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ABSTRACT

LANDMARK-BASED AGGREGATION METHOD FOR ROBOT SWARMS

Amjadi, Arash Sadeghi

M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Ali Emre Turgut

June 2021, 69 pages

Aggregation, a widely observed behavior in social insects, is the gathering of individ-

uals at any location or on a cue. The former being called self-organized aggregation,

and the latter being called cue-based aggregation. One of the fascinating examples

of cue-based aggregation is the thermotactic behavior of young honeybees. Young

honeybees aggregate on optimal temperature zones in the hive using a simple set of

behaviors. The state-of-the-art cue-based aggregation method BEECLUST was de-

rived based on these behaviors. The BEECLUST method is a very simple yet very

capable method with favorable characteristics such as robustness to noise and simplic-

ity. However, the BEECLUST method does not perform well in low robot population

densities. In this thesis, inspired by the navigation techniques used by ants and bees, a

self-adaptive landmark-based aggregation method is proposed. In this method, robots

use landmarks in the environment to locate the cue once they “learn” the relative po-

sition of the cue with respect to the landmark. Robots were utilized with odometry

sensors to make the calculation of traveled distances possible. With the introduction

of an error threshold parameter, the method also becomes adaptive to changes in the

environment. In order to make robots robust to sensor noises and free of fine-tuning,

reinforcement learning algorithm was employed to aid robots in coping better with
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uncertainties. In order to solve exploration-exploitation dilemma in reinforcement

learning, a new cyclical update schedule was proposed.

Through systematic experiments in kinematic and realistic simulators and real swarm

robots with different parameters, it was observed that using the information of the

landmarks makes the proposed method outperform other state-of-the-art cue-based

aggregation methods such as BEECLUST and ODOCLUST in all the settings. It was

also shown that utilizing reinforcement learning in the proposed aggregation method

had a 20% performance increase in non-stationary environments. Additionally, rein-

forcement learning made the proposed method more robust to odometry noise reach-

ing up to 30% performance increase.

Keywords: Bio-inspired, Swarm Robotics, Cue-based Aggregation, Landmark-based

Navigation, Reinforcement Learning, Self-adaptive
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ÖZ

ROBOT SÜRÜLERİ IÇİN KONUM NOKTASI TABANLI TOPLANMA
YÖNTEMİ

Amjadi, Arash Sadeghi

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ali Emre Turgut

Haziran 2021 , 69 sayfa

Sosyal böceklerde yaygın olarak gözlemlenen bir davranış olan kümelenme, birey-

lerin herhangi bir yerde veya bir işarette toplanmasıdır. İlki kendi kendini organize

eden toplama olarak adlandırılır ve ikincisi işaret tabanlı toplama olarak adlandırı-

lır. Işarete dayalı kümelenmenin örneklerinden biri, genç bal arılarının termotaktik

davranışıdır. Genç bal arıları basit bir dizi davranış kullanarak kovandaki en uygun

sıcaklık bölgelerinde toplanır. Son teknoloji işaret tabanlı toplama yöntemi BEEC-

LUST, bu davranışlara dayalı olarak türetilmiştir. BEECLUST yöntemi çok basittir

ve gürültüye karşı dayanıklılık ve uygulama kolaylığı gibi olumlu özelliklere sahip

bir yöntemdir. Ancak, BEECLUST yöntemi, düşük robot yoğunluklarında iyi per-

formans göstermez. Bu yazıda, navigasyon tekniklerinden esinlenerek Karıncalar ve

arılar tarafından kullanılan, kendi kendini ayarlayan bir dönüm noktası tabanlı top-

lama yöntemi önerilmiştir. Bu yöntemde robotlar konum işaretine göre yer işaretin

göreceli konumunu "öğrendikten" sonra, yer işaretin yerini belirlemek için ortamdaki

konum işaretlerini kulanırlar. Katedilen mesafelerin hesaplanmasını mümkün kılmak

için robotlarda odometri sensörleri kullanıldı. Bir hata eşiği parametresinin eklenme-
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siyle, yöntem aynı zamanda çevre değişikliklerine ayarlanabilir hale getirilir. Robot-

ları odometri sensör parazitine karşı sağlam ve ince ayardan arındırmak için, robotla-

rın belirsizliklerle daha iyi başa çıkmasına yardımcı olmak için takviyeli öğrenme al-

goritması kullanıldı. Takviyeli öğrenmede keşfetme-sömürme ikilemini çözmek için

yeni bir döngüsel güncelleme programı önerilmiştir.

Kinematik ve gerçekçi simülatör ve gerçek sürü robotlarında farklı parametrelere sis-

tematik deneyler yoluyla, ortam bilgilerinin kullanılmasının önerilen yöntemin tüm

diğer son teknoloji işaret tabanlı toplama yöntemleri olan BEECLUST ve ODOC-

LUST’tan daha iyi performans gösterdiği gözlemlendi. Ayrıca önerilen toplama yön-

teminde takviyeli öğrenmenin kullanılmasının durağan olmayan ortamlarda 20%’lik

bir performans artışı sağladığı da gösterilmiştir. Ek olarak, takviyeli öğrenme, öneri-

len yöntemi 30%’a varan performans artışına ulaşan odometri gürültüsüne karşı daha

sağlam hale getirdiği gözlenmiştir.

Anahtar Kelimeler: Biyo-ilham, Sürü Robotik, İşaret tabanlı Toplama, Landmark ta-

banlı Navigasyon, Takviye Öğrenme, Kendinden ayarlanabilir
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CHAPTER 1

INTRODUCTION

Aggregation is an essential behavior for social animals. It is the gathering of indi-

viduals into a single aggregate. This behavior is beneficial for the survival of insects

since they gain extra abilities such as protection against predators [2] or resistance to

adverse environmental conditions [3]. Different kinds of animals from amoeba [4]

to cockroaches [5] perform aggregation. In nature, aggregation is observed in two

different ways; self-organized and cue-based. In self-organized aggregation, an ag-

gregate is formed independently from the environment [6]. However, in cue-based

aggregation, an aggregate is formed based on an external cue, such as temperature as

seen in honey bees [7].

Inspired by the thermotactic behavior of young honey bees [8], a cue-based aggrega-

tion method, BEECLUST, was proposed [9]. By systematically studying the behav-

ior of actual honey bees in the laboratory setting, it has been observed that randomly

moving honey bees stop once they meet another honey bee. They stay longer if the

temperature of the region (intensity of cue) is higher. By transferring the aggregation

behavior of honey bees to swarm robots, robots were able to imitate the cue-based ag-

gregation of honey bees [10]. The BEECLUST method due to its simplicity showed

its effectiveness in real-world applications such as in contamination source detec-

tion in extreme environments [11]. Contamination sources like chemical waste were

considered as the cue, and the robots aggregated on the cue and cleaned it based on

BEECLUST.

Environment plays an important role in the lives of animals. It provides food, pro-

tection, and most notably, it helps with navigation. As an example, ants release

pheromone trails in their environment to help them to move between their nest and

1



food source [12]. Besides, honey bees are also known to use the environment for

navigation [13] by employing both visual [14], and olfactory cues [15, 16] to aid

them in their foraging task. By learning the distance and angle with respect to certain

landmarks, both honey bees and ants can find their way back home from a forag-

ing site [17]. In swarm robotics, this kind of navigation was implemented mainly in

foraging tasks such as an adaptive foraging method which was proposed based on

landmark-based navigation [18] using RFID tags as landmarks.

In this thesis, inspired from the navigation techniques used by the ants and

bees [17], a self-adaptive landmark-based aggregation method is proposed based

on the BEECLUST method. The main motivation of the proposed method is to

increase the performance of the BEECLUST method in low robot densities [19].

The performance of the method is tested and compared with the BEECLUST and

ODOCLUST [1] method in static and dynamic environments with different robot den-

sities, cue sizes, and noise. Initially, a path integration approach is used for achieving

landmark-based navigation in cue-based aggregation. Then, the proposed Landmark-

based Aggregation (LBA) method is further improved by using Reinforcement Learn-

ing (RL) [20] for making the proposed method more robust to sensory noises and

reducing sensitivity to parameter tuning. The integration of the RL algorithm to the

LBA method is called the Landmark-based Aggregation with Reinforcement Learn-

ing (LBA-RL)

This thesis is organized as follows: In the next chapter, the state of the literature

on cue-based aggregation and related works to landmark-based aggregation are pre-

sented. The contribution of this work is also stated. In Chapter 3, the LBA method and

its modified version, the LBA-RL method, are presented and formulated. In Chapter

4, experimental setups are introduced. In Chapter 5, the results of the conducted ex-

periments are presented and discussed. Finally, Chapter 6 concludes the studies and

works done in this thesis.
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CHAPTER 2

LITERATURE SURVEY

2.1 Cue-based Aggregation

The BEECLUST method has been studied for over a decade. In [21], the BEECLUST

method was investigated in both static and dynamic environments. In the static en-

vironment, there was only one light source, while, in the dynamic environment, two

light sources were located in the arena, and the intensity of the light sources was var-

ied during the experiments. It was shown that the BEECLUST method was robust in

dynamic environments. In [22], parameters of the BEECLUST method were studied

systematically, and velocity and waiting time parameters were modified and tested

in a dynamic environment. The results showed that both the aggregation time and

aggregation performance improved. In [23], a fuzzy-logic-based aggregation method

was proposed. Through experiments in single- and multiple-cue arenas with static

and dynamic settings, the proposed method performed better than the BEECLUST

method. The BEECLUST method was modified in [24] such that robots were able

to calibrate the waiting time based on the intensity of the cue, which increased the

aggregation performance. In a follow-up study [25], two additions were made to the

BEECLUST method so that robots were able to measure local robot density and light

intensity and share this information with their neighbors. Through experiments, it

was shown that robots were able to adapt to dynamic lighting conditions, and, as a

result, the performance of aggregation was improved in the low-density robot popula-

tion. BEECLUST method was modified in [1] such that the “wait” state was changed

with the “seek” state. When a robot encountered another robot, instead of waiting, it

sought the location of its last encounter with another robot for a predefined amount

of time. Experiments revealed that the proposed method performed better than the
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BEECLUST method in low robot population density setups. While all the aforemen-

tioned works considered behavioral homogeneity, in [26] a swarm with two different

behavioral groups, one with the tendency to aggregate in the area with high illumi-

nance and the other with the tendency to aggregate in the area with a low illuminance,

were created using the BEECLUST method. Through experiments, it was shown that

the performance of aggregation depends on the density of robot population. Similarly,

in [27] four different behavioral groups (goal finder, wall follower, random walker,

and immobile agent) were created, and the BEECLUST method was applied. Evolu-

tionary experiments showed that a certain combination of behavioral groups (in the

descending order of ratios: wall follower, immobile agent, random walker, and goal

finder) gives the best aggregation performance.

