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Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder that causes 

social, communication and behavioral challenges with different severity levels. Studies report 

a considerable increase in ASD prevalence during the past two decades, and clinical 

psychologists face difficulties identifying individuals with ASD. Researchers have been using 

different techniques such as eye-tracking to help address ASD diagnosis. A previous study 

shows that training a logistic regression model with eye-tracking data gathered using web pages 

can be an effective method to identify high-functioning autism in adults. This thesis uses the 

same eye-tracking datasets, each of which includes two web-related tasks. The first dataset 

includes a searching task and a freely browsing task, while the second dataset includes a 

synthesis task and a time-restricted browsing task. Our study investigates a different data 

preprocessing method and evaluates various machine learning models based on that. This study 

obtains an accuracy of 91.6% and 76.3% for the searching task and the freely-browsing task, 

respectively. In contrast, the previous study obtains an accuracy of 75% for the search task and 

71% for the browse task. Our study and the previous study obtain lower accuracies using the 

second dataset. Therefore, the results in this thesis demonstrate that tasks and pages used can 

affect the accuracy of machine learning algorithms. This thesis also suggests eye-tracking on 

the web can be a complementary practical tool for human experts to diagnose people with ASD 

more precisely. 
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ÖZ 

 

WEB TABANLI GÖZ İZLEME TARİHİ KULLANARAK YÜKSEK İŞLEVLİ 

OTİZMİ TESPİT ETMEK İÇİN BİR MAKİNE ÖĞRENME YAKLAŞIMI 
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Ortak Tez Yöneticisi: Dr. Şükrü Eraslan 

 

 

 

Temmuz 2021, 88 pages 

 

 

Otizm Spektrum Bozukluğu (OSB), farklı şiddet seviyelerinde sosyal, iletişim ve davranışsal zorluklara 

neden olan heterojen bir nörogelişimsel bozukluktur. Çalışmalar, son yirmi yılda OSB yaygınlığında 

önemli bir artış olduğunu bildirmektedir ve klinik psikologlar , OSBli bireyleri tanımlamada güçlüklerle 

karşılaşmaktadır. Araştırmacılar, OSB teşhisini ele almaya yardımcı olmak için göz izleme gibi farklı 

teknikler kullanıyorlar. Önceki bir çalışma, web sayfaları kullanılarak toplanan göz izleme verileriyle 

bir lojistik regresyon modeli eğitmenin, yüksek işlevli otizmi tanımlamak için etkili bir yöntem 

olabileceğini göstermektedir. Her biri web ile ilgili iki görev içeren ve aynı göz izleme veri kümeleri bu 

araştırmada kullanılacaktır. İlk veri seti, bir arama görevi ve serbestçe göz atma görevi içerirken, ikinci 

veri seti bir sentez görevi ve zaman kısıtlamalı bir tarama görevi içerir. Çalışmamız, farklı bir veri ön 

işleme yöntemini araştırmakta ve buna bağlı olarak çeşitli makine öğrenimi modellerini 

değerlendirmektedir. En iyi durumlarda, bu çalışma arama görevi ve serbestçe gezinme görevi için 

sırasıyla % 91,6 ve %76,3 doğruluk elde etmektedir. Bunun aksine, önceki çalışma arama görevi için 

%75 ve göz atma görevi için %71 doğruluk elde ediyor. Her iki çalışma da ikinci veri setini kullanarak 

daha düşük doğruluklar elde etmektedir. Bu nedenle, bu tezdeki sonuçlar, kullanılan görevlerin ve 

sayfaların makine öğrenimi algoritmalarının performansını etkileyebileceğini göstermektedir. Bu tez 

ayrıca, web sayfalarını kullanan göz izleme verilerinin, insan uzmanların OSBli kişileri daha kesin bir 

şekilde teşhis etmeleri için tamamlayıcı bir pratik araç olabileceğini önermektedir. 

Anahtar Kelimeler: Otizm Spektrum Bozukluğu, Makine Öğrenimi, Göz İzleme, Web 



I dedicate this thesis to people with autism spectrum disorder.
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CHAPTER 1

INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex heterogeneous neurodevelopmental

disability that may cause behavioral, social, or communication challenges or diffi-

culties [4]. The term “spectrum” indicates that the severity of the symptoms varies

in individuals, and symptoms also differ due to the heterogeneity of the conditions.

The centers for disease control (CDC) reports that the prevalence of autism has been

increasing during the past two decades [3]. According to this study, in 2000, in every

150 children, one is diagnosed with ASD in the US. In 2014 one in every 59 chil-

dren and in 2016, one in every 54 children is diagnosed with ASD, as illustrated in

Figure 1.1.

Figure 1.1 ASD prevalence reported by CDC from 2000 to 2016 [3].

For the past two decades, researchers have been using various methods to help diag-

nose people with ASD and understand what may cause this issue in individuals. Even
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though for the majority diagnosed with ASD the reasons are still unknown, scientists

believe that environmental factors and genes are likely to be playing a role in causing

autism. However, it is assumed that no particular environmental factors have been

identified to be causing autism yet [5]. Twin studies suggest that the ASD can be

inheritable, and that is why it is assumed that genes play a pivotal role in causing

ASD [6].

Methods used for diagnosing ASD differ based on the subject’s age and the severity

of the symptoms. In general, it is challenging to diagnose autism and there is no

medical test for this purpose. There are various tools which are proposed to help

diagnose people with ASD through assessments. However, CDC states that these

tools should not be used alone, but a combination of these tools should be employed

to avoid the diagnosis results to get biased [7]. One of the tools used by clinical

psychologists is Autism Diagnosis Interview- Revised (ADI-R) [8]. This tool is used

to assess autism in both adults and children, and its main focus is on behavioral areas

such as communication. Autism Diagnostic Observation Schedule– Generic (ADOS-

G) is another type of assessment for diagnosing people with ASD, and it focuses on

the imaginative use of materials, play and communication [9]. Childhood Autism

Rating Scale (CARS) is another method to focus on particular characteristics such

as ability or behavior to briefly assess ASD [10]. Gilliam Autism Rating Scale –

Second Edition (GARS-2) is an approach that helps clinicians, parents, and teachers

identify individuals with ASD [11] and estimate the level of severity by analyzing

the different aspects of the subjects personality, such as the ability to get involved in

social interactions. The other tool for diagnosing autism is the American Psychiatric

Association’s Diagnostic and Statistical Manual, Fifth Edition (DSM-5), which tries

to use criteria such as nonverbal communicative behaviors to diagnose people with

ASD [12].

Due to the complex nature of the ASD, different levels of severity and the variety of

the symptoms, the assessments may result in misdiagnosis, which is more common

for diagnosing adults with ASD [13]. Therefore, researchers have begun to use other

techniques to study ASD, including eye-tracking, electroencephalogram (EEG), and

functional magnetic resonance imaging (fMRI). Eye-tracking is the process of esti-

mating and recording the point of gaze coordinates or the motion of the eyes, and
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the device used for this purpose is an eye tracker. EEG equipment is used to capture

the electrical activity of the brain [14]. fMRI data also demonstrates brain activity

through the blood flow [15]. While nowadays eye-trackers are portable and can be

assembled on computers, fMRI and EEG equipments are relatively more expensive

and they are not portable. The data that eye-trackers provide can be structured as tab-

ular data consisting of numerical or categorical values, wheras fMRI data may consist

of embedded time series which requires extra computational processes to extract po-

tentially useful features for further use. While the volume of eye-tracking data makes

it more suitable to train statistical learning models, fMRI and EEG data can be used to

train both deep learning networks and statistical learning models since they provide a

considerable greater volume of data.

Given that people with ASD may experience difficulties or challenges on social occa-

sions or avoid paying attention to a particular object, most of the studies investigating

autism detection by eye-tracking used videos or photos containing facial, social, or

naturalistic features [16, 17, 18]. However, web pages can contain different features

including web elements, and given the fact we interact with web pages on a daily ba-

sis, the web may be an effective alternative in investigating ASD using eye trackers.

This thesis develops a methodology based on eye-tracking data that was previously

collected while participants interacted with web pages to traing machine learning

models for detecting high functioning autism in adults.

The current exploration uses gaze records gathered from both typically developing

(TD) and ASD subjects while they looked at several web pages and tried to complete

web-related tasks. The first motivation behind using web pages is that they are widely

available, and the web has become an inseparable aspect of our daily life. Therefore,

web pages seem to be a useful tool for investigating ASD, given the sharp increase in

the ASD prevalence and the popularity of using the web. Secondly, there is a limited

number of studies that use web pages to investigate how people with ASD interact

with web pages, and given the high rate of the ASD prevalence, we may expect web

pages to be an effective way of studying autism.
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1.1 Aims and Objectives

This study aims to investigate detecting high functioning autism in adults using eye-

tracking data gathered the Web, and this thesis has three main objectives.

• The first objective of this study is to grasp a better understanding of how people

with ASD visually process the web pages and then compare the findings with

the data obtained from TD people. Given that data preparation can profoundly

change the performance of machine learning models, having an efficient data

preparation approach becomes first priority to improve predictive model accu-

racy compared to [1].

• The second objective of this study is to investigate which predictive model per-

forms better. In addition to statistical learning approaches, we also explore

the performance of multilayer perceptron models to observe the effects of us-

ing various machine learning models for detecting high functioning autism. To

compare our results with the previous studies [1, 19] in a systematic manner,

we use the same evaluation method.

• The third objective is that since the eye-tracking data we use in this study is

gathered while performing web-related tasks, as our last objective, it is essential

to explore the effects of tasks on the performance of the predictive models.

Hence, we use the method we develop through the previous stages to detect

autism using a different dataset which is initially collected and used in [2].

1.2 Contributions

Our first contribution in this study is using web pages to detect high functioning

autism unlike the majority of the literature which uses images with facial, social,

or naturalistic features.

This study uses a different data preprocessing approach compared to [1]. At this

stage of the project, we demonstrate that in order to generate web pages segments

to understand where subjects look at, we do not necessarily need to identify page-
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specific Areas of Interest (AOI) for each web pages. We obtained the best results

when we used grid AOI, and this also led to the dropping of fewer data points in our

dataset.

In the best case, we can detect high functioning autism in adults with an accuracy

of 91.6% using a Decision Tree model. Comparing this value to previous studies’

model performance, we obtain the highest model accuracy using the same dataset.

The evaluation we used in this study is as same as the one that [1] used. The improve-

ment in this study is using a different data processing approach that highlights the

differences between the gaze records of ASD people compared to the TD subjects. In

contrast with [1], this thesis focuses on avoiding extra computations to interpret the

raw data and generate a new dataset based on it. Furthermore, we explore the perfor-

mance of various predictive models. In [1], the best-reported accuracy is 75%, and

because we obtained a higher model performance, it can be considered a contribution

of this study. However, in this study, we investigate the performance of 14 differ-

ent learning models, and we report the results we obtained systematically to com-

pare them. Among these models, we show that Decision Tree, Random Forest, and

Extremely-Randomised Trees work better than the other models, and in the best case,

we obtained 91.6% model accuracy in detecting participants with high functioning

autism. Furthermore, we show that multilayer perceptrons do not work effectively as

statistical learning models using our data. The insights we provide regarding the per-

formance of machine learning models using eye-tracking data can help future studies,

and it can be considered as a contribution to the field.

1.3 Thesis Outline

Chapter 2 Background and Related Work reviews the history of eye-tracking and

its applications in different fields of studying, analyzes and discusses articles centered

around using machine learning and deep learning to address the ASD detection using

various types of data, and highlights the gaps in the literature.

Chapter 3 Methodology explains the materials, apparatus, and procedure used to

collect the eye-tracking data initially used in [20], also presents the method that this
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study develops for ASD diagnosis through machine learning models and statistical

data analysis.

Chapter 4 Results highlights the differences in visual processing patterns of people

with high functioning autism versus the TD group. Furthermore, the performance of

various machine learning models are evaluated and reported.

Chapter 5 Discussion and Conclusion aims for interpreting the obtained results of

this thesis, highlighting the importance of ASD diagnosis using machine learning

models and explaining limitations as well as future directions that can be investigated

further as future work.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, after defining and describing autism spectrum disorder (ASD), we

review the history of eye-tracking and its applications in different fields of studying,

including investigating ASD. Next, we analyze and discuss articles with a focus on

using machine learning and deep learning to address ASD detection using various

types of data, summarized in Table 2.1 and Table 2.2. Lastly, we discuss literature’s

gaps and findings, as well as stating our contribution to this field of study.

2.1 Autism Spectrum Disorder

ASD is a heterogeneous neurodevelopmental disorder [21]. Study presented in [22]

shows that neurodevelopmental disorders are multifaceted conditions which are dis-

tinguishable by observing impairments in cognition, communication and behavior.

The heterogeneity of ASD is due to its diverse symptoms and characteristics. Stud-

ies introduce numerous symptoms for ASD. For example, [23] mentioned occasional

social orienting, infrequent initiation of social interactions, repetitive motor behav-

iors, weak engagement with the surrounding people and a limited number of gestures

as early signs of ASD. The symptoms may be noticed by parents when children are

younger than three years [12]. The symptoms that some children with autism may

experience possibly develop throughout time. Therefore, their social and communi-

cational skills may keep getting problematic as they begin to grow older [24].

According to the estimates of the Centers for Disease Control and Prevention across

the USA, in 2016, about one in 54 children has been identified with ASD [3]. Fur-

thermore, in the year 2019, the world health organization (WHO) mentioned that over
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the last 50 years, the reported number of children with autism has been growing [25].

It also stated that some people with autism are capable of living independently, while

some of them experience severe disabilities and require life-long care and support.

2.2 Eye-Tracking and Applications

The process of capturing the eye movements is known as eye-tracking. In eye-

tracking, the gaze information of a person looking at a particular object or perhaps

freely observing the surrounding environment is recorded. An eye tracker is a ma-

chine that aims to record the gaze data. Eye trackers work based on detecting near-

infrared light reflections, which is directed toward the pupil (the center of the eyes)

and the outer-most optical element of the eye (the cornea). The mentioned types of

reflections are tracked using an infrared camera, also known as pupil center corneal

reflection [26].

An eye tracker is capable of recording eye fixations and saccades. A fixation record

occurs when a participant stares at a particular location for a certain amount of time,

while a saccade represents the transition between two fixations. Researchers use

these features in different fields of research, such as visual marketing [27] and neu-

roscience [28]. Though, [29] stated that perhaps the most well-known application of

eye-trackers is to study human visual attention in psychology. [30] mentioned that the

fixation duration in eye-tracking data can be used as a parameter for detecting how

much attention a particular point has attracted.

Applying eye-tracking for understanding human behavior has been studied for many

decades. However, researchers usually recruited neurotically developed (TD) peo-

ple [31]. An early study that utilized eye-tracking technology engaged three people

to explore their gaze patterns while watching black and white photos of the human

face [32]. For example, in one task, the participants were asked to match a previously

seen face with a new photo. The study shows that each subject has different features

of interest. Some of them had more fixations on the eyes, whereas some fixated their

eyes more on the lips and nose, which are categorized as core features. As another

example, a study shows that semantic consistency can change the gaze patterns of
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an individual [33]. In other words, it can affect the saccades and fixation attributes

in terms of duration and numbers. Other example of using eye-tracking is the ab-

normality analysis of eye movements in people with schizophrenia1. The authors of

[35] stated that they employed 17 adults with attention deficit hyperactivity disorder

(ADHD)2, 49 adults with schizophrenia and 37 adults without any specific cognitive

condition to study their frequency of anticipatory and eye transitions. The results

show that these variables are considerably different in the subjects with schizophre-

nia, whereas, in healthy and ADHD subjects, the recorded data appears to be normal.

