
HYBRID QUANTUM-CLASSICAL GRAPH NEURAL NETWORKS
FOR PARTICLE TRACK RECONSTRUCTION

AT THE LARGE HADRON COLLIDER

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CENK TÜYSÜZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

PHYSICS

AUGUST 2021

Approval of the thesis:

HYBRID QUANTUM-CLASSICAL GRAPH NEURAL NETWORKS
FOR PARTICLE TRACK RECONSTRUCTION

AT THE LARGE HADRON COLLIDER

submitted by CENK TÜYSÜZ in partial fulfillment of the requirements for the degree
of Master of Science in Physics Department, Middle East Technical University
by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Seçkin Kürkcüoğlu
Head of Department, Physics

Prof. Dr. M. Bilge Demirköz
Supervisor, Physics, METU

Examining Committee Members:

Prof. Dr. Sadi Turgut
Physics, METU

Prof. Dr. M. Bilge Demirköz
Physics, METU

Prof. Dr. M. Altan Çakır
Physics Engineering, Istanbul Technical University

Assist. Prof. Dr. Osman Barış Malcıoğlu
Physics, METU

Assist. Prof. Dr. Heather Gray
Physics, University of California, Berkeley

Date: 05.08.2021

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Cenk Tüysüz

Signature :

iv

ABSTRACT

HYBRID QUANTUM-CLASSICAL GRAPH NEURAL NETWORKS
FOR PARTICLE TRACK RECONSTRUCTION

AT THE LARGE HADRON COLLIDER

Tüysüz, Cenk

M.S., Department of Physics

Supervisor: Prof. Dr. M. Bilge Demirköz

August 2021, 107 pages

Particle collider experiments aim to understand Nature at small scales. Particle accel-

erators, such as the Large Hadron Collider (LHC) at the European Organization for

Nuclear Research (CERN), collide particles at high rates (MHz) and high energies

(TeV) in order to probe such small scales. High collision rates may bring many com-

putational challenges. One of these challenges is particle track reconstruction, which

is the task of distinguishing the trajectories of charged particles passing through the

detector. The upcoming High Luminosity upgrade of the LHC is going to increase the

collision rates and require more computational resources. Particle track reconstruction

algorithms will also be under much more stress, as the current algorithms are scaling

worse than quadratically. This work presents a hybrid Quantum-Classical model to

solve the particle track reconstruction problem by combining novel Graph Neural

Networks with Quantum Neural Networks that are compatible with Noisy Intermediate

Scale Quantum (NISQ) computers. Results indicate that the hybrid model can match

the performance of the classical model within the limits of 16 qubits and 16 hidden

dimensions.

v

Keywords: particle track reconstruction, quantum variational algorithms, machine

learning

vi

ÖZ

BÜYÜK HADRON ÇARPIŞTIRICISI’NDA
PARÇACIK İZİ YAPILANDIRMASI İÇİN

HİBRİT KUANTUM-KLASİK ÇİZGE SİNİR AĞLARI

Tüysüz, Cenk

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. M. Bilge Demirköz

Ağustos 2021 , 107 sayfa

Parçacık çarpıştırma deneyleri doğayı küçük boyutlarda anlamayı hedefler. Avrupa

Nükleer Araştırma Merkezi’nde (CERN) bulunan Büyük Hadron Çarpıştırıcısı (BHÇ)

gibi parçacık hızlandırıcıları küçük boyutları incelemek için parçacıkları yüksek fre-

kans (MHz) ve enerjide (TeV) çarpıştırır. Yüksek çarpışma frekansları pek çok bilgi-

sayımsal zorluğu beraberinde getirmektedir. Bu zorluklardan bir tanesi ise çarpışma

sonucu açığa çıkan parçacıkların rotasının belirlenmeye çalışıldığı parçacık izi yapı-

landırma problemidir. Şu anda BHÇ üzerinde çalışmaları sürmekte olan yüksek ışınım

geliştirmeleri ise parçacık çarpışma oranlarını artıracak ve bilgisayım zorluklarını daha

da büyüyecektir. Şu anda kullanılmakta olan parçacık izi yapılandırma algoritmaları

ikinci dereceden daha kötü bir ölçeklenmeye sahip oldukları için de bu durumdan

fazlasıyla etkilenecektir. Bu çalışma parçacık izi tekrar oluşturma problemini çözmek

için yenilikçi Çizge Sinir Ağları’nı Kuantum Sinir Ağları ile birleştiren, Gürültülü

Orta Ölçekli Kuantum (NISQ) bilgisayarla uyumlu, bir hibrit Kuantum-Klasik model

sunmaktadır. Sonuçlar 16 kübit ve 16 gizli uzay boyutuna sahip hibrit modelin klasik

vii

model ile benzer sonuçlar verebildiğini ortaya koymaktadır.