2.2 Landmark-based Navigation in Swarm Robotics

Different landmark-based navigation techniques have been adopted in swarm

robotics. Using pheromones is one such technique applied by different means in

different studies [23, 28, 29, 30]. In [31], an artificial pheromone system [32, 33]

with an LCD and a USB camera was used. Through systematic experiments, the

effects of different parameters such as evaporation and diffusion rates were studied.

It was shown that pheromone-based landmark navigation improved aggregation per-

formance. In [18] an adaptive foraging method using landmark navigation was pro-

posed. The method was based on the path integration capabilities of bees. RFID tags

and other agents were used as landmarks, and it was shown that the proposed method

improved the foraging performance. In [34] different ways of realizing landmarks,

including the QR-codes in a real environment was evaluated in different settings, and

it was concluded that the feasibility of using a particular landmark realization depends

on its complexity and the computational capabilities of the robot.
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2.3 Reinforcement Learning

2.3.1 Reinforcement Learning in Swarm Robotics

In nature, a way for animals and humans to learn optimal behaviors in their habitats

is by receiving positive and negative signals. Their brain interprets signals like food

and pleasure as rewards and signals such as hunger and pain as punishment. Thus,

animals choose a behavior that maximizes their received rewards [20]. Inspired by

this behavior in animals, reinforcement learning (RL) paradigm has been developed.

In RL, an agent is expected to learn how to perform a task at a desired level by

receiving appropriate reward signals. Nowadays, reinforcement learning is used in a

wide range of research areas such as computer systems [35], energy [36], finance [37],

healthcare [38], robotics [39, 40], and transportation [41].

Multi-robot systems and swarm robotics also benefit from reinforcement learning for

solving various types of problems. For instance, a guided approach was proposed

in [42] for controlling swarm robots. Learning policies and control rules for a swarm

of simple cooperative robots is a hard task due to distributed partial observability

of the states. [42] proposed a guided method where a critic has access to all the

global states of the agents during the training. In [43] for tackling obstacles in an

unknown environment, a deep reinforcement learning-based collision avoidance was

proposed. RL algorithms are a proper choice for problems that involve uncertainties

and dynamic environments [44]. As an example, in [45] a multi-agent reinforcement

learning approach was proposed for dealing with uncertainties in coalition task.

2.3.2 Exploration-Exploitation Dilemma

RL algorithms have an exploration-exploitation dilemma. Once an agent reaches a

state, it should decide and execute an action. If an agent always takes random actions,

it will not use its learned knowledge and this way, agent improves its knowledge

about each action. On the other hand, if an agent always exploits its knowledge to

choose the best action, it will not explore most of the environment’s possibilities,

and chances of received rewards restricted by local minimum are high. Therefore,
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a balance is required between exploration and exploitation. A simple and effective

solution for solving the exploration-exploitation problem is the ε-greedy method. In

this method, ε is the probability of exploring and agent exploits its knowledge with a

probability of 1−ε. The parameter ε is in the range of ε ∈ [0, 1], higher ε values leads

to full exploration (completely random actions) and in lower ε values agent exploits

its learned knowledge.

Typically, ε takes a constant value or decays over time. Taking ε as a fixed value

will restrict the performance of the algorithm. Reducing ε over time has a positive

effect for static environments and a negative effect for dynamic environments. In a

static environment, reducing ε over time will cause convergence of policy. On the

other hand, for a dynamic environment, if a change happens, robots will not be able

to perform enough exploration to learn the new environment, and they will stick to

their previous knowledge, which will heavily reduce the performance of the method.

Therefore, there is a need for a different schedule for ε.

One approach for adaptive ε is to make it dependent on the certainty of an agent

about its environment. In [46], a concept of Value-Difference Based Exploration

(VDBE) was proposed, where agents’ certainty about environment is measured by

the temporal difference between two value functions. The main goal of the approach

is that the more uncertain the agent is about the environment (higher value function

differences), the more it should explore (higher ε value). The more certain the agent is

about the environment (lower value function differences), the more it should exploit

(lower ε value). The parameter σ with the range of σ ∈ (0,∞), which is called

inverse sensitivity, plays an important role in the VDBE schedule. It adjusts how

sensitive an agent should be to changes in the environment. For the VDBE schedule,

σ is the only parameter that needs to be tuned. Higher σ values will act like constant ε,

which means changes in the environment will not affect ε considerably. On the other

hand, lower σ values will change ε drastically if even a small change happens in the

environment. Thus, depending on the conditions of the environment, σ must be tuned

to obtain the best performance. They compared VDBE with ε-greedy and Softmax

policies on multi-armed bandit tasks. The average reward per time step for VDBE

was 1.42, Softmax 1.38, and ε-greedy 1.35. In conclusion, VDBE outperformed other

studied ε schedules.
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Another work for adaptive ε parameter was done in [47]. They studied their method

for both stationary and non-stationary environments. For non-stationary environ-

ments, they used an algorithm to detect the change point of the environment. They

defined the variable ∆ as the difference between the highest average rewards and the

highest previous average rewards. While ∆ was positive, ε was updated by a sigmoid

function. Their method showed better performance than ε-greedy method in both

stationary and non-stationary environments. They also compared their approach to

VDBE. Results revealed that VDBE with σ = 0.33 could get a higher average reward

faster and could detect the optimal actions quicker but settled in a lower value com-

pared to their proposed adaptive ε method. However, VDBE with σ = 0.04 could

select the optimal action better than all other experimented schedules.

In another work, the Bayesian perspective of ε was used to measure the uncertainty

in the Q-value function [48]. A closed-form Bayesian model was proposed, based

on the Bayesian model combination (ε-BMC), which enabled adapting ε according

to past experiences from the environment. Their results demonstrated that ε-BMC

could outperform fixed schedules for ε and state-of-the-art ε adaptation methods such

as VDBE.

So far, studies that aim to solve the dilemma of exploration-exploitation balance and

develop an adaptive ε in model-free reinforcement learning are discussed. In deep

learning, a similar problem is encountered for the learning rate parameter. In Stochas-

tic Gradient Decent (SGD), learning rate plays an essential role in neural networks

learning abilities. In a recent work, the learning rate was let to oscillate between two

predefined values [49]. They showed that the cyclical learning rate improves the per-

formance of their algorithm. Besides, this scheduling method is relatively simple to

implement compared to first and second-order adaptive learning rates. Their work

on learning rates for neural networks inspired us to propose a cyclical schedule for

ε. Also, the simplicity of the cyclical update schedule and the fact that it uses signif-

icantly low memory and less computational resources make it more appropriate for

swarm robots.
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2.4 Contribution

The contribution of this thesis is indicated as below:

1. To the best of our knowledge, this is the first implementation of landmark-

based navigation in a cue-based aggregation setting. Landmarks are employed

to increase the poor performance of the BEECLUST aggregation method in low

robot density settings.

2. Advantages and restrictions of RL algorithms for increasing the aggregation

performance of swarm robots under uncertainties and sensor noises are studied.

3. A cyclical parameter update was proposed for solving the exploration-

exploitation dilemma [50] is proposed, which is more robust to fine-tuning and

can adapt better to environmental changes, compared to other studied methods.

In conclusion, an aggregation method that can form a proper aggregate in low-density

swarm setups with high adaptability to environmental change and low vulnerability

to fine-tuning is proposed in this thesis.
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CHAPTER 3

METHODOLOGY

3.1 BEECLUST Aggregation

The BEECLUST method is based on three behavioral states which were observed

in honeybees [9]: 1) go forward, 2) avoid obstacles, 3) wait for a certain amount

of time if another robot is encountered. The BEECLUST method is represented as

pseudo-code in Algorithm 1. The waiting time is calculated according to:

ws = wmax
Ic

2

Ic
2 + 5000

, (3.1)

where wmax is the maximum waiting time, which is set to 120 s and Ic is the cue

intensity measured by the ground sensors of robots at the location of the collision and

its range is Ic ∈ [0, 255]. Once the waiting time is over, robots turn θ° where θ is a

random variable in the range of [90°, 270°] with a uniform distribution.

Algorithm 1: BEECLUST

1 Procedure BEECLUST

2 go forward

3 if obstacle detected then

4 turn θ°

5 else if robot detected then

6 measure cue intensity, Ic

7 if Ic > 0 then

8 calculate ws according to Eq. (3.1)

9 wait for ws

10 turn θ°
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3.2 ODOCLUST Aggregation

The main idea behind the ODOCLUST method was to increase the aggregation per-

formance using odometry. In this method, robots explore the arena, and save the

position of the last two collision points by using odometry. They go in between these

two collision points for a specific amount of time called the timeout. In this thesis,

the ODOCLUST method was implemented to compare our proposed method with

a state-of-the-art aggregation method. In the original version of the ODOCLUST

method [1], the timeout was decided randomly. However, since our thesis is focused

on cue-based aggregation, the ODOCLUST method was modified and implemented

such that the timeout duration was decided based on the cue intensity. Figure 3.1

shows the state machine of the modified ODOCLUST method.

Figure 3.1: State machine of the ODOCLUST method. adopted from [1].

3.3 Landmark-based Aggregation

The Landmark-based Aggregation (LBA) method, shown in the Algorithm 2 is devel-

oped based on the BEECLUST method. It is assumed that there are landmarks and

a cue present in the environment. Landmarks do not contain any a priori informa-

tion about the location of the cue. They are just distinct identifiers detectable by the

robots.
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Algorithm 2: Landmark-Based Aggregation

1 Procedure LBA

2 go forward

3 if obstacle detected then

4 turn θ°

5 else if landmark k detected then

6 if ~Sktotal exists then

7 go towards the cue using ~Sktotal
8 if obstacle detected then

9 increase error variable one step, ek++

10 if ek ≥ τe then

11 reset ~Sktotal and ek

12 turn θ°

13 else if robot detected then

14 measure cue intensity, Ic

15 if Ic > 0 then

16 calculate ws according to Eq. (3.1)

17 wait for ws

18 turn θ°

19 else

20 start calculating displacement vectors, ~Ski

21 else if robot detected then

22 measure cue intensity, Ic

23 if Ic > 0 then

24 if ~Sktotal does not exist then

25 calculate and store ~Sktotal

26 calculate ws according to Eq. (3.1)

27 wait for ws

28 turn θ°
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Figure 3.2: Demonstration of how ~S2
total (dashed red vector) of a robot is calculated

by integrating its displacement vectors ~S2
i (orange vectors) in the LBA method. A:

location of robot 1 at t = t1, B: location of robot 1 at t = t2, C: location of robot 2 at

t = t2. Robot 1 sums the displacement vectors that it traversed from time t = t1 until

it encountered another robot inside the cue in time t = t2. The blue arc represents

the camera filed of view of robot 1. Dashed yellow circle on the left demonstrates the

cue before tchange. After environment changes, new location of the cue is the yellow

circle on the right.

Initially, a focal robot, as in the BEECLUST method, starts to explore the environ-

ment randomly. When it detects one of the landmarks (ID, relative position and

orientation of the landmark are extracted) for the first time, it starts to integrate all

displacement vectors and continues to explore the environment randomly until it en-

counters another robot. Then, it checks the intensity at the location of the encounter.

