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ABSTRACT 

 

ESTIMATION OF WHEAT YIELDS BY USING REMOTELY SENSED 

AND MODELED AGRO-METEOROLOGICAL DATA-DRIVEN 

STATISTICAL AND CROP GROWTH MODELS 

 

 

 

Bulut, Burak 

Doctor of Philosophy, Civil Engineering 

Supervisor : Assoc. Prof. Dr. M. Tuğrul Yılmaz 

 

 

June 2021, 200 pages 

 

 

Estimation of wheat yield is essential not only for agricultural sectors but also for 

making economic and strategic decisions at the national level. In this thesis, wheat 

yield estimation was carried out on the cities and districts where the highest wheat 

production is made with rainfed agriculture in Turkey and on TİGEM research farms. 

Two different modeling approaches were evaluated within the scope of the thesis; a 

statistical multiple linear regression (MLR) model based on analysis of possible 

agro-meteorological variables and periods that affects wheat yield and a crop growth 

model (AquaCrop) adapted to regional operation. Wheat yields were estimated on 

the study areas using grid-based agro-meteorological data obtained from remote 

sensing and reanalysis sources. The performance of both models has been validated 

using independent validation methods. The AquaCrop adapted for regional wheat 

estimation validation statistics were calculated as 40.6 kg/da RMSE on city-based, 

47.3 kg/da on district-based, and 79.2 kg/da on farm-based models. In addition, the 

r2 values were calculated as 0.78, 0.65, and 0.69 for the city, district, and farm-based 

models. The MLR model statistics for the prediction year 2019 were calculated over 
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cities, districts, and farms as 28.5 kg/da, 52.5 kg/da, and 74.6 kg/da RMSE, and the 

r2 values were calculated as 0.90, 0.82, and 0.59. The results obtained from the study 

show that wheat yields are predicted consistently in both model approaches. The 

results obtained from the study show that wheat yields are predicted consistently in 

both model approaches. 

 

Keywords: Crop Modeling, Regional Wheat Yield Estimation, Remote Sensing, 

Genetic Algorithm, AquaCrop 
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ÖZ 

 

UZAKTAN ALGILANAN VE MODELLENEN AGRO-METEOROLOJİK 

VERİLERE DAYALI İSTATİSTİKSEL VE BİTKİ BÜYÜME MODELLERİ 

KULLANILARAK BUĞDAY VERİMLERİNİN TAHMİNİ 

 

 

Bulut, Burak 

Doktora, İnşaat Mühendisliği 

Tez Yöneticisi: Doç. Dr. M. Tuğrul Yılmaz 

 

 

Haziran 2021, 200 sayfa 

 

 

Buğday veriminin tahmini sadece tarım sektörleri için değil, aynı zamanda ulusal 

düzeyde ekonomik ve stratejik kararlar almak için de önemlidir. Bu tezde, Türkiye'de 

kuru tarımla en fazla buğday üretiminin yapıldığı il ve ilçeler ile TİGEM araştırma 

çiftliklerinde buğday verim tahmini yapılmıştır. Tez kapsamında iki farklı 

modelleme yaklaşımı değerlendirilmiştir; buğday verimini etkileyen olası tarımsal 

meteorolojik değişkenlerin ve dönemlerin analizine dayanan istatistiksel bir model 

çoklu lineer regresyon (MLR) ve bölgesel olarak çalışmaya uyarlanmış bir mahsul 

büyüme modeli (AquaCrop). Uzaktan algılama ve yeniden analiz kaynaklarından 

elde edilen grid tabanlı tarımsal meteorolojik veriler kullanılarak çalışma 

alanlarındaki buğday verimleri tahmin edilmiştir. Her iki modelin performansı, 

bağımsız doğrulama yöntemleri kullanılarak doğrulanmıştır. Bölgesel buğday 

tahmini için uyarlanan AquaCrop doğrulama istatistikleri, şehir bazlı modellerde 

40.6 kg/da RMSE, ilçe bazlı modellerde 47.3 kg/da ve çiftlik bazlı modellerde 79.2 

kg/da olarak hesaplanmıştır. Ayrıca il, ilçe ve çiftlik bazında modeller için r2 

değerleri 0.78, 0.65 ve 0.69 olarak hesaplanmıştır. 2019 tahmin yılı için MLR model 
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istatistikleri iller, ilçeler ve çiftlikler üzerinde 28,5 kg/da, 52,5 kg/da ve 74,6 kg/da 

RMSE değerleri olarak hesaplanmış ve r2 değerleri ise sırasıyla 0.90, 0.82, ve 0.59 

olarak bulunmuştur. Çalışmadan elde edilen sonuçlar, buğday verimlerinin her iki 

model yaklaşımında da tutarlı bir şekilde tahmin edildiğini göstermektedir.  

 

Anahtar Kelimeler: Mahsul Modelleme, Bölgesel Buğday Verim Tahmini, Uzaktan 

Algılama, Genetik Algoritma, AquaCrop 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Wheat and Its Importance 

Wheat (Triticum) from the family Poaceae, one of the oldest and most important 

crops, has thousands of known varieties. Among the most important varieties are 

common bread wheat (Triticum aestivum L.) and durum wheat (Triticum durum), 

used for making pasta. Wheat and wheat products form the basis of carbohydrates in 

a daily diet and meet most daily energy. Wheat alone constitutes 20% of the total 

calories consumed by humans, and with this feature, it provides more protein than 

all other food sources (Appels et al., 2018), and this ratio is 53% in Turkey (Unakıtan 

& Aydın, 2018). 

The history of wheat dates back to 10,000 years ago when it was first cultivated, and 

the findings show that the wheat is originated from the southeastern part of Turkey 

(Heun et al., 1997). The cultivation of wheat is also accepted as a major step of 

civilization because it helped humans to change their lifestyle from gathering food 

from hunting to settled agriculture (Peng et al., 2011). Its adaptation capacity allows 

wheat to be cultivated in broad ranges globally, such as Scandinavia and Russia at 

67⁰N and 45⁰S in Argentina, even in elevated regions  (Feldman, 1995). Its 

adaptability and high yield capacity, and its conversion into a dough, which allows 

the production of different food products with the gluten it contains, effectively in 

its widespread production (Shewry, 2009). 

According to the Food and Agriculture Organization (FAO) statistics, wheat is the 

cereal with the largest cultivation area in the world with 216 million ha and the 

second-highest production amount with 766 million tons after 1.1 billion tons of 
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maize production (FAOSTAT, 2020). In the graph below, wheat production 

information for 2019 is given for the 15 countries with the highest production. 

 

Figure 1.1 Top Wheat Producers Countries for 2019 (FAOSTAT, 2020) 

Wheat production of the 15 countries with the highest production constitutes 80% of 

the total production worldwide. China has the lead with around 17.5% of total world 

wheat production. Wheat production in Turkey, which is evaluated within the scope 

of this thesis, is 19 million tons, constituting 2.5% of the total production in the 

world. According to 2019 FAO data, this wheat production share makes Turkey 

ranks 11th in global wheat production. In addition to the importance of wheat as a 

human food and livestock feed, it is also crucial for countries' economies. Despite 

being one of the largest producer countries in the world according to FAO 2019 

statistics, Turkey is also the 3rd largest importer in the world with its wheat import 

of approximately 10 million tons (approximately equal to 2.3 billion U.S Dollars). 

Figure 1.2 shows the value of wheat production in the world and Turkey. According 

to the statistics, the highest value of wheat production determined in 2014 was 

globally around 200 billion and for Turkey around 8 billion US Dollars. After 2014, 

the decrease in global value is observed lower than the decrease in the value of wheat 

in Turkey. 
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Figure 1.2 Value of Wheat Production (in Billion US Dollars) (FAOSTAT, 2020) 

The variation of harvested areas and production of wheat in Turkey is given in Figure 

1.3. After 2005, a significant decrease in the total harvested area can be seen. The 

total production was not affected that much from this decrease, most probably 

because of the increase in wheat yields after 2005 about 25%. 

 

Figure 1.3 Wheat Harvested Area and Production of Turkey (FAOSTAT, 2020) 
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Considering the decreasing cultivation areas and increasing imports, it can be said 

that the estimation of wheat yield in Turkey has strategic importance economically. 

Wheat, which is grown in almost every part of Turkey except for the Eastern Black 

Sea coastline, constitutes 31.7% of the total harvested land, according to 2019 

statistics (TÜİK, 2019). The map below shows the distribution of wheat production 

in Turkey in 2019 by cities. 

 

Figure 1.4 Wheat Production of Turkey for 2019 

In addition to all this importance, it is also strategically important to examine the 

growing conditions of wheat and estimate its yield due to the increasing population 

and the increasing effects of global warming. The area under cultivation, the amount 

of production per hectare, and the amount of wheat consumption have increased 

sharply in recent years in most countries of the world, where it has gained a first 

place among cereals. Hence, estimating crop yield before harvest can be an effective 

aid for proper planning and policy in food preparation, distribution, pricing, as well 

as import and export. 

Therefore, the main research questions which guided this dissertation are as follows:  
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 What is the effect of determining the most dominant spatiotemporal 

agrometeorological variables for the regional scale wheat yield estimation? 

 How is the performance of regionally adapted and calibrated crop models by 

using reanalysis datasets?  

 Which factors affect the performance of regionally adapted crop simulation 

models? 

 Which model provides better consistency over different spatial scales and 

climate conditions? 

1.2 Literature Review 

The importance of wheat as a nutrient and as a commercial product is given in the 

previous subsection. Therefore, estimating wheat yield or production value on a 

regional scale is critical, especially from an economic perspective. For decades, 

many studies have been carried out and continue with improvement by the 

developing technology. The availability of remotely sensed agro-meteorological 

datasets and reanalysis data helped to overcome the insufficiency of observed data; 

therefore, the adaptation of these datasets into crop modeling improved the accuracy 

of the predictions. The literature on wheat yield estimation has been examined in 

detail in this subsection.  

Crop production results from the interaction of different plant processes and climatic 

factors, quantification of these factors, and the study of their relationship to yield are 

essential in extracting agro-meteorological variables based on crop models. Crop 

models developed based on agro-meteorological variables are a practical tool for 

analyzing plant responses to environmental changes. Whereas conventional 

statistical processes based on regression models are frequently used to evaluate the 

coefficients that link plant physiological responses to agro-meteorological indicators 

(Baier, 1979). 
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Different studies have shown that in finding the potential for the cultivation of 

agricultural products in rainfed conditions and the total amount of rainfall, the 

temporal distribution of rainfall should also be considered. According to the study of 

(Prasad et al., 2006), used vegetation indices as well as soil moisture, air temperature, 

and rainfall during the growing season to estimate corn yields in the IOWA state of 

USA showed that crop yields can be measured using variables in piecewise linear 

regression method with highly accurate before harvesting (R2 of 0.78). In another 

study, Michel & Makowski (2013) compared different statistical models in analyzing 

wheat yield time series and demonstrated two main advantages of dynamic linear 

models: their ability to reconstruct past observed crop yields trends and crop yield 

uncertainties. In the study of Alvarez (2009), the artificial neural network and 

regression approaches were applied using soil and climate factors to predict average 

regional wheat yield and production in the Argentine Pampas. His results showed 

that the ANN approach explained 76% of the regional yield variability, while the 

regression model performance was 64%. Leilah & Al-Khateeb (2005) studied seven 

statistical procedures to analyze the relationship between Saudi Arabia's wheat grain 

yield and its components under drought conditions. These statistical procedures were 

containing simple correlation method, path analysis, multiple linear regression, 

stepwise regression, factor analysis, principal components, and cluster analysis. 

Their results showed that the number of spikes/m2, weight of grains/spike, harvest 

index and biological yield were the most important yield variables to be considered 

under drought conditions. In another study, Kern et al. (2018) constructed multiple 

linear regression models to simulate the crop yields of winter wheat, rapeseed, maize, 

and sunflower in Hungary between the years 2000-2016. The validation results of 

their study showed that statistical models could explain the variance of observed crop 

yields by 67% for winter wheat, 76% for rapeseed, 81% for maize, and 68.5% for 

sunflower.  

Crop growth and development can also be simulated with process-based models such 

as AquaCrop (Steduto et al., 2012), DSSAT (Jones et al., 2003), WOFOST (van 

Diepen et al., 1989), APSIM (Keating et al., 2003). Plant growth models mostly 
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focus on biophysical factors such as climate and soil conditions. The use of plant 

growth models, especially in field-based studies, mainly focuses on the effects of 

different irrigation, fertilization, and management practices on yield by using these 

models instead of field experiments. Regional application of these models has also 

been conducted in several studies to estimate yield or production. 

The Aqua Crop model is one of the most important crop models developed by the 

FAO and is superior to other crop growth models due to its simplicity, low detailed 

input data requirements, practicality, and acceptable accuracy. This crop model has 

been used to simulate the growth and yield of various crops such as wheat, barley, 

sugar beet, and maize(Ahmadi et al., 2015; Heng et al., 2009; Katerji et al., 2013). 

Within these studies, it was observed that the accuracy and efficiency of the 

AquaCrop model for simulating crops are acceptable on a field scale. In the study of 

García-Vila & Fereres (2012), the irrigation management on farms is examined in 

south Spain through the AquaCrop model, where based on the results of it, different 

scenarios for reducing crop cultivated areas and increasing the price of crops based 

on the changes in the amount of available water was proposed.  

Due to the characteristics of the AquaCrop model, this model has also been used to 

simulate a wheat crop. Mkhabela and Bullock (2012) used this model to simulate 

wheat yields in western Canada, where their results showed that AquaCrop could 

simulate crop yields with good accuracy (i.e., R2 of 0.66). Kale Celik et al. (2018) 

evaluated the AquaCrop model for winter wheat under various irrigation conditions 

in a selected farm in Turkey. Their results on the attainable yields of winter wheat 

(Triticum durum L.) under four different irrigations showed that the AquaCrop 

model simulates soil water content in root zone, canopy cover, grain yield, and above 

ground biomass of wheat reasonably well (with RMSE values of 21.1 mm for water 

content and 0.34 ton/ha for above ground biomass). 

Several studies have applied the AquaCrop model for regional crop yield estimation. 

In the Iqbal et al. (2014) study, the AquaCrop model parameters were calibrated and 

validated using field-scale datasets and then revalidated with statistical winter-wheat 
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grain yield of Shijiazhuang, China, with a high degree of accuracy (RMSE 0.41 

ton/ha and Index of Agreement value of 0.60). Lorite et al. (2013) analyzed the 

impact of climate change on wheat yield in Southern Spain using his developed 

utilities, which allowed to prepare inputs and spatial analysis for the regional 

AquaCrop model runs. However, these studies used field-based calibrated model 

parameters for regional-scale runs or the model simulations using the climate inputs 

without calibration efforts (Han et al., 2020).  

Both process-based and statistical-based crop models have their advantage and 

disadvantages relative to each other. Statistical models provide crop yield using some 

predictors (e.g., vegetation indices derived from remote sensing data, meteorological 

observations), requiring few data inputs. Although statistical models are easy to 

implement, they suffer from a lack of robustness and generalization ability (Kogan 

et al., 2013). Moreover, statistical-based crop models heavily depend on the 

availability of datasets used in their development stage. On the other hand, process-

based models require many input variables related to the management practices of 

the crop in the region (e.g., sowing date, fertilizer amount, irrigation applications, 

harvest time.). Hence, the application of such models without proper calibration 

would also lead to non-robust results. 

The systematic review study of  Schauberger et al. (2020) provided comprehensive 

information about regional crop yield estimation studies in the literature. The study 

evaluated 326 regional yield estimation studies regarding their methods, results, 

input datasets, and validation efforts. Their results showed that the average 

observation yield was around 11.7 years, and most of the studies had a lack of 

independent validation efforts. Another interesting finding of their review study was 

that only 30% of the studies showed their estimation performance measures such as 

R2, RMSE, or similar. Figure 1.5 shows the input categories per model type used for 

regional crop yield estimation studies. According to the figure, most of the regional 

crop estimation studies used statistical models, and remote sensing inputs were used 

as inputs in most of the studies. 
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Figure 1.5 Regional Crop Yield Estimation’s Input Categories per Model Type in 

the Literature (Schauberger et al., 2020) 

In addition to the studies carried out by researchers with their working groups, there 

are also international projects aiming to carry out regional and country-wide crop 

yield estimation studies. In general, these projects aim to provide an early prediction 

product to the end-user by combining the methods and results of studies conducted 

in different regions under a consensus.  

The MARS (Monitoring Agricultural Resources) system in Europe has been 

providing monthly bulletin about crop-related agro-climatic conditions and crop 

yield forecasts for European union member countries since 1993 by using runs of 

WOFOST crop model based on gridded data (Lecerf et al., 2019; van der Velde et 

al., 2019). In addition to the EU member countries, since 2017, information has also 

started to be provided about neighboring countries. 

Following the United Nations 2030 Agenda for Sustainable Development, the NASA 

harvest program was established in 2017 with the collaboration of the University of 

Maryland and the NASA Applied Sciences Program to improve impact on three 
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areas: agricultural land use, sustainability, and productivity (A. K. Whitcraft et al., 

2020). The program implements earth observation-based methods to provide 

information on crop type mapping, crop condition monitoring, and yield estimation 

and forecasting to the end-user. 

The Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) 

crop monitor for Agricultural Market Information System (AMIS) aims to provide 

crop status, growing conditions, and agro-climatic conditions which might effect on 

global production of four primary crops (wheat, rice, maize, and soy) by using earth 

observations (Becker-Reshef et al., 2019; A. Whitcraft et al., 2015). The main idea 

behind the GEOGLAM is to combine national, regional, and global crop condition 

monitoring originated from independent organizations, universities, and space 

agencies. The provided information at a national or global scale helps to improve 

food security and increase agricultural market transparency. Moreover, the Crop 

Monitor for Early Warning (CM4EW) is developed under the GEOGLAM in order 

to provide a country-scale early warning response before it turns out a crisis (Becker-

Reshef et al., 2020). 

1.3 The goal of the Study 

The study aims to estimate the wheat yield on a regional scale, for which it is 

important socio-economically to be known beforehand. For this purpose, in addition 

to the statistical modeling, which is frequently used in the literature, the AquaCrop 

model, which is a crop growth model developed for field-based use, is also adapted 

to run regionally to obtain estimates for the cities and districts in Turkey with the 

highest wheat production. Moreover, the data obtained from the agricultural research 

institution (TIGEM) also used to evaluate the estimation performances of these two 

models developed within the scope of the study on a farm basis. 

In addition, the study aims to prevent the results obtained using remote sensing and 

reanalysis data from being implemented due to lack of data. In this way, the methods 
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developed and applied in the study can be used or repeated in any region without 

insufficient data problems. In addition, the usability of the re-analysis and remote 

sensing data used in the study in regional crop yield estimation studies are also 

evaluated. 

