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ABSTRACT

COEFFICIENTS OF FOLDING POLYNOMIALS ATTACHED TO LIE
ALGEBRAS OF RANK TWO

Aydogdu, Muhammed
M.S., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Omer Kiigiiksakall

July 2021, [68| pages

Let g be a Lie algebra over a field F, and let f) be a Cartan subalgebra of g. The dual
space h* of h forms a root system. Reflections in the hyperplanes orthogonal to the
simple roots of h* generate the Weyl group of g. If / is the generalized cosine function
associated with the Weyl group of g, then for a nonnegative integer k, the generalized
Chebyshev polynomial associated with g is defined by PF(h(x)) = h(kx). In this
thesis, general formulae for P§2 and sz will be found and some algebraic properties
of the coefficients of generalized Chebyshev polynomials attached to Lie algebras of

rank two will be investigated.

Keywords: Lie Algebra, Root Systems, Weyl Group, Folding Polynomials.



0z

IKi BOYUTLU LIE CEBIRLERI UZERINDEKI KATLAMA
POLINOMLARININ KATSAYILARI

Aydogdu, Muhammed
Yiiksek Lisans, Matematik Boliimii

Tez Yoneticisi: Doc. Dr. Omer Kiigiiksakalli

Temmuz 2021 , [68] sayfa

g, F cismi lizerinde bir Lie cebiri ve f, g’nin bir Cartan alt cebiri olmak iizere, §’nin
dual uzay1 h* bir kok sistemi belirtmektedir. h*’1n basit koklerine dik olan hiper diiz-
lemlere gore yansimalar, g’nin Weyl grubunu iiretmektedir. 2, g’'nin Weyl grubuna
karsilik gelen genellestirilmis cosiniis fonksiyonu iken, negatif olmayan £ tam sayisi
icin, g iizerindeki genellestirilmis Chebyshev polinomu, Py (h(x)) = h(kx) esitligi
ile tamimlanir. Bu tezde P]’§2 ve P& polinomlariin genel formiilleri bulunacak ve
iki boyutlu Lie cebirlerine karsilik gelen genellestirilmis Chebyshev polinomlarinin

katsayilarinin bir takim cebirsel 6zellikleri incelenecektir.

Anahtar Kelimeler: Lie Cebir, Kok Sistemleri, Weyl Grup, Katlama Polinomlart.
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CHAPTER 1

INTRODUCTION

1.1 History and Motivation

The Chebyshev polynomial 7;,(x) of the first kind is defined by
T, (z) = cos(n arccos x) (1.1)
where n is a nonnegative integer, and 0 < arccosx < 7. [12, Chapter 1].

These polynomials were first introduced by the Russian mathematician P.L..Chebyshev
in 1854 in his paper on hinge mechanisms [10]. From that time, many important
properties of these polynomials were discovered and they have a wide range of use in

mathematics from numerical analysis to differential equations.

These polynomials have several remarkable properties. We will give some of these

properties of our interest.

Firstly, these polynomials satisfy the composition property:
Ton(x) = Tin(x) o T, ()

for any positive integers m and n. Moreover, together with the monomials 2" these

are the only polynomials; up to conjugation, satisfying this property [12, Chapter 4].

Secondly, these polynomials can be thought of as arising from the stretching and

1

folding the interval [0, 7]. More precisely the function cos™" o7}, o cos stretches the

interval by a factor of n and returns it to itself by folds at integer multiples of 7 [5].

Therefore these polynomials have the folding property.
They also satisfy a certain recurrence relation [12]. This can be described as follows:

1



We are familiar with the following elementary trigonometric formulae:

cos 060 =1,

cos 160 = cos b,

cos20 = 2cos’ 0 — 1,

cos 30 = 4cos® — 3cos b,

cosdf = 8cos* 0 — 8cos® H + 1.

If we combine these identities with Equation|I.T] the first few Chebyshev polynomials

are given by
To(x) =1,
Ty (z) =z,
Ty(z) = 22 — 1,
Ts(z) = 42® — 3u,
Ty(z) = 8z* — 82 +1

However it is not beneficial to work out further 7,,(x) by definition. If we combine

the definition with the following trigonometric identity
cosnb = 2cosf - cos(n —1)0 — cos (n — 2)0,
then we obtain the following recurrence relation:
To(z) = 22T, 1(x) — Th—o(x)
where Ty(z) =1 and T)(z) = x.

Moreover we have an explicit expression for 7,,(z) given in [12]:

T (z) = Li (;{) 22 (] — g2k,

k=0
It follows from this formula that these polynomials have the following properties:
1. The coefficients of 7},(x) are integers.
2. The sum of the coefficients of 7},(x) is 1.

3. To(—x) = (—1)"T,(x) and in particular T,,(—1) = (—1)".



The study of multivariate Chebyshev polynomials is rather new but has a significant
place in history. These polynomials were studied first by Bourbaki [1]] as certain el-
ements of polynomial algebra attached to certain exponential invariants. They gave
the relation between these invariants and the root systems of Lie algebras. They also
showed that the invariants of the Weyl group of a root system are isomorphic to a
polynomial algebra over integers. Later, Lidl and Wells [13]] gave the explicit expres-
sion for the multivariate Chebyshev polynomials associated with the root system of
A,,. Koornwinder [7] studied general orthogonal polynomials in two variables con-
taining the bivariate Chebyshev polynomials as special cases. Ricci [11] was the first
to observe that these polynomials satisfy the composition property. Hoffmann and
Withers [5] gave a geometric approach to multivariate Chebyshev polynomials by
defining them as folding polynomials. They also showed that foldable figures are
in one to one correspondence with the Weyl groups of root systems. Withers [|14]
studied the dynamics of folding polynomials later on and showed that the function
hg' o Py o hy stretches and folds the fundamental region of the root system of a sim-
ple complex Lie algebra g by a factor of k and returns it to itself by folding. Here A is
the generalized cosine function and P} is the k*" generalized Chebyshev polynomial

attached to g.

1.2 The Goals of the Thesis

In our thesis, we concentrate on understanding the coefficients of generalized Cheby-

shev polynomials attached to simple complex Lie algebras of rank 2, namely Ay, By, Gs.

In [13], the general formula for P} , 1s given by Lidl and Wells. In this thesis, we find

the general formula for Pf; and P, with the help of Waring’s formula.

In [14], Withers gives recurrence relations satisfied by these polynomials without
proof. We will give a proof of these relations by using the theory of symmetric poly-

nomials.

We compute the multidegrees of these polynomials and give an alternative proof of

the fact that the coefficients of these polynomials are integers.

In [8]], Kiigiiksakalli showed that P} (x,y) = (29,y?) (mod p) if ¢ is a power of a
prime p for g = B, and g = (GG5. We will give a different proof of this fact.

3



1.3 Organization of the Thesis

The organization of this thesis is as follows:

In Chapter 2, we give some theoretical background related to the theory of Lie al-
gebras. We first give the related definitions and introduce the fundamental concepts
including the ideals and homomorphisms. We also mention the classification theorem

of simple finite dimensional complex Lie algebras due to Killing and Cartan.

In Chapter 3, we describe the notions of Cartan subalgebra and root space decompo-
sition. Then we explain the root systems in detail including the construction of rank 2
root systems geometrically. We also describe the notions of coroots and fundamental
weights together with the Cartan matrix. In the last section, we introduce the Weyl

group and its action on lattice generated by fundamental weights.

In Chapter 4, we review the exponential invariants of Bourbaki. We will give their
proof of the fact that the subalgebra of invariant elements under the action of the
Weyl group on lattice of fundamental weights is isomorphic to a certain polynomial
algebra. Then we compute the generalized cosine function of rank 2 root systems.

We conclude this chapter by giving examples of generalized Chebyshev polynomials.

In Chapter 5, we find the general formulae of generalized Chebyshev polynomials
associated with the root systems of B, and G,. Withers [14] gives the recurrence
relations satisfied by these polynomials but he did not mention where the coefficients
come from. We will explain why these polynomials satisfy these recurrence relations.
Bourbaki [1] proved that the coefficients of these polynomials are integers. We will
give an alternative proof of the same result. We will also prove that these polynomials

reduce to Frobenius map over finite fields.



CHAPTER 2

PRELIMINARIES

In this chapter, we provide the theoretical background related to the theory of Lie
algebras. We first give the related definitions and introduce the fundamental concepts
including the ideals and homomorphisms. We also mention the classification theorem
of simple finite dimensional complex Lie algebras due to Killing and Cartan. For

details, see [1]] and [6]).

2.1 Definitions and First Examples

Definition 2.1. A vector space g over a field ¥, with an operation g X g — g, denoted
(x,y) — [z,y] and called the bracket of x and y, is called a Lie algebra over F if the

following axioms are satisfied:
(L1) The bracket operation is bilinear.
(L2) [x,x] =0 forall z in g.
(L3) [z, [y, 2] + [y, [z, 2] + [z, [z, y]] = 0 forall z,y,z in g.
Axiom (L3) is called the Jacobi identity. By applying the axioms (L/) and (L2) to
[z + v,z + y|, we obtain
0=[z+y,x+yl =zl + Iyl +y 2]+ vy = [z, 9] + [y, 2]
Therefore we have
[z, y] = —ly, ]. (L2")
Conversely if charF # 2 then (L2’) will imply the axiom (L2).
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Definition 2.2. A Lie algebra g is called abelian if [x,y] = |y, x] for all x,y € g.

Note that in the view of axiom (L2’), a Lie algebra g is abelian if and only if [z, y] = 0

forall z,y € g.

Example 2.3. Let V' be a vector space over F. Define [x,y| = 0 forall x,y € V, then

V' becomes a Lie algebra over ¥ and this is the abelian Lie algebra structure on'V.

Example 2.4. Let g, and g» be two Lie algebras over a field ¥. Then the direct sum

g1 € go with the bracket operation

[(x17 yl): (1’2, 92)} = ([’Ilv I2]7 [yl: y?])
becomes a Lie algebra over F. Note that the vector space here is simply g, X go.

Example 2.5. Let V be a finite dimensional vector space over a field F, and denote
by gl(V') the set of all linear transformations from V' to V. Note that gl(V') is also a
finite dimensional vector space over F. In fact dim(gl(V)) = n* where n = dim(V).

gl(V') becomes a Lie algebra over F with the bracket operation
[T, U]:=ToU—-UoT
where T, U € gl(V'), and o denotes the composition of maps.

Example 2.6. Consider gl(n, F), the vector space of all n x n matrices over F. If we
define the bracket operation [A, Bl = A- B — B - A where - denotes the usual product
of the matrices A and B, then gl(n,F) becomes a Lie algebra over F. Moreover
gl(n, F) has a basis consisting of the matrices e;; given by

1 in the (z,7) position

eij =
0 otherwise.

The action of the bracket operation on the basis elements is given by
€, €] = Ojreir — i€,

where 0;; is the Kronecker-delta function.

Note that this example is a matrix version of Example [2.5| because if V' is an n di-
mensional vector space over F and if we fix a basis for V/, then matrix representation
of any linear transformation in gl(1") with respect to the fixed basis corresponds to an

n X n matrix in gl(n, F).



Definition 2.7. A vector subspace Yy of a Lie algebra g is called a Lie subalgebra of
g if [x,y] € h whenever z,y € b.

