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Abstract: In this contribution, the variational problem for the Kirchhoff plate based on the modified
strain gradient theory (MSGT) is derived, and the Euler-Lagrange equations governing the equation
of motion are obtained. The Galerkin-type weak form, upon which the finite element method is
constructed, is derived from the variational problem. The shape functions which satisfy the governing
homogeneous partial differential equation are derived as extensions of Adini-Clough-Melosh (ACM)
and Bogner-Fox-Schmit (BFS) plate element formulations by introducing additional curvature degrees
of freedom (DOF) on each node. Based on the proposed set of shape functions, 20-, 24-, 28- and 32-
DOF modified strain gradient theory-based higher-order Kirchhoff microplate element are proposed.
The performance of the elements are demonstrated in terms of various tests and representative
boundary value problems. Length scale parameters for gold are also proposed based on experiments
reported in literature.

Keywords: microplates; modified strain gradient theory; higher-order elasticity; finite element
method; Kirchhoff plate theory

1. Introduction

Micro- and nano-electro-mechanical systems (MEMS/NEMS) are essential compo-
nents of advanced technologies [1–6]. They are used as pressure and acceleration sensors
in many products such as airbag actuators, gyros, switches and mechanical filters as RF-
MEMS, image processing tools as optical-MEMS, intrauterine sensors and biochemical
detectors as bio-MEMS and so on [5,7–10].

The mechanical behavior of MEMS and NEMS devices diverge from that of macro-
devices as their sizes get smaller. This phenomenon is known as size effect or scale effect,
resulting in stiffening in mechanical response as the structural length-scale tends to the ma-
terial length-scale describing the microstructure. The theoretical modelling of size effects in
terms of nonlocal continuum models dates back to the early works of [11–22]. The concepts
of couple stresses, micropolar elasticity, micromorphic theory, nonlocal elasticity originate
from these pioneering works. Within this context, the term micromorphic theory is coined
for the first time by Eringen and Suhubi [23,24]. A more specific form, the Strain Gradi-
ent Theories (SGT) originate from the works of Mindlin et al. [13–15,20], Toupin [22] and
Koiter [19]. These are in general called the higher-order theories in which the internal poten-
tial of a solid body depends only on strains but also higher-order strains as strain gradients.
Fleck and Hutchinson [25–27] extended SGT, pioneering the framework of modern higher-
order theories. The Modified Strain Gradient Theory (MSGT) of Lam et al. [28] decreased
the number of length-scale parameters from five to three in SGT using new equilibrium
conditions. Another variation with one length-scale parameter is also used as the Modified
Couple Stress Theory (MCST) of Yang et al. [29]. Although many studies exist regarding ap-
plication and implementation of higher-order theories to microbeams, microplates did not
receive much attention so far [30–32]. Reddy [33] proposed a nonlocal plate formulation ex-
tending the nonlocal continuum theory of Eringen [34]. Phadikar and Pradhan developed
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finite element formulations of Euler-Bernoulli beams and Kirchhoff plates for nonlocal
elasticiy using one nonlocal parameter [35]. Wang et al. [36] developed a model for SGT
for Kirchhoff microplates and solved various bending problems for specific boundary con-
ditions [37]. SGT has also been implemented in Kirchhoff plates via isogeometric analyses
successfully [38–40]. Arefi and Zenkour analyzed magneto–electro–thermo-mechanical
bending and free vibration behavior of a sandwich microbeam [41,42] and microplate using
SGT [43]. They also analyzed a three-layered microbeam using SGT and three-unknown
shear and normal deformation theory [44]. Sohby and Zenkour [45] analyzed hygrothermal
behavior of exponentially graded microplates on elastic foundations with MCST, whereas
nonlocal SGT is also utilized [46]. Movassagh and Mahmoodi [47] derived the formulation
for application of Kirchhoff plate theory to MSGT and further developed a Kirchhoff plate
model in MSGT using extended Kantarovich method. Sahmani and Ansari analyzed FGM’s
based on shear deformation plate theory and MSGT [48]. Li et al. studied the bending
behavior of bi-layered Kirchhoff microplates based on SGT [49].

The above-mentioned contributions provided great insight towards the essense of
size-dependent theories, and are oriented towards analytical modelling applicable for
either ideal geometries or ideal boundary conditions that would be applicable to extremely
limited conditions. However, stable and convergent finite element implementations allow
the analysis and design of MEMS switches of various geometries and boundary condi-
tions. Recently, there is considerable effort regarding the development of finite element
formulations for size-dependent theories using Kirchhoff plates. Babu and Patel [50,51]
developed a quadrilateral Kirchhoff plate element for second-order strain gradient theory
proposed by Ru and Aifantis [52,53]. Beheshti [54] used the same formulation to develop
four types of rectangular elements with different nodal degree of freedoms. Bacciocchi et al.
used nonlocal strain gradient theory to formulate a finite element method and used it for
laminated nanoplates in bending [55] and in hygro-thermal environment [56].

The main objective of this contribution is to propose novel finite element formulations
for Kirchhoff microplates in a specific branch of strain gradient theories, i.e., MSGT pro-
posed by Lam et al. [28], which contains three length scale parameters for modelling size
effects. The key features and contributions of this study are;

(i) to introduce a variational formulation for microplates based on the Kirchhoff kine-
matics and the modified strain gradient theory,

(ii) to formulate 20- and 24-degree of freedom (DOF) rectangular micro-plate element for-
mulations from serendipity-type higher-order basis functions enriched by sinh(x, y)
and cosh(x, y) terms as extensions of the Adini-Clough-Melosh [57,58] element and
Bogner-Fox-Schmit [59] element respectively,

(iii) to further formulate 28- and 32-degree of freedom (DOF) rectangular micro-plate
element formulations from 20- and 24-degree of freedom (DOF) rectangular micro-
plate element formulations respectively,

(iv) to assess the convergence of the derived element formulations and elaborate on the
continuity requirements,

(v) investigate the performance of the element through realistic MEMS switch
geometries, and

(vi) to contribute to the analysis of MEMS devices with various boundary conditions,
particularly in the domain of RF-MEMS made of gold by proposing length scale
parameters based on the proposed formulations.

Particularly, we propose a set of shape functions that satisfies the exact solution to
the homogeneous PDE governing the MSGT based higher-order Kirchhoff plate theory.
To this end, higher-order Kirchhoff plate finite elements for bending are developed based
on Modified Strain Gradient Theory (MSGT). Then the weak form, from which the finite
element formulations are constructed, is derived from variational principle or the principle
of minimum potential energy. Using these elements, length scale parameters of gold are
identified based on experiments reported in literature [60]. As a result, considerable size
effect for gold microplate structures is revealed.
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The proposed set of shape functions for the 20-DOF element naturally depends on
a twenty-term basis function consisting of twelve monomials applicable to conventional
rectangular Kirchhoff finite elements, and eight additional terms based on hyperbolic sine
and hyperbolic cosine terms for the higher-order portion of the problem. The said twelve
monomials belong to the simplest classical rectangular element which has twelve degrees
of freedom, as known as Adini-Clough-Melosh (ACM) element [57,58]. This element does
not pass the patch test but is convergent when used as rectangular finite elements [61]. For
24-DOF element, sixteen monomials applicable to a different classical element are used.
This element has sixteen degrees of freedom and is known as Bogner-Fox-Schmit (BFS)
element [59]. The additional eight terms are the same hyperbolic terms discussed above
for 20-DOF element. The remaning 28- and 32-DOF elements are extensions of the 20- and
24-DOF elements - each with additional eight DOFs.

In order to assess the performance of the proposed higher-order finite element formu-
lations, realistic NEMS switch geometries from literature are analyzed and the results are
compared to those obtained from classical Kirchhoff plate theory. Yet, the dependence of
the results on the aspect ratio is also investigated for the quadrilateral element formulation
for the classical and higher-order Kirchhoff plates. It must be emphasized that the higher-
order finite elements developed within this study are applicable to rectangular elements,
as they fail to pass the patch test. However, this does not reduce the implementation of
these elements in the community, given most of the MEMS and NEMS devices can be
modelled by rectangular elements [6,62–64]. As a novel aspect, it is shown that 20-DOF
rectangular elements can be used to model these types of MEMS structures. Chamfers
at the edges and corners can also be found in some MEMS and NEMS devices [2,65–67].
Circular shapes are even possible in several applications such as micropumps and pressure
sensors [68–70]. Again, as a novel aspect, it is shown that 24-DOF rectangular elements
can be used in rectangular-triangular meshes, complementing with the readily available
Bell elements [71]. With this method, any planar finite element domain of any shape can be
modelled with the said rectangular and triangular elements [72].

This manuscript is organized as follows: In Section 2, the variational principle govern-
ing the higher-order Kirchhoff plate theory-based on the modified strain gradient theory is
described and the respective Euler-Lagrange equations are derived. Section 3 is devoted to
the novel finite element formulation of microplates based on the modified strain gradient
theory of nonlocal elasticity. In Section 4, the performance of the proposed element is
assessed through representative benchmark numerical examples. The paper ends with
concluding remarks in Section 5.

2. Theory: Local and Nonlocal Kirchhoff Plate Theory
2.1. Variational Formulation of Nonlocal Elasticity
2.1.1. The Strain Gradient Theory

The free energy function for the linear isotropic solid is

ψ(ε) =
1
2

λ(tr ε)2 + µε : ε where ε =
1
2
(∇u +∇Tu) (1)

where is the strain tensor. Herein, λ and µ are the first Lamé constant and the shear
modulus respectively [32].

The nonlocal elasticity is implemented by the addition of higher-order strains into the
free energy function in the sense of Mindlin [15]

ψ = ψ̃(ε, η) where η = ∇∇u (2)

where is the second gradient of the displacement field where u is the displacement field.
For isotropic materials, the free energy function can be written in an additive format

ψ̃(ε, η) = ψloc(ε) + ψnlo(η) , where ψloc(ε) =
1
2

λ(trε)2 + µε : ε (3)
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and

ψnlo(η) = a1(η
.. 1) · (η .. 1) + a2(1 .. η) · (η .. 1) + a3(1 .. η) · (1 .. η) + a4(η

... η) + a5(η
... η

13
T ) (4)

where are the local and nonlocal parts of the free energy function, respectively, see ref-
erences [20,26]. In the most general case, five additional material parameters ai exist.
From (3)1, the first variation of the free energy can be derived as

δψ = σ : δε + τ
... δη where σ := ∂εψloc(ε) and τ := ∂ηψnlo(η) (5)

where are the second order and third order stress tensors as work conjugates of the second
order strain tensor ε and the third order strain tensor η, respectively.

2.1.2. The Modified Strain Gradient Theory

Lam et al. [28] proposed a more specific form of the ansatz (2) and (5)

ψ = ψ̃(ε,∇ε, η1, χ) leading to δψ = σ .. δε + p · δ∇ε + τ
... δη1 + m .. δχ , (6)

where σ, p, τ, m are the local stress tensor, pressure gradient vector, the double stress
tensor, and the couple stress tensor,

σ := ∂εψloc(ε) , p := ∂∇εψnlo(η,∇ε, χ) , τ := ∂
η1 ψnlo(η,∇ε, χ) , and m := ∂χψnlo(η,∇ε, χ) (7)

as the work conjugates of the strain tensor ε, dilatation gradient ∇ε = ∇ tr ε, deviatoric
stretch gradient tensor η1, and curvature tensor χ such that

η1 =
1
3
∇pε− 1

15
(1⊗∇ε)

− 1
15

[
2(1⊗ tr(∇ε)) + (1⊗∇ε)

13
T + 2(1⊗ tr(∇ε))

13
T + (1⊗∇ε)

23
T + 2(1⊗ tr(∇ε))

23
T

]
, and

χ := 1
2
[
∇ϑ +∇Tϑ]

]
with ϑ :=

1
2

curl u .

(8)

Therein, ∇p is the permutational gradient defined as ∇pε = ε jk,i + εki,j + εij,k. The
higher-order strain metrics are the deviatoric stretch gradient tensor η1 in addition to the
rotation gradient tensor or the curvature tensor χ. ∇ε is the dilatation gradient vector. The
total internal energy for the modified strain gradient theory of Lam et. al [28] then takes
the following form

Πint(u) :=
∫
B

ψ̃(ε,∇ε, χ) dV . ψnlo = ψ̃(∇ε, χ) = µl2
0∇ε · ∇ε + µl2

1 η1 ... η1 + µl2
2 χ : χ . (9)

The Euler-Lagrange equations of the minimization principle then reads

div σ +∇[div p] + div[div τ] +
1
2

curl[div m] + ρ0b = 0 . (10)

Herein, the corresponding stress measures as work conjugates of the strain measures
ε, ∇ε and χ respectively are

σ = λ(trε1) + 2µε , p = 2µl2
0 ∇ε , τ = 2µl2

1 η1 and m = 2µl2
2 χ , (11)

where l0, l1, l2 are the three length scale parameters of the modified strain gradient theory
associated with the higher-order strains ∇ε, η1, and χ, respectively.