Anahtar Kelimeler: parçacık izi yapılandırma, kuantum değişimsel algoritmalar, yapay

zeka

viii

to infinity and beyond

ix

ACKNOWLEDGMENTS

I would like to start by thanking my supervisor Prof. Dr. M. Bilge Demirköz, who

thought me a lot about both science and life. My academic journey started with her in

2016 and now looking back, I can see all the valuable experiences I had in her group.

She believed in me to switch to a new field during my master’s and I hope I did not let

her down, for this I can’t express my gratitude enough.

I would like to thank Carla Rieger, Dr. Daniel Dobos, Dr. Karolos Potamianos,

Dr. Sofia Vallecorsa, Dr. Jean-Roch Vlimant, Dr. Federico Carminati, Dr. Fabio

Fracas and Dr. Alessandro Roggero for valuable discussions. I would like to thank

Dr. Kristiane Novotny separately for all the support, guidance and friendship, which

helped me tremendously throughout the thesis. I would like to thank my colleagues

and friends from METU IVMER and especially Selen Akçelik, Raheem Hashmani,

Uğur Kılıç and Erinç Kılıç for their valuable discussions and support.

I would like to thank my friends Çağan Yüksel and Feyza Nur Çalışkan for their

friendship and support. I would like to thank Ezgi Taş for the joy she brought to the

boring routine of my life and being there whenever I need. Last but not least, I would

like to thank my family who supported me no matter what and never questioned my

decisions.

I would like to express my gratitude for all the open science supporters from open-

source developers to researchers who submit their work to arXiv. I believe in the

importance of breaking the barriers in science and include every person equally

regardless of their gender, religion or origin.

I would like to acknowledge support of TÜBİTAK through the 2210-E scholar-

ship. This work was supported by Presidency of Strategy and Budget and travels

to CERN were supported by Turkish Atomic Energy Authority (TAEK) (Grant No:

2017TAEKCERN-A5.H6.F2.15 and 2020TAEK(CERN)A5.H1.F5-26). Part of this

work was conducted at "iBanks", the AI GPU cluster at Caltech. I acknowledge

x

NVIDIA, SuperMicro and the Kavli Foundation for their support of "iBanks". I ac-

knowledge the use of IBM Quantum services for this work. The views expressed are

those of the author, and do not reflect the official policy or position of IBM or the IBM

Quantum team.