In the past two decades, using eye trackers to investigate autism has attracted the

attention of researchers.

Autism can affect individual eye movements even in the early stages. For exam-

ple, [37] examined a group of toddlers to study and understand whether they follow

the gaze of others or not. The outcomes suggest that in naturalistic occasions, ASD

toddlers did not show a similar gaze pattern as TD toddlers did. Furthermore, [30]

investigated joint attention, which is the capacity to coordinate visual attention with

another person and then shift the gaze toward a shared object or event. The authors

stated that joint attention is known to be insufficient in many people with autism.

In summary, eye-tracking is used to study human behavior, and this technology can

be used to investigate ASD since the visual attention of people with autism may have

differences compared to TD people and eye-tracking appear to be capable of exhibit-

ing these differences.

2.3 Eye-Tracking for Studying Autism

The number of studies that use eye-tracking for studying autism began to rise in early

2000. One of these studies analyzed the eye movement of five adults with autism and

five TD participants [38]. The task included recognizing the emotion of people in

images. This study shows that the participants with autism spent less time focusing

on eyes, nose and lips (the core features) while the control group tended to observe

1 Schizophrenia is a chronic mental disorder. A person with schizophrenia may have difficulties concentrating.
The other symptoms can include delusions or hallucinations [34].

2 ADHD is a mental condition. An individual with ADHD may have differences in brain activities and the
ability to concentrate and sit on a spot continuously [36].
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the core features.

In another study, [17] used eye-tracking data to analyze the visual behavior of subjects

with Williams Syndrome (WS)3 and autism. People with autism seemingly avoid

engaging in social interactions, while WS subjects are known to be hyper-social. In

this study, the data was collected from 18 participants with WS and 26 people with

autism. There are two different tasks, and one of them is looking at photos with

faces embedded in the image and looking at a scrambled image. While they are

looking at these images, an eye tracker recorded the gaze data. The results show that

WS participants had long fixations on the face both in the embedded version and the

scrambled image. However, subjects with autism tried to avoid the facial features in

both photos; they had short fixations and long transitions and preferred to analyze

other attributes in the image.

Eye-tracking has been usually employed to investigate the gaze patterns of people

with autism while they observe social or facial scenes as well as naturalistic ob-

jects [16, 17, 18]. TD people have more fixations on core features of a naturalistic

view, such as a face or a landscape. However, people with autism behave opposite

and tend to have less or no fixations on core features such as mouth [40]. [41] stated

that ASD people tend to fixate their eyes away from the center of the image and have

longer transitions (saccadic records). However, [42] investigates the gaze patterns of

19 controls and ASD subjects by asking them to watch natural scenes freely. The

results suggest that people with ASD concentrated more on the center of the image,

had fewer fixations on objects in the image, and they seemed to have atypical prefer-

ences for specific purposes that appear in the image. For example, by looking at one

image, which includes a tree, an adult elephant, and an infant elephant, the control-

group participants mainly looked at the elephants’ faces. However, the subjects with

autism instead looked at a minor part of the tree in the background. This information

is obtained by plotting the gaze records with a heatmap. A heatmap is a kind of visu-

alization that illustrates which regions of an image attracted more attention than the

other areas in the picture.

Some studies support using eye-tracking data collected on the web to detect people

3 WS is a genetic condition, and it can affect different parts of the body. For example, people with WS may
experience challenges in learning, face cardiovascular issues or have unique personal characteristics [39].
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with autism. To be more specific, in one of the early studies based on the same data

used in [43], authors analyze the scanpath of TD and ASD participants, and they

stated that people with autism are less successful in finding information provided on

a web page. Furthermore, they mentioned that the scanpath of ASD users is more

variant compared to the TD group [20]. [44] used the same dataset and reported that

ASD group put more cognitive effort to complete a set of specific tasks with the same

accuracy compared to the TD participants. They concluded this since it took ASD

subjects a higher amount of time to finish the tasks. [45] mentioned that ASD par-

ticipants had more fixations on irrelevant visual elements, and they also tended to

have longer scanpath compared to the TD users. This study also adds that the ASD

subjects made fixations with a shorter duration on visual elements and longer tran-

sitions between the web elements compared to the TD participants. It demonstrates

that ASD subjects employ different strategies for searching the web. [2] used another

eye-tracking dataset which is also used by [19] and reported that while the ASD par-

ticipants were completing a synthesis task, they looked at more irrelevant elements

when they were interacting with visually complex pages or with web pages that con-

tained elements with a poor level of distinguishability.

Overall, eye-tracking data can provide intuitive information about human behavior.

Hence, researchers have begun using it to investigate autism. The studies are mostly

centered around analyzing the gaze data while the participants observe photographic

scenes. These studies suggest that people with autism pay less attention to the core

features of an image and have longer saccades. Moreover, there are a limited num-

ber of studies that provided insightful information regarding the interaction of ASD

people with web and reported solid evidence about the differences compared to TD

subjects.

2.4 Autism Detection With Eye-Tracking

As we earlier discussed, eye-tracking technology empowers the researchers to study

human behavior and cognitive disabilities, such as autism. We also discussed that eye-

tracking analysis shows that ASD people tend to look at a photo, video or a web page

differently compared to TD participants. These differences can be used to train su-
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pervised learning algorithms for autism detection. Table 2.1 demonstrates a summary

of the literature which uses supervised learning algorithms and eye-tracking analysis

to address autism detection. We analyzed the previously conducted researches based

on the machine learning models and their ability, as well as the data used to address

this binary classification problem, evaluation approach, the age range of recruited

participants, and the amount of data they use to train their models.

Table 2.1 Summary of our reviewed studies that use eye-tracking data for ASD detec-

tion. Evaluation metrics are reported in percent. NA stands for not applicable. In the

sample size column, in each row, the first and the second values indicate the number

of participants with ASD and TD, respectively.

Ref Sample Size Age Range Approach Model Evaluation Accuracy AUC Sensitivity Specificity

[46] 30-29 NA Image ANN 10F-CV 88.9 79.2 88.9 69.4

[47] 32-32 76.32 months Image ANN 10F-CV 78.13 82.91 NA NA

[48] 30-29 on avg: 8 years Video ANN 10F-CV NA 92 NA NA

[49] 17-15 8 to 10 Video LSTM 1FV NA NA 75 100

[50] 14-14 5 to 12 years Image CNN+LSTM 1FV 74.22 NA NA NA

[51] 20-19 Unclear Image ResNet+LSTM LOOCV 99 1 1 98

[52] 20-19 Adults Image VGG-16 LOOCV 92 92 93 92

[41] 14-14 5 to 12 years Image CNN+RF 100 CV NA 75 NA NA

[53] 14-14 5 to 12 years Image CNN (ResNet) 1FV 65.41 69 NA NA

[54] 14-14 5 to 12 years Image YOLO 1FV 59.3 59.5 NA 50.56

[55] 14-14 5 to 12 years Image RM3ASD 1FV 59 - 50 -

[19] 19-19 32 to 41 years Web Page LR 100F-CV 73 NA NA NA

[1] 15-15 33 to 37 years Web Page LR 100F-CV 75 NA NA NA

[56] 22-22 Adults Video Ensemble 10F-CV 76 NA NA NA

[57] 23-35 8 to 34 years Facial Image RF LOOCV 86.2 93.5 91.3 82.9

[58] 29-29 4 to 11 years Facial Imaage SVM LOOCV 88.51 89.63 93.1 86.2

[59] 49-48 3 to 6 years Facial Image SVM 1FV 85.44 93 NA NA

[60] 37-37 4 to 6 years Video SVM 5F-CV 85.1 NA 86.5 83.8

[61] 53-136 4 to 8 years Video SVM 20F-CV 93.7 NA NA NA

[45] 15-15 33 to 37 years Web Page STA 100F-CV 63 NA NA NA

The majority of studies target children for autism detection since ASD diagnosis can

be very beneficial in the early stages. [62] mentioned that evidently, early diagnosis

and treatment can significantly improve the quality of life of individuals with ASD

and their carers and families. On the other hand, adults with autism could be left

undiagnosed, and there are limited studies that focus on investigating high functioning

autism in adults, such as as [1, 19, 56, 52]. There are also studies in which the

age of the participants varies from eight to 34 years (e.g., [57]) or two to 60 years

(e.g.,[63]). The rest of the studies target toddlers (e.g., [59, 60, 58]) infants (e.g.,
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[47]) and children (e.g., [54, 49]).

Researchers typically employ supervised learning algorithms for autism detection.

The data given to supervised learning functions are labeled according to the super-

vision of humans or machines. In a supervised learning task, the goal is to train a

model capable of mapping an input to a correct output, based on a set of observed

examples. A supervised learning algorithm learns from the training data, and conse-

quently, it provides an inferred function that can be employed for mapping new data

records [64]. A supervised learning model can be based on statistical models or neural

networks. Deep learning models are more suitable to be used when the data includes

videos and images due to the greater volume of the data they provide. For example,

[49, 50, 51] used long-short term memory (LSTM) [65] in their study. [52] used a con-

volutional neural network (CNN) for the same purpose. This study uses a visual ge-

ometry group (VGG-16) model, which is used for object recognition. Deep networks

are known to require high computational power and are usually time-consuming to be

trained. On the other hand, some of the authors use statistical learning models. For

example [59, 58, 60] use support vector machines (SVM) which is first introduced

by [66], and [1] uses logistic regression (LR) [67]. Some studies such as [57, 41] use

random forest (RF) algorithm [68].

The volume of the collected data ranges from 28 (14 ASD - 14 TD) [69] to 97 (49

ASD - 48 TD) [59]. However, the majority of the literature have a small number

of participants in their studies. Furthermore, some of the studies do not provide de-

mographic information about the dataset. For instance, [51] did not mention the age

range and the gender of the participants recruited for their investigations. Lastly, the

usage of imbalanced data can be seen in the literature. For example, [57] recruits 35

TD control subjects and 23 ASD participants, which shows the data used for classi-

fication is imbalanced. It is crucial to have the same number of participants in each

class to be able to evaluate the performance of the classifier properly.

Researchers employ cross-validation to compensate for the small number of partici-

pants. For example, [1] recruited 15 ASD and 15 TD participants (30 in total), and the

authors used a cross-validation method. When the participant starts interacting with

the web page, many data points were generated for each person. However, [1, 19]
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implement a real case scenario to evaluate their approach. They used the data from

10 participants in the training set, and 5 participants in the test set. They replicated

the process 100 times, and each time, the data associated with a participant is either

in the test or the training set. Although cross-validation provides better information

regarding the robustness of an approach, [54, 53, 70, 50, 55] used a 1-fold valida-

tion (1FV) and did not use cross-validation. For example, [54, 55] trained the model

with 300 data samples and evaluated it with 100 records. Similarly, [53] used 80% of

the available data for training and 20% for the validation of their proposed learning

model. While studies such as [49] stated that the data used for training and testing

is 75% and 25%, respectively, [59, 61] provide insufficient information regarding the

ratio of the train and the test sets. [51, 52, 57] used leave-one-out cross-validation

(LOOCV) method. In this approach, the number of folds is equal to the data sam-

ples in the dataset. Hence, in each iteration, one record will be hidden, the learning

function is trained with the rest of the data, and the hidden record is used for the eval-

uation. Finally, the authors report the statistical measures, such as the average of the

recorded performance.

Researchers use different metrics to measure the performance of learning models.

However, accuracy, area under the curve (AUC), sensitivity and specificity are the

most common units reported in the literature. In order to describe these metrics, we

first need to define the following terms:

• True Positive (TP): is the number of times that an ASD subject is classified

correctly.

• True Negative (TN): is the number of times that a TD subject is classified cor-

rectly.

• False Positive (FP): is the number of times that an ASD subject is misclassified.

• True Positive (FN): is the number of times that a TD subject is misclassified.

Given TP, TN, FP and FN, we can define the following metrics:

• Accuracy: is the ratio of correctly classified samples per the entire records in
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the test set.

Accuracy =
T P+T N

T P+T N +FP+FN
(21)

• AUC: stands for the area under the ROC (receiver operating characteristics).

ROC is a graphical plot demonstrating the performance of a binary classifier

for its discriminative parameters. For example, in a deep neural network, the

number of hidden layers could be considered a discriminative parameter, and

the performance of the model might differ based on that. Therefore, for each

outcome, a specific curve could be plotted. AUC is plotted based on the speci-

ficity on the x-axis and sensitivity on the y-axis of the ROC graph.

• Specificity: measures the ability of the classifier in identifying negative cases.

It is also known as the true negative rate (TNR). Mathematically, specificity can

be defined by the following formula:

Speci f icity = T NR =
T N

T N +FP
(22)

• Sensitivity: measures the ability of the classifier in identifying positive cases,

and it is also known as Recall or the true positive rate (TPR). The following

formula is used to measure Sensitivity:

Sensitivity = recall = T PR =
T P

T P+FN
(23)

• FPR: stands for false positive rate and is the rate of participants that were mis-

takenly classified as ASD. FPR can be computed using the following fraction:

FPR =
FP

FP+T N
(24)

• FNR: stands for false negative rate and is the rate of participants that were mis-

takenly classified as TD. FNR can be computed using the following fraction:

FNR =
FN

FN +T P
(25)
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• Precision: is the ratio of correctly predicted positive observations to the total

predicted positive observations.

FNR =
T P

T P+FP
(26)

• F1: Score is the weighted average of Precision and Recall. Therefore, this score

takes both false positives and false negatives into account.

F1 =
2∗ (Recall ∗Precision)

Recall +Precision
(27)

Reporting accuracy or AUC alone may not demonstrate the actual ability of a classi-

fier. In healthcare applications of supervised learning methods, it is crucial to know

the rate of false classifications. AUC is incapable of providing intuitive informa-

tion regarding the rate of misclassifications. Hence, it is not a reliable metric for

illustrating the influence of the false classification on the overall performance of the

method [71].

[59] only reported AUC and accuracy based on the chosen features, but the rate of

false classification is not clear. In this case, the confusion matrix can be very helpful.

A confusion matrix for a binary classifier is a 2*2 matrix which demonstrates the rate

of correctly-classified and miss-classified records. [1] reported the confusion matrix

and with a 100F-CV, on average, 29.4% of TD subjects are misclassified as ASD and

27.8% of ASD participants are misclassified as TD. This rate of negative classifica-

tion may be considered high for a healthcare application. [43] uses scanpath trend

analysis (STA) algorithm with the same dataset and reported lower accuracies ranged

from 55.1% to 64.8% for each web page separately, and the authors do not report the

performance of the STA model for the combination of all web pages. Although, by

considering the given accuracy per each web page, the accuracy on average is approx-

imately 60%, unlike other machine learning algorithms, the STA approach could not

be applied to all the pages simultaneously. However, for some of the web pages [43]

shows better performance compared to [1]. Furthermore, [43] does not report the

confusion matrix, but unlike [1], [43] reported other metrics such as precision, recall

and the F-score which includes sufficient information regarding the ability of the clas-
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sifier. [72] provided insightful information about evaluation metrics such as precision

and F-score.