2.2. Classical Kirchhoff Plate Theory

Kirchhoff plate theory is the extension of Euler-Bernoulli beam theory to two-dimensional
space. Accordingly, rotations are assumed to be small and plane sections are assumed to
remain plane and perpendicular to the neutral axis. Consequently, the displacement field
simplifies to
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ux(x, y, z) = −z
∂w
∂x

, uy(x, y, z) = −z
∂w
∂y

, uz(x, y) = w , (12)

where the plate axes and geometry are as defined as in Figure 1a and w = w(x, y). Therein,
L is the length, W is the width, and h is the thickness of the plate. The out-of-plane rotations
and the curvatures can be described as

θx = −∂w
∂y

, θy = −∂w
∂x

, κxx = −∂2w
∂x2 , κyy = −∂2w

∂y2 , and κxy = κyx = −2
∂2w
∂x∂y

. (13)

The small-strain linear isotropic material response leads to the constitutive relation
between the moment and the curvature

M := E κ where

Mxx
Myy
Mxy

 = D

1 ν 0
ν 1 0

0 0
1
2
(1 + ν)


κxx

κyy
κxy

 , and D = Eh3/12(1− ν2) . (14)

Herein, D, E, ν are the isotropic plate rigidity, modulus of elasticity and Poisson’s
ratio, respectively. The displacement vector u consists of vertical displacements w and
rotations θ and surface traction vector t consists of shear forces V and moments M as given
in Figure 1b. Due to kinematic equations, shearing, twisting and membrane effects are
neglected in the strain energy equation. Therefore strain energy is governed by bending
action solely.

Figure 1. (a) Kirchhoff plate geometry and (b) Dirichlet ∂Bu and Neumann ∂Bt boundary conditions imposed. ∂B =

∂Bu ∪ ∂Bt.

For a Kirchhoff plate, the internal and the external potentials read

Πint =
1
2

∫
B
(M .. κ)dA and Πext =

∫
B

q̄w̄ dA +
∫

∂Bt
V̄w̄ ds +

∫
∂Bt

M̄ · θ̄ ds , (15)

where

M̄ =

[
M̄xx
M̄yy

]
and θ̄ =

[
θ̄x
θ̄y

]
. (16)

The first variation of the total potential Π has to vanish at the equilibrium state. Hence

δΠ =
∫
B

[
δκxxD(κxx + νκyy) + δκyyD(κyy + νκxx) + δκxyD

1
2
(1− ν)κxy

]
dA

−
∫
B

q̄δw̄ dA +
∫

∂Bt
V̄δw̄ ds +

∫
∂Bt

M̄δθ̄ ds = 0 .
(17)

The Euler-Lagrange equation of the minimization principle can then be derived as
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D
(

∂4w(x, y)
∂x4 + 2

∂2w(x, y)
∂x2∂y2 +

∂4w(x, y)
∂y4

)
− q(x, y) = 0 or D∇2∇2(w)− q = 0 , (18)

where∇2∇2(•) is the biharmonic operator. The Dirichlet (essential) and Neumann (natural)
boundary conditions are respectively,

1. w=w̄ θx=θ̄x θy=θ̄y at ∂Bu ,

2. V=V̄ Mxx=M̄xx Myy=M̄yy at ∂Bt .
(19)

2.3. Modified Strain Gradient Theory for Kirchhoff Plates

With the displacement field given in Equation (12) and kinematic relations given in
Equation (13) valid, an additional set of higher-order out-of-plane curvatures are defined as

$xxx =
∂3w
∂x3 , $xxy =

∂3w
∂x2y

, $xyy =
∂3w
∂xy2 , and $yyy =

∂3w
∂x3 . (20)

The constitutive relations between the moment & curvature and higher-order forces &
higher-order curvatures are, respectively

M := EC κ :

Mxx
Myy
Mxy

 =

d1 d2 0
d2 d1 0
0 0 d3

κxx
κyy
κxy

 and Q := EH $ :


Qxxx
Qxxy
Qxyy
Qyyy

 =


d4 0 d5 0
0 d6 0 d5
d5 0 d6 0
0 d5 0 d4




$xxx
$xxy
$xyy
$yyy

 (21)

where

d1=D + µh
(

2l2
0 +

8
15

l2
1 + l2

2

)
, d2=Dν + µh

(
2l2

0 −
2

15
l2
1 − l2

2

)
, d3=2D(1− ν) + µh

(
4
3

l2
1 + 4l2

2

)
,

d4=µh3

(
l2
0
6
+

l2
1

15

)
, d5=µh3

(
l2
0
6
−

l2
1

10

)
, d6=µh3

(
l2
0
6
+

l2
1
5

)
.

(22)

Derivation of the above equations are given in Appendix A. For the MSGT based
higher-order Kirchhoff plate, the internal potential reads

Πint =
1
2

∫
B
(M · κ + Q · $)dA . (23)

The external potential reads

Πext =
∫
B

q̄w̄ dA +
∫

∂Bt
V̄w̄ ds +

∫
∂Bt

M̄θ̄ ds +
∫

∂Bt
Q̄κ̄ ds where Q̄ =

[
Q̄xxx
Q̄yyy

]
and κ̄ =

[
κ̄xx
κ̄yy

]
. (24)

Q is therefore the work conjugate of the curvature κ, similar to the work conjugate couples
V—w and M—θ. The first variation of the internal potential leads to

δΠint =
∫
B

[
δκxx(d1κxx + d2κyy) + δκyy(d2κxx + d1κyy) + δκxyd3κxy + δ$xxx(d4$xxx − d5$xyy)

+δ$xxy(d6$xxy + d5$yyy) + δ$xyy(d5$xxx + d6$xyy) + δ$yyy(d5$xxy + d4$yyy)
]
dA .

(25)

Similarly, the first variation of the external work potential can be derived as

δΠext =
∫
B

q̄δw̄ dA +
∫

∂Bt
V̄δw̄ ds +

∫
∂Bt

M̄δθ̄ ds +
∫

∂Bt
Q̄δκ̄ ds . (26)
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The principle of minimum potential energy also requires the variation of the total
potential to vanish at equilibrium. The Euler-Lagrange equation of the minimization
principle can be derived as follows

d1

(
∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
− d4

(
∂6w
∂x6 + 3

∂6w
∂x4∂y2 + 3

∂6w
∂x2∂y4 +

∂6w
∂y6

)
− q = 0 . (27)

The Dirichlet and Neumann boundary conditions are respectively,

1. w=w̄ θx=θ̄x θy=θ̄y κx=κ̄x κy=κ̄y at ∂Bu ,

2. V=V̄ Mxx=M̄xx Myy=M̄yy Qx=Q̄x Qy=Q̄y at ∂Bt .
(28)

3. The Microplate Finite Element Formulation

The finite element formulation for the classical plate theory and the modified strain
gradient theory will be obtained using the variational formulations presented in Section 2.
The proposed finite element formulation is derived by first proposing additional higher-
order DOF’s. Then, homogeneous solutions that satisfy Equation (18) are proposed and the
shape functions are checked. From the relevant shape functions, local element stiffmess
matrices are derived.

3.1. 12-Dof Adini-Clough-Melosh Element for Classical Kirchhoff Plates

Let us consider a classical Kirchhoff plate element domain Be as depicted in Figure 1a.
The generalized displacements at the element nodes are prescribed as

1. w = w1, θx = θx1 and θy = θy1 at x = 0 and y = 0 ,
2. w = w2, θx = θx2 and θy = θy2 at x = L and y = 0 ,
3. w = w3, θx = θx3 and θy = θy3 at x = L and y = W ,
4. w = w4, θx = θx4 and θy = θy4 at x = 0 and y = W ,

(29)

see also Figure 2a. Similarly, the generalized nodal force resultants are prescribed as

1. V = V1, Mx = Mx1 and My = My1 at x = 0 and y = 0 ,
2. V = V2, Mx = Mx2 and My = My2 at x = L and y = 0 ,
3. V = V3, Mx = Mx3 and My = My3 at x = L and y = W ,
4. V = V4, Mx = Mx4 and My = My4 at x = 0 and y = W ,

(30)

see also Figure 2b. Accordingly, the vector field containing the nodal displacement vector
d and the nodal force vector f read

dT =
[

w1 θx1 θy1 ... w4 θx4 θy4
]

, f T =
[

V1 Mx1 My1 ... V4 Mx4 My4
]

. (31)
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Figure 2. (a) Nodal degrees of freedom and (b) corresponding nodal forces for a classical Kirchhoff plate formulation, i.e.,
ACM element.

The displacement field w(x, y) within the element domain Be is interpolated as

w(x, y) = Nd =
nDOF

∑
i=1

nnodes

∑
j=1

N j
i dj

i where N =
[

N1
1 N1

2 N1
3 ... N4

1 N4
2 N4

3

]
, (32)

where is the row vector including the set of interpolation/shape functions. nDOF = 3 is the
number of degrees of freedom (DOFs) per node and nnodes = 4 is the number of nodes per
element, with N j

i , i denoting the relevant DOF of the node and j denoting the relevant node.
The number of DOFs per element is hence 12. The homogenous solution of the partial
differential Equation (18) is

w(x, y) = a1 + a2x + a3y + a4x2 + a5xy + a6y2 + a7x3 + a8x2y + a9xy2 + a10y3 + a11x3y + a12xy3 . (33)

The 12 DOF plate element with such shape functions is known as the ACM quadri-
lateral [73]. The first three of the twelve shape functions are given in Figure 3, where the
remaining nine are symmetric with respect to two principal centroidal axes x̄ and ȳ around
the geometric center of the element. The analytic expressions for the ACM shape functions
are given in Appendix B, see also [73]. The ACM element does not satisfy the C1 continuity
requirement, and therefore it is a non-conforming element [61].

Figure 3. First three shape functions for the classical ACM plate element (of the 1st node).

The displacement w(x, y), rotation {θx, θy}, and the curvature {κx, κy, κxy} fields (13)
can be approximated as

w(x, y) = N(x, y)d , θx(x, y) =
∂N(x, y)

∂y
d , θy(x, y) = −∂N(x, y)

∂x
d ,

κxx(x, y) =
∂2N(x, y)

∂y2 d , κyy(x, y) = −∂2N(x, y)
∂x2 d , κxy(x, y) =

∂2N(x, y)
∂x∂y

d .
(34)
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Consequently, the variation of the field variables (34) are

δw(x, y) = N(x, y)δd , δθx(x, y) =
∂N(x, y)

∂y
δd , δθy(x, y) = −∂N(x, y)

∂x
δd ,

δκxx(x, y) =
∂2N(x, y)

∂y2 δd , δκyy(x, y) = −∂2N(x, y)
∂x2 δd , δκxy(x, y) =

∂2N(x, y)
∂x∂y

δd .
(35)

Incorporation of the discrete counterpart of the curvature in Equation (34) and their
variations (35) into (17), we obtain

δΠ =
n

A
e=1

δdT
e ke de −

n

A
e=1

δdT
e f e = 0 , (36)

where
ke =

∫
B

[
(∇C N)TE(∇C N)

]
dA and f e =

∫
B

NTq(x, y)dA (37)

where are the element stiffnes matrix and the element nodal force vectors. For the sake of
convenience the loading terms on the boundary are omitted for f e. Therein, the operator
∇C is defined as

∇C =

[
∂2

∂x2 2
∂2

∂x∂y
∂2

∂y2

]T

, (38)

and A refers to the standard assembly of element contributions at the local element nodes
where n denotes the total number of elements. In Equation (47) the strain-displacement
matrix is ∇C N as given in Appendix D.

The global stiffness matrix, generalized nodal displacement vector and the generalized
force vector assembled from local force vectors read

K =
n

A
e=1

ke , D =
n

A
e=1

de and F =
n

A
e=1

f e , (39)

respectively. No variation exists δd = 0 at essential boundary ∂Bu where the displacements
are prescribed d = d̄. The equilibrium is satisfied for arbitrary variation of the displacement
δd leading to the set of linear algebraic equations

KD = F . (40)

3.2. 16-Dof Bogner-Fox-Schmit Element for Classical Kirchhoff Plates

For a classical Kirchhoff plate element the generalized displacements at the element
nodes are prescribed as

1. w = w1, θx = θx1, θy = θy1, and κxy = κxy1, at node 1 ,
2. w = w2, θx = θx2, θy = θy2, and κxy = κxy2, at node 2 ,
3. w = w3, θx = θx3, θy = θy3, and κxy = κxy3, at node 3 ,
4. w = w4, θx = θx4, θy = θy4, and κxy = κxy4, at node 4 ,

(41)

see also Figure 4a. Similarly, the generalized nodal force resultants are prescribed as

1. V = V1, Mx = Mx1, My = My1, and Mxy = Mxy1, at node 1 ,
2. V = V2, Mx = Mx2, My = My2, and Mxy = Mxy2, at node 2 ,
3. V = V3, Mx = Mx3, My = My3, and Mxy = Mxy3, at node 3 ,
4. V = V4, Mx = Mx4, My = My4, and Mxy = Mxy4, at node 4 ,

(42)

see also Figure 4b.
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Figure 4. (a) Nodal degrees of freedom and (b) corresponding nodal forces for the BFS element based on classical Kirchhoff
plate formulation.

The nodal displacement vector d and the nodal force vector f are

dT =
[

w1 θx1 θy1 κxy1 ... w4 θx4 θy4 κxy4
]

, f T =
[

V1 Mx1 My1 Mxy1 ... V4 Mx4 My4 Mxy4
]

. (43)

The displacement field w(x, y) within the element domain is interpolated as

w(x, y) = Nd =
nDOF

∑
i=1

nnodes

∑
j=1

N j
i dj

i where N =
[

N1
1 N1

2 N1
3 N1

4 ... N4
1 N4

2 N4
3 N4

4

]
, (44)

where N is the row vector including the set of interpolation/shape functions, nDOF = 4 is
the number of degrees of freedom (DOFs) per node and nnodes = 4 is the number of nodes
per element. For N j

i , i denotes the relevant DOF of the node and j denotes the relevant
node. The number of DOFs per element is hence 16. The homogenous solution of the
partial differential biharmonic plate equation is

w(x, y) = a1 + a2x + a3y + a4x2 + a5xy + a6y2 + a7x3 + a8x2y + a9xy2 + a10y3 + a11x3y + a12x2y2+
a13xy3 + a14x2y3 + a15x3y2 + a16x3y3 .

