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Abstract—Playtesting is an essential step in the game design
process. Game designers use the feedback from playtests to refine
their design. Game designers may employ procedural personas to
automate the playtesting process. In this paper, we present two
approaches to improve automated playtesting. First, we propose
a goal-based persona model, which we call developing persona—
developing persona proposes a dynamic persona model, whereas
the current persona models are static. Game designers can use the
developing persona to model the changes that a player undergoes
while playing a game. Additionally, a human playtester knows
which paths she has tested before, and during the consequent
tests, she may test different paths. However, RL agents disre-
gard the previously generated trajectories. We propose a novel
methodology that helps Reinforcement Learning (RL) agents to
generate distinct trajectories than the previous trajectories. We
refer to this methodology as Alternative Path Finder (APF).
We present a generic APF framework that can be applied to
all RL agents. APF is trained with the previous trajectories,
and APF distinguishes the novel states from similar states. We
use the General Video Game Artificial Intelligence (GVG-AI)
and VizDoom frameworks to test our proposed methodologies.
We use Proximal Policy Optimization (PPO) RL agent during
experiments. First, we show that the playtest data generated by
the developing persona cannot be generated using the procedural
personas. Second, we present the alternative paths found using
APF. We show that the APF penalizes the previous paths and
rewards the distinct paths.

Index Terms—Reinforcement Learning, Player Modeling, Au-
tomated Playtesting, Play Persona

I. INTRODUCTION

Game designers envision how a game will work during a
play. As the game develops, it becomes increasingly difficult
to predict how players will interact with the game. Playtesters
help out this process by providing helpful feedback by playing
the game. However, human playtesting introduces latency and
additional costs to the process. Therefore, researchers pro-
posed methods to automate the playtesting process [1] [2] [3].

The playtesting process may employ different players.
These players will respond to the game differently, and they
will generate unique play traces. The game designer can use
these play traces to shape her game. In order to automate
playtesting with different players, researchers replaced these
playtesters with procedural personas. A procedural persona
describes an archetypal player’s behavior. Researchers used
personas to playtest a Role-Playing Game [4] and a Match-
3 [5] game. As a result, personas enabled distinct playstyles
and helped to playtest a game like distinct players.

In order to realize the personas using RL agents, researchers
used a utility function [6] to define the decision model of

a persona. Researchers replaced the reward mechanism of
the game with a utility function. However, this replacement
makes personas bound to the utility function. Since the utility
function was static, the realized personas were also static.
Therefore, this approach is not flexible to create dynamic
personas. For example, a player may change her objectives
while playing the game. The current utility function cannot
adapt to these changes.

Bartle [7] presents examples of these changes that a player
can undergo while playing an Massively Multiplayer Online
Role-Playing Game (MMO-RPG). We believe that the change
in the playstyle occurs after accomplishing a goal. For ex-
ample, a player may be interested in killing certain monsters
or opening treasures in pursuit of finding a required item.
This player is not necessarily a Monster Killer or Treasure
Collector, but a player-driven by a goal. Therefore, we propose
a goal-based approach to overcome this problem. The goal-
based approach is previously used in automated video game
testing agents [8] and was found more practical compared to
non-goal-based approaches.

The goal-based persona model consists of multiple goals
that are linked. Each goal consists of criteria and a utility
function. The utility function serves the same purpose as
in procedural personas. The criteria determine until which
condition the current goal is active. When the current goal
criteria are fulfilled, the next goal becomes active. The agent
plays until the last goal criteria is fulfilled or until the end
of the game. The game designer sets the criteria and utility
functions of each goal. The goal structure enables the creation
of dynamic personas. Additionally, this approach gives a more
granularized control over a persona. The game designer can
create variations of Monster Killer by setting different criteria.
In order to playtest a casual Monster Killer, the game designer
may set a health threshold as the criterion; and to playtest
a hardcore Monster Killer, the game designer may set the
percentage of monsters killed as the criterion.

Furthermore, the game designer may envision a game with
various endings. In order to playtest her game, she utilizes and
an Exit persona. The game designer analyzes the playtests
and sees that the playtests only provide data for one of
the possible endings. This shortcoming is not caused by the
persona but by the inherent nature of RL algorithms. RL
algorithms such as Deep Q-Network (DQN) [9], Proximal
Policy Optimization (PPO) [10], and Monte Carlo Tree Seach
(MCTS) [11] generate a single trajectory for a game. Though
these algorithms may find different paths due to the random
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initial state of the Neural Network (DQN and PPO) or due to
the game’s nondeterminism, finding distinct paths is not the
primary objective of these algorithms.

Exploration methods in RL improve the agent’s policy by
motivating the agent to explore the environment. As the agent
explores an environment, the agent improves its policy. The
researchers proposed methods to motivate the agent to explore
less visited states [12] [13] [14]. Exploration methods vastly
improved the agent’s score in Montezuma’s Revenge [12].
Therefore, we propose our APF approach based on exploration
methods. We penalize the agent when it visits states similar to
the ones in the previous playtests. We reward the agent when
the agent visits a novel state. We show how we augment an RL
agent using the APF framework to generate new and unique
playtests.

In this paper, we list the contributions as follows. Our
first contribution is a goal-based play persona. A goal-based
persona is more flexible and robust than the current per-
sona models. We show how game designers can utilize the
developing persona to empower the playtesting. Our second
contribution is the Alternative Path Finder. We present a
generic APF framework that can augment every RL agent.
We use the GVG-AI [15] and VizDoom [16] environments to
demonstrate our proposed methodologies.