xi

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xii

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

2 PARTICLE TRACK RECONSTRUCTION 3

2.1 The Large Hadron Collider . 3

2.2 Problem Definition . 7

2.3 Approaches to Particle Track Reconstruction Problem 9

2.3.1 Traditional Approach . 10

2.3.2 Deep Learning Based Approaches 11

2.3.2.1 Neural Networks . 11

2.3.3 Recurrent Neural Networks 15

2.3.4 Graph Neural Networks . 15

xii

2.3.5 Quantum Computing Based Approaches 17

2.3.5.1 Quantum Adiabatic Computing 18

2.4 The TrackML Challenge and the Dataset 19

3 QUANTUM COMPUTING AND MACHINE LEARNING 23

3.1 Circuit-based Quantum Computing 24

3.2 State of Quantum Computing Hardware 30

3.2.1 Quantum Computing Hardware Paradigms 31

3.2.2 DiVincenzo’s Criteria . 33

3.2.3 Quantum Volume . 35

3.3 Variational Quantum Classification 37

3.3.1 Information Encoding . 40

3.3.2 Parametrized Quantum Circuits 42

3.3.3 Training Classical and Quantum Neural Networks 49

3.3.3.1 Optimization . 49

3.3.3.2 Gradients in Variational Quantum Algorithms 53

3.3.3.3 Barren Plateaus in loss landscapes 55

4 METHODOLOGY . 59

4.1 Data Pre-processing . 59

4.2 Hybrid Graph Neural Network . 65

4.2.1 The Edge Network . 66

4.2.2 The Node Network . 67

4.2.3 The Hybrid Neural Network 67

4.3 Training the Model . 71

xiii

4.4 Performance Metrics . 72

4.5 Hardware and Software Information 75

5 RESULTS & DISCUSSION . 77

5.1 Results . 77

5.1.1 Embedding Axis Comparison 77

5.1.2 Number of Layers Comparison 78

5.1.3 Number of Iterations Comparison 80

5.1.4 Hidden Dimension Size Comparison 82

5.2 Discussion . 86

6 CONCLUSION . 89

REFERENCES . 90

APPENDICES

A DEFINITIONS OF QUANTUM GATES 107

xiv

LIST OF TABLES

TABLES

Table 2.1 Some of the popular activation functions used in NNs. 13

Table 2.2 Physics contents of different types of TrackML files. 22

Table 3.1 Decoherence properties of some available Quantum Computers with

different architectures as of 6 April 2021. 34

Table 4.1 Number of particle hits before and after the pT cut in the train and

test datasets. 61

Table 4.2 Confusion matrix for binary classification. 72

Table 5.1 Model labels and their respective PQCs used in different parts of the

network. 84

xv

LIST OF FIGURES

FIGURES

Figure 2.1 CERN’s accelerator complex. 4

Figure 2.2 An illustration of a bunch crossing at the LHC 5

Figure 2.3 An illustration of primary (red circles), pile-up (green squares)

and secondary (blue hexagons) vertices at the LHC. 6

Figure 2.4 Subsystems of the CMS detector 7

Figure 2.5 Subsystems of the ATLAS inner detector. 8

Figure 2.6 Example of particle hits and tracks in a magnetic field. 9

Figure 2.7 Computation time required for the reconstruction of particle

tracks at the ATLAS experiment with respect to pile-up. 11

Figure 2.8 Graphical representation of a perceptron. 12

Figure 2.9 Some of the popular activation functions used in NNs. 13

Figure 2.10 Graphical representation of a generic Deep Neural Network model. 14

Figure 2.11 RNN approach of the Hep.TrkX project. 16

Figure 2.12 Attributes of a Graph. 17

Figure 2.13 The GNN model of the HEP.TrkX project. 17

Figure 2.14 Coordinate definitions of a triplet in Denby-Peterson representation. 19

Figure 2.15 Layer geometry of the TrackML detector 20

xvi

Figure 3.1 Bloch sphere representation of quantum states. 25

Figure 3.2 A single qubit circuit representation. 27

Figure 3.3 An arbitrary Quantum circuit with various qubits and multi-qubit

gates. 28

Figure 3.4 Bell state preparation circuit. 29

Figure 3.5 Histogram of Bell state measurements. 30

Figure 3.6 Topologies of Quantum Computers with different technologies. . 32

Figure 3.7 Training schematic of a generic VQA. 38

Figure 3.8 Absolute errors of expectation values of an example Quantum

circuit with different shots. 39

Figure 3.9 Angle embedding representations on the Bloch Sphere. 42

Figure 3.10 An example construction of a two qubit parametrized gate. . . . 43

Figure 3.11 Some of the hierarchical architecture types of PQCs in their 4

qubit configurations. 44

Figure 3.12 A generic variational Quantum circuit with an arbitrary PQC. . . 44

Figure 3.13 Example 4 qubit toy configurations for entangling and parametrized

layers. 45

Figure 3.14 A nearest-neighbor (checkerboard) PQC architecture 46

Figure 3.15 Model Expressibility vs. number of layers comparing two PQCs

with different parametrized layers. 48

Figure 3.16 Model Entangling Capability vs. number of layers comparing

two PQCs with different entangling layers. 49

Figure 3.17 Binary cross entropy for different predictions of a sample 50

xvii

Figure 3.18 Absolute errors of estimated gradient values of a PQC with

different number of shots. 54

Figure 3.19 The layout of the PQC that is used to obtain gradient samples. . . 55