With two different model approaches developed and evaluated within the scope of 

the study, wheat yield estimation can be made not only for the following year but 

also for longer-term estimations by using data obtained from climate models, 

especially by operating the crop growth model regionally. For example, seasonal (6-

7 months) forecasts or up to 100 years climate projections for different carbon 

emission scenarios as input data in regionally calibrated the AquaCrop model 

enables assessment of the future yields. 

The study also aims to contribute to a relatively less number of similar studies in the 

literature regarding the sources of the input data used, the modeling method applied 

and the total length of data used. 

1.4 Innovation of the Study 

Firstly, this study intends to comprehensively evaluate the multiple linear regression 

method, which is widely used in crop yield estimation studies, regarding the selection 

method of predictors and validation strategy. The method used is based on evaluating 

all agro-meteorological variables that may be effective in the development of wheat 

crop and all the periods in which it may be effective during growing, using cross-

validation. Another innovation of the study is the calibration method of the 

AquaCrop model, which was developed to model plant growth at a field scale, using 

a genetic algorithm according to regional wheat yield data. In addition to the 

calibration method, adapting the model to a regional application is also an innovative 

step for regional wheat yield estimation. For this purpose, intermediate tools have 

also been developed to obtain the data provided as input to the model such as soil 

hydraulic properties and sowing dates determination. 
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CHAPTER 2  

2 MATERIALS AND METHODS 

Under this section, the definition of used input variables for wheat yield prediction, 

data sources, and the calculation procedures are presented in the materials 

subsection. While some input variables used in the study are used directly without 

any preliminary process, some should be preprocessed before being used in models. 

After the materials subsection, comprehensive information about the models used is 

given in the methods subsection. The model calibration, validation procedures, and 

metrics used to analyze the performance of the models are also described under the 

methods subsection.  

2.1 Materials/Datasets 

In terms of sources, various materials/datasets are used in this study to understand 

and analyze the relations between these datasets and crop yield in detail. However, 

two types of datasets, model-based and remote sensing-based, are obtained from a 

categorical perspective. The main reason behind using these two types of datasets 

rather than field observations is that the whole procedure to estimate crop yields can 

be used anywhere without being affected by the lack of input data. 

In brief, as model-based data, the climate reanalysis data of European Centre for 

Medium-Range Weather Forecasts (ECMWF), ERA5 (acronym of ECMWF 

reanalysis 5th generation) daily reanalysis agro-meteorological datasets 

(precipitation, temperature, wind, soil moisture, soil temperature, net radiation, and 

dew-point temperature) and as remotely sensed data; vegetation indices from the 

Moderate-resolution Imaging Spectroradiometer (MODIS), soil moisture and land 
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cover map from European Space Agency – Climate Change Initiative (ESA-CCI), 

soil properties from SoilGrids and digital elevation map from Shuttle Radar 

Topography Mission (SRTM) are used directly or indirectly in this dissertation. The 

detailed information for all used variables and their preprocess procedure are given 

in the following subsections. The general information about the materials used is 

given in the below table. 

Table 2.1 Datasets used in this study 

Dataset Source 
Spatial  

Resolution 

Temporal 

Coverage 

Temporal 

Resolution 

Precipitation ERA5 0.25⁰  1999 - 2019 Hourly 

Temperature  ERA5 0.25⁰  1999 - 2019 Hourly 

Wind  ERA5 0.25⁰  1999 - 2019 Hourly 

Net Radiation (SSR+STR) ERA5 0.25⁰  1999 - 2019 Hourly 

Dew Point ERA5 0.25⁰  1999 - 2019 Hourly 

Soil Moisture ERA5 0.25⁰  1999 - 2019 Hourly 

Soil Moisture ESA-CCI 0.25⁰  1999 - 2019 Daily 

Soil Temperature ERA5 0.25⁰  1999 - 2019 Hourly 

Vegetation Indices MODIS 1 km 2000 - 2019  16 day 

Soil Information SoilGrids 10 km - - 

Land Cover Map ESA-CCI 300 m  2000 - 2019 Annual 

Digital Elevation Model SRTM 250 m - - 

* SSR: surface net solar radiation, STR: surface net thermal radiation 

As is shown in Table 2.1, the heavy majority of datasets are obtained from ERA5 

products. The climate variables are provided globally for different pressure levels 

from 1970 up to 5 days behind the present day at hourly and monthly scales by ERA5 

(Hersbach et al., 2020).  

In the study, a standard spatial resolution of 0.25⁰ x 0.25⁰ for all datasets is selected 

to eliminate possible extra errors that may occur due to resolution differences. 
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Suppose any of the data cannot be obtained in this standard resolution (higher 

resolutions in this study case), a bilinear rescaling method is used to upscale them. 

The study period is decided according to data availability of wheat yield and 

vegetation indices. Therefore 20 years of data between the years 2000 and 2019 is 

selected. In addition, since the winter wheat growing cycle (October – June/July) and 

calendar year are not matched, all required climate data for this dissertation are 

obtained started from the year 1999. 

2.1.1 Precipitation 

The fundamental needs for crop growth are known as water, sunlight, and soil. 

Because of this fact, precipitation and precisely its accumulation along the crop cycle 

are always crucial for agricultural production. In terms of crop productivity, water 

stress due to lack of precipitation or irrigation cause a significant decrease (Ozturk 

& Aydin, 2004). Therefore, accurate and consistent precipitation data is required to 

perform reliable crop yield estimates. Since this dissertation aims to estimate crop 

yields over regions rather than point scale fields, spatially reliable and temporally 

continuous precipitation product is required. Remotely sensed or model-based 

precipitation products can provide such information that is required for regional crop 

yield estimation. 

The precipitation data used in this dissertation is obtained from the ERA5 reanalysis 

on an hourly basis. The selection of the ERA5 precipitation product is decided 

according to the recently published evaluation and validation of precipitation 

products study over Turkey (Amjad et al., 2020).  

2.1.2 Temperature – Growing Degree Days  

Similar to precipitation, the temperature is also another critical variable for 

agricultural production. The temperature has direct effects on crop growth processes 

and indirect effects like evaporation to cause water stress. Significantly, the 
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increasing temperature is one of the main critical components of the grain filling 

stage of the wheat crop (Asseng et al., 2011). 

For this dissertation, minimum and maximum temperature data is used to calculate 

the “Growing Degree Days (GDD)” variable. All used temperature data are obtained 

from the ERA5 reanalysis database in Kelvin at 2 m above the land surface. The 

temperature values given in Kelvin are later converted to degrees Celsius (⁰C) by 

simply subtracting 273.15 before used in the other calculations.  

The GDD can be explained as the cumulated heat measure to calculate or predict 

plant growth stages. It can also be described as the heat energy transmitted to crop 

over a given time period. For example, in many plant growth models, the time 

duration related to plant growth stages is given in the GDD rather than the number 

of days. The calculation of GDD can be done by subtraction of the base temperature 

from the average air temperature.  

GDD  Tavg  Tbase (1) 

The base temperature (Tbase) is a crop or cultivar specific value, and if the 

temperature is below this base value, it means that the development of a crop does 

not progress. In addition, the upper-temperature threshold (Tupper) is also another 

critical value for the GDD calculation, and similar to the Tbase, it can be defined as 

where the development of crop no longer increases. Two different methods are 

available to calculate the average temperature (Tavg) used in the equation (1), and 

both of them described by (McMaster & Wilhelm, 1997); 

Method 1: In this method, Tavg is given as follows; 

Tavg  
Tmax + Tmin

2
 (2) 

where, Tmax and Tmin are, respectively, the daily maximum and minimum air 

temperature. The calculated Tavg value later checked whether if it is in between Tbase 

and Tupper or not. If the calculated Tavg value is less than Tbase value, then it is taken 
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as Tbase (results in zero GDD for that day) and if the calculated Tavg value is greater 

than Tupper value, it is taken as Tupper (results in maximum GDD for that day). 

 

Figure 2.1 Graphical Growing Degree Days (GDD) calculation using Tbase and Tavg 

values (D Raes et al., 2018b) 

Method 2: In this method, before calculating the Tavg value, both maximum 

and minimum temperature values are checked and adjusted if required using Tbase 

and Tupper values. 

Tavg  
Tmax* + Tmin*

2
 (3) 

where Tmax* and Tmin* are, respectively, the adjusted daily maximum and minimum 

air temperature. The following rules are applied before calculation of the Tavg:  

 Tmax/min* = Tmax/min  if  Tbase ≤ Tmax/min ≤ Tupper 

 Tmax/min* = Tupper  if  Tmax/min > Tupper  

 Tmax/min* = Tbase  if  Tmax/min < Tbase 

The main idea behind specifying these two different methods is that in GDD 

calculations, the method used must be mentioned for the reproducibility of the 

calculations. Since both methods can be used for the GDD calculation of wheat crop, 

in this study, the second method is selected to calculate GDD values. According to 

the FAO AquaCrop ANNEX I (D Raes et al., 2018a), the crop-specific values Tbase 

and Tupper of wheat are given as 0⁰C and 26⁰C, respectively.  
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2.1.3 Soil Moisture 

Soil moisture is a crucial variable for water and energy exchanges between the land 

surface and the atmosphere (Dorigo et al., 2012). Due to its critical role in climate 

variability and drought studies, soil moisture is selected as an Essential Climate 

Variable by the Global Climate Observing System (WMO, 2010). In addition, soil 

moisture is an essential variable for crop yield, especially for rainfed crops (Holzman 

et al., 2014). The variable is used in many different weather forecast and drought 

analysis subjects to forest fires and crop prediction. 

Soil moisture data can be obtained mainly by in-situ observations, land surface 

model simulations, and remote sensing (satellite) based measurements. Although the 

soil moisture data obtained from the in-situ measurements are considered the most 

reliable data, it contains representativeness errors over large areas due to its spatially 

low resolution (point). For this reason, model or satellite-based soil moisture data are 

mostly used in applications that require spatially higher scale (regional, continental) 

data. In this study, two different (one model and one remotely sensed) soil moisture 

data are used.  

In accordance with other model-based variables used in this dissertation, ERA5 

volumetric soil water is selected as a model-based soil moisture product. Similar to 

the other land surface-based soil moisture products, ERA5 soil moisture is also 

available for different layers. Soil moisture data of the top layer with a depth of 0-7 

cm is used in this study. 

Remotely sensed soil moisture products are obtained using retrieval algorithms that 

convert incoming electromagnetic signals from Earth’s surface. According to their 

signal sources, these products are categorized under two different groups: active and 

passive. The active system measures the energy scattered back from the surface, 

while the passive one measures the self-emissions of the Earth’s surface. Since both 

systems are fed by the information from the Earth’s surface, their soil moisture 

products are related to the top soil surface mostly up to 2-4 cm. 
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In this study, the combination of both active and passive products, The European 

Space Agency (ESA) Climate Change Initiative (CCI) soil moisture product (ESA-

CCI), is used. ESA-CCI product is obtained by merging different satellite 

observations to provide both spatially and temporally improved soil moisture 

datasets (Dorigo et al., 2017). Since various remotely sensed soil moisture products 

are available, selecting the ESA-CCI product in this study is based on a previous 

evaluation study over Turkey (Bulut et al., 2019). ESA-CCI soil moisture v05.2 data 

used in this study is obtained at a daily time-step with a 0.25° spatial resolution. 

2.1.4 Soil Temperature 

Seedling emergence is a critical stage in wheat that depends on available moisture in 

the soil and the temperature condition of the soil (Lafond & Fowler, 1989). 

Therefore, sowing at optimum soil temperature is a crucial factor that affects crop 

yields. In this study, soil temperature values obtained from ERA5 are used to 

determine optimum sowing dates. Since the average sowing depth is 5-6 cm in cool 

climate grains (Kün, 1988), soil temperature values at top layer 0-7 cm are used. The 

sowing date determination criteria applied in this study are described in subsection 

2.4.3.2. 

2.1.5 Wind Speed 

The effects of wind speed on crops can be generally categorized as mechanical and 

climatological. Strong winds can cause damage (i.e., lodging) or even break down a 

crop or its leaves. On the other hand, slight breezes at the seedling may strengthen 

the crop’s body and roots. 

From a climatological perspective, both crop and soil temperature are directly 

affected by the wind speed. In addition to the temperature effects, the evaporation 

rate is increased by the wind effect in hot dry weather due to displacement of 

evaporated air above the crops.  
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In this study, to analyze wind effects on wheat yields, ERA5 hourly wind speed 

above from ground surface at 10 m moving towards the east (u) and the north (v) 

components are used. These datasets are later converted to daily time scale by taking 

the arithmetic mean, and then the resultant wind speed vector is calculated. At the 

final step before it is used in both evapotranspiration calculation and for the models, 

wind speed values at 2 m above the ground surface are obtained using the given 

formula below (4).  

𝑢2  𝑢𝑧

4.87

ln(67.8z - 5.42)
 (4) 

where; 

 

u2 wind speed at 2 m above the ground surface (m/s) 

uz measured wind speed at z m above the ground surface (m/s) 

z height of measurement above the ground surface (m) 

2.1.6 Vegetation Indices 

The definition of vegetation indices (VIs) might be simplified as a remotely sensed-

based quantitative measurement of the health and status of vegetation. In other 

words, VIs provides empirical measures about vegetation activity (greenness) at the 

land surface. The theory of obtaining vegetation conditions from remote sensing is 

based on the red and near infra-red (NIR) energy reflectance changes of green 

vegetation during its development. In the calculation of VIs, two or more different 

spectral bands are used to strengthen vegetation signals. With the help of using two 

or more spectral bands, VIs can provide more vegetation-sensitive information than 

a single spectral band. The red and NIR wavelength bands are often used to measure 

vegetation activity (Didan et al., 2015). 

VIs are one of the most widely used remotely-sensed (satellite) data products. The 

consistent vegetation condition information obtained from VIs is used in different 

study areas such as climate, hydrology, and agriculture. More specifically, detection 
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of land use or cover change, crop classification, drought, and crop yield prediction 

are some of the topics that use the information provided by VIs. 

In this dissertation, two different VIs are used to investigate their effect on the wheat 

yield prediction performance of the statistical-based model. Both VIs are obtained 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 

aboard the Terra satellite. The instrument can provide global both spatially and 

temporally consistent comparisons of vegetation greenness. The MODIS-based two 

VIs are produced at 16-day and monthly temporal resolutions and multiple spatial 

resolutions. In this dissertation, the MOD13A2 product, which provides both VIs 

with 16day temporal and 1km spatial resolution, is used. Later, similarly applied to 

the other products with a different resolution than 0.25⁰, VIs products are also 

upscaled to the study resolution by using the bilinear method. 

2.1.6.1 Normalized Difference Vegetation Index 

The most popular vegetation index used in the literature is the normalized difference 

vegetation index (NDVI). The index introduced in 1974 by (Rouse et al., 1974) is a 

normalized ratio of the near-infrared (NIR) and red bands. The equation used to 

calculate NDVI is given as follows, 

NDVI  
ρ

NIR
− ρ

red

ρ
NIR

 + ρ
red

 (5) 

where NIR and Red are the surface reflectances. 

The chlorophyll in plant leaves requires sunlight (visible light) absorption in order 

to make photosynthesis. On the other hand, the cell structure of the plant reflects 

near-infrared lights. So that, the NDVI uses these two contrast interactions of two 

types of lights within the plant to estimate vegetation conditions. Because the NDVI 

is a normalization-based index, its values range between 0 and 1, where 0 value 

represents no vegetation, values close to 1 means the highest possible green leaves 

density.  
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The main disadvantage of the NDVI, it is influenced by canopy background (ground 

cover) and atmospheric conditions. Because of these, NDVI values are saturated over 

a high amount of green vegetation areas (Didan et al., 2015). 

2.1.6.2 Enhanced Vegetation Index 

Similar to the NDVI, the Enhanced Vegetation Index (EVI) is also used to 

understand vegetation conditions according to vegetation greenness. Moreover, EVI 

is improved in order to overcome problems that NDVI has related to conditions in 

the atmosphere, ground cover (canopy background), and dense vegetation. Unlike 

NDVI, EVI uses blue band and coefficients to reduce atmospheric and background 

base noises and the saturation problem (Didan et al., 2015).  The formulation of EVI 

is given below. 

EVI  G
ρ

NIR
− ρ

red

ρ
NIR

+ C1 x ρ
red

− C2 x ρ
blue

+ L
 (6) 

where NIR, Red, and Blue are the full or partially atmospheric-corrected (for 

Rayleigh scattering and ozone absorption) surface reflectances; L is the canopy 

background adjustment for correcting the nonlinear, differential NIR and red radiant 

transfer through a canopy; C1 and C2 are the coefficients of the aerosol resistance 

term (which uses the blue band to correct for aerosol influences in the red band); and 

G is a gain or scaling factor. The coefficients adopted for the MODIS EVI algorithm 

are, L=1, C1=6, C2=7.5, and G=2.5 (Didan et al., 2015). 

2.1.7 Soil Information 

Soil information of an agricultural field is essential information as well as the climate 

conditions and the management methods used to simulate agricultural productivity. 

Especially, process-based crop models require soil information such as soil texture, 

hydraulic and chemical properties of soil. This detailed soil information is typically 

obtained by sample collection from the field and laboratory analysis; however, for 



 

 

23 

greater than field-scale studies such as regional or district scale, this typical 

measurement method is not applicable. At this point, local or global detailed soil 

maps or recently developed soil information systems based on remote sensing and 

machine learning are used to meet this information requirement. 

In this study, the SoilGrids soil information map is used to obtain required soil 

properties developed and managed by ISRIC (International Soil Reference 

Information Centre) — World Soil Information. Soil properties data predicted by 

using an ensemble of machine learning methods are provided globally by SoilGrids 

at 250 m spatial resolution for 7 different depth layers from 0 to 200cm. The 

predicted soil properties were tested using 150,000 unique soil profiles distributed 

over all continents, and 158 remotely sensed soil covariates  (Hengl et al., 2017). 

In order to simplify the calculations at a regional scale, the aggregated (by using the 

average method) 10 km spatial resolution version of the SoilGrids predictions are 

used in this study.  Information about soil properties obtained from SoilGrids is given 

in Table 2.2.  

Table 2.2 Detailed information of the data obtained from SoilGrids 

Name Unit Description 

AWCh1 % Available SWC* (vol. fraction) for h1 (pF 2.0) 

AWCtS % Saturated water content (vol. fraction) for tS 

BLDFIE kg/m3 Bulk density (fine earth) 

CLYPPT % Clay content (0-2 micro meter) mass fraction 

CRFVOL % Coarse fragments volumetric 

ORCDRC g/kg Soil organic carbon content (fine earth fraction) 

SNDPPT % Sand content (50-2000 micro meter) mass fraction 

WWP % Available SWC* (vol. fraction) until the wilting point 

*SWC = Soil Water Capacity 

The obtained soil properties are later used to estimate soil hydraulic parameters 

required for the AquaCrop model run. Estimating the soil hydraulic parameters are 
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achieved by pedotransfer functions published by (Saxton & Rawls, 2006). The 

pedotransfer functions are obtained from laboratory test results of different soil 

textures about their hydraulic properties. The hydraulic properties can be obtained 

by soil texture and organic matter information with the help of developed 

pedotransfer functions.  