This paper is structured as follows: Section II describes
the examples and methodologies of related research. Our
proposed methodology that consists of developing persona
and APF is presented in Section III. Section IV describes
our experimentation setup and Section V presents the results
of these experiments. Section VI discusses the outcomes of
the strategies used, their contributions and limitations. Lastly,
Section VII concludes this paper.

II. RELATED RESEARCH

Playtesting is a methodology used in the game design
process. Playtesters test a game, and feedback is collected
from these playtesters. The game designers use this feedback
to improve their game. As this process requires a human effort,
researchers proposed methods to automate game playtesting.
Powley et al. [1] coupled automated playtesting with a game
development application. Gudmundsson et al. [2] trained a
convolutional neural network to predict the most humane
action in Candy Crush, and they used this network to assess
level difficulty. Roohi et al. [3] used RL and a population
model to determine level difficulty for Angry Birds Dream
Blast. These approaches derive the automated playtesters from
an individual player archetype. Nevertheless, during a playtest,
there can be various playtesters resembling a different player
archetype.

In playtesting, personas provide game designers information
about how different player archetypes would play the game.
Persona is a fictional character that represents a user type. Bar-
tle [17] introduces a taxonomy of personas that are identified
from a Multi-user Dungeon Game. The author acknowledges
these four distinct personas as Socializers, Explorers, Achiev-
ers, and Killers. The author introduces a graph with axes that
maps the players’ interest in a persona. Bartle [7] extends this

research by introducing development sequences for personas.
The development sequences reveal how and why a player
may change to a different persona. Tychsen and Canossa [18]
present a study on collecting game metrics and how different
personas can be identifiable by these metrics. The authors
present the personas of the game Hitman Blood Assassin.
The game identifies these personas: Mass Murderer, Mass
Murderer, Mad Butcher, and The Cleaner. They argue that
a persona can be recognized using the metrics collected from
a play trace. These approaches focus on identifying different
personas in a game.

In order to automate the playtesting, researchers pro-
posed techniques to realize the decision model of a persona.
Holmgård et al. [6] used a utility function to realize the
decision model of a persona. This utility function is used
as the reward function for the Q-Learning agent. The agents
are exercised in an environment called MiniDungeons. The
agents produced play traces as if they are of a specific
persona. Holmgård et al. [19] extended their previous work
by substituting the Q-Learning agents with a neural network.
The inputs to the neural network were hard-coded handpicked
parameters. The authors used a genetic algorithm to find the
weights of this neural network. They called their new method
‘evolved agent’. Evolved agent required less training than
the Q-Learning agent and was able to generalize to other
levels better. Holmgård et al. [20] upgraded the environment
to MiniDungeons 2. In this study, the authors proposed to
generate personas using MCTS agents that use their proposed
utility function. Their reasoning for using MCTS, especially
Vanilla MCTS [11], was to provide faster data to the game
designer. In Q-Learning and Evolved agents, these agents have
to be trained first. Holmgård et al. [4] extends the MCTS by
improving the selection method of MCTS. In their previous
study, the authors state that the Mini Dungeons 2 game was
too complex for Vanilla MCTS. Therefore, they model a new
selection phase that is specifically tailored towards a specific
persona. They accomplish this by evolving the UCB formula
by a genetic algorithm. The authors crafted the fitness function
of each persona. This fitness function also determined the
fitness function of the evolutionary algorithm. The evolved
UCB formula improved their results among every persona.
Silva et al. [21] used personas to playtest the Ticket to Ride
board game. The authors designed four different competitive
personas to play the board game. The authors handcrafted a
set of heuristics for each persona. They showed that personas
revealed useful information that the game rules did not provide
rules for two situations. Mugrai et al. [5] employed four
different personas for Match-3 games. These personas are Max
Score, Min Score, Max Moves, and Min Moves. The authors
showed that these four personas could give the game designer
valuable information about a level.

The main drawback of persona research is the utility func-
tion. First, the utility function is static and stays constant
throughout the game. Therefore, the game designers cannot
model players with development sequences [7]. Second, de-
pending on the level layout, personas can execute a similar
sequence [4]. Hence, the synthetic playtesters would provide
ineffective feedback. Lastly, synthetic playtesters are realized
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using RL agents. Since RL agents optimize the total accumu-
lated reward, synthetic playtesters would not test all playable
paths.

An RL agent explores the environment to learn which
action yields the highest reward in a state. In order to learn
this policy, the RL agent has to explore the environment.
Intrinsically motivating an RL agent to explore novel states
is an exploration problem. The researchers proposed different
ways to make agents explore distinct states of the environment.
Count-based approaches reward the less-visited states more
than frequently visited states. Therefore, the agent becomes
inclined to visit the less visited states. The count is formulated
using a density model [12], a neural density model [22], a
hash table [23], and exemplar models [13]. Another proposed
approach is to augment the reward function by measuring
the agent’s uncertainty about the environment. Researchers
measured the uncertainty using bootstrapped DQN [24], state-
space features [14], and error of a neural function [25].
Additionally, researchers proposed approaches that explore the
state space by optimizing the state marginal distribution to
match a target distribution [26]. These exploration proposals
intelligently incite the agent to explore the environment. The
goal of exploration is not to find a unique way of playing but
to find the best path every time we execute the RL agent.
However, these methods can differentiate between similar
states and new states. We base our APF proposal based on
this accomplishment.