Figure 3.20 Expectation values of the PQC in Fig. 3.19 with 4 layers using

various number of qubits vs. the θ1,1 parameter. 56

Figure 3.21 Variance of gradient of a single parameter of a PQC vs. number

of qubits and layers. 56

Figure 4.1 2D projection of the TrackML detector geometry. 60

Figure 4.2 Stacked histogram of number of hits vs pT. 61

Figure 4.3 A drawing of the cylindrical coordinate system for particle colli-

sions. 62

Figure 4.4 A sketch of particle track reconstruction. 63

Figure 4.5 Histogram of fake and true segments in construction of graphs

from 100 events. 63

Figure 4.6 2D projection of hits, fake and true edges of an event after pre-

processing. 65

Figure 4.7 A schematic of the GNN architecture. 66

Figure 4.8 The HNN architecture design. 68

Figure 4.9 The 4 qubit configurations of the PQCs used in this work. 70

Figure 4.10 Expressibility and Entanglement Capacity vs. number of layers

for some of the PQCs in their 4 qubit configurations. 71

Figure 4.11 ROC plot of an arbitrary model. 74

Figure 5.1 Axis of angle embedding comparison. 78

Figure 5.2 Embedding axis comparison training curves. 79

xviii

Figure 5.3 Number of layers comparison. 80

Figure 5.4 Comparison of training curves for different (1, 3, 5 and 7) layers. 81

Figure 5.5 Comparison of the number of iterations. 82

Figure 5.6 Comparison of the training curves of number of iterations. 83

Figure 5.7 Comparison of hidden dimension size. 84

Figure 5.8 Comparison of training curves for hidden dimension sizes. . . . 85

Figure 5.9 Comparison of hybrid and classical models for different hidden

dimension sizes. 86

xix

xx

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

ADAM Adaptive Moment Estimation

ANN Artificial Neural Networks

ATLAS A Toroidal LHC Apparatus

AUC Area Under the ROC Curve

BP Barren Plateau

CERN European Organization for Nuclear Research

CKF Combinatorial Kalman Filter

CMS Compact Muon Solenoid

CPU Central Processing Unit

DL Deep Learning

DNN Deep Neural Network

FC Fully Connected

FN False Negative

FP False Positive

FPR False Positive Rate

GNN Graph Neural Network

GPU Graphical Processing Unit

HEP High Energy Physics

HHL Harrow-Hassidim-Lloyd

HL-LHC High Luminosity Large Hadron Collider

HNN Hybrid Neural Network

IEC Information Encoding Circuit

LHC Large Hadron Collider

LSTM Long Short Term Memory

ML Machine Learning

xxi

MLPF Machine Learned Particle Flow

MPS Matrix Product State

NISQ Noisy Intermediate Scale Quantum

NN Neural Network

PQC Parametrized Quantum Circuit

QA Quantum Annealing

QC Quantum Computer

QCD Quantum Chromodynamics

QGNN Hybrid Quantum-Classical Graph Neural Network

QNN Quantum Neural Network

QPU Quantum Processing Unit

QUBO Quadratic Unconstrained Binary Optimization

QV Quantum Volume

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

TN True Negative

TP True Positive

TPR True Positive Rate

TPU Tensor Processing Unit

TTN Tree Tensor Network

VQA Variational Quantum Algorithm

VQC Variational Quantum Classifier

VQE Variational Quantum Eigensolver

xxii

CHAPTER 1

INTRODUCTION

Particle accelerator experiments aim to understand the nature of particles by colliding

groups of particles with each other (or with fixed targets) at high energies and try

to observe the creation of particles and their decays. The Large Hadron Collider

(LHC) [1] at the European Organization for Nuclear Research (CERN) hosts four

major experiments at interaction points that each focus on different problems in High

Energy Physics (HEP). Both the LHC and the experiments come with many hardware

and software challenges.

Particle track reconstruction is one of the problems that is computationally challenging

for most HEP experiments due to its combinatorial nature. In this problem, the aim

is to identify unique trajectories of each outgoing particle that appear after particle

collisions. Although traditional approaches can handle the current rate of particles,

they are struggling with the transition to High Luminosity Large Hadron Collider

(HL-LHC) [2]. HL-LHC is the name used for the next era of the current LHC, and is

expected to have more particles in the beam by 2027 [3]. Therefore, there is a need for

new algorithms that can handle increased luminosity and also have better scaling to

support future applications.