Example 2.8. Let V' be a vector space over a field F with dim(V') = [ + 1. The
set of endomorphisms of V' having trace zero is denoted by sl(V') or sl(l + 1, F). If
x,y € sl(l+ 1, F), then

tr(z,y]) = tr(zy — yx) = tr(zy) — tr(yx) = 0. 2.1

Therefore [x,y| € sl(l + 1,F). Hence s\(V') is a subalgebra of gl(V'). It is called the

special linear algebra. The standart basis for sl(V') is the set

{eij i # jYU{hi t hi = € — €141}

where 1 < i <. The former set has (I +1)? — (1 + 1) elements and the letter set has
[ elements. Thus, dim(sl(V)) = (1 +1)> — (I+1) + 1= 1>+ 2L.

Example 2.9. Consider the following subspaces of gl(n, F) :

t(n,F) = {[a;;] € gl(n,F) 1 a;; =0 if i > j},
n(n,F) = {[ay] € gl(n,F) : a;; =0 if i > j},
o(n, F) == {[ay] € gl(n, F) : a;; = 0 if i # j},

the set of upper triangular, strictly upper triangular and diagonal matrices respec-
tively. It is easily verified that each of these is closed under the bracket operation

given in Example and hence is a subalgebra of gl(n, F).

2.2 Ideals, Homomorphisms and Representations

Definition 2.10. A subspace I of a Lie algebra g is called an ideal of g if [x,y] € I
whenever v € gandy € 1.

Example 2.11. If g is a Lie algebra, then {0} and g itself will always be ideals of g.

These are called the trivial ideals.

Example 2.12. Let x € gl(n,F) and y € sl(n,F) be two arbitrary elements. Then
we see that [z,y] € sl(n, F) by Equation Hence sl(n, F) is an ideal of gl(n, F).

7



Example 2.13. Referring to Example ifr € t(n,F) and y € n(n,F) then we
have [x,y] = xy — yx € n(n,F). Therefore the set of strictly upper triangular

matrices is an ideal of the set of upper triangular matrices.

An ideal is always a subalgebra but a subalgebra need not be an ideal. For example
t(n,F) is a subalgebra of gl(n,F). However if n > 2, it is not an ideal, because

e € t(n, F) and €21 € g[(n, F), but [621, 611] = €91 ¢ t(n, F)
Example 2.14. For a Lie algebra g, the subset
Z(g) ={z€g9:[x,2) =0 forall x € g}

is called the center of g and it is an ideal of g.

Now we will introduce the concept of simplicity for a Lie algebra g. This concept will

play an important role in our further discussions.

Definition 2.15. A Lie algebra g is called simple if it is non-abelian and it has no

ideals except {0} and itself.

Example 2.16. The Lie algebra s|(2, F) where charF # 2 is simple because if we
take the standart basis ( for sl(2, F) given by

1 00 1 0
/8 - €r = Y y = ) h - Y
0 10 0 —1
then we have [x,y| = h, [h, x| = 2z, and [h,y] = —2y. Let I be a nonzero ideal of
s((2, F) and let ax + by + ch be a nonzero element of 1. We have [, ax + by + ch] =
bh — 2cx € 1. Moreover [x,bh — 2cx] = —2bx € I. Similarly [y, ax + by + ch] =
2cy — ah € I, and thus [y, 2cy — ah] = —2ay € I. Therefore if a or b is nonzero then

eithery € I orx € I and it follows that I = s((2, F). On the other hand if a = b = 0,
then h € I and it follows that I = sl(2, F).

Definition 2.17. Let g and [ be two Lie algebras over ¥, and let p : ¢ — [ be a linear

transformation. Then  is called a homomorphism if
v ([7,9]) = [o(2), o(y)]
forall x,y € g, and the set Kerp := {x € g : p(x) = 0} is called the kernel of .

8



We can observe that Kery is an ideal of g, because if z € Kerp and y € g, then
o[z, y]) = [e(z), ¢(y)] = [0, 0(y)] = 0, thus [z, y] € Kerp.

Definition 2.18. Let g be a Lie algebra and let V' be a vector space over a field F. A

representation of g is a Lie algebra homomorphism ¢ : g — gl(V').

In the following example, we will see an extremely important representation of a Lie

algebra g which will play a crucial role in our further discussions.

Example 2.19. Consider the map ad : g — gl(g) defined by (adx)(y) = [z,y|. Then

ad([z,y])(z) = [[z,y], 2]
= [z, [y, 2]l + [[z, 2, o]
= [z, [y, 2] = ly, [, 2]
= adz([y, 2]) — ady([z, z])
— (adz o ady)(z) — (ady o adz)(2)
= |adz, ady](z).

Therefore ad is a representation. It is called the adjoint representation.

We observe that the kernel of this map is Z(g). Moreover if g is simple then Z(g) = 0
and the map ad : g — gl(g) is a monomorphism. Therefore any simple Lie algebra
is isomorphic to a linear Lie algebra. Before we give the classification theorem, it is

useful to introduce the following four types of families:

Definition 2.20. The classical Lie algebras are finite dimensional Lie algebras over
a field ¥ which can be classified into four types A,, By, C,, and D,,. Here gl(n,F) is

the general linear Lie algebra and I, is the n X n identity matrix.

A, =sln+1,F)={z€glin+1,F):tr(x) =0},
B, :=s50(2n+1,F)={z € gl(2n+1,F) : z + 27 =0},

0
Cp,=sp(2n,F) =<z cgl2n,F): Jyx+2"J,=0,J, = , ,
I, 0

D, :=s50(2n,F) = {z € gl(2n,F) : x + 2" = 0}.



The classification of simple finite dimensional complex Lie algebras was first given by
Killing and later completed by Cartan in his Ph.D thesis [2]. The following theorem

is due to Killing and Cartan.

Theorem 2.21. Every simple finite dimensional complex Lie algebra is isomorphic to

one of the following classical Lie algebras

sin+1,C) n>1 (4,),
so2n+1,C) n>2 (B,),
sp(2n,C) n>3 (C,),
s50(2n,C) n>4 (D,),

or one of the five exceptional Lie algebras Eg, Fr, Eg, Fy, Gs.

Proof. The proof relies on the fact that for each simple finite dimensional complex Lie
algebra, there exists a corresponding Dynkin diagram, and classifying simple finite
dimensional complex Lie algebras is equivalent to classifying their Dynkin diagrams.

For details see [1, p.201] O

Note that, in Theorem [2.21} the Lie algebras so(3, C),sp(2, C),sp(4,C),s0(2,C),

s0(4, C) and so(6, C) are not mentioned because we have the following well known

isomorphisms:
50(3,C) ~ sp(2,C) ~ s1(2,C)
sp(4,C) ~ 50(5,C)
s0(4,C) ~sl(2,C) @ sl(2,C)
50(6,C) ~sl(4,C)

Note also that, s0(2, C) is one dimensional and abelian. Therefore it is not simple.

10



CHAPTER 3

ROOT SYSTEMS OF SEMISIMPLE LIE ALGEBRAS

In this chapter, we describe the notions of Cartan subalgebra of a Lie algebra and
root space decomposition. Then we explain the root systems. The main connection
between the Lie algebras and root systems is that the dual of the Cartan subalgebra
of a semisimple Lie algebra satisfies the axioms of being a root system. A geometric
construction of a root system of sl(3, C) will be introduced. We also describe the
notions of coroots and fundamental weights together with the Cartan matrix and Weyl
chamber. For details, see [1], [[6] and [4]. In the last section 3.4, we will see the Weyl
groups of rank 2 root systems and compute the orbits of the fundamental weights

under the action of this group.

3.1 Cartan Subalgebra and Root Space Decomposition

Before we give the definitions of Cartan subalgebra and root space decomposition,

we will start with a motivating example to understand these notions better.
Example 3.1. We know that

1 0 0 00 O
sl(3,C) =spanq e, [0 =1 0|, [0 1 0
0 0 0 0 0 -1

where

1 in the (z,7) position

61']‘ =
0 otherwise

11



foreachi,j € {1,2,3} with i # j. Now let b be the 2 dimensional subalgebra of
sl(3, C) spanned by the diagonal matrices. That is

1 0 O 00 O
h=spanq< [0 —1 0],[{0 1 O
0O 0 0 0 0 -1

Now if h € b has diagonal entries a1, as, as, then we have

adh(eij) = [h, eij] = (ai - aj>6ij- (31)

Therefore adh = {(a; — a;) - e;; : h € b}, and the elements e;; for i # j are common

eigenvectors for the elements of adby. If we consider the functionals

€i2f)—>c

h~—>ai,

then Equation[3.1| can be written in terms of these functionals as

adh(eij) = (Ei - 5j)(h)eij~ (32)

If we let g;; = {z € sl(3,C) : adh(z) = (g; — ¢;)(h)x forall h € b}, then
by Equation we have g;; = span{e;;} for i # j. Hence there is a direct sum
decomposition given by

i#]
To see the existence of this decomposition more abstractly, we need the following

definitions:

Definition 3.2. A Lie algebra that can be written as a direct sum of finitely many
simple Lie algebras is called semisimple. On the other hand, an element x in g is
called semisimple if adx is a diagonalizable endomorphism of g with respect to a

suitable basis of g as a vector space.

Definition 3.3. A Lie subalgebra by of a Lie algebra g is called Cartan subalgebra if

b is abelian and every element h € b is semisimple.

12



Definition 3.4. A root is a functional o : h — F so that the set
{z € g: (adh)z = a(h)x forall h € b}
is a nonzero subspace of g. The set of all nonzero roots is denoted by .
Definition 3.5. A root space of a Lie algebra g is a nonzero subspace of g of the form
go = {z € g: (adh)z = a(h)z forall h € b}
for each root o € h*.

Theorem 3.6. Let h) be a Cartan subalgebra of a semisimple Lie algebra g, then

0=b0P g

acd

Proof. Since the Cartan subalgebra b is abelian, the elements of adh are simultane-
ously diagonalizable. In other words, g is the direct sum of subspaces g,. Since gg

contains b, theorem follows. For details, see [6, p.35]. ]

Definition 3.7. The direct sum decomposition given in Theorem|[3.6]is called the root

space decomposition.

Example 3.8. In the language of roots, the decomposition for s\(3, C) in Example
can be written as

s((3,C) :b@@gzj :h@@ga-

i£j Qed

where & = {e; —¢; 11,5 € {1,2,3} with i # j} consisting of 6 roots.

13



3.2 Root Systems

Definition 3.9. Let E be a finite dimensional vector space over R equipped with an
inner product (—, —). A reflection in E is an invertible linear transformation leaving
some hyperplane (subspace of codimension one) pointwise fixed and sending any
vector orthogonal to that hyperplane into its negative. That is if « € E is a nonzero
vector, the reflection s,, with reflecting hyperplane H, = { € E : (a, ) = 0}, is
the map s, : E — E such that s,(«a) = —« and s,(B) = p forall B € H,. In fact
an explicit formula for s, (x) where x is an arbitrary vector in E is given by
2(z, )

(o, @)

(3.3)

So(T) =2 —

Definition 3.10. A subset ® of a Euclidean space E is called a root system if it

satisfies the following axioms:

1. ® is finite, it spans E, and it does not contain 0.
2. If « € ® then the only scalar multiples of o in © are L.

3. If a € O then the reflection s, permutes the elements of .

2(a, )

4. Ifa, B € @ then (o, B) = 5.5)

eZ.