III. METHODOLOGY

In this paper, we address the shortcomings of the procedural
persona approach, and we propose a goal-based approach,
the developing persona. Furthermore, we recognize there may
be alternative playtests that can help the game designer. We
propose APF to discover those playtests.

In the following subsections, first, we introduce the goal-
based persona approach. Afterward, we present the necessity
for an APF and introduce the foundation of APF. Next,
we show how we use the techniques in exploration field to
implement the APF. Finally, we describe how to use APF with
an RL agent.

A. Goal-based Persona

A persona reflects an archetypal player’s decision model. In
order to realize a persona, first, the persona’s decision model
should be translated to game conditions. Second, an actor
should play according to this translation. Researchers [4] [5]
proposed using a utility function to map the decision model
to game conditions. This utility function replaces the reward
mechanism of the environment and provides a tailored reward
mechanism for each persona. Researchers [4] [5] used RL
agents as actors. Consequently, these RL agents are akin to
synthetic playtesters that represent the decision model of a
persona. These playtesters, procedural personas, represented
various personas such as the Monster Killer, Treasure Collec-
tor, and Exit personas. In this paper, we extend the procedural
persona framework by introducing a goal-based persona.

Fig. 1: An example level created by GVG-AI framework.

We propose a goal-based persona to generate a more
customizable playtester. We have two reasons that a goal-
based persona would be beneficial for game designers. First,
the game designer does not have granular control over the
personas. For example, the game designer may want to playtest
a monster killer persona that kills monsters until its health
drops below a certain percent. However, when to cease killing
monsters was left to the RL agent to decide in the previous
approaches, and the game designer had little control over
these decisions. Second, the previous approaches do not allow
development in persona. If the procedural persona is a mon-
ster killer, the procedural persona will always be a monster
killer. Bartle [7] highlights several development sequences for
personas, and the previous approaches cannot realize these
development sequences.

The goal-based persona is a procedural persona with a
linked sequence of goals rather than a single utility function.
A goal contains a utility function and a transition action to the
next goal. If there is a single goal in the sequence, there is
no need to define the transition. Hence, a goal-based persona
with a single goal is equivalent to a procedural persona.
The transition connects the goals, and the transition occurs
depending on criteria. Game designers determine the criteria,
and criteria hold conditions related to the game. For example, a
criterion can be killing 50% of the monsters or exploring 90%
of the game or having health less than 20% or the combination
of these conditions. When the goal-based persona fulfills all of
the conditions of the criteria, the transition occurs and activates
the next goal. When there are no more goals, the goal-based
persona ceases. Additionally, the transition between the goals
can be sudden or can be fuzzy.

In Fig. 1, we created an example level to demonstrate the
goal-based personas. In this example, the Avatar situated at
bottom right corner can execute the following actions Pass,
Attack, Left, Right, Up, and Down. The direction of the Avatar
is shown by a pink triangle. If the direction of the Avatar
and the action align, the Avatar moves one space in that
direction, else the Avatar changes direction. When Avatar
executes Attack, the Avatar slashes towards its direction. The
Avatar can slay Monsters by Attacking them. The monsters
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Fig. 2: Developing Persona

move randomly and kills the Avatar if they collide with the
Avatar. There are also Treasure chests that Avatar can pick up
by simply moving over them. Lastly, when the Avatar exits
through the Door, the game terminates successfully.

TABLE I: Utility weights for the goals

Goal Names

Game Event Killer Collector Exit
Death -1.0 -1.0 -1.0

Exit Door 1.0
Monster Killed 1.0

Treasure Collected 1.0

A game designer may playtest a Monster Killer persona in
the game shown in Fig. 1 and generates the following two
personas. First one kills the Monsters and then collects the
Treasure as trophy. Second one collects the Treasure hoping
to gain an advantage against the Monsters and then kills the
Monsters. In order to realize the aforementioned personas, the
game designer designs two goal-based personas, as seen in
Fig. 2. Next, she designs the utility functions of these goals,
as seen in Table I. In order to realize the goal-based personas
as playtesters in a game, the game designer can employ any
RL agent. When the agent finishes training, the game designer
can use the agent for playtesting. The importance of the goal-
based persona is that these playtests cannot be achieved by a
single utility function.

B. Alternative Path Finder

The actions of an RL agent are motivated based on the
feedback received from an environment. As the agent trains
in an environment, the feedback will shape the agent’s policy.
When the training is over, the agent will behave according
to the learned policy. Additionally, if we exercise the same
agent in the same environment multiple times, the learned
policies will be similar. At the end of each training, we
can test the trained agent in the same environment to obtain
trajectories. These trajectories will be similar as the learned
policies were similar. On the other hand, the game designer
might be interested in seeing different playstyles.

In order to diversify the learned policies, one has to change
the feedback mechanism of the environment. Procedural per-
sonas [4] [5] accomplish this by rewiring the feedback mecha-
nism by a utility function. An agent representing a persona will
learn a different policy than another agent that represents a dif-
ferent persona. However, when the game designer wants to see

different playstyles within the same persona, the procedural
persona approach falls short. For example, the game designer
may want to see how different players complete a game with
multiple exits. To model these players, she trains an agent that
mimics the Exit persona, and she analyzes the trajectory from
this agent’s execution. Nevertheless, the resultant trajectory of
this persona will be the path to the nearest Exit. The other Exits
in the game will be neglected, and the game designer will only
have playtest data that corresponds to one possible ends of the
game. A preliminary solution to this problem is masking the
feedback from some of the Exits. Thus the agent will generate
a playtest towards a particular Exit. However, this solution
requires additional tinkering, and there might be additional
solutions towards the same Exit. Another solution is that the
game designer would apply randomness to the agent’s actions
or add random noise to the input to diversify the trajectories.
However, randomness does not guarantee that the agent will
generate different playtests. Therefore, this solution also does
not give complete control to the game designer.