Graph Neural Network (GNN) [4] approaches bring a novel machine learning perspec-

tive to solve the particle track reconstruction problem [5, 6]. Their use has already

gained lots of interest in recent years and continues to extend to similar problems [7].

Quantum Computer (QC) approaches have also gained popularity, as one can translate

parts of the tracking problem to be solved by quantum search or annealing methods [2,

8–10]. In this work, we investigated the possibility of combining both paradigms and

implemented a Hybrid Quantum-Classical Graph Neural Network (QGNN).

1

The proposed QGNN model is trained and evaluated using the publicly available

TrackML dataset [11], which has been widely used by the particle track reconstruction

community in recent years [12] and compared against a classical model [5] to investi-

gate possible advantages. Results of this work are important for several reasons. First,

this work implements a flexible hybrid QGNN algorithm that can be applied to particle

track reconstruction and many other graph learning tasks. Second, it presents results

that would help improve the current understanding of Quantum Neural Networks

(QNNs), which is very limited. Finally, it provides valuable insight for future Hybrid

Neural Network (HNN) implementations.

The outline of the thesis is as follows; In Chapter 2, we start by presenting a background

for HEP experiments at LHC and continue by defining the particle track reconstruction

problems. Then, we give the current status and recent approaches to solve this problem.

In Chapter 3, we introduce QC along with Variational Quantum Algorithms (VQAs).

In Chapter 4, we present details of the proposed model from how it is built to how its

performance is evaluated. In Chapter 5, we present our results along with an extended

discussion of our findings. Finally, in Chapter 6 we give an overview and conclusion

of the thesis.

2

CHAPTER 2

PARTICLE TRACK RECONSTRUCTION

2.1 The Large Hadron Collider

European Organization for Nuclear Research (CERN) hosts the Large Hadron Collider

(LHC), which is world’s largest and highest energy particle collider, in Geneva at

the border of Switzerland and France [1]. The circular particle accelerator has a

27 km circumference and is designed to accelerate both protons and lead-ions to a

center-of-mass energy of 7 TeV and 13 TeV, respectively. The purpose of the LHC is to

answer fundamental questions in physics through high energy particle collisions. The

LHC hosts four major experiments, each focusing on different properties of particle

collisions. While the A Toroidal LHC Apparatus (ATLAS) and Compact Muon

Solenoid (CMS) collaborations study the Higgs boson and investigate new physics, the

ALICE experiment investigates heavy-ion collisions and tries to understand the state

of matter and properties of quark-gluon plasma just after the Big Bang. The LHCb

collaboration investigates the difference in the amount of matter and antimatter. These

experiments are placed at four points across the LHC beam and operate independently.

Accelerating particles to such high energies is not a simple task. Particles go through

several stages of acceleration, before being fed to the LHC to reach the desired

energies. If we take the proton acceleration as an example; protons start their journey

in a bottle of Hydrogen gas. An electric field is used to separate electrons from H2

molecules. After the separation, H+ ions or protons are ready to be accelerated. First,

they go through LINAC 2 which is a linear accelerator that accelerates protons to 50

MeV. Then, they are fed to the Proton Synchrotron Booster to reach 1.4 GeV. The

acceleration continues with Proton Synchrotron to reach 25 GeV and Super Proton

3

Synchrotron to reach 450 GeV before the final stage, LHC, that accelerates protons to

6.5 GeV. All of these stages, along with the four experiments of the LHC can be seen

in the the general layout of the CERN accelerator complex in Fig. 2.1.

Figure 2.1: CERN’s accelerator complex. Several stages of the LHC is given with

different colors. The main LHC beam line is shown with the dark blue circle and the

four major experiments are marked with yellow circles. Figure is retrieved from [13].

The LHC accelerates particles to high energies in groups referred to as bunches that

are separated in time. Two beams contain bunches and travel in the opposite direction.