In this study, firstly, the required soil hydraulic parameters for the AquaCrop model 

such as; soil water content (θ) at saturation, field capacity (FC), permanent wilting 

point (PWP), and saturated hydraulic conductivity (Ksat) are estimated using soil 

texture and organic matter information obtained from SoilGrids. Secondly, two 

coefficients required for estimating capillary rise and the Curve Number are 

calculated using obtained Ksat in the first step and equations given in AquaCrop 

Manual. The last required parameter, Readily Evaporable Water value, is obtained 

using FC and PWP values. 

All required calculations related to the soil hydraulic properties estimation using soil 

texture and organic matter information are achieved in the R environment.  

2.1.8 Land Cover Map 

By its definition obtained from FAO, land cover means the observed biophysical 

cover on the earth’s surface (Di Gregorio, 2005). Maps created using land cover 

information represent spatial information related to physical coverage such as water 

bodies, croplands, grasslands, and urban. The land cover and land use terms usually 

create confusion. As is explained in FAO's definition, land cover is related to 

vegetation or human-made features. In contrast, land use is related to the 

arrangements or activities of humans. For example, a recreation area is a type of land 

use that can be located over different land cover types such as grassland or bare soil.  

There are different land cover maps publicly available, especially for the European 

countries. The two most well-known examples of land cover maps can be given as 

the Coordination of Information on the Environment (CORINE) land cover 
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identification project and the European Space Agency Climate Change Initiative 

(ESA-CCI) Land Cover map. The main difference between different land cover maps 

is the used legend for classification. In order to obtain a standard classification 

system, United Nations (UN) and FAO developed a Land Cover Classification 

System (LCCS) (Di Gregorio, 2005).  

In this study, a global land cover map obtained from ESA-CCI is used because it 

provides annual data, and its classification system follows the FAO’s system. The 

legend of the ESA-CCI LC maps is given in table below. 

Table 2.3 Legend of the global ESA-CCI LC maps, based on FAO LCCS 

Value Label 

0 No Data 

10 Cropland, rainfed 

11 Herbaceous cover 

12 Tree or shrub cover 

20 Cropland, irrigated or post‐flooding 

30 Mosaic cropland (>50%)/natural veg. (tree, shrub, herb. cover) (<50%) 

40 Mosaic natural veg. (tree, shrub, herb. cover) (>50%)/cropland (<50%) 

50 Tree cover, broadleaved, evergreen, closed to open (>15%) 

60 Tree cover, broadleaved, deciduous, closed to open (>15%) 

61 Tree cover, broadleaved, deciduous, closed (>40%) 

62 Tree cover, broadleaved, deciduous, open (15‐40%) 

70 Tree cover, needleleaved, evergreen, closed to open (>15%) 

71 Tree cover, needleleaved, evergreen, closed (>40%) 

72 Tree cover, needleleaved, evergreen, open (15‐40%) 

80 Tree cover, needleleaved, deciduous, closed to open (>15%) 

81 Tree cover, needleleaved, deciduous, closed (>40%) 

82 Tree cover, needleleaved, deciduous, open (15‐40%) 

90 Tree cover, mixed leaf type (broadleaved and needleleaved) 

100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 

110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 

120 Shrubland 

121 Evergreen shrubland 

122 Deciduous shrubland 
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Table 2.3 (cont’d) 

Value Label 

130 Grassland 

140 Lichens and mosses 

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 

152 Sparse shrub (<15%) 

153 Sparse herbaceous cover (<15%) 

160 Tree cover, flooded, fresh or brakish water 

170 Tree cover, flooded, saline water 

180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water 

190 Urban areas 

200 Bare areas 

201 Consolidated bare areas 

202 Unconsolidated bare areas 

210 Water bodies 

220 Permanent snow and ice 

* Bold values show the main classes while italic ones represent the subclasses. 

According to Table 2.3, there are 22 main land cover classes are available and the 

related class to this dissertation is determined as “Cropland, rainfed”. Therefore, 

pixels/grids that are assigned as the land cover value of 10, 11, and 12 from ESA-

CCI LC maps are taken into consideration for this study. Pixel and grid terms used 

throughout the thesis are used in the same sense as each other. 

2.1.9 Reference Evapotranspiration (ET0) 

Two processes can explain the total water loss from the soil surface; the evaporation 

from the soil and the transpiration from the plant leaves. The evapotranspiration (ET) 

term is used to define the complete process of water loss from the soil surface. ET 

can be calculated using different equations in the literature, and one of the most used 

equations is the Penman-Monteith equation. 

FAO-56 Penman-Monteith equation (7) is used to estimate daily ET0 values. In the 

equation, the soil heat flux density (G) value is ignored as suggested in the FAO ET0 
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calculation manual because the effect of G is negligible for calculation at a daily time 

step. All the calculation procedure is obtained from the Irrigation and Drainage Paper 

No. 56 ‘Crop evapotranspiration: Guidelines for computing crop water 

requirements’ (Allen et al., 1998). 

ET0 
0.408Δ(Rn-G)+γ

900
T+273

u2(es-ea)

Δ+γ(1+0.34u2)
 (7) 

where 

ET0 reference evapotranspiration (mm/day) 

Rn net radiation at the crop surface (MJ/m2/day) 

G soil heat flux density (MJ/m2/day) 

T mean daily air temperature at 2 m height (°C) 

u2 wind speed at 2 m height (m/s) 

es saturation vapor pressure (kPa) 

ea actual vapor pressure (kPa) 

es - ea saturation vapor pressure deficit (kPa) 

Δ slope vapor pressure curve (kPa/°C) 

γ psychrometric constant (kPa/°C) 

 

In the calculation of the ET0, required variables are either obtained directly from 

ERA5 datasets or converted into required variables according to equations given in 

the FAO ET0 calculation manual (Allen et al., 1998). The information about the 

variables converted using relationships between climatic parameters is given below. 

Psychrometric constant (γ): 

γ  
cp P

ελ
 = 0.665 x 10

-3 
P (8) 

where 

P atmospheric pressure (kPa) 

λ latent heat of vaporization (MJ/kg) 

cp specific heat at constant pressure (MJ/kg/°C) 

ε ratio molecular weight of water vapor/dry air = 0.622 

 

In the calculation of psychrometric constant by using the equation (8), λ value is 

taken as 2.45 MJ kg-1 for the simplicity, which is the latent heat of an air temperature 
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at about 20 ⁰C and a cp value is taken as 1.013 10-3 MJ/kg °C an average atmospheric 

condition suggested by FAO. The only required parameter is the atmospheric 

pressure (P) to obtain the γ value obtained using equation (9). 

P  101.3 (
293-0.0065z

293
)

5.26

 (9) 

In order to calculate the P value, equation (9) is used, which requires elevation above 

sea level (z) in meters. The equation is derived by using the ideal gas law and 

assuming 20 ⁰C for a standard atmosphere. The psychrometric constant value is 

obtained by using elevation information obtained from the digital elevation map 

(DEM) described in section 2.1.11. 

Slope vapor pressure curve (Δ): 

Δ  4098 (
0.6108 e

(
17.27 T
T+237.3

)

(T+237.3)2
) (10) 

The slope vapor pressure curve is calculated using the given equation (10), and T 

values are taken as the mean air temperature. 

Actual vapor pressure (ea): 

ea= eo(Tdew) = 0.6108 e
(
17.27 Tdew
Tdew+237.3

)
 (11) 

The actual vapor pressure is derived by using the dewpoint temperature value in 

equation (11). 

Mean saturation vapor pressure (es): 

es= 
eo(Tmax)+eo(Tmin)

2
 (12) 

The relation between air temperature and saturation vapor pressure is nonlinear, as 

given in equation (11). Therefore, both max and min saturation vapor pressures are 

calculated rather than using mean temperature values to calculate the mean saturation 

vapor pressure value. Then the average of these two values is taken as mean 

saturation vapor pressure (12). 
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All other parameters required for calculating ET0 values such as net radiation, mean 

air temperature, and wind speed are obtained from the ERA5 datasets.  

2.1.10 Net Radiation 

The energy can be absorbed, reflected, and emitted from the earth’s surface; 

therefore, net radiation is defined as the balance of energy between these actions. 

The term net radiation (Rn) can also be defined as the difference between the 

incoming net shortwave (Rns) and the outgoing net longwave (Rnl) radiation. 

Longwave radiation, also known as terrestrial radiation, can be defined as the emitted 

radiation by the Earth’s surface, clouds, and atmosphere. The net longwave, Rnl 

variable used in this study is the radiation difference between the downward and the 

upward thermal radiation at the Earth's surface.  

The net shortwave radiation, Rns can be defined as the difference between the reached 

amount of solar radiation to the Earth’s surface (diffuse included) and the amount 

reflected back to space from the Earth’s surface.  

Both Rnl and Rns values are obtained from the ERA5 data as an hourly mean in W/m2 

units. Later they are converted to the net radiation by simply subtracting the Rnl 

values from the Rns values. The sum of Rn values of the 24 hours is taken as the daily 

net radiation values. The unit of obtained daily values is later converted to MJ/m2/day 

unit by simply dividing 106.  

2.1.11 Elevation 

The digital elevation model (DEM) of Turkey is obtained from data provided by the 

shuttle radar topography mission (SRTM) (Rabus et al., 2003) at 1 arc-second (30 

meters)  for global coverage resolution. The elevation information is required for the 

calculation of the atmospheric air pressure of each pixel. The required elevation 
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information is obtained from the upscaled DEM to the study spatial resolution, which 

is 0.25⁰ and scaled using the bilinear interpolation method.  

Information about the bilinear interpolation method can be obtained from comparing 

interpolating methods for image resampling study (Parker et al., 1983).  

In the figure below both 30 m resolution (a) and upscaled (b) version of the Turkey 

DEM is shown. 

 

Figure 2.2 Digital Elevation Model of Turkey at 30m (a) and 0.25⁰ (b) 
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2.1.12 Dew Point Temperature 

The dew point temperature refers to the temperature at which air must cool to reach 

saturation at constant pressure and water vapor content. If the temperature decreases 

below the dew point temperature, the water-holding in a gas form limit of the air is 

reached. When this occurs, the water vapor in the atmosphere turns into a liquid 

form, such as fog or precipitation. 

In this study, the dew point temperature variables are obtained from the ERA5. These 

obtained values are later used in the calculation steps of the Et0 values (equation (11). 

2.2 Study Area 

In order to evaluate the crop yield estimation performance at different spatial scales, 

city (province), district, and farm-level wheat yield statistics are required. For this 

aim, the wheat yield statistics used in this study are obtained from two different 

sources; the Turkish Statistical Institute (TUIK) and The General Directorate of 

Agricultural Enterprises (TIGEM).  

TUIK agricultural statistics are based on administrative records such as Farmer 

Registration System (farmers’ declarations) and basin information system. The 

information on crop production statistics is compiled through the city and district 

organizations of the Ministry of Agriculture and Forestry of Turkey (TÜİK, 2020). 

TUIK’s publicly available crop production statistics are provided at the city and 

district levels from 1991 from its data portal (TÜİK, 2019). For wheat statistics, 

common statistics for different wheat cultivars are given in the years between 1991 

and 2003. After 2003, durum wheat (Triticum durum) was separated from the 

common wheat statistics. Later in 2012, statistics were specified according to the 

water source of the production as rainfed or irrigated. 

In the scope of this dissertation, TUIK’s wheat production statistics in the years 

between 2000 – 2019 for both city and district levels are used. In terms of total 
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production and total harvested area, the representation of the “wheat other than 

durum wheat” statistics is more applicable than “durum wheat” statistics. In addition, 

the effect of irrigation is not taken into consideration in the analysis. Therefore, 

statistics of the “wheat other than durum” after 2003 and additionally the rainfed 

statistics are selected to be used for the years after 2012. 

The General Directorate of Agricultural Enterprises (TİGEM) is an Economic State 

Organization, free in its activities and limited by its capital, established to produce 

all kinds of goods and services needed by the agriculture and agriculture industry 

(TİGEM, 2020). Researches are carried out to increase agricultural production as 

well as improve product quality in farms operated by TİGEM at 18 different points 

in Turkey. In this dissertation, wheat yield statistics of TIGEM farms are obtained 

for 11 available years available between 2009 and 2019. It is important to note that 

all wheat yields are used in this study (provided in Appendix A) are given units of 

kg per decares (da) as it is officially provided. While a hectare is equal to 0.1 decares, 

the conversion of kg/da to t/ha can be calculated by multiplying with 100 (i.e., 100 

kg/da = 1 t/ha). 

2.2.1 City – Based  

Selected cities for the analysis are determined by total wheat production. The top 10 

cities according to the total wheat production are selected. Production details for 

2019 of these selected cities are given in the table below in alphabetical order. 

According to the table, Konya is the top wheat-producing city, and wheat produced 

in Konya is equal to 8% of the country's total production for the year 2019. Overall, 

total produced wheat in selected cities contains 42% of the total wheat production in 

Turkey. It means that estimates of this dissertation represent nearly half of the total 

wheat production of Turkey.  
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Table 2.4 Wheat Production Statistics of the Selected Cities (TÜİK, 2019) 

City Name Production (t) Harvested Area (da) Production in Turkey (%) 

Ankara 981,611 3,882,652 6.19 

Çorum 442,933 2,325,979 2.79 

Diyarbakır 757,671 1,304,398 4.78 

Edirne 497,094 1,841,973 3.14 

Eskişehir 501,362 4,111,761 3.16 

Kırklareli 467,149 1,187,839 2.95 

Konya 1,271,728 2,397,095 8.02 

Sivas 523,687 1,899,117 3.30 

Tekirdağ 857,020 1,721,140 5.41 

Yozgat 374,251 1,955,163 2.36 

Total 6,674,506 22,627,117 42.11 

*Statistics are presented for the wheat other than durum wheat (rainfed+irrigated) 

2.2.2 District – Based 

Similar to the selection of cities, district-based wheat yield statistics used in this 

study are taken from the top 10 rainfed wheat-producing districts according to 2019 

statistics. As expected, all of the districts in the top 10 are located in the selected city 

boundaries. Details about the total wheat production of the selected districts for 2019 

are given in Table 2.5 alphabetically.   

Considering the total number of districts in Turkey which is 922 in the year 2020, 

the selected 10 districts for this dissertation can be stated as significantly 

representative in wheat production with a 12% percentage of the country’s total 

wheat production. 
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Table 2.5 Wheat Production Statistics of the Selected Districts (TÜİK, 2019) 

District Name Production (t) Harvested Area (da) Production in Turkey (%) 

Bismil 181,378 496,750 1.14 

Cihanbeyli 267,051 843,400 1.68 

Haymana 168,796 661,208 1.06 

Hayrabolu 161,856 354,840 1.02 

Kangal 180,097 692,000 1.14 

Lüleburgaz 167,351 437,566 1.06 

Malkara 170,372 367,388 1.07 

Polatlı 275,180 1,108,523 1.74 

Sur 187,283 595,000 1.18 

Süleymanpaşa 150,382 347,039 0.95 

Total 1,769,209 2.78 12.05 

*Statistics are presented for the wheat other than durum wheat (rainfed+irrigated) 

2.2.3 Farm-Based 

Farms are selected from a total of 18 TIGEM farms according to available rainfed 

wheat production data. Therefore, 11 farms that satisfy the availability of 

requirements for the analysis are selected. Details about selected farms and their 

wheat production for the year 2019 are given in the table below.  

The wheat production statistics of the TİGEM farms are obtained from the main 

headquarter of TİGEM with special permission for this dissertation. The locations of 

all selected cities, districts, and TIGEM farms are shown over Turkey in Figure 2.3 

given below. The figure shows that most of the selected study areas are located in 

the central Anatolia region with 5 cities, 4 districts, and 6 farms. Also, all cities 

located in the Thrace region are selected with an additional 4 districts and a farm 

located in the same region. Lastly, Diyarbakır city located in the southeastern 

Anatolia region, and two districts within the city are selected. Five selected farms 

are not located in any selected city and districts. 



 

 

35 

Table 2.6 Wheat Production Statistics of the Selected TIGEM Farms 

Farm Name City District Production (t) Harvested Area (da) 

Altınova Konya Kadınhanı 119,16.3 74,190 

Anadolu Eskişehir Mahmudiye 2,299.80 8,646 

Ceylanpınar Şanlıurfa Ceylanpınar 65,821.70 206,517 

Çukurova Adana Ceyhan 4,357.80 14,274 

Dalaman Muğla Dalaman 4,163.40 9,950 

Gözlü Konya Sarayönü 5,449.30 26,176 

Karacabey Bursa Karacabey 3,790 10,404 

Konuklar Konya Sarayönü 1,258.30 4,794 

Malya Kırşehir Boztepe 10,006.90 51,425 

Polatlı Ankara Polatlı 21,448.10 80,880 

Türkgeldi Kırklareli Lüleburgaz 26,73.5 4,555 

 

 

Figure 2.3 Overview of Selected Cities, Districts, and TIGEM Farms 
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2.2.4 The Pixel Selection 

The wheat yield data provided by TUIK are associated with the total production and 

total cultivated area within the whole city or district boundaries. Therefore, the 

determination of the pixels to be used in the model simulations is required. Pixel and 

grid terms used throughout the thesis are used in the same sense with each other. 

Since the selected spatial resolution of the dissertation is 0.25 degrees, many pixels 

are within the boundaries of study areas.  The condition-based selection criteria are 

developed to select the optimum number of pixels related to the aim of the 

dissertation. 

The first criterion is the land cover classification; if a pixel is given as rainfed 

cropland according to the ESA-CCI land cover map during the whole study period 

(2000-2019), that pixel is selected as a candidate. Since the ESA-CCI land cover 

classification map is upscaled (converted to a coarser resolution) to the study 

resolution (0.25⁰), the number of original rainfed cropland pixels inside the coarser 

pixel border are summed to be used as the weight of the pixel. In other words, study 

scale rainfed cropland pixels are assigned with a weight value according to the 

original number of rainfed cropland pixels covered within. The estimation of yield 

for a city or district is calculated using weighted yield estimation at each pixel within 

the boundaries.  

The second criterion is pixel coverage; if more than 25% of the pixel is within the 

boundary of a city or district, that pixel is selected as a candidate. In addition, if there 

are no available pixels that satisfy the second criteria, the coverage requirement is 

respectively reduced down to 20, 15, 10, 5, 1 percentage at each step. 