(45)

Incorporation of these into the total functional, we obtain

δΠ =
n

A
e=1

δdT
e ke de −

n

A
e=1

δdT
e f e = 0 , (46)

where
ke =

∫
B

[
(∇C N)TE(∇C N)

]
dA and f e =

∫
B

NTq(x, y)dA (47)

are the element stiffness matrix and the element nodal force vectors.
The global stiffness matrix, generalized nodal displacement vector and the generalized

force vector are assembled from local force vectors in a similar manner as described in
Section 3.1.

3.3. New 20-Dof Finite Element Formulation for Msgt-Based Kirchhoff Microplates

Let us now consider a MSGT-based Kirchhoff plate element domain Be. The general-
ized displacements at the element nodes are prescribed as
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1. w = w1, θx = θx1, θy = θy1, κx = κx1 and κy = κy1, at x = 0 and y = 0 ,
2. w = w2, θx = θx2, θy = θy2, κx = κx2 and κy = κy2, at x = L and y = 0 ,
3. w = w3, θx = θx3, θy = θy3, κx = κx3 and κy = κy3, at x = L and y = W ,
4. w = w4, θx = θx4, θy = θy4, κx = κx4 and κy = κy4, at x = 0 and y = W ,

(48)

see also Figure 5a. Similarly, the generalized nodal force resultants are prescribed as

Figure 5. (a) Nodal degrees of freedom and (b) corresponding nodal forces for a MSGT based higher order Kirchhoff
plate formulation.

1. V = V1, Mx = Mx1, My = My1, Qx = Qx1 and Qy = Qy1, at x = 0 and y = 0 ,
2. V = V2, Mx = Mx2, My = My2, Qx = Qx2 and Qy = Qy2, at x = L and y = 0 ,
3. V = V3, Mx = Mx3, My = My3, Qx = Qx3 and Qy = Qy3, at x = L and y = W ,
4. V = V4, Mx = Mx4, My = My4, Qx = Qx4 and Qy = Qy4, at x = 0 and y = W ,

(49)

see Figure 5b for relevant nomenclature. The element nodal displacement vector d and the
element nodal force vector f of the higher-order Kirchhoff plate are, respectively,

dT =
[
w1 θx1 θy1 κx1 κy1 ... w4 θx4 θy4 κx4 κy4

]
, f T =

[
V1 Mx1 My1 Qx1 Qy1 ... V4 Mx4 My4 Qx4 Qy4

]
, (50)

where the nodal bi-axial curvatures and higher-order moments as their work conjugates
enter the formulation as additional nodal field variables. The displacement field w(x, y)
within the element domain Be is interpolated as

w(x, y) = Nd =
nDOF

∑
i=1

nnodes

∑
j=1

N j
i dj

i where N =
[

N1
1 N1

2 N1
3 N1

4 N1
5 ... N4

1 N4
2 N4

3 N4
4 N4

5

]
(51)

is the row vector including the set of interpolation/shape functions with number of DOFs
per node is nDOF = 5 and number of nodes is nnodes = 4. We propose a homogenous
solution of the partial differential Equation (27) in the form

w(x, y)= a1 + a2x + a3y + a4x2 + a5xy + a6y2 + a7x3 + a8x2y + a9xy2 + a10y3 + a11x3y + a12xy3

+ a13 sinh(Ax) + a14 cosh(Ax) + a15 sinh(By) + a16 cosh(By) + a17 sinh(Ax)y + a18 cosh(Ax)y

+ a19 sinh(By)x + a20 cosh(By)x , with A = L
√

d1/d4 , B = W
√

d1/d4 .

(52)

The use of hyperbolic sine and hyperbolic cosine terms are in fact motivated by the
nature of the plate equation with fourth and sixth order terms (27). The choice of the
additional degrees of freedom is also based on the study of Kahrobaiyan et al. [74]. This
solution naturally extends the MSGT based Euler-Bernoulli beam solution to Kirchhoff
plate solution, see Reference [32].

We propose 20 shape functions derived from the basis function that satisfies the
homogeneous solution (65). The first five of these shape functions (i.e., those for the first
node) are shown in Figure 6. The remaining fifteen are symmetric with respect to two
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centroidal principal axes x̄ and ȳ around the geometric center of the element. The analytic
expressions for the shape functions N j

i of the MSGT-based Kirchoff plate element are given

in Appendix C. The shape functions N j
1, N j

2 and N j
3 recover their classical counterparts

in ACM element for j’th node whereas N j
4 and N j

5 vanish as length scale parameters tend
to zero.

Figure 6. First five shape functions for the new Kirchhoff plate element in MSGT (of the 1st node). l0 = l1 = l2 = 3.71 µm as
given in the forthcoming section.

The higher-order derivatives appearing in Equation (A12) in Appendix A are interpo-
lated in the element domain Be as follows

w,xxx =
∂3N(x, y)

∂x3 d , w,xxy =
∂3N(x, y)

∂x2∂y
d , w,xyy =

∂3N(x, y)
∂x∂y2 d , w,yyy =

∂3N(x, y)
∂y3 d . (53)

Consequently, the variation fields for the relevant terms in Equation (25) read

δw,xxx =
∂3N(x, y)

∂x3 δd , δw,xxy =
∂3N(x, y)

∂x2∂y
δd , δw,xyy =

∂3N(x, y)
∂x∂y2 δd , δw,yyy =

∂3N(x, y)
∂y3 δd . (54)

Incorporation of the discrete counterpart of the curvature in Equation (34), higher-
order curvature (53) and their variations (35) and (54) along with (25) and (26) into mini-
mization principle, we obtain

δΠ =
n

A
e=1

δdT
e ke de −

n

A
e=1

δdT
e f e = 0 , (55)

where

ke =
∫

∂B

[
(∇C N)TEC(∇C N) + (∇H N)TEH(∇H N)

]
dA and f e =

∫
∂B

NTq(x, y)dA (56)

are the element stiffnes matrix and the element nodal force vector (Figure 5b), respectively.
Therein, the higher-order in-plane Laplacian operator ∇H is

∇H =

[
∂3

∂x3 3
∂3

∂x2∂y
3

∂3

∂x∂y2
∂3

∂y3

]T

. (57)
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There are two strain-displacement matrices in Equation (56) that can be expressed as
∇C N and ∇H N as given in Appendix D.

By changing of variables (x, y) with (ξ1, ξ2), the stiffness matrix can be written as

ke =
∫ 1

−1

∫ 1

−1

[
(∇C N)TEC(∇C N) + (∇H N)TEH(∇H N)

]∣∣∣
x=g1(ξ1,ξ2)

∣∣∣
y=g2(ξ1,ξ2)

det(J)dξ1dξ2 . (58)

Therein, the Jacobian or the transformation between the natural parameter space ξ
and physical space x is

J :=
∂x
∂ξ

=


∂x
∂ξ1

∂x
∂ξ2

∂y
∂ξ1

∂y
∂ξ2

 . (59)

Making use of two-point Gaussian quadrature, the continuous integral (58) for the
element stiffness matrix can be replaced with the discrete representation

ke =
2

∑
i=1

2

∑
j=1

[
(∇C N)TEC(∇C N) + (∇H N)TEH(∇H N)

]
det(J) Ω(ξ1, ξ2)

∣∣∣
ξ1=ξ1(i)

∣∣∣
ξ2=ξ2(j)

, (60)

where ξ1(i), ξ2(j) and Ω(ξ1(i), ξ2(j)) are the Gaussian quadrature points and the weight
factors, respectively.

The 28-DOF finite element formulation variant derived from ACM and 20-DOF finite
elements is given in Appendix E.

3.4. New 24-Dof Finite Element Formulation for Msgt-Based Kirchhoff Microplates

We develop the 24-DOF element from the 16-DOF BFS element in exactly the same
manner the 20-DOF element is developed from the 12-DOF ACM element in Section 3.3.
Herein the generalized displacements at the element nodes are prescribed as

1. w = w1, θx = θx1, θy = θy1, κxx = κxx1, κyy = κyy1 and κxy = κxy1, at at node 1 ,
2. w = w2, θx = θx2, θy = θy2, κxx = κxx2, κyy = κyy2 and κxy = κxy2, at at node 2 ,
3. w = w3, θx = θx3, θy = θy3, κxx = κxx3, κyy = κyy3 and κxy = κxy3, at at node 2 ,
4. w = w4, θx = θx4, θy = θy4, κxx = κxx4, κyy = κyy4 and κxy = κxy4, at at node 4 ,

(61)

see Figure 7a. Similarly, the generalized nodal force resultants are prescribed as

Figure 7. (a) Nodal degrees of freedom and (b) corresponding nodal forces for a MSGT based higher order 24-DOF Kirchhoff
plate formulation.
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1. V = V1, Mx = Mx1, My = My1, Qxx = Qxx1, Qyy = Qyy1, and Mxy = Mxy1, at node 1 ,
2. V = V2, Mx = Mx2, My = My2, Qxx = Qxx2, Qyy = Qyy2, and Mxy = Mxy2, at node 2 ,
3. V = V3, Mx = Mx3, My = My3, Qxx = Qxx3, Qyy = Qyy3, and Mxy = Mxy3, at node 3 ,
4. V = V4, Mx = Mx4, My = My4, Qxx = Qxx4, Qyy = Qyy4, and Mxy = Mxy4, at node 4 ,

(62)

see Figure 7b. The element nodal displacement vector d and the element nodal force vector
f are, respectively,

dT =
[
w1 θx1 θy1 κxx1 κyy1 κxy1... w4 θx4 θy4 κxx4 κyy4 κxy4

]
,

f T =
[
V1 Mx1 My1 Qxx1 Qyy1 Mxy1...V4 Mx4 My4 Qxx4 Qyy4 Mxy4

]
,

(63)

The displacement field w(x, y) within the element domain is then interpolated as

w(x, y) = Nd =
nDOF

∑
i=1

nnodes

∑
j=1

N j
i dj

i where N =
[

N1
1 N1

2 N1
3 N1

4 N1
5 N1

6 ...N4
1 N4

2 N4
3 N4

4 N4
5 N4

6

]
(64)

with number of DOFs per node is nDOF = 6 and number of nodes is nnodes = 4. We propose
a homogenous solution of the partial differential Equation (27) in the form

w(x, y)= a1 + a2x + a3y + a4x2 + a5xy + a6y2 + a7x3 + a8x2y + a9xy2 + a10y3 + a11x3y + a12x2y2

+ a13xy3 + a14x2y3 + a15x3y2 + a16x3y3 + a17 sinh(Ax) + a18 cosh(Ax)

+ a19 sinh(By) + a20 cosh(By) + a21 sinh(Ax)y + a22 cosh(Ax)y + a23 sinh(By)x + a24 cosh(By)x ,

with A = L
√

d1/d4 , B = W
√

d1/d4 ,

(65)

With similar hyperbolic sine and cosine terms, the equation above satisfies the homo-
geneous solution for Equation (27). Hence we also propose twenty-four shape functions
as given in Equation (64). The first six of these shape functions (i.e., those for the first
node) are shown in Figure 8. The remaining eighteen are symmetric with respect to two
centroidal principal axes x̄ and ȳ around the geometric center of the element. The shape
functions N j

1, N j
2, N j

3, and N j
6 recover their classical counterparts in BFS element for j’th

node whereas N j
4 and N j

5 vanish as length scale parameters tend to zero.
By changing of variables and the use of two-point Gaussian quadrature, the discrete

representation for the element stiffness matrix ke similar to Section 3.3 is

ke =
2

∑
i=1

2

∑
j=1

[
(∇C N)TEC(∇C N) + (∇H N)TEH(∇H N)

]
det(J) Ω(ξ1, ξ2)

∣∣∣
ξ1=ξ1(i)

∣∣∣
ξ2=ξ2(j)

, (66)

similar to the formulation in Section 3.3.
The 32-DOF finite element formulation variant derived from BFS and 24-DOF finite

elements is given in Appendix F.
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Figure 8. First six shape functions for the new 24-DOF Kirchhoff plate element in MSGT (of the 1st node).