On the other hand, with human playtesters, the game
designer could have asked a playtester to play differently. The
playtester already knows which paths or particular states she
has visited before, so she uses this past knowledge to play
the game differently. Therefore, the source of this problem is
that the current agent does not know what the previous agents
did in the prior runs. Every playtester which an RL agent
represents generates a playtest anew. In order to solve this
problem, we propose Alternative Path Finder.

1) Measuring Similarity: A game can be formulated using
a Markov Decision Process (MDP). MDP formulates the
interaction between an actor and the environment [27]. Markov
Decision Process is a tuple (S,A, T,R) where S is the set of
states, A is the set of actions, T : S × A × S → [0, 1] is the
state transition probability matrix, and R : S ×A→ Q is the
reward function.

Suppose a human player or an agent played a game, and
we obtain the trajectory τ= {s0, a0, s1, a1, ..., sn} where s
corresponds to a state, a corresponds to an action, and the
subscripts denote the state or action at time t. We want to train
an agent that knows τ , and we want this agent to generate a
trajectory different than τ . Therefore, we need to calculate a
measure to represent the similarity of these two trajectories.
We propose two different methods to calculate the similarity.
First method is to calculate the visitation probability p(s|τ). If
s ∈ τ , then the probability should be high and if s /∈ τ , then
the probability should be low. Second method is calculating
the prediction error of a dynamics model q((st, at, st+1)|τ). If
the transition st, at, st+1 exists in τ , then the prediction error
should be low, and if this transition does not exist in τ , then
the error should be high.

In the rest of this paper, we swap the state s with observation
o, which the RL agent sees. In most of the frameworks such
as GVG-AI [15] and VizDoom [16], the observation seen by
the RL agent corresponds to a frame f .

2) From Visitation Probability to Intrinsic Feedback: Belle-
mare et al. [12] used Context Tree Switching (CTS) [28] to
intrinsically motivate an RL agent for exploration. CTS uses a
filter to evaluate the recoding probability of a pixel. The filter
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Fig. 3: Filters mask the pixels around the orange pixel, the
data from white pixels are blocked, and the data from the
cyan pixels are supplied. Finally, CTS uses the information
gathered from cyan pixels to predict the recoding probability
of the orange pixel.

used by the authors and in our experiments is shown in Fig.
3(a) and Fig. 3(b), respectively. The filter gathers information
around a pixel and CTS uses this information to predict this
pixel. When this operation is done for every pixel of an image,
the recoding probability of an image is calculated.

Consequently, CTS does not directly calculate the visitation
probability of a frame but a frame’s recoding probability,
fortunately these two probabilities are directly proportional.

In order to use the recoding probability to differentiate
between the novel frames from similar frames, we need a
boundary probability value. We refer to this probability as
pmin (see Eq. 1). First, we train a CTS model using all of
the frames in trajectories. Then we calculate the recoding
probability of every frame in this trajectory. Next, we set the
pmin equal to the minimum of all these recoding probabilities.
As CTS is a learning-positive model, every frame from these
trained trajectories will have a higher recording probability
than pmin.

pmin = min(p(f0|CTS), p(f1|CTS), ..., p(fn|CTS))
s.t. f0..n ∈ τ0, ..., τn

(1)

When an agent or a human player plays the game, the actor
will receive a new frame fnew. First, we calculate its recoding
probability pnew=p(fnew|CTS). If pnew is smaller than pmin,
this indicates that this frame provides new information and
if pnew is greater than pmin, this indicates that this frame
does not provides new information. Next, the magnitude of the
information depends on how close pnew is to pmin. We use
this difference to calculate the amount of reward or penalty.

pnew > pmin : feedback =
β

1 + log pnew

pmin

− β

pnew ≤ pmin : feedback = β − β

1 + log pmin

pnew

(2)

We use Eq. 2 to calculate the additional reward signal.
This formula yields maximum β reward when pnew → 0
and minimum −β when pnew → 1. This additional reward

signal provides a negative feedback for visiting similar states
and positive feedback for visiting novel states. We refer to the
APF method that uses CTS internally as APFCTS.

3) From Predicting Dynamics to Intrinsic Feedback: Pathak
et al. [14] used the Intrinsic Curiosity Module (ICM) to
intrinsically motivate an RL agent for exploration. ICM is
a Neural Network (NN) architecture that learns to predict
the environment dynamics and uses the prediction error as
the intrinsic motivation. ICM has two NNs called as forward
model and inverse model. The forward model predicts the
next state features φ(st+1) using the current state features
φ(st) and current action at. The inverse model predicts the
current action at using the current state features φ(st) and the
next state features φ̂(st+1). ICM uses Convolutional Neural
Network (CNN) to encode the states into state features,
φ(st) = CNN(st+1). The prediction error is the difference
between the predicted next state features φ̂(st+1) and extracted
next state features φ(st+1). Therefore, if the agent has seen
the transition φ(st), at, φ(st+1), the prediciton error will be
low, and if not, the prediction error will be high.