Now we will see, how we pass from a Lie algebra to a root system. The following
proposition will enable us to understand the main connection between Lie algebras

and root systems.

Proposition 3.11. Let g be a semisimple Lie algebra over R and by be its Cartan
subalgebra. Let h* denote the dual space of §y. Then §y* is a Euclidean space, i.e. a
finite dimensional vector space over R endowed with a positive definite symmetric

bilinear form and the subset ® consisting of the roots of h* is a root system.

Proof. The proof relies on the following argument:

The dual space h* is an R-vector space and the Killing form « defined by

k:gxg—R

(x,y) — tr (adx o ady)

14



induces an isomorphism ¢ from b to h*. Therefore we may define a positive definite

symmetric bilinear form B(—, —) on h* by

B:h*x b =R
(a,8) = k(¢ (a), o '(B)) -

This allows us to see h* as a Euclidean space. Moreover, the subset ® of h* consisting

of roots satisfies the axioms given in Definition[3.10] For details see [6, Section 8] [J

In the remaining of this section, we study the geometric constructions of rank 2 root

systems corresponding to the Lie algebras A; x Ay, As, By and Gs.

When we turn back to Definition [3.10] the fourth condition limits the possible angles
that can occur between pairs of roots. The possible angles are determined by the

following lemma:

Lemma 3.12. Suppose that ® is a root system in the Euclidean space E. Let o and 3
be two linearly independent roots in ®. Then (o, B) - (8, a) € {0,1,2,3}.

Proof. We know that the inner product of the vectors o and § in R is given by

(v, B) = ||| - | B]| - cos O. Therefore we have

2(a, B) 2(8,2) _ 2f|el[ - [[B] - cos b 2|[B] - [lx]] - cos 0
(8,8) (o) (8, 5) (o, )

= 4 cos® f.

<Oé,6>'<ﬁ,0[> =

Since 0 < cos?f < 1 and 4cos? § € Z, we must have (o, 3) - (3,a) € {0,1,2,3}.
Note that the case 4 cos?f = 4 cannot occur because otherwise § = k7 for some

k € Z, making o and [ linearly dependent contrary to our assumption. 0

Corollary 3.13. There are only few possibilities for the angle 6 by Lemma These
values are given in Table

15



18]
(a,B) | (B,a) | 0 Il
0 0 7/2 | undetermined
1 1 /3 1
-1 | -1 |2x/3 1
1 2 /4 V2
~1 —2 | 3r/4 V2
1 3 /6 V3
—1 -3 | 57/6 V3

Table 3.1: Possible Values of 6.

By using Table we can obtain all possible root systems of rank 2 as follows:

1. When the dimension of E is one, in the view of the second condition of Defi-
nition [3.10] there is only one possibility. This root system is labeled as A;, and

can be described by the following picture:

— @

Figure 3.1: A; Root system

2. If we start with two roots o and  perpendicular to each other and with no
restriction on the ratio of the length of « to the length of 5, we would get the

following root system:

—Q

Figure 3.2: A; x A; Root system
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3. Now we will construct the root system A, step by step as follows. We start with
two roots  and 3 in R? such that || 3|| = ||| and that the angle between them

is 27/3.

Next we consider the hyperplane H,,.

If we take the reflection of our roots in this hyperplane, we obtain

Ho s,(8)

Sa(a) ; e}

Similarly we consider the hyperplane Hpg.

Sq(a)

17



If we take the reflection of our roots in this hyperplane, we obtain

Observe that we cannot obtain more roots no matter what hyperplane we choose.
In other words, this is a closed system under the reflections. By using Equation

[3.3] we obtain the following picture:

—a -8 -8

Figure 3.3: A5 Root system.

4. Tf we start with two roots o and 3 in R? such that ||3]| = v/2||a|| and that the
angle between them is 37/4 and apply the same steps as in the previous case

we obtain the root system called B, root system. See Figure [3.4]

5. Another important root system, called (G5, is obtained by starting with the two

roots o and /3 in R? such that ||3|| = v/3| || and that the angle between them
is 57 /6. See Figure
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B a+p 20+ B

Figure 3.4: B, Root system

3a+ 20

Jé] a+p 200+ 3a+

—3a -4 —2a -4 —a—pf —p

—3a — 20

Figure 3.5: G Root system

3.3 More about Root Systems

Definition 3.14. Let ® be a root system in a Euclidean space E. A subset B of ® is

called a base if the following two conditions are satisfied:

(Bl) B is a basis of E,

(B2) Each root B can be written as B = > ko« , a € B with integer coefficients ki,

all nonnegative or all nonpositive.



The roots in B are called simple roots, and the reflections s,(« € B) are called

simple reflections. Moreover the cardinality of B is called the rank of P.

We will now introduce the bases of the root systems A,, By and G5 according to the
choice of Humphreys in [6]]. Throughout the following example let {e1, e, e3} be the

orthonormal basis of R3.

Example 3.15.

1. In the case of As, basis elements are oy = €1 — €s, (p = €9 — €3, and

o = { + al,iag,j:(oq + 0./2)}.

2. In the case of Bs, basis elements are oy = €1 — €3, ap = €3, and

b = { + &1,:‘:0{2, :l:(CYl + 062), :I:(Oél + 20&2)}.

3. In the case of G, basis elements are oy = e — €, g = —2¢e1 + €5 + e3, and

= { £ ay, tay, £(og + a), £(201 + @), £(3a1 + o), £(3ay + 2a2) }.

Since the expression for 3 in condition (B2) is unique, we may define a partial order
>on ®. If B = (a;)1<i<n is a base of @, then for vy, n € ® we say v > p if and only if
~v — w 1s a linear combination of the base elements «; with positive coefficients. This

partial order will allow us to define the lattices of coroots and fundamental weights.

Definition 3.16. Let ¢ be a root system. For each o € ®, we have the coroot

VoL 2a

(o, )

The set of coroots @V = {a" : & € ®} forms a root system in E and called the dual

of ®.

Definition 3.17. Let ® be a root system with base B = {1, s, ..., a, }. Then ® has
abase BY = {af, ..., }. The set Q(®Y) := Zay ® Zay @ - - - @ Za,) together
with the partial order > is called the coroot lattice of P.

The importance of the coroot lattice appears in the following definition:
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Definition 3.18. The set P(®) = {z € E : (x,s) € Z forall s € Q(PV)} to-
gether with the partial order > is called the weight lattice of ® and it has generators

w1, Wa, ..., Wy, called the fundamental weights defined by
(wj, ) = dji

Example 3.19. In the following examples we will find coroots and fundamental weights

of the root systems As, By and Go respectively.

1. Working with the base given in Example [3.15 and solving the system of equa-

tions (wj, o)) = ;1. gives that

af = a1, ay = ag, and wy; = (2/3)a; + (1/3)ag, we = (1/3)a; + (2/3)as.

Figure 3.6: Fundamental weights of As.

2. Working with the base given in Example and solving the system of equa-

tions (wj, o)) = d;i, gives that
af = ay, ay =209 and w; = a1 + ag, we = (1/2)ay + as.
3. Working with the base given in Example and solving the system of equa-

tions (wj, o)) = ;1. gives that

af = ay, ay = (1/3)ay and w; = 2ay + ag, Wy = 3y + 2.

While finding fundamental weights of the root systems above we see that, for example

in the case A,,
w1 = (2/3)0&1 + (1/3)062 and Wy = (1/3)0&1 + (2/3)0[2
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Figure 3.7: Fundamental weights of B,.

Apart from the explicit calculations, there is a reason behind this. Observe that in

terms of matrices these equalities can be written as

2/3 1/3 a o w1 2 -1 w1 (05}
1/3 2/3 (0%} W9 -1 2 [03)) (6%)]

and the matrix on the right hand side has a special name and will play an important

role in our further discussions.

Definition 3.20. Let ® be a root system and let B = {ay, o, ..., o, } be an ordered
base of . The matrix [(o;, ;)] is called the Cartan matrix of ®, where (o, a;) is as

it is defined in condition 4 of Definition

Observe that each entry (o, a;) of the Cartan matrix is an integer and these entries
are called the Cartan integers. As we have seen, the Cartan matrix transforms the

fundamental weights into the simple roots.

In the next example, we will give the Cartan matrices of rank 2 root systems. How-
ever, there is a point that we need to be careful about. The Cartan matrix depends on
the choice of B, the chosen ordering on B and it also depends on the lengths of the

roots in B. The notion of Dynkin diagram is used to overcome this difficulty.

Definition 3.21. Let O be a root system and let B = {ay, aa, ..., ay, } be a base of P.

A Dynkin diagram of a root system ® is a graph having the following properties:
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1. The vertices are labeled by the indices of the basis elements of ®.

2. Between the vertices, labeled by i and j, there are (;, o;)-(a;, oy) € {0,1,2,3}

edges.

3. If a; and o have different lengths and are not orthogonal, there is an arrow

pointing from the longer root to the shorter root.

Example 3.22. As a tradition, Dynkin diagrams of root systems Ay, By and G4 are

given as follows:

A, o0—o0
1 2
Bs - O—=o0
1 2
Gy : %{2)

Example 3.23. Let C'(®) denotes the Cartan matrix of the root system ®. According
to the Dynkin diagrams in Example[3.22] we have

2 -1 2 -2 2 -1
C(As) = , C(Bo) = , C(Ge) =
1 2 -1 2 -3 2

There is one more notion we will introduce related to the root systems.

Definition 3.24. The hyperplanes H,, (« € ®) partition E into finitely many regions.
The connected components of E \ | J H, are called the (open) Weyl chambers of E.

Definition 3.25. The fundamental Weyl chamber associated to a base B is the set
C:={zreE: (r,a) >0 forall o € B}.

The closure of the fundamental Weyl chamber
C={r€E:(z,a) >0 forall a € B}

is called the fundamental region of ®.
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Example 3.26. In Figure 3.8|the shaded region is the fundamental Weyl chamber of

A, associated to the base B = {ay, as}.

a7

Figure 3.8: Fundamental Weyl Chamber of As.

3.4 Weyl Group of a Root System

Definition 3.27. Let ® be a root system in E. The subgroup W of GL(E) generated
by the reflections s, where o € ® is called the Weyl group of .

Since the reflection s, leaves @ invariant, we can say that ¥ permutes the elements
of ¢ and since P is finite we can identify 1 with a subgroup of the symmetric group

on ®. In particular the Weyl group W is finite.

Proposition 3.28. Let B be a base of a root system ®. Then the Weyl group of ®,
W (®), is generated by the simple reflections.

Proof. See [6, Section 10.3] ]

Example 3.29. In this example, we will give the Weyl groups of rank 2 root systems.

1. &4, = {+a}. We can take By, = {a} as the set of simple roots. Therefore
W (A1) = (sa). Since s2 is the identity reflection W (A;) = (s,) ~ Zs. Hence
W(Al X Al) = ZQ X ZQ.
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2. &y, = {£a,£5,£(a+ B)}. We can take Ba, = {«, 5} as the set of simple
roots. Therefore W (As) = <sa, 35>. We also observe the following representa-

tion for W(As).

W (As) = {50,551 (5a)” = (s5)> = (Sa 0 53)° =1} = S3 ~ Ds.

Figure 3.9: Weyl group of A is the symmetry group of an equilateral triangle.