3.5. Conformity

Since the energy Equation (A12) in Appendix A involves terms with third derivatives
of displacement w, C2-continuity is required for conformity. Herein, 20-DOF element
is demonstrated and 24-, 28-, and 32-DOF versions behave similarly. Let us consider a
rectangular element as depicted in Figure 9. For an element boundary AB, the C2-continuity
would require displacements, rotations and curvatures to be uniquely defined in terms of
the nodal degrees of freedoms, i.e., w, θx, θy, κx and κy at points A and B respectively (ten
nodal variables). Similarly for an element boundary DA given in the same figure, these
need to be defined by the same nodal variables at D and A. For the boundary along the
element edge AD, where y is constant and zero

w = a1 + a2x + a4x2 + a7x3 + a13 sinh(Ax) + a14 cosh(Ax) + a16 + a20x ,

δw
δx

= a2 + 2a4x + 3a7x2 + a13 A cosh(Ax) + a14 A sinh(Ax) + a20 ,

δw
δy

= a3 + a5x + a8x2 + a11x3 + a15B + a17 sinh(Ax) + a18 cosh(Ax) + a19Bx ,

δ2w
δx2 = 2a4 + 6a7x + A2a13 sinh(Ax) + A2a14 cosh(Ax) ,

δ2w
δy2 = 2a6 + 2a9x + B2a16 + B2a20x ,

(67)

with 18 unkown constants that can not be defined by invoking 10 nodal displacement
boundary conditions. Hence, just like its conventional counterpart [61], it is not possible to
specify a polynomial set for the shape functions that ensure compatibility. The proposed
elements are non-conforming elements whereas the convergence and numerical perfo-
mance of the elements are investigated in Section 4. Cirak et al. [75,76] have overcome this
problem in the context of classical Kirchfoff plates and shells by introducing a concept of
triangular elements with subdivision surfaces where nonlocal interpolations are imposed
on the subdivison elements, fully conforming to C1 continuity requirements. The current
contribution, however, shall be considered as a first step towards incorporating MSGT
into Kirchhoff plates in the context of finite element method. In the subsequent part of
the work, we also develop several elements with more degrees of freedom, particularly
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from the conforming Bogner-Fox-Schmit (BFS) element [59], in addition to adding more
higher-order terms.

Figure 9. Element interfaces AB, BC, CD, and DA, at which either x or y is constant.

4. Representative Numerical Examples

In this section, the performances of the proposed 20-, 24-, 28-, and 32-DOF MSGT-based
Kirchhoff plate elements are assessed under various boundary and loading conditions
for different geometries. To this end, the finite element method outlined in Section 3.3 is
implemented into our in-house finite element code that is developed via Matlab. First,
the performance comparison is made between all the proposed elements. Then, we find
the length scale parameters of gold based on the experiments of Espinosa et al. [60].
Four benchmark examples concerned with the assessment of the performance of the
proposed element formulation with respect to mesh irregularity due to element size,
mesh convergence, and response to various displacement boundary conditions are given.
We then study the convergence of the numerical solutions to the approximate analytical
solutions for a square and rectangular plate subjected to evenly distributed surface loads
per the study of Movassagh and Moahmoodi [47]. Finally, several representative boundary
value problems involving realistic MEMS switch geometries are investigated, and the
results are compared with those obtained from the classical Kirchhoff plate theory. For all
the problems, the number of elements and mesh size are chosen based on the studies given
in Section 4.3.3.

4.1. Comparison

A basic comparison case study is performed by using a fixed-fixed plate with dimen-
sions 20 µm × 5 µm × 1 µm [32]. A concentrated midpoint load of Fz = 1 mN is applied
as shown in Figure 10. Therein, square elements are used with a mesh of 32 × 8 elements,
i.e., with a mesh density of 1.6 elements/µm at the edges. The resulting deflection field is
shown in Figure 11. The deflection profiles of the principal centroidal axes of the plates
are depicted in Figure 12a,b respectively. The difference between the models constructed
with 20-, 24-, 28-, and 32-DOF elements is insignificant -i.e., in the order of magnitude of
10−5 µm and smaller than 0.2% of the total tip deflection-, and the deflection profile looks
almost the same in Figure 12a. In Figure 12b the difference can be seen, along with a slight
saddle effect that is expected due to Poisson effect [37].

Along with these results and similar results found for the forthcoming sections for
the analysis of length scale parameters and assessment of element performance, only the
results for the 20-DOF element are included for Sections 4.2–4.4.
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Figure 10. (a) Geometry and boundary conditions for the plate with dimensions L = 20 µm, W = 5 µm, h = 1 µm under a
load of Fz = 1 mN applied towards +z direction at the midpoint with the material properties for gold, (b) relevant mesh
consisting of 32 × 8 elements for the comparative analysis.

Figure 11. Contour plots depicting the vertical deflection field for the geometry and boundary
conditions given in Figure 10 with the new 24-DOF elements with a mesh of 32 × 8 elements.

Figure 12. Deflection profiles for the geometry and boundary conditions given in Figure 10, (a) along the principal axis along
x-direction, and (b) along the principal axis along y-direction, for the models constructed with the same mesh (32 × 8 elements) of 20-,
24-, 28-, 32-DOF rectangular elements.

4.2. Length Scale Parameters for Gold Microplates

Experiments in the study of Espinosa et al. [60] are modelled by microplates. The
specimen dimensions and force-displacement values are given in Table 1, and the boundary
conditions are shown in Figure 13. Force-displacement behavior is assumed as linear elastic
and elastic parameters E and ν for Specimens 1 and 2 are assumed to be the same. The
methodology is based on our previous study [32], i.e., for quantification of elastic modulus
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E and length scale parameter l, an error parameter Err is defined as the L2-norm of the
residual vector, for the quantification of the best fit at which Err is minimum.

Err = (wsim
1 − wexp

1 )2 + (wsim
2 − wexp

2 )2 . (68)

Herein wsim
1 and wsim

2 are the midpoint deflections predicted by higher order theories,
wexp

1 and wexp
2 are the actual midpoint deflections from experiments for specimens 1 and

2. Err is evaluated for different values of E and l in order to find the minimum error. It is
seen that the error function is minimum along the dark blue region in Figure 14. For bulk
elastic modulus of gold i.e., E = 80 GPa, l0 is found as 3.60 µm.

Table 1. Experiments taken from [60]. W, t, L denote the width, thickness and length of the specimen respectively. Fz and wma

are the vertical force applied at the midpoint and the actual displacement of the midpoint respectively. (*gage dimension).

Reference Type Specimen
Tag No

Width, W
[µm]

Thickness, t
[µm]

Length, L
[µm]

Force, Fz
[mN]

Deflection,
wma [µm]

Espinosa et al. [60] Double-
cantilevered

1 10* 0.5 400* 0.3 15

Espinosa et al. [60] Double-
cantilevered

2 10* 1 400* 0.3 9

Figure 13. Geometry and the boundary conditions of the experiments [60].

Figure 14. Corresponding Err, E, and l values for experiments in Espinosa et al. [60].

Throughout the following numerical examples demonstrating element performance,
these material parameters specific to gold are used. Those of epoxy are taken from the
pioneering work of Lam et al. [28]. These are summarized in Table 2.
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Table 2. Material parameters used for gold and epoxy.

Gold Epoxy

Parameter Value Unit Parameter Value Unit

E 80 [GPa] E 1.44 [GPa]

ν 0.42 [–] ν 0.38 [–]

l0 = l1 = l2 3.71 [µm] l = l0 = l1 = l2 17.6 [µm]

4.3. Assessment of Element Performance

The proposed MSGT-based Kirchhoff microplate elements can be used for rectangular
elements similar to their classical counterparts. The results obtained with the developed
MSGT-based Kirchhoff microplate are exactly the same with those with the ACM element,
with vanishing length scale parameters. Although the ACM element passes the patch test,
the usage area should be confined to rectangular meshes [61,77]. The proposed formulation
shows similar performance to ACM element under distorted element geometries. In this
regard, we confine ourselves to the investigation of the convergence behaviour upon
mesh refinement and the element performance to irregular rectangular meshes. To this
end, the convergence of the displacement field for a square block subjected to a point
load is investigated for various boundary conditions, Additionally, the sensitivity of the
displacement field to mesh irregularity under prescribed displacement/rotation field
is investigated.

4.3.1. Microplate Response to Point Load

A 6 µm× 6 µm× 1 µm microplate is subjected to a concentrated load of 1 mN applied
at the centroid. The plate is double-cantilevered as depicted in Figure 15a. The problem is
investigated with several meshes as shown in Figure 15 in order to assess its sensitivity
to mesh irregularity. The corresponding deflection profiles are depicted in Figure 16a–d.
In order to assess the difference in displacement fields, the midline deflections for the
relevant nodes at x = 0 and y = 0 for the regular mesh and the irregular mesh given
in Figure 16b are given in Figure 17a. The points correspond to the nodal displacement
values along x = 0 and y = 0. The problem is also solved with ACM element and similar
midline deflections are indicated in Figure 17b. Therein, curves in between nodal values
are interpolated with the element shape functions. It is seen that the deflections of the
nodes for the regular and irregular meshes complement each other. The difference between
centroidal deflections is smaller than 1% as seen in Figure 16, with the displacement fields
aligned to a reasonably acceptable extent. In fact the average difference between the
deformation results at the nodes is less than 1%, meaning it performs slightly better than
ACM element does for midline deflections in both directions. Although it is suggested that
the element size variation such as aspect ratio change to be minimum as a best practice,
varying aspect ratios do not yield erroneous results at least up to some extent, regarding
displacement results.

Figure 15. (a) Geometry and boundary conditions for square microplate. Thickness is taken as 1 µm and Fz = 1 mN. The
problem is solved for (b) regular and (c–e) irregular mesh discretizations.
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Figure 16. Contour plots depicting vertical displacement for the aspect ratio test given in Figure 15 for (a) regular mesh and
(b–d) irregular meshes.

Figure 17. Midline deflections along x− and y−axes obtained from the regular and irregular meshes depicted in Figure 16
for (a) ACM plate element with classical theory (li = 0) and (b) proposed microplate element with MSGT formulations.

4.3.2. Microplate Response to Displacement and Rotation

In order to check the integrity of the formulation and consistency of the numerical
implementation in x- and y-directions, the 6 µm × 6 µm × 1 µm microplate is subjected
to a unit displacement and rotation at two perpendicular edges, respectively, see Figure 18
(first column). Therein, the left edge is fixed along y-axis and the right edge is displaced
1 µm in z-direction, see Figure 18a. Then, the same plate is subjected to a unit rotation
(1 rad) about y-axis, see Figure 18b. The same procedure is repeated for the perpendicular
direction in Figure 18c,d, respectively. The simulation is first carried out with 4× 4 regular
mesh (second column) and for an irregular mesh (third column). Although the proposed
element is shown to be non-conforming in Section 3.5, the displacement fields obtained
from the regular and irregular meshes are nearly identical. The average difference between
the deformation results at the nodes is less than 1%, hence the performance is deemed to
be satisfactory.
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Figure 18. Geometry and boundary conditions (left) and corresponding displacement fields for the aspect ratio test
considering response to prescribed displacements, for regular mesh (middle) and irregular mesh (right). The thickness of
the plates is 1 µm for (a–d).

4.3.3. Mesh-Refinement and Convergence

The 6 µm × 6 µm × 1 µm is now subjected to a concentrated midpoint load of 1 mN
with both classical ACM elements and the proposed higher-order microplate element.
The the boundary conditions are specified as (i) double-cantilevered (two opposite edges
clamped, two opposite edges free) and (ii) wholly-cantilevered (all four sides clamped),
see Figure 19 (first column). The displacement profile for these boundary conditions on
a 4 × 4 mesh are given in Figure 19 (second column). The midpoint deflections versus
element per edge results are depicted in Figure 20a–d, for the proposed element formula-
tion and the ACM element, respectively. The proposed element formulation is converging
slightly faster than the classical counterpart. The convergence behaviour of the proposed
element upon mesh-refinement is satisfactory for rectangular meshes given that the differ-
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ences between the maximum displacement for consequent mesh refinements are less than
0.1%.

Figure 19. Geometry and boundary conditions (left) together with displacement profiles for deflected shapes for mesh
refinement tests on a 4 × 4 and a 32 × 32 mesh, (a) opposite sides (double-) cantilevered, and (b) all sides (wholly-)
cantilevered. Fz = 1 mN.

Figure 20. Mesh convergence of the microplate element: Loading point deflection versus element per edge for (a) MSGT-
based double-cantilevered Kirchhoff plate formulation, (b) classical double cantilevered Kirchhoff plate formulation, (c)
MSGT-based wholly-cantilevered Kirchhoff plate formulation, (d) classical wholly-cantilevered Kirchhoff plate formulation.
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4.3.4. Square Microplate Subjected to Different Boundary Conditions

A 20 µm × 20 µm × 1 µm microplate subjected to a point load is analyzed under
various boundary conditions with the classical ACM plate element and the proposed
MSGT-based microplate element formulations, respectively. Four different boundary
conditions are considered, see Figure 21: (a) CFCF, (b) CFFF, (c) CCFC and (d) CCFC. The
boundary conditions are abbreviated by "C" for clamped ends and by "F" for free ends. In
the example (a) a centroidal, (b) midpoint of the free edge, (c) centroidal and (d) midpoint
of the free edge, are subjected to point load, respectively. The domain is discretized with
20× 20 elements. The results obtained from the classical ACM plate finite element and
the porposed finite element formulation are visualized in Figure 21. In order to study the
difference between the deformation patterns obtained from the classical and MSGT-based
Kirchhoff theory, the contour plots are normalized with respect to the peak values. The
numerical results show that, not only the maximum deflections but also the deformation
patterns change significantly by considering the size effect in terms of the modified strain
gradient theory.

It is seen in Figure 22 that the MSGT approaches asymptotically to classical theory
as the thickness, which is related to structural length scale, increases. With the assumed
length-width-thickness (aspect) ratio of 20:20:1 for gold microstructures, the error of using
classical theory with macroscopic material parameters vary with boundary conditions. It
still seems to be more than 10% if thickness is reduced below ca. 40 µm at best case. This
error increases with decreasing plate thickness - it becomes more than 25% if the relevant
thickness is taken smaller than ca. 25 µm at best case. It is seen that for the particular cases
with 20 µm × 20 µm × 1 µm microplate, the size effect yields deflections in the range of
0.3–0.5% of the deflections that are found with classical theory.