In order to use the prediction error to differentiate between
the novel frames from similar frames, we need a boundary
value. We refer to this value as qmean (see Eq. 3). First, we
initialize an empty ICM architecture. Next, we use transfer
learning to set the weights of CNN encoders, and then we
freeze the weights of CNN. The source can be the CNN
layers of the RL agent, or if the agent also used ICM, we
can use ICM’s CNN layers. Afterward, we use the previous
trajectories to train the forward and inverse models of ICM.
At the end of the training, we have an ICM model that has a
better prediction towards the transitions that exist in the given
trajectories and a worse prediction towards the transitions that
do not exist. Lastly, we replay the previous trajectories, gather
all of the prediction errors, and calculate the mean of all
the prediction errors. We do not calculate the max of all the
prediction errors as the ICM may not improve the predictions
for every transition or make prediction errors. Therefore, max
would be a poor choice for a boundary value.

qmean = mean(ICM(f0, a0, f1), ..., ICM(fn−1, an−1, fn))

s.t. f0..n ∈ τ0, ..., τn
s.t. a0..n−1 ∈ τ0, ..., τn

(3)
When an agent or a human player plays the game, the actor

executes action a on frame f . As a result, the actor sees a
new frame fnew. First, we calculate the prediction error of
this transition, qnew=ICM(f, a, fnew). If qnew is greater than
qmean, this indicates that this transition is less likely to exist
in the previous trajectories. If qnew is less than qmean, this
indicates that this transition is likely to exist in the previous
trajectories.

qnew > qmean : feedback = β − β

1 + log qnew

qmean

qnew ≤ pmin : feedback =
β

1 + log qmean

qnew

− β
(4)
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We use Eq. 4 to calculate the additional reward signal.
This formula yields maximum β reward when qnew → 0
and minimum −β when qnew → ∞. We use this additional
feedback signal to reward the novel transitions and to penalize
similar transitions. We refer to the APF method that uses ICM
internally as APFICM.

4) APF Architecture: We augment the traditional Agent and
Environment interaction by adding a new box. This augmented
architecture is shown in Fig. 4. The APF corresponds to an
APFCTS or an APFICM. Before an agent starts to interact
with the environment, we train the APF with the previous
trajectories as described in Section III-B2 or Section III-B3.
At this point, we have an APF module that discerns the states
or transitions. When a new state and a new reward is observed
from the environment, these observations first enter the APF.
APF modulates the reward signal by adding a penalty or
reward by using the Eq. 2 or Eq. 4.

Agent

Environment

Action

Re
w
ar
d

St
at
e

St
at
e

APF

M
od

ifi
ed

Re
w
ar
d

Trajectories

Fig. 4: Alternative Path Finding Architecture.

The one drawback of this approach is that the feedback is
unbounded. Since the feedback is infinite, the agent may visit a
novel state repeatedly to get a positive reward. This problem
may lead an agent to get stuck in a state [25]. The second
drawback is that some portion of the game may be strict,
offering no alternative paths such as Super Mario Bros. [14].
Consequently, APF will penalize this portion of the game,
naively thinking there may be alternative paths.

We propose a solution for each of these drawbacks. For
the first drawback, we propose to put a cap on the total
reward and penalty that APF provides. This solution limits
the infinite feedback, and this process operates as follows: if
a state is distinct, APF clamps the reward by the positive cap
poscap. Then, APF yields this clamped reward and updates the
positive cap by subtracting the clamped. Once the positive cap
is exhausted, the additional reward that APF provides becomes
zero. We also apply the same principles for the penalty by
providing a negative cap, negcap. Hence, this solution prevents
an agent stuck in a novel state. For the second drawback, we
propose to cut these portions from the collected trajectories.
Consequently, APF will not penalize the agent, as APF will
be blind for this portion of the path.

We introduced two different APF approaches as each has
its advantages and disadvantages. The advantage of APFCTS
is that the CTS model can be trained from a trajectory that
consists of a few frames. However, APFICM is more data-
intensive compared to APFCTS. Furthermore, APFICM re-
quires a previously trained agent for transfer learning, which is

not required for APFCTS. Nevertheless, as APFCTS operates
directly on pixels, a slight noise in a frame would decrease
the visitation probability.

IV. EXPERIMENTS

In this paper, we used two different environments to test
our proposals, GVG-AI [15] and VizDoom [16]. We describe
the environments and the experimental setup in this section.

The first testbed game is created using the GVG-AI frame-
work, shown in Fig. 5. The game has a 14× 20 grid-size, and
consists of an Avatar, Exits, Monsters, Treasures, and Walls.
The human player or an agent controls the Avatar. The game
lasts until the Avatar goes to one of the Exits, or gets killed by
a Monster, or until 200 timesteps. The action space consists of
six actions No-Op, Attack, Left, Right, Up, and Down. GVG-
AI framework is extended to run a game with more than one
Door. The actor receives a distinct feedback for the following
interactions killing a Monster, getting killed by a Monster,
collecting a Treasure, and colliding with a Door.

Fig. 5: Map of the first testbed game.

The second testbed game is a Doom level, shown in Fig. 7.
The game has a 1600×832 grid size, and consists of an Avatar,
Exit, Monsters, Treasures, and Walls. The human player or an
agent controls the Avatar. The game lasts until the Avatar
goes to the Door, or gets killed by a Monster, or until 2000
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timesteps. The action space consists of seven actions Attack,
Move Left, Move Right, Move Up, Move Down, Turn Left,
and Turn Right. The actor receives a distinct feedback for the
following interactions killing a Monster, getting killed by a
Monster, collecting a Treasure, and colliding with the Door.
Additionally, the actor receives a constant negative feedback
of 0.001 for every step taken.