3. &p, = {£o,£5, £(a+ B), £(2a+ B)}. We can take Bp, = {«, B} as the set
of simple roots. Therefore W (Bs) = (Sq, S3). Moreover

W(Bz) = {a,55 : (5a)” = (s8)° = (50 0 85)" = 1} = Dy
symmetry group of the square.

4. g, = {xa,£0,£(a + B), £(2a + B), £(3a + B), (3 + 20) }. If we take
Bg, = {a, B} to be the set of simple roots, then W (G3) = (Sa, Sp)-

W(Ga) = {5085 ¢ (50)> = (55)? = (50 0 55)° = 1} = Ds

symmetry group of the hexagon.

Let ® be a rank n root system with the base B = {«ay, ..., a,, }, and let P(P) be lattice
of fundamental weights with base {wj, ..., w, }. By Equation we have a natural
action of W (®) on P(®P) given by

2(w;), ai)

(on o) (3.4)

Sai(wj) = Wi —
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We will be interested in finding the orbits of fundamental weights under the action of

the Weyl group. Let us denote the orbits of w; and w- by ¢; and ¢, respectively.

Example 3.30 (» = A,). By using Equation we have

o1 = {w~w1:w€ W(Al)}

— {w, —w1}.

Example 3.31 (P = A,). By using Equation[3.4] we have

01 = {w-w1:w€ W(Ag)}

= {wl, —Wg, —W1 + (,Ug}.

Gy = {w-wg:we W(A2)}

= {w2, —Wp, Wi — WQ}'

Example 3.32 (O = B,). By using Equation we have

= {w-wl cw E W(Bg)}

= {Wh —Wwi, w1 — 2we, —w1 + 2w2}.

Py = {w-wgzw GW(BZ)}

= {w27 —W2, W1 — Wy, —W1 + w?}'

Example 3.33 ( = G5). By using Equation we have

o1 = {w-w1 cw E W(Gg)}

= {Wh —W1, W1 — W, —W1 + Wa, 2w — wa, —2w +W2}'

Oy = {w-wz:we W(Gg)}

= {WQ, —Wa, 3&)1 — Wo, —3&)1 + Wa, 3&]1 - 2&)2, —3W1 + 2&]2}.
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If the rank of the underlying root system increases, then our calculations will be more
challenging. Therefore we will try to understand the action of the Weyl group of a
root system on the lattice of fundamental weights by matrix multiplication. To do

this, we will see the Weyl group of a root system as a subgroup of a matrix group.

First of all, we know that if ® is a root system with base B = {ay, ..., a;, }, then &V
is generated by BY = {a7, ..., a)/}. Moreover the Weyl group of ®" is isomorphic to
the Weyl group of ®. Therefore generators of the Weyl group of a root system can be
considered as the matrix representation of s,, with respect to the base of the coroots
where 1 = 1,2, ..., n. To find the matrix representation of s,, with respect to the base
of the coroots, we will use the fact that the lattice P(®) and " are dual to each other

in the sense that (w;, o) = J;x. This argument allows us to see that

[Sadpo oy = [50) ooy (3.5

{wiyeo,wn}
‘We know that

2(z, @) v 2a

9

Sq(x) =1 — and (wj, )) = .

(o, @) (o, a)

By using these definitions algebraically we obtain
Say; (Cdj) = Ww; — 5ijozi. (36)

Then Equation [3.6] gives us that

w; ifj #£1i
So, (w)) = ’ (3.7)

At this point, we need to express «; in terms of fundamental weights. We will do this
by using the Cartan matrix. Since the Cartan matrix expresses the change of basis
from fundamental weights to the simple roots we have

n

Z <O[Z‘7 O[j> Wi = Q4. (38)

Jj=1

By using Equations [3.5] and[3.8 we get
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[ 0 0 0 |
0 1 0 0
[Sai]{a}/,...,aX} =
—<CYZ‘7 CY1> —<Oéz‘, 042> 1— <04i, Oéi> —<Oéi> Oén>
i 0 0 0 1 |

Moreover we see that

[Sa:] (aVoayy = In— i"row of the Cartan matrix. (3.9)
Vo)

Using this argument, we can identify each generator of the Weyl group with a matrix

with integer entries. We also know that the Weyl group is generated by s, therefore

if w € W(®), then we have w = sf! o--- o sh» where each k; € Z. Since each s,, is

linear, an arbitrary element w € W (®) can be identified with the matrix 7}, where

kn

k1
Tw = ([3011] {aY""’a¥}> . ([San] {aYv"'aa¥}> . (310)

This argument allows us to identify the Weyl group of a root system with a subgroup

of invertible matrices with integer entries. More precisely, the map

o: W — GL,(Z)

w — Ty,

is a group homomorphism. Moreover if T, = I,, for a w € W, then this means w
fixes the coroots. Then it must fix the roots as well. Hence w must be the identity
element of W. Thus the kernel of ¢ contains only the identity element. Then by the

first isomorphism theorem Weyl group is isomorphic to a subgroup of GL,,(Z).
We have
w - wj = w; -1,

where the operation on the left hand side is the action of W on P(®) given in Equation
[3.4] and the operation on the right hand side is a matrix multiplication for which w;

is a row vector for the basis {w;, ...w,} whose j* component is 1, and T}, is as it is

given in Equation
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Example 3.34 (® = A,). By using Equation[3.9] we find the generators and hence

-1 1 1 0

Wid) 0 1 1 -1

12

1 1] |-1 1 o —1| o =1| |1 o] |1 o
10l o 1| -1 o 1 —1| o 1| |1 =1

Example 3.35 (¢ = B,). By using Equation we find the generators and hence

—1 2 1 o
W (By) ~ ( : )
o 1| |1 =1
I B I - S B —1 2
—1 1] =1 1o =1|"|o 1

“1 1| |1 o0
W(GQ) = < ) >

0 1|3 -1

2 1| |=2 1| |=1 o] [=1 1| |=1 o 11

3 11 =3 2| |-3 1| |-3 2| o =1l |0 1

1 =1 |1 ol |1 =1 [t o |2 =1] |2 =1
0 —1] 1o 1] 13 =2 |3 =1] |3 —2| |3 -1
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CHAPTER 4

GENERALIZED CHEBYSHEYV POLYNOMIALS

In this chapter, in section 4.1, we will follow [1]] and review the exponential invari-
ants of Bourbaki. We will prove that the subalgebra of invariant elements under the
action of the Weyl group on lattice of fundamental weights is isomorphic to a certain
polynomial algebra. In section 4.2, we will follow [5] and introduce the concept of
the generalized cosine function. We will also compute the generalized cosine func-
tion of the rank 2 root systems. In the last section 4.3, we give several examples of

generalized Chebyshev polynomials from [14].

4.1 Exponential Invariants

Let A be a commutative ring with a unit element and let P be a free Z-module of
finite rank /. We denote by A[P] the group algebra of the additive group of P over A.
For any p € P, denote by e” the corresponding element of A[P]. Then the elements
(€P)pep form a basis of the A-module A[P], and for any p,p’ € P, we have

/ / _ —
elel = el (P)t=eP, & =1.

Example 4.1. Let © be a root system of rank n in a Euclidean space E. The lattice
P(®) is a free Z-module of rank n with basis consisting of the fundamental weights.
The group algebra Z[P(®)| is free Z-module with basis (e?)pcp(a) and consists of the

elements of the form

with x,, € Z.
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Definition 4.2. Letrx = Y x,eP be an element of Z|P(®)]. The set S of p € P(®)
pEP(P)
such that x,, # 0 is called the support of x and the set X of maximal elements of S is

called the maximal support of x. A term x,€? is then called a maximal term of x.

Here, maximal elements are determined with respect to the partial order > . That is if
p,p € P(®), p > p'if and only if p — p/ is a linear combination of the basis elements

a; with positive coefficients.

Example 4.3. Consider the root system A, and the action of its Weyl group W on the
lattice P(As). We found in Example m that the orbit of w is given by

$1 = {w1, —ws, —wy + ws}.

Now consider the characteristic function x4, : P(As) — R defined by

1ifpeo

0 if p & ¢y

Xei (P) =

If we take the element x = Y x4, (p)e? of Z[P(Ay)] then we see that support S
pEP(A2)
of x is equal to the orbit ¢,. Moreover if we write the elements of S in terms of the

simple roots oy and s we get

S={(2/3)a1 + (1/3)aa, —(1/3)c1 — (2/3)cva, —(1/3)c1 + (1/3) 2 }.

Therefore the only maximal element is (2/3)a; + (1/3)as = wy. Hence X = {w;} is
the maximal support of x. This tells us that X, (w1)e** = ! is the unique maximal

term of x.

Lemma 4.4. Let v € Z[P(®)] and let (x,e"),ex be the family of maximal terms of
x. Let ¢ € P(®) and let y € Z[P(®D)| be such that €9 is the unique maximal term of

y. Then the family of maximal terms of xy is (z,e?79) e x.

Proof. We will give the idea of the proof. Let z = ) z,e?,y = > y.e" and
pEP(P) reP(P)
xy = Y. ze'. Since e? is the unique maximal term of y, r < ¢ for all r € P(P)
teP(®)
such that y, # 0 and z; = ), z,y,. Then it is shown that X + ¢ is the maximal
t=p+r
support of xy. For details see Bourbaki [1}, p.195]. [
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Now let ® be a root system with base B = (a;)1<;<; and C be its fundamental region.
Then we see that the elements of P(®) N C can be written uniquely in the form

niwy + - -+ + nyw; where n; € N foreach: =1,2,...,1.

We have two important lemmas about the set P(®) N C.

Lemma 4.5. Every orbit of W in P(®) meets P(®) N C in exactly one point.

Proof. See [1, p.166, Theorem 2 (i1)] L]
Example 4.6. We found in Example that the orbit of w; is given by
¢1 = {w1, —wa2, —w1 +ws}.

As we see in Figure the orbit ¢, meets P(Ay) N C in exactly one point.

Figure 4.1: Orbit of w; meets P(A;) N C in w; only.

Lemma 4.7. If p € P(®) N C then p > w(p) for all w € W.

Proof. See [1, p.171, Proposition 18] [

Definition 4.8. Let x = ) x,e” be an arbitrary element of Z[P(®)]. Then x is
pEP(®)
said to be invariant under W if x.,(,y = x,, for all p € P(®) and for all w € W.

Example 4.9. Let O be a root system and p € P(®P). Let us denote by W - p the orbit

of p under the action of W. Consider the element S(e?) = > e%. Then we have
qeW-p

33



S(ew(p)): Z el = Z el = S(eP).

qgeW w(p) qeW -p

Therefore the elements S(e’) for p € P(P) are invariant under the action of W.
Moreover if p € P(®)NC then by Lemma the term e? will be the unique maximal
term of S(eP).

Proposition 4.10. Let Z[P(®)|" be the subalgebra of Z[P(®)| consisting of the
elements invariant under W. Then S(e?) for p € P(®) N C form a basis of the
Z-module Z|P(®)]".

Proof. We know by Lemma every orbit of W in P(®) meets P(®) N C in exactly

one point. It follows from here that if x = ) x,e? is an arbitrary element of
PeP(P)
ZP(®)V thenz = Y  z,5(eP). O
peP(®)NC

Observe that for p € P(®) N C, S(eP) is an element of Z[P(®)]" with unique
maximal term e”, and we have seen that the family (S(€”)) cp(g)nc forms a basis for

Z[P(®)]". More generally, we have

Proposition 4.11. For any p € P(®) N C, let x,, be an element of Z[P(®)|" with
unique maximal term eP. Then the family (xp>pe7>(<1>)m€ is a basis of the Z-module

Z[P(®)]".