4.4. Benchmark Example: Rectangular Microplates Subjected to Evenly Distributed Load

Three benchmark examples, which are analytically solved by Movassagh and Mah-
moodi [47] using extended Kantarovich method (EKM), are numerically reproduced with
the proposed higher-order microplate elements. The boundary conditions and the dimen-
sions in terms of the length scale parameters l = l0 = l1 = l2 are depicted in Figure 23a–c.
A distributed load of 1 kN/m2 is applied in all three cases. Therein, the material parameters
specific to epoxy are used [28], see Table 2. The normalized midpoint deflections (w/l)
versus number of elements per length results are depicted in Figure 24a–c. The numerical
results recover the analytical solution of Movassagh and Mahmoodi upon mesh refinement
for all three cases. The difference between the results for consequent three refinements are
less than 0.05%.
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Figure 21. Deflected shapes for a microplate with classical theory (second column) and MSGT (third column). Boundary
conditions are (a) CFCF, point load applied at midpoint, (b) CFFF, point load applied at endpoint, (c) CCCF, point load
applied at midpoint of the plate, (d) CCCF, point load applied at midpoint of the free end. Fz = 1 mN. Thickness is 1 µm.
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Figure 22. Ratio of midpoint deflections predicted with MSGT to those predicted with classical
theory for various boundary conditions, with a constant aspect ratio of 20:20:1. Boundary conditions
are as given in Figure 21.

Figure 23. Geometry and boundary conditions for the three cases (a–c) in [47] replicated numerically with the proposed
higher order microplate elements. The dimensions are in terms of the length scale parameters l = l0 = l1 = l2, with
thickness h = l in all cases. A distributed load of 1 kN/m2 is applied for all cases as in the said study. Therein, the material
parameters specific to epoxy are used [28], see Table 2.

Figure 24. Midpoint deflections of the cases in Figure 23 versus number of elements per element length versus results
obtained from extended Kantorovich method (EKM) in [47].

4.5. Analysis of Realistic Mems Switches with 20-Dof Elements

In this example, we consider three real MEMS switch structures from Patel and
Rebeiz [66] and Stefanini et al. [65], respectively. The chamfers of the plates and tethers
are ignored in this section. The geometry and the boundary conditions are depicted in
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Figure 25. Stefanini et al. [65] discusses an actuation electrode and the corresponding
MEMS structure (see Figure 25a) to transfer the majority of the electrostatic force to the
contact force, i.e.,

Fc = 0.64 Fe − Fr (69)

where Fc is the contact force, Fr is the release force, and Fe is the electrostatic force. Therein,
Fc = 34.7 µN, Fr = 15.5 µN, and hence the electrostatic force is found as Fe = 77.2 µN. This
force is equally distributed to the nodes that are electrostatically actuated, see Figure 25a.
The deflection of the plate should be equal to the clearance of 0.3 µm for contact condition.
The electrostatic loads are applied to the structures and the deflected shapes, which are
obtained from classical and the MSGT-based Kirchhoff plate theory, are shown in Figure 26.
The analyses reveal, as expected, considerably softer response with the classical theory, see
Figures 26a and 27a. The normalized deflection curves that demonstrate the difference
between the deflection profiles are given in Figure 28a. With MSGT and with the length
scale parameters l0 = l1 = l2 = 0.69 µm, the contact condition can be achieved, as seen
from the same figures. The study of Patel and Rebeiz [66] focuses on two MEMS switches
(see Figure 25b,c) for which the electrostatic force for contact condition is given between
2.5–3.5 mN. It is hence assumed that an average electrostatic force of 3.0 mN is applied.
This force is again equally distributed to the relevant nodes, see Figure 25b–c. The clearance
in the design of these MEMS switches is 0.55 µm. As in the example above, a considerably
larger tip deflection is found with the classical theory. The analyses with MSGT-based
Kirchhoff plate yield the required deflection, see Figure 26b,c and Figure 27b,c. Similarly,
Figure 28b,c indicate the normalized deflection curves that demonstrates the difference
between the deflection profiles. The corresponding length scale parameters that are adopted
for these MEMS switches are l0 = l1 = l2 = 2.87 µm and l0 = l1 = l2 =‘3.16 µm respectively (see
parts (b) and (c) of Figures 26–28. In these three examples one can observe that higher-order
theories significantly improve the analysis results. It is also revealed that complex planar
structures that could not be reduced to beam structures and could not be modelled with
MSGT previously, examples of which are given in Figure 25a,b, can now be designed and
analyzed more effectively making use of the new MSGT plate elements.

The MEMS community traditionally use higher elasticity parameters such as Young’s
modulus µ and shear modulus µ. This choice, for uniform thickness and under pure
bending deformations leads to satisfactory results in line with the modified couple stress
theory (MCST). This is mainly due to the fact that, MCST, when applied to Kirchhoff
plate theory, leads to the same differential equation as the classical counterpart, where
the nonlocal effects are merely reflected to the material parameters. In order to assess the
difference between two theories, we depict the normalized tip deflections corresponding
to each switch structure in Figure 28. The normalized tip deflections of the classical and
the MCST-based Kirchhoff theory will lead to equivalent result. The idea here is to show,
how the deflection pattern changes as we switch to the MSGT-based Kircchhoff plate
theory from the classical counterpart or the MCST-based Kirchhoff plate theory. As seen
from, Figure 28, for cantilever geometries, where the bending governs the deformation,
normalized results overlap. However, for the second geometry, where highly complex local
and nonlocal deformations exist due to the complex geometry and boundary conditions,
the normalized deflection patterns are quite dissimilar, revealing the necessity for the
MSGT-based Kirchhoff plate theory.
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Figure 25. Real MEMS structures that are modelled with new plate elements from Stefanini et al. [65] (a) and from Patel and
Rebeiz [66] (b,c). The total loads of Fz = 77.2 µN (a) and Fz = 3 mN (b,c) are distributed to the bold circled nodes as given in
corresponding meshes. Note that the structure in (c) is the untethered part of the one in (b). All dimensions in µm.
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Figure 26. The corresponding deflected shapes of the microplates given in Figure 25, using classical theory (left column)
and MSGT (right column). Structures are from Stefanini et al. [65] (a) and from Patel and Rebeiz [66] (b,c).
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Figure 27. Deflection profiles from AA’ sections as given in Figure 25. Structures are (a) from Stefanini et al. [65] and (b,c)
from Patel and Rebeiz [66].

Figure 28. Deflection profiles from AA’ sections as given in Figure 25. Structures are (a) from Stefanini et al. [65], and (b,c)
from Patel and Rebeiz [66].

4.6. Analysis of Realistic Mems Switches with 24-Dof Elements

We consider the two real MEMS switch structures from Stefanini et al. [65] and Patel
and Rebeiz [66] that had been investigated in the previous section. In this section, chamfers
are added, making the geometric models more realistic considering their original shapes in
respective studies. The geometry and the boundary conditions are depicted in Figure 29.

We solve the problems by making use of the rectangular mesh (figures in the middle
in Figure 25) as well as with a mesh consisting of 18-DOF Bell triangular and 24-DOF
rectangular elements (figures on the right in Figure 25). For the triangular-rectangular
mesh, very few 18-DOF Bell elements are used as seen in the relevant figure. Herein, in
determining the higher-order stiffness matrix for the 18-DOF Bell element, Equation (58) is
used that incorporate the higher-order d1–d6 terms and hence the length scale parameters l0,
l1, and l2 for the readily available classical Bell triangular element with the explicitly defined
shape functions [78]. The length scale parameters are chosen as found in Section 4.2. The
mix of rectangular-triangular elements yield the deflection fields as given in Figure 30. The
deflection profile of the end tips are also given in Figure 31 for the rectangular mesh in
the first study and the mix of rectangular-triangular elements. The average difference of
all data points when compared with the purely rectangular mesh is ca. 0.2% for the case
in Stefanini et al. [65] and ca. 0.02% for the case in Patel and Rebeiz [66]. It can then be
concluded that the use of triangular Bell elements especially in the truncated parts of the
microplates does not result in a considerable difference in the analyses when used with the
same length scale parameters.
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Figure 29. Geometry and boundary conditions for the real MEMS structures that are modelled with new plate elements
from (a) Stefanini et al. [65] and (b) from Patel and Rebeiz [66]. The geometries, boundary conditions and the subsequent
mesh constructed from 24-DOF rectangular plate elements are given on the left and the middle. The mesh constructed from
24-DOF rectangular + 18-DOF Bell triangular plate elements are given on the right. All dimensions in µm.

Figure 30. Contour plots depicting the vertical deflection on the deflected shapes for the mesh consisting of 24-DOF rectangular and
18-DOF triangular Bell elements for the real MEMS structures, i.e., based on the geometry and boundary conditions given in Figure 29,
from (a) Stefanini et al. [65] and (b) Patel and Rebeiz [66]. All dimensions in µm.
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Figure 31. Comparison of the end tip deflection profiles at sections BB’ for different meshes given in Figure 25, for the case in
(a) Stefanini et al. [65] and (b) in Patel and Rebeiz [66].

5. Conclusions

In this paper, we presented novel MSGT-based element formulations for Kirchhoff
plate theory-based on the variational principle dictating the minimum potential energy.
Finite element discretization is implemented based on this framework and relevant codes
are developed. Herein, 2 × 2 Gaussian quadrature is implemented. Despite being non-
conforming elements and only applicable to rectangular meshes similar to the original
classical plate elements, it is demonstrated that the new elements yield expected results in
various numerical examples. It is explicitly demonstrated that the convergence and aspect
ratio test performances of the proposed elements are equivalent the classical elements.
The numerical problems investigated clearly show that using the classical plate theory in
predicting microplate behavior results in significant errors, especially if the thickness of the
structures are smaller than 40 µm.

In the future, discrete techniques, isogeometric methods, or similar will be utilized
to come up with a conforming higher-order element applicable to general quadrilaterals,
satisfying C2-continuity requirement. However, it is also worth mentioning that many,
if not most, of the MEMS-NEMS plate structures can be modelled with only rectangular
elements, similar to the ones modelled and analyzed in this study.

All simulations are carried out on a standard Laptop with Intel I7 processor having
8 × 2.4 GHz cores and 8 GB Ram, without any parallelization, requiring several minutes of
computation time for the most demanding simulation. Computational timing benchmarks
for the analyses mentioned under Section 4.1 reveal that analysis with MSGT with the newly
developed elements takes up to approximately 2 min, 14 × longer than classical analyses
which takes less than 10 s, ceteris paribus. This is in fact why 2 × 2 Gaussian quadrature
method is adopted, which decreases the computational duration ratio up to 6 at most,
when compared to the classical theory, again ceteris paribus, yielding a computational
duration of less than 1 min. This computational time ratio of approximately 6 is found in
other analyses within this study as well. It is noted however, most MEMS-NEMS structures
can be modelled with very small number of nodes and elements than macrostructures,
hence the increase in the computational time can be tolerated with the state of the art CPUs
and parallelization techniques.
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Appendix A. Derivation of Euler-Lagrange Equations of Msgt-Based for Kirchhoff
Microplates

The internal energy equation with the strain and stress metrics of MSGT becomes:

Πint =
1
2

∫
B

(
σ .. ε + p · ∇ε + τ

... η1 + m · χ
)

dV =
1
2

∫
B

(
σijεij + piγi + τijkηijk + mijχij

)
dV, (A1)

where γ is expressed as the dilation gradient vector as

γ = ∇” (compact notation), γi = εmm,i (indicial notation) (A2)

in compact notation and indicial notation respectively. Then, for a general plate structure,

δΠint =
∫
B
(σxxδεxx + 2σxyδεxy + σyyδεyy + pxδγx + pyδγy + pzδγz + τ1

xxxδη1
xxx + 3τ1

xxyδη1
xxy

+ 3τ1
xxzδη1

xxz + 3τ1
xyyδη1

xyy + τ1
yyyδη1

yyy + 3τ1
yyzδη1

yyz + 3τ1
xzzδη1

xzz + 3τ1
yzzδη1

yzz

+ τ1
zzzδη1

zzz + 6τ1
xyzδη1

xyz + mxxδχxx + 2mxyδχxy + myyδχyy) dV.