If there is a cue, then it stores the total displacement vector, which is determined by

adding the individual displacement vectors, as shown in Figure 3.2. The resulting

vector conveys information about the relative position of the cue with respect to the

detected landmark. So, when the robot detects the same landmark for the next time, it

uses the this vector to go directly to the cue without the need for further exploration,

unlike the BEECLUST method.
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The magnitude and angle of the displacement vectors are calculated using odometry.

Odometry is implemented by counting the pulses from the optical encoder on each

wheel. By doing so, it is possible for a robot to calculate the traveled distance as

well as the rotated angle. The distance that a robot traveled from a given point can

be derived by using the incremental travel distance for the left and right wheels (∆UL

and ∆UR) using the total wheel revolution as in [51]:

∆UL = cmnl,

∆UR = cmnr,
(3.2)

where nr and nl are the pulse counts of the right and left wheels of a robot, respec-

tively. cm is the conversion factor from encoder pulses to linear wheel displacement

and it is calculated as:

cm =
πDn

αodometryCe
. (3.3)

where Dn, Ce, and αodometry are the nominal wheel diameter, the encoder resolution,

and the speed reduction ratio, respectively. With ∆UL and ∆UR at hand, the linear

displacement sodometry, and angular displacement µodometry can be calculated as:

sodometry =
∆UL + ∆UR

2
, µodometry =

∆UL −∆UR
b

, (3.4)

where b is the distance between two wheels of a robot.

It is assumed that robots can detect the relative position and orientation of the land-

marks. So, when a robot detects a landmark, it calculates its position and orientation

with respect to the coordinate system of the landmark as a reference and thereafter

keeps track of its orientation using odometry.

The i-th displacement vector, ~Ski , is represented as:

~Ski = l∠ψ, (3.5)

where k denotes the ID number of the landmark that the displacement vectors corre-

spond to. l and ψ are the magnitude and angle of displacement vector in the landmark

coordinate system, respectively. When a robot reaches the cue after detecting the k-

th landmark, the total displacement vector ~Sktotal is calculated by integrating all the

displacement vectors that were accumulated as:

~Sktotal =
z∑
i=0

~Ski , (3.6)
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where z is the number of displacement vectors that a robot has traveled to reach

the cue after detecting the landmark. Each displacement vector is calculated between

two consecutive turns of a robot. Figure 3.2 shows how ~Sktotal is calculated using three

consecutive displacement vectors. The robot stores ~Sktotal and uses it to go directly to

the cue for the next time when it detects the kth landmark. It should be noted that

the vector ~P , which is the initial relative position of the robot with respect to the

landmark, is also used to find the total displacement vector. This way, the base point

of the resulting vector ~Sktotal is the landmark, rather than the robot, which makes the

vector independent of the initial position of the robot.

Each robot saves a new displacement vector when it detects a new landmark and

assigns this vector to the ID of the detected landmark. Hence, a robot is able to store

as many ~Sktotal as the number of landmarks, m, in the arena: ~S1
total,~S

2
total, ...,~Smtotal.

To add the effect of noise due to detection and odometry, noise is added to the actual

direction, ψki , and the noisy direction, ψ̃ki , is calculated as:

ψ̃ki = ψki + σnη
k
i . (3.7)

In this equation, σn is the strength of the noise, and η is a uniformly distributed

dimensionless random variable in the range [−1, 1].

In order to make the LBA method adaptive, an error variable, ek, and an error thresh-

old, τe, are defined. Each ek is associated with the corresponding ~Sktotal for each robot.

Every time a robot moves based on ~Sktotal but does not reach the cue, the error variable

ek is incremented by one. τe denotes the maximum acceptable error for each ~Sktotal.

When the variable ek becomes greater than the threshold τe (ek > τe), the robot does

not use ~Sktotal anymore and the vector resets. When kth landmark is encountered next

time, ~Sktotal is recalculated.

An increment in error variable ek may occur due to three reasons: 1) cue change,

which happens when the location of the cue is changed in a dynamic environment,

and the robot goes to the previous location of the cue; 2) noise in the measurements

of environmental variables, like the relative orientation and position of landmarks; 3)

inaccuracies in the odometry calculation, which can be the result of wheel slippage,

or other external factors. When a robot travels relatively long distances, errors in the
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odometry calculations accumulate, and the deviation of the calculated vector and the

real displacement vector that a robot has traveled becomes significant. In all these

cases, a robot may not reach the cue when using a particular displacement vector,

hence resets the corresponding vector.

3.4 Landmark-based Aggregation with Reinforcement Learning

3.4.1 Q-learning

For finite MDP problems where reward function and transition function are unknown

(model-free RL), Q-learning algorithm [52] can be used to derive optimal behavior

for an agent. Q-learning is an off-policy reinforcement learning method [44], which

uses Q-function for selecting optimal actions. For each state st ∈ S and action at ∈ A
at time t, Q-function Q(st, at) outputs a scalar which determines how good is to take

action at in state st, i.e., Q : S × A −→ IR . For discrete state and action spaces,

Q-function can be modeled as a table with states in row and action in columns, called

the Q-table. Each agent updates its Q-table with a recursive update rule stated as:

Qnew(st, at)←− (1− α)Q(st, at) + α[rt + γmax
a
{Q(st+1, a)}] . (3.8)

In this equation, the parameter α, which varies over the range of α ∈ (0, 1], is the

learning rate that controls the learning speed of the agent. High learning rates result

in quicker learning, but oscillations are more probable. A low learning rate guarantees

convergence, but convergence speed will be slow [44].

Once an agent is in a state st, it uses policy function πt(st) to choose an action. A

policy function maps the state space to an action space π : S −→ A. In this thesis,

ε-greedy policy [52] is used as the policy function. In this policy, the chance of taking

a random action (exploration) is determined by the parameter 0 ≤ ε ≤ 1 and the

probability of taking a greedy action (exploitation) is 1− ε. In the greedy action, for

a state st, agent chooses the action which has the highest value in Q-table.

at =

 random select ar ∈ A with probability ε

maxa{Q(st, a)} with probability 1− ε
(3.9)
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3.4.2 LBA-RL Method

The proposed method, Landmark-based Aggregation with Reinforcement Learning

(LBA-RL), is based on the LBA method, Algorithm 3. Before detecting a landmark,

a robot moves forward till it detects an object, it turns to a random angle if the de-

tected object is an obstacle, and it stops and waits if the detected object is another

robot. Waiting time is proportional to the cue intensity at the location of the collision

of two robots, calculated based on Eq. (3.1). When a robot detects a landmark, it

utilizes the Q-learning method to find the path to the region of the cue that has the

maximum intensity. It should be remarked that in the LBA method, the total dis-

placement vectors ~Sktotal only led to the cue, not to the part that has the maximum cue

intensity. However, in the LBA-RL method, robots choose the action that leads to the

highest Q-value among all other possible actions for a specific state. In the current re-

inforcement learning problem, states of the MDP model correspond to the landmarks

S = {landmark1, landmark2, .., landmarkm} where m represents the total number

of landmarks in the arena. Action space consists of discrete displacement vectors for

each landmarkA = {~S1, ~S2, ...~Sn} where n is the total number of actions that a robot

can perform. Each displacement vector can be written as: ~Ski = l(~i cos(ψ)+~j sin(ψ))

where l and ψ are the length and angle of the displacement vector and ψ ∈ Ψ (Ψ set of

all possible angles) and l ∈ L (L set of all possible length). Vectors~i and ~j represent

the unit vectors along x- and y-axis, respectively.

When a robot detects a landmark, it selects an action. This selection can be made

randomly (exploration) or by exploiting previous experiences (exploitation), which is

expected to give the highest Q-value for state st according to learned Q-tableQ(st, at)

at time t. Whether a robot performs, exploration or exploitation is decided based on

the ε-greedy policy Eq. (3.9). The cue intensity that a robot senses after following the

chosen displacement vector, is taken as the reward, rt ∈ [−1, 255], used to update the

Q-table according to Eq. (3.8). Action vectors start at the location of the landmark

and end at a point in the arena, as shown in Figure 3.3.

A robot might get interrupted while executing an action by an obstacle or another

robot. Suppose that a robot is interrupted by another robot. In that case, it stops

the execution of the action, turns randomly, and continues its movement on the arena
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without getting any reward and without updating its Q-table. But, if it gets interrupted

by an obstacle, this means that the chosen action led to a collision with an obstacle;

thus, that action needs to be punished. Therefore, a reward of rt = −1 is given to the

robot. For all other circumstances, the received reward is equal to the measured cue

intensity, which is always in the interval of [0, 255].

A landmark might be detected from different angles each time by the same robot.

Each action vector, ~Ski , starts from the location of the kth landmark and points to a

location in the arena. The objective of a robot is to reach that location. In order to

reach that location, no matter from which position a robot detects the landmark, a

similar technique also used in the LBA method is adopted here. Once a robot detects

a landmark, kth landmark, it measures its distance d and angle φ with respect to the

landmark using the solvePnP function of the OpenCV library [53]. Based on the

calculated φ and d, relative position vector of the robot with respect to the landmark

can be defined as: ~P = d(~i cosφ + ~j sinφ). By adding this vector to the chosen

action, a robot will be able to reach the endpoint of the action vector by following the

target vector ~T calculated as:

~T = ~Ski + ~P = l(~i cosψ +~j sinψ) + d(~i cosφ+~j sinφ)

= (l cosψ + d cosφ)~i+ (l cosψ + d cosφ)~j ,
(3.10)

where~i and ~j are the unit vectors along the x- and y-axis, respectively.

To employ Q-learning in the LBA method, parameters γ, α, and ε of the equations

(3.8) and (3.9) must be handled. As stated before, γ ∈ [0, 1] is the discount factor and

determines how important future rewards are. In our case, γ is set to zero. The reason

for that is when a robot detects a landmark, using the ε-greedy policy, it chooses and

executes an action. When the execution of the selected action is completed, the robot

gets a reward, which is the cue intensity of the point where the action vector leads

the robot to. After receiving this reward, the robot does not assume one of the states

in S, it rather turns to a random direction and moves straight until it detects another

landmark. Therefore, taking action at at state st at time t, leads to the reward rt

but does not lead to transition to a next state st+1. In other words, a robot moves

on the arena, detects a landmark, chooses an action, executes that action, receives a

reward, and then moves on to the arena again until it detects another landmark and so
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on. Consequently, agents are naturally short-sighted and only care about immediate

rewards. In literature, such agents are named as myopic agents, and for these kinds

of agents, γ = 0.

To deal with the learning rate parameter α, various heuristic, and adaptive schedules

are suggested in both reinforcement learning and deep learning literature. In this

thesis, since the environment is assumed to be non-stationary and noisy, a small,

constant value for α is chosen as suggested in [44]. For noisy and non-stationary

environments, low learning rate values will cause slow but guaranteed convergence.