Proof. See [1, p.199, Proposition 3] O]

Theorem 4.12. Let wy, ..., w; be the fundamental weights corresponding to the cham-
ber C, and for 1 < i < I, let x; be an element of Z[P(®)|V with e“i as its unique

maximal term. Let

¢ Z[X1, ..., X)] = Z[P(®)]V

be the homomorphism from the polynomial algebra Z[X1, ..., X)) to Z|P(®)|V that

takes X; to x;. Then, the map ¢ is an isomorphism.
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Proof. Consider the monomial X" --- X;". Then

(X7 X)) = p(X77) - (X))

— N1 ny
_xl ---:L‘l .

We know by assumption that each of z; for 1 < i < [ is an element of Z[P(®)]"

with e as its unique maximal term. By Lemma [4.4] the maximal term of the image
ot a)t is em@it el We also know that the elements of P(®) N C are of the
form njwy + - - - +nyw;. This means the image x7" - - - x;" is an element of the form x,,
with unique maximal term e? for some p € P(®) N C. Therefore by Proposition m

the elements 27" - - - " form a basis for Z[P(®)]". Hence ¢ is an isomorphism. [

Example 4.13. Let wy, ..., w; be the fundamental weights of a root system ® corre-

sponding to the chamber C. For each 1 < i < [, the element

2«

qeW w;
has e“* as its unique maximal term and it is an element of Z|P(®)]"V. Then the map

¢ Z[X1, ..., X;] = Z[P(®)"
X; — S(e*)

is an isomorphism.

4.2 Generalized Cosine Function

Hoffmann and Withers [5] use notions from analysis to study the polynomials coming
from exponential invariants of Bourbaki. In this section, we recall their treatment and

give some examples.

Definition 4.14. Let f : P(®) — R have finite support and be invariant under W.
Then the Fourier transform of f is defined to be

Z f 727m(r x)

reP(®)

35



Let ¥ denote the set of functions f : P(®) — R with finite support and invariant
under W. Then W forms a vector space and a natural basis for this space is the set of

characteristic functions
lifxe ¢

0ifx¢ ¢

Xo(X) =

where ¢ is the orbit of some point in P(®) under the action of the Weyl group W.

Definition 4.15. For k = 1,2, , ..., n let ¢i be the orbit generated by the fundamental
weight wy, under the action of the Weyl group and let yy, be the Fourier transform of

X¢,- The generalized cosine function h : R" — R" associated with the Weyl group
W is defined to be

h(x) = (y1(x), y2(x), -, yn(x)).

In the following examples we will calculate the generalized cosine function for the

root systems of Lie algebras A;, Ay, By and Gb.

Example 4.16 (P = A;). In Example[3.30we found the orbit of w, to be

¢ = {Wla —wl}-
Therefore

n (X) _ Z Xén (r)e—Qm(r,x) _ e—27rz'(—w1,x) + 6—27ri(w1,x) _ 627rz'u1 + e—27riu1
reP(P)

where x = uyay . From here we obtain

h(x) = y1(x) = ¥ 4 ™2™ = 2 cos 27u.

Example 4.17 (¢ = A,). In Example we found the orbits of the fundamental

weights as

¢ = {w1, —wa, —w1 + wa},

P2 = {Wz, —Wp, W1 — WQ}-
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Therefore we have

yi(x) = ﬁ(Xd)l)(X) = Z X1 (r>€_2m(r’X)
reP(®)

— e—27ri(w1,x) 4 e—27ri(—w2,x) + e—27ri(—w1+w2,x)

_ 6—27riu1 4 eQTriug 4 627ri(u1—uz)7

(%) = F (o) (%) = ) Xan(r)e 2T

reP(d)

— e—27ri(w2,x) 4 e—27ri(—w1,x) + e—27ri(w1—w2,x)

— e—27riu2 + e27riu1 + e—?ﬂ'i(ul—ug)

where x = uja + usary . Hence
h(x) = (y1(%), y2(x)).

Example 4.18 (P = B,). In Example [3.32] we found the orbits of the fundamental

weights as

o1 = {wr, —wi, w1 — 2w, —wy + 2wa},

o = {ws, —wa, w1 — W, —wy + wWa}.

Therefore we have

yi(x) = ﬁ(Xm)(X) = Z X1 (r)€_2m‘(r7x>
reP(®)

— e—27ri(w1,x) 4 e—27ri(—w1,x) + e—27ri(w1—2w2,x) 4 e—27ri(—w1+2w2,x)

— e—27riu1 + 627riu1 4 e—27ri(u1—2ug) + 627ri(u1—2u2)’

ya(x) = ﬁ(x%)(X) - Z X2 (r)€_2m‘(r7X)
reP(d)

 pmmilun) | pmiwax) | g=2miler—wax) 4 o=2mi(—w1 )
_ 2wz | 2miup 4 o—2mi(ui—uz) |y o2mi(u1—uz)
where x = ujay + usry . Hence
h(x) = (y1(x), y2(x)).
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Example 4.19 (¢ = G5). In Example we found the orbits of the fundamental

weights as

¢ = {Wla —W1, W1 — Wa, —W1 + Wa, 2wy — Wa, —2w +w2},

Po = {wg, —Wa, 3w — Wy, —3wq + wa, 3w — 2wy, —3w1 + 2w2}.

Therefore we have

yl(x) = y(an)(X) = Z X1 (r)€72m'(r7X)
reP(®)

— 6727ri(w1,x) + 672m'(7w1,x) + 6727ri(w17w2,x)
_{_6727ri(7w1+w2,x) + 6727ri(2w17w2,x) + 6727ri(72w1+w2,x)

_ 6—27riu1 +€27riu1 _|_€—27ri(u1—u2) +e27ri(u1—u2) +e—27ri(2u1—u2) +e27ri(2u1—u2)

Y

(%) = F(Xga)(X) = D Xgu(r)e 77

reP(d)

— 672m’(w2,x) + 6727ri(7w2)x + 6727Ti(3w17w2,x)
_|_€—2m'(—3w1+w2,x) + e—27ri(3w1—2w2,x) + 6—27ri(—3w1+2w2,x)

— e—27riug+€27riu2_|_e—27ri(3u1—ug)+e27ri(3u1—u2)+€—27ri(3u1—2u2)+€27ri(3u1—2ug)'
where X = uyay + uscwy . Hence

h(x) = (y1(x), ya(x)).

Now we will see a very important theorem that will allow us to understand where
the definition of generalized Chebyshev polynomials comes from. First, we need the

following lemma:

Lemma 4.20. If f : P(®) — R has finite support and is invariant under W, then

F () has also finite support and is invariant as a function of x under W.

Theorem 4.21. For j = 1,2,...,n let y; be the Fourier transform of x4,. Then for
any [ € U, Z(f) can be written as a polynomial iny = (y1, ..., Yn)-
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Proof. We will see that this theorem is same as Theorem [{.12] written in different
notations. First, we know that the characteristic function x4, : P(®) — R has finite
support and it is invariant under W. Therefore y,(x) € ¥ by Lemma Consider
the map

o L[Xy, .., X, ] > U
Xj = y;

then we have

n (X) _ y(X@-)(X) _ Z X%( —27rz(rx Z e 2mi(rx) Z e 2mir(x) .1

reP(®) reg; reg;

where the last equality follows from the fact that each r € ¢; is a Z-linear combina-
tion of fundamental weights and each fundamental weight w; is a functional defined
by w;j(e)) = d;,. Moreover, w;(x) = (wj,x) where x is written in coroot basis.

Therefore each r is of the form r(x) = (r, x). Since Equation [4.1]is true for every x,

—2mir
Y;i = E €

reg;

Observe that y; is an element of ¥ with e?™i as its unique maximal term. Therefore

¢ is an isomorphism by Theorem[4.12] O
Theorem 4.22. The function h(kx) is a polynomial in h(x) for integer k > 1.

Proof. To see that h(kx) is a polynomial in h(x) for integer k£ > 1, we need to show

that each component y;(kx) of h(kx) is a polynomial in i(x). Indeed

W)= 3 xo e = 3 ) = 2 (7))

reP(®) reP(®

Xg,(x/k) if v/k € P(®)

where f(r) =
0 otherwise
Since f € ¥, by Theorem y;j(kx) is a polynomial in h(x). O

The fact that h(kx) is a polynomial in h(x) yields to the following definition:
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Definition 4.23. For integer k > 1, the generalized Chebyshev polynomials (or
folding polynomials) associated with the Lie algebra g are the polynomial functions

ng : R" — R" defined by

PF(h(x)) = h(kx).

g

It follows from this definition that P}' = P} o P}. The coefficients of these polyno-
mials are integers because each component of ng is a polynomial in y; with integer

coefficients for each i = 1,2, ..., n by Theorem{.21]

4.3 Examples of Generalized Chebyshev Polynomials

In this section, we will see several examples of generalized Chebyshev polynomials.
We will calculate the ones associated with the root systems As, B, and G5 for k = 2.

For simplicity, we will use the notation Ay, := P%_, By, := P}, , and G, := P§._.

Example 4.24. We found in Example that the generalized cosine function asso-
ciated with the Lie algebra A, is given by

h(x) = (y1(x), y2(x))

. (6727mu1 + 627rzu2 + €2m(u17u2)76727rw2 + €2mu1 + 6727rz(u17u2))

where x = uyay + ugewy. This gives us that

h(2x) = (y1(2x), y2(2x))

I

_ (6—4mu1 +647rzu2 +64Wz(u1—u2) 6—47rzu2 +e47rzu1 +€—47rz(u1—u2))

= (11 (x)? = 2p2(x), y2(x)* — 251 (x)) -

Therefore the generalized Chebyshev polynomial of Ay for k = 2 determined from
the condition As(h(x)) = h(2x) is given by

As(z,y) = (2% — 2y,y° — 2x).
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Note that the first few generalized Chebyshev polynomials of A, are given by

Ao(z,y) = (3,3),

Ai(z,y) = (2,9),

Ag(z,y) = (2% = 2y,y° — 2x),

As(z,y) = (2° — 320y + 3,y — 32y + 3),

Ag(z,y) = (2* — 422y + 292 + 4o, y* — 492 + 227 + 4y),

As(z,y) = (2° — 52y + 5ay® + 522 — 5y, y° — by’x + bya? + 5y — 5x).

Example 4.25. We know from Example that the generalized cosine function

associated with the Lie algebra Bs is given by

h(x) = (y1(x), y2(x))
where
yi(x) = e~2mi g i | p=dmiln—2uz) | 2miln—2uz)
ya(x) = e 2 | i | pm2milui—ua) | 2mi(un—u2)
and x = uya + usavy . Then
h(2x) = (11(2x), 2(2x))

where

n (2X> _ 6—47rzu1 + 647rzul + e—47r7,(u1—2u2) + 647rz(u1—2u2)7

y2(2X> — e—47riug + 647ri'u,2 + 6—47ri(u1—u2) _|_ 647r2'(u1—u2)‘
Thus we get
h(2x) = (11(2x), 32(2x))

= (11(x)? = 2(x)” + 41 (x) + 4, 12(x)* — 2y1(x) — 4).