(A3)

In order to evaluate above, the terms are identified. Using the displacement field of a
Kirchhoff plate given in Equation (12), the classical strain terms can be found as:

εxx = −z w,xx, εyy = −z w,yy, εxy = −z w,xy. (A4)

The dilatation gradient terms can then be derived as:

γx = εmm,x = −z
(
w,xxx +w,yyx

)
, γy = εmm,y = −z

(
w,yxx +w,yyy

)
, γz = εmm,z = ∇2w = w,xx +w,yy . (A5)

The indicial expression for deviatoric stretch gradient terms (η1) is:

η1
ijk = ηS

ijk −
1
5

(
δijη

S
mmk + δjkηS

mmiδkiη
S
mmj

)
where ηS

ijk =
1
3

(
ui,jk + uj,ki + uk,ij

)
, (A6)

and where δij is the Kronecker’s delta. After several steps, the terms of the nonlocal devia-
toric stretch gradient tensor are derived as

η1
xxx =

z
5

(
−2

∂3w
∂x3 + 3

∂3w
∂y2∂x

)
, η1

xxy =
z
5

(
−4

∂3w
∂x2∂y

+
∂3w
∂y3

)
, η1

xyy =
z
5

(
−4

∂3w
∂x∂y2 +

∂3w
∂x3

)
,

η1
yyy =

z
5

(
−2

∂3w
∂y3 + 3

∂3w
∂x2∂y

)
, η1

xxz =
1

15

(
−4

∂2w
∂x3 +

∂2w
∂y2

)
, η1

xzz =
z
5

(
∂3w
∂x3 +

∂3w
∂x∂y2

)
,

η1
yzz =

z
5

(
∂3w
∂y3 +

∂3w
∂y∂x2

)
, η1

zzz =
1
5

(
∂2w
∂x2 +

∂2w
∂y2

)
η1

xyz = −1
3

∂2w
∂x∂y

,

(A7)

with

η1
xyx = η1

yxx = η1
xxy, η1

xzx = η1
zxx = η1

xxz, η1
yxy = η1

yyx = η1
xyy,

η1
zxz = η1

zzx = η1
xzz, η1

zyz = η1
zzy = η1

yzz, η1
yzx = η1

zxy = η1
zyx = η1

yxz = η1
xzy = η1

xyz.
(A8)

The curvature or the rotation gradient terms in indicial notation are

χij =
1
4
(
eimn un,mj + ejmn un,mi

)
, where (A9)
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eijk is the permutation symbol. After some manipulations, the components of the curvature
tensor read

χxx =
∂2w
∂x∂y

, χyy = − ∂2w
∂x∂y

, χxy =
1
2

(
∂2w
∂y2 −

∂2w
∂x2

)
, with χzz = χzx = χxz = χyz = χzy = 0. (A10)

Taking the variations of above expressions and multiplying with their stress conju-
gates as appearing in Equation (A3), the following are acquired:

σxx δεxx = −σxxz δw,xx, τ1
xxx δη1

xxx = −2
5

zτ1
xxx δw,xxx +

3
5

zτ1
xxx δw,xyy,

2σxy δεxy = −2σxyz δw,xy, 3τ1
xxy δη1

xxy = −12
5

zτ1
xxy δw,xxy +

3
5

zτ1
xxy δw,yyy,

σyy δεyy = −σyyz δw,yy, 3τ1
xxz δη1

xxz = −
−4
5

τ1
xxz δw,xx +

1
5

τ1
xxz δw,yy,

px δγx = −pxz δw,xxx − pxz δw,xyy, 3τ1
xyy δη1

xyy = −12
5

zτ1
xyy δw,xyy +

3
5

zτ1
xyy δw,xxx,

py δγy = −pyz δw,yyy − pyz δw,xxy, τ1
yyy δη1

yyy =
3
5

zτ1
yyy δw,xxy −

1
5

zτ1
yyy δw,yyy,

pz δγz = −pz δw,xx − pz δw,yy, 3τ1
yyz δη1

yyz =
1
5

τ1
yzz δw,xx −

4
5

τ1
yyz δw,yy,

mxx δχxx = mxx δw,xy, τ1
xzz δη1

xzz =
3
5

zτ1
xzz δw,xxx −

3
5

zτ1
xzz δw,xyy,

2mxy δχxy = mxy δw,yy −mxy δw,xx, τ1
yzz δη1

yzz =
3
5

zτ1
yzz δw,xxy −

1
5

zτ1
yzz δw,yyy,

myy δχyy = −myy δw,xy, τ1
zzz δη1

zzz =
1
5

τ1
zzz δw,xx −

1
5

τ1
zzz δw,yy,

6τ1
xyz δη1

xyz = −2τ1
xyz δw,xy.

(A11)

Given the above expressions, Equation (A3) can now we written as:

δΠint =
∫
B

(
Mxx δw,xx + Mxy δw,xy + Myy δw,yy + Qxxx δw,xxx + Qxxy δw,xxy

+ Qxyy δw,xyy + Qyyy δw,yyy
)

dA.
(A12)

where B is 2D domain of the mid-plane of the plate bounded by a piecewise smooth curve
Γ. Then

Mxx =
∫ h/2

−h/2

[
−σxxz− pz −

4
5

τ1
xxz +

1
5

τ1
yyz +

1
5

τ1
zzz −mxy

]
dz (A13)

Mxy =
∫ h/2

−h/2

[
−2σxyz− 2τ1

xyz + mxx −myy

]
dz (A14)

Myy =
∫ h/2

−h/2

[
−σyyz− pz +

1
5

τ1
xxz −

4
5

τ1
yyz +

1
5

τ1
zzz + mxy

]
dz (A15)

Qxxx =
∫ h/2

−h/2

[ z
5

(
−5px − 2τ1

xxx + 3τ1
xyy + 3τ1

xzz

)]
dz (A16)

Qxxy =
∫ h/2

−h/2

[ z
5

(
−5px + 2τ1

xxx − 12τ1
xyy + 3τ1

xzz

)]
dz (A17)

Qxyy =
∫ h/2

−h/2

[ z
5

(
−5py − 12τ1

xxy + 3τ1
yyy + 3τ1

yzz

)]
dz (A18)

Qyyy =
∫ h/2

−h/2

[ z
5

(
−5py + 3τ1

xxy − 2τ1
yyy + 3τ1

yzz

)]
dz (A19)
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Inserting the stress terms, stress resultant terms read

Mxx = µh
(

h2

6(1− ν)
+ 2µl2

0 +
8

15
µl2

1 + µl2
2

)
w,xx + µh

(
νh2

6(1− ν)
+ 2µl2

0 −
2
15

µl2
1 − µl2

2

)
w,yy, (A20)

Mxy = µh
(

h2

3
+

4
3

µl2
1 + 4µl2

2

)
w,xy , (A21)

Myy = µh
(

h2

6(1− ν)
+ 2µl2

0 −
2
15

µl2
1 + µl2

2

)
w,xx + µh

(
νh2

6(1− ν)
+ 2µl2

0 +
8

15
µl2

1 − µl2
2

)
w,yy , (A22)

Qxxx =
µh3

6

(
l2
0 +

2
5

l2
1

)
w,xxx +

µh3

6

(
l2
0 −

3
5

l2
1

)
w,xyy , (A23)

Qxxy =
µh3

6

(
l2
0 +

12
5

l2
1

)
w,xxy +

µh3

6

(
l2
0 −

3
5

l2
1

)
w,yyy , (A24)

Qxyy =
µh3

6

(
l2
0 −

3
5

l2
1

)
w,xxx +

µh3

6

(
l2
0 +

12
5

l2
1

)
w,xyy , (A25)

Qyyy =
µh3

6

(
l2
0 −

3
5

l2
1

)
w,xxy +

µh3

6

(
l2
0 +

2
5

l2
1

)
w,yyy . (A26)

Now, using the divergence theorem for Equation (A12) and minimum potential energy
principle with

Πext =
∫
B

q(x, y) δwdA (A27)

we obtain the Euler-Lagrange equation governing the minimization principle

Mxx,xx + Mxy,xy + Myy,yy −Qxxx,xxx −Qxxy,xxy −Qxyy,xyy −Qyyy,yyy = q(x, y) . (A28)

Insertion of Equations (A20)–(A26) into (A28) leads to the Equation (27).

Appendix B. Shape Functions for Acm Element Based on Classical Kirchhoff
Plate Theory

The first three elements of ACM shape functions N1 corresponding to the first node
for classical theory, which are shown in Figure 3, are as given as:

N1
1 = −2ξ3

1ξ2 + 2ξ3
1 + 3ξ2

1ξ2 − 3ξ2
1 − 2ξ1ξ3

2 + 2ξ3
2 + 3ξ1ξ2

2 − 3ξ2
2 − ξ1ξ2 + 1 ,

N1
2 = −ξ1ξ3

2 + ξ3
2 + 2ξ1ξ2

2 − 2ξ2
2 − ξ1ξ2 + ξ2 ,

N1
3 = ξ3

1ξ2 − ξ3
1 − 2ξ2

1ξ2 + 2ξ2
1 + ξ1ξ2 − ξ1 with ξ1 = x/L and ξ2 = y/W .

(A29)

Appendix C. Shape Functions of the Proposed Element for Msgt-Based
Kirchhoff Microplates

The first five elements of the shape function N for MSGT, which are shown in Figure 6,
are as given below.

N1
1 =−(144A sinh(Aξ1) −288ξ2 −288 cosh(Aξ1) −288 cosh(Bξ2) −288ξ1

+144B sinh(Bξ2) +576ξ1ξ2 +288ξ2 cosh(Aξ1) +288ξ1 cosh(Bξ2) −144A sinh(A)
−144B sinh(B) −96A2ξ1 −96B2ξ2 +288ξ1 cosh(A) +48B2 cosh(Aξ1)
+288ξ1 cosh(B) +288ξ2 cosh(A) +48A2 cosh(Bξ2) +288ξ2 cosh(B) +288 cosh(Aξ1) cosh(A)
+288 cosh(Aξ1) cosh(B) +288 cosh(Bξ2) cosh(A) +288 cosh(Bξ2) cosh(B)
−288 sinh(Aξ1) sinh(A) −288 sinh(Bξ2) sinh(B) +48A2

−16A2B2 +48B2 +96A2 cosh(A) −48A2 cosh(B) −48B2 cosh(A)
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+96B2 cosh(B) −12A3 sinh(A) −12B3 sinh(B) +144A2ξ2
1 −96A2ξ3

1
+144B2ξ2

2 −96B2ξ3
2 +288ξ2 sinh(Aξ1) sinh(A) +288ξ1 sinh(Bξ2) sinh(B)

+24A2B2ξ1 +24A2B2ξ2 −48A2ξ1 cosh(A) +96A2ξ1 cosh(B) +96B2ξ2 cosh(A)
−48B2ξ2 cosh(B) −48B2 cosh(Aξ1) cosh(A) −288ξ1 cosh(A) cosh(B)
+96B2 cosh(Aξ1) cosh(B) +96A2 cosh(Bξ2) cosh(A) −288ξ2 cosh(A) cosh(B)
−48A2 cosh(Bξ2) cosh(B) −288 cosh(Aξ1) cosh(A) cosh(B)
−12A3ξ1 sinh(A) −12B3ξ2 sinh(B) −12B3 cosh(Aξ1) sinh(B) −12A3 cosh(Bξ2) sinh(A)
+48B2 sinh(Aξ1) sinh(A) +48A2 sinh(Bξ2) sinh(B)
+288 sinh(Bξ2) cosh(A) sinh(B) −144A2ξ2

1ξ2 +96A2ξ3
1ξ2 −144B2ξ1ξ2

2
+96B2ξ1ξ3

2 −32A2B2 cosh(A) −32A2B2 cosh(B) −96A2 cosh(A) cosh(B)
−96B2 cosh(A) cosh(B) +4A3B2 sinh(A) +4A2B3 sinh(B) +12A3 cosh(B) sinh(A)
+12B3 cosh(A) sinh(B) −24A2B2ξ2

1 +16A2B2ξ3
1 −24A2B2ξ2

2
+16A2B2ξ3

2 −144A2ξ2
1 cosh(A) +96A2ξ3

1 cosh(A) −144A2ξ2
1 cosh(B) +96A2ξ3

1 cosh(B)
−144B2ξ2

2 cosh(A) +96B2ξ3
2 cosh(A) −144B2ξ2

2 cosh(B) +96B2ξ3
2 cosh(B) +72A3ξ2

1 sinh(A)
−48A3ξ3

1 sinh(A) +72B3ξ2
2 sinh(B) −48B3ξ3

2 sinh(B) −144Aξ2 sinh(Aξ1) −144Bξ1 sinh(Bξ2)
−24AB2 sinh(Aξ1) −144Aξ2 sinh(A) −144Bξ1 sinh(B) −144A cosh(Aξ1) sinh(A)
+144A sinh(Aξ1) cosh(A) −24A2B sinh(Bξ2) −144A sinh(Aξ1) cosh(B)
−288B cosh(Aξ1) sinh(B) −288A cosh(Bξ2) sinh(A) −144B sinh(Bξ2) cosh(A)
−144B cosh(Bξ2) sinh(B) +144B sinh(Bξ2) cosh(B) +48A2ξ1ξ2
+48B2ξ1ξ2 −576ξ1ξ2 cosh(A) −48A2ξ1 cosh(Bξ2) −48B2ξ2 cosh(Aξ1) −576ξ1ξ2 cosh(B)
−288ξ2 cosh(Aξ1) cosh(A) −288ξ1 cosh(Bξ2) cosh(A) −288ξ2 cosh(Aξ1) cosh(B)
−288ξ1 cosh(Bξ2) cosh(B) +72AB2 sinh(A) +72A2B sinh(B) +144A cosh(B) sinh(A)
+144B cosh(A) sinh(B) −A3B3 sinh(A) sinh(B) +24A2B2ξ2

1 cosh(A)
−16A2B2ξ3

1 cosh(A)−48A2B2ξ2
1 cosh(B) +32A2B2ξ3

1 cosh(B)−48A2B2ξ2
2 cosh(A) +32A2B2ξ3

2 cosh(A)
+24A2B2ξ2

2 cosh(B)−16A2B2ξ3
2 cosh(B) +144A2ξ2

1 cosh(A) cosh(B) −96A2ξ3
1 cosh(A) cosh(B)