Therefore, the learning rate is set to α = 0.1. Although a constant choice of α

will restrict the convergence speed of the model and prevent it from reaching its best

performance, studying adaptive and more advanced schedules for α is beyond the

scope of this thesis, and it is considered as future work. At this point, considering the

set values for the γ and α parameters, Eq. (3.8) reduces to:

Qnew(st, at)←− 0.9 Q(st, at) + 0.1 rt . (3.11)

The VDBE schedule [46] is implemented for adjusting ε adaptively based on the

robot’s certainty about its environment. The optimal values suggested in [46] are

used for the parameters of the method. However, the inverse sensitivity parameter, σ,

still needs fine-tuning, which is one of the disadvantages of VDBE. The other disad-

vantage of VDBE is that each state requires its own independent ε, which makes ε a

function of state, s. Consequently, as the number of states grows, the VDBE method

will require more memory to store ε parameters for each state. For environments

with a large state space size, the VDBE schedule consumes a considerable amount

of memory to keep track of each ε independently. Therefore, we also implemented

another method inspired by way of adjusting the learning rate in [49] for adjusting ε.

In this method, ε is changed periodically regardless of the state.

εt = A
(1 + cos 2πλ

p
)

2
, (3.12)

where εt is the value of ε at time t and λ is the epoch. Epoch is increased by one each

time a robot detects a landmark and executes an action. The parametersA ∈ (0, 1] and

p ∈ (0,∞) are the amplitude and period of the waves, respectively. The reason for

adding 1 to the cosine term and dividing them by 2 is that normally−1 ≤ cos (λ) ≤ 1,

since 0 ≤ εt ≤ 1, cosine is modified such that 0 ≤ 1+cos (λ)
2

≤ 1 is within the

18



Figure 3.3: Action space of a robot in the LBA-RL method. The cyan vector rep-

resents the relative location of the robot with respect to the landmark. Each orange

vector is the action (~Ski ) that a robot executes by following ~T = ~P + ~Ski where su-

perscript k represents the kth landmark and index i ∈ [1, 44] represents the ith action.

The blue arc represents the camera field of view of the robot. Dashed yellow circle on

the left demonstrates the cue before tchange. After environment changes, new location

of the cue is the yellow circle on the right.

range of ε. For simplicity of implementation, cosine waves were used. It must be

noted the ε is the same for all the states, so this method of solving the exploration-

exploitation dilemma is significantly cost-effective since it requires no memory and

no heavy computations; hence, it is suitable for swarm robots.

In the proposed method, training and testing phases were not separated, and a robot

learns and acts simultaneously. The reason for not considering a training phase is that

the Q-learning algorithm modifies the Q-table according to the rewards received from

the environment. If an arena were to be designed for the training phase, the Q-table

of robots would learn and adapt to the conditions of the training arena. However, the

test arena might have completely different conditions and dynamics. Therefore, the

learned data in the training phase would be of no use in the test phase.
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Algorithm 3: Landmark-Based Aggregation with Reinforcement Learning

1 Procedure LBA-RL

2 perform the BEECLUST method, algorithm Eq. (1)

3 if landmark k detected then

4 select an action based on ε-greedy policy Eq. (3.9)

5 update ε based on chosen schedule

6 calculate the displacement vector ~T according to Eq. (3.10)

7 turn ∠~T

8 while distance travelled < ‖~T‖ do

9 measure distance travelled according to Eq. (3.4)

10 follow ~T

11 if robot detected then

12 interrupt_flag ←− 1

13 /* do not update Q-value */

14 measure cue intensity, Ic

15 if Ic > 0 then

16 calculate ws according to Eq. (3.1)

17 wait for ws

18 turn θ°

19 break

20 else if obstacle detected then

21 interrupt_flag ←− 1

22 rt ←− -1

23 update Q-table according to Eq. (3.11)

24 turn θ°

25 break

26 if !interrupt_flag then

27 measure cue intensity, Ic

28 rt ←− Ic
29 update Q-table according to Eq. (3.11)

30 interrupt_flag ←− 0
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CHAPTER 4

EXPERIMENTAL SETUP

In this chapter, experiment settings for evaluation and investigation of the proposed

method is provided. Kobot robots are chosen as the swarm robots for this study.

Three different experimental platforms were used. First, kinematic simulations are

employed where physical properties of robots are ignored and robots are modeled as

circles with the same radius as a Kobot robot. These simulation are done via python

programming language. Second, a realistic simulator is used where physical and three

dimensional properties of robots are taken into account. Webots simulator [54] were

used for this purpose. Third, real Kobot robots are used for experimenting studied

methods to compare the results of simulators with real-world setups.

As for the performance metric, the normalized aggregation size (NAS), which is the

number of robots aggregated on the cue divided by the population size, was used.

For some experiments, the time evolution of the metric was shown to illustrate the

transient behavior of the methods. For the others, the steady-state value of the metric

was taken into account by averaging the last 100 samples of the metric. In this regard,

the steady-state was assumed to be reached when the metric value reached and settled

within the 5% range of its mean value of the last 500 samples.

In order to illustrate various aspects of the aggregation method, different experi-

ments were implemented. All these experiments were repeated for a given number of

Monte-Carlo trials in order to decrease the effect of unwanted factors on the evalua-

tion, such as initial conditions and noise. More specifically, initial positions of robots

within the arena followed a random distribution. Number of trials are stated in each

experiment case.

21



In all kinematic simulation setups, robots were modeled as circles as shown in Fig-

ure 3.3. The parameters of the robots were chosen such that their size and speed were

the same as the Kobot robots used in the real robot experiments. Radius of the robots

were chosen to be Rr = 0.06 m, collision detection range was Rcol = 0.06 m with a

360° collision detection angle. The speed of the robots was v = 0.14 m s−1. During

the experiments, robots are considered to be homogeneous in terms of hardware and

software, i.e., the aggregation method they are using.

4.1 Landmark-based Aggregation

In the experimental analysis, two different simulation platforms were used. The first

was the kinematic simulator, and the other was the realistic simulator. For the sake of

comparison, in all the simulations, both the LBA method and the BEECLUST method

were implemented. In kinematic simulator, the ODOCLUST method is implemented

as well.

4.1.1 Kinematic Simulation

In kinematic simulations, shown in Figure 4.1(a), robots were modeled as two-

wheeled agents that have a certain size, linear speed, and rotational speed but no

dynamics.

A 5×10 m2 rectangular arena was used for the simulations. A bright disk was placed

on the arena as the cue. The intensity of the cue decreased gradually towards its

perimeter. The distribution of the intensity of the cue along the radial direction was

considered to be a 2D Gaussian centered at the cue. The cue radius was set to be 0.7 m

in such a way that it was large enough to accommodate all robots on the cue [19].

The location of the cue was changed from x = 2.5 m, y = 2.5 m (the left-hand side

of the arena) to x = 7.5 m, y = 2.5 m (the right-hand side of the arena at a prede-

fined time tchange during the simulations that were being the dynamic experiments.

In cases where the location of the cue is not changed during the simulation, like the

first part of the above-mentioned setup, the experiment is considered static. Three

distinct landmarks were placed evenly on each long side of the arena, making a total
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(a) The Kinematic Simulator

(b) The Realistic Simulator

Figure 4.1: Simulation platforms. (a) The kinematic simulator. The blue inner and

outer circles represent a robot and sensing range of its sensors, respectively. The red

line represents the direction of a robot. Six white semicircles represent the location

of landmarks. The cue is shown by a gray-white disc. (b) The realistic simulator.

Robots and ArUco markers are simulated realistically.
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Table 4.1: Standard values used in the LBA kinematic simulations

Parameter Description Value / range

wa arena width 10m

ha arena height 5m

Rc cue radius 0.7m

Ic measured cue intensity [0 255]

wmax maximum waiting time 120 s

Rr radius of a robot 0.06m

Rcol range for robots and obstacles 0.06m

N number of robots 20

m number of landmarks 6

τe error threshold 4

σn angular noise 15°

of six landmarks as shown in Figure 4.1(a). The detectable area of the landmarks is

considered to be a rectangle with (0.77 × 1.55 m2). Since noise was taken into ac-

count, each experiment was repeated 20 times. The initial position and orientation of

each robot were chosen randomly for each experiment. Unless otherwise noted, the

standard values shown in Table 4.1 were used in all experiments.

• Evaluation of the non-Adaptive LBA Method: In these experiments, in order

to study the LBA method without its adaptation capability, the error threshold

was set to a very large number, such that error variables never reset, so that

the LBA method became non-adaptive. The duration of the experiments was

80,000s, and the cue was changed at 40,000s. The static part of these simu-

lations was taken longer than the other experiments in order to make sure that

robots utilize all the landmarks during the first part of the experiments. Conse-

quently, all the calculated total displacement vectors pointed to the old location

of the cue in the second part of the simulation. This assumption was intention-

ally made to highlight the consequences of lack of adaptability for the LBA

method.

24



• Error Threshold Experiments: In these experiments, the effect of error

threshold on the performance of the adaptive LBA method was investigated us-

ing τe = {1, 2, 3, 4, 6, 8, 10, 12}. The duration of the experiments was 80,000s

and the cue was changed at 20,000s. In order to emphasize the effect of the er-

ror threshold, the angular noise value was taken larger than the standard value

as σn = 30°. For the purpose of comparison, results of the ODOCLUST and

BEECLUST aggregation methods are added as well.

• Noise Experiments: In these experiments, the effect of noise on the

performance of the adaptive LBA method was investigated using σn =

{0°, 15°, 30°, . . . , 180°}. Only static experiments were performed with a du-

ration of 20,000s.

• Population Size Experiments: In these experiments, the effect of population

size was studied as in [19] using N = {10, 15, 20, 25, 30} robots with a fixed

arena size as shown in Table 4.1. The duration of the experiments were 20 000 s,

and only static experiments were performed.

• Cue Size Experiments: In these experiments, the effect of cue size was in-

vestigated using Rc = {0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0}m. The arena

size was fixed and used as in Table 4.1 in the experiments.

4.1.2 Realistic Simulation

In realistic simulations, shown in Figure 4.1(b), all the actuators and sensors of Kobots

were modeled using the Webots simulator [54]. No robot had access to any global

information of either itself or other robots, and all the processing was done on board.

Static experiments were performed using 10 simulated Kobot robots with a duration

of 10 000 s. The arena size was scaled from the standard size to 3.55 × 7.1 m2 and,

similarly, the cue radius was taken as 0.5 m. The intensity distribution of the cue
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along the radial direction was also Gaussian as in the kinematic simulations. The

error threshold was 4, and the experiments were repeated 5 times with random initial

positions and orientations.