The techniques and materials used to collect data from participants mostly focus on

videos or photos of naturalistic scenes to the participants. For example, in [73], gaze

information is recorded alongside the demographic variables such as age and gen-

der of the participants. In this study, each subject is asked to look at videos and

images. As another example, [56] used videos that show four white dots to a partici-

pant, and if a dot starts to move, a yellow arrow starts following it. The participants

were supposed to observe the changes in the dots’ location, and their gaze informa-

tion was recorded. Likewise, [48] used the video of a presenter, and the participants

were examined based on the eye contact they made and their level of focus on the

video. [49, 48, 60] also used video for ASD classification. While [59, 57] used only

images with facial contents, [53, 74] used images that contain naturalistic scenes in-

cluding animals, indoor/outdoor objects and human figure. The only studies that used

web pages for detecting high functioning autism in adults are [1, 19, 43]. The eye-

tracking data used in these studies are collected while the users interacted with web

pages.

In summary, we reviewed and discussed the previous studies that use eye-tracking

data for autism detection. There are various approaches, each of which uses a differ-

ent perspective with dissimilar data types to address ASD detection. The diversity of

the collected data has empowered the researchers to approach ASD detection using

cutting edge learning models. However, there are a limited number of studies that

focus on investigating autism detection in adults. Moreover, there is a limited number

of studies centered around exploring how people with autism interact with web pages.

2.5 Autism Detection with Other Data Types

Table 2.2 shows a summary of some studies using the behavioral data excluding eye-

tracking for autism detection, such as functional magnetic resonance imaging (fMRI)4

4 fMRI data shows which regions are activated in the brain by measuring small changes that occur in the
brain [15].
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and electroencephalogram (EEG)5. The information provided in this section tries to

explain the advantages and disadvantages of using eye-tracking versus other types of

datasets for autism detection.

Table 2.2 A summary of some of studies that use other techniques than eye-tracking

for autism detection.

Ref Data Type Sample Size (ASD-TD) Age Model Evaluation Accuracy %

[75] fMRI 1028-1141 5 to 64 3D-CNN 5F-CV 64

[76] fMRI 505-530 7 to 64 AE 10F-CV 67.5

[77] EEG 10-5 5-17 RF Unclear 93.33

[78] Kinematic 16-14 21 - 39 SVM LOOCV 86.7

[79] Audio 30 - 51 Children SVM Unclear 66

[79] uses audio samples of both TD and ASD subjects to detect autism. The au-

dios contain different word utterances. The authors generated ten random groups of

word utterances, trained an SVM model with nine samples, and tested it on the one

remaining data sample. However, it is unclear whether the authors included the data

from one participant both in the training set and the test set. The authors reported

the rate of misclassification in this study (FN: 19% to 45%, FP: 27% to 21%) that

may be considered high for such applications. Audio data is considered unstructured,

albeit easier for human-beings to interpret; it could be more challenging to analyze

such data types and extract potentially useful patterns than eye-tracking data, which

is tabular and structured.

fMRI or resting-state fMRI (rs-fMRI)6 data have also been applied for ASD detection.

The majority of these studies use ABIDE I [15] and ABIDE II [80] or a combination

of these two datasets. ABIDE is a website for fMRI data exchange, and it involves

17 international sites that share previously gathered fMRI/rs-fMRI with the scientific

community. [81] uses ABIDE I dataset for ASD detection. They implement a single

layer perceptron on the top of an auto-encoder and reported the average accuracy of

67.5%. [15, 80] provided with a substantial amount of data which makes researchers

employ deep networks to address ASD detection [75, 81, 82]. However, some stud-

ies employ classical learning algorithms using the same type of data [83, 84, 85].

5 Electroencephalography is a monitoring approach to capture the electrical activity of the brain [14]
6 For rs-fMRI the brain should be in a resting state [80].
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Either way, training a model based on fMRI data is relatively more time consum-

ing and requires more memory storage than tabular datasets, such as eye-tracking.

Furthermore, collecting fMRI data could be more expensive compared to collecting

eye-tracking data. ABIDE I and ABIDE II datasets are collected with several insti-

tutions’ collaboration, which means collecting fMRI data requires consuming more

resources compared to eye-tracking.

[78] uses Kinematic parameters to detect autism. In this study, the participants were

asked to observe a sequence of hand movements and then try to imitate them. Based

on twenty kinematic parameters, such as duration, and vertical amplitude, authors

tried to classify ASD and TD participants. For each parameter, eight value is com-

puted, and the average and standard deviation of these parameters are used. There-

fore, 40 parameters, including 20 average values and 20 standard deviation values are

calculated. This approach may be considered expensive in terms of computation. Be-

cause, in addition to calculating 40 parameters for 30 participants separately, authors

perform statistical data analysis, and train an SVM model as well. Moreover, the eval-

uation approach of this study is leave-one-out cross-validation, which requires more

computation to be performed, compared to N-fold cross-validation.

In another study that used EEG, [77] reported that they obtained 93% accuracy. How-

ever, they use the data of 15 participants, including 5 ASD and 10 TD. Firstly, the

amount of data is considerably low. Secondly, the classes are highly imbalanced in

this scale. In other words, concerning the fact that some of the data should be used for

training and some testing, having in total 5 ASD participants may not be adequate to

train a random forest. Furthermore, in this study, the authors did not state the training

set ratio to the test set. Finally, it is also unclear whether the data from a participant

in the training set is included in the test set or not.

2.6 Lessons Learned

We list the gaps we found in the literature as followings:

• A limited number of studies are centered around web accessibility for people

with autism and autism detection using eye-tracking gathered on the web. The
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number of web users is increasing, and the need to interact with web pages

is rising to satisfy the daily needs of societies, such as online shopping and

ordering food and education. Therefore, it is crucial to understand how autistic

people interact with the web because autism prevalence is increasing sharply.

• Many studies provide insufficient information about the performance of their

proposed method. If we consider ASD detection as a healthcare application of

machine learning, evaluating the models with different performance measure-

ment tools is essential.

• The number of data samples is low in eye-tracking approaches, yet some re-

searchers did not use the cross-validation method.

• In the studies that we reviewed, only [1, 19, 45, 56] entirely focus on autism

detection in adults, and most of the articles concentrate on autism detection in

children.

• Only [1, 19, 45] use eye-tracking data associated with web pages for autism

detection, and using web pages would be advantageous because it provides a

natural-like setting. Concerning the fact that autism prevalence is increasing, it

is essential to take ASD people’s ability to use web technologies into account.

• Many of the studies have unbalanced classes for ASD detection. Therefore,

the reported model accuracies of such analyses may not be reliable. For fair

comparison, we need an equal number of participants in both groups to judge

the ability of a classifiers. Furthermore, alternative approaches can be explored

to address the imbalanced data issue.

• fMRI data requires relatively much more memory to be stored. Gathering fMRI

data is expensive, and it requires heavy prepossessing computations. Eye-

tracking data is tabular, structured and requires less memory capacity to be

saved. Furthermore, collecting eye-tracking data and eye tracker equipment

is much cheaper compared to fMRI facilities. The same goes for collecting

EEG data. In the literature, we learned that the authors perform heavy com-

putations to generate new features for EEG and audio datasets. Whereas, in

this study, we use raw dataset and the operations we perform is algorithmically
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much cheaper. At last but not least, modern eye trackers are portable and can be

transferred from one place to another easily while this is not the case for EEG

and fMRI equipment.
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CHAPTER 3

METHODOLOGY

This chapter explains the materials, apparatus, and procedure used by [20] to collect

the data adopted for this study. We also present the method we used to develop

the overall approach in this thesis. To this end, we begin with defining the dataset,

following by data preparation. Then we describe the model development procedure

and the method we used to evaluate our proposed model. Lastly, we describe the

feature selection method we used, how it affects our model development process, and

revalidate the new model.

3.1 The First Dataset

The eye-tracking data used in this thesis study was initially collected to examine

whether web users with ASD encounter barriers on the web or not [20]1. This section

explains the type of subjects employed to gather the gaze records, the materials and

apparatus used to collect the eye tracking data, and the procedure used to gather the

dataset.

3.1.1 Participants

The ASD participants were recruited through a charity organization located in Birm-

ingham, the UK and the student enabling center at the University of Wolverhamp-

ton. The typically developing (TD) participants were chosen through snowball sam-

pling. ASD people were officially diagnosed using the Autism Diagnostic Obser-

1 Full ethical approval was obtained by the University of Wolverhampton Faculty of Arts Ethics Committee
before data gathering [1].
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vation Schedule (ADOS)2. In contrast, according to the Autism Quotient (AQ)3 test

results, none of the TD participants manifested a high density of autism-related at-

tributes. 18 ASD and 18 TD participants were selected. ASD subjects included six

females and 12 males, the statistical mean (µ) age in years for them was 37 with a

standard deviation (SD) of 9.4, and the mean number of years spent in formal educa-

tion was µ=16 with SD=3.33. TD participants included eight females and ten males,

the mean age for them was µ=33.66 with SD=8.6, and the mean number of years

spent in formal education was µ=18.35 with SD=2.47. Due to head movements and

lack of proper calibration, the data of three ASD participants were discarded. Hence,

three participants were randomly chosen, and their data were eliminated from the TD

group to have the same number of subjects in each group. The remaining participants

were 15 ASD (nine males and six females) and 15 TD (eight males and six females).

3.1.2 Materials and Apparatus

The screenshots of six web pages were used. The web pages varied in terms of

visual complexity (low, medium, high), measured by ViCRAM [88]. The web pages

included Apple (Low), Babylon (Low), AVG (Medium), Yahoo (Medium), Godaddy

(High) and BBC (High). The web pages were randomly selected from ALEXA.com4,

which lists the most visited websites, by ensuring that there is a balance among low,

medium and high visual complexities. The participants were supposed to interact with

these web pages while a Gazepoint GP3 video-based eye tracker5 (60Hz sampling

rate and accuracy of 0.5-1 degree of visual angle) was recording their gaze data. The

screenshots of the web pages were illustrated on a 19 LCD monitor. The distance

between eye tracker and participants was measured via a sensor integrated within the

Gazepoint software, and it was approximately 65cm.

2 ADOS is an evaluation of social interaction, communication, imagination, and play designed for use in the
diagnostic examination of people referred for a possible ASD diagnostic criteria [86].

3 AQ is a tool to assess the degree to which an adult with average intelligence has the characteristics associated
with the ASD [87].

4 https://www.alexa.com/topsites
5 https://www.gazept.com/
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3.1.3 Tasks

The web pages were shown to both ASD and TD participants. Each group mem-

ber was asked to complete two different tasks; a browsing task and a searching task

that are both associated with the Marchionini search activities method, a common

approach used in this field [89]. According to [89], searching and browsing task both

fall under the investigative group. The participants could spend up to two minutes

per page in the browsing task to look for any information that attracts their attention.

They were free to read textual information and observe visual elements. Furthermore,

within two minutes, they moved to the next web page whenever they felt ready. In

the searching task, each participant was given 30 seconds per web page, and they

were supposed to look for specific information. For each web page, they were asked

two questions, and these questions are represented in Table 3.1. Notably, the ques-

tions were asked by the researcher verbally, and the participants were expected to

read aloud their responses. While the users were performing the tasks, the eye tracker

recorded their eye movements.

3.1.4 Procedure

Participants became familiar with the purpose and procedure of the experiment and

then signed a consent form. Then, the TD participants were asked to fill the Autism

Quotient test for determining whether they have autistic traits or not. The demo-

graphic information such as diagnosis, age and gender were collected from the par-

ticipants, and a nine-point calibration of the eye tracker was performed. After a suc-

cessful calibration, each participant viewed the screenshots of six web pages. The

participants were asked to perform the browsing and searching tasks.

3.2 The Second Dataset

The second dataset was collected to examine the effects of distinguishability of web

page elements and their visual complexity [2] on the behaviour of web users with

autism. [2] is a comparative eye-tracking study with 19 TD and 19 ASD subjects on
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Table 3.1 The questions that the participants were asked for the searching task in the

first dataset [1].

Page Question

Apple
(a) Can you locate the link that allows to watch the TV ads relating to iPad mini?

(b) Can you locate a link labelled iPad on the main menu?

Babylon
(a) Can you locate the link that you can download the free version of Babylon?

(b) Can you find and read the names of other products of Babylon

AVG
(a) Can you locate the link which you can download the free trial of AVG Internet Security 2013?

(b) Can you locate the link which allows you to download AVG Antivirus Free 2013?

Yahoo
(a) Can you read the titles of the main headlines which have smaller images?

(b) Can you read the first item under the News title?

GoDaddy
(a) Can you find a telephone number for technical support and read it?

(b) Can you locate the text box where you can search for a new domain?

BBC
(a) Can you read the first item of Sport News?

(b) Can you locate the table that shows market data under the Business title?

eight web pages with varying visual complexity and distinguishability, with synthesis

and browsing tasks. The outcomes of this study demonstrate that ASD subjects have

a higher number of fixations and make more transitions with synthesis tasks or the

web pages with low level of distinguishability and high complexity.

3.2.1 Participants

In [2] authors recruited 19 ASD and 19 TD subjects using the same methods and

through a charity organization. In the ASD group, there were eight females and 11

males, and in the TD group, there were 13 females and six males. The statistical

average age for the ASD group was µ=41.05 with the STD=14.04, and the mean

age of the TD participants was µ = 32.15 with the STD=9.93. Among the ASD

participants, 11 had a higher education degree, and six had a UK equivalent of a high-

school degree. The rest of the ASD participants did not report information about

their level of education. 18 TD participants provided data regarding their education

level, 15 of them had a higher education degree, and the rest had a UK equivalent of

a high-school degree.
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3.2.2 Materials and Appratus

The eye tracker used to collect the second dataset is the same as the one used for the

first dataset. They categorized these web pages into four classes based on their com-

plexity and distinguishability. Whatsapp and WordPress had low visual complexity

and high distinguishability (Class 1), Netflix and Outlook had low complexity and

low distinguishability (Class 2), Amazon and YouTube had high visual complexity

and high distinguishability (Class 3), and finally, Adobe and BBC had high visual

complexity and low distinguishability (Class 4). ViCRAM [90] was used to deter-

mine a visual complexity score (VCS) for each web page, and the distinguishablity

was computed based on the white spaces between the elements. The distance between

the participants and the eye tracker was the same as the first dataset.

3.2.3 Tasks

The participants completed two tasks on the web pages called browsing and synthesis,

both associated with the Marchionini search activities model [89]. In the browsing

tasks, participants viewed the web pages for 30 seconds freely. However, in the syn-

thesis tasks, specific questions were asked. The synthesis questions were designed ac-

cordingly, and the participants had to combine multiple facts from different elements

to produce new information in a maximum of 120 seconds to answer the questions.

Table 3.2 shows the questions researchers asked participants for the synthesis task.

3.2.4 Procedure

The procedure for collecting the second dataset was the same as the one used to gather

the first dataset. See section 3.1.4.

3.3 Areas of Interests (AOI)

The eye-tracking machine captures various parameters, such as the fixation position

and timestamp associated with each record. A scheme of the initial raw dataset is
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Table 3.2 The web pages used in the second dataset with their level of distinguisha-

bility (D) and complexity (C), and the synthesis questions [2].

Page C D Question

WhatsApp Low High
(a) Under frequently asked questions, what topic features in both the iPhone and Android columns?

(b) Under frequently asked questions, which sections feature topics relating to notifications?

WordPress Low High
(a) Which of the WordPress plans offers community support instead of email support?

(b) What is the cheapest plan you can get that offers Email and Live Chat support?

Netflix Low Low
(a) Which is the cheapest plan that allows you to watch movies on your laptop, TV and tablet?

(b) How much more would you have to pay compared to the basic plan if you wanted to have Ultra HD?

Outlook Low Low
(a) According to the text, is Twitter a partner app of Outlook?

(b) The names of which apps are both mentioned in the text and presented as logos below the text?

Amazon High High
(a) Which item has the largest price discount measured in percentage?

(b) Which product has been rated by the largest number of users?

