB simultaneously. We use Additive Iden-

tical distance scenario with k = 1, s = 1, Cm1 = Cm2 = 400, Cf = 4, Ce = 2 and

ε = 4. We present the results in Table 4.12 for S2 and S12 cycles.

When machines are slow, the robot speed control strategy provides higher energy
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Table 4.12: Energy saving levels on different robotic cell speed level

S2 S12

vUB pLB
SavingRC SavingPC SavingRC+PC SavingRC SavingPC SavingRC+PC

(%) (%) (%) (%) (%) (%)

1.5

5 - 5 0.0 44.6 44.6 0.0 22.8 22.8

15 - 15 3.3 0.0 3.3 1.7 0.0 1.7

15 - 20 15.5 6.9 16.8 8.1 3.6 8.8

2.0

5 - 5 0.0 38.6 38.6 0.0 19.8 19.8

15 - 15 4.3 0.0 4.2 2.2 0.0 2.2

15 - 20 19.4 5.9 20.0 10.2 3.1 10.2

savings. Longer machine processing times lead to longer partial waiting which gives

room to slow down the robot. When the robot is slower, we encounter the situations

that the machines can wait for the robot. In this case, processing time control strategy

saves higher energy.

It is seen from Table 4.12 that robot speed control strategy achieves highest saving

when machines are slow and processing time control strategy achieves highest saving

when robot is slow.

4.3.4 Effects of distance scenarios

In this section, we compare energy saving levels for different distance scenarios. We

consider the total distance traveled by the robot in the cycle so that the scenarios are

comparable with each other. For S2, distances traveled by the robot in all scenarios

are equal, and in S12, distances traveled by the robot in all scenarios are very close

to each other. We use parameter values k = 1, s = 1, Cm1 = Cm2 = 400, Cf = 4,

Ce = 2, vUB = 1.5, pLB = 15 or 20 and ε = 4. We summarize the results in Table

4.13.

As can be seen from Table 4.13, robot speed control strategy achieves highest energy

saving level in Constant distance scenario. On the other hand, processing time control

strategy performs better than other scenarios for Additive General II. However, the
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Table 4.13: Energy saving levels on different distance cases

S2 S12

Distance
SavingRC SavingPC SavingRC+PC SavingRC SavingPC SavingRC+PC

(%) (%) (%) (%) (%) (%)

Constant 16.0 6.6 17.5 8.5 3.5 9.3

Additive Identical 15.5 6.9 16.8 5.9 3.6 8.8

Additive General I 15.7 6.8 16.5 4.7 3.5 8.5

Additive General II 14.9 7.0 17.0 7.9 3.8 8.0

Overall 15.5 6.9 17.0 6.8 3.6 8.7

results are not far from each other. Therefore, we can say that energy savings achieved

for different distance scenarios are close to each other.

All computational results in this section show that highest energy saving levels are

obtained when the robot travel and machine processing times are controlled together.

On the average, we observe that savings of up to 22.2 % and 11.7 % can be achieved

by S2 and S12 cycles, respectively. In Table 4.14, we summarize the overall saving

levels obtained from all instances given in this section. As expected, in S12 cycle,

we encounter lower saving levels compared to S2 cycle. S2 cycle includes partial

waiting while the S12 cycle includes both partial and full waiting. Since mathematical

models can only improve on partial waiting times without affecting cycle times, it is

an expected result that the energy saving levels in S12 cycle are smaller.

Table 4.14: Overall energy saving levels for selected instances

S2 S12

SavingRC SavingPC SavingRC+PC SavingRC SavingPC SavingRC+PC

(%) (%) (%) (%) (%) (%)

Average 13.9 11.0 22.2 7.0 5.8 11.7

Computational results show that in a robotic cell schedule if robot waiting (i.e. partial

waiting) and/or machine waiting times occur, then there is an opportunity to slow

down these equipment and save energy while achieving the same throughput level.
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CHAPTER 5

CONCLUSIONS

In this study, we consider a robotic cell with two machines having an input and an

output buffer. While the machines in the robotic cell perform operations on a part, the

robot carries out handling (between the machines or buffers), loading and unloading

operations. We assume that we can control the robot speed and machines’ processing

times in this robotic cell. We perform our study on three different robot cycles; S1, S2

and S12. Our objective is to minimize energy consumption and cycle time in a cycle.

We apply ε-constraint approach to the solution. We perform KKT analysis of the

given mathematical models for each cycle. Then, we present properties of efficient

solutions.

Our analysis on S2 and S12 cycles show that when the robot speed and machine pro-

cessing times are controllable, partial waiting times for both robot and machines are

eliminated to slow down the robot and the machines. Thus, we provide significant

savings in energy consumption levels with the our proposed model.

We carry out an experimental study to see the effects of different factors on the re-

sults. We analyze the behavior of cycle time and energy consumption objectives by

generating a set of efficient solutions representing the efficient frontier. We show that

as the cycle time increases, the energy consumption decreases. Especially if the cy-

cle time is shorter, we observe that increasing the cycle time a little more provides

higher reductions in energy consumption. In addition, our analyses show that robot

and machines speed control strategy achieves significant energy saving.

In addition, we study which cycle performs better in different distance scenarios and

cycle times under robot speed and processing time control strategy. Also, we study
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how energy consumption is affected when robot speed and machine processing times

are controlled together. We compare the proposed model with different assumptions.

We consider the situation where machines and the robot work at their highest speed

as base case. Computational results show that when robot speed and processing time

control are considered together, significant saving can be obtained compared to the

cases where two strategies are used individually.

As the use of robotic cells become widespread in manufacturing, energy efficient

scheduling in these cells will become more important. In this study, it is explained that

significant energy savings can be achieved by carefully planning robot and machine

speeds by the help of proposed models.

Robotic cell configurations used in industries are various. There are many studies

considering different types of robotic cells in the literature. These studies have par-

ticularly focused on trajectory optimization. As a future study, different robotic cell

configurations can be considered. When the robot and machine speed control is also

evaluated besides trajectory optimization, energy efficient results can be obtained.

Another future research could be to reconsider our models with different energy con-

sumption functions. A variety of energy consumption functions are used for robotic

cell studies in the literature. A more realistic energy consumption function consider-

ing acceleration/deceleration, stand-by mode etc. can provide more realistic results.

Also, the mathematical models and analyzes given in this study can be carried out

for robotic cells with three or more machines. Increasing the number of machines of

the robotic cell can create different requirements in terms of decision variables and

constraints. In addition, the solution of the problem will be more time consuming.

Thus, this recommendation can be considered as another research topic in the future.
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