LHC was designed to have 2808 bunches in a proton beam, each containing 1.1× 1011

protons corresponding to a luminosity of 1034cm−2s−1. Luminosity is the unit of

number of particles per unit area per second. All bunches are separated in 25 ns

intervals which corresponds to a 40 MHz collision frequency, which is also called

bunch crossing [1].

At the centers of the four experiments the two beams are brought together. These

points that are referred to as interaction points. Head-on collisions with a minimal

angle are produce at the interaction points. This angle is called crossing angle (θC)

and it has a small range between 150-200 µrad [1]. The majority of the particles pass

through these points, that allows the bunches to be reused to produce new collisions.

4

An illustration of a bunch crossing is displayed in Fig. 2.2.

Beam 1 Beam 2

Head On

θC

𝜎z

𝜎x

Figure 2.2: An illustration of a bunch crossing at the LHC. Cylinders represent bunches.

The crossing angle (θC) is exaggerated for visual purposes. The bunch length (σz)

is ~7.5 cm and the bunch width (σx) is ~16 µm at the interaction points. Figure is

adapted from [14].

A bunch crossing is called an event that typically includes multiple proton-proton

collisions. There are 3 types of reconstructed spatial locations, called vertices, at these

experiments. The first is the primary vertex, which results from rare high energy or high

momentum transfer interactions. The second is called a pile-up vertex and is a result

of frequent soft Quantum Chromodynamics (QCD) interactions (low energy inelastic

interactions). Only few hundred events out of the possible 40 million collisions/sec

have a high enough energy primary vertex that makes it interesting to analyze. The

abundance of pile-up vertices make distinguishing primary vertices in an event harder.

The average amount of pile-up vertices in a bunch crossing is referred to as the pile-up

(〈µ〉) at LHC. The last type is called secondary vertices as they are the result of a

decay process of long-lived particles produced by a primary or pile-up interaction. An

illustration of these vertices is given in Fig. 2.3.

Particle collider experiments consist of several parts, each focusing on a different

property of particles to measure. They are called to have an onion shape due to their

layered structure. Silicon tracking detectors are generally located near the collision

center and focus on measuring the trajectory of particles. Outside the tracking detectors,

there are several types of calorimeters to measure the energies of particles. Muon

5

Figure 2.3: An illustration of primary (red circles), pile-up (green squares) and sec-

ondary (blue hexagons) vertices at the LHC. Figure is retrieved from [14].

detectors are placed at the outmost layers, since almost all muons travel through the

inner layers without disintegrating. In addition to these detectors, collider experiments

contain magnets that produce magnetic fields on the order of several Teslas. The

magnetic field bends the charged particles, and the bending radius is used to estimate

the momentum of particles. As an example to these experiments, an overview of the

CMS experiment and its components can be seen in Fig. 2.4.

These experiments have been the ultimate tools to test particle theories, most im-

portantly the Standard Model. Although the discovery of the Higgs boson by the

ATLAS [16] and the CMS [17] experiments is mostly known in the media, they

showed and still continue to show success in many occasions, discovering and pre-

cisely measuring many types of particles and their decays [18]. However, a discovery

is never an end point in physics, there are still more theories to test and more to

discover in particle physics. Therefore, there is always a need for particle accelerators

that reach to higher energies as well as luminosities to increase the statistics.

Currently, the LHC is going through an upgrade phase to have increased luminosity

and will be named High Luminosity Large Hadron Collider (HL-LHC) [3]. The

major goal of HL-LHC is to increase the intensity of the beam by reducing its size

in order to have more collisions. This upgrade involves major changes to LHC sub-

systems from more powerful magnets to new superconducting links that can carry

6

Figure 2.4: Subsystems of the CMS detector [15]. Subsystems are placed such that the

granularity and precision of the detectors decrease, while the density increases from

inside to outside, because the track density falls as 1/r2.

more current through cables. Another key component is the upgrade to the injectors,

which increases the bunch population while maintaining the beam size. HL-LHC

is expected to be completed by 2027, resulting in a factor of 10 increase in the

luminosity compared to design luminosity of the LHC, which was 1034cm−2s−1. With

the increased luminosity, total number of events will be increased and statistical errors

in all analyses will decrease significantly. However, this comes with challenges in

both hardware and software. In this work, we investigate one of the computational

challenges, which is called particle track reconstruction.