YouTube High High
(a) Under the American football category, which videos have been posted within the last three months?

(b) Under the NBA topic, which video has the largest number of views?

Adobe High Low
(a) Which is the product that is targeted to UX designers and for which students can get a discount?

(b) How many types of clouds are offered by Adobe within this page?

BBC High Low
(a) According to the schedule, which Grand Prix takes place first: the Australia or the Bahrain?

(b) Which of the following sports does not have its own tab on BBC Sport: Golf, Cricket, or Volleyball?

demonstrated in Table 3.3. In this study, we use fixation coordinates to determine

which area of interest (AOI) the participants choose to observe. An AOI in this con-

text is a visual element or a region on the web page. Similar to [1], we use both

page-specific and grid AOI approach.

3.3.1 Page-Specific AOIs

The page-specific AOIs were initially declared in [91], and they were generated using

the Vison-Based Page Segmentation (VIPS) algorithm6. The document object model

(DOM) is a language-independent and cross-platform interface that is the foundation

of web pages and has a tree-shape structure. DOM structure consist of nodes that

represent web elements with a link to other nodes that represent relationships. VIPS

requires to use DOM. In other words, the DOM structure provides the necessary in-

formation for VIPS to process including the details of all the elements used to develop

a web page.

VIPS labels nodes in DOM and generates a hierarchical tree structure. The VIPS

algorithm then finds visual blocks by first extracting them, separating them, and con-

6 VIPS algorithm uses source code of web pages and their visual illustrations based on different granularity
levels to generate segmentations [92].
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structing the content structure. The major part of the VIPS algorithm is block extrac-

tion. Each extracted block holds a value so-called as the degree of cohesion (DoC).

When the DoC value is bigger than a predefined value for the block, VIPS stop seg-

menting the corresponding node.

Next, VIPS detects the separator between every two blocks, and a value will be as-

signed to each separator, which initiates the connection of two blocks. Then, a tree of

blocks (different from DOM, but the root of the tree is as same as the root of DOM)

will be generated. These steps will be repeated for each node, and the process con-

tinues until there is no other node to examine. The adjacent nodes can be combined

and shape a new tree, which is more straightforward than DOM and can represent

the generated web segments. Figure 3.1 demonstrates the apple web page segmented

using the VIPS algorithm.

3.3.2 Grid AOIs

Similar to [1], we use 2*2, 3*3 and 4*4 grid segmentation for the grid AOI approach.

2*2, 3*3 and 4*4 grid segmentation will result in having 4, 9 and 16 segments, re-

spectively. For instance, through the 3*3 segmentation approach, the web page will

be divided into nine equal segments, and each segment will be considered as an AOI.

Figure 3.2 illustrates the apple web page, which is segmented using a 2*2 segmenta-

tion approach.

3.4 The Overall Method

This section explains the data preparation, statistical tests to identify the most con-

tributing features, binary classification model, and the evaluation process. Figure 3.3

shows the process model of the overall method.
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Figure 3.1 Page specific AOIs. The figure is taken from [1].

Figure 3.2 Grid AOIs. The figure is taken from [1].
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Figure 3.3 This figure shows the process model of the overall method.

3.4.1 Data Preparation

Data preparation is necessary to manipulate the data in an interpretable and under-

standable manner for supervised learning algorithms.

The eye-tracking data we use in this study include the coordinates of fixations and

their duration. [1] counts the number of times a particular AOI (web segment) is

visited and the total amount of duration that a participant spent looking at a segment.

However, this approach would lead to the following issues:

• Performing more computation to prepare a new dataset based on the raw dataset.

• The data does not represent a sequence. However, eye-tracking data represents

scanpath, which has a sequential structure. In other words, the generated dataset

loses its sequential attributes.

We took a step back and considered another path for data preparation by performing

less computation and keeping the sequential attribute of the dataset intact. We did

so by using the raw data instead of generating a new dataset. We first extracted the

fixation coordinate and their timestamps demonstrated in Table 3.3. Then, we chose
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to label the data records with the ID of the segment. The possible options are page-

specific segmentation and grids segmentation. Figure 3.4 illustrates a more detailed

process model of the page-specific segmentation procedure.

For the page-specific segmentation, we considered whether a particular segment is

related to the question (for the searching task). Furthermore, we examined if the seg-

ment is central (located at the center of the web page) or peripheral (located on the

sides of the web page). Moreover, given a searching task, some segments would be

relevant to the task while others would be irrelevant, and we also used this as a fea-

ture in our dataset. Therefore, with the page-specific approach, the search dataset is

preprocessed differently. Note that there will be no central/peripheral and relevan-

t/irrelevant attribute in the browsing dataset as there is no specific question for this

task. The motivation behind generating central and relevant features is to investigate

whether they help the accuracy of the classifier increases. Table 3.4 shows a scheme

of the dataset after detecting the segments for the searching task.

According to Figure 3.5, with the grid segmentation approach, fewer features will be

generated, and the complexity of this approach is lower as well. It is worth noting

that the second dataset is used to evaluate the machine learning model regarding the

3*3 segmentation because we obtained the best results using the first dataset with

this approach. Therefore, we did not perform the page-specific data preparation for

this dataset. We developed the model based on the first dataset, and we used the

second dataset to evaluate the approach we developed with the first dataset. Hence,

3*3 grid segmentation is used to prepare the second dataset, and it should be taken

into account that there is no searching task in the second dataset. Instead, there is a

synthesis task that is entirely different from the searching task. Another motivation to

evaluate our model using the second dataset is to understand the classifiers’ effects on

distinct tasks. As the results using grid segmentation showed the highest performance,

we also considered to try 2*2 and 4*4 segmentation to compare the obtained results

with [19].
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Figure 3.4 This figure shows the flow-chart diagram of the labeling approach for the

page-specific AOI segmentation.

Figure 3.5 This figure shows the process model of the labeling approach for the grid

AOI segmentation.
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Table 3.3 Schematic of the initial dataset that this study uses.

Media Name X Y Time

Apple 0.1298 0.6356 41

Apple 0.6325 0.7452 135

AVG 0.1452 0.3648 265

AVG 0.1347 0.0312 32

BBC 0.3564 0.7896 635

BBC 0.7895 0.1235 1253

To prepare the data, we use a binary one-hot encoding approach [93]. One-hot en-

coding is a method often used for demonstrating the state of a variable. For example,

when we consider the web page column, it can have several values, such as BBC,

AVG and Yahoo. With a binary one-hot encoding approach, each value becomes a

separated column in the dataset. Then, if the web page value in the original dataset

is, for example, BBC, in the one-hot-encoded dataset, in column BBC, we will have

1, and the rest of the columns associated with the value of the web page will be set to

0. The same approach will be used for segments. We do not replace the categorical

names with integer values because, in our case, a supervised learning algorithm may

learn an incremental pattern. However, when each web page becomes a separated

column, it introduces a new dimension to the problem, but the learning model will

not be mislead by integer values representing categories. Table 3.5 demonstrates the

scheme of the encoded version of Table 3.4.

Table 3.4 This table presents the schematic of the search dataset after preprocessing

with a page-specific approach. Note that 0 represents False, and 1 represents True. If

the value of Central is 0 for a record, it means that the segment was peripheral.

Media Name Segment Central Relevant Time

Apple E 1 1 41

Apple E 1 1 135

AVG H 0 1 2

AVG A 0 0 32

BBC C 0 0 12

BBC D 1 1 1253
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Table 3.5 This table shows the schematic of the search dataset after preprocessing and

encoded with a one-hot approach.

BBC AVG Apple A C D E H Central Relevant Time

0 0 1 0 0 0 1 0 1 1 41

0 0 1 0 0 0 1 0 1 1 135

0 1 0 0 0 0 0 1 0 1 2

0 1 0 1 0 0 0 0 0 0 32

1 0 0 0 1 0 0 0 0 0 12

1 0 0 0 0 1 0 0 1 1 1253

3.4.2 Feature Selection

We need to perform statistical comparisons to identify the features that help increase

the accuracy of the classifiers. To this end, we need to recognize which variables are

significantly different between groups.

We should first clarify that we perform the statistical analysis only for when we use

3*3 grid segmentation. The result of statistical analysis for the page-specific seg-

mentation is already reported in [45]. We used T-test7 and Mann-Withney U-test

(U-test)8 to explore how significant the difference is for a particular feature. The

Mann-Whitney U test is often used when the data does not follow a specific distribu-

tion. If two groups (ASD and TD) are significantly behaving differently regarding the

number of times visiting a segment or the amount of time they spent on each segment,

these two tests would statically prove this fact.

3.4.3 Model Development

The programming language used to implement the solution is Python Programming

Language. The libraries used are Numpy for working with arrays and perform-

7 An independent-group t-test can be carried out for a comparison of means between two independent groups,
with a paired t-test for paired data. As the t-test is a parametric test, samples should meet certain preconditions,
such as normality, equal variances, and independence [94]

8 This test can be used to investigate whether two independent samples were selected from populations having
the same distribution [95]
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ing matrix-related operations [96], Pandas to read and manipulate the eye-tracking

data [97], Seaborn for data visualization [98] and Scikit-Learn to employ various ma-

chine learning models.

First, we perform the classification without any feature selection. Then, based on the

results we obtained in statistical comparison, we remove those features that do not

seem significantly different from one another, and we keep the rest. After identifying

the most contributing features, we perform the classification again. The following is

the list of the classifiers we used with a brief explanation about how they function:

• Logistic Regression (LR) is used to model the probability that a class or an

event occurs as an estimation [99]. LR can be used to measure the relationship

between categorical dependent parameters [100].

• K Nearest Neighbour (KNN) is first introduced by [101] and is an instance-

based learning method that considers the K closest instances to a new data

record to classify it [102].

• Support Vector Machine (SVM) is first introduced by [66] and uses a non-

probabilistic binary linear classification to discriminate to predict the label of

the class for a new data sample.

• Decision Tree (DT) is a tool for decision support purposes with a tree-based

structure. This model can work based on information entropy gain or Gini

index. Entropy in Information Theory is initially introduced by [103] and is

widely used to compute the uncertainty inherent in the possible outcomes of a

variable. Equation 31 is used to calculate entropy:

Entropy =−
i=n

∑
i=1

P(xi)Log(P(xi)) (31)

where P(xi) is the probability that class xi apprears in a node and i is the number

of the class.

Gini index is also used to compute inequality in the frequency of distribu-

tions [104]. Equation 32 is used to calculate the gini index:

Gini = 1−
i=n

∑
i=1

P2(xi) (32)
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where P(xi) is the probability that class xi apprears in a node and i is the number

of the class.

Entropy can be used to compute the information gain. The information gain

(Kullback-Leibler divergence) is a statistical tool to measure the difference be-

tween two distribution demonstrated in probabilities [105]. Equation 33 is used

to calculate the information gain:

IG(S,γ) = E(S)−E(S|γ) (33)

where IG(S,γ) is the information gain, E(S) is the entropy of S, and E(S|γ)
is the entropy of S, given γ . S represents a set of training samples and γ is an

attribute.

A DT model works based on computing the information gain. In other words,

a DT grows based on finding attributes with the highest information gain. The

feature with maximum information gain becomes the parent node, and the rest

of the dataset will be split based on that. This procedure continues until the

nodes contain information about the classes of the dataset and cannot be split

any further. According to [106], DT is used successfully in diverse areas, such

as medical diagnosis.

• Random Forests (RF) uses the ensemble technique to overcome overfitting is-

sues in a decision tree by growing multiple trees. Each tree performs a sepa-

rated classification, and finally, the statistical model will be reported [107]. In

general, ensemble methods are used to obtain better predictive performance for

a machine learning model [108].

• Extra Trees (ET): is a relatively newer version of tree-based supervised learning

methods. This model randomizes the cutting points as well as the attributes

chosen to split the data [109]. In noisy datasets, this method provides all the

attributes of a dataset to be chosen. This way, the tree grows uniformly.

• Adaptive Boosting (AD) which is also known as AdaBoost, is a machine learn-

ing meta-algorithm9 which uses the boosting techniques to overcome overfit-

9 A meta-algorithm is a higher-level procedure to provide an adequate solution for a sophisticated optimization
problem [110].
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ting [111]. In machine learning, boosting is an ensemble technique to combine

several weak learners into a single strong learner [112]. The primary goal of

using boosting techniques is to reduce the bias and the variance of a predictive

model [113].

• Gradient Boosting (GB) is introduced by [114], and it uses the boosting tech-

nique to enhance the generalization of a set of weak learners.

• Gaussian Process (GP) is a collection of random variables with joint Gaussian

distributions [115]. GP can be used as a predictive model for both regression

and classification problems.

• Gaussian Naive Bayes (GNB) is a form of the Naive Bayes (NB) method. NB

is a probabilistic classifier that uses Bayes’ theorem [116]. GNB uses a regular

(or Gaussian) kernel to compute the probability for each class. This model

can be used When the dataset has continuous data, and the attributes follow a

Gaussian distribution [117].

• Bernoulli Naive Bayes (BNB) is used for the classification of Bernoulli event

models, and is usually used for text classification [118].

• Linear Discriminant Analysis (LDA) is an approach used for dimensionality

reduction based on finding a linear combination of features. This method is

developed based on Fisher’s linear discriminant method [119, 120].

• Quadratic Discriminant Analysis (QDA) is similar to LDA. and considers that

the variables of classes are typically distribute [121]. However, unlike LDA,

QDA does not assume that the covariance of each class is identical.

3.4.4 Model Evaluation

The main issue is to distinguish ASD participants from TD users. [1] used logistic

regression and leave five out cross-validation methods to train and evaluate their work,

respectively. In this research, 13 different classifiers that were described earlier are

trained and evaluated using the same leave five out cross-validation methodology.
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For each dataset, we have two different tasks that we explained earlier. The training

and evaluation procedure is same for both tasks. We have two classes of participants

named ASD and TD. After data preparation and feature identification, we feed each

classifier with eye-tracking data. To generate a random training set and a random

testing set, for each classifier, we initiate a list containing a set of integer values from

1 to 15 (the number of remaining participants in each group is 15) for the first dataset.

The program randomly chooses a number between 1 to 15, adds it to a new list that

we call the training list, and then removes the chosen number from the main list. At

each iteration, the integers in the training list are identical. We continue the previous

step until we have 10 identical numbers on our training list. What remains in the main

list is five identical integer values. We use the training list to choose 10 participants

and train the classifiers, and we use the five remaining values in the main list to test

the model. Note that we perform this for both ASD and TD groups. Consequently, we

will have 20 participants for training each classifier and 10 participants for evaluation.

After we train each classifier, we use equations 21, 26, 23 and 27 to compute and

evaluate the performance of each classifier. We repeat this step for 100 times, and

finally, report the statistical average for each parameter.

For the second dataset, we perform the same procedure, but the number of participants

in the training and testing sets is different. For the second dataset, in which we have

19 participants in each category, we considered using the data from 14 participants to

train the classifiers and used 10 participants similar to the first dataset to evaluate the

model. For both datasets, each misclassification deducts 10% of the model accuracy.