Therefore the generalized Chebyshev polynomial associated with B, for k = 2 deter-
mined from the condition By(h(x)) = h(2x) is given by

B2(x7y> = (12 - 2y2 +4ZE +47y2 —2r — 4)
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Note also that the first few Chebyshev polynomials of B, are given by

Bo(z,y) = (4,4),

Bi(z,y) = (2,9),

By(x,y) = (22 — 2y* + 4 + 4,y* — 22 — 4),

Bs(x,y) = (23 — 3zy* + 622 + 9z, y> — 3zy — 3y),

By(z,y) = (x* — 422y? + 2y* + 82° — 8xy? + 202? — 8y? + 167 + 4,

yt — day? — 4y? + 222 + 8x + 4),
Bs(z,y) = (2° — 523y? + Say* + 102* — 2022y? + 352° — 2522 + 5022 + 25z,
y® — by — 5y® + 5’y + 15xy + 5y).

Example 4.26. We know from Example that the generalized cosine function

associated with the root system G is given by

h(x) = (y1(x), y2(x))
where x = ujay + ugcwy and
yi(x) = =2 | gmiun | o= 2milni—ua) 4 2mi(ui—uz) | o-2mi2ui—ua) 4 o2mil(2u1—ua)
Yo (X) = e~ 2miua y 2miua | o= 2miBui—u2) 4 2mi(3u1—uz) | o= 2mi(3u1—2u2) | 2mi(u1—2u),

Then h(2x) = (y1(2x), y2(2x)) where
y1(2x) = e~4minn e g o—dmi(ui—uz) 4 pdmitur—uz) 4 o—dmi2ui—uz) | pdmi(2ur—us)
Yo (2x) = e~ dmiuz | pdmive 4 o—dmi(3ur—uz) 4 odmi(3ui—u2) | o —dmil3u1—2uz) 4 pdmi(3u1—2us)
When we write each component of h(2x) in terms of y, and y, we get
h(2x) = (Y — 2y1 — 2y2 — 6,95 — 245 + 6yry2 + 10y + 18y; + 18).
Therefore the generalized Chebyshev polynomial of Gy for k = 2 determined from

the condition Go(h(x)) = h(2x) is given by

Go(z,y) = (22 — 20 — 2y — 6,9* — 22° + 6y + 10y + 18z + 18).

Note that the first few generalized Chebyshev polynomials of GG are given by
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Go(z,y) = (6,6),
Gi(z,y) = (z,y),
Go(z,y) = (2% — 20 — 2y — 6,y* — 22 + 6zy + 10y + 18z + 18),
Gs(z,y) = (2°—3zy—92—6y—12, y*—32°y+92y* —62°+18y°+452y+63y+542+60),
Gu(z,y) = (2* — 42%y — 1022 — 4oy + 29> — 8z + 8y + 6,
Y4225 — 4x3y? — 1224y 4+ 1224y + 1223 + 1822y — 2823y — 362* 42413
+1202y? + 10822y — 4023 4+ 134y + 3722y + 1622 + 280y + 3602+ 198),
Gs(x,y) = (2° — baxdy — 152% — 5Py + Hxy? — 102 + 352y + 10y* + 552 + 50y + 60,
y° + 525y — 523y3 — 302ty + 1028 + 152y* + 452213 — 6523y% — 1502y
304" + 24024% + 360222 — 20523y — 1802 + 25543 + 12002y>

194522y — 19023 + 92042 + 24152y + 81022 + 1495y + 1710z + 900).
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CHAPTER 5

COEFFICIENTS OF FOLDING POLYNOMIALS ATTACHED TO LIE
ALGEBRAS OF RANK TWO

In this chapter, by using Waring’s formula we will find a closed formula for general-
ized Chebyshev polynomials attached to Lie algebras of rank 2. We follow Cox [3]] for
the basic definitions related to multivariate polynomials. We recall Waring’s formula
from [9] which will be a key tool in finding the closed forms of these polynomials.
We also explain why these polynomials satisfy the recurrence relations given in [14]

and prove some remarkable properties of their coefficients.
Definition 5.1. A monomial in 1, x, ..., z,, is a product of the form " - £ - . .z
where all the exponents dy,ds, ...,d, are nonnegative integers. The total degree of

this monomial is d; + dy + - - - + d,,.

We can simplify the notation for monomials as follows:

Let d = (dy, ..., d,) be an n-tuple of nonnegative integers. Then we set

d __ _.di do d

We also let |d| = dy + dy + - - - + d,, denote the total degree of the monomial z¢.

Definition 5.2. Let F be a field and let f = > kgx?, kg € F be a polynomial in
d

F[x1,...,x,] where the sum is over a finite number of n-tuples d = (ds, ..., d,). Then

1. kg is called the coefficient of the monomial x°.

2. The total degree of [ # 0, denoted deq(f), is the maximum |d| such that the

coefficient k4 is nonzero.
3. The multidegree of f is multideg(f) = max(d € Z% : kg # 0).
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Definition 5.3. Let R be a commutative ring with identity and let R[x1, s, ..., T, be
the ring of polynomials in n variables. A polynomial f € R|xy,xa, ..., x| is called
symmetric if f(x;,, Tiy, ..., Ti,) = f(x1, T2, ..., x,) for any permutation iy, s, ..., i, of

the integers 1,2, ...,n.

Example 5.4. Let © be an indeterminate over R|x1,xs, ..., x,| and let F be the poly-

nomial
Fz)= (v —x)(x —22) -+ (2 — xp)
then
F(r)=2" — 02" ' + o™ + - + (=1)"0,
where
o = op(T1, T, ..., T,) = Z Tj Ty - - Ty
11 <t2<...<ig

The polynomials oy, for 1 < k < n serve as the most classical examples of symmetric

polynomials. They are called the elementary symmetric polynomials.

Example 5.5. Another important example of symmetric polynomials are the k™" power

sums defined by

n
Sk = Sk(x1, T, ..., Tp) = E z¥ foreach k=0,1,2,...,n.

=1

There are two important relations between the elementary symmetric polynomials
and k" power sums. The first relation will allow us to explain where the recurrence
relations satisfied by generalized Chebyshev polynomials come from. On the other
hand, the second relation, namely Waring’s formula, will be a key tool in finding the

closed forms of these polynomials.

Theorem 5.6 (Newton’s Identity). Let x4, o, ..., z,, be variables and o, ..., 0, and
S0, ..., Sp be the elementary symmetric polynomials and power sum polynomials in

these variables respectively. Then

Sp — 01Sp—1 + 028p_o + -+ (—=1)"0,50 = 0.
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Proof. First of all, we know by Example [5.4] that
(x—z)(—29) -+ (x — ) = 2" — 02" 002" 2 -+ (—1)"0,.
If we substitute x = z; for each 7 = 1, 2, ..., n we obtain

-1 —2
]y — o) ol -+ (—1)"0, =

-1 —2
xy —oxy 4oy C 4+ (=1)"0, =

o' — ot o P (=10, =
If we add these equalities we get
(42— )+ (=D 0,n = 0.
This can be written as
Sp— 018p-1 + 0282+ -+ (—=1)"0,80 = 0.

]

We will use Theorem [5.6] to explain the recurrence relations satisfied by the general-

ized Chebyshev polynomials.

The second relation between the k* power sums and the elementary symmetric poly-

nomials arises from the following theorem:

Theorem 5.7 (Fundamental Theorem of Symmetric Polynomials). Every symmetric
polynomial in R[x1, x, ..., x,] can be written uniquely as a polynomial in the elemen-

tary symmetric polynomials 01,03, ..., 0y,.

As an immediate corollary of this theorem, we see that the k" power sums can be
written as a polynomial in 01,09, ...,0,. Moreover we have the following explicit

formula:

Theorem 5.8 (Waring’s Formula [9} p.30] ).

o iy i, — 1)k
sk22(—1)(’2+’4+”')<“H2+ +1i )

- - - o'il .0';2...0'271
Zl!ZQ! . 'Zn!

n

for k > 1, where the summation is extended over all n-tuples (i1, 1z, ...,1,) of non-

negative integers with iy + 2ig + 3ig + - - - + ni, = k.
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Before we pass to rank 2 examples, we will try to understand how to use Waring’s
formula with the unique rank 1 example. We will find a general formula for general-
ized Chebyshev polynomials associated with the Lie algebra A, and with the help of
this formula, we will give a relation between these polynomials and the Chebyshev

polynomials T.

5.1 Generalized Chebyshev Polynomials of A,

Recall that in Example we found that the generalized cosine function associated
to A; is given by

h(x) = 2™ 4 7™ = 2 cos 27U,
where x = uj0.

We are looking for the polynomials P% , determined from the following condition:
P (h(x)) = h(kx). (5.1)

If we compute the first few of these polynomials, we see that

h(1x) = h(x) = P} (v) =z

h(2x) = h*(x) — 2 = P} (z) = 2 — 2

h(3x) = h*(x) — 3h(x) = P3 (v) = 2° — 3

h(4x) = h'(x) — 4h*(x) + 2 = P (z) = 2* — 42° + 2

h(5x) = h®(x) — 5h%(x) + bh(x) = P}, (z) = 2° — 52° + bu.

In these calculations, we are writing s, = x'f + :E’; in terms of oy = z; + x5 and
09 = 1179 Where £; = 2™ and x5 = e~ 2™ Note that o, = 1. Therefore we can

use Waring’s formula to obtain Pﬁl for an arbitrary integer £ > 1.

Observe that when there are two indeterminates, Waring’s formula gives us that

5]

Sk —i— 1)k . i
) + a5 :Z;(—l) W(wﬂ-wz)k 2 (myma)”
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Substituting z; = > and x5 = e~ 2™ in this equation gives that

%] ‘
2miku —omikuy _ z(k” —i— 1)k 2miu —2miug \k—2i
e 1+€ 1—2(—1) W(e 1+€ 1) .

=0

Rewriting this in terms of h(x) and h(kx) gives us

5
hkx) = 3 (~1)

1=0

Using the condition [5.1| we see that

4] |
(k=1 =1k , o
Pl () =3 (-t i U (k_Qi)!)i! o

1=0

;b

(k—i—1)k

(k — 20)14! (h(x)*™*.

Therefore we obtained a general formula for Pﬁl. We can also relate these polyno-
mials with the Chebyshev Polynomials 7}. Recall that the Chebyshev polynomials
Ty(x) of the first kind are defined to be T (z) = coskf when = = cosf.