2.2 Problem Definition

Each component of particle collider experiments are complex and very large teams are

needed to design, manufacture and also operate them. The silicon tracking detector

7

that we consider in this thesis is no exception. Generally, the overall layout of the

tracking detectors are similar. The ATLAS inner detector, shown in Fig. 2.5, can be

viewed as an example layout of tracking detectors. Pixel detectors are located in the

innermost section to be as close as possible to collision center. On the outside, there

are trackers that wraps the pixel detectors. These are referred to as barrel trackers due

to their shape resembling a barrel. There are also disk-shaped trackers on the outer

layers located along the beam axis. These trackers are called end-cap trackers due to

their location.

Figure 2.5: Subsystems of the ATLAS inner detector. 4 layers of pixel detectors are

located at the center and 4 layers of semiconductor trackers surround them on the

outside. The transition radiation tracker wraps the semiconductor tracker. These 3

types of detector form the barrel region due to their geometry. There are 9, disk-

shaped, semiconductor tracker layers on each side and another transition radiation

tracker located away from the center along the beam axis (end-cap region). Figure is

retrieved from [19].

Charged particles bend under a magnetic field, if the magnetic field has a component

orthogonal to the momentum vector of the particle. This is one of the reasons for the

need of a sophisticated tracking detector geometry. Under a static magnetic field B(r),

a particle with momentum p and signed charged q follows the trajectory governed

by Eq. 2.1 [20]. The bending causes particles to follow a helix-shaped trajectory. A

8

particle’s propagation under a magnetic field can be visualized as in Fig. 2.6.

d2r

ds2
=
q

p

dr

ds
B(r) (2.1)

When charged particles pass through a silicon tracker detector, they create signals

that are called hits. The reconstructed trajectories of particles are referred to as tracks.

Fig. 2.6 (c) shows examples of hits and their associated tracks with different colors

for each particle. The particle track reconstruction is the task of determining the

trajectories of particles that propagate outwards from the collision center, using the

measurements (hits) of the silicon tracker detectors.

fraction of hits  
from particles

in 200 pile-up events

zy

tran
sver

se p
lane

B

x

x [mm]

y
[m

m]

fraction of hits  
from particles

in 200 pile-up events

zy

tran
sver

se p
lane

B

x

x [mm]

y
[m

m]

y

x

z

(a) (b) (c)

Figure 2.6: Example of particle hits and tracks in a magnetic field. Particles travelling

in a magnetic field away from the primary vertex (a), leaves hits in the detectors as

shown in black points (b). These hits are reconstructed with track finding algorithms

to particle tracks (c). Figure is adapted from [11].

2.3 Approaches to Particle Track Reconstruction Problem

Particle track reconstruction is a very challenging and computationally expensive

problem. It is the most computationally expensive task of the CMS event reconstruction

and it is reported to take the same amount of time with the rest of the computations [21].

The LHC experiments currently employ Kalman filter and Hough transform based

approaches. Despite the Kalman filter based approaches’ high accuracy tracking

performance, they scale quadratically or worse in general (e.g. O(n6) [2]). This lead

9

researchers to start investigating new methods for particle track reconstruction as a

result of this situation in recent years. Global methods based on pattern recognition

are started to be considered in contrast to local methods (i.e. Combinatorial Kalman

Filter (CKF) based methods [20, 21]), which were used at Run-1 and Run-2, where

each track is reconstructed one by one. On top of these methods, developments in

Deep Learning (DL) and Quantum Computer (QC) technologies opened the door to

new possibilities in particle track reconstruction. In the next sections, a more detailed

overview of these approaches is given.

2.3.1 Traditional Approach

The particle track reconstruction algorithms at the LHC generally share a similar

work-flow [20]. Track reconstruction starts with merging the charge deposition mea-

surements on pixel detectors to single hits. Then, three hits from different layers of

detectors are selected to form triplets that are called seeds. This stage is called track

seeding. At least 3 hits are required to estimate a track’s curvature, which will later be

used to calculate its parameters such as the charge, momentum and point of closest

approach (perigee) to the interaction region. These triplets are chosen to be good seeds

according to requirements set by geometry, momentum and perigee. Good triplet seeds

are then fed to a CKF algorithm [22], which uses each seed to estimate hits in the next

layer that might belong to the same particle and builds track candidates after going

through all detector layers. At the last stage, a set of quality criteria are applied to

track candidates to get rid of ambiguities and track candidates with shared hits [23].