In the literature, landmarks in robotic scenarios were implemented in different ways,

such as RFID tags [18] or QR-codes [55]. In this thesis, visual landmarks, namely,

the ArUco markers [56] were chosen as the landmarks due to their simplicity and

relatively low computational requirements. The OpenCV library [53] and Python

were used to calculate the position and orientation of the ArUco markers. The vector
~P was estimated using the relative position, and orientation of the detected ArUco

markers using the PnP algorithm [57]. The range of detection was realistically sim-

ulated based on the specifications of the camera used in the robots as illustrated in

Figure 4.2. No additional noise was added other than the one present in the camera

and the DC motors in the experiments. During realistic simulations, 2D images of

ArUco markers with a size of 20× 20 cm2 were attached to the walls of the arena to

represent the landmarks. Three ArUco markers were placed evenly on each long edge

of the rectangular arena, making a total of six ArUco markers the same as the kine-

matic simulations. An ArUco markers’ unique ID, its relative position, and relative

orientation are estimated when detected by a robot.

4.2 Landmark-based Aggregation with Reinforcement Learning

Experiments were conducted using a kinematic-based simulator and real robots. In

both setups experiments were repeated five times (five Monte-Carlo trials).

4.2.1 Kinematic Simulation

A rectangular arena with dimensions of 2.82 m× 5.65 m was used. The total number

of robots was chosen to be N = 10 in order to make the robot density low. The

cue is represented as a bright circle inside the arena with a radius of Rc = 1 m. The

intensity of the cue reduces towards its perimeter, and its distribution along its radius

is considered to be a 2D Gaussian centered at the cue as shown in Figure 3.3. To

test the performance of methods in non-stationary environments, location of the cue
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Figure 4.2: The error caused by image processing of a ArUco markers for different

points of the arena. The ArUco markers (shown by the black half disk) was not de-

tectable from the white points. The black dashed lines shows the approximate bounds

of the detectable area of the ArUco markers. a) Angular error of the measured rela-

tive orientation compared to the actual orientation. b) Distance error of the measured

relative distance compared to the actual distance.

was changed in a specific time, tchange, during the experiment from x = 1.41 m, y =

1.41 m (the left-hand side of the arena) to x = 1.41 m, y = 4.23 m (the right-hand

side of the arena).

The duration of each experiment was chosen to be ttotal = 100, 000s, which is long

enough for all the methods to reach the steady-state. The location of the cue was

changed at t = tchange = 50, 000s, i.e., in the middle of each experiment. For the LBA

method, the error threshold parameter was chosen to be τe = 4 since this choice has

the benefit of both good adaptation characteristics for non-stationary environments

and robustness to odometry noise.

In the arena, three landmarks were located with equal distances from each other on

each side of the arena, making a total of six landmarks, m = 6, as shown in Fig-

ure 3.3. It should be noted that since landmarks represent the states of the Q-learning

algorithm, increasing the number of landmarks will increase the size of the Q-table,

increasing the training time. On the other hand, choosing fewer landmarks will re-

duce the probability of their detection; and hinder the performance of the LBA and
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LBA-RL methods. By selecting the number of landmarks as m = 6 for our test

cases, the Q-table does not become too large, and still, the performance of the LBA

and LBA-RL methods are at acceptable levels. It was also assumed that robots could

detect landmarks up to 0.5 m.

For the LBA-RL algorithm, action space, A, was designed to have n = 44

displacement vectors as shown in Figure 3.3. The length and angle of action

vectors are discretized as l ∈ L = {1.25, 2.5, 3.75, 5} m and ψ ∈ 	 =

{0°, 18°, 36°, 54°, 72°, 90°, 108°, 126°, 144°, 162°, 180°}. It should be noted that the

choice of l depends on the arena size. More vectors will span the arena better, and

chances of finding actions with higher rewards will increase. However, since in-

creasing the size of the action space will increase the Q-table size, training time will

grow. On the other hand, a smaller action space size will cause faster learning, but the

arena will not be spanned properly. Choosing the size of the action space as 44 is a

fair trade-off between not having a large Q-table and spanning the arena sufficiently.

Actually, in an aggregation problem, the action space is continuous, but solving the

aggregation problem in continuous space is beyond the scope of this thesis. The pa-

rameters used in the kinematic simulation are shown in Table 4.2.

The following three experiments were performed using the kinematic-based simula-

tor:

• Environment Experiments: In these experiments, the BEECLUST, LBA, and

LBA-RL (with VDBE and cyclical ε schedules) methods were compared. First,

this comparison was made without considering any odometry noise. Then, a

noise, σn = 15°, was added to displacement vectors based on Eq. (3.7). More-

over, in both noisy and noiseless cases, the performance of the methods was

measured in non-stationary environments. Time evolution of NAS values was

plotted.

• Noise Experiments: In these experiments, the robustness of the methods

against noise was studied. Noise was added using Eq. (3.7) with σn ∈
{0°, 5°, 15°, 30°, 45°, 60°90°, 135°, 180°}. For these experiments, the steady-

state NAS values were plotted for the sake of clarity of the plots. The steady-

state values were calculated by taking the average of the last 100 NAS values
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Table 4.2: Standard values used in the LBA-RL kinematic simulation

Par. Description Value / range

wa arena width 2.82m

ha arena height 5.65m

Rc cue radius 1m

Rr radius of a robot 0.06m

Rcol range for robots and obstacles 0.06m

Ic measured cue intensity [0 255]

wmax maximum waiting time 120 s

ttotal total length of each experiment 100 000 s

tchange the moment when the location of

the cue is changed 50 000 s

N number of robots 10

m number of landmarks 6

τe error threshold for LBA method 4

A amplitude of cyclical waves {0.25, 0.5, 0.75, 1}

p period of cyclical waves {50, 100, 150, 200}

σn angular noise {0°, 5°, 15°, 90°, 135°, 180°}

σ inverse sensitivity of VDBE method {0.01, 0.1, 1, 10}

γ discount factor of LBA-RL 0

α learning rate of LBA-RL 0.1

l length of action vectors for LBA-RL {1.25, 2.5, 3.75, 5}m

ψ angle of action vectors for LBA-RL {18°, 36°, 54°, 72°, 90°, 108°,

126°, 144°, 162°, 180°}
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of each run.

• Parameter Sensitivity Experiments: In this study set, the sensitivity of ε

schedules for the LBA-RL method to different parameter values was studied.

Two schedules were implemented for ε, which are VDBE and cyclical schedule.

VDBE schedule has only one free parameter σ, whereas the cyclical schedule

has two free parameters p and A, which are the period and amplitude of waves,

respectively. As in the previous test case, steady-state NAS values were con-

sidered. For backing up the statements made in this experiment set, a random

robot was selected from the swarm, and the rewards that it received and the

change of its ε parameter were plotted over time.

4.2.2 Real-robot Experiment

In real-robot experiments, the latest version of Kobot robots (called Kobot) as shown

in Figure 4.3 were used. Kobot differentially driven CD-sized swarm robot plat-

form which was developed for self-organized flocking experiments. Thus, Kobots are

upgraded with additional hardware and software in order to perform aggregation ex-

periments. The main upgrades required were the capabilities added to sense the cue

intensity and to detect ArUco markers.

For sensing the cue intensity, four IR sensors were placed at the bottom of the robot

as the floor sensors. IR sensors were calibrated to read 0 for the lowest intensity

zone (the carpet on the floor) and 255 for the highest intensity zone (the brightest

zone at the center of the cue). Four readings were taken at each location, and these

readings were then averaged to compensate for the tilt of the robot and for the non-

uniformity of the floor/cue. Optical encoders coupled to the two DC motors were used

as odometry sensors. Obstacle and robot detection was performed using the legacy

range and bearing system that has eight modulated IR sensors. The range and bearing

system have a range of 20 cm, and it is able to distinguish robots from obstacles.

For onboard image processing, landmark detection, and realization of aggregation

methods, a Raspberry Pi 3B+ embedded computer was used as the central controller

unit. Raspbian OS and ROS Melodic [58] were installed on Raspberry Pi 3B+.
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Detection of ArUco markers was realized using the Raspberry Pi Camera v2.1 and the

ArUco detection module of OpenCV [59]. Kobots can detect markers with a 0.05 m

edge up to 2 m distance and from skew angles up to 80°. Nevertheless, detection

distance was limited to 0.5 m and detection angle was limited to 45° to be consistent

with the simulations.

During the experiments, all robots relied on onboard sensory data and computational

resources, and there was no communication between the robots. Only high-level

commands such as experiment start, end, and debugging messages were transferred

to Kobots from the main computer. In terms of battery and power source, 2S (7.4 V

Nominal) Li-Po 1300 mAh battery was used in Kobot. With this battery, Kobot could

work up to two hours with a CPU load of 50% of the main controller.

For calculating the NAS values during the experiments, 2D poses of each robot were

measured by using OptiTrack motion capture system having 8 USB cameras. Pose

information from the camera array was transferred to the main computer running

ROS Melodic for real-time NAS calculation and monitoring of the current state of the

Figure 4.3: Kobot swarm robotic platform. The diameter and height of a Kobot is

12 cm and 11 cm, respectively.
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Figure 4.4: Real robot experiment setup. Position of each robot is calculated by eight

pose cameras (Optitrack) located around the arena. Then, this data is sent to the main

computer in order to calculate the number of robots inside the cue for derivation of

NAS performance. A webcam is also located in the arena to record the experiments

for documentation purposes. Kobots are utilized with on-board camera to detect the

ArUco marker, i.e., landmarks.

experiments. By observing the real-time NAS value during the experiments, the time

at which NAS reached a steady-state value was noted, and experiment duration was

set accordingly. The setup for real robot experiments is shown in Figure 4.4.

The experimental setup consisted of a rectangular arena with six landmarks placed

on the two sides of the rectangle and a circular cue with a white gradient indicat-

ing higher intensity regions as shown in Figure 4.5. Speed of robots were set to be

v = 0.14 m s−1. Real robot experiments were conducted in two different swarm sizes,

N = {4, 6} robots, to study the performance of the methods in two different popula-

tion densities. The arena for N = 4 robots case was a 2.8 m×1.4 m with a cue radius

of 0.3 m. For the N = 6 robots case, arena was chosen to be 2.8 m × 2.8 m with a

cue radius of 0.45 m. The arena for N = 6 robots setup is illustrated in Figure 4.5.

For all three methods, maximum waiting time was set to be wmax = 90 s. The reason

for choosing this waiting time is that lower waiting time will hamper the aggrega-

tion of robots, and no proper aggregation would be formed. On the other hand, time
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Landmark x6
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Figure 4.5: Arena setup for N = 6 robots experiment. A 2.8 m × 2.8 m rectangular

arena with six landmarks is surrounded by eight pose cameras (Optitrack) which are

used for evaluating number of robots inside the cue. Robots are calibrated in a way

that the grey color of carpet is read as zero cue intensity.

limitations forced by battery life of robots demanded a low waiting time. Otherwise,

robots would be waiting most of the time inside cue until their battery dies. Thus,

wmax = 90 s found to be proper value for maximum waiting time. Table 4.3 shows

the parameters used in the real robot experiments.