Fig. 6: Doom in-game snapshot.

Fig. 7: Map of second testbed game.

The third testbed game is another Doom level, shown in
Fig. 8. The game has a 1664× 704 grid size, and consists of
an Avatar, an Exit, and Walls. The human player or an agent
controls the Avatar. The game lasts until the Avatar goes to
the Door, or until 2000 timesteps. The action space consists
of seven actions Attack, Move Left, Move Right, Move Up,
Move Down, Turn Left, and Turn Right. The actor receives a
feedback if the actor interacts with the Door. Additionally, the
actor receives a constant negative feedback of 0.001 for every
step taken.

We experiment with the procedural and goal-based personas
in the first and second testbed games. We test the APF
in the first and third testbed games. We used the same
random seed during the APF experiment to properly test
the APF method. We use PPO [10] agent in all of the
experiments. For the PPO+CTS, PPO+ICM, PPO+APFCTS,
and PPO+ICM+APFICM, we change the base PPO imple-
mentation slightly. The base PPO implementation is from
the Stable-Baselines project [29]. We also tested with other

Fig. 8: Map of third testbed game.

RL agents during the initial experiments, and we found that
PPO requires less hyperparameter tuning, so we used PPO in
all of our experiments. The hyperparameters of PPO agents
are presented in Table II, and the hyperparameters of APF
techniques are shown in Table III.

GVG-AI environment sends an observation with shape
160 × 112 × 4, we downscale this observation to 80 × 56
and then convert the observation into grayscale. Afterward,
we stack the most recent four observations, and lastly feed the
stacked observations to the agent. For CTS used in PPO+CTS
and APFCTS, we process the observation into we 42 × 42,
3-bit grayscale image, and calculate the recoding probability
of this observation. Doom environment sends the observation
with shape 160 × 120 × 1, we resize this observation to
84 × 84 × 1, and we feed the agent and the APFICM this
resized observation.

TABLE II: Hyperparameters of PPO Agents

Agents

Hyperparameters PPO PPO+CTS PPO+ICM
Policy CNN CNN CNNLstm

Horizon 256 256 64
Num. Minibatch 8 8 8

GAE (λ) 0.95 0.95 0.99
Discount (γ) 0.99 0.99 0.999

Learning Rate (α) 5× 10−4 5× 10−4 5× 10−4

Num. Epochs 3 3 4
Entropy Coeff. 0.01 0.01 0.001

VF Coeff. 0.5 0.5 0.5
Clipping Param. 0.2 0.2 0.1

Max Grad. Norm. 0.5 0.5 0.5
Num. of Actors 16 16 32
CTS Beta (β) - 0.05 -

CTS Filter - L-shaped -
ICM State Features - - 256

ICM Beta (β) - - 0.2

TABLE III: Hyperparameters of APF Techniques

Hyperparameters APFCTS APFICM
poscap 0.4 0.1
negcap -0.4 -0.4

APF Beta (β) 0.01 0.01

We created four different procedural personas and five dif-
ferent goal-based personas. The four procedural personas are
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Exit, Monster Killer, Treasure Collector, and Completionist.
The utility weights of these procedural personas are given
in Table IV. The five goal-based personas are Developing
Monster Killer, Developing Treasure Collector, Developing
Raider, Developing Completionist, and Developing Casual
Completionist. The development sequences of these personas
are presented in Table VI, the utility function of the goals are
given in Table V, and the criteria of these goals are shown in
Table VII.

TABLE IV: Utility weights for procedural personas. Exit
(E), Monster Killer (MK), Treasure Collecter (TC), and

Completionist (C).

Personas

Game Event (E) (MK) (TC) (C)
Reaching an Exit 1 0.5 0.5
Killing a Monster 1 1

Collecting a Treasure 1 1
Dying -1 -1 -1 -1

TABLE V: Utility weights for the goals. Killer (K),
Collecter (Col), Exit (E), and Completionist (Com).

Goal Names

Game Event (K) (Col) (E) (Com)
Death -1 -1 -1 -1

Exit Door 1
Monster Killed 1 1

Treasure Collected 1 1

TABLE VI: Sequences for the developing personas.

Hyperparameters Development Sequence
Dev. Killer Killer -> Exit

Dev. Collector Collector -> Exit
Dev. Raider Killer -> Collector -> Exit

Dev. Completionist Completionist -> Exit
Dev. Casual Completionist Casual Completionist -> Exit

TABLE VII: Criteria of the goals. Killer (K), Collecter (Col),
Completionist (Com), and Casual Completionist (Cas. Com.).

Goal Names

Criterion (K) (Col) (Com) (Cas. Com.)
Monsters Killed 50% 100%

Treasure Collected 50% 100%
Remaining Health 50%

V. RESULTS

In this study, we asked the following research questions.

• How does a goal-based persona perform compared to a
procedural persona?

• Which additional paths can be discovered with APF?