When we turn back to Equation[5.1] we see that
Pk (h(x)) = h(kx).
Substituting h(x) = 2cos2mu, in this equation, we get
Pl (2cos2muy) = 2cos2mkus.
Writing this last equality in terms of 7}, with x = cos27u;, we obtain
Pl (2z) = 2T3(x).
Finding this relation allows us to find a recurrence relation satisfied by P% .- We had
T (x) = 22T, 1(x) — T, —2(x)

forn = 2,3,... with Ty(r) = 1 and Ty(x) = . Substituting T,,(z) = 1/2P} (2z)

in this recurrence relation we eventually obtain
-2
Pi,(x) = 2Py (x) — Py ()

forn =2,3,... with P} (z) =2 and Py () = z.
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5.2 Generalized Chebyshev Polynomials of A,

We will find a general formula for Ay (x,y) for an arbitrary k. We know that these

polynomials are determined from the equation
A (h(x)) = h(kx)

where £ is the generalized cosine function of A, found in Example Recall that

it is given by
h(X) — (e—Qﬂ'iul + 627Tiug + e27ri(u1—u2)’ e—?ﬂ'iug + e27riul + 6—27ri(u1—u2)) (5.2)
where x = uja + usavy . If we consider h(kx), we will have

h(kX) — (672k7riu1 + eZkTriug + e2k7ri(u17UQ)7 ef2k7riu2 + erm'ul + ekaﬂi(ulfug))

We observe that finding Ay (x, y) is equivalent to writing y; (kx) and y2(kx) in terms
of y1(x) and y»(x) as we did in Example[#.24]for k = 2. By using the first component
of Equation if welet 2, = ™2™, g5 = e2™¥2 and 13 = > (M1742) then y, (kx)
becomes ¥ + x5 + x%. This means that we can use Theorem [5.8|to write y; (kx) in
terms of y;(x) and y»(x). If we compute the elementary symmetric polynomials in

1, xa, X3, We see that

01 = Z% = yi(x),
02 = in%‘ = yz(X),

1<J

03 = X1T2x3 = 1.

To use Waring’s formula, we need to find the nonnegative integer solutions of ¢; +
2iy+3i3 = k. If i3 = 1 and iy = j, then the triples (iy, 12, 13) = (k—27—31,,1) € N?

provide solutions for this equation. Using Waring’s formula we establish that
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Similarly, if we use the second component of Equation and let x

Ty = ¥ and x5 = e~ 2™

elementary symmetric polynomials in x1, 22, 3 gives us

o1 = ZI‘,L = yQ(X)
Oy = inxj = y1(x)

i<j

03 = X1X2X3 = 1.

Therefore we have

k=g —2i-1)k
(k — 2j — 3i)! 4]

Hence the polynomials Ay (x, y), defined by Ay (h(x)) = h(kx), are given by

.Ak(l’,y> = (fk(x7y>7gk(x7y))

where

I

[MES
[

5]
D A g k) - ak T
=0
gk<x7 y) = A(Zaja k) ' yk}—2]—3’L x?.
=0

|

fk<x7y) =

(]

— O
wla |l

— .
NE]|

o

j=

Here the coefficients A(i, j, k) are given by

k= =21k

Al 3R = D g s

(%) (1 (%))

—2Tiug
9

u—u2) we see that i, (kx) = 2% + 2% 4+ 2. Computing the

(5.3)

(5.4)

(5.5)

where only those terms occur for which £ > 3¢ + 2j. These polynomials have some

remarkable properties. For instance, they satisfy certain recurrence relation, their

coefficients are integers and they reduce to Frobenius map over a finite field with

q = p" elements for prime p. We start with explaining the recurrence relation satisfied

by these polynomials.
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Theorem 5.9. If
An(:[’ y) = (fn(ma y),gn(x,y)) )

then

fn = :Ufnfl - yfan + fnfS

In = YGn—1 — TGn—2 + Gn-3.

Proof. We know that

An(y1(x%), 42(x)) = (y1(nx), y2(nx))

where
y1(x) = x1 + x9 + T3
y1(nx) = ot + o + 2%,

Here the variables x; for « = 1,2, 3 are obtained from the first component of the
Equation[5.2] We also found that the elementary symmetric polynomials in z1, x5, 23

are given by

o1 = y1(x)
02 = Ya(x) (5.6)
g3 — 1.

We have y; ((n —j)x) = s,,_; for j = 0, 1,2, 3 where s,,_; is the (n — j)™ power sum

polynomial in variables z;, x2, x3. Recall that by Equation [5.6] we have
Sp — 01Sp—1 + 028p—o2 + -+ (—=1)"0,50 = 0.

If we substitute each o; for i = 1,2, 3 from Equation[5.6|and s,,_; = y1((n — j)x) for

7 =0,1,2, 3 in this equation, we obtain

y1(nx) —y1(x) - y1((n — 1)x) + y2(x) - y1((n — 2)x) — y1((n — 3)x) = 0.
If we use the same idea for the second component y,(nx), we get

Yo (nx) — y2(x) - y2((n — 1)x) + y1(x) - y2((n — 2)x) — ya((n — 3)x) = 0.

Then we obtain the recursive relations given in the theorem. [
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The second property is about the multidegree of these polynomials.

Theorem 5.10. multideg( Ay (z,y)) = (k, k).

Proof. We see that the total degree of each monomials in fi(x,y) is k — j — 3i from

Equation [5.3|and hence deg( fi(z,y)) = k which occurs when i = j = 0.

The same argument on Equation [5.4| gives that deg(gx(x,y)) = k. Therefore we get
multideg(Ax(z,v)) = (k, k). O

Not only the degrees of these polynomials but also their coefficients have remarkable

properties. To investigate these properties, we need the following definition.

Definition 5.11. Let kq, ko, ..., k,,, be nonnegative integers such that ki + kg + - - - +

kp = n. The multinomial coefficient is

n B n!
ki koo k) Ekilkole k!

Theorem 5.12. The multinomial coefficient can be expressed as a product of binomial

coefficients.
Proof. We have

n B n!
ki, ko, ..., km Cklky Ky

(ki + ko4 -+ k)!

kql kol - k!
_ (ki k) (kit ket k) (Rt ka4 K
(k1 + k) (ki + kot 4+ kp1)! kilko!l- - k!
_ (kA ko) (K1 A+ ko + k)l (kv + kot -+ kp)!

kilkyl (ki + ko) ksl (ki + kg + -+ k1) k!
(ki ke (Rt ket ks (Rt ket ot
Uk ks Ko '
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It follows from here that a multinomial coefficient must be an integer because it is the

product of the binomial coefficients.

This argument will allow us to show that the coefficients of generalized Chebyshev
polynomials are integers. This is previously done by Bourbaki [1]. We will give an

alternative proof that gives insight into the coefficients.

Theorem 5.13. Let k be an arbitrary nonnegative integer. Then the coefficients of

Ay (x,y) are integers.

Proof. From Equation [5.5] we see that the coefficients of Ay (x, ) are given by

(k—j—2—1k

(g k) = (07 = g

For simplicity let us put a := k — 2¢ — 35,0 := j and c := 7. Then we have
(k—j—2i—1)!-k

(k—2j — 3i)! 44!
(a+b+c—1) (a+2b+ 3c)

A(i7j> k) = (_1)j ’

1\,
= (=1 a! bl c!

_ (1 a-(a+b+c—1)! 5 b-(a+b+c—1)! 5 c-(a+b+c—1)!
== alb! c! ' alb!c! ' alb!c!
(-1 (a+b—|—c—1)!+2.(a+b+c—1)! (atb+c—1)

B (@ —1)!bl el al (b—1)!¢! alb! (¢ —1)!

= (—1>b . (m1 + 2m2 + 3m3)

where each of my, msy, m3 are multinomial coefficients given by

(a+b+c—1)
my = )
(a—1)ble!
- _(a+b+c—1)
2T al(b—1)le
(@a+b+c—1)
ms = .
alb! (c —1)!

Therefore each of the terms on the right hand side of this equation is an integer, thus

all of the coefficients of Ax(z, y) must be integers. O

The next important property of these polynomials is their behaviours on a finite field
of characteristic p. Note that Bourbaki’s integer coefficient conclusion is not enough

to obtain the following result:
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Theorem 5.14. If q is a power of a prime p then A,(x,y) = (z9,y?) (mod p).

where the coefficients A(7, 7, p) are found when k is replaced by p in Equation
We know from Theorem that the coefficients A(4, j, p) are integers. We will also

show that the expression A(i, j, p)/p is also an integer.

If A(i,7,p)/p € Q\ Z then p would divide the denominator of the expression which
is equal to A(4, j, p)/p but this is impossible since ¢ and j can take the integer values

only in the intervals [1, Lgﬂ and [1, Lgﬂ respectively. Hence each coefficient of

A, (z,y), except for the first one, is an integer multiple of p. Therefore
Ap(z,y) = (2", y7)  (mod p).
Now let ¢ = p" for some positive integer . We have

Ay(z,y) = Apr (2, )
i4p(x7y) ©---0 Ap(x7y)

o~

~~
7 times

E\(q:p,yp) 0+++0 (q:p,ypz (mod p)

T times

(x(p’“)7 y(p’“)) (mod p)

(2% y%)  (mod p).

Here the second equality follows from the property that A,,,,, = A,, o A,. O
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5.3 Generalized Chebyshev Polynomials of B,

In Example [d.18] we found that the generalized cosine function of B, is given by

h(x) = (y1(x), y2(x)) where

y1(X) — e—27riu1 + e27riu1 + 6—27ri(u1—2u2) + 627ri(u1—2u2)’ (57)

y2(X) _ 6—27riu2 + 627riu2 + e—27rz'(u1—u2) + 627ri(u1—u2). (58)

If we consider Equation[5.7]and let 2, = ™1 gy = €271 gy = = 2mit1—2u2) g\ —
e?mi(m1=2u2) “then it turns out that y; (kx) = 2% + 2§ + 2% + 2%. This means that by
Theorem 5.7, y; (kx) can be written in terms of the following elementary symmetric

polynomials in the variables 1, x5, 3, 24.

o1 = sz =11 (x),

oy = inxj = ya(x)? — 2y1(x) — 2,

1<j

03 = Z T = y1(x),

i<j<k

04 = T1X2T3%4 = 1.

To use Waring’s formula, we need to find the nonnegative integer solutions of i, +
2i9+3i3+4i4 = k. We see that the four tuples (1, 7o, i3, 74) = (k—41—35—2l,1,7,1) €

N* provide solutions for this equation. Using Waring’s formula we have

I+i (kf —3i—2j—1— 1)! -k .yk74i72j72l )
(k—4i—35 — 201! 5lql 7!

k) =333 (<) (0 — 201 —2).

If we let ©; = e 2™42 gy = 2™2 g4 = e 2mwi—u2) apd g, = e¥mi(wi—u2) py

Equation [5.§| then the corresponding elementary symmetric polynomials are given by
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01 = Z% = y2(x)
o9 = Zacixj =y1(x)+ 2
i<j

o3 = Z ;0 = Ya(X)

1<j<l

04 = X1X2X3X4 = 1.

Applying Waring’s formula to y5(kx) = x¥ + x% + 2§ + 2% yields

(k—3i—2j—1—1)!k L yhti=2-2
(k—4i—3j =201 jldl ™

k) =333 (1) (2w

Therefore the polynomials By (x,y), defined by By (h(x)) = h(kx), are given by

By(z,y) = (fr(x,y), ge(z,y)) where

15 [5] 5]

fr(z,y) = B(i,j, k1) - aF 4720720 (2 — 2 — 2)) (5.9)
=0 7=0 =0
15] [5] |5]

gi(w,y) = B(i, j, k1) -y* =272 (2 4 @), (5.10)
1=0 j=0 i=0

Here the coefficients are given by
i (B =31 =25 =11k

B(i, j,k,1) = (=1) (k — 4 — 35 — 201! 514!

(5.11)

where only those terms occur for which & > 44 + 35 + 2.