Three aggregation methods were implemented in the real robots: BEECLUST, LBA,

and LBA-RL with cyclical schedule for ε. The error threshold parameter for the

LBA method was chosen to be τe = 3, and for the LBA-RL method, amplitude and

period of cycles were chosen as A = 1, p = 100, respectively. For the real robot

experiments, only static environment was studied, and no noise was added during the

experiments. However, noise still existed due to natural reasons like wheel slippage

and odometry errors. Despite the kinematic simulation setup where action space A
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Table 4.3: Standard values used in the real robot experiments

Par. Description Value / range

wa arena width 2.82m

ha arena height {2.82, 1.4}m

Rc cue radius {0.3, 0.45}m

wmax maximum waiting time 90 s

ttotal total length of each experiment 7200 s

N number of robots {4, 6}

m number of landmarks 6

τe error threshold for LBA method 3

A amplitude of cyclical waves 1

p period of cyclical waves 100

γ discount factor of LBA-RL 0

α learning rate of LBA-RL 0.1

l length of action vectors for LBA-RL {1, 1.4}m

ψ angle of action vectors for LBA-RL {36°, 60°, 90°, 120°, 144°}

consists of 44 displacement vectors, in real robot experiments, due to time limitations,

the size of action space was reduced to 6 vectors. This reduced the learning time for

the reinforcement learning algorithm considerably. The action space for the N = 4

robots setup is l ∈ L = {1, 1.4}m and ψ ∈ 	 = {36°, 90°, 144°} and for the N = 6

robots setup is l ∈ L = {1, 1.4}m and ψ ∈ 	 = {60°, 90°, 120°}. Action space was

chosen in a way that displacement vectors could span the arena properly.

A new set of kinematic-based simulations were performed with the same settings of

the real-robot experiments for comparison. The only difference was that noise of

σn = 30° was added artificially in kinematic-based simulations to match the inherent

noise in real robots. Results were reported as steady-state values of NAS.
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CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Landmark-based Aggregation

5.1.1 Kinematic Simulation

5.1.1.1 Evaluation of the non-Adaptive LBA Method

The results of these experiments are depicted in Figure 5.1. In the first part of the

experiment, with the LBA method, NAS reaches almost 0.8, whereas it is 0.3 with

the BEECLUST method. In the second part of the experiment, in which the position

of the cue is changed (as shown in Figure 3.2), NAS decreases dramatically, reaching

almost 0 for both methods. The BEECLUST method recovers faster than the LBA

method, both attaining a NAS of 0.3. As already mentioned, in order to give enough

time for all the robots to utilize all the landmarks to learn the location of the cue, the

cue changed at 40 000 s, so that all the landmarks point to the wrong location in the

second half of the experiment.

With the LBA method, robots are able to use the landmarks in the environment, mak-

ing them “learn” the location of the cue and aggregate rapidly on the cue around

10 000 s. When the position of the cue is changed at 40 000 s, the method cannot

adapt to the change, and robots continue to move toward the “memorized” location

of the cue where it does not exist anymore. This decreased the performance of the

method dramatically. Since the BEECLUST method is based solely on random en-

counters of the robots, robots explore the environment without any preference, which

makes the method have a mediocre performance, but it adapts to the changes rapidly.
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Figure 5.1: Non-adaptive LBA method experiments. The normalized aggregation size

for the non-adaptive LBA and BEECLUST methods. The duration of the experiment

is 80, 000s and the location of the cue changed at 40, 000s indicated by the yellow

arrow. The blue and red lines are the mean performance of the non-adaptive LBA and

BEECLUST methods for 20 repetitions, respectively. The shades show the 1st and 3rd

quartiles of the results. All the other variable are taken as in Table 4.1.

In order to show the underlying differences between the LBA method and the

BEECLUST method, the heat maps of the static part (t ∈ [0, 40000]s) of one of the

simulations are depicted in Figure 5.2. The heat of the cue (shown as a red circle) is

higher in the LBA method than in the BEECLUST method. Furthermore, the off-cue

regions are colder and less dense for the proposed method; that is, robots wandered

outside the cue less than the BEECLUST method since they are able to use the land-

marks. This is also evident from the distribution of the temperature around the left-

most top and bottom landmarks showing that robots are able to move directly toward

the cue after they learn and detect the landmark. The evenly distributed temperature

on the off-cue regions of the BEECLUST method is due to the stochastic nature of the

method making the robots explore the environment randomly. A small detail to men-

tion is the low presence of robots in the detectable area of landmarks. This means that

when robots learn the displacement vector from a particular landmark, once the same

landmark is detected, they go directly along the corresponding displacement vector
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without any further exploration. These facts show that the LBA method is able to use

the information available in the environment hence explore less than the BEECLUST

method boosting its performance once robots learn the displacement vectors from the

landmarks to the cue.

5.1.1.2 Error Threshold Experiments

In these experiments, the effect of the error threshold on the adaptability of the LBA

method is investigated in a dynamic environment. Time evolution of the NAS val-

ues is depicted in Figure 5.3(a) for the LBA (τe = {2, 10}), ODOCLUST and the

BEECLUST methods. The steady-state NAS values for various error thresholds just

before the change of the location of the cue (20 000 s), after the change (30 000 s)

and at the end of the experiment (80 000 s) are shown in Figure 5.3(b), c and d, re-

spectively. In the first part of the experiments, before the change of cue position in

Figure 5.3(a), due to the use of the landmarks, the NAS values of the LBA method

rapidly reaches 0.7 then suddenly decreases to almost 0 at 20 000 s due to the change

of the position of the cue. After the change, robots with the error threshold equal to

2 have a faster transient response than the robots having an error threshold of 10 and

adapt to the change of the cue much faster; both reaching a NAS value of 0.8 at the

end of the experiment as shown in Figure 5.3(d). The BEECLUST method rapidly

reaches a NAS value of 0.2 that also decreases rapidly during the change of the posi-

tion of the cue. After the change, a NAS value of 0.3 is reached. The ODOCLUST

method reaches a NAS value of 0.5 that decreases to almost zero during the change

of the cue. After the change, NAS reaches its original value.

The error threshold changes the behavior of the LBA method drastically. In the static

part of the experiment (t ∈ [0 ,20 000 ]s), the prominent factor is the noise (taken

as σn = 30°). A higher error threshold compensates for the effect of errors due to

noise increasing the performance as shown in Figure 5.3(b) and 5.3(d). However, the

performance saturates for threshold values greater than three since the noise is not

high enough to necessitate higher threshold values. In other words, a higher error

threshold increases the robustness of the method to noise. The situation is just the

opposite when the adaptability of the method is considered. Higher error threshold
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Figure 5.2: Non-adaptive LBA experiments. Heat maps of a randomly selected exper-

iment of the non-adaptive LBA method (top) and the BEECLUST method (bottom).

Positions of the robots are accumulated during t ∈ [0 ,40, 000]s and results are color

coded. The red circles represent the cue, and the black rectangles in the top figure

represent the detectable regions of the corresponding landmarks.
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Figure 5.3: Error threshold experiments. The normalized mean aggregation size

for the adaptive LBA method for: (a) τe = 2 (red line), τe = 10 (blue line),

the BEECLUST method (green line), the ODOCLUST method (purple line). The

steady-state normalized mean aggregation size for the adaptive LBA method for

τe = {1, 2, 3, 4, 6, 8, 10, 12}, (b) before the cue change (20,000s), (c) short time after

the cue change (30,000s), (d) at the end of the experiment (80,000s). The duration of

the experiment is 80,000s and the position of the cue is changed at 20,000s indicated

by the yellow arrow. The noise is taken as σn = 30°.
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values make robots stubborn, and they cannot adapt to the changes in the environment

rapidly, as shown in Figure 5.3(c).

5.1.1.3 Noise Experiments

In these experiments, the effect of noise on the performance of the LBA method is

analyzed in a static environment, and the steady-state results are depicted for τe = 4

in Figure 5.4. For the LBA method, the NAS values decrease as noise increases from

0° to 180°. Noise was not added to the BEECLUST method since it does not have any

effect on its performance, for the robots explore the environment in a fully random

manner in the BEECLUST method. The NAS values of the BEECLUST method are

shown for comparison purposes, and it is around 0.2.

As discussed in the previous chapter, noise has a negative effect on the performance

of the LBA method. Though the overall performance decreases, it can still be com-

pensated by the error threshold. Increasing the error threshold as shown in Fig-

ure 5.3(b) increases the performance when the noise is constant. The advantage of

the BEECLUST method is that it is totally robust against noise, albeit its low perfor-

mance when compared to the LBA method. It can be deduced that when σn = 180°

the performance of the LBA method is almost the same as the BEECLUST method

since noise suppresses all the information gained from the environment. As it can be

observed in Figure 5.4 around 180°, there is still a performance difference between

the two methods. This is due to the fact that the detectable area of landmarks makes

the robots not enter these regions when using the LBA method as seen in Figure 5.2,

which statistically speaking, increases the probability of finding the cue hence the

performance a bit.

5.1.1.4 Population Size Experiments

In population size experiments, the size of the arena is kept fixed, and the number

of robots increased from 5 to 45, and the steady-state NAS values are depicted in

Figure 5.5 for the LBA and BEECLUST methods. For the LBA method, the NAS

values increase, reaching 0.7, then decrease to 0.6 as the number of robots increases.
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Figure 5.4: Noise experiments. The steady-state normalized mean aggregation size

for the adaptive LBA (red line) and BEECLUST (blue line) methods. For the adaptive

LBA method the noise is taken as: σn = {0°, 15°, 30°, . . . , 180°}.

For the BEECLUST method, the trend is somehow different, NAS increases from a

very small value, 0.1, to 0.4 where it is saturated as the number of robots increases.

When the LBA method is considered, increasing the population size (or the density

of robots) increases its performance (up to 20 robots), then the performance satu-

rates and starts to decrease slowly as the size increases. The performance increase is

expected since a robot needs another robot to calculate the displacement vector (so

that robot learns its way from the landmark to the cue) and to wait on the cue (so

that aggregation happens) else the robot does not make intensity measurement and

misses the cue as shown in the last part of Algorithm 2. So, when the number of

robots increases, there is a higher chance for a robot to meet another robot increasing

the learning rate and performance of the method. The reason behind the decrease in

performance is more subtle; when the population size is larger than a certain value,

the probability of encounter another robot off-the-cue increases. And if a robot is

moving towards the cue using the total displacement vector, it would stop, measure

the cue intensity (that would be 0 since it is an off-the-cue encounter), turn randomly,

and move towards this random direction instead of going straight to the cue, decreas-

ing the performance of the LBA method. However, when the BEECLUST method is
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considered, increasing the population size increases the performance reaching a NAS

value of 0.3. The reason for the increase in performance is the increased probability

of encounters of the robots on the cue. The performance saturates around 0.3 due

to the overcrowding of robots in the arena. The performance difference between the

two methods is more prominent in low densities (or low population size). High robot

density hinders the performance of the LBA method due to overcrowding preventing

to use of environmental information.

5.1.1.5 Cue Size Experiments

In the cue size experiments, the size of the arena is fixed, yet the size of the cue is

increased from 0.25 to 10, and the steady-state NAS values are depicted in Figure 5.6

both for the LBA and BEECLUST methods. When the cue size increases, the perfor-

mance of the LBA method increases sharply, saturating at 1.0 at a cue radius of 5 m.