The selection of pixels for cities and districts is made by selecting pixels that satisfy 

both criteria. On the other hand, since the area of any farms are less than the area of 

a pixel, the farm-scale wheat yields are assigned as point information to the pixel 

which covers the location of the selected farm.  
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2.3 Performance Evaluation Methods 

In this subsection, the methods used to compare performances and calibration-

validation statistics of each model are given. Selected methods are generally used for 

the performance evaluation and comparison of models type studies in the literature. 

Pearson Correlation Coefficient (r): It is also known as Pearson’s r, which is used to 

evaluate the linear association (correlation) between two variables X and Y as given 

in equation (13). The evaluation result can get a value between -1 and +1, where 

minus one represents negative linear correlation, plus one means total positive linear 

correlation, and zero value means there is no linear relation between these two 

variables. 

r = 
∑ (xi-xi ) (yi-y)

√∑ (xi-x)
2

i  √∑ (yi-y)
2

i  

  (13) 

Root Mean Square Error (RMSE): The RMSE can be defined as the summation of 

squared bias and variance. The expected value of the square of the difference 

between the observation and predicted values are calculated by using the following 

formula (14).  

RMSE = √∑
(ŷi-yi)

2

n

n
i=1   (14) 

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE): MAE 

and MAPE values are used to determine how much more or less the predicted values 

are than the observed values. Since the two values are calculated in absolute terms 

given respectively in equations (15) and (16), they provide information about how 

far the predicted values are from the observation values as a value with the same unit 

of data used and percentages. 

MAE = 
1

n
∑ |y

i
-ŷ

i
|n

i=1   (15) 
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MAPE = 
100%

n
∑ |

yi-ŷi

yi

|n
i=1   (16) 

Index of Agreement (IoA): A refined index of model performance is a reformulation 

of Willmott’s original IoA developed in the 1980s (Willmott et al., 2012). The 

calculation of the refined IoA is given in equation (17), where prediction is denoted 

by (P), observation is (O), and c value is equal to two. 

 

 

IoA = 

1-
∑ |Pi-Oi|

n
i=1

c ∑ |Oi-O̅i|
n
i=1

, when ∑|Pi-Oi|

n

i=1

≤ c ∑|Oi-O̅i|

n

i=1

 

c ∑ |Oi-O̅i|
n
i=1

∑ |Pi-Oi|
n
i=1

-1, when ∑|Pi-Oi|

n

i=1

> c ∑|Oi-O̅i|

n

i=1

 

(17) 

The index calculates the sum of absolute errors ratio to the sum of observed 

deviations. The doubled effect of MAE is provided by taking c = 2. One of them is 

used for the MAE itself and the other one represents the average magnitude of the 

perfect-model (Pi = Oi, for all i) deviations. 

2.4 AquaCrop Model 

The crop growth, development, or simulation models (here and after it is called crop 

models) are used to represent or simulate the growth process by using the reactions 

within the crop and its interactions with the environment. Crop yield prediction, 

productivity, water usage efficiency, climate change effects are some of the studies 

that are made possible with the help of accurate crop models. 

The development process of crops depends on many different components, from 

meteorological variables (e.g., precipitation and temperature), soil properties, crop 

phenological characteristics to fertilizer usage, and even farm management 

strategies. Although similar inputs are used in each crop model to simulate this 

complex development process, the same goal is achieved by following different 

methods or assumptions. In addition, the crop phenological data requirement of crop 
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models is not easily available in the field, so that detailed studies might be required. 

Therefore, before the model selection, an evaluation should be taken in order to 

understand the model’s purpose and scope (Bennett et al., 2013).  

Since the main objective of this dissertation is estimating the wheat yields over 

spatially large areas (e.g., farms, districts, cities) by using reanalysis and middle-

range future projections data, the model selection is made according to its process 

transparency, predefined and calibrated crop phenological parameters as well as the 

availability of other input data requirements. The AquaCrop crop model is selected 

due to its offered balance on accuracy, simplicity, and robustness.  

FAO developed the AquaCrop model (Steduto et al., 2009) in 2009 to provide 

accurate and rapid estimations on major herbaceous crop production and crop water 

productivity under different environmental and agricultural conditions. The core of 

the model can be stated as water because the brief of the whole process can be 

described as converting initially calculated transpiration into biomass. In other 

words, the model can be defined as a water-driven model. The model simulations 

can be done in daily-time steps on either calendar days or thermal days (GDD).  

FAO provides the model in three different types (AquaCrop, Plug-in, GIS) based on 

its usage purpose. AquaCrop is user-friendly software to be used in the field- or 

parcel-scale crop growth simulation with a graphical user interface and instructions 

at all components. Since many simulations are planned for this dissertation, the plug-

in version (ACsaV4) (D. Raes et al., 2012) enables the AquaCrop v6.1 model to run 

as a batch without a graphical user interface was used. The version enables to run of 

successive project files in the path of the plug-in version and then saves the 

simulation results of each projects’ files.  In order to run the plug-in version, the 

required data and parameters are prepared as AquaCrop system files in text format 

(.txt) beforehand. Then simulations take place by using these prepared system files. 

Similar to the other crop models, diseases and pests are not considered in the 

AquaCrop model. In addition to the model considerations, in the scope of this 

dissertation which is related to rainfed wheat yields, irrigation and fertilization are 
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also not considered; therefore, model runs are completed accordingly. Moreover, it 

is assumed that a single common wheat cultivar was sowed at each study area 

evaluated in the dissertation. 

In this section, brief information about the concept, calculation scheme, parameters, 

and inputs of the AquaCrop are given. In addition, the calibration and validation 

procedure information of the model that is original to this dissertation is also given 

under this section. For more detailed information about the model simulation process 

can be found in three published papers at the model release (Hsiao et al., 2009; Dirk 

Raes et al., 2009; Steduto et al., 2009) and the Irrigation and Drainage Paper No. 66 

‘Crop Yield Response to Water’(Steduto et al., 2012).  

2.4.1 The Concept and the Calculation Scheme of the AquaCrop 

The main concept of the AquaCrop evolved from the previous approach based on 

the link between the proportional reduction in yield with a reduction in ET (Steduto 

et al., 2012). This approach is explained in the Irrigation and Drainage Paper No. 33 

‘Yield Response to Water’ (Doorenbos & Kassam, 1979)  as the direct relation of 

water consumption and biomass production of a crop, since solar radiation is the 

energy behind both of the processes respectively as crop transpiration and 

photosynthesis. In other words, since photosynthesis and transpiration are both 

processes of a crop that require solar radiation energy, if the estimation of the 

reduction in one of these processes can be achieved the other process’s proportional 

reduction can also be estimated. 

The AquaCrop model is still based on the original concept of yield response to water, 

while it evolved by separating ET into transpiration and soil evaporation according 

to the extent of green canopy cover.  The reason behind this separation is that the 

non-productive part of the ET, which is soil evaporation, is excluded from the 

biomass production equation, and only the actual crop transpiration is remained to 

estimate biomass (Steduto et al., 2009). After this change and addition of the water 
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productivity parameter to the equation, the core of the model is given in equation 

(18) below. 

𝐵  𝑊𝑃 ∗  ∑𝑇𝑟 (18) 

where; 

B Cumulatively produced biomass (kg/m2) 

Tr Crop transpiration (mm or m3/unit area) 

WP water productivity parameter (kg/m2/mm or kg/m3 (water transpired)) 

 

In equation (19), the produced biomass (B) value is converted into crop yield (Y) 

value by using a Harvest Index (HI) in order to simply taking part of the harvestable 

product from all simulated photosynthetic products. In other words, HI can be 

defined as the ratio of yield to biomass. Since the effects of environment and stresses 

have different impacts on HI and B, the given equation also allows the model to 

consider effects on B and HI separately. 

𝑌  𝐻𝐼 ∗ 𝐵 (19) 

In general, the crop growth model consists of 4 major steps of the simulation 

processes (Figure 2.4). The first step of the model is started with the simulation of 

crop development. Different from other models that use leaf area index for foliage 

development, the AquaCrop model uses green canopy cover (CC), which is the 

fraction of the area covered by the canopy. The CC is a crucial feature of the model 

because the biomass produced is calculated by the amount of water transpired, which 

depends on expansion, aging, conductance, and senescence of CC. According to 

plant type and density, CC values can vary between 0 (before emergence) to a 

maximum value of 100%.  

In the second step, the model simulates crop transpiration using daily simulated CC, 

the weather, the crop transpiration coefficient (KcTr), and ET0 values. In the formula 

(20), the weather effect is given in terms of stress coefficient (Ks) explained later. 

𝑇𝑟  𝐾𝑠(𝐾𝑐𝑇𝑟,𝑥𝐶𝐶)𝐸𝑇0 (20) 
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The third step is the development of the biomass by using the given formula above 

(18), and at the final step, crop yield is simulated as shown in equation (19).  

AquaCrop uses stress coefficients to take environmental effects on the crop growth 

process into consideration. Stress coefficients (Ks) are used to modify the target 

parameters in the model; therefore, their values are changing between one (no stress) 

to zero (full stress). The value of Ks is defined by the upper and lower threshold of 

the stress indicator and a curve shape selection for its function. If the stress indicator 

is above the upper threshold, there is no stress; therefore, Ks is one. If it is at or below 

the lower threshold, the stress is maximum, and Ks is zero. In between the thresholds 

corresponding Ks value is obtained from either linear or convex shape curve.  

The calculation scheme of AquaCrop is shown in Figure 2.4 below with detailed 

stresses at one or more processes (Vanuytrecht, Raes, Steduto, et al., 2014).  

 

Figure 2.4 Calculation scheme of AquaCrop (Vanuytrecht, Raes, Steduto, et al., 

2014) 
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In the figure, the processes affected by weather stresses (a-e) and temperature 

stresses (f-g) are shown with dotted arrows. CCpot represents the potential CC 

development achieved in non-limiting conditions, and Zr is the rooting depth. Water 

stresses shown in the figure are (a) slows canopy expansion, (b) accelerates canopy 

senescence, (c) decreases root deepening, (d) reduces stomatal opening and 

transpiration, and (e) affects harvest index. Effects on processes due to the 

temperature stresses are (f) biomass productivity reduction due to cold stress and (g) 

reduction in HI and pollination inhibition because of hot or cold stress. 

2.4.2 Inputs of the AquaCrop 

Daily biomass production and final crop yield of herbaceous crops at a single 

growing season can be simulated by using AquaCrop. As limitations, only vertical 

incoming and outgoing water fluxes are considered, and the simulation area is 

assumed as uniform by the model. The simulation requires various input data and 

parameters are required which can be categorized under four different topics.  

Climate: The required climate input data consists of rainfall, ET0, minimum, and 

maximum air temperature data. The information or the required inputs' calculation 

procedure are given in related subsections under the materials section. In addition to 

climate datasets, the model also considers the mean annual atmospheric CO2 

concentration obtained from the Manua Loa observation center and already provided 

in the model from 1902 to the present.  

Crop Parameters: As a crop growth model, crop parameters are required for the 

AquaCrop simulations. In AquaCrop, crop parameters are categorized into two 

groups as follows. Conservative parameters are crop-specific but not changing due 

to climate, location, and management provided for major crops, including the winter 

wheat by FAO. These conservative parameters are already calibrated and validated 

for different crop types; therefore, they do not require further calibration, and they 

are applicable. The second group is named non-conservative parameters, which are 
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likely to require adjustments for cultivar, local environment, and management 

(Vanuytrecht, Raes, Steduto, et al., 2014).  

All crop parameters of the winter wheat in terms of thermal time (GDD) provided 

by FAO are listed in Appendix B, “AquaCrop – Default Wheat Crop Parameters 

Input File”.  

Soil Data: AquaCrop requires soil physical parameters at various depths up to 5 

layers to calculate water balance in the soil column. The required soil parameters 

are; soil water content (θ) at saturation, field capacity, permanent wilting point, and 

saturated hydraulic conductivity (Ksat). In addition to these soil hydraulic 

parameters, two parameters (CRa and CRb) describing the capillary rise in 

AquaCrop are also required. All soil data required for the AquaCrop model runs are 

prepared with soil information obtained from SoilGrids (see section 2.1.7) in the R 

environment.  

The default soil parameter file “.SOL” for clay loam soil and soil parameter file 

obtained from SoilGrids data are given in Appendix C and Appendix D, respectively. 

Management Data: The management data consists of farm management, such as the 

irrigation method, time schedule, and depth of the irrigation events. In addition to 

the irrigation, soil fertility, mulches, and field surface practice information are also 

applicable in the model. Since the study aims to obtain wheat yield estimation at 

various regional levels and these management data are applicable for field scale, no 

management data is given as input to the model. 

In addition to all required data and parameters given in the four main groups above, 

the sowing date information is also critical, required input. While the user can 

provide the sowing dates as input in the field-scale operation of the model, it is not 

easy to obtain this information for each city, district, or farm for model simulations 

that will be carried out on a regional scale and cover long years. For this reason, the 

sowing dates in the study are generated with conditions that consider temperature 

and water deficits in the topsoil layer.  
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The soil temperature criterion determines possible sowing dates, satisfying the 8-10 

⁰C temperature range at topsoil (MGM, 2020). When sowing occurs in the given 

range, wheat resistance to drought and cold improves because of faster root 

development and deeper root crowns (Kaya et al., 2015). The second criterion finds 

the days (between days that satisfy soil temperature criterion) when the precipitation 

amount is more than any percentage specified of the total reference 

evapotranspiration.  

The mathematical expression (21) of the used condition is given below. 

 Dates(t)  {
Possible sowing date, 𝑖𝑓 𝐸𝑇0𝑡

*C < 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡

Not selected as sowing date, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21) 

In the equation, C represents the coefficient between zero and one used to adjust ET0 

percentage. Determination of sowing dates with an equation with two parameters 

(coefficient C and the number of occurrences) provides flexibility to achieve 

predictions. In other words, these two sowing date parameters can also be optimized 

related to an objective function.  

The exact sowing dates can be selected according to the determined number of 

occurrences requirement from the possible sowing dates that satisfy the condition. 

For example, the optimum sowing date criteria for a selected city might be 

determined as the third occurrence of the condition that daily precipitation is higher 

than 50% of the daily Et0.  

2.4.3 Regional Application of the AquaCrop 

The AquaCrop model, like most crop growth models, is designed for field-scale 

(point simulations) applications where required parameters and inputs are mostly 

based on observations or field tests. In this section, the adaptation of model inputs 

and parameters for the regional application, the optimization method applied for the 

selected model parameters, and the methodology used for calibration and validation 
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are explained. The process scheme used for the regional application of the model is 

shown in the figure below.  

 

Figure 2.5 Input Preparation and Parameter Optimization Process Scheme used for 

Regional Application of AquaCrop 

Part A in the figure shows the input preparation step, where part B shows the 

optimization procedure. 

In the scope of this study, pixels are used to predict wheat yields over selected cities, 

districts, and farms. Therefore, the large number of simulation runs required are 

achieved by using the AquaCrop plug-in program version. In addition, the generation 

of a large amount of input and project files for a regional application of the model 

and interpretation and analysis of the results are completed in the R environment  (R 

Core Team, 2018). 
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2.4.3.1 Preparation of Input Data and Parameters 

The AquaCrop plug-in version requires a project file containing all the required 

information for a simulation run and the same input files as the AquaCrop GUI 

version.  The extension and content information of the files required for model 

simulations are presented in the table below. The detailed information about input 

files can be found in chapter two of the reference manual of AquaCrop (D Raes et 

al., 2018b). 

Table 2.7 Required input files for AquaCrop model 

File Extension Description 

*.PLU rainfall data 

*.Tnx air temperature data (min and max) 

*.ETo reference evapotranspiration data 

*.CLI the names of the climate mentioned above files 

*.CRO crop parameters 

*.SOL major physical characteristics of the successive soil layers 

*.PRM 

multiple runs project file contains; 

 the settings of program parameters  

 the simulation and growing period 

 the names of the set of input files given above 

describing the environment 

 

As shown in Figure 2.5 Part A, while precipitation data is directly stored as climatic 

data, all other data required conversion to be used as input.  The GDD data is 

obtained from the min, max, and mean temperature data. The net radiation, dew point 

temperature, and wind speed at 2 m converted from wind speed at 10-meter are used 

to calculate ET0 values. In addition to the climatic data, the preparation of the soil 

input data also requires some pre-processes. 
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The files required for model simulations are created for all selected pixels using the 

method given in Section 2.2.4. The data source of used variables and the methods if 

they need to be converted to another variable is presented in detail under Section 2.1. 

2.4.3.2 Calibration of the Model Parameters 

Like many environmental models, the AquaCrop crop growth model requires a 

number of parameters assigned from direct or indirect measurements. In many cases, 

such as in this study, the assignment of these parameters from measurement is 

impossible since it is a regional application of the crop growth model. Instead of 

assigning parameters from measurements, as an inverse problem, these parameters 

can be obtained by optimization technique which aims to minimize the difference 

between simulation results and observations. 

Therefore, in this study, determining the best parameters is an optimization problem 

with an objective function that minimizes the model’s yield prediction error. The 

model parameters used in the calibration process and the values range of these 

parameters are given below.  

The 10 parameters used in the calibration procedure are selected from non-

conservative crop parameters, and their allowable value ranges are obtained from the 

AquaCrop Model Manuel ANNEX I (D Raes et al., 2018a).  The sensitivity analysis 

of the AquaCrop Model is not achieved in this study. However, the crop parameters 

used in calibration are determined according to the study on the global sensitivity 

analysis of the model (Vanuytrecht, Raes, & Willems, 2014).  

In addition to these crop parameters, the developed two sowing date determination 

parameters are also calibrated. Therefore, the aim of the calibration procedure is to 

determine a set of the best 12 parameters for each city, district, and farm. The 

AquaCrop model calibration scheme shown in Figure 2.5 Part B is based on that at 

each iteration a new parameter set generated is tried and the procedure continues to 

up to the objective criteria reached. 
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Table 2.8 Value ranges of the calibration parameters for the AquaCrop model 

Parameter 
Lower 

Bound 

Upper 

Bound 
Description 

CGC 0.005 0.007 
Canopy growth coefficient (fraction per 

GDD) 

CCx 0.80 0.99 
Maximum canopy cover (in fraction soil 

cover) 

HI0 35 50 Reference harvest index (%) 

Emergence 100 250 Time from sowing to emergence (GDD) 

MaxRooting 650 750 
Time from sowing to maximum rooting 

depth (GDD) 

Senescence 1000 2000 
Time from sowing to start senescence 

(GDD) 

Maturity 2000 2900 
Time from sowing to start maturity (GDD) 

(length of crop cycle) 

HIstart 1000 1300 Time from sowing to flowering (GDD) 

Flowering 150 280 Length of the flowering stage (GDD) 

YieldForm 850 1100 
Building-up of Harvest Index during yield 

formation (GDD) 

Coeff. 0.10 0.75 
Coefficient used to calculate sowing dates 

criteria (ET0 * Coefficient < Precipitation) 

Occur. 1 3 
The number of days that meet the desired 

sowing date criteria 

 

Since the main objective of the calibration is obtaining a common parameter set for 

each administrative boundary that has more than one pixel within, all required 

climatic input values and soil parameters are obtained as spatial means to represents 

the conditions over these boundaries. This approach is applied to prevent overfitting 

of the parameters per pixel within the city and district boundaries, which also 

provides a spatial variability of wheat yield predictions within the administrative 
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boundaries. Overall, the aim of the calibration process is to determine the best 

parameter sets (31 parameter sets in total) for each study area given in Section 2.2. 