Theorem 5.15. If
Bn(x> y) = (fn($7 y)a gn(xa y))a

then
fo=2(fac1 + faos) — (V* — 22— 2) fa_o — faos

Gn = Y(gn-1+ Gn-3) — (T +2)gn—2 — Gn-24
foralln > 4.
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Proof. We know that

By (41(x), y2(x)) = (y1(nx), y2(nx))

where
y1(X) =21+ T2+ 723+ 24
y1(nx) = o + xf + af + )
where the variables x; for i = 1,2, 3, 4 are coming from Equation We also found

that the elementary symmetric polynomials in x1, x5, 3, x4 are given by

o1 = y1(x)

oy = Y5(x) — 2u1(x) — 2
03 = y1(x)

o4 =1

If we substitute these elementary symmetric polynomials and s,,_; = v ((n — j)x)

for j =0, 1,2, 3,4 in Equation [5.6|and assume that

B.(z,y) = (fulz,y), gn(z,v)),

we obtain
fn = x(fnfl + fn73) - (y2 —2r — 2>fn72 - fnf4-
Similarly we have
Yo(X) = o1 + T3 + 23 + 74

y2(nx) = ot + z + z% + )

where the variables x; for i = 1,2, 3, 4 are coming from Equation[5.8] We also found

the corresponding elementary symmetric polynomials in these variables as

o1 = ya(x)

oy = y1(x) + 2
03 = Y2(x)

oy = 1.
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Substituting these elementary symmetric polynomials and s,_; = y» ((n — j)x) for

j =0,1,2,3,4 in Equation 5.6 we obtain

Gn = Y(gn-1+ Gn-3) — (T +2)gn—2 — Gn—a-

Theorem 5.16. multideg(By(z,y)) = (k, k).

Proof. We see that the total degree of the monomials in fi.(x,y) are k — 4i — 2j by
Equation [5.9)and hence deg( fi(z,y)) = k which occurs when i = j = 0.

A similar argument on Equation[5.10[implies that the total degree of the monomials in

gr(x,y) are k — 4i — 2j — [ and deg(gx(x,y)) = k which occurs wheni = j =1 = 0.

Therefore multideg(By(x,y)) = (k, k). O

Theorem 5.17. Let k be an arbitrary nonnegative integer. Then the coefficients of

Bi.(z,y) are integers.

Proof. From Equation[5.11] we see that the coefficients of By (z,y) are given by

(k—3i—2j—1— 1)k
(k—4i—3j — 2011114l

B(ivja ka l) - (_1)l+i
These coefficients can be expressed in terms of the multinomial coefficients. For
simplicity letus put a := k — 49 — 35 — 2[,b:=[,c := j and d := 7. Then we have

(k—3i—2j—1—1)-k
(k —4i — 35 — 20)1 11 51

B<i’j7 k’ l) = (_1)l+i

pral@+b+c+d—1) (a+2b+3c+ 4d)
alblcld!

- (-1)

= (—1)b+d (m1 + 2m2 + 3m3 + 4m4)
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where each my, mo, m3 and my, is multinomial coefficient given by

(a+b+c+d—1)!

e da
(a+b+ct+d—1)
mg = )
al(b—1)!cld!
(a+b+ct+d—1)
mg = )
alb! (c—1)ld!
(a+b+ctd—1)
my =
alblel(d—1)!
Since each of m; is integer, the coefficients of By (x, y) must be integers. U

Theorem 5.18. If q is a power of a prime p then B,(x,y) = (z?,y?) (mod p).

Proof. For a prime p, B,(z,y) = (f,(x,v), g,(z,y)) can be written as

fp(xa y) = zP + B<i7j7p7 l) ' mp74i72j72l ' (y2 —2x — 2)l

4]
gz, y) = y" + ZBZJZ% gL (2 4 ),

where the coefficients B(i, j, p, ) are found by replacing k by p in Equation We
know from Theorem that the coefficients B(i, j, p, ) are integers. Furthermore
the expression B(i, j, p,[) /p must also be an integer because otherwise its denomina-
tor would be divisible p which is impossible due to the possible values of 7, j and /.
Hence each coefficient of B,(z,y), except for the first one, is an integer multiple of

p. Therefore

By(x,y) = («",y")  (mod p).

Now let ¢ = p" for some positive integer 7. Then we have
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BQ($7y) = Bpr<$>y)

P('Tvy> ©---0 Bp(x>y>

[\ J/
-~

r times

(2%, y") o ---o(zP,y")  (mod p)

N

TV
T times

(x(pT)’ y(pT)) (mod p)

(2% y?)  (mod p).

Here the second equality follows from the property that B,,,,, = B,,, o B3,. ]

5.4 Generalized Chebyshev Polynomials of G-

In Example we found that the generalized cosine function of G is given by
h(x) = (y1(x), y2(x)) where
yr(X) = e~2miun | 2riun | o=2miun—uz) | p2milui—uz) | o=2mi2u1—uz) 4 o2mi(2u1—us)
Yo (x) = e~ 2Tz | p2mius | o=2miBui—u2) 4 (2mi(3ur—uz) | o=2mi(3u1—2uz) | 2mi(3u1—2uz)

Similar to the works done in the previous two sections we have

T = 6—27riu1 g1 =11
2y = 2T oo =3+1y + Y
13 = ¢ 2rim—u2) — o3 = y; — 2y, — 4
| (5.12)
T, = e27rz(ulfu2) o4y =3+ Y1+ Yo
zy = e 2miZu—u2) 05 =1
T6 = 627ri(2u1—1b2) Og = 1.

This gives us that

o .o k—2n—3m—4l—4j—61 n—+l m
yl(kx) - C(Z,j,k,l,m,n>‘01 "0y 03

From the second component y,(x), we make the following change of variables and

obtain the elementary symmetric polynomials in terms of y; and y, as follows:
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—2miug

Ty =e€ 01 = Y2

Ty = e¥Tiu2 09 = Z/? — 312 — Yy1 — dy2 — 9

py = e PNl — gy — 9T+ yf 4 Gyays + 18y1 + 12y + 20 5.13)
1y = e2TiBu—u2) 04 = y? —3y1y2 — 9y1 — dy2 — 9 .

g = ¢ 2milm—2u) o5 = U

g = e2ri(3u1—2u2) os =1

Therefore we have

. .. k—2n—3m—4l—4j—6i n—+l m
y2(kx) - C(Zajakalaman) "0y "0y 03

where the coefficients C'(i, j, k, [, m, n) are given by

(k—n—2m—3l—4j —5i— 1)l - k

(0o b ) = ) S Bm — 41— 5 — 60l ml 111

(5.14)

Therefore the polynomials G (x, y), defined by G (h(x)) = h(kx), are given by

Gi(z,y) = (fr(z,y), gr(7,y)) where

fily) = Ci jo b, 1, m, ) - gk =2ndm=ai=4i=

n=0 m=0 [=0 ;=0 =0 (515)
B+aty)" (22 -2y —4)™
L5) 5] L5) 5] [6) -
gr(z,y) = C(i,j, k,l,m,n)- yk—Qn—3m—4l—4g—6z
n=0 m=0 I=0 j=0 i=0 5.16)

- (2® — 32y — 9z — 5y — 9)" ™!

(=22 + y* + 6y + 18z + 12y 4+ 20)™

where the coefficients C' (i, j, k, [, m,n) are as in the Equation above.
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Theorem 5.19. If
G, y) = (fulz,y), gul,y)),

then
fn - x(fn—l + fn—S) - (:L' + ) + 3)(fn—2 + fn—4)
+ <£L'2 - 2y - 4)fn73 - fnfﬁ
Gn = y(gnfl + gn75) - (:ES - 3'7;:9 — 9z — 5y - 9) (97172 + gn74)
+ (y? — 22° 4 62y + 182 + 12y + 20)gn_3 — Gns
foralln > 6.

Proof. We know that

Gn(y1(x), y2(x)) = (y1(nx), ya(nx))

where y; (nx) and y»(nx) are the n'* power sums for the variables given in Equation
[5.12] and [5.13| respectively. Therefore substituting the elementary symmetric polyno-
mials in these equations accordingly and s,,_; = y;((n — 7)x) for the first component
and s,,_; = y((n — j)x) for the second component where j = 0,1,2,3,4,5,6 in

Equation [5.6] we obtain the expressions for f,, and g,, given in the theorem. 0

Theorem 5.20. multideg(Gy(z,y)) = (k. k+ |£]).

Proof. If we consider Equation [5.15] we see that the total degree of the monomials in
fr(z,y)is k —n—m — 3l — 45 — 6i and hence deg( f(x,y)) = k which occurs when

n=m=I[l=j=1=0.

On the other hand, Equation implies that the total degree of the monomials in
gr(x,y) is k-+n—1—4j—6i and hence we have deg(gx(x,y)) = k+ L%J which occurs
whenn = |£| and I = j = i = 0. Therefore multideg(Gy(z,y)) = (k,k+ |£]).

O
Theorem 5.21. Let k be an arbitrary nonnegative integer. Then the coefficients of

Gr(z,y) are integers.

Proof. From Equation we see that the coefficients of Gy (x, y) are given by

(k—n—2m—3l—4j —5i — 1)l -k
(k —2n —3m — 4l — 55 — 6i)! n!m!l! jlil

C(i, g, k,l,m,n) = (—1)"++
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Ifweleta:=k—2n—3m—4l—55—6i,b:=n,c:=m,d:=1,e:=jand f := 1,

then these coefficients can be written as
C(i, 4, k,1,m,n) = (=1)"T (my + 2my + 3mg + 4my + 5ms + 6mg)
where mq, ma, ..., mg are the multinomial coefficients given by

(a+b+ct+d+e+ f—1)

TETTT G D dde I
- _(a+btc+dtet f—1)
T (b= lddle I
. _(a4+btctdtet f—1)
ST albl(c—Dldlel fI
- _(at+btc+dtet f—1)
T and(d—1lel I
- _(a+btct+dte+ f—1)
T albddl (e—1) 1
- _(a+btct+dte+ f—1)
O alblddlel (f —1)!
Since each of m; is integer, the coefficients of Gi(z, y) must be integers. [

Theorem 5.22. If q is a power of a prime p then G,(x,y) = (29,y?) (mod p).

Proof. Let p be a prime, then the polynomials G,(x,y) = (f,(x,y), g,(z,y)) can be

written as
fp(% y) =P + C(i,j,p, I,m, n) . pP—2n—3m—4l—4j—6i

gp(x, y) = yp + C(i,j,p, [, m, n) . yp—Qn—3m—4l—4j_6i

- (2® = 32y — 92 — 5y — 9)" ™!
(=22 + y* + 6y + 18z + 12y + 20)™

where the coefficients C(i, j, p, [, m, n) are found when £ is replaced by p in Equation

We know from Theorem m that the coefficients of G,(x,y) are integers.
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We can also say that each of C(i,7,p,l,m,n)/p must also be an integer because
otherwise its denominator would be divisible by p which is impossible due to the
possible values of i, j, 1, m and n. Hence each coefficient of G,(z,y), except for the

first one, is an integer multiple of p. Therefore

Gp(z,y) = (2P, y?) (mod p).

Now let ¢ = p" for some positive integer r. Then we have

Go(7,y) = Gpr(z,y)
= Gplx,y) 0 ---0Gylx,y)

TV
T times

(2P, yP)o---0 (xp,ypz (mod p)

.

~~
7 times

(x(p”)7 y(p’“)) (mod p)

(2% y7)  (mod p).

Here the second equality follows from the property that G,,,,, = G, 0 G,,. ]
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