The same trend is also observed for the BEECLUST method; an increase in the cue

radius increases the method performance that gets saturated at a cue radius greater

than 5 m.
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Figure 5.5: Population size experiments. The steady-state normalized mean aggre-

gation size for the adaptive (red line) and BEECLUST (blue line) methods. The

population size is taken as: N = {10, 15, 20, 25, 30} robots.
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Figure 5.6: Cue size experiments. The steady-state normalized mean aggregation size

for the adaptive LBA (red line) and BEECLUST (blue line) methods. The cue radius

is taken as, Rc = {0.25, 0.5, 0.75, 1.0, 1.5, 2.0, . . . , 5.0}m.

When the LBA method is considered, the increase in the cue size increases the prob-

ability of finding the cue. This increases both the learning rate of total displace-

ment vectors and the probability of finding another robot on the cue, causing a rapid

increase in the performance as seen in Figure 5.6. Since the performance of the

BEECLUST method solely depends on the random encounters of robots on the cue,

increasing the size of the cue increases the number of robots on the cue, hence increas-

ing the performance of the BEECLUST method. The rate of performance increase is

higher for the LBA method since it also utilizes environmental information. The last

point to note is that the performance difference between the two methods decreases,

similar to the population size experiments, as the cue size increases. In the limiting

case, the performance of the BEECLUST method catches that of the LBA method.

That is an expected result since when the cue radius is 5 m, almost 75 % of the arena

is covered by the cue, and robots do not need landmarks to find the cue anymore.
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5.1.2 Realistic Simulation

These simulations are performed to illustrate the applicability of the LBA method in

a realistic setting using the simulated models of all actuators and sensors, including

the camera, as discussed in the previous chapter. Due to heavy computational load,

a systematic investigation of all parameters has not been performed using realistic

simulations; instead, a representative set of values is investigated, and the results

for the LBA and BEECLUST methods are depicted in Figure 5.7. Both methods

show a similar trend, though the LBA method performs better than the BEECLUST

method. The kinematic and realistic simulation results are very similar, showing that

the kinematic simulations are reliable.

One of the main concerns in realistic simulations is noise. Since there is inherently

noise in the actuation and sensing of robots in realistic simulations, the noise was not

added artificially during the simulations. The noise in detecting the ArUco markers

affects both the estimation of the relative orientation of the ArUco markers ∠~P , and

the magnitude of the initial relative position vector |~P |. In order to investigate the

noise in ArUco markers detection further, an additional experiment was performed.

In this experiment, a robot was located in different locations on the arena, its camera

being directed toward the ArUco markers indicated by a black semi-circle on the x-

axis. Then, the gathered image by the camera was processed based on the OpenCV

library, and the ∠~P and |~P | were estimated. The error of estimation was then calcu-

lated, and the results for the angular and distance errors were depicted as a heat map

in Figure 4.2(a) and 4.2(b), respectively.

In both plots, there are regions shown in white indicating that the positions where

the robot was not able to detect the QR-code. When the angular error is considered,

an asymmetric pattern of positive and negative relative angles is observed. The heat

map is mostly blue, indicating that the angular error is relatively small, almost below

2°. Moreover, the detectable region has a bow shape, and the range is from −45° to

+45°. The distance error plot is half blue and half light blue, indicating that the error

is mostly below 0.05 m. The mean and standard deviation of the angular and distance

errors are calculated, and the results are shown in Table 5.1.
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Table 5.1: Realistic simulation errors.

Variable Mean Standard Deviation

|∠~P − ∠ ~̂P | 0.62° 1.21°

||~P | − | ~̂P || 0.02m 0.03m

In both of the plots, the maximum error is observed around the central axis of the de-

tectable region that is furthest from the ArUco marker. Since the angle is calculated

using the slope of the vertical lines of the rectangle on the periphery of the ArUco

marker, a few pixel errors cause a big change in the slope for very small relative

angles resulting in larger errors than the moderate relative angles. Finally, the unde-

tectable points (white regions) can be categorized into three groups; a) those which

are too close to the landmark, where the camera could not capture the whole ArUco

marker; b) the points which are too far from the ArUco marker and due to the limited

resolution of the image, the detection is not achieved; c) the regions having a larger

relative angle with respect to the ArUco marker.

5.2 Landmark-based Aggregation with Reinforcement Learning

5.2.1 Kinematic Simulation

5.2.1.1 Environment Experiments

Time evolution of NAS values for the three methods without and with odometry

noise are depicted in Figure 5.8. In the experiments without noise, as shown in Fig-

ure 5.8(a), all the methods, except the BEECLUST method, showed a similar steady-

state performance during the first half of the experiment reaching a NAS value of 0.7.

When the cue location changed, the LBA method adapted to the change faster than

the LBA-RL method. The performance of the BEECLUST method was the lowest,

and it was not affected by the change of the cue due to its random nature.

The LBA method showed the best transient performance and adapted quickly to the

change of the cue. The LBA-RL method with the VDBE schedule was able to reach
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Figure 5.7: Realistic experiments. The time evolution of the normalized mean aggre-

gation size for the adaptive LBA method with the realistic simulation (red line), with

the kinematic simulation (green line) and the BEECLUST method with the realistic

simulation (blue line). The population size is 10 robots. Only static experiments with

a duration of 10 000 s are performed. The experiments are repeated for 5 times for

each setting. For the kinematic simulations, the noise is taken as: σn = 15°. The

error threshold is taken as 4.
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Figure 5.8: Environment Experiments. Time evolution of the NAS values of the

BEECLUST method, the LBA method with τe = 4, the LBA-RL method with the

cyclical schedule, p = 100, and with the VDBE schedule, σ = 1 are shown. (a) The

NAS values without odometry noise and (b) the NAS values with odometry noise,

σn = 15°. Shades represent the first and third quarterlies and the solid lines are the

median of 5 trials. Duration of each experiment is ttotal = 100, 000s. The location

of the cue is changed at tchange = 50, 000s, indicated by the vertical dashed line. In

order to smoothen the results, moving average with a window of [ts, ts + 500] is used.
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the performance of the LBA method. The LBA-RL method with a cyclical schedule

also showed a similar performance level with the LBA-RL method with the VDBE

schedule. The only difference being the oscillations observed in the cyclical schedule

due to the cyclical updates of ε. Moreover, the response of the LBA-RL method is

slower than the LBA method, and it also adapts slower to the change of cue position.

This is due to the fact that it takes time for the robots to explore and learn the envi-

ronment so that they can form the Q-table. Consequently, it takes a while for a robot

to discover the changes in the environment and adapt accordingly. In addition, the

learning speed is controlled by the learning rate, α, and it is taken as a fixed value,

α = 0.1 in this thesis . This restricts the learning speed, hence slows down the re-

sponse of the LBA-RL. In the LBA method, since no learning model is used, it works

faster than the LBA-RL method.

The BEECLUST method showed the worst performance achieving a NAS value of

0.37. This is due to the fact that the robot density was low, decreasing the probability

of encounter the robots; hence, the performance of the BEECLUST method decreases

considerably. The good point about the BEECLUST method is that its performance

is not affected by the change of cue location. The reason for that is inherent in the

low performance of the method. Since robots cannot form large aggregates on the

cue, changing the location of the does not affect its performance.

The results of the experiments with odometry noise, σn = 15°, are depicted in Fig-

ure 5.8(b). When compared to the experiments without noise, the performance of

all methods except the BEECLUST method decreased. The LBA method has the

most drastic decrease from a NAS value of 0.7 to 0.55, whereas the LBA-RL method

showed a slight decrease from 0.7 to 0.67. This difference comes from the fact that the

performance of the LBA method depends heavily on the odometry data. For calcu-

lating the total displacement vector ~Sk, a robot needs to integrate each displacement

vector, ~Ski , that it traversed to reach the cue after detecting the kth landmark. The

length and angle of each ~Ski are computed using odometry data. Therefore, a slight

amount of noise like σn = 15° affects the LBA method considerably. On the other

hand, the LBA-RL method also uses the odometry data to execute an action, but it

does not integrate displacement vectors. Therefore, it is more robust to odometry

noise. The performance of the BEECLUST method did not change since it does not
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Figure 5.9: Noise experiments. The steady-state values of NAS are shown

for the BEECLUST, LBA, LBA-RL with cyclical schedule, and LBA-RL

with VDBE schedule methods with respect to the odometry noise, σn ∈
{0°, 5°, 15°, 30°, 45°, 60°90°, 135°, 180°}. Bars represent the first and third quarter-

lies and lines are the median of 5 trails. The experiments are static and duration of

each experiment is: ttotal = 50, 000s. The x-axis is not drawn to scale.

use any odometry data, hence robust to odometry noise.

5.2.1.2 Noise Experiments

The results of the noise experiments are depicted in Figure 5.9. In the zero noise

case, the LBA method showed the best performance having a NAS value of ≈ 0.7;

however, its performance decreased dramatically noise increased. This drop in perfor-

mance is expected since the LBA method depends highly on the odometer readings,

as also discussed in the previous chapter. The performance of the LBA-RL method

also decreased due to noise, especially in higher noise regions, but still, it is more
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robust to noise than the LBA method. Since the BEECLUST method does not use

the odometry readings, its performance did not change and stayed around 0.37 in all

the settings. One important thing to note is when σn = 180°, the performance of all

methods converged to BEECLUST since the information acquired from landmark is

not exploitable anymore due to the intense amount of noise.

5.2.1.3 Parameter Sensitivity Experiments

The steady-state values of NAS versus the model parameters are depicted in Fig-

ure 5.10. The first and second rows represent the steady-state values before and after

the change of location of the cue. The leftmost and middle columns are the plots

of the period, p, and amplitude, A, parameters of the cyclic schedule, and the last

column are the plots of the inverse sensitivity parameter, σ for the VDBE schedule.

For the cyclical schedule, the period of waves does not affect the aggregation per-

formance when p ≤ 10. When p ≥ 10, the performance increases considerably and

remains around a NAS value of 0.65. Although large periods do not affect the steady-

state value of the performance, they cause oscillations of NAS values, as shown in

Figure 5.11. Therefore, provided that p ≥ 10, cyclical schedules are not sensitive to

the period. The same is also true for the amplitude parameter. It does not affect the

performance that remains around 0.65. For both of the parameters, the results are the

same before and after the change of the cue.

For the VDBE schedule, σ drastically changes the performance of aggregation. Be-

fore the change of the cue, higher σ values yielded better results. However, once the

location of the cue was changed, higher σ values failed to put the robot back into the

exploration state; hence the aggregation performance decreased considerably. For in-

stance, when σ = 50, the NAS value before the change of the cue was approximately

0.7, and after the change, it dropped to 0.3, which is even worse than the perfor-

mance (NAS=0.37) of the BEECLUST method. This is because robots do not return

to the exploration mode; hence robots use the previously learned Q-table in the new

environment. As a result, the performance becomes worse than the random choice.