In order to provide a solution to this optimization problem, the model parameters 

given in Table 2.8 are calibrated by using the Genetic Algorithm (GA). 

The GA (Schmitt, 2001), a stochastic search algorithm, is based on the theory of 

natural evolution and imitates the natural selection mechanism. Like the theory of 

natural evolution, GA's search method for the best parameters is based on 

transferring fitted individuals’ genes to the next generations while eliminating 

weaker ones. Therefore, the population becomes better at each generation in GA 

(Mirjalili, 2019). 

Different than standard search techniques, GA, as an evolutionary algorithm search, 

requires an initial population. A population is composed of a set of individuals 

(chromosomes) selected randomly from the search space. Each chromosome consists 

of values that are selected for parameters, called genes. Increasing the diversity of 

the population is essential to improve the chance of finding better results.  

Since the natural selection mechanism is the inspiring point of the GA, after creating 

the initial population, each individual's fitness is evaluated, and only the fittest 

individuals’ genetic information is transferred to their offsprings (Mirjalili, 2019). In 

addition to this selection operator, GA also mimics evolution theory by using 

crossovers and mutations. Crossovers combine parts of information obtained from 

two-parent individuals to form new offsprings. On the other hand, mutations 

randomly change some information (variables) of parent individuals.  Both of them 

help to increase the diversity of the population and increase the search space. Elitism 

is often employed in GA to persist on transferring the best-fitted individuals to the 

next generations in case of their elimination (Scrucca, 2013). 

The evaluation process of GA is usually repeated until either when the maximum 

number of generations is reached or a sufficient number of generations without 

having an improvement in fitness value is achieved (Wang, 1997). 
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In this study, the optimization of the model parameters is done by using genetic 

algorithm (GA) package in the R environment (Scrucca, 2013). The required 

parameters for the GA in R and the parameter values used in this study are given 

below.  

Table 2.9 Parameters and their Values Used for the GA Package in the R 

Parameter Description Value 

popSize The population size 100 

maxiter 
The maximum number of iterations to run before the GA 

search is halted 
20 

elitism                
The number of best fitness individuals to survive at each 

generation 
5 

pcrossover 
The probability of crossover between pairs of 

chromosomes 
0.8 

pmutation The probability of mutation in a parent chromosome 0.1 

 

The objective function is selected as the index of agreement (IoA) which is given 

under section 2.3. Hence, the IoA value is calculated using simulated and observed 

wheat yields where the GA iterates parameters to increase the IoA value. 

2.4.3.3 Validation of the Model Parameters 

The calibrated parameters of a model to be used for estimation purposes must be 

verified independently or in other words, the data that were not seen by the model 

must be used during the calibration phase. It is expected that the validation 

performance of the model will be similar to performance in the predictions to be 

made. 

The method used for validation of AquaCrop is based on the splitting of the wheat 

yield data into two as calibration and validation datasets. The main idea behind the 

data splitting is that parameters obtained at the training period might be overfitted 
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for this period. Therefore, evaluating the calibrated parameters' performance is 

required when used with independent input data.  

The selected years for calibration and validation are 2000-2015 (16 years) and 2016-

2019 (4 years) for the city- and district-based AquaCrop models. As the available 

data set for farm-based models is less, years 2009-2017 (9 years) are used for 

calibration and 2018-2019 (2 years) for validation. All performance evaluation 

metrics are calculated for both calibration and validation periods. 

2.5 Multiple Linear Regression (MLR) Model 

Statistical crop yield models have been used for decades to estimate crop yields by 

using meteorological variables as independent predictors. After the development of 

remote sensing technology, vegetation indices are added as new independent 

parameters to the models. These vegetation indices improved the performance of 

statistical models by adding observation-based information about the crop 

conditions. Different methods are developed to estimate accurate crop yields before 

the harvest. The regression-based models are the most used models therefore, they 

also used as base method while comparing other methods such as artificial neural 

networks (ANNs) and recently developed machine learning methods such as 

Random Forest. Both linear and non-linear relations between agrometeorological 

variables and crop yields are investigated in many studies. 

The regression-based crop yield models rely on the simple use of meteorological and 

agronomic variables to estimate crop yield by using a linear relationship between 

one or more predictors and the crop yield. Meteorological variables such as total 

precipitation and mean temperature are obtained according to crop-specific growing 

seasons and also vegetation indices are obtained at the critical periods of crop 

growth.  

In this dissertation, a machine learning model based on multiple linear regression 

(MLR) algorithm is introduced to evaluate its wheat yield prediction performance 
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over selected cities, districts and farms. The proposed model will be stated as the 

MLR model from here and after.  The MLR model differs from traditional 

regression-based models in many ways such as; determination of time period 

selected for the predictors, selection of predictors, and validation of the model. In 

this subsection, the MLR model calculation scheme and validation procedure are 

explained. 

The MLR model is a machine learning method uses multiple linear regression 

algorithm, which also considers spatial variability of the predictors over selected 

locations. In this dissertation crop yield estimation and later prediction is done over 

different locations at different spatial levels in Turkey. Every city, district, and farm 

selected have different agrometeorological conditions therefore the proposed MLR 

model has to have a dynamic algorithm to perform accurately over each location. In 

order to provide dynamism to the model, flexibility to select time period of the 

predictors is given to the model rather than specifying time periods for each predictor 

beforehand. The same flexibility is also provided to the selection of predictors by 

offering more predictors than three which is required for multiple linear regression 

analysis.  

The MLR model uses monthly average or accumulation of rainfall, temperature, 

wind, evapotranspiration and soil moisture data, and vegetation indices (NDVI and 

EVI) as possible predictors. The temperature data similar to the AquaCrop model is 

obtained as thermal accumulation by calculating GDD values for selected time 

periods. Soil moisture data are obtained from both ERA5 and ESA-CCI in order to 

analyze the added utility of remotely sensed soil moisture variable to the crop yield 

estimates. Since the model constructed on reanalysis and remotely-sensed data is 

independent of agro-meteorological observations from the field. The regression 

equation (22) used for the model is given below. 

Yield = x0 + x1 Predictor1Period+ x2 Predictor2Period + x3 Predictor3Period (22) 

In the equation, predictors can be selected from eight different possible 

agrometeorological variables. In addition, each input data was obtained for 13 
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different time intervals in total. These time intervals were determined considering 

the periods when agro-climatic variables affect the plant growth the most and are 

shown in the figure below. 

# Period 
Yeart-1 Yeart 

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 

1 

In
d

iv
id

u
a

l 
  

  
  

  
  

  
  

 

M
o

n
th

s 

                        

2                         

3                         

4                         

5                         

6 

G
ro

w
in

g
 

S
ea

so
n

s 

                        

7                         

8                         

9                         

10 

C
ro

p
 C

y
cl

e
 

                        

11                         

12                         

13                         

Figure 2.6 Time Periods used in MLR model predictors 

Therefore, eight possible variables for 13 different time intervals come up with 104 

different possible predictors in total for the model. With the help of this 

methodology, the prediction performance of all possible predictors at agriculturally 

important time periods are analyzed. In other words, rather than doing a local search 

for the best predictors, the global search approach is used to obtain the best predictors 

for wheat yield prediction over selected areas.  

In summary, the proposed methodology determines the best predictors of the MLR 

model rather than obtaining the best coefficients for a specified set of model 

predictors. The determination of best predictors is based on the selection of the 

lowest error rates (MAPE) for each model, where the cross-validation method is 

applied to prevent overfitting. The best predictors are later used for the yield 

prediction, where the coefficients of the used equation obtained by fitting the model 

to training data. 
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2.5.1 Best Predictors Selection and Yield Prediction of the MLR Model 

In this subsection, the selection criteria for the best MLR predictors, the scheme of 

wheat yield prediction model used and validation methodology of the model is given. 

The summarized scheme of the model approach is provided, and the key points of 

the used MLR model are numbered to be detailed in Figure 2.7. 

The number of possible multiple linear regression equations with three predictors are 

increased exponentially since the number of possible predictors is 104. Since the 

used equation consists of three predictors, it means more than a million possibilities 

are available for the MLR model. In order to reduce the number, regression equations 

consist of predictors that provide similar information are excluded from the possible 

model equations. For this matter in step one, a filter is applied that predictors which 

have similar information are not used in the same equation. For example, the rainfall 

data from different time periods, the soil moisture data from different sources, and 

different vegetation indices are not used in the same regression equation. After the 

filter, the total number of 96,668 possible equations is used in the machine learning 

algorithm per pixel. 

All MLR models that used non-filtered equations are later cross-validated using the 

leave-one-out cross-validation (LOOCV) method in step two. The method is 

explained in detail in the following section (2.5.2). Since the model run is required 

for each iteration and 19 years of data are used for city and district-based models, the 

total number of required model runs per pixel is 1,836,692. The number for farm-

based is equal to 966,680 per pixel by use of 10 years of data.  

In step three, the best input combinations (predictors) for all pixels within the city or 

district boundaries or over the farms are determined according to the minimum 

MAPE value obtained in the model's training. Since the wheat yield information is 

provided for the whole rainfed croplands within the related boundaries, selection of 

a common best MLR model predictors for each administrative boundaries is 
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required. Therefore, the MAPE values for cities and districts are calculated as spatial 

means of the pixels within the boundaries. 

 

Figure 2.7 Process Scheme of the MLR Yield Prediction Model 

After obtaining the best predictors according to the MAPE values obtained during 

training, two more criteria must be satisfied before prediction. The first criterion is 

about eliminating outliers to prevent the model from a high prediction error rate, 

which is explained under the validation of MLR subsection. The second criterion is 

about city and district-based predictions that require the selected model to be 



 

 

57 

applicable at least 80% of the total number of pixels. This model's equation 

applicability consists of both the elimination of outliers and the data availability. 

The MLR model that satisfies all criteria is fitted to all training data in the final wheat 

yield prediction step. Later, by using that fitted MLR model and predictor values for 

the prediction year (the year 2019), the wheat yield is predicted. Before the final step, 

104 predictors for the year 2019 are not used at any stage of the model procedure. 

The proposed methodology determines the best predictors of the MLR model rather 

than obtaining the best coefficients for a specified set of model predictors. The 

determination of best predictors is based on selecting the lowest error rates for each 

model, where the cross-validation method is applied to prevent overfitting. The best 

predictors are later used for the yield prediction, where the coefficients of the used 

equation obtained by fitting the model to training data. 

2.5.2 Validation of the MLR Model 

Models, either statistical or physical-based, require validation/cross-validation 

procedure before being used for prediction or simulation. The cross-validation 

provides prediction error rate information about the model by re-fitting the model to 

different training data. In other words, cross-validation helps to understand what the 

ability of developed model on unseen data is. There are various methods to 

implement validation of a model. In order to provide an independent validation of 

the MLR model used in this study, the LOOCV method is applied.  

The LOOCV method is a branch of k-fold cross-validation with a k value is equal to 

the number of all available data. In k-fold cross-validation, the parameter k refers to 

the number of subsets that data split. Suppose the data is divided into parts as much 

as the size of the data; this cross-validation method is called leave-one-out cross-

validation. Therefore, the LOOCV method tries to estimate a data point that is left 

out by using the rest of all available data at each iteration (James et al., 2013). Finally, 

performance metrics (MAPE, RMSE, Correlation and IoA) of the model are 
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calculated by using the estimations obtained at each iterations. The graphical 

representation of the method is given at step two in Figure 2.7.  The LOOCV 

calculations are done using the “caret” package in the R environment (Kuhn, 2008). 

There are several advantages and disadvantages of the LOOCV method. Since the 

method requires repetition of the estimation process as many as total data points, it 

causes high computational costs. Therefore, the use of this cross-validation method 

is not offered for large datasets and low-speed model simulations. Additionally, the 

method tests the model performance against one data point at each iteration, which 

might result in higher variation in the prediction if some outliers exist in prediction 

data. However, in small datasets, as in this study, the LOOCV method provides less 

bias and robust results for estimation error rates of the model.  

In this study, the 2.5 standard deviations (~98%) threshold is only applied for the 

prediction year to prevent possible higher variations in the model predictions. The 

threshold helps the algorithm to filter MLR models which have at least one of the 

predictor value is less or more than two standard deviation from the mean of training 

years. For example, the total precipitation of April (PRECP_4) is one of the 

predictors and model is cross-validated for years between 2000 and 2018. The mean 

value of the predictor between given years is 45 mm with a standard deviation value 

of 18 mm. If the total precipitation of April 2019 is more than 63 mm or less than 27 

mm, then any model that includes PRECP_4 as one of its predictors is filtered. 
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CHAPTER 3  

3 RESULTS AND DISCUSSION 

In this chapter initial assessment of agrometeorological input variables and wheat 

yields data, determination of used pixels within the selected city and district 

boundaries, Spatio-temporal analysis results of both MLR model and AquaCrop 

model wheat yield predictions, and comparison results of the models are presented. 

After the detailed results section, a discussion part is also given under this chapter. 

3.1 Determination of Rainfed Cropland Pixels 

One of the essential points in the study is determining the pixels representing the 

rainfed agricultural production in the selected cities and districts. In order to 

eliminate possible inconsistencies and reduce model yield prediction errors (since 

city or district yield values are calculated by taking the average of the pixels within 

the boundary) this step is critical. Therefore, the annual data of the ESA-CCI land 

cover map between the years 2000-2019 were used to determine representative 

pixels. Pixels given as rainfed cropland during the entire study period were selected, 

and all the other pixels are not considered. In this way, the other stages of the study 

were carried out using pixels with agrometeorological data related to the annual 

wheat yield data. The detailed selection criteria were provided under the 

methodology section 2.2.4. 

Since it is not known whether there is only wheat production in the fields located in 

the selected pixels, they are assumed as the most associated pixels with the wheat 

production due to the fact that they are located in the cities and districts where the 

most rainfed wheat produced throughout the country. The figure below shows the 
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pixels assigned as rainfed croplands according to the ESA-CCI land cover map and 

the boundaries of selected cities and districts and TIGEM farm locations over the 

Turkey map. 

 

Figure 3.1 Rainfed Cropland Pixels from ESA-CCI LCC at 30 meters (a) and 25⁰ (b) 

In the given figure above, selected rainfed cropland pixels for the analysis are shown 

in the panel b that is upscaled version of ESA LCC at 30 meter resolution. The 

locations of TIGEM farms shown as blue triangle and the boundaries of selected 

cities and districts are shown as straight red lines and black dashed lines respectively. 

As expected, most of the rainfed cropland pixels are within the boundaries of selected 
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cities and districts. The total number of rainfed cropland class pixels over Turkey 

according to ESA LCC at 0.25⁰ is found as 367.  

In Table 3.1 given below, the number of pixels assigned to cities and districts is 

given. The total number of 200 pixels, including 11 pixels for the farms, is selected 

in this dissertation's scope. All of the model simulations and the required statistical 

analysis are completed for all selected pixels. 

Table 3.1 Number of Pixels selected for cities and districts 

City Number of Pixels District/City Number of Pixels 

Ankara 28 Bismil/Diyarbakır 6 

Çorum 5 Cihanbeyli/Konya 6 

Diyarbakır 20 Haymana/Ankara 4 

Edirne 9 Hayrabolu/Tekirdağ 3 

Eskişehir 14 Kangal/Sivas 4 

Kırklareli 10 Lüleburgaz/Kırklareli 3 

Konya 29 Malkara/Tekirdağ 3 

Sivas 7 Polatlı/Ankara 8 

Tekirdağ 11 Sur/Diyarbakır 3 

Yozgat 14 Süleymanpaşa/Tekirdağ 2 

Total 147 Total 42 

 

3.2 Initial Analysis of the Inputs Variables 

In this section, the analysis results of the input variables used are presented.  The 

preliminary analysis aims to understand the agro-meteorological conditions at 

locations selected for this dissertation and the comparison of locations with each 

other. For this aim, TUIK yield data and agrometeorological data are analyzed and 

results are given in the following subsections. 
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3.2.1.1 TUIK Wheat Yield Data 

TUIK wheat yield datasets are based on farmers’ declarations, and therefore they 

should be checked for consistency before used in the study. In order to reduce the 

number of questions in mind, a preliminary evaluation of wheat yield datasets used 

in this study is performed. For this purpose, the correlation between wheat yields of 

selected cities and districts is calculated. Even if there are too many different factors 

that affect wheat yields, high wheat yield correlations over locations close to each 

other where similar agro-climatic conditions are effective, are expected. The 

correlation matrix of wheat yields (calculated using 20 years of data) and distance 

matrix for both selected cities and districts are given in the figures below.  

 

Figure 3.2 TUIK Yield Correlation and Distance Matrices between Selected Cities 

In Figure 3.2, it is seen that the correlation of wheat yields between cities is 

negatively correlated with distances between cities. For example, in the distance 

matrix, Edirne city is close to Tekirdağ and Kırklareli cities. The wheat yield 

correlation between these cities is also higher while comparing with other cities.  
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Moreover, negative correlations in wheat yields are observed between cities that 

have higher distances to each other.  

In Figure 3.3, the relation between the distances and wheat yield correlations is more 

evident than the city case because most of the selected districts are close to each 

other as groups. For example, the high correlation between Haymana and Polatlı 

districts located in Ankara and Cihanbeyli district in Konya is clearly observed due 

to their closeness. The same relation can be seen at the top right of each panel where 

values of districts in Tekirdag are located.  

 

Figure 3.3 TUIK Yield Correlation and Distance Matrices between Selected Districts 

In order to understand the relationship between the wheat yield correlation values 

calculated between cities and the distance between cities, the correlation between 

these two different variables is also calculated. The correlation between wheat yield 

correlations and distances for cities was found as -0.67 and for districts -0.73.  

Another initial analysis is done by evaluating of yield time series of selected 

locations. For this purpose, Figure 3.4 is prepared to show the standardized yield 

value of cities and districts for the years 2000 – 2019 and TIGEM farms for the years 
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2009 – 2019. In order to simplify the evaluation of standardized yields a color palette 

that shows the condition at each location (row-wise) is applied. The reddish colors 

represent drought or in other words years with lower than mean yields, while the 

greenish color shows years with greater than mean yields. The original wheat yield 

data used in this dissertation is provided in Appendix A.  