A. Experiment I: Procedural vs Goal-based personas:

Table VIII presents the interactions done by seven different
personas. The Exit persona directly goes to the Door, which
is four spaces below the Avatar. The other three procedural
personas also go to the same Door, but also collecting the
Treasure and killing the Monster on the way. The developing
killer persona defeats all of the Monsters on the upper half
of the level. The developing collector persona collects four of
the Treasures on the upper half of the level. The developing
raider is a combination of developing killer and developing
collector, consequently kills the Monsters and then collects the
Treasures in the upper half of the level. We see all procedural
personas interact with a small region of the level, whereas the
developing persona interacts with a broader region. Therefore,
we conducted the same experiment for procedural personas
with PPO + CTS RL agent. Table VIII displays the interactions
performed by procedural personas when the agent explores
the environment. We see that the interactions performed by
procedural personas fit better to each persona’s decision model.

TABLE VIII: Interactions of Personas performed by the PPO
RL agent in Experiment I.

Game Event

Personas Monsters Killed Treasures Collected Door
Exit 1

Monster Killer 1 1 1
Treasure Collector 1 1 1

Completionist 1 1 1
Dev. Killer 3 0 1

Dev. Collector 1 4 1
Dev. Raider 3 4 1

TABLE IX: Interactions of Personas performed by the PPO
+ CTS RL agent in Experiment I.

Game Event

Personas Monsters Killed Treasures Collected Door
Monster Killer 2 0 1

Treasure Collector 0 3 1
Completionist 2 3 1

B. Experiment II: Alternative paths found in GVG-AI:

We used the path found by the Exit persona in Experiment
I to train APFCTS, and then we trained the PPO + CTS +
APFCTS agent in GVG-AI first testbed game. For each path
obtained from the PPO + CTS + APFCTS agent, we repeated
the experiment. First, an APFCTS is trained using one of the
obtained paths, and then we used this trained APFCTS to train
a PPO + CTS + APFCTS agent. The paths identified at the
end of the process are shown in Fig. 9. Table X shows the
total of discounted rewards, and the bold values demonstrate
the found paths when we train the CTS with the trained path.
The first row demonstrates the total discounted reward without
using APFCTS, and we see paths one and five leading the
other paths. When we use APFCTS, we see that the reward
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of playing the same path decreases by at least 0.1, and the
reward of distinct paths increases by at least 0.1.

TABLE X: Total Discounted Reward without APFCTS and
with APFCTS. The first row shows the total discounted

reward without APFCTS. For the rows with a number, we
train the APFCTS and calculate the discounted reward by
using CTS. The bold values demonstrate the found paths
when we execute the PPO + CTS + APFCTS agent by

training APFCTS with the trained path.

Tested Paths
Trained Path 1 2 3 4 5 6

- 0.86 0.78 0.84 0.84 0.86 0.76
1 0.76 0.77 0.98 0.98 0.98 0.98
2 0.82 0.61 0.98 0.99 0.98 0.98
3 0.98 0.98 0.74 0.86 0.82 0.88
4 0.99 0.98 0.86 0.72 0.86 0.86
5 0.98 0.98 0.81 0.85 0.76 0.87
6 0.99 0.98 0.87 0.87 0.88 0.60

1

3
5

6

4

2

Fig. 9: Paths found by Exit persona with PPO and with PPO
+ CTS + APFCTS.

C. Experiment III: Personas in Doom:
We experimented with five different personas in second

testbed game, a Doom level (see Fig. 7). The interaction

results for the personas are given in Table XI. In Doom, Com-
pletionist, Developing Completionist, and Developing Casual
Completionist make the same interactions. The Exit persona
directly goes to the Door, and Monster Killer finishes the level
after killing the Monsters.

TABLE XI: Interactions of Personas in Experiment III.

Game Event

Personas Monsters Killed Treasures Collected Door
Exit 1

Monster Killer 6 1
Completionist 6 2 1

Dev. Completionist 6 2 1
Dev. Cas. Compl. 6 2 1

D. Experiment IV: Alternative paths found in Doom:

We trained an exit persona in the third testbed game using
PPO + ICM agent. The first path shown in Fig. 10 is the
trajectory taken by the exit persona. We trained an APFICM
using this first path, and then we trained a new exit persona
using PPO + ICM + APFICM agent. The new exit persona
played the second path. The total discounted reward obtained
by these two exit personas is shown in Table XII. As the first
path consists of 52 steps, whereas the second path consists
of 77 steps, the total reward of the first path is higher than
the second. However, applying APFICM, we increase the total
reward obtained from the second path and decrease the total
reward obtained from the first path.

2

1

Fig. 10: Paths found by Exit persona with PPO and with PPO
+ ICM + APFICM.

TABLE XII: Total Discounted Reward without APFICM and
with APFICM. First row shows the total discounted reward
without APFICM. For the rows with a number, we train the
APFICM and calculate the discounted reward by using ICM.

The bold values demonstrate the found paths when we
execute the PPO + ICM + APFICM agent by training

APFICM with the trained path.

Tested Paths
Trained Path 1 2

- 0.79 ± 0.015 0.67 ± 0.013
1 0.51 ± 0.015 0.77 ± 0.016
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VI. DISCUSSION

In this paper, we presented an advancement for procedural
persona, goal-based persona and introduced a method to let
RL agents discover different paths, APF. We experimented
with these methods in GVG-AI and Doom environments.