For instance, if one person in the testing set is misclassified, the accuracy of the

model is reported to be 90%, if two participants are misclassified, the accuracy would

be 80%, etc.
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CHAPTER 4

RESULTS

In this chapter, the focus is on presenting the results obtained by applying the method-

ology explained in Chapter 3. This chapter is divided into three sections; Exploratory

Analysis, Statistical Analysis and Classification Performance. As explained in the

methodology section, 3*3 grid segmentation is used, and prepared the data in a dif-

ferent way compared to [1], and therefore, we consider the segments as important

features. Furthermore, unlike [1], this study does not interpret the time by computing

how much each participant spent on each AOI. Therefore, the timestamp is used as

a raw feature. In the exploratory analysis chapter, we illustrate data visualization to

highlight the differences between people with the Autism Spectrum Disorder (ASD)

as well as typically developing (TD) people. This study also uses some statistical

methods to highlight the differences between ASD and TD. In this chapter, we used

two datasets; the first dataset consists of a searching task and a freely browsing task,

and the second dataset includes a synthesis task and a time-restricted browsing task,

which is different from the browsing task in the first dataset. The first and the second

dataset are used to train machine learning models which were explained in Chapter 3.

4.1 Exploratory Analysis

This section uses data visualization to highlight the differences between people with

the ASD and TD groups. We show two sets of figures for both the first and the sec-

ond dataset. Figures 4.1, 4.2, 4.3 and 4.4 use bar charts to highlight the differences

between ASD and TD people in terms of the total number of fixation, while, Fig-

ures 4.5, 4.6, 4.7 and 4.8 use box blot to show the range of total fixation duration per
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each segment. Box plots can be useful to show the min, max and the statistical av-

erage of a parameter. As we explore in this chapter, fixation duration provides more

statistical significance. Hence, box plots are used to provide more detailed visualiza-

tion regarding the fixation duration. In addition to the value interval associated with

a parameter, box plots show the average value.

Figure 4.1 illustrates the differences between the total number of fixations per each

segment for the ASD and the same parameter TD groups. According to Figure 4.1,

ASD group made more fixations in each segment. Both ASD and TD subjects made

the maximum number of fixations on segment E and after that B. These two segments

represent the middle of the web page. Both groups made fixations on segment A and D

that represent the left side of the web page. In these four segments, ASD participants

make more fixations compared to the TD participants. The ASD group made a low

number of fixations in segments F, G and H, and TD participants had no fixations in

these segments. Both group had no fixations in segments C and I. This is somewhat

the same case for the browsing task of the first dataset. However, in the browsing

task, the visualization in Figure 4.2 shows more fixations in segment H.

In the second dataset, Figure 4.3 and Figure 4.4 illustrate the same trends and patterns

we encountered in the first dataset. For example, segments A, B, D and E attracted

most of the participants’ attention. However, there are small differences, such as vis-

iting segment F by TD participants more and having approximately the same number

of visits by two groups in segment B in the browsing task of the second dataset.

Figure 4.5 demonstrates the minimum and maximum amount of time each group

spent on each segment exclusively. Looking at Figure 4.5 reveals more information

that cannot be interpreted by looking at Figure 4.1. For instance, TD participants

spent a small amount of time on segment H, representing the middle segment at the

bottom of the web page. ASD participants spent significantly more time on segment

H. ASD participants also spent the maximum amount of time looking at segment G,

which cannot be interpreted from Figure 4.1. Similarly, ASD participants spent time

on segments I, C and F, while ASD participants spent no time on them. In segments

A, B, D and E, similar to all the other segments, ASD participants spent more time.

The visualization for the fixation duration with regards to the browsing task in the
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Figure 4.1 The total number of fixations on the segments of all the pages for the ASD

and TD groups with regards to the searching task.

Figure 4.2 The total number of fixations on the segments of all the pages for the ASD

and TD groups with regards to the browsing task in the first dataset.
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Figure 4.3 The total number of fixations on the segments of all the pages for the ASD

and TD groups with regards to the synthesis task.

Figure 4.4 The total number of fixations on the segments of all the pages for the ASD

and TD groups with regards to the browsing task in the second dataset.
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first dataset shows almost the same trend in Figure 4.6. However, there are some

differences, such as a larger time interval spend to observe each segment. Moreover,

unlike the searching tasks, participants spent time on segment G as well. In the second

dataset, as Figure 4.7 and Figure 4.8 show, the trends are the same about the majority

of the time spent on segments. However, in the browsing task of the second dataset,

according to Figure 4.8, in some of the segments such as B, TD participants spent

more time compared to ASD participants.

The page-specific AOI segmentation [45] provides extensive analysis to highlight the

differences between the ASD and the TD group for the first dataset. For the second

dataset, [2] takes a comparative approach to highlight the differences between the

ASD and the TD group for synthesis and a different browsing task. The findings of

these two articles are discussed in Chapter 2.

4.2 Statistical Analysis

Using the T-test and Mann-Whitney U-test, Table 4.1 and Table 4.2 report the features

with significant differences in the different tasks of both datasets with respect to the

number of fixations and fixation duration, respectively. Comparing the first and the

second dataset, the first dataset has more significant features, as the visualization also

shows. Most of the significantly different features belong to the searching task, and

participants showed more difference in terms of fixation duration than the fixation

count. ASD participants seemed to perform the task slower, and therefore, spend

more time on addressing the task compared to TD participants. This is the same case

for the number of fixation duration, but the results show that difference for fixation

count is not as significant as the difference in fixation duration.
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Figure 4.5 The minimum and maximum amount of time spent on the segments of all

pages by ASD and TD participants in the searching task.

Figure 4.6 The minimum and maximum amount of time spent on the segments of all

pages by ASD and TD participants in the browsing task of the first dataset.
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Figure 4.7 The minimum and maximum amount of time spent on the segments of all

pages by ASD and TD participants in the synthesis task.

Figure 4.8 The minimum and maximum amount of time spent on the segments of all

pages by ASD and TD participants in the browsing task of the second dataset.
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Table 4.1 Significant features with respect to the total number of fixations for all web

pages.

Media Segment t-val(p-val) u-val(p-val) ASD-avg(sd) TD-avg(sd)

Searching Task

Apple B 2.16(0.04) NA 16.86(7.83) 2.4(1.2)

Apple E 2.29(0.02) NA 25.6(6.83) 19.53(7.17)

Babylon B 2.5(0.01) NA 22.2(10.4) 13.53(7.72)

AVG E 2.16(0.03) NA 23.26(9.03) 16.86(6.36)

GoDaddy E 160.5(0.04) NA 12.53(7.36) 7.73(6.42)

BBC B NA 172.5(0.01) 9.33(3.92) 6.2(2.28)

Browsing Task - First Dataset

Apple B NA 166(0.02) 16.7(14.5) 6.4(6.7)

AVG A NA 177.5(0.007) 16.7(14.5) 6.4(6.7)

GoDaddy B NA 171(0.01) 25(17.9) 13.4(7.9)

Yahoo A NA 162(0.03) 10.4(12.37) 3.8(3.1)

Synthesis Task

Adobe D 104(0.02) NA 17(8.8) 11.6(5.4)

Adobe H NA 264.5(0.01) 14.3(7.5) 8.4(4.7)

Outlook E NA 278(0.004) 26.7(14.1) 16.1(3.8)

Outlook F NA 265.1(0.01) 16.36(7.4) 11(4.3)

Outlook G NA 258(0.02) 15.2(8.2) 9.6(3.8)

Whatsapp H NA 255.5(0.02) 32.5(16.2) 22.5(12.1)

Browsing Task - Second Dataset

Whatsapp C NA 2.1(0.03) 2.1(2.4) 4(2.7)
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Table 4.2 Significant features with respect to the total fixation duration for all web

pages.

Media Segment t-val(p-val) u-val(p-val) ASD-avg(sd) TD-avg(sd)

Searching Task

Apple B 2.29(0.008) NA 248.24(149.71) 122.53(46.7)

Apple D NA 181(0.004) 154.8(135) 46.22(31.2)

Apple E 2.76(0.01) NA 303.6(155.77) 178.03(67.67)

Babylon B NA 179(0.006) 274.4(207.8) 85.8(65.8)

Babylon D 2.14(0.04) NA 99.6(75.19) 53.85(27.09)

Babylon D NA 164(0.03) 404(183) 267(105)

AVG E 2.47(0.01) NA 368(205) 16.86(6.36)

GoDaddy E NA 122.9(0.02) 60.2(82.1) 7.73(6.42)

BBC B NA 200(0.0003) 74.3(63) 15.6(9)

Browsing Task - First Dataset

Apple B NA 172(0.01) 278(358) 55(90.7)

Apple E NA 163(0.03) 776(1468) 118(135)

AVG A NA 173(0.01) 113(272) 11(13)

AVG B NA 161(0.04) 373(492) 123(119)

GoDaddy B NA 174(0.01) 626(1258) 114(107)

Synthesis Task

Adobe D 254(0.03) NA 445.5(315.8) 235.7(225.2)

Adobe E NA 261(0.01) 331.9(191) 186.3(156.8)

Adobe H NA 265(0.01) 303.5(265) 132.7(103.7)

Outlook E NA 290(0.001) 575.3(665.2) 193.9(94.7)

Outlook F NA 191(0.001) 445.6(472.3) 164.2(106.7)

Outlook G NA 277(0.005) 395.6(404.8) 159.7(93.8)

Outlook H NA 277(0.005) 627.3(365.6) 357.6(160.6)

Outlook I NA 279(0.004) 285.3(188.2) 163(89.4)

Whatsapp H NA 274(0.006) 1025.8(469) 631.5(442.4)

Youtube H NA 270(0.009) 295.2(255.2) 118.8(77.6)

Browsing Task - Second Dataset

Whatsapp C NA 103(0.02) 34.1(61.9) 77.2(81.9)
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4.3 Classification

We performed various experiments that we explain in this section, and the results

for each experiment are represented in a separate table in the Appendix. Table 4.3

highlights the classifiers with the best accuracy for each experiment. Note that the

media name is a feature in all experiments. Therefore, to keep the table more readable,

we do not mention media name as a feature in Table 4.3.

Table 4.3 List of classifiers with the best accuracy in each experiment. The abbrevia-

tions used include XY: gaze point location, C: CNT is an attribute of the eye tracking

dataset. Whenever a packet is successfully transferred (including a fixation record),

CNT increases. Since it has 99% correlation with TIME, we considered CNT as

the timestamp in our early experiments. S: page-specific AOI segments. T: actual

timestamp, a feature of the raw eye tracking dataset which represents the timestamp.

22G: 2*2 Grid segmentation. 33G: 3*3 Grid segmentation. The best column also

highlightsts the classifier with the highest performance accuracy in each experiment.

Experiment Task Features Best Accuracy Precision Recall F1 TP TN FP FN

1 Browse XY GNB 53.5 31.66 8 12.44 0.4 4.95 0.05 4.6

2 Browse XYC AB 61.3 59.11 87.99 69.15 4.4 1.72 3.28 0.6

3 Search XY GNB 53 56.86 56.4 62.93 3.04 2.16 2.83 1.96

4 Search XYC ET 76.3 81.99 69.6 73.66 3.48 4.15 0.85 1.52

5 Browse S QDA 55.2 6.6 13 8.8 0.65 4.37 0.63 4.35

6 Browse SC LR 62 60.8 89.39 70.15 4.47 1.73 3.27 0.53

7 Search S BNB 50.7 50.31 91.19 63.92 4.56 0.51 4.49 0.44

8 Search SC ET 80 84.45 77.79 79.15 3.89 4.11 0.89 1.11

9 Browse ST LR 63.7 61 94.4 72.66 4.72 1.65 3.35 0.24

10 Search ST ET 84 92.9 75.79 81.91 3.79 4.61 0.39 1.21

11 Search ST MLP 65.8 66.74 79 68.21 3.95 2.63 2.37 1.05

12 Browse ST MLP 60.1 58.41 83.2 66.5 4.16 1.85 3.15 0.84

14 Browse ST BNB 62 59.13 83.4 67.59 4.17 2.03 2.97 0.83

15 Search ST ET 77.5 77.11 83.59 78.89 4.18 3.57 1.43 0.82

16 Browse 22GT LR 61.49 57.92 98 72.2 4.9 1.25 3.75 0.1

17 Search 22GT DT 89.69 87.58 94.8 90.49 4.74 4.23 0.77 0.26

18 Search 33GT DT 90.5 91.47 91.39 90.7 4.57 4.48 0.52 0.43

26 Search 33GT DT 91.6 91.8 92.9 91.8 4.65 4.51 0.49 0.35

Firstly, we trained 13 classifiers explained in Chapter 3 using the browsing task of
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the first dataset, and according to the obtained results, the classifiers did not learn

anything from these features. We also included CNT to observe the effects of hav-

ing a timestamp in the dataset. As earlier mentioned, CNT increases as the user

starts to work on the task and generates gaze records. Compared to the first experi-

ment, the model’s accuracy has increased relatively for almost all the classifiers. We

can conclude that CNT is potentially a useful feature, and therefore, we keep using

it throughout experiments. Full classification results for these two experiments are

demonstrated in Table A.1 and Table A.2. We repeated the same experiments for the

searching task, so the features that we used in this experiment are the same. Simi-

lar to the first experiment, the lack of CNT leads to lower accuracy, and when CNT

was included in the dataset the accuracy increased. The results show that the search

dataset provides potentially more useful patterns to the classifiers. Detailed results

can be seen in Table A.3 and Table A.4.

Previously we used gaze coordinates, and in the next experiments, given gaze co-

ordinates, we prepared the data using page-specific AOIs. Additionally, we could

determine whether a specific segment is central or peripheral. Note that the relevant

feature is not suitable for using the browsing task dataset to train the classifiers, be-

cause a relevant attribute indicates if a particular segment is related to a searching

task. We used the browsing task dataset and we did not include CNT. Hence, we

trained the classifiers with media names, segments and central features, and the re-

sults show that if we exclude CNT, even page-specific AOI segments will not help

the classifiers learn. Next, we aimed to observe the differences in improved accuracy

after including CNT as a feature. As expected, CNT helps classifiers improve their

performance. The highest accuracy of 61.4% belongs to LR. Table A.5 and Table A.6

represent the detailed classification results for this experiment.

We repeated the previous experiment using the searching task dataset. Similarly,

when we exclude CNT, the model cannot learn from the rest of the features. How-

ever, using the searching task dataset, the accuracy is higher. In the next step we

use the searching task dataset with CNT included. Hence, the attributes used in this

experiment are Media Name, Segments, CNT, Central and Relevant. The results of

this experiment demonstrate that DT, RF, and ET are performing significantly better.

Considering TP, TN, FP and FN, these models classify over 8 participants in the test
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set correctly and miss less than 2 participants in the overall 100 folds. More detailed

results of these two experiments are reported in Table A.7 and Table A.8.

We are aware that a lack of timestamp (CNT) leads to a lower model accuracy, and

CNT is positively correlated with TIME. Therefore, in the next experiments, we sub-

stituted CNT with TIME. We first used the browsing task data with the mentioned

features excluding Relevant. LR outperformed all the other classifiers when we use

the browsing task dataset by 63.7% accuracy. Then, we use the searching task dataset

with the same features plus the Relevant attribute. ET outperforms all the other classi-

fiers in all the experiments up to this point. Table A.9 and Table A.10 consist of more

details regarding these two experiments. Although TIME and CNT correlate 99%,

according to the Pearson Correlation Coefficient (PCC), TIME provides more useful

information for the learning models. It is worth noting that previously we observed

that the TN rate is so low, which means the classifiers were predicting most of the

data records in the test set as ASD. However, in this experiment, the models show a

better performance in classifying TD participants.