Track seeding and building stages are the most computational expensive stages of

particle track reconstruction at the LHC. Both scale worse than quadratic in number

of hits [24]. This behaviour can be seen in Fig. 2.7, where previous Run-2 results are

plotted in empty black boxes. Fig. 2.7a compares the total inner detector reconstruction

time of the Run-2 with the simulated results of the new inner tracker hardware [25],

at respective pile-up values of 〈µ〉 = 20 and 60 for Run-2 and values up to 200 (to

cover HL-LHC conditions) for the new hardware. Fig. 2.7a further compares the

default track reconstruction software with the proposed Fast Track Reconstruction

algorithm [26]. The times are given in HS06 benchmark [27], which is a benchmark

10

used to quantify performance of CPUs in the HEP community. Both figures show

that significant improvements are expected with the deployment of new hardware and

software.

> µ <

0 50 100 150 200

 s
ec

on
ds

 p
er

 E
ve

nt
×

H
S

06

0

50

100

150

200

250

300

350

400

450

Total ID Run-2 Reconstruction
Track Finding (Run-2)
Ambiguity Resolution (Run-2)

Total ITk Reconstruction
Track Finding (ITk)
Ambiguity Resolution (ITk)

ATLAS Simulation Preliminary
 eventstITk Layout, t

(a)

> <0 50 100 150 200
 Seconds p

er Event
HS06

050100150200250300350400450 ID Run-2 ReconstructionDefault ITk ReconstructionFast Track Reconstruction (ITk)
ATLAS Simulation Preliminary eventstITk Layout, t

x

μ
(b)

Figure 2.7: Computation time required for the reconstruction of particle tracks at the

ATLAS experiment with respect to pile-up. Times are given in HS06 benchmark [27].

Run-2 results with 〈µ〉 = 20 and 60 is plotted with dashed lines and empty markers.

The expected reconstruction performance of the upgraded ATLAS inner tracker (ITk)

is plotted with straight lines and filled markers. Computation time of different track

reconstruction stages are given with different colors (a). The expected performance

of the Fast Track Reconstruction algorithm is plotted with red circles (b). Figures are

retrieved from [26].

2.3.2 Deep Learning Based Approaches

2.3.2.1 Neural Networks

Artificial Neural Networks (ANN or NN in short) are machine learning models that are

inspired from the working principles of neurons. The first conceptual use of NNs date

back to 1940s. McCulloch and Pitts proposed a mathematical model to explain the

nervous activity [28] and A.M. Turing considered the human cortex as an unorganized

machine and theorized on educating this machine [29]. Later, first practical algorithm

was implemented by Frank Rosenblatt, named the perceptron [30].

11

A perceptron is a supervised binary classification algorithm. Perceptrons have parame-

ters that require sensitive tuning in order to give the desired output. This is usually

achieved through an iterative process called training (or optimization). During training,

a set of pre-selected data is fed to the algorithm and the parameters of the algorithm

is tuned until the model gives the desired output. Then, the model is also tested on

unseen data. Details of the training process will be covered throughout the thesis.

The parameters of a perceptron are called weight and bias. Weight is a matrix such that

W ∈ IRn and bias is b ∈ IR for an input x̂ ∈ IRn. The perceptron multiplies the input

with the weight matrix and adds the bias. Finally, this value is fed to an activation

function g, and the output y ∈ IR is obtained as given in Eq. 2.2.

y = g

(
b+

∑
i

Wixi

)
(2.2)

The perceptron can also be expressed graphically as in Fig. 2.8.

x1
x2

...

xn

yg(·)
W1

W2

Wn

+b

Figure 2.8: Graphical representation of a perceptron. x̂ is the input, y is the output, g

is the activation function, W is the weight matrix and b is the bias.

The activation function (g) is used to introduce non-linearity to the system. The system

is linear until the activation function is applied. This allows the perceptron to learn

non-linear distributions. There are two perceptron conventions. First is a continuous

model, where the output of the activation function is a continuous value. Sigmoid and