When the city section in the figure is evaluated, it is determined that the low yield 

values between 2001 and 2004 where drought condition similar in all selected cities 

is observed. Similarly, it is understood that in the years 2007, 2008, and 2014 all 

cities except located in the Thrace region had lower yields and pointed to a dry 

period. In contrast to these drought conditions, in 2011, cities within the Thrace 

region have negative standardized yield values while all other cities have positive 

ones. The city information for selected districts and farms is also provided in order 

to evaluate the spatial consistency of yield data obtained at different spatial 

information. Same drought years can also be seen in district-based information, and 

also severity of drought conditions is consistent with city-based information. For 

example, drought conditions in 2007 show that the severity is higher in Ankara, 

which can be observed in district cases at Haymana and Polatlı districts. In the farm-

based standardized yield table which is obtained from TIGEM, similar drought 

conditions at the same year and similar severity is observed.  

Another significant consistency can be observed in 2016, where only Konya has 

negative values in city-based information. In that particular year, the negative 

standardized yield values are observed only at districts and farms near Konya. 

Overall the negative standardized yields observed are consistent with previous 

drought studies that have been published  
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Figure 3.4 Standardized Yield Data of Selected Cities, Districts and TIGEM Farms 
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These results show that the TUIK based wheat yield data is consistent due to showing 

similar variations over closer locations and following drought conditions (Bulut & 

Yılmaz, 2016). Moreover, TUIK based data is consistent with farm-based yield data 

obtained from TIGEM as a different source. Therefore obtained wheat yield data 

showed potential due to its Spatio-temporal consistency to be used in regional-based 

crop yield prediction studies. 

3.2.1.2 Agrometeorological Data 

The selection of cities and districts from different locations in Turkey for wheat yield 

prediction provides various agrometeorological conditions. It is expected that the 

performance of the models under different conditions will be revealed by evaluating 

the prediction models established within this agrometeorological diversity. 

Therefore, the following figures are prepared using data of all study periods 

(September 1999 – August 2019) to investigate the variations of all variables used 

in this study at the city, district, and farm-scale, respectively. The total precipitation, 

growing degree days, and the reference ET variables are calculated as accumulation 

from October to July. The mean of growing season (March 1st – June 1st) is used to 

understand the variation for the other variables.  

In Figure 3.5, agrometeorological variables obtained from pixels within the city 

boundaries by taking the mean of all pixels selected as rainfed cropland are presented 

in boxplots. In total precipitation comparison plot, cities can be categorized 

according to their median precipitation of 20 years data. According to that principle, 

3 cities have (Ankara, Eskişehir, and Konya) precipitation median below 400 mm, 3 

cities (Çorum, Sivas, and Yozgat) in between 400 and 500 mm, 3 cities (Edirne, 

Kırklareli, and Tekirdağ) in between 500 mm and 600 mm, and only Diyarbakır more 

than 600 mm (with an outlier value as around 1200 mm).  
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Figure 3.5 Variations of Agrometeorological Variables at Selected Cities 
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When a comparison of selected cities according to cumulative GDD is taken into 

account, it can be seen that Sivas has significantly low GDD during a crop cycle. All 

cities in the Central Anatolia Region (Ankara, Çorum, Eskişehir, and Konya) have 

nearly similar cumulative GDD variations and median. In addition, cities located in 

the Thrace Region and Diyarbakır have relatively higher cumulative GDD. It is 

expected that low GDD values are obtained over locations with lower temperature 

values, and this case is seen in the Sivas case, where the annual mean air temperature 

is around 9⁰C.  

In the ERA5 based soil moisture boxplot prepared for growing season data, it’s seen 

that variations between the years are high except the Tekirdağ case. Median soil 

moisture values of Kırklareli, Sivas, and Tekirdağ are nearly similar to each other 

and around 0.35 mm/mm, which can be concluded as relatively wetter than other 

selected cities in growing season. According to the soil moisture median of 20 years, 

Konya has driest conditions; after that, Eskişehir and Ankara also have lower values. 

Another soil moisture comparison is made by using remotely sensed values obtained 

from ESA-CCI. In the boxplot of ESA-CCI soil moisture, it can be seen that both 

soil moisture products show similar results while the difference between the cities is 

fewer than the ERA5 based soil moisture comparison.  

The NDVI and EVI box plots show similar differences between the cities as well as 

similar temporal variations for each city. Cities located in the Thrace Region have 

similar NDVI and EVI values to each other, and they all have higher values while 

comparing with the other cities. Similarly, all cities located in Central Anatolia also 

have nearly similar values to each other.  

The relation between GDD and vegetation indices can also be seen from boxplots. It 

shows that higher cumulative GDD values for the complete crop cycle result in 

higher NDVI and EVI values for the growing season. In other words, a direct relation 

between GDD and crop growth is observed; for example, Sivas has the lowest 

cumulative GDD, which results in less greenness in period of April-June.  
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In the panel of ET0, except for two cities, all cities' median values are between 550 

and 600 mm of total ET. Sivas has the lowest ET0 values while comparing with other 

selected cities, and on the other hand, Diyarbakır has the highest ET0 values. 

Moreover, it is also seen that the time variation of ET0 values is higher mostly in the 

Central Anatolian cities.  

The wind conditions of the selected cities during the growing season are presented 

in the wind panel. It can be seen that Diyarbakir has the lowest wind values as well 

as the lowest temporal variation related to other cities. Like some other 

agrometeorological variables, cities located in the same regions have nearly similar 

wind speed values. It is observed that Thrace is windier than Central Anatolia. 

In Figure 3.6, all used agrometeorological variables are plotted in boxplots for the 

selected districts. As expected, conditions over districts are mostly parallel with the 

conditions of the cities these districts are located in. For example, the Kangal district 

of Sivas city has the lowest values of cumulative GDD and vegetation indices similar 

to Sivas.  

According to the total precipitation comparison, districts located in the Thrace region 

and Diyarbakir have a median value of around 600 mm, while the Central Anatolian 

districts have around 400 mm. Similar to the total precipitation box plots, the same 

two different groups of districts are observed in GDD, NDVI, and EVI boxplots. 

Unlike the variables in which similar conditions are observed as a group when the 

Et0 variable is examined, it is seen that the districts in Diyarbakır are not similar to 

the districts in Thrace Region but have similar values to the districts in Central 

Anatolia except Kangal.  

According to mean wind speed values, districts of Ankara have values around 2 m/s 

during growing season while districts of Diyarbakır have the lowest wind speed with 

values less than 1.5 m/s. All other districts have nearly similar wind speed with 

values less and around 2.5 m/s.  
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Figure 3.6 Variations of Agrometeorological Variables at Selected Districts 
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Similar to the city-based comparison, ESA-CCI soil moisture products show higher 

temporal variation in district-based compared with ERA5 based soil moisture. In 

addition to that, districts of Ankara and Kangal district are in the driest condition 

according to both soil moisture products. 

The comparison of agrometeorological variables among TIGEM farms is shown in 

Figure 3.7. According to total precipitation boxplots, Çukurova and Dalaman farms 

which are located in the southern part of Turkey (southeastern and southwestern 

respectively) have the highest total precipitation with median values around 1000 

mm. After these two farms, another group of two farms in the northwestern part of 

Turkey, Karacabey farm located in Bursa, and Türkgeldi farm located in Kırklareli, 

has the second-highest median values with around 600 mm. All other farms generally 

located in the central Anatolia region, have nearly similar total precipitation median 

values in between 200 and 400 mm.   

Farms located in the south of Turkey have higher cumulative growing degree days 

during the complete crop cycle, while the highest GDD value is determined at 

Dalaman Farm, as seen in the GDD panel. The farms located in the northwestern part 

of Turkey get the second-highest GDD values after these farms. 

The relation between GDD and vegetation indices is also can be detected in farm-

based comparison plots. NDVI values of farms during the growing season (April-

June) are higher, where total GDD values higher. It shows that over farms with 

higher GDD, crop growth is ahead relative to others since sufficient GDD is supplied 

earlier. In other words, crop greenness is higher due to the level of growth that has 

already reached the optimum level at the selected period. In addition, the farms that 

have median NDVI values between 0.3 and 0.4 have higher temporal variation 

relative to already optimum greenness achieved farms during selected growing time 

period. Similar to city and district-based comparisons, both vegetation indices show 

similar variation over all farms. 
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Figure 3.7 Variations of Agrometeorological Variables at TIGEM Farms 
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In the Et0 boxplot panel, the Ceylanpınar farm is noticed with significantly higher 

Et0 values than other farms. Similarly, the other two highest Et0 values are observed 

at the farms located in the southern part of Turkey. All other remaining farms have 

similar variation and median values, ranging between 550 and 600 mm.  

According to the wind comparison box plots, the windiest farms are found as 

Türkgeldi and Ceylanpınar farms, where Çukurova farm has the lowest wind value, 

around 1 m/s. Other farms have similar wind conditions during growing seasons with 

around 2 m/s. 

Overall, agrometeorological values obtained over selected cities and districts can be 

grouped under three main groups according to their geophysical locations, such as 

the Thrace Region, Central Anatolian Region, and southeastern Anatolia region. The 

same groups can also be observed at farm-based comparisons as southern 

northwestern and central parts of Turkey. There are also significant differences in 

agrometeorological variables even between some cities, districts, and farms grouped. 

An expanded performance evaluation of wheat yield prediction of both models is 

possible with the help of these spatial variabilities in agrometeorological variables. 

Since this dissertation aims to predict wheat yields of 2019, a detailed comparison 

between agrometeorological variables of the past years and the prediction year is 

essential. Therefore, Figure 3.8 is prepared and explained here as an example, and 

the same panels for all other selected cities, districts, and farms are provided in 

Appendix E. 

In Figure 3.8, the time series of NDVI, GDD, wind speed, and soil moisture variables 

are given for the prediction year, as the mean of the past 5 and 10 years as well as 

minimum and maximum values of the last 20 years. In addition, cumulative 

precipitation and ET0 values with the comparisons of prediction year and mean of 

last 10 years are also provided. Moreover, the location of the specified city and 

selected pixels within the city information are also given.  
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Figure 3.8 Detailed Agrometeorological Variables Monitoring Panel 
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3.3 AquaCrop Model Results 

In this section, the regional application performance of the AquaCrop Model for 

wheat yield prediction is evaluated. Therefore, the obtained soil properties required 

for each selected pixel, sowing and harvest dates for each study area, GA calibration 

results,  the wheat yield estimation variation between pixels, and the model’s wheat 

yield prediction results are given in detail.  

3.3.1 Determination of Soil Properties 

As provided in the methodology section, the AquaCrop model requires 

climatological data and soil characteristics for a model run. The soil information 

obtained from SoilGrids that later converted to the required soil parameters is 

presented in this subsection.  

The soil type information, soil saturated hydraulic conductivity (Ksat), and field 

capacity (FC) were obtained over Turkey at 0.25⁰ resolution given in Figure 3.9. In 

all three maps, the boundaries of selected cities and districts are shown, and farms' 

location is shown with red squares.  

According to the soil type map created using the top three-layer soil content 

(percentages of silt, clay, and sand) obtained from SoilGrids data, six different soil 

types were determined over Turkey. Most of the pixels within selected cities and 

districts were found as either loam (Lo) or clay loam (ClLo) type of soil. Only 

exceptions were seen as a pixel in Çorum as silty clay loam (SiClLo) and five clay 

(Cl) soil type pixels within Diyarbakır. 

In the Ksat map of Turkey, Ksat values were determined over the eastern black sea 

region were above 2.5 cm/hr, and the eastern part of Turkey was also showed values 

mostly above 2 cm/hr. The Ksat values obtained over selected pixels in this study 

did not show much differences, where nearly all of them were calculated around 1-

1.5 cm/hr.  
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Figure 3.9 Distribution of Soil Characteristics obtained from SoilGrids 
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As mentioned in the methodology section, the field capacity parameter is a critical 

parameter for the AquaCrop model. The field capacity map showed that FC values' 

variability was higher than Ksat values for selected boundaries. The highest FC 

values were obtained over Diyarbakır, especially over the selected districts Sur and 

Bismil. In contrast, the lowest FC values were calculated over Eskişehir.  

An example of the prepared soil parameter file from SoilGrids data (.SOL) for the 

AquaCrop Model is given in Appendix D.  

3.3.2 Genetic Algorithm Calibration Results 

The Genetic Algorithm was used to calibrate the selected 12 AquaCrop model 

parameters. The IoA value was calculated using simulated and observed wheat yields 

where the GA iterates parameters to increase the IoA value. The figure below 

calculated best, mean, and median of IoA values at each population of the GA are 

shown for Konya. 

 

Figure 3.10 GA Parameter Calibration Performance for Konya 
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In the graph that after the 4th generation, the best value saturated where the mean 

and median continued to increase. At the 12th generation, the algorithm stooped 

iteration because there was no more improvement in the IoA values. The calibrated 

parameters for all study areas are given in Appendix F, and the GA performance 

results are given bottom right of each AquaCrop Results graphs in Appendix G. 

3.3.3 Determination of the Sowing and Harvest Dates 

The sowing dates for each city, district, and farm were obtained using calibrated 

sowing date parameters, which helped locate the date according to soil temperature 

and available water content in the topsoil layer. The harvest dates were obtained by 

adding the required GDD for the maturity of the wheat crop found by calibration to 

the sowing dates. The variation of sowing and harvest dates during the study period 

for all selected areas is given in Figure 3.11 and Figure 3.12, respectively.  

The earliest sowing dates were obtained in Sivas, Kangal, and Anadolu at the city, 

district, and farm-scale in the sowing dates figure. The highest variation in sowing 

dates was obtained mostly in study areas located in the central Anatolia region. The 

latest sowing dates were found in the Çukurova and Ceylanpınar farms, where the 

temperature values slightly higher than all other study areas.  

In Figure 3.12, harvest dates variation for all study areas were found similar to each 

other as around a month. Most of the area's harvest dates were determined between 

the second half of June and the first half of July. The earliest harvest dates were 

determined in the Çukurova farm at the beginning of June. The latest harvest dates 

were found as the third quarter of July for Sivas city. 
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Figure 3.11 Variation of Sowing Dates used in AquaCrop 
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Figure 3.12 Variation of Harvest Dates used in AquaCrop 
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3.3.4 Wheat Yield Prediction Results 

In this subsection, wheat yield prediction results of the AquaCrop Model obtained 

over selected cities, districts, and farms are given. As an example, city-based time 

series of predicted and observed wheat yields are given below for Konya. 

 

Figure 3.13 AquaCrop Model Wheat Yield Prediction Results for Konya 

In the figure, the blue shaded area represents the variability of wheat predictions 

across all pixels, where 29 pixels are available over Konya. The mean of pixels is 

shown with blue points and observed yield statistics in between the shaded area and 

black points. 

The model statistics given at the bottom right of the figure were calculated by using 

the simulated and observed yield for years between 2000 and 2015. The wheat yield 

of the years 2016- 2019 was predicted using coefficients of the MLR model obtained 

in training. The RMSE of the model was 42.5 kg/da (0.425 t/ha), and the correlation 

of the model was calculated as 0.542. The MAPE value was calculated as 17.5% for 

the Konya wheat yield prediction model. The wheat yield of predicted years was 
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predicted with a 23.2% absolute difference from the observed yield. The model 

results were consistent with observed yields in many years except 2001, 2014, and 

2016. A good agreement on the decrease of crop yields for all 29 pixels in 2012 was 

observed over Konya's drought conditions. Similarly, it is observed that in 2011 as a 

wet year, all 29 pixels agreed on high simulated wheat yield values. 

The scatter plots of observed and predicted yields for each city, district, and farm are 

shown in Figure 3.14, Figure 3.15, and Figure 3.16, respectively. 

In city-based model results (Figure 3.14), it can be seen that calculated MAPE values 

were ranged in between 12.7 to 18.4%, where the lowest was calculated in Edirne 

and the highest in Çorum. The lowest correlation values can be explained with the 

use of the objective function during the calibration period. Since the IoA was used 

as a performance evaluation metric, the calibration forced the model to maximize the 

value of IoA, which also helped to decrease MAPE values. The calculated IoA values 

for cities were ranged between 0.44 and 0.59. The predicted wheat yields were found 

accurate with the observed values in most cities; it can be seen from the red dots that 

are close to the one-to-one line in the scatter plots. The MAPE values of predicted 

years varied between 8.4 and 23.2%. The lowest prediction MAPE values were 

obtained over cities located in the Thrace region and Diyarbakır as below 10%, 

where all other cities were higher than 10%. In addition, only two cities Konya and 

Sivas, had more than 20% MAPE value for the predicted years.  

In the following figure (Figure 3.15), the district-based model predictions and 

observed values scatter plots are given. In contrast to the highest MAPE (26%) for 

training, the highest correlation (0.84) and IoA (0.76) were calculated over 

Bismil/Diyarbakır. In the scatter plot of the Bismil district, the highest errors were 

calculated at lower observed yield values less than 100 kg/da. The lowest MAPE for 

training value was calculated over Lüleburgaz/Kırklareli as 10.2%, where the IoA 

value obtained as 0.54. The predictions MAPE were calculated in between 6.9 and 

26.9%. In general, model prediction errors at districts located in the central Anatolia 

region were relatively higher than the districts located in the Thrace region.  
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Figure 3.14 AquaCrop Model Wheat Yield Prediction Results for Cities 
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Figure 3.15 AquaCrop Model Wheat Yield Prediction Results for Districts 
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Figure 3.16 AquaCrop Model Wheat Yield Prediction Results for TIGEM-Farms 
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In the last scatter plot (Figure 3.16), MLR model prediction results for farms are 

given. The scatter plots showed that the predictions' variation was less than the 

observed values over the Anadolu, Karacabey, Konuklar, and Malya farms. The 

calculated MAPE for training ranged between 10.4% and 55.1%. The highest MAPE 

value was obtained over the Gözlü farm, where the highest error was calculated at 

the observed yield value less than 100 kg/da. Similarly, the highest prediction error 

was calculated less than 100 kg/da observed yield again at the Ceylanpınar farm. 

Due to that prediction at the Ceylanpınar farm, its prediction MAPE value was 

calculated as 162%, where all the other farms' prediction MAPE values ranged 

between 0.8% and 54.6%. Moreover, in terms of a sign of good agreement between 

simulated and observed yield values, all calculated IoA values were found more than 

0.5.  

To compare city-, district- and farm-based MLR model results, the overall results of 

each base are given in the following scatter plots (Figure 3.17). 