In the next step, we tried to develop a suitable deep artificial neural network architec-

ture to train it using the dataset we prepared. We tried to explore how many hidden

layers our model needs and how many neurons we should use in each layer to en-

hance the performance. The variations we used are listed in Table A.11. We use a

fully connected multi-layer perceptron (MLP) model and train it with the features and

data to achieve the best accuracy in the previous experiments. Therefore, we used the

searching task dataset with features including Segment, Relevant, Central, TIME and

media name. According to to Table A.12, the accuracy does not change much. How-

ever, according to the 10th trial, we get 65.8% accuracy, which outperforms many

of the statistical classifiers in the experiments we conducted so far. This accuracy

is achieved by using the searching task dataset. In the next experiment, we use the

browsing task dataset with the same architecture as used in the 10th trial. Results are

reported in Table A.13. As we expected, even with the architecture with optimized

parameters, it led to a lower accuracy than when we use the searching task data.

We calculate the difference value between two consecutive rows for the TIME vari-

able as a feature engineering approach. We assumed that there might be differences
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between the transitions of ASD and TD participants. We call this new feature “Differ-

ence”. We generated this feature, added it to the dataset and trained all 13 classifiers.

As a result, all the classifiers’ accuracy decreased, and the highest precision using the

searching task data belongs to ET with approximately 75% accuracy. However, with-

out this new extracted feature, we achieved 84% accuracy. Therefore, we conclude

that this feature misleads the classifiers.

In the next experiment, similar to [1], we try to use specific pages for classification.

We only use the data associated with AVG and Apple web pages in the browsing task

dataset. According to Table A.14, excluding specific pages from the dataset cannot

help classifiers increase their prediction accuracy with regards to our data preparation

approach. On the contrary, this approach helped [1] to improve its model accuracy.

Similar to [1], we also use the searching task dataset for Apple and Babylone web

pages only, and the results are reported in Table A.15. The accuracy is less than what

we achieve by including all the web pages.

Up to this point, we tried to use page-specific AOI segments, including the headers,

sidebars, icons at the top, etc. However, in the next step, we tried to specify generic

AOIs with a grid segmentation approach. We used 2*2 segmentation, and therefore,

we have four segments with this approach. In the previous experiments, we had 25

segments categorized from A to Y. Nevertheless, with this perspective, we had only

four segments. We have two purposes for conducting this experiment. The first one

was to reduce the dimensionality of the data, and the second one was to increase the

model’s generalization. In other words, instead of precisely looking into the number

of fixations in each major web element (headers, sidebars, etc.), we divided it into

four major segments to see if the classifiers can gain a more efficient performance.

The idea was to prevent reducing the number of data records in the dataset. For

this experiment, we used the browsing task dataset, and the results are reported in

Table A.16.

All the classifiers performed poorly. GP could not converge, and therefore, did not

provide any results. We repeated the previous experiment by using the searching

task dataset. Results are represented in Table A.17. In this experiment, DT and

ET performed significantly better. However, for DT, the rate of false classification
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is not balanced. For DT, the rate of FP and FN is 0.77 and 0.26, respectively, and

it shows that more data records were misclassified as ASD. Hence, with 2*2 grid

segmentation, DT outperforms other classifiers and is more successful in identifying

people without autism. This is in contrast with [1], in which the authors report a

higher rate for FN.

In the next step, we try 3*3 page segmentation with the searching task dataset. There-

fore, the total number of features will change from 11 (2*2 grid segmentation) to 16.

DT outperforms all the other classifiers, so far, this experiment led to the best results.

We used the browsing task dataset to repeat the experiment. According to the results

we obtained up to this point, DT, ET and RF demonstrate the best performances in

descending order. Table A.18 and Table A.19 represent the detailed information for

these experiments.

We performed a sanity check to verify whether the results we obtained in the previous

experiments are due to an overfitted model or not:

1. We concatenate all the TD and ASD searching task dataset gathered from each

participant exclusively and then removed the target column from the generated

dataset.

2. We generate random target values and concatenated this column to the gener-

ated dataset.

3. We feed DT, ET, and RF classifiers with the new data.

80% of the dataset was used to train the dataset, and the rest was used for the evalu-

ation. The classifications results are reported in Table A.20, and they show that the

models are just predicting random classes. In binary classification, this is normal to

have an accuracy of around 50% in this case since there is a probablity of 0.5 for each

category to show up as the predicted value. We also performed the sanity check for

the browsing task dataset A.21, the obtained results are similar to when we used the

searching task dataset.

After running T-test and Mann-Whitney U-test, we realized that page Yahoo and seg-

ments A, C, F, G, H, and I are not significantly different to the classification’s learning
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model with regards to the searching task. Therefore, we decided to remove them for

the sake of dimensionality reduction. The results reported in Table 4.4 show that

the decision tree classifier performs even better and obtains 91.6% model accuracy.

Table 4.4 also shows the result of classifications with all segments included. As the

results show, in all cases except ET in the searching task, all the results improved after

feature selection. We also use another dataset which is first used in [2]. The obtained

results are lower than when we use the 3*3 segmentation approach.

Furthermore, the low results were not unexpected since our statistical analysis demon-

strates fewer significantly different 3*3 segments. However, the results show that fea-

ture selection improves almost all the dataset results and all four tasks. Some of these

improvements, such as the improvement in the second dataset’s browsing task, is con-

siderable, even though the overall accuracy is not high. The best accuracy obtained

is 91.6% using a decision tree and leave one out cross-validation. The best result

was obtained when we used the searching task, prepared by a 3*3 grid segmentation

approach and removed Yahoo, A, C, F, G, H and I from the dataset. We also achieved

76.3% with the browsing task of the first dataset after feature selection.

Table 4.4 The classification results using the searching task and 3*3 grid segmentation

before and after feature selection. The numerical value out of the parentheses shows

the result after feature selection, and the value reported within parentheses shows the

result before feature selection.
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Model Accuracy Precision Recall F1 TP TN FP FN

Searching Task

DT 91.6(90.5) 91.8(91.4) 92.9(91.3) 91.8(90.7) 4.65(4.5) 4.5(4.4) 0.4(0.5) 0.3(0.4)

RF 83.4(81.1) 79.7(77.7) 94.8(93) 85.6(83.6) 4.7(4.6) 3.6(3.4) 1.4(1.5) 0.2(0.3)

ET 86.9(88.1) 85.4(88) 91.1(92.7) 88(88.7) 4.64(4.5) 4(4.2) 0.9(0.7) 0.3(0.4)

Browsing Task, First Dataset

DT 76.3(68.9) 81.3(73.4) 73.1(68.2) 74.9(67.8) 3.66(3.4) 3.97(3.4) 1.03(1.5) 1.34(1.5)

RF 65.3(60) 65.1(57.7) 82.4(84.8) 70.5(67.6) 4.1(4.2) 2.4(1.7) 2.59(3.2) 0.88(0.7)

ET 73.8(65.1) 74.9(65.8) 78.3(76.5) 74.7(68.4) 3.92(3.8) 3.46(2.6) 1.54(2.3) 1.08(1.1)

Synthesis Task

DT 56.7(54.8) 54.5(53.3) 88.2(93.6) 66.9(67.6) 4.41(4.68) 1.26(0.81) 3.74(4.19) 0.59(0.32)

RF 53.9(53.4) 52.2(52.2) 98.4(0.96) 68.1(67.5) 4.92(4.8) 0.47(0.55) 4.53(4.45) 0.08(0.2)

ET 57.8(54.8) 54.9(52.9) 95.2(95.8) 69.4(68) 4.76(4.79) 1.02(0.69) 3.98(4.3) 0.24(0.21)

Browsing Task - Second Dataset

DT 52.3(45.8) 32(37.4) 7(27.2) 0.12(29.6) 2.52(1.36) 3.17(3.23) 1.83(1.77) 2.48(3.64)

RF 56.9(40.6) 58(27.7) 50.4(26.8) 49.8(26.3) 2.52(1.34) 3.17(2.73) 1.83(2.27) 2.48(3.66)

ET 50.4(44.5) 36.5(35.8) 12.2(27.1) 17.4(28.7) 0.61(1.36) 4.43(3.09) 0.57(1.91) 4.39(3.64)

As the last experiment we trained the best classifiers with the eye tracking data asso-

ciated with each web page separately. The results are reported in Table A.22 and Ta-

ble A.23 show the results for the searching task dataset and the browsing task dataset,

respectively. The results suggest that the BBC and Apple web pages provide the

highest accuracy for in the searching task and browsing task dataset, respectively.

By looking at Table 4.4 we can see that the second dataset did not help the classifiers

learn to predict high functioning autism. Similar to the first dataset, the browsing

task in the second dataset leads to lower accuracy. We also used the data gathered

for each web page separately to train the classifiers. The results shown in Table A.24

demonstrate that Outlook web page for the synthesis task provides the classifiers with

more useful patterns for classification. For the second dataset’s browsing task, What-

sapp and Youtube web pages are better compared to others. However, for both tasks,

the results are lower than what we obtained using individual web pages in the first

dataset. Since [19] conducted experiments using 2*2 and 4*4 grid segmentation, we

decided to test it using the approach developed in this thesis. However, as expected,

results do not demonstrate any improvement in the classification results. The results

are reported in Table A.25.

In summary, we used data visualization and statistical analysis in Chapter 3 to high-

light the differences between the ASD and the TD participants while interacting with
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different web pages. After that we used various classifiers and observed their per-

formance while we trained them with eye tracking data prepared using different ap-

proaches. One approach was preparing the data using page-specific AOI segments,

and the other one was based on grid segmentation. Even though we obtained consid-

erable results without feature selection, after running statistical analysis and identify-

ing the most contributing features of the dataset, we could enhance the performance

of DT, ET and RF. Although the classifiers did not demonstrate high accuracy using

the second dataset, after feature selection, the results improved, as demonstrated in

Chapter 4.
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CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Discussion

This study uses machine learning models to detect high functioning autism using eye-

tracking data. The data was previously collected while participants perform specific

tasks using webpages. We first reviewed the literature about autism and tried to under-

stand what may cause this problem, the symptoms, and what tools are used to study

Autism Spectrum Disorder (ASD) detection. In the past two decades, there have been

studies that aim to investigate ASD using eye-tracking. Researchers primarily used

videos or photos containing facial or naturalistic features such as outdoor objects to

study how people with ASD observe such figures. Some of these studies use the gath-

ered data to train machine learning algorithms for autism detection. However, before

our study, only [1, 20, 19, 45] use eye-tracking data gathered during web interac-

tions to detect autism. This can be considered as a significant gap in the field, given

that web users with ASD may spend a considerable portion of their time interacting

with the web. Therefore, eye-tracking data during web interaction can be handy to

investigate ASD and help other researchers investigate the accessibility issues.

One point that can be discussed is the pros and cons of using eye-trackers instead of

other equipment such as EEG or fMRI or even clinical techniques. Referring to [122],

we reviewed different types of behavioral data used for ASD detection. For example,

the Diagnostic Observation Schedule (ADOS) introduced in the year 2000 is a test

to diagnose children with autism. In this test, the examiner and the person under

assessment have social interactions, and the examiner observes the subjects’ behavior

and reactions and then assigns them to specific categories that can be considered ASD
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symptoms. However [123] states that in their studies 66.5% of a group of 161 subjects

received one or more diagnoses different from ASD by psychiatrists when they used

standardized tools such as ADOS, ADR-I, etc. When we consider the sharp increase

of ASD prevalence and the possibility of results going misdiagnosed, it might be

necessary to investigate autism using other data collection methods, including fMRI,

EEG or eye-tracking.

Eye-trackers may be relatively less expensive than fMRI or EEG equipment; the data

they provide requires less storage than fMRI. Consequently, it takes less processing

time and units to extract information from eye-tracking data. After preprocessing the

data, the machine learning algorithms used for eye-tracking data are mostly statisti-

cal models. However, according to the literature, fMRI data provides a considerable

volume of data, and it enables researchers to use deep learning networks for ASD

detection (e.g., [75]). Various studies investigate the level of attention in people with

ASD using an eye-tracking approach and report that there may be significantly differ-

ent attention levels in people with ASD than the TD people.

Eye movements are also investigated to help study attention, as eye movement can

show if an individual is paying attention to a subject or an event. However, fMRI

tries to find the regions of activation (ROI) of the brain by measuring the level of

blood flow in ROIs. Hence, fMRI data may not provide much information regarding

the subjects’ attention, especially if collected in a resting state (resting fMRI). The

reason is that the subject in a resting state is not asked to perform any particular

task. Therefore, the activation regions will not be analyzed concerning a given task

requiring attention and cognitive effort. However, eye-tracking data is usually used

by giving the subjects a task as an experiment to analyze their approach towards

completing a task, which includes analyzing the level of attention.

ROIs are analyzed by processing voxel, which contains embedded time series, which

provides researchers with numerical values that can be used to make comparisons

and look for distinguishable patterns. In other words, fMRI data may require more

computational operations to become ready for training machine learning models with

them. Therefore, looking for differences in eye-tracking data may be easier to extract

and use by statistical learning models.
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Various tasks, data preparation, and features led to obtaining various model perfor-

mances. In this thesis the highest accuracy we obtained was 91.6% using the search

task with selected features. According to the data visualization and statistical analy-

sis, there are significantly different patterns in the visited AOIs and their time spent.

One explanation for obtaining this accuracy, which considerably higher than what

was obtained in [1] can be the data preparation technique with a different algorithm.

In our method, except for the time timestamp, all other features are represented using

one-hot encoding, which means they either hold the value 1 or 0. For this repre-

sentation, we create new columns for each categorical data, which adds to the data

dimensions. However, this representation technique allows learning algorithms such

as decision tree to rely on computing entropy for each column. In [1], and [19], the

raw data is processed by considering how many times each AOI is visited and how

much time each participant spent on each AOI, making the features of the processed

data continues. Using a Decision tree algorithm with this data preparation technique

would not be suitable, as the categories have unique continuous values, making it dif-

ficult for tree-based algorithms to learn from them. We could obtain relatively higher

accuracy with the same approach for the browse task of the first dataset. With feature

selection, training a decision tree algorithm using the first dataset’s browse task, we

obtained 76.3. The accuracy we obtained for the browsing task is higher than the best

accuracy obtained in [1] for the search task, given the task, which is approximately

75%, given the fact in both our study and [1], the search was found more suitable to

train learning algorithms.

In [1] the raw eye-tracking data is used to generate a dataset based on various page-

specific areas of interest (AOI), and each gaze record is checked to find out whether it

is positioned on an AOI or not. Moreover, the amount of time spent on each AOI

is computed for each fixation record and each participant. Using a different ap-

proach, [43] generates the scan paths for each participant, including sequences, each

of which is labeled with a page-specific AOI ID following the amount of time being

spent on that region of the web page. There could be two major issues with these

approaches. Firstly, these methods only consider the fixation records located within

one of the page-specific AOIs and do not consider those fixations that were still on

the screen but not inside the generated AOIs. This approach leads to dropping a con-
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siderable number of gaze records, making the learning models biased. Even though

the grid segmentation is also investigated in [1], the best model performance is ob-

tained when the authors used a page-specific method for segmenting the web pages.

Secondly, performing such operations requires computational processes, which can

increase the solution’s complexity. The current study used the raw dataset to train

classifiers.

The web pages were initially selected and used by [20] to investigate if web users

with autism experience barriers during web interactions. The web pages were among

the most visited websites according to Alexa.com and varying in level of complexity

based on ViCRAM [90]. When considering the effects of the web pages, our sta-

tistical analysis suggests that the web pages can affect machine learning algorithms’

performance. This might be due to different levels of complexity or the variety of con-

tent on the webpages. For instance, the BBC web page has a high complexity level,

including facial and naturalistic features on distinct web page regions. Therefore, the

BBC webpage might have been more successful in capturing the different patterns in

visually processing the web pages. When only trained with the data associated with

one page, machine learning algorithms’ performance shows that their performance

while training with the BBC web page is relatively better. The statistical analysis also

demonstrates that features related to the BBC web page are more significant than the

other webpages, which is in line with the obtained classifier accuracy. However, we

have not investigated this issue further since there is a limited number of web pages

in this study, which can be considered a point that requires improvement in further

investigations.