+144AB sinh(Aξ1) sinh(B) +144B2ξ2
2 cosh(A) cosh(B) −96B2ξ3

2 cosh(A) cosh(B)
+144AB sinh(Bξ2) sinh(A) −12A3B2ξ2

1 sinh(A)+8A3B2ξ3
1 sinh(A) +6A2B3ξ2

1 sinh(B)
−4A2B3ξ3

1 sinh(B) +6A3B2ξ2
2 sinh(A) −4A3B2ξ3

2 sinh(A) −12A2B3ξ2
2 sinh(B) +8A2B3ξ3

2 sinh(B)
−72A3ξ2

1 cosh(B) sinh(A) +48A3ξ3
1 cosh(B) sinh(A) −72B3ξ2

2 cosh(A) sinh(B)
+48B3ξ3

2 cosh(A) sinh(B) +288Aξ1ξ2 sinh(A) +24AB2ξ2 sinh(Aξ1)+24A2Bξ1 sinh(Bξ2)
+288Bξ1ξ2 sinh(B) +144Aξ2 cosh(Aξ1) sinh(A) −144Aξ2 sinh(Aξ1) cosh(A)
+288Aξ1 cosh(Bξ2) sinh(A) +144Aξ2 sinh(Aξ1) cosh(B) +144Bξ1 sinh(Bξ2) cosh(A)
+288Bξ2 cosh(Aξ1) sinh(B) +144Bξ1 cosh(Bξ2) sinh(B) −144Bξ1 sinh(Bξ2) cosh(B)
−288AB sinh(A) sinh(B) −48AB2ξ1 sinh(A) −120A2Bξ1 sinh(B) −120AB2ξ2 sinh(A)
−48A2Bξ2 sinh(B) +24AB2 cosh(Aξ1) sinh(A) −24AB2 sinh(Aξ1) cosh(A)
−48AB2 sinh(Aξ1) cosh(B) +144Bξ1 cosh(A) sinh(B) +144Aξ2 cosh(B) sinh(A)
−48A2B sinh(Bξ2) cosh(A) +144A cosh(Aξ1) cosh(B) sinh(A)
−144A sinh(Aξ1) cosh(A) cosh(B) +24A2B cosh(Bξ2) sinh(B) −24A2B sinh(Bξ2) cosh(B)
+288B cosh(Aξ1) cosh(A) sinh(B) +288A cosh(Bξ2) cosh(B) sinh(A)
+144B cosh(Bξ2) cosh(A) sinh(B) −144B sinh(Bξ2) cosh(A) cosh(B) +6AB3 sinh(Aξ1) sinh(B)
+6A3B sinh(Bξ2) sinh(A) −32A2B2ξ1ξ2 −48A2ξ1ξ2 cosh(A) −48A2ξ1ξ2 cosh(B)
−48B2ξ1ξ2 cosh(A) −48B2ξ1ξ2 cosh(B) −96A2ξ1 cosh(Bξ2) cosh(A) +48B2ξ2 cosh(Aξ1) cosh(A)
+576ξ1ξ2 cosh(A) cosh(B) +48A2ξ1 cosh(Bξ2) cosh(B) −96B2ξ2 cosh(Aξ1) cosh(B)
−288B sinh(Aξ1) sinh(A) sinh(B) +288ξ2 cosh(Aξ1) cosh(A) cosh(B)
−288A sinh(Bξ2) sinh(A) sinh(B) +24A3ξ1ξ2 sinh(A) +24B3ξ1ξ2 sinh(B) +12A3ξ1 cosh(Bξ2) sinh(A)
+288ξ1 cosh(Bξ2) cosh(A) cosh(B) +144AB2 cosh(B) sinh(A) +144A2B cosh(A) sinh(B)
+288 sinh(Aξ1) cosh(B) sinh(A) −288 cosh(Bξ2) cosh(A) cosh(B) +12B3ξ2 cosh(Aξ1) sinh(B)
−48B2ξ2 sinh(Aξ1) sinh(A) −18AB3 sinh(A) sinh(B) −18A3B sinh(A) sinh(B)
−48A2ξ1 sinh(Bξ2) sinh(B) −288ξ2 sinh(Aξ1) cosh(B) sinh(A)
−288ξ1 sinh(Bξ2) cosh(A) sinh(B) +24A2B2ξ1 cosh(A)+48A2B2ξ1 cosh(B) +48A2B2ξ2 cosh(A)
+24A2B2ξ2 cosh(B)+48A2ξ1 cosh(A) cosh(B) +48B2ξ2 cosh(A) cosh(B)
−96B2 cosh(Aξ1) cosh(A) cosh(B) −96A2 cosh(Bξ2) cosh(A) cosh(B) +144A2Bξ2

1 sinh(B)
−96A2Bξ3

1 sinh(B) −6A2B3ξ1 sinh(B) +144AB2ξ2
2 sinh(A)−96AB2ξ3

2 sinh(A) −6A3B2ξ2 sinh(A)
+12A3ξ1 cosh(B) sinh(A) +12B3ξ2 cosh(A) sinh(B)
+12B3 cosh(Aξ1) cosh(A) sinh(B) +12A3 cosh(Bξ2) cosh(B) sinh(A)
+96B2 sinh(Aξ1) cosh(B) sinh(A) +96A2 sinh(Bξ2) cosh(A) sinh(B) +24A2B2ξ1ξ2

2
+24A2B2ξ2

1ξ2 −16A2B2ξ1ξ3
2 −16A2B2ξ3

1ξ2 +144A2ξ2
1ξ2 cosh(A)−96A2ξ3

1ξ2 cosh(A)
+144A2ξ2

1ξ2 cosh(B)+144B2ξ1ξ2
2 cosh(A)−96A2ξ3

1ξ2 cosh(B) −96B2ξ1ξ3
2 cosh(A) +144B2ξ1ξ2

2 cosh(B)
−96B2ξ1ξ3

2 cosh(B) −64A2B2 cosh(A) cosh(B) −12B3 sinh(Aξ1) sinh(A) sinh(B)
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−12A3 sinh(Bξ2) sinh(A) sinh(B) −72A3ξ2
1ξ2 sinh(A) +48A3ξ3

1ξ2 sinh(A) −72B3ξ1ξ2
2 sinh(B)

+48B3ξ1ξ3
2 sinh(B) +8A2B3 cosh(A) sinh(B) +8A3B2 cosh(B) sinh(A)

+288Aξ1 sinh(Bξ2) sinh(A) sinh(B) +288Bξ2 sinh(Aξ1) sinh(A) sinh(B) −96AB2ξ1 cosh(B) sinh(A)
−96A2Bξ1 cosh(A) sinh(B) −96AB2ξ2 cosh(B) sinh(A) −96A2Bξ2 cosh(A) sinh(B)
+48AB2 cosh(Aξ1) cosh(B) sinh(A) −48AB2 sinh(Aξ1) cosh(A) cosh(B)
+48A2B cosh(Bξ2) cosh(A) sinh(B) −48A2B sinh(Bξ2) cosh(A) cosh(B) +12AB3ξ1 sinh(A) sinh(B)
−6A3Bξ1 sinh(A) sinh(B) −6AB3ξ2 sinh(A) sinh(B) +12A3Bξ2 sinh(A) sinh(B)
−6AB3 cosh(Aξ1) sinh(A) sinh(B) +6AB3 sinh(Aξ1) cosh(A) sinh(B)
−6A3B cosh(Bξ2) sinh(A) sinh(B) +6A3B sinh(Bξ2) cosh(B) sinh(A) −40A2B2ξ1ξ2 cosh(A)
−40A2B2ξ1ξ2 cosh(B)+48A2ξ1ξ2 cosh(A) cosh(B) +48B2ξ1ξ2 cosh(A) cosh(B)
+96A2ξ1 cosh(Bξ2) cosh(A) cosh(B) +96B2ξ2 cosh(Aξ1) cosh(A) cosh(B) −144AB2ξ1ξ2

2 sinh(A)
+96AB2ξ1ξ3

2 sinh(A)+2A3B2ξ1ξ2 sinh(A)−144A2Bξ2
1ξ2 sinh(B)+96A2Bξ3

1ξ2 sinh(B)+2A2B3ξ1ξ2 sinh(B)
−24A3ξ1ξ2 cosh(B) sinh(A) −24B3ξ1ξ2 cosh(A) sinh(B)
−12A3ξ1 cosh(Bξ2) cosh(B) sinh(A) −12B3ξ2 cosh(Aξ1) cosh(A) sinh(B)
−96A2ξ1 sinh(Bξ2) cosh(A) sinh(B) −96B2ξ2 sinh(Aξ1) cosh(B) sinh(A) +48A2B2ξ1 cosh(A) cosh(B)
+48A2B2ξ2 cosh(A) cosh(B) +12A3ξ1 sinh(Bξ2) sinh(A) sinh(B)
+12B3ξ2 sinh(Aξ1) sinh(A) sinh(B) −144A2Bξ2

1 cosh(A) sinh(B) +96A2Bξ3
1 cosh(A) sinh(B)

−6A2B3ξ1 cosh(A) sinh(B) −144AB2ξ2
2 cosh(B) sinh(A) +96AB2ξ3

2 cosh(B) sinh(A)
−6A3B2ξ2 cosh(B) sinh(A) +72A3Bξ2

1 sinh(A) sinh(B) −48A3Bξ3
1 sinh(A) sinh(B)

+72AB3ξ2
2 sinh(A) sinh(B) −48AB3ξ3

2 sinh(A) sinh(B) +48A2B2ξ1ξ2
2 cosh(A)

−24A2B2ξ2
1ξ2 cosh(A)−32A2B2ξ1ξ3

2 cosh(A)+16A2B2ξ3
1ξ2 cosh(A)−24A2B2ξ1ξ2

2 cosh(B)+48A2B2ξ2
1ξ2 cosh(B)

+16A2B2ξ1ξ3
2 cosh(B)−32A2B2ξ3

1ξ2 cosh(B)−144A2ξ2
1ξ2 cosh(A) cosh(B) +96A2ξ3

1ξ2 cosh(A) cosh(B)
−144B2ξ1ξ2

2 cosh(A) cosh(B) +96B2ξ1ξ3
2 cosh(A) cosh(B) −144ABξ1 sinh(Bξ2) sinh(A)

−144ABξ2 sinh(Aξ1) sinh(B) −6A3B2ξ1ξ2
2 sinh(A)+12A3B2ξ2

1ξ2 sinh(A)+4A3B2ξ1ξ3
2 sinh(A)

−8A3B2ξ3
1ξ2 sinh(A)+12A2B3ξ1ξ2

2 sinh(B)−6A2B3ξ2
1ξ2 sinh(B)−8A2B3ξ1ξ3

2 sinh(B)+4A2B3ξ3
1ξ2 sinh(B)

+72A3ξ2
1ξ2 cosh(B) sinh(A) −48A3ξ3

1ξ2 cosh(B) sinh(A) +72B3ξ1ξ2
2 cosh(A) sinh(B)

−48B3ξ1ξ3
2 cosh(A) sinh(B) +48A2B2ξ2

1 cosh(A) cosh(B) −32A2B2ξ3
1 cosh(A) cosh(B)

+144ABξ1 sinh(A) sinh(B) +48A2B2ξ2
2 cosh(A) cosh(B) −32A2B2ξ3

2 cosh(A) cosh(B)
+144ABξ2 sinh(A) sinh(B) −144AB cosh(Aξ1) sinh(A) sinh(B)
+144AB sinh(Aξ1) cosh(A) sinh(B) −144AB cosh(Bξ2) sinh(A) sinh(B)
+144AB sinh(Bξ2) cosh(B) sinh(A) −6A2B3ξ2

1 cosh(A) sinh(B) −24A3B2ξ2
1 cosh(B) sinh(A)

+4A2B3ξ3
1 cosh(A) sinh(B) +16A3B2ξ3

1 cosh(B) sinh(A) −24A2B3ξ2
2 cosh(A) sinh(B)

−6A3B2ξ2
2 cosh(B) sinh(A) +16A2B3ξ3

2 cosh(A) sinh(B) +4A3B2ξ3
2 cosh(B) sinh(A)

+96AB2ξ1ξ2 sinh(A)+96A2Bξ1ξ2 sinh(B)+3A3B3ξ2
1 sinh(A) sinh(B) −2A3B3ξ3

1 sinh(A) sinh(B)
−24AB2ξ2 cosh(Aξ1) sinh(A) +24AB2ξ2 sinh(Aξ1) cosh(A) −288Aξ1ξ2 cosh(B) sinh(A)
+3A3B3ξ2

2 sinh(A) sinh(B) −2A3B3ξ3
2 sinh(A) sinh(B) +48AB2ξ2 sinh(Aξ1) cosh(B)

+48A2Bξ1 sinh(Bξ2) cosh(A) −288Bξ1ξ2 cosh(A) sinh(B) −24A2Bξ1 cosh(Bξ2) sinh(B)
+24A2Bξ1 sinh(Bξ2) cosh(B) −144Aξ2 cosh(Aξ1) cosh(B) sinh(A)
+144Aξ2 sinh(Aξ1) cosh(A) cosh(B) −288Aξ1 cosh(Bξ2) cosh(B) sinh(A)
−288Bξ2 cosh(Aξ1) cosh(A) sinh(B) −144Bξ1 cosh(Bξ2) cosh(A) sinh(B)
+144Bξ1 sinh(Bξ2) cosh(A) cosh(B) −6AB3ξ2 sinh(Aξ1) sinh(B) −6A3Bξ1 sinh(Bξ2) sinh(A)
−48A2B2ξ1ξ2