In the top scatter plot, the results of all 10 selected cities with 20 years of data are 

shown. The overall training MAPE and prediction MAPE for cities were calculated 

as 15.3% and 13.6%. In addition, RMSE values for training and prediction at the city 

level were found as 46.6 kg/da and 40.6 kg/da, respectively. In the district-based 

overall scatter plot, the training MAPE for districts was calculated as 16.8%, where 

prediction MAPE was found as 17.2%. In farm-based results, the MAPE value of 

training was calculated as 25.7% and for prediction was 32.6%. In general, a good 

agreement between simulated and observed yields was achieved at each spatial 

information level. The results also showed that at field scale predictions, regional 

application of the AquaCrop model mostly overestimated the yield results. In 

contrast, the predictions for city and district-based cannot be classified as over or 

underestimated.    
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Figure 3.17 Overall AquaCrop Model Temporal Results for Cities, Districts and 

Farms 
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According to observed yields, the developed methodology based on calibration of 

crop parameters and sowing date parameters showed significant results in regional 

wheat yield prediction. The method aimed to find the best parameters for each wheat 

yield information source, such as cities and districts; therefore, a variation between 

pixels within these boundaries was expected. In order to analyze this variation 

between pixels, Figure 3.18 shows the spatial distribution of MAPE values obtained 

during the training phase of AquaCrop models.  

In the city-based map, all 145 pixels’ MAPE values out of 147 were found less than 

25%, except two pixels located in the northern part of Diyarbakır and the other 

located in the southern part of Sivas. The most accurate yield predictions were 

obtained over the Thrace region pixels, especially in Tekirdağ and Edirne compared 

with other selected cities. Similar to Tekirdağ, the variation of pixel MAPE values 

were found consistent across Eskişehir and the eastern part of Diyarbakır.  The pixels 

in Ankara also showed consistent MAPE values in the range of 15-20%.  

In the district-based map, similar to city-based, pixels within districts located in 

Tekirdağ showed the lowest MAPE values. In addition to Tekirdağ’s districts, 

Diyarbakır’s Sur district also showed low MAPE values within the range of 5-10%. 

On the other hand, the highest MAPE values were found in Diyarbakır/Sur, with 

more than 25% at southern pixels. The location of the highest error pixels was 

overlapped with the lower density of cropland pixels shown in Figure 3.1.  

According to the farm-based results spatial distribution, the highest MAPE values 

were obtained in the farms located in Konya. The best prediction at farm-based was 

obtained in the Çukurova Farm.  
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Figure 3.18 Spatial Distribution of AquaCrop Model MAPE values  
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3.4 MLR Model Results 

3.4.1 Performance Evaluation of the Predictors 

In this section, the performance of predictors used for wheat yield prediction is 

evaluated. The selection of best model predictors,  the elimination of outliers, the 

variation between pixels, and the model’s wheat yield prediction results are given in 

detail.  

3.4.1.1 Selection of the Best Model Predictors 

Normalized Mean Absolute Percentage Error statistics of each MLR model were 

calculated to determine the best three predictors out of 104 different predictors (8 

variables at 13 time periods) for each city, district, and farm. Since the number of 

total MLR models was about 100,000, to simplify the evaluation, each variable's 

contribution to prediction was visualized using the prepared normalized MAPE 

figures.  

In the following figure, rows are the variables, and columns are the periods of 

variables selected for the MLR model. The color of each cell represents the negative 

(reddish) or positive (greenish) effect of that corresponding predictor to the wheat 

yield prediction. In order to provide that effect information, normalization of all 

MAPE values was done by extraction of the mean MAPE and then division with 

standard deviation (SD). Moreover, each cell represents the mean normalized MAPE 

value of all models includes that corresponding predictor.  

 



 

 

91 

 

Figure 3.19 MLR Model Performance Results for Konya 

As an example, Figure 3.19 was prepared to show the model performance results of 

Konya based on predictors. The mean MAPE value of all calculated MLR models 

for Konya was found as 14.6%, and the standard deviation is found as 1.2%. The 

seventh column of the NDVI row (pointed with a white dot) shows the positive effect 

of the mean NDVI of April-June is more than two SD. In other words, independent 

from the other two variables used in the models, the mean NDVI of April-June 

provides a powerful signal to predict wheat yields over Konya. The other two of the 

best three predictors for the Konya were determined as the mean soil moisture of 

March-June and the total precipitation between October and June. These selected 

predictors showed their high effect over prediction as an individual regardless of the 

other two predictors. Therefore the combination of these three predictors was 

selected as the best MLR model predictors for wheat prediction of Konya. 

The same graph is prepared for all cities, districts, and farms to understand patterns 

of predictors according to locations. In the figure below, firstly, city-based analysis, 

the graph is given. 
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Figure 3.20 MLR Model Performance Results for Cities 
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Each box represents each selected city, and the normalization of MAPE values is 

done within each box.  The figure's legend is independent of boxes, and it shows the 

color range according to standard deviation. Therefore, one standard deviation might 

be equal to 0.8% in the Ankara case or equal to 1.9% in the Sivas case. The selected 

predictors are shown with white dots.  

The figure shows that the vegetation indices obtained in growing seasons, either an 

individual month or a period, improved yield prediction overall cities. In addition, 

all cities except Edirne used the vegetation index as a prediction in the selected top 

MLR models. In some cities, predictors that provided a positive effect (minus SD) 

on prediction were not selected because of either elimination due to outlier or an 

insufficient number of available pixels. As a reminder, if one of the vegetation 

indices was selected for the best predictor, the other one was eliminated. 

Like vegetation indices, as expected, total precipitation values were the best 

predictor for all cities except one (Diyarbakır). Soil moisture, ET0, GDD, and wind 

were the other predictors selected for the best MLR model. Interestingly, the wind 

effect on wheat prediction was significant over Edirne, and therefore mean wind 

value between October and June was selected as one of the predictors. When the 

overall cities box is investigated, vegetation indices of May and growing seasons and 

soil moisture during the growing season and total precipitation of crop cycle were 

found as predictors with a positive effect on wheat prediction. Overall cities mean 

MAPE value was 14% over selected cities, where the lowest was found over 

Eskişehir as 11.6% and the highest over Sivas as 16.6%. 

The district-based performance results of each predictor are given in Figure 3.21 

below.  
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Figure 3.21 MLR Model Results for Districts 
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Similar to the city-based, district-based analysis results show that vegetation indices 

during the growing season showed their positive impact on wheat prediction. In 

district-based model results, soil moisture values were selected as predictors of 

almost all of the cities. Compared with city-based evaluation, mean MAPE values 

over districts were found relatively higher, with an overall mean MAPE for districts 

as 19.7%. The lowest was found over Haymana/Ankara as 11.6% and the highest 

over Bismil/Diyarbakır as 32%. 

The results over farms were relatively different than city and district-based results. 

Since farms are more spatially specific agricultural areas, remotely sensed-based soil 

moisture variables were found as predictors in the best MLR model where available. 

The main difference of the farm-based model results was that either the remotely 

sensed soil moisture or modeled soil moisture products were selected as a predictor 

for nearly all of the farms except Dalaman farm. The Dalaman farm, where any soil 

moisture data was not available because of its location near the sea, could not 

evaluate soil moisture values as a predictor.  

Moreover, it is clearly seen that the positive impact of vegetation indices on 

prediction was time-dependent. In other words, the effect of vegetation indices might 

be both positive and negative according to the selected time. For example, the mean 

NDVI values obtained in March or April showed a positive effect, while NDVI 

values obtained after the harvest in June or July showed a negative impact on the 

wheat prediction models of the TIGEM-Ceylanpınar farm. Due to these effects' high 

negative values, the overall farm mean MAPE value was 32.2% higher than city and 

district-based results. In addition, the number of years used for farm-based analysis 

was less than the other two that also provide high standard deviations in overall farm-

based SD as 3.5%.  
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Figure 3.22 MLR Model Performance Results for TIGEM Farms 
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3.4.1.2 Elimination of Models with Outliers for Prediction 

Predictors were selected from the best three predictors out of 104 candidate 

predictors with the lowest MAPE from all possible model combinations. All models 

were cross-validated using the LOOCV method based on predicting each year's yield 

in each iteration, as explained in the method section. Therefore, the developed 

method was highly sensitive to the prediction year's inputs. In order to overcome this 

issue, models that require possible outlier needed to be filtered by applying a 2.5 SD 

threshold. 

The figures below (Figure 3.23 and Figure 3.24) show examples of filtered model 

yield predictions and inputs where the red lines at the bottom represent 2.5 standard 

deviations that were calculated using training datasets only. As shown in Figure 3.20, 

EVI(4-7) as a predictor showed a better performance than NDVI(4-6) during the 

training phase of the model for Kırklareli. However,  the EVI(4-7) value obtained 

for the year 2019 was less than the 2.5 SD threshold, and its effect on yield prediction 

for that year was a considerable decrease. In Figure 3.24, the total precipitation for 

the year 2019 was obtained above the 2.5 SD threshold for Bismil. Even the 

PRECP(9-7) as a predictor showed better results during training than SM(4-7), the 

model used PRECP(9-7) was filtered. The filter algorithm avoided the 

overestimation of the yield prediction for the year 2019.  

In addition to the case of Kırklareli, the EVI as a predictor similarly showed high 

decreases in some of the other cities and districts. Since both vegetation indices 

provided improvement for yield prediction, as shown in Figure 3.10 and Figure 3.11, 

it would be a better choice to make yield predictions with NDVI rather than EVI 

because of the possibility of a high decrease be caught by the outliers’ detection 

algorithm.  
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Figure 3.23 Filtered and Selected MLR Model Predictors and Results for Kırklareli 
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Figure 3.24 Filtered and Selected MLR Model Predictors and Results for Bismil 
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3.4.2 Wheat Yield Prediction Results 

In this subsection, wheat yield prediction results obtained over selected cities, 

districts and farms are given. As an example, city-based time series of predicted and 

observed wheat yields are given below for Konya. 

 

Figure 3.25 MLR Model Wheat Yield Prediction Results for Konya 

In the figure, the red shaded area represents the variability of wheat predictions 

across all pixels, where 29 pixels are available over Konya. The mean of pixels is 

shown with red points in between the shaded area, and observed yield statistics are 

shown with black points. 

The common predictors were used for all pixels to determine spatial consistency 

within the city border. The MLR model predictors used for Konya (given bottom left 

of the figure) were total precipitation during the crop cycle between October and 

June, the mean soil moisture during the growing season between March and June, 

and the mean NDVI values obtained between April and June.  
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The model statistics given at the bottom right of the figure were calculated by using 

the simulated and observed yield for years between 2000 and 2018. The wheat yield 

of the year 2019 was predicted by using coefficients of the MLR model obtained in 

training. The RMSE of the model was 28.2 kg/da (0.282 t/ha), and the correlation of 

the model was calculated as 0.80. The MAPE value was calculated as 9.9% for the 

Konya wheat yield prediction model. The wheat yield of 2019, which is the main 

objective of this dissertation, was predicted with an 11.2% absolute difference from 

the observed yield. Overall, the model used to predict wheat yields over Konya 

showed significant results as nearly all years observed yields are within the red 

shaded area, and the MAPE values were found as less than 10% percentage.  

The variation of wheat yields across pixels within the Konya administrative 

boundary was investigated in Figure 3.26 by evaluating predictors’ normalized 

values over selected pixels (#1, 15, and 29) for 20 years. 

First of all, the NDVI values were the main driver of the wheat yield prediction over 

Konya. Therefore, the variation of NDVI values between pixels was determined as 

the major reason for the yield variation. It is clearly seen from the figure that pixels 

with the lowest NDVI values for a given year resulted in the lowest wheat yield 

prediction or vice versa. For example, the standardized NDVI values for pixel #29 

located in the southeastern part of the city were found significantly less than the other 

two pixels in 2000, 2006, and 2014. Similarly, the lowest simulated wheat yields 

were obtained in the same pixel for these years. In contrast, the highest NDVI values 

between these three pixels were obtained at pixel #29 for 2003 and 2013, resulting 

in the highest yield values. 

Moreover, the reason for the high prediction error in the years 2011 and 2015 can be 

explained with the same graph. According to observed yield values, the highest yield 

was seen in the year 2011. However, NDVI values for 2011 were found as similar to 

the year 2015. In addition, the total precipitation in 2015 was higher than in 2011. 

Therefore, the model prediction for the years 2011 and 2015 were opposite to the 

observed yields.  
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Figure 3.26 Standardized Values of Predictors and Wheat Yield for selected pixels 

over Konya 
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The scatter plots of observed and predicted yields for each city, district, and farm are 

shown in Figure 3.27, Figure 3.28, and Figure 3.29, respectively. 

In the figures, statistics of the MLR model for each city, district, and farm are given 

on the bottom right. The used MLR model predictors are given in the top left and the 

number of pixels and prediction error are given on the bottom left of each scatter 

plot. In addition, the black dots represent the mean prediction of all pixels, and the 

predicted yield for the year 2019 is shown with a red dot.  

In city-based model results (Figure 3.27), it can be seen that calculated MAPE values 

were ranged between 5 to 11%, where the lowest was calculated in Tekirdağ and the 

highest in Ankara. The lowest correlation between observed and predicted values 

was calculated in Edirne, where any of the vegetation indices were not selected as 

model predictors. However, the reason for the low correlation cannot be explained 

with this single example. The predicted wheat yields were accurate with the observed 

values in most cities; it can be seen from the red dots that are close to the one-to-one 

line in the scatter plots. The MAPE values of a single predicted year varied between 

0.9 and 13%.  

In the following figure (Figure 3.28), the district-based model predictions and 

observed values scatter plots are given. First of all, it is shown that the MAPE values 

obtained from the district-based model were relatively higher than the city-based 

model MAPE values. The lowest correlation and the highest MAPE values were 

found in Diyarbakir over Sur and Bismil districts, respectively. Similar to city-based 

prediction results, most of the lowest MAPE values for training were calculated in 

districts of Tekirdağ. The lowest and highest MAPE values for 2019 were calculated 

as 2.1% for Polatlı and 38.5% for Cihanbeyli.  
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Figure 3.27 MLR Model Wheat Yield Prediction Results for Cities 



 

 

105 

 

Figure 3.28 MLR Model Wheat Yield Prediction Results for Districts 
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Figure 3.29 MLR Model Wheat Yield Prediction Results for TIGEM-Farms 
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In the last scatter plot (Figure 3.29), MLR model prediction results for farms are 

given. Since the wheat yield data available for farms were less than used in city and 

district-based models, the MAPE values comparison would not be adequate. It is a 

notable result that single-pixel soil moisture information over agricultural lands had 

a significant dominance for yield prediction. The highest training MAPE value 

calculated in the Gözlü farm with 23.7%, and the lowest was 6.4% for the Çukurova 

farm. The highest MAPE value of the year 2019 was calculated in the Altınova farm 

with 64.9% that was also the highest error in all MLR model results for the year 

2019.  

In order to compare city-, district- and farm-based MLR model results overall results 

of each base are given in the following scatter plots (Figure 3.30). In the top scatter 

plot, the results of all 10 selected cities with 20 years of data are shown. The overall 

training MAPE and prediction MAPE for cities were calculated as 8.8% and 7%. In 

addition, RMSE values for training and prediction were found as 29.6 kg/da and 28.5 

kg/da, respectively. In the district-based overall scatter plot, the training MAPE for 

districts was calculated as 12.2%, where prediction MAPE was found as 11.6%. In 

farm-based results, the MAPE value of training was calculated as 15.1% and for 

prediction was 21.1%; however, the effect of Altınova farm error should be 

considered while evaluating this high prediction error rate.  

As a result, it was determined that the use of vegetation indices in the yield prediction 

to be made on a city or district basis, even with low resolution, improves the 

estimates of linear models such as MLR. On the other hand, in the farm-based results, 

soil moisture values obtained from remote sensing were important yield prediction 

parameters. The results in this study resolution 0.25⁰ showed that, while the source 

of information decreases in terms of area (i.e., from city to farm), the success of the 

developed method decreases. However, despite this decrease, it still produces good 

predictive results. Another discussion on farm-based yield predictions can be using 

artificial materials effects (i.e., fertilizers) since these farms are research farms where 

all city and district-based yield data are based on farmers' statistics. 
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Figure 3.30 Overall MLR Model Spatio-Temporal Results 
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The developed methodology based on the selection of predictors according to their 

predictive performance showed significant results in wheat yield prediction. The 

method aimed to find the best predictors for each wheat yield information source, 

such as cities and districts; therefore, variation between pixels within these 

boundaries was expected. In order to analyze this variation between pixels, Figure 

3.31 shows the spatial distribution of MAPE values obtained during the training 

phase of MLR models.  

In the city-based map, all 147 pixels’ MAPE values were found less than 15%, except 

a pixel located in the southeastern part of Konya. The most accurate yield predictions 

were obtained over the Thrace region pixels, especially in Tekirdağ, compared with 

other selected cities. Similar to Tekirdağ, the variation of pixel MAPE values were 

found consistent across Eskişehir.  In the district-based map, similar to city-based, 

pixels within districts located in Tekirdag showed the lowest MAPE values. On the 

other hand, the highest MAPE values were found in Diyarbakır/Sur with more than 

22.5%. The location of the highest error pixels was overlapped with the lower density 

of cropland pixels shown in Figure 3.1. According to the farm-based spatial 

distribution results, the highest MAPE values were obtained in the Altınova and 

Gözlü Farms located in Konya. The best prediction at farm-based was obtained in 

Çukurova Farm.  

Since most of the best models included vegetation indices as a predictor, the 

representation of the selected cropland pixels' effects on the calculated MAPE values 

was expected. It is determined that there was a consistency between the higher 

MAPE values in pixels and the pixels that cover less cropland in 0.25⁰ resolution. 

Therefore, the selection of pixels is critical for regional crop yield prediction applied 

with the developed method. In other words, crop yield prediction improvement 

depends on the careful pixel selection where specific crops are available. Therefore, 

yield prediction at a farm-scale with fewer MAPE values is possible if accurate and 

high-resolution crop classification available and the exact location of farms are 

detected. 
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Figure 3.31 Spatial Distribution of MLR Model MAPE values 
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3.5 Comparison of the Two Models 

In this study, MLR- and AquaCrop-based methods have been used to estimate the 

wheat yield at the city, district, and farm scales. The performance comparison of 

these methods is given below in Table 3.2. 

Table 3.2 Overall Statistics for Two Models 

Training 

 MLR Model AquaCrop Model 

 
RMSE 

(kg/da) 

MAPE 

(%) 
r2 n 

RMSE 

(kg/da) 

MAPE 

(%) 
r2 n 

City 29.6 8.8 0.87 190 46.6 15.3 0.69 160 

District 39.3 12.2 0.84 190 54.8 16.8 0.71 160 

Farm 46.8 15.1 0.89 110 77.0 25.7 0.69 99 

Prediction / Validation 

 MLR Model AquaCrop Model 

 
RMSE 

(kg/da) 

MAPE 

(%) 
r2 n 

RMSE 

(kg/da) 

MAPE 

(%) 
r2 n 

City 28.5 7.0 0.92 10 40.6 13.6 0.78 40 

District 52.5 11.6 0.80 10 57.3 17.2 0.65 40 

Farm 74.6 21.1 0.59 11 79.2 32.6 0.69 22 

* n is the total number of data points used in the analysis 

Table 3.2 Overall Statistics for Two Models Overall, MLR-based estimates resulted 

in better yield values than AquaCrop-based estimates consistently for training and 

validation datasets. Both methods used all the datasets available until the end of 

harvest (e.g., June and July), while MLR utilized satellite-based real observations. 