In the current study, both grid segmentation and page-specific segmentation are inves-

tigated. The accuracy results obtained when we prepared the data with page-specific

segmentation are relatively lower than when we use grid segmentation. One possible

explanation could be that we have to delete some of the data points because they are

not fixated on any specific AOI, which reduces the amount of data used to train ma-

chine learning algorithms. Furthermore, by grid segmentation, we reduce the number

of features in our dataset which helps the algorithms perform while encountering a

lower level of complexity. When we consider the browse task and the search task,

grid segmentation leads to better learning model performance. The browse task gen-
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erally leads to less accuracy because participants freely looked at the web page in

the browse task, which provided less distinguishable patterns for the learning mod-

els. For supporting this point of discussion we can refer to [45], which investigates

finding empirical evidence regarding the distraction of adults with high functioning

autism while interacting with the web. The results of this study suggest that people

with ASD may not be able to focus on a particular task on the web, given that they

get distracted by different web elements. The accuracy values varied for each web

page. The amount of differences between the TD and the ASD groups is the reason

for achieving different accuracy. For example, for the browse task, as reported in

Chapter 4, there are fewer features that show significant differences according to our

statistical analysis. Table 5.1 shows the difference between the volume of the data in

different tasks in comparision to [1].

Table 5.1 The difference between the number of data points of the first dataset used

in [1] compared to the current study.

Specific AOI Generic AOI

Browse Search Browse Search

Yaneva. et.al 3360 3360 720 720

Current Study 6184 4534 8970 6468

On the other hand, there are relatively more features that our feature selection method

considers as significantly different for the search task. For the second dataset, the

number of significantly different features is more diminutive in both tasks than in the

first dataset. One possible reason could be the effect of the task on eye movements.

The tasks in the first dataset are different from the tasks in the second dataset. In the

search task, which is in the first dataset, the participants were supposed to look for a

piece of information in a particular region on each webpage, while in the synthesis

task, which belongs to the second dataset, they were required to look for information

in one part and then use that information to look for other information on other parts

of the webpage. Referring to the figures provided in Chapter 4 (Figures 4.3, 4.7, 4.4

and 4.8), when we look at the data visualization of time spent on each generic AOI and

the number of times each AOI is visited for the second dataset, in both tasks (synthesis

and browsing) the differences are less significant, and our statistical analysis also
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suggests the same (Table 4.1 and Table 4.2). However, as earlier mentioned, the

tasks’ effects can be investigated further by repeating the experiments and gathering

a new dataset by new groups of ASD and TD subjects. It is essential to investigate the

effects of different web tasks for ASD detection by conducting various experiments

and collecting more gaze records from more web users using a variety of tasks.

We also used statistical tests to understand which features are providing learning mod-

els with potentially useful information. We then removed those features identified as

significantly indifferent according to the tests. This helped reduce the dimensionality

of the data, which increased the efficiency of the model and the classification perfor-

mance at the same time. For instance, after feature selection, for the search task, the

decision tree obtained a 1.1% improvement in the predictions, and the browse task of

the first dataset obtained 6.4% improvement. We also observed improvements after

feature selection for the second dataset (Table 4.4). In the mentioned studies that use

the same dataset for autism detection, the prepared data’s dimensionality is higher,

but there are trials for selecting features limited to using particular webpages. How-

ever, in the current study, we investigate the possibility of selecting features across

the webpages and the AOIs concerning the number of visits and the time spent sys-

tematically.

In [1] only the performance of a logistic regression classifier is reported, and it is

only stated that this model provides the best results, and the authors did not share

more details addressing why this model has the highest performance and what is the

performance of other models. On the other hand, we investigated the performance

of 13 classifiers given the prepared data, and among them, Decision Tree (DT), Ran-

dom Forests (RF), and Various Trees (ET) showed the best performance. The reason

possibly is the approach we used to prepare the data. As earlier mentioned, we keep

the timestamp as a feature that gives a sequential attribute to the dataset, and the rest

of the features are represented using the one-hot encoding method. This approach al-

lows DT to track each feature’s occurrence and use the Gini index to split efficiently.

Gini index is used to compute the probability of a feature being wrongly classified

when it is randomly picked. According to the literature, tree-based algorithms are

widely used for autism detection. However, only a limited number of studies used

them alongside eye-tracking data, and to the best of our knowledge, the current study
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is the only research which uses tree based algorithm and eye-tracking data gathered

during web interactions to detect high functioning autism.

In this study we encountered several constrains. One of our limitations was having

access to the gaze records of only 30 participants in total for the first dataset, which

we used to develop our methodology. We were aware that deep learning models and

even statistical learning models require a sufficient amount of data, and inadequate

data leads to unreliable conclusions. As an issue that can be investigated further,

researchers may consider gathering data from many participants, and scientists may

consider developing other methodologies for gathering more data faster. For instance,

more web pages could be used as a stimulus to gather gaze records.

Finally, people with ASD may experience a different level of severity, which may

have various symptoms. In the current study, we only investigate the gaze record gath-

ered from adults with high functioning autism. As future work, this can be extended

to investigate the gaze records of subjects with different levels of autism severity dur-

ing web interactions. Furthermore, the targeted age range can change from adults to

children and adolescents too.

5.2 Conclusion

This study first introduces the problem, which is detecting high functioning autism

using eye-tracking data analysis and machine learning models. The next step presents

detailed literature review and shows that there is a limited number of studies on autism

detection using eye trackers, and the number of studies that consider using webpages

for this purpose is even more limited compared to other approaches. Therefore, we

used webpages to address some of these gaps and could successfully improve the

results.

This improvement consists of both computation efficiency and the performance of the

learning model. We increased our model’s efficiency in computation by performing

dimensionality reduction and performing fewer operations for the data preparation.

Moreover, the best model accuracy obtained in this study was 91.6%, and it outper-

forms [1] by over 15% improvement.
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This study can be used to further investigate ASD detection using web pages and eye-

tracking data by collecting data from more participants, investigating the effect of

tasks on model accuracy, and trying to duplicate the results using the same task. The

outcome of such investigations can help clinical psychologists speed up the process

of diagnosis with higher precision using state-of-the-art technologies.

We also experienced limitations in this study. One restriction was the number of

participants. Moreover, we need another dataset with the same tasks to see if we

can duplicate the results and conduct more research regarding the effects of tasks on

visual processing strategies of ASD people and machine learning algorithms’ perfor-

mance. However, gathering such a dataset is time-consuming which cannot fit within

a Master’s studies time frame.

In summary, despite the study’s limitations, we managed to improve the results, used

the eye-tracking data more efficiently, and highlighted some of the gaps that can be

addressed in future studies.
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APPENDIX A

APPENDIX

A.1 Experiment Settings

The parameters used in each algorithm such as the Decision Tree algorithm are the

ones used by default in the Scikit-Learn library.

Table A.1 First experiment: The classification results using the browsing task dataset

with gaze coordinates and media name features.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 49.8 49.88 99.6 66.47 4.98 0 5 0.02

KNN 49.09 49.44 96.6 65.32 4.83 0.08 4.92 0.17

SVM 50 49.93 98.8 66.18 4.94 0.06 4.94 0.06

DT 49.5 49.76 95.8 65.38 4.79 0.16 4.84 0.21

RF 47.7 47.26 83 59.29 4.15 0.62 4.38 0.85

ET 46.9 46.82 84.8 59.9 4.24 0.45 4.55 0.76

AB 49.9 49.88 99.4 66.41 4.97 0.02 4.98 0.03

GB 49.5 49.33 0.98 65.59 4.9 0.05 4.95 0.1

GP 50.09 49.62 99 66.1 4.95 0.06 4.94 0.05

GNB 53.5 31.66 8 12.44 0.4 4.95 0.05 4.6

BNB 49.8 49.75 98.19 65.91 4.91 0.07 4.93 0.09

LDA 50 50 99.8 66.61 4.99 0.01 4.93 0.09

QDA 52.5 36.61 40 34.29 2 3.25 1.75 3
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Table A.2 Second experiment: The classification results using the browsing task

dataset with gaze coordinates, media name and CNT features.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 58.6 56.1 97.4 70.4 4.87 0.99 4.01 0.13

KNN 59.8 56.55 98.2 71.3 4.91 1.07 3.93 0.09

SVM 51.2 50.68 100 67.24 5 0.12 4.88 0

DT 57.9 56.17 83.59 66.17 4.18 1.61 3.39 0.82

RF 57.4 60.75 58.2 55.94 2.91 2.83 2.17 2.09

ET 55.2 58.26 53.6 52.88 2.68 2.84 2.16 2.32

AB 61.2 59.11 87.99 69.15 4.4 1.72 3.28 0.6

GB 59.1 57.99 92.2 69.14 4.61 1.3 3.7 0.39

GP 58.1 54.93 98.8 70.4 4.94 0.87 4.13 0.06

GNB 56.6 57 13.39 21.38 0.67 4.99 0.01 4.33

BNB 49.9 49.8 97.6 65.75 4.88 0.11 4.89 0.12

LDA 55.5 54.3 97.4 68.9 4.87 0.68 4.32 0.13

QDA 55.49 56.89 23.6 29.01 1.81 4.37 0.63 3.82

Table A.3 Third experiment: The classification results using the searching task dataset

with gaze coordinates and media name.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 50 50 100 66.6 5 0 5 0

KNN 47 48.2 86.6 61.6 4.33 0.37 4.63 0.67

SVM 50 50 100 66.6 5 0 5 0

DT 48.3 48.7 86.2 61.98 4.31 0.52 4.48 0.69

RF 48.2 48.5 57.2 50.5 2.8 1.98 3.01 2.2

ET 49.2 50.8 60.8 52.39 2.86 1.94 3.07 2.14

AB 50.59 50.5 97.2 66.04 4.81 0.24 4.75 0.19

GB 49.69 49.78 97.8 65.89 4.89 0.08 4.92 0.11

GP 50 50 100 60.6 5 0 5 0

GNB 53 56.86 56.4 62.93 3.04 2.16 2.83 1.96

BNB 50 50 100 66.6 5 0 5 0

LDA 50 50 100 66.6 5 0 5 0

QDA 51.4 54.2 73.8 57.57 2.27 2.74 2.25 2.73
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Table A.4 Fourth experiment: The classification results using the searching task

dataset with gaze coordinates, media name and CNT features.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 50.7 50.38 100 67 5 0.07 4.93 0

KNN 48.7 56.1 96.19 70.32 4.81 1.06 3.94 0.19

SVM 50.9 50.62 99.6 67.04 4.98 0.11 4.89 0.02

DT 62.2 58.86 88.19 69.98 4.41 1.81 3.19 0.59

RF 74.69 78.93 68.99 72.23 3.45 4.02 0.98 1.55

ET 76.3 81.99 69.6 73.66 3.48 4.15 0.85 1.52

AB 65.4 66.15 78.59 68.74 3.93 2.61 2.39 1.07

GB 66.79 65.63 84.99 72.25 4.25 2.43 2.57 0.75

GP 57.7 55.73 97.2 70.15 4.86 0.91 4.09 0.14

GNB 60.79 61.49 53.8 49 2.69 3.39 1.61 2.31

BNB 50 50 100 66.6 5 0 5 0

LDA 50.7 50.4 99.8 66.95 4.99 0.08 4.92 0.01

QDA 55.89 47.52 43.8 38.86 2.19 3.4 1.6 2.81

Table A.5 Fifth experiment: The classification results using the browsing task dataset

with page-specific AOI segments, central and media name.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 49.5 49.57 98.6 65.93 4.93 0.02 4.98 0.07

KNN 50 50 100 66.6 5 0 5 0

SVM 49.7 49.5 97.8 65.53 4.98 0.08 4.92 0.02

DT 50 50 100 66.6 5 0 5 0

RF 50 49.94 99.4 66.45 4.97 0.03 4.97 0.03

ET 49.59 49.75 0.99 66.2 4.95 0.01 4.99 0.05

AB 49.6 49.33 98 65.57 4.9 0.06 4.94 0.1

GB 49.5 49.33 0.98 65.59 4.9 0.05 4.95 0.1

GP 49.8 49.83 94.4 66.36 4.97 0.01 4.99 0.03

GNB 50.2 4.9 6.4 5.18 0.32 4.7 0.3 4.68

BNB 50 49.01 95.6 64.68 4.78 0.22 4.78 0.22

LDA 50.2 50.1 100 66.76 5 0.02 4.98 0

QDA 50.8 6.6 13 8.8 0.65 4.37 0.63 4.35
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Table A.6 Sixth experiment: The classification results using the browsing task dataset

with page-specific AOI segments, central, CNT and media name.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 62 60.81 89.39 70.15 4.47 1.73 3.27 1.73

KNN 57.7 56.18 92.19 68.78 4.61 1.16 3.84 1.16

SVM 54 52.44 99 68.39 4.95 0.45 4.55 0.45

DT 49.3 50.05 74.6 58.89 3.73 1.2 3.8 1.2

RF 50.19 51.26 68.39 56.74 3.42 1.6 3.4 1.6

ET 53.29 54.04 68.79 58.47 3.44 1.89 3.11 1.89

AB 59.3 57.75 88.6 67.89 4.43 1.5 3.5 1.5

GB 57 56.74 87.2 66.63 4.36 1.34 3.66 1.34

GP 57.8 56.43 88.59 67.65 4.43 1.35 3.65 1.35

GNB 53.69 35.25 11.59 16.51 0.66 4.75 0.25 4.37

BNB 48.6 47.86 90.79 62.11 4.54 0.32 4.68 0.32

LDA 61.5 60.11 92.8 70.74 4.64 1.51 3.49 1.51

QDA 50.59 7.5 4.1 4 0.27 4.85 0.15 4.85

Table A.7 Seventh experiment: The classification results using the searching task

dataset with page-specific AOI segments, media name, central and relevant.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 50 49.98 97.4 65.4 4.87 0.13 4.87 0.13

KNN 50 50 100 66.6 5 0 5 0

SVM 50 50.04 99.4 66.5 4.97 0.03 4.97 0.03

DT 49 49.14 93.14 63.43 4.67 0.23 4.77 0.33

RF 49.2 48.63 95 64.19 4.75 0.17 4.83 0.25

ET 49.1 49.52 92.59 63.75 4.63 0.28 4.72 0.37

AB 50.3 50.19 99.8 66.76 4.99 0.04 4.96 0.01

GB 50.1 50.18 98.8 66.35 4.94 0.07 4.93 0.06

GP 49.6 49.67 96.6 65.44 4.83 0.13 4.87 0.17

GNB 50 43.52 86.2 57.76 4.31 0.69 4.31 0.69

BNB 50.7 50.31 91.19 63.92 4.56 0.51 4.49 0.44

LDA 49.7 49.83 99.2 66.32 4.96 0.01 4.99 0.04

QDA 49.8 48.44 95 64.6 4.75 0.23 4.77 0.25
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Table A.8 Eighth experiment: The classification results using the searching task

dataset with page-specific AOI segments, media name, central, relevant and CNT.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 54.7 53.82 94.4 67.7 4.72 0.75 4.25 0.28