In order to understand the performance difference between two schedules, the time

evolution of ε for the cyclical schedule with p = 100 and A = 1 and the VDBE

50



Figure 5.10: Parameter Sensitivity Experiments. The steady-state values of NAS are

shown for different model parameters of LBA-RL method with cyclic schedule and

LBA-RL method with VDBE schedule. Top and bottom rows show the results before

and after the change of cue location, respectively. Leftmost and middle columns

show the results for the period, p (A is taken as 1), and amplitude, A (p is taken as

100) parameters of the cyclic schedule, respectively. The rightmost column shows the

results for the inverse sensitivity (σ) parameter of the VDBE schedule. Bars represent

the first and third quarterlies and lines are the median of 5 trails. Duration of each

experiment is ttotal = 100, 000s. The location of the cue is changed at tchange =

50, 000s, indicated by the vertical dashed line. The leftmost and rightmost plots are

drawn in semi-log scale.
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Figure 5.11: Demonstration of effect of period parameter, p, of cyclical schedule of

the LBA-RL method on performance of the swarm. Shades demonstrate the first and

third quarterlies and lines are the mean of 5 trials of the experiment.
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Figure 5.12: Evolution of ε during time for VDBE schedule with σ = 50 and cyclical

schedule with p = 100 for a randomly selected robot. Occasional straight line regions

in ε is due to the fact that ε is updated at every epoch, i.e., when the robot detected a

landmark. So, ε is a function of epoch, not time.
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schedule with σ = 50 using the data from a randomly selected robot is depicted in

Figure 5.12. As expected, for the cyclical schedule, ε changes periodically based on

p and A. VDBE schedule updates ε for each state separately, one line was drawn for

each state making a total of six lines. ε values decrease monotonically for all the states

with the VDBE schedule. This means that robots exploit more as time passes. This

is beneficial when the location of the cue does not change as observed in Figure 5.10

(rightmost top plot), but if it changes as in the non-stationary experiments, the ag-

gregation performance decreases considerably as observed in Figure 5.10 (rightmost

bottom plot). This phenomenon is not observed in the cyclical schedule since robots

half of the time explore and half of the time exploit.

In order to explain this phenomenon further, rewards received by a randomly selected

robot for the cyclical and VDBE schedules are depicted in Figure 5.13. As expected,

rewards that the VDBE schedule receives were higher than the cyclical schedule be-

fore the change of the cue. However, after the change, the VDBE schedule keeps ε

low as shown in Figure 5.12 and fails to adapt to the new location of the cue. As a

result, rewards were lower than the cyclical schedule after the change of the cue. For

the cyclical schedule, ε oscillates; therefore, it can constantly adapt to changes in the

environment.

5.2.2 Real-Robot Experiment

The BEECLUST, LBA, and LBA-RL methods were implemented using real robots.

For the sake of comparison, the same experimental setup was also implement us-

ing the kinematic-based simulator. The steady-state NAS values for real robot and

simulation-based experiments with 4 and 6 robots are shown in Figure 5.14(a) and

Figure 5.14(b), respectively. In 4-robot experiments, the BEECLUST method has the

lowest performance with a steady-state NAS value of 0.45, the LBA method has a

steady-state performance of 0.58, and the LBA-RL method has the best performance

reaching up to 0.62. In 6-robot experiments, a similar trend in performance has been

observed. The results of kinematic-based simulation experiments are in accordance

with the real robot experiments.
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Figure 5.13: Rewards received by a randomly selected robot during time for LBA-RL

method with cyclical ε schedule with a period of p = 100 and an amplitude of A = 1

and VDBE schedule with σ = 50. Shades represent the first and third quarterlies and

lines are the median of 5 trails. Duration of each experiment is ttotal = 100, 000s. The

location of the cue is changed at tchange = 50, 000s, indicated by the vertical dashed

line.
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Figure 5.14: Steady-state values of NAS performance of the BEECLUST, LBA, and

LBA-RL methods for real robots experiments (a) with 4 robots and (b) for 6 robots.

LBA-RL method is implemented with cyclic schedule using A = 1 and p = 100. The

boxes represent the median, first, and third quartiles. Whiskers are the minimum and

maximum values. The pink boxes represent the results of kinematic-based simulation

results and the blue boxes are real robot experiment results. Experiments are repeated

five times.
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5.3 Discussion

The experiments supported the idea that compared to the BEECLUST, the LBA

method makes robots wander less off-the-cue and move toward the cue as soon as

they meet a landmark. It was proven that exploiting the data of the landmarks sig-

nificantly increases the aggregation performance when the environment is static. In

a dynamic environment, however, the situation was more challenging. The dynamic

feature of such environments makes the old information not valid anymore; hence,

relying on outdated data is detrimental to the aggregation performance. The concept

of the adaptive algorithm is introduced to cope with this challenge by using an error

variable and a corresponding error tolerance threshold. By so doing, the proposed

method reacts to the changes in the environment, makes the robots able to erase the

wrong perceptions of the environment, and subsequently update them. By evaluat-

ing the performance of the LBA method in dynamic environments, it was revealed

that the proposed method was more adaptive to the environment changes than the

BEECLUST method. Thus, it was concluded that the proposed method not only out-

performed the original BEECLUST method in stationary environments but also was

able to adapt faster to the changing environment. Hitherto, we draw the conclusion

that for a dynamic environment, non-adaptive LBA is not able to aggregate the swarm,

thus considering the adaptive feature of the method is inevitable.

The study on different error threshold parameters, τe, demonstrated that in a noisy

environment, increasing the threshold makes the system more resistant to the noise.

On the contrary, the effect of the threshold on the adaptation rate is the opposite; that

is, decreasing τe increases the agility of the method to adapt to new conditions of the

environment. It is essential to mention that the effect of noise, as a demonstration of

uncertainties in the environment, on the aggregation performance is destructive. The

degradation of the performance versus noise is such that after a critical value of noise

strength, using the information of landmarks did not make a change. Consequently,

it can be concluded that for the environments with a high degree of uncertainties, it is

not justifiable to employ the LBA method, and it is not reasonable to afford the cost.

Similar to another study [19], on the effect of the population density, the results

bore the conclusion that the BEECLUST method lacks a proper performance in low-

57



density swarms. More than that, the difference between the LBA method and the

BEECLUST method widened for the swarms with low-density populations. Thus,

an important conclusion to be made here is the fact that in such cases adopting the

LBA method significantly increases the performance. In the sample experiment, the

amount of increase was so much that even a four times denser swarm of robots with

the BEECLUST method could not outperform the LBA method. As one of the main

conclusions of this thesis, compared to increasing the number of robots with the

BEECLUST method, equipping robots with the LBA method costs less yet performs

better.

The effect of cue size on the aggregation performance was also studied in the last

investigation, which reflected the fact that in an environment with a low density of

cue, exploiting the environmental information plays a vital role in the aggregation

performance of robots. Therefore, in an environment with a low probability of finding

the cue, storing data and referring to them can considerably boost the aggregation

performance.

In the environment experiments (Figure 5.8), since the robot density was low, the

BEECLUST method had the worst performance. For the experiments without noise,

the LBA method showed the best performance. However, its performance dropped

drastically in the experiments with an even slight amount of noise (Figure 5.9). The

LBA-RL method was more robust to noise than the LBA method. This is also ob-

served in real robot experiments (Figure 5.14) where odometry noise was inherently

present.

The LBA-RL method uses the Q-learning technique, and ε-greedy policy was cho-

sen as the policy to tackle the exploration-exploitation dilemma. In order to use the

ε-greedy policy effectively in noisy and dynamic environments, ε must be scheduled.

VDBE [46] scheduling schemes were implemented, and a new cyclical schedule was

proposed by getting inspiration from [49]. The LBA-RL method with the VDBE

schedule achieved the highest performance with proper tuning of the model param-

eters (Figure 5.9). However, its performance is very sensitive to model parameters

(Figure 5.10). On the other hand, the LBA-RL method with cyclical schedule is

more robust to odometry noise (Figure 5.9), less sensitive to model parameters (Fig-
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ure 5.10), and performs better in non-stationary environments (Figure 5.8). Further-

more, the cyclical schedule requires less computational power and memory, suitable

for simple swarm robots (Figure 5.14).

All in all, the LBA-RL method with cyclical schedule satisfies two requirements pro-

posed in this thesis. (1) It is more robust to odometry noise, (2) it is less sensitive to

model parameters, and (3) it is applicable to real robots. But, it has the demerit of

dependency of its action space on the dimensions of the arena.
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CHAPTER 6

CONCLUSION

In this thesis, a novel cue-based aggregation method was proposed (LBA-RL) based

on Q-learning and ε-greedy policy with the proposed cyclical update schedule. First,

landmarks were added to the environment, and robots learned the relative position

of the cue with respect to the landmarks by using odometry sensors and path inte-

gration. It was shown that Landmark-Based Aggregation (LBA) outperformed the

BEECLUST method in static environments, but the LBA method was not able to

adapt to changes in the environment. Hence, an adaptive approach was employed

to make it possible for robots to detect and remove outdated or flawed information

and start learning from the beginning. This modification caused the LBA method

to outperform the state-of-the-art cue-based aggregation methods (BEECLUST and

ODOCLUST) in both static and dynamic environments.

Despite promising results of the LBA method, it depends heavily on odometry data

which makes it susceptible to odometry sensor noise and uncertainties. Thus, re-

inforcement learning algorithm was employed to make the LBA method robust to

uncertainties. This new approach was named as Landmark-Based Aggregation with

Reinforcement Learning (LBA-RL). Through systematic analysis with the kinematic-

based simulations and real robots experiments, it was shown that the proposed method

shows better performance in the presence of odometry noise and environment uncer-

tainties when compared to the BEECLUST method [9] and the LBA method [60]. A

new approach to solve the exploration-exploitation dilemma was proposed to sched-

ule ε parameter of ε-greedy policy by getting inspiration from [49]. The proposed

cyclical schedule was compared to other state-of-the-art approaches, and it was shown

that cyclical updates are less sensitive to model parameters and do not require fine-
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tuning. Additionally, cyclical updates of ε make robots more robust to changes in the

environment.

Nevertheless, the proposed aggregation method requires a priori information about

the dimensions of the arena. Therefore, as future work, the DDPG algorithm [61]

will be used to avoid requiring a priori information about dimensions of the arena.

Furthermore, an adaptive approach will be considered to tune the learning speed of

the algorithm. Moreover, the possibility of sharing information via a pheromone-

based communication system might help the swarm to increase the performance of

aggregation. Another important aspect is to analyze the number, distribution, and

position of landmarks and their effects on aggregation performance as a future study.

Besides, the presence of static or dynamic obstacles was not considered in this work.

In future works, stationary and moving objects will be added to the scenario, and

the performance of the proposed method will be evaluated under these new circum-

stances. Last but not least, the setup for multiple cues with different cue intensities

will also be studied, and the performance of the proposed method and the BEECLUST

method will be compared.
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