The AquaCrop only used ERA5 model-based estimates as input datasets. The use of 

satellite-based observations in the estimation methodology perhaps was the 

advantage of the MLR method compared against the AquaCrop (i.e., real satellite 

observations reflect the ground management practices such as irrigation, fertilizer, 
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etc.). AquaCrop model simulations performed in this study lack such information; 

however, ground management practice-based information can be fed to the model if 

available. On the other hand, it is often tough to find such information, particularly 

at large-scale applications. 

When the variability across different spatial scales was compared, city-scale 

estimates resulted in better yield values (i.e., lower RMSE and MAPE) than 

district/farm-scale estimates consistently for training and validation datasets (Table 

3.2). This result was expected as the random errors cancel each other when the spatial 

averages are taken. Parallel to this, independent validation results also yielded the 

highest correlation values at the city scale. On the other hand, the same pattern was 

not observed for the training datasets: even though both RMSE and MAPE statistics 

yielded the smallest error estimates at the city-scale, correlation coefficient results 

did not show the same result. This could be perhaps because the farm-scale data-pair 

number is different from the analysis at other scales (i.e., the sampling errors were 

different).  

Overall, the wheat yield estimation errors based on MLR- and AquaCrop-based 

models showed spatially consistent patterns (above Figure 3.31 and Figure 3.18); 

locations of relatively higher errors were located over the same places for both model 

estimates. This result was partly due to the quality difference between different study 

areas, such that lower quality observations eventually yield degraded error statistics 

and vice versa. Models performances over the Thrace region were relatively better 

than other regions at nearly all different scales. The reason for this difference might 

be the rainfed agriculture nearly applied over the whole region while other regions 

include some irrigation fields for wheat production. 
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CHAPTER 4  

4 CONCLUSIONS 

In the study, in order to make the estimation of the wheat yield, the yield values of 

11 research farms TİGEM were used as a different source, as well as the TUIK 

statistics in the 10 provinces and 10 districts where the highest production is made. 

A 20-year (2000-2019) dataset for cities and districts and a total available 11 years 

(2009-2019) wheat yield data on a farm basis were used. Two different model 

approaches were applied to perform yield estimation and evaluated on different agro-

meteorological conditions. The agro-meteorological data used in the models in the 

study were obtained as 0.25⁰ resolution grids from reanalysis (ERA5) and remote 

sensing (MODIS, ESA-CCI) products. The determination of the grids on which the 

predictions were made based on city and district was carried out by selecting the 

grids in which rainfed agriculture was made during the study period according to the 

ESA-CCI land cover classification maps. On a farm basis, the grid on each farm was 

used, and wheat estimates were obtained for a total of 200 grids for two model 

approaches. 

The first model approach was based on adapting the AquaCrop model into regional 

use and calibration of model parameters using the genetic algorithm. Therefore, the 

required climate inputs for the model run obtained from ERA5, and the reference ET 

values were calculated using the FAO- Penman-Monteith equation on a grid basis. 

Moreover, soil hydraulic properties were calculated using pedotransfer functions and 

soil texture information obtained from the SoilGrids soil information map. Another 

required information for the model run was the sowing dates. Sowing date 

determination criteria based on soil temperature, ET0, and precipitation variables 
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were used and added to the parameter optimization procedure as two parameters 

(threshold value and the number of occurrences).  

In the calibration of the AquaCrop model, data of 16 years based on city and district-

based and data of nine years based on the farm-based were used. The model RMSE 

values for the training period were calculated as 46.6, 54.8, and 77 kg/da based on 

city, district, and farm, respectively. The validation of calibrated model parameters 

was conducted using four years of data for city and district-based where two years 

of data were used for farm-based models. The AquaCrop adapted for regional wheat 

estimation validation statistics were calculated as 40.6 kg/da RMSE on city-based, 

47.3 kg/da on district-based, and 79.2 kg/da on farm-based models. In addition, the 

r2 values were calculated as 0.78, 0.65, and 0.69 for the city, district, and farm-based 

models. The AquaCrop model performance showed better results in terms of R2 

statistics while comparing with statistics of 14 process-based regional crop yield 

estimation studies (median R2 ~ 0.62) (Schauberger et al., 2020). The overall 

statistics obtained from the adaptation of the AquaCrop model into regional crop 

yield estimation can be concluded as promising results for future studies such as 

seasonal forecasts or climate projections. Furthermore, it also showed that the 

methodology adopted to obtain sowing dates and soil hydraulic properties was also 

convenient for the regional wheat yield estimations using the AquaCrop. 

The statistical-based estimation of wheat yields was carried out using the MLR 

method. The three predictors required for MLR were determined from 104 predictors 

consisting of 8 different agro-meteorological variables obtained in 13 different 

periods. Variables with similar information (i.e., NDVI, EVI) or values of the same 

variable in different periods (i.e., March GDD, April GDD) were not used in the 

same MLR model. The best predictors were obtained according to their impact on 

prediction performance in the training period using the LOOCV method regardless 

of the other two predictors in the MLR models. The best three predictors, which 

showed their impact on decreasing the MAPE values, were later combined to 

determine the best MLR model for the wheat yield prediction of the year 2019. The 

method of determining the best predictors on the area represented by the observed 
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yield data, instead of on a grid basis, provided an understanding of the spatial 

variation in wheat yield within the city or district. The filtering process was applied 

for the prediction year input data to prevent the MLR model from over or 

underestimation due to outlier variables. Therefore, the standardized values of the 

best three predictors obtained for 2019, the forecast year, were checked, and those 

that differed more than +/- 2.5 standard deviations from the data in the training period 

were eliminated.  

The MLR model statistics for the prediction year 2019 were calculated as MAPE of 

7% for cities, 11.6% for districts, and 21.1% for farms. In addition to the MAPE 

values, the RMSE values were calculated over cities, districts, and farms as 28.5 

kg/da, 52.5 kg/da, and 74.6 kg/da and the r2 values were calculated as 0.9, 0.82, and 

0.59 for cities, districts, and farms, respectively. The results concluded that the 

statistical method for regional wheat yield prediction showed better performance 

than the median prediction performance of 90 similar crop yield prediction studies 

that used statistical methods (r2 ~ 0.78) in the literature (Schauberger et al., 2020). In 

addition, although the study gave satisfactory results in estimating the wheat yields 

regionally, it showed lower success on a farm basis. It was determined that the higher 

error rates on the farm scales than the other two scales were the representation error, 

mainly due to the resolution of the input data especially vegetation indices. 

Moreover, the representation of pixel is not sufficient at farm scale where there are 

other farms with different crops within the pixel.  On the other hand, it was 

determined that soil moisture values obtained from remote sensing were effective in 

wheat yield estimation on the farm at the spatial resolution of 0.25 degrees.  

In conclusion, the proposed MLR based wheat yield estimation method provided 

accurate regional wheat yield estimations. Moreover, the exact location of the wheat-

grown farms and higher spatial resolution of vegetation indices can improve the 

model accuracy at the farm scale. Also, the yield estimation uncertainty originated 

from ERA5 data can be reduced by using observation-based meteorological data.  
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Similar to the MLR model, the regional application of the AquaCrop model also 

showed consistent wheat yield estimation performance according to observed yields. 

The model calibration procedure can be improved by converting the model into an 

open-source code version to decrease computational time. Furthermore, the 

calibration results can be improved by applying parallel model runs for all grids 

within cities or districts for the same parameter set. Another suggestion for future 

studies might be the addition of information on fertilizer or irrigation to the model. 

Multiple parameter-based calibrations might also be possible research subjects in the 

future, such as using leaf area index, soil moisture, and yield observations. Moreover, 

the model's seasonal crop yield estimation performance might be evaluated using 

different seasonal climate forecasts as a possible future study. 
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APPENDICES 

A. Wheat Yield Data of Selected Cities, Districts and TIGEM Farms 
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B. AquaCrop – Default Wheat Crop Parameters Input File 

Default Wheat, GDD (Valenzano, 23Nov07) 

6 AquaCrop Version (March 2017) 

0 File protected 

2 fruit/grain producing crop 

1 Crop is sown 

0 Determination of crop cycle :  by growing degree-days 

1 Soil water depletion factors (p) are adjusted by ETo 

0 Base temperature (°C) below which crop development does not progress 

26 
Upper temperature (°C) above which crop development no longer increases with an increase 

in temperature 

2400 Total length of crop cycle in growing degree-days 

0.2 Soil water depletion factor for canopy expansion (p-exp) - Upper threshold 

0.65 Soil water depletion factor for canopy expansion (p-exp) - Lower threshold 

5 Shape factor for water stress coefficient for canopy expansion (0.0 = straight line) 

0.65 Soil water depletion fraction for stomatal control (p - sto) - Upper threshold 

2.5 Shape factor for water stress coefficient for stomatal control (0.0 = straight line) 

0.7 Soil water depletion factor for canopy senescence (p - sen) - Upper threshold 

2.5 Shape factor for water stress coefficient for canopy senescence (0.0 = straight line) 

0 Sum(ETo) during stress period to be exceeded before senescence is triggered 

0.85 Soil water depletion factor for pollination (p - pol) - Upper threshold 

5 Vol% for Anaerobiotic point (* (SAT - [vol%]) at which deficient aeration occurs *) 

50 Considered soil fertility stress for calibration of stress response (%) 

25 Response of canopy expansion is not considered 

25 Response of maximum canopy cover is not considered 

25 Response of crop Water Productivity is not considered 

25 Response of decline of canopy cover is not considered 

-9 dummy - Parameter no Longer required 

5 Minimum air temperature below which pollination starts to fail (cold stress) (°C) 

35 Maximum air temperature above which pollination starts to fail (heat stress) (°C) 

14 Minimum growing degrees required for full crop transpiration (°C - day) 

6 
Electrical Conductivity of soil saturation extract at which crop starts to be affected by soil 

salinity (dS/m) 

20 Electrical Conductivity of soil saturation extract at which crop can no longer grow (dS/m) 

-9 Dummy - no longer applicable 

25 
Calibrated distortion (%) of CC due to salinity stress (Range:  0 (none) to +100 (very 

strong)) 

100 Calibrated response (%) of stomata stress to ECsw (Range:  0 (none) to +200 (extreme)) 

1.1 Crop coefficient when canopy is complete but prior to senescence (KcTr,x) 

0.15 Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, etc. 

0.3 Minimum effective rooting depth (m) 
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1.5 Maximum effective rooting depth (m) 

15 Shape factor describing root zone expansion 

0.048 Maximum root water extraction (m3water/m3soil.day) in top quarter of root zone 

0.012 Maximum root water extraction (m3water/m3soil.day) in bottom quarter of root zone 

50 Effect of canopy cover in reducing soil evaporation in late season stage 

1.5 Soil surface covered by an individual seedling at 90 % emergence (cm2) 

1.5 Canopy size of individual plant (re-growth) at 1st day (cm2) 

4500000 Number of plants per hectare 

0.04902 Canopy growth coeff. (CGC):  Increase in canopy cover (fraction soil cover per day) 

-9 Maximum decrease of Canopy Growth Coefficient in and between seasons - Not Applicable 

-9 
Number of seasons at which maximum decrease of Canopy Growth Coefficient is reached - 

Not Applicable 

-9 Shape factor for decrease Canopy Growth Coefficient - Not Applicable 

0.96 Maximum canopy cover (CCx) in fraction soil cover 

0.07179 Canopy decline coefficient (CDC):  Decrease in canopy cover (in fraction per day) 

13 Calendar Days:  from sowing to emergence 

93 Calendar Days:  from sowing to maximum rooting depth 

158 Calendar Days:  from sowing to start senescence 

197 Calendar Days:  from sowing to maturity (length of crop cycle) 

127 Calendar Days:  from sowing to flowering 

15 Length of the flowering stage (days) 

1 Crop determinancy linked with flowering 

100 Excess of potential fruits (%) 

67 Building up of Harvest Index starting at flowering (days) 

15 Water Productivity normalized for ETo and CO2 (WP*) (gram/m2) 

100 Water Productivity normalized for ETo and CO2 during yield formation (as % WP*) 

50 Crop performance under elevated atmospheric CO2 concentration (%) 

48 Reference Harvest Index (HIo) (%) 

5 Possible increase (%) of HI due to water stress before flowering 

10 
Coefficient describing positive impact on HI of restricted vegetative growth during yield 

formation 

7 Coefficient describing negative impact on HI of stomatal closure during yield formation 

15 Allowable maximum increase (%) of specified HI 

150 GDDays:  from sowing to emergence 

864 GDDays:  from sowing to maximum rooting depth 

1700 GDDays:  from sowing to start senescence 

2400 GDDays:  from sowing to maturity (length of crop cycle) 

1250 GDDays:  from sowing to flowering 

200 Length of the flowering stage (growing degree days) 

0.005001 CGC for GGDays:  Increase in canopy cover (in fraction soil cover per gdd) 

0.004 CDC for GGDays:  Decrease in canopy cover (in fraction per growing-degree day) 

1100 GDDays:  building-up of Harvest Index during yield formation 

**Parameters in bold indicate the parameters used in the calibration phase. 
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C. AquaCrop – Default Soil Parameter File 

deep uniform 'clay loam' soil profile 

6 : AquaCrop Version (March 2017) 

72 : CN (Curve Number) 

11 : Readily evaporable water from top layer (mm) 

1 : number of soil horizons 

-9 : variable no longer applicable 

Thickness Sat FC WP Ksat Penetrability Gravel CRa CRb description 

(m) (vol%) (mm/day) (%) (%)    

4.00 50.0 39.0 23.0 125.0 100 0 -0.5727 0.8596 Clay loam 

 

D. AquaCrop – Soil Parameter File obtained by using SoilGrids Data 

SoilGrids Soil Properties for city-Tekirdag_(42) (Thu Apr 22 12:59:32 2020) 

6 : AquaCrop Version (March 2017) 

65 : CN (Curve Number) 

10 : Readily evaporable water from top layer (mm) 

5 : number of soil horizons 

-9 : variable no longer applicable 

Thickness Sat FC WP Ksat Penetrability Gravel CRa CRb description 

(m) (vol%) (mm/day) (%) (%)    

0.05 46.2 33.1 18.4 131.8 100 8 -0.4867 0.2002 ClLo 

0.10 45.8 33.8 19.1 102.3 100 9 -0.4894 0.0793 ClLo 

0.15 45.6 35.3 21.0 63.5 100 9 -0.4929 -0.1486 ClLo 

0.30 45.4 35.8 21.7 51.4 100 9 -0.4940 -0.2492 ClLo 

0.40 44.9 35.6 21.5 47.3 100 10 -0.4943 -0.2893 ClLo 

1.00 44.2 34.6 20.7 50.9 100 11 -0.4940 -0.2546 ClLo 
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E. Agrometeorological Monitoring Panels for each Study Area 
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F. AquaCrop – Calibrated Parameters 

City 1 2 3 4 5 6 7 8 9 10 11 12 

Ankara 0.006 0.87 42.1 159 723 1319 2207 1094 183 969 0.39 2 

Çorum 0.006 0.87 39.4 216 707 1295 2271 1084 212 963 0.46 3 

Diyarbakır 0.006 0.85 40.8 154 723 1135 2295 1082 212 986 0.44 3 

Edirne 0.006 0.88 40.4 178 698 1267 2397 1091 228 980 0.55 2 

Eskişehir 0.006 0.95 42.0 185 713 1071 2388 1217 208 1055 0.53 1 

Kırklareli 0.006 0.85 38.4 189 701 1143 2252 1110 187 959 0.23 2 

Konya 0.007 0.91 41.7 196 697 1061 2415 1174 201 1059 0.66 2 

Sivas 0.005 0.84 38.3 167 709 1533 1668 1031 217 975 0.50 3 

Tekirdağ 0.006 0.86 38.4 237 679 1289 2233 1166 181 987 0.56 3 

Yozgat 0.007 0.87 39.4 215 667 1113 2313 1196 251 1066 0.21 3 

 

District 1 2 3 4 5 6 7 8 9 10 11 12 

Haymana 0.007 0.88 49.4 203 727 1128 2128 1106 219 851 0.39 1 

Polatlı 0.006 0.83 38.7 147 718 1126 2304 1057 191 1056 0.43 2 

Bismil 0.006 0.82 43.4 181 732 1297 2451 1201 269 1087 0.45 3 

Sur 0.006 0.92 40.7 153 695 1144 2293 1107 243 972 0.50 2 

Lüleburgaz 0.006 0.89 43.1 179 725 1227 2367 1126 204 921 0.36 2 

Cihanbeyli 0.006 0.91 40.0 191 702 1556 2344 1137 224 1019 0.51 2 

Kangal 0.006 0.91 39.5 157 708 1391 1601 1087 218 952 0.37 2 

Hayrabolu 0.006 0.89 41.3 150 687 1498 2436 1126 233 956 0.29 3 

Malkara 0.006 0.90 40.7 159 686 1280 2371 1073 226 981 0.54 3 

Süleymanpaşa 0.006 0.88 41.1 166 703 1339 2409 1121 243 935 0.35 2 
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Farm 1 2 3 4 5 6 7 8 9 10 11 12 

Altınova 0.005 0.89 40.6 207 703 1127 2247 1217 217 972 0.46 2 

Anadolu 0.006 0.85 40.7 191 674 1067 2242 1174 229 966 0.27 1 

Ceylanpınar 0.006 0.84 37.4 208 696 1091 2394 1255 206 1039 0.34 2 

Çukurova 0.006 0.86 40.9 180 691 1173 2380 1126 189 989 0.39 2 

Dalaman 0.006 0.88 41.7 213 708 1328 2381 1133 202 977 0.32 2 

Gözlü 0.006 0.94 43.7 216 683 1090 2280 1181 211 1020 0.47 2 

Karacabey 0.006 0.89 39.6 156 695 1160 2272 1103 216 974 0.45 2 

Konuklar 0.006 0.85 38.4 196 693 1088 2298 1141 200 1045 0.37 2 

Malya 0.006 0.88 39.4 198 694 1131 2362 1130 221 975 0.38 3 

Altınova 0.005 0.89 40.6 207 703 1127 2247 1217 217 972 0.46 2 

Polatlı 0.007 0.88 40.3 199 685 1094 2246 1114 180 964 0.37 1 

 

 

# Parameter 

1 CGC 

2 CCx 

3 HI0 

4 Emergence 

5 MaxRooting 

6 Senescence 

7 Maturity 

8 HIstart 

9 Flowering 

10 YieldForm 

11 Coeff. 

12 Occur. 
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G. AquaCrop Model Simulation Results and Statistics 
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H. MLR Model Simulation Results and Statistics 
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