KNN 57 55.19 91.99 68.32 4.6 1.1 3.9 0.4

SVM 54.69 54.5 96.8 68.62 4.84 0.63 4.37 0.16

DT 79.09 79.1 84.19 80 4.21 3.7 1.3 0.79

RF 77.4 79.68 79.99 77.68 4 3.74 1.26 1

ET 80 84.45 77.79 79.15 3.89 4.11 0.89 1.11

AB 62 62.86 81.39 68.52 4.07 2.13 2.87 0.93

GB 62.3 70.03 74 64.92 3.7 2.53 2.47 1.3

GP 59.8 58.1 90 69.49 4.5 1.48 3.52 0.5

GNB 56.4 52.16 63.59 51.51 3.18 2.46 2.54 1.82

BNB 50.5 49.83 91.2 63.3 4.56 0.46 4.51 0.44

LDA 52 51.55 94.19 66.14 4.71 0.49 4.51 0.29

QDA 50.1 44 86.2 57.66 4.31 0.7 4.3 0.69

Table A.9 Ninth experiment: The classification results using the browsing task dataset

with page-specific AOI segments, media name, central and timestamp.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 63.7 61 94.4 72.66 4.72 1.65 3.35 0.28

KNN 51.6 51.82 85.2 63.53 4.26 0.9 4.1 0.74

SVM 57.2 56.21 90.99 67.25 4.55 1.17 3.83 0.45

DT 58.4 59.59 69.79 62.21 3.49 2.35 2.65 1.51

RF 53 53.34 63.59 56.66 3.18 2.12 2.88 1.82

ET 57 59.31 61.6 57.77 3.08 2.62 2.38 1.92

AB 61.2 61.21 85.8 68.34 4.29 1.83 3.17 0.71

GB 57.2 57.31 89 66.81 4.45 1.27 3.73 0.55

GP 53 52.36 89 64.74 4.45 0.85 4.15 0.55

GNB 51.8 19.88 9.3 10.45 0.47 4.71 0.29 4.53

BNB 50.2 49.83 91.2 63.3 4.56 0.46 4.51 0.44

LDA 61.4 59.3 93.2 70.87 4.66 1.48 3.52 0.34

QDA 51 12.6 81.99 57.66 7.87 0.41 4.69 0.31
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Table A.10 Tenth experiment: The classification results using the searching task

dataset with page-specific AOI segments, media name, central, relevant and TIME.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 52.9 51.97 96.2 67.1 4.81 0.48 4.52 0.48

KNN 72.99 71.15 85.6 76.23 4.28 3.02 1.98 0.82

SVM 59.7 63.29 64.99 57.08 3.25 2.72 2.28 1.75

DT 81.4 86.06 78.4 80.72 3.92 4.22 0.78 1.08

RF 78.8 82.86 75.79 77.75 3.79 4.09 0.91 4.09

ET 84 92.9 75.79 81.91 3.79 4.61 0.39 1.21

AB 62.7 64.73 80.39 68.45 4.02 2.25 2.75 2.75

GB 64.5 72.03 70.6 65.22 3.53 2.92 2.08 1.47

GP 67.39 67.87 81.8 71.55 4.09 2.65 2.35 0.91

GNB 50.2 45.75 88.2 59.73 4.41 0.61 4.39 0.59

BNB 50.6 50.28 94.6 65.12 4.73 0.63 4.37 0.27

LDA 63 53.69 94.8 67.39 4.74 0.63 4.37 0.26

QDA 50.1 44 86.2 57.66 4.31 0.7 4.3 0.69

Table A.11 The list of the parameters with different values used in different MLP

trials.

TrialID HiddenLayer# Neuron# Activation Solver

1 10 35 relu lbfgs

2 100 35 relu lbfgs

3 10 50 relu lbfgs

4 10 15 relu lbfgs

5 10 35 relu sgd

6 10 35 relu adam

7 100 35 relu adam

8 100 50 relu adam

9 100 15 relu adam

10 500 15 relu adam

11 500 10 relu adam
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Table A.12 Eleventh experiment: using fully connected neural networks and the

searching task dataset with page-specific AOI segment features.

Trial Accuracy Precision Recall F1 TP TN FP FN

1 61.49 64.31 75.59 64.12 3.78 2.37 2.63 1.22

2 61.7 62.56 81.4 67.87 4.07 2.1 2.9 0.93

3 59.3 62.18 78.2 64.34 3.91 2.02 2.98 1.09

4 61.7 65.65 76 65.19 3.92 4.22 0.78 1.08

5 54.69 54.1 91.59 66.59 4.58 0.89 4.11 0.42

6 64.4 68.68 78.39 68.72 3.92 2.52 2.48 1.08

7 63.09 68 75.99 65.35 3.8 2.51 2.49 1.2

8 62.5 66.3 79 67.21 3.95 2.3 2.7 1.05

9 65.79 69.17 78.19 68.56 3.91 2.67 2.33 1.09

10 65.8 66.74 79 68.21 3.95 2.63 2.37 1.05

11 65.69 68.82 73.6 65.55 3.68 2.89 2.11 1.32

Table A.13 Twelfth experiment: using fully connected neural networks and the

browsing task dataset with page-specific AOI segment features.

Trial Accuracy Precision Recall F1 TP TN FP FN

1 60.1 58.41 83.2 66.5 4.16 1.85 3.15 0.84
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Table A.14 Thirteenth experiment: classification results using the browsing task

while only the gathered data on AVG and Apple web pages are used.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 59.39 56.94 90.59 69.1 4.53 1.41 3.59 0.47

KNN 61.3 58.38 84.8 68.02 4.24 1.89 3.11 0.76

SVM 54.7 53.25 97 68.33 4.85 0.62 4.38 0.15

DT 53.69 52.34 68.79 58.34 3.44 1.93 3.07 1.56

RF 51.29 51.23 71.99 58.97 3.6 1.53 3.47 1.4

ET 57.3 56.02 67.59 59.81 3.38 2.35 2.65 1.62

AB 59.3 57.2 91.19 68.77 4.56 1.37 3.63 0.44

GB 56.7 55.2 90.79 67.43 4.54 1.13 3.87 0.46

GP 54.89 53.04 95.2 67.89 4.76 0.73 4.27 0.24

GNB 52 0.19 0.04 6.57 0.2 5.0 0.0 4.8

BNB 62 59.13 83.4 67.59 4.17 2.03 2.97 0.83

LDA 59.8 56.73 97.4 71.15 4.87 1.11 3.89 0.13

QDA 50.2 0.02 0.4 0.66 0.02 5.0 0.0 4.98

Table A.15 Fourteen experiment: classification results using the searching task while

only the gathered data on Apple and Babylone web pages are used.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 61.3 58.05 94.79 71.41 4.74 1.39 3.61 0.26

KNN 76.8 79.93 76.6 76.33 3.83 3.85 1.15 1.17

SVM 63.99 64.1 88 71.64 4.4 2.0 3.0 0.6

DT 77.19 74.66 87.59 79.72 4.38 3.34 1.66 0.62

RF 76.7 77.28 81.6 77.98 4.08 3.59 1.41 0.92

ET 77.5 77.11 83.59 78.89 4.18 3.57 1.43 0.82

AB 69.1 71.70 76.59 76.59 70.83 3.83 3.08 1.17

GB 73.9 72.05 84.79 77.91 4.24 3.34 1.66 0.76

GP 73.9 72.05 84.99 76.71 4.25 3.14 1.86 0.75

GNB 63 55.75 40.6 42.23 2.03 4.27 0.73 2.97

BNB 49.5 49.86 84 60.78 4.2 0.75 4.25 0.8

LDA 61.9 58.86 91.39 70.86 4.57 1.62 3.38 0.43

QDA 50 8 16 10.66 0.8 4.2 0.8 4.2
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Table A.16 Fifteenth experiment: The classification results using the browsing task

dataset with 2*2 grid segmentation, media name and timestamp.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 61.49 57.92 98 72.2 4.9 1.25 3.75 0.1

KNN 55.89 53.8 94.8 68.27 4.74 0.85 4.15 0.26

SVM 51.4 50.87 98.6 67.02 4.93 0.21 4.79 0.07

DT 61 61.09 0.74 64.67 3.7 2.4 2.6 1.3

RF 54.89 53.92 82.19 64.19 4.11 1.38 3.62 0.89

ET 59.1 57.39 80.39 65.65 4.02 1.89 3.11 0.98

AB 57.4 54.49 98.8 70.08 4.94 0.8 4.2 0.06

GB 54.69 52.91 99.4 68.89 4.97 0.5 4.5 0.03

GP - - - - - - - -

GNB 57 63.88 34 40.01 1.7 4 1 3.3

BNB 50 50 1 66.66 5 0 5 0

LDA 55.8 53.94 99.8 69.72 4.99 0.59 4.41 0.01

QDA 55.5 55.22 48 45.08 2.4 3.15 1.85 2.6

Table A.17 Sixteenth experiment: The classification results using the searching task

dataset with 2*2 grid segmentation, media name and timestamp.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 49.5 49.72 98.8 66.14 4.94 0.01 4.99 0.06

KNN 66.09 61.99 92 73.35 4.6 2.01 2.99 0.4

SVM 63.7 59.97 96.6 73.25 4.83 1.54 3.64 0.17

DT 89.69 87.58 94.8 90.49 4.74 4.23 0.77 0.26

RF 80.5 77.64 91.6 82.93 4.58 3.47 1.53 0.42

ET 88.5 86.29 94.8 89.62 4.74 4.11 0.89 0.26

AB 63.2 61.59 92.59 72.51 4.63 1.69 3.31 0.37

GB 65.8 64.37 93.8 74.07 4.96 1.89 3.11 0.31

GP 70.9 66.49 95.4 77.24 4.77 2.32 2.68 0.23

GNB 77.4 85.6 72.6 74.03 3.63 4.11 0.89 1.37

BNB 50.5 50.68 99.2 66.67 4.96 0.09 4.91 0.04

LDA 49.7 49.83 98.6 66.19 4.93 0.04 4.96 0.07

QDA 60.4 58.14 71.8 59.22 3.59 2.45 2.55 1.41
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Table A.18 Seventeenth experiment: The classification results using the searching

task dataset with 3*3 grid segmentation, media name and timestamp.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 49.7 49.83 98.6 66.18 4.93 0.04 4.96 0.07

KNN 63.5 60.84 90.39 71.65 4.52 1.83 3.17 0.48

SVM 58.5 59.37 93.4 69.81 4.67 1.18 3.82 0.33

DT 90.5 91.47 91.39 90.7 4.57 4.48 0.52 0.43

RF 81.1 77.75 93 83.67 4.65 3.46 1.54 0.35

ET 88.1 88.01 91.19 88.71 4.56 4.25 0.75 0.44

AB 53.1 52.14 96.6 67.43 4.83 0.48 4.52 0.17

GB 56.9 55.95 95.6 69.37 4.78 0.91 4.09 0.22

GP 70.9 66.49 95.4 77.24 4.77 2.32 2.68 0.23

GNB 50 0 0 0 0 5 0 5

BNB 50 50 100 66.66 5 0 5 0

LDA 49.69 49.84 98 66.04 4.9 0.07 4.93 1

QDA 51.2 32.37 51.6 36.57 2.58 2.54 2.46 1.42

Table A.19 Eighteenth experiment: The classification results using the browsing task

dataset with 3*3 grid segmentation, media name and timestamp.

Model Accuracy Precision Recall F1 TP TN FP FN

LR 62.1 59.5 91.39 71 4.57 1.64 3.36 0.43

KNN 57 55.21 94.4 68.85 4.72 0.98 4.02 0.28

SVM 53 52.09 97 67.37 4.85 0.45 4.55 0.15

DT 68.99 73.4 68.2 67.8 3.4 3.4 1.5 1.5

RF 60 57.7 84.8 67.6 4.2 1.7 3.2 0.7

ET 65.1 65.8 76.5 68.4 3.8 2.6 2.3 1.1

AB 53.1 52.14 96.6 67.43 4.83 0.48 4.52 0.17

GB 56.9 55.95 95.6 69.37 4.78 0.91 4.09 0.22

GP 70.9 66.49 95.4 77.24 4.77 2.32 2.68 0.23

GNB 50 0 0 0 0 5 0 5

BNB 50 50 100 66.66 5 0 5 0

LDA 49.69 49.84 98 66.04 4.9 0.07 4.93 1

QDA 51.2 32.37 51.6 36.57 2.58 2.54 2.46 1.42
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Table A.20 Nineteenth experiment: The sanity check for the obtained results using

the searching task dataset.

Model Accuracy Precision Recall F1

DT 49.97 62.15 56.74 59.32

RF 52.26 64.06 58.53 61.17

ET 53.88 64.53 59.96 62.16

Table A.21 Twentieth experiment: The sanity check for the obtained results using

the browsing task dataset.

Model Accuracy Precision Recall F1

DT 53.37 63.34 62.45 62.89

RF 54.48 64.32 64.54 64.43

ET 55.18 65.47 62.52 63.96

Table A.22 Twenty first experiment: The accuracy of the three best classifiers us-

ing the searching task data with respect to one page at a time. The values inside

parentheses is the F1 score.

Apple Babylon AVG GoDaddy Yahoo BBC

DT 72.2(73.9) 74.8(75.2) 72.4(67.9) 72.3(72.5) 63.9(57.5) 82.6* (80.6)

RF 67(69.2) 69.4(73.7) 71(69.4) 67.8(69.1) 59.9(55.2) 79.2(78.5)

ET 71.4(72.7) 72.9(74.9) 74.7(70.3) 72.5(71.5) 66.7(60.6) 79.29(76.9)

Table A.23 Twenty second experiment: The accuracy of the three best classifiers

using the browsing task data with respect to one page at a time. The values inside

parentheses is the F1 score.

Apple AVG Babylon GoDaddy Yahoo BBC

DT 62(62.2) 45(42) 58.3(54.9) 66(67.6) 53.2(56.9) 50(52)

RF 59(64.6) 44.6(48.6) 58.1(57.9) 65.3(62.9) 53.6(58.1) 48(53.7)

ET 65(67.3)* 47(46.9) 62(60.3) 66.3(67.4) 54.2(54.8) 50.7(53.1)
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Table A.24 Model accuracy percentage (%) of Decision Tree (DT), Random Forests

(RF) and Extra Trees (ET) algorithm using individual web pages of the second dataset

for both tasks. The names of web pages in the second study are Adobe (AD), Amazon

(AZ), BBC (BC), Netflix (NF), Outlook (OL), Whatsapp (WA), Youtube (YT) and

Wordpress (WP).

Synthesis Browse

AD AZ BC NF OL WA YT WP AD AZ BC NF OL WA YT WP

DT 51 58 58.7 55.2 67.9 61.5 58.4 42.6 49.8 35.2 52.7 55.2 49.3 57.5 58.7 43.7

RF 52.1 56.1 56.4 56.3 63.8 59.7 59.9 42.2 49.9 34.2 51.6 54.9 53.2 54.1 56.7 39.9

ET 53.2 58.2 57.1 57.5 68.8 61.4 61.5 41.3 47.4 37 54.2 53.5 51.4 57.7 57.5 40.5

Table A.25 Model accuracy percentage (%) of Decision Tree (DT), Random Forests

(RF), Extra Trees (ET) algorithm using 2*2 and 4*4 grid segmentation. The val-

ues inside the parenthesis show the F1 score. The results are reported for both the

synthesis and the browsing task.

Synthesis Browse

4*4 2*2 4*4-OL,AZ 4*4 2*2

DT 58.1(64.6) 60.6(67.67) 59.6(68.5) 46.9(31.5) 46.3(29.68)

RF 56.8(66.5) 58.4(68.3) 56.5(66.1) 39.8(27.1) 40.7(28.7)

ET 58.6(67.6) 58.2(66.5) 56.6(65.8) 42.8(30.8) 43.6(28.2)
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