Procedural personas and developing personas are two meth-
ods that a game designer may use to automate the playtesting
process. One drawback of the procedural personas origi-
nates from the utility function. A utility function realizes
the decision model of a persona. For example, a treasure
collector receives positive feedback from finishing the level
and collecting a treasure. However, if the agent starts close
to the Door, the agent may not interact with any of the
Treasures. Conversely, if the Door stands after all of the
Treasures, the agent is likely to interact with most of the
Treasures. We saw this problem in Experiment I. Without
any exploration technique, the procedural personas monster
killer, treasure collector, and completionist executed the same
set of actions. When we integrated CTS exploration, these
procedural personas executed a different set of actions. These
new sets of actions were more fitting to their decision model.
This problem is also seen in the MCTS agent playtesting the
MiniDungeons 2 game [4]. However, we were unaffected by
this problem while using developing personas. The problem
is that the utility function embodies multiple playstyles within
the same persona. Therefore, depending on the level composi-
tion and RL agent’s hyperparameters, the procedural persona
represents one of those playstyles. A game designer may use
the developing persona to choose which playstyle that she
wants to playtest carefully.

A game designer may use developing personas to represent
playstyles that involve alteration. For example, in Experiment
I, the developing raider killed the Monsters and then collected
the Treasures. The developing raider starts the game as a
monster killer and becomes a different persona after fulfilling a
criterion. Afterward, the developing raider becomes a treasure
collector. These development sequences were mentioned by
Bartle [17], but development sequences were impractical while
using a single utility function. Moreover, the game designer
may want to cluster collected human playtraces according to
their persona’s [6]. If a human playtester has changed her
behavior during the playtest, this player would be incorrectly
classified without developing persona.

In addition to the GVG-AI environment, we conducted
experiments on the Doom environment. To the best of our
knowledge, this paper is the first work to playtest personas in
a 3D environment. In 2D environments, the researchers [4][5]
employed MCTS RL agent to realize personas. MCTS would
be an ineffective choice for 3D environments, and MCTS
would underrepresent the persona. We used the PPO agent
in all our experiments, as PPO is a competent agent used
by OpenAI [30]. In Experiment III, we see that the decision
models of personas are expressed correctly. The exit persona
does not interact with any game events other than the Door.
All other personas besides exit persona kill all of the Monsters,
and completionist personas also collect all of the Treasures.
We observe that the developing casual completionist persona

is indifferent to other completionist personas. This indifference
indicates that the game may not be challenging enough for a
casual player.

In Experiment I, we prepared a game that consists of five
Doors. We found that the exit persona taking either the first or
the fifth path (see Fig. 9). The lengths of the first and the fifth
paths are the same and shorter than every possible path that
ends with a Door. Consequently, an RL agent representing an
exit persona is likely to select either the first or the fifth path.
We proposed APF to let RL agents discover these additional
paths shown in Fig. 9. APF learns the previously played path
and adjusts the reward mechanism of the environment to let
RL agents discover distinct paths. When we examine the paths
shown in Fig. 9 and their respective scores in Table X, we see
that APF penalizes the previously played path, and rewards
the distinct paths. Furthermore, we also see the same result
in Experiment IV, when we study the paths shown in Fig. 10
and their respective scores in Table XII. Therefore, a game
designer may use APF to identify different paths and improve
her game by using this information.

On the other hand, an alternative path is a subjective
concept. Every human playtester may think of another possible
way of representing the exit persona. In Table X, we see that
when we train the APFCTS with the first or the second path,
the score of both of these paths decreases. Next, when we
train the APFCTS with the third, fifth, or sixth path, the score
of the fourth path increases slightly. According to APFCTS,
the first and second paths are more similar than the fourth
and fifth paths. The subjectivity of APFCTS and APFICM is
based on the recoding probability of a frame and the dynamics
prediction error, respectively. However, this subjectivity does
not impede APFCTS or APFICM from finding distinct paths.
On the other hand, as CTS operates on pixels, we found
that the recoding probability of some frames in the Doom
environment is calculated as 0. Furthermore, we observed that
for our experimentation setup the plus-shaped filter in Fig. 3(b)
yielded better results than the original CTS filter in Fig. 3(a).
Lastly, though we promoted APF to find distinct paths, APF
can benefit game tester agents [8] since increasing the coverage
of tests is crucial in testing, and APF increases coverage by
finding distinct paths.

Limitations & Challenges: The performance of developing
and procedural persona is dependent on the RL algorithms. If
the RL algorithm cannot play a game, the game designer could
not use automated playtesters. Furthermore, our APF proposals
are based on exploration algorithms. The performance of APF
in an environment is linked to how well the exploration
algorithm would perform in this environment.

VII. CONCLUSION

This paper focused on the problem of providing additional
tools to game designers for playtesting. In this regard, we
proposed developing persona, a direct successor to procedural
personas. Furthermore, we presented a novel method to help
RL agents to discover unique trajectories, APF. We introduced
two APF approaches, APFCTS and APFICM.

Our results show that developing personas are a successor
of procedural personas. A game designer can embody vari-
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ous personalities in developing personas to generate unique
playtests. Furthermore, we show that automated playtesting
can be extended to 3D environments by using state-of-the-art
RL algorithms.

We proposed APF to discover unique paths in an environ-
ment. We based APF on exploration research techniques and
proposed two methodologies to implement APF, APFCTS,
and APFICM. In our experiments in GVG-AI and Doom
environments, we found that APF ensures that the same path
is not generated again.

In the future, we would like to experiment with different
personas using APF. Next, APFICM can be improved by
substituting the linear layer with an LSTM layer. This substi-
tution will provide path information rather than state transition
information. Lastly, we would like to experiment with other
3D environments such as Minecraft [31].
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