2 cosh(A) cosh(B) −48A2B2ξ2
1ξ2 cosh(A) cosh(B) +32A2B2ξ1ξ3

2 cosh(A) cosh(B)
+32A2B2ξ3

1ξ2 cosh(A) cosh(B) +144ABξ2 cosh(Aξ1) sinh(A) sinh(B)
−144ABξ2 sinh(Aξ1) cosh(A) sinh(B) +144ABξ1 cosh(Bξ2) sinh(A) sinh(B)
−144ABξ1 sinh(Bξ2) cosh(B) sinh(A) +24A2B3ξ1ξ2

2 cosh(A) sinh(B) +6A2B3ξ2
1ξ2 cosh(A) sinh(B)

+6A3B2ξ1ξ2
2 cosh(B) sinh(A) +24A3B2ξ2

1ξ2 cosh(B) sinh(A) −16A2B3ξ1ξ3
2 cosh(A) sinh(B)

−4A2B3ξ3
1ξ2 cosh(A) sinh(B) −4A3B2ξ1ξ3

2 cosh(B) sinh(A) −16A3B2ξ3
1ξ2 cosh(B) sinh(A)

−3A3B3ξ1ξ2
2 sinh(A) sinh(B) −3A3B3ξ2

1ξ2 sinh(A) sinh(B) +2A3B3ξ1ξ3
2 sinh(A) sinh(B)

+2A3B3ξ3
1ξ2 sinh(A) sinh(B) +48AB2ξ1ξ2 cosh(B) sinh(A) +48A2Bξ1ξ2 cosh(A) sinh(B)

−48AB2ξ2 cosh(Aξ1) cosh(B) sinh(A) +48AB2ξ2 sinh(Aξ1) cosh(A) cosh(B)
−48A2Bξ1 cosh(Bξ2) cosh(A) sinh(B) +48A2Bξ1 sinh(Bξ2) cosh(A) cosh(B) +12AB3ξ1ξ2 sinh(A) sinh(B)
+12A3Bξ1ξ2 sinh(A) sinh(B) +6AB3ξ2 cosh(Aξ1) sinh(A) sinh(B)
−6AB3ξ2 sinh(Aξ1) cosh(A) sinh(B) +6A3Bξ1 cosh(Bξ2) sinh(A) sinh(B)
−6A3Bξ1 sinh(Bξ2) cosh(B) sinh(A) −32A2B2ξ1ξ2 cosh(A) cosh(B) +144AB2ξ1ξ2

2 cosh(B) sinh(A)
+144A2Bξ2

1ξ2 cosh(A) sinh(B) −96AB2ξ1ξ3
2 cosh(B) sinh(A) −96A2Bξ3

1ξ2 cosh(A) sinh(B)
−2A2B3ξ1ξ2 cosh(A) sinh(B) −2A3B2ξ1ξ2 cosh(B) sinh(A) −72AB3ξ1ξ2

2 sinh(A) sinh(B)
−72A3Bξ2

1ξ2 sinh(A) sinh(B) +48AB3ξ1ξ3
2 sinh(A) sinh(B) +48A3Bξ3

1ξ2 sinh(A) sinh(B)
+A3B3ξ1ξ2 sinh(A) sinh(B))/DC ,
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N1
2 = ((ξ2 − 1)(12 sinh(A) - 12 sinh(Aξ1) + 12 sinh(A(ξ1 − 1)) −12Aξ1 −12A cosh(A)

+2A3ξ1 +12A cosh(A(ξ1 −
1))

+2A2 sinh(Aξ1) +4A2 sinh(A) −2A3ξ3
1

+4A2 sinh(A(ξ1 −
1))

+4A3ξ1 cosh(A) −12A2ξ1 sinh(A) −A4ξ1 sinh(A) −6A3ξ2
1 cosh(A)

+2A3ξ3
1 cosh(A) +6A2ξ2

1 sinh(A) +2A4ξ2
1 sinh(A) −A4ξ3

1 sinh(A) +12Aξ1 cosh(A)))
/(DA/L) ,

N1
3 = ((ξ1 − 1)(12 sinh(B) −12 sinh(Bξ2) +12 sinh(B(ξ2 − 1)) −12Bξ2 −12B cosh(B)

+2B3ξ2 +12B cosh(B(ξ2 − 1)) +2B2 sinh(Bξ2) +4B2 sinh(B) −2B3ξ3
2

+4B2 sinh(B(ξ2 − 1)) +4B3ξ2 cosh(B) −12B2ξ2 sinh(B) −B4ξ2 sinh(B) −6B3ξ2
2 cosh(B)

+2B3ξ3
2 cosh(B) +6B2ξ2

2 sinh(B) +2B4ξ2
2 sinh(B) −B4ξ3

2 sinh(B) +12Bξ2 cosh(B)))
/(DB/W) ,

N1
4 = ((ξ2 − 1)(6 sinh(A) −6 sinh(Aξ1) −2A +6 sinh(A(ξ1 − 1)) +6Aξ1

+2A cosh(Aξ1) −4A cosh(A) −12Aξ2
1 +4Aξ3

1 +4A cosh(A(ξ1 − 1))
+A2 sinh(A) +A3ξ2

1 −A3ξ3
1 +A2 sinh(A(ξ1 − 1)) +12Aξ2

1 cosh(A)
−4Aξ3

1 cosh(A) −A3ξ1 cosh(A) +4A2ξ1 sinh(A) +2A3ξ2
1 cosh(A) −A3ξ3

1 cosh(A)
−9A2ξ2

1 sinh(A) +4A2ξ3
1 sinh(A) −6Aξ1 cosh(A)))/(DA/L2) ,

N1
5 = ((ξ1 − 1)(6 sinh(B) −6 sinh(Bξ2) −2B +6 sinh(B(ξ2 − 1)) +6Bξ2

+2B cosh(Bξ2) −4B cosh(B) −12Bξ2
2 +4Bξ3

2 +4B cosh(B(ξ2 − 1))
+B2 sinh(B) +B3ξ2

2 −B3ξ3
2 +B2 sinh(B(ξ2 − 1)) +12Bξ2

2 cosh(B)
−4Bξ3

2 cosh(B) −B3ξ2 cosh(B) +4B2ξ2 sinh(B) +2B3ξ2
2 cosh(B) −B3ξ3

2 cosh(B)
−9B2ξ2

2 sinh(B) +4B2ξ3
2 sinh(B) −6Bξ2 cosh(B)))/(DB/W2) ,

(A30)

where
A = L

√
d1/d4, B = W

√
d1/d4, ξ1 = x/L, ξ2 = y/W , (A31)

with the terms in the denominators defined as

DA = (24A− 24A cosh(A)− 4A3 − 8A3 cosh(A) + 24A2 sinh(A) + A4 sinh(A)) ,

DB = (24B− 24B cosh(B)− 4B3 − 8B3 cosh(B) + 24B2 sinh(B) + B4 sinh(B)) ,

DC = (24 cosh(A)− 24A sinh(A) + 4A2 + 8A2 cosh(A)− A3 sinh(A)− 24)(24 cosh(B)− 24B sinh(B) + 4B2

+8B2 cosh(B)− B3 sinh(B)− 24)) .

(A32)

Appendix D. Strain-Displacement Matrices for Msgt-Based Kirchhoff Microplates

The expression for the elements of the strain-displacement matrices ∇C N (3 × 20 in
size) and ∇H N (4 × 20 in size) are given in this section. Null elements are also indicated.
∇C N converges to the classical strain-displacement matrix, and∇H N, i.e., the higher order
strain-displacement matrix converges to zero, when l0 = l1 = l2 = 0.

The strain-displacement matrix similar to the classical and nonlocal counterpart are

∇C N =
[
∇C N1 ∇C N2 ∇C N3 ∇C N4] and ∇H N =

[
∇H N1 ∇H N2 ∇H N3 ∇H N4] , (A33)

with

∇C N j =



∂2N j
1

∂x2 0
∂2N j

3
∂x2 0

∂2N j
5

∂x2

∂2N j
1

∂y2
∂2N j

2
∂y2 0

∂2N j
4

∂y2 0

2
∂2N j

1
∂x∂y

2
∂2N j

2
∂x∂y

2
∂2N j

3
∂x∂y

2
∂2N j

4
∂x∂y

2
∂2N j

5
∂x∂y


,∇H N j =



∂3N j
1

∂x3 0
∂3N j

3
∂x3 0

∂2N j
5

∂x3

3
∂3N j

1
∂x2∂y

0 3
∂3N j

3
∂x2∂y

0 3
∂3N j

5
∂x2∂y

3
∂3N j

1
∂x∂y2 3

∂3N j
2

∂x∂y2 0 3
∂3N j

4
∂x∂y2 0

∂3N j
1

∂y3
∂3N j

2
∂y3 0

∂3N j
4

∂y3 0


. (A34)
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Therein, the superscript j corresponds to the node number.

Appendix E. New 28-Dof Finite Element Formulation for Msgt-Based
Kirchhoff-Love Microplates

The additional generalized displacements at the element nodes are prescribed as

1. $xxy = $xxy1 and $xyy = $xyy1, at x = 0, y = 0 ,
2. $xxy = $xxy2 and $xyy = $xyy2, at x = L, y = 0 ,
3. $xxy = $xxy3 and $xyy = $xyy3, at x = L, y = W ,
4. $xxy = $xxy4 and $xyy = $xyy4, at x = 0, y = W ,

(A35)

see also Figure A1a. Similarly, the generalized nodal force resultants are prescribed as

1. Qxxy = Qxxy1 and Qxyy = Qxyy1, at x = 0, y = 0 ,
2. Qxxy = Qxxy2 and Qxyy = Qxyy2, at x = L, y = 0 ,
3. Qxxy = Qxxy3 and Qxyy = Qxyy3, at x = L, y = W ,
4. Qxxy = Qxxy4 and Qxyy = Qxyy4, at x = 0, y = W ,

(A36)

see Figure A1b. The element nodal displacement vector d and the element nodal force
vector f are,

dT =
[
w1 θx1 θy1 κxx1 κyy1 $xxy1 $xyy1...w4 θx4 θy4 κxx4 κyy4 $xxy4 $xyy4

]
,

f =
[
V1 Mx1 My1 Qxx1 Qyy1 Qxxy1 Qxxy1...V4 Mx4 My4 Qxx4 Qyy4 Qxxy4 Qxyy4

]
.

(A37)

Figure A1. (a) Nodal degrees of freedom and (b) corresponding nodal forces for a MSGT based higher order 28-DOF
Kirchhoff plate formulation.

The displacement field w(x, y) within the element domain is then interpolated as

w(x, y) = Nd =
nDOF

∑
i=1

nnodes

∑
j=1

N j
i dj

i where N =
[

N1
1 N1

2 N1
3 N1

4 N1
5 N1

6 N1
7 ... N4

1 N4
2 N4

3 N4
4 N4

5 N4
6 N4

7

]
. (A38)

Herein the number of DOFs per node is nDOF = 7. We propose a homogenous solution
of the partial differential Equation (27) in the form
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w(x, y)= a1 + a2x + a3y + a4x2 + a5xy + a6y2 + a7x3 + a8x2y + a9xy2 + a10y3 + a11x3y + a12xy3

+a13 sinh(Ax) + a14 cosh(Ax) + a15 sinh(By) + a16 cosh(By) + a17 sinh(Ax)y + a18 cosh(Ax)y

+a19 sinh(By)x + a20 cosh(By)x + a21 sinh(Ax)y2 + a22 cosh(Ax)y2 + a23 sinh(By)x2

+a24 cosh(By)x2 + a25 sinh(Ax)y3 + a26 cosh(Ax)y3 + a27 sinh(By)x3 + a28 cosh(By)x3 .

(A39)

The additional shape functions to those in 20-DOF element are as depicted in Figure A2.
This can also be interpreted as the additional shape functions to the first five (N1

1 to N1
5 )

given in Figure 8.

Figure A2. Two additional shape functions for the new 28-DOF Kirchhoff plate element in MSGT (of
the 1st node).

The element stiffness matrix can be found in a similar fashion as given in Section 3.3.

Appendix F. New 32-Dof Finite Element Formulation for Msgt-Based
Kirchhoff-Love Microplates

The two additional generalized displacements and generalized nodal force resultants
to those of the 24-DOF element are the same as those given in Equations (A35) and (A36),
see Figure A3a,b.

The element nodal displacement vector d and the element nodal force vector f are,

dT = [w1 θx1 θy1 κxx1 κyy1 κxy1 $xxy1 $xyy1...w4 θx4 θy4 κxx4 κyy4 κxy4 $xxy4 $xyy4] ,
f = [V1 Mx1 My1 Qxx1 Qyy1 Mxy1 Qxxy1 Qxxy1...V4 Mx4 My4 Qxx4 Qyy4 Mxy4 Qxxy4 Qxyy4] .

(A40)

The additional shape functions to those in 24-DOF element are as depicted in Figure A4.
This can also be interpreted as the additional shape functions to the six shape functions
(N1

1 to N1
6 ) given in Figure 8. The element stiffness matrix can be found in a similar fashion

as given in Section 3.3.
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Figure A3. (a) Nodal degrees of freedom and (b) corresponding nodal forces for a MSGT based higher order 32-DOF
Kirchhoff plate formulation.

Figure A4. Two additional shape functions for the new 32-DOF Kirchhoff plate element in MSGT (of
the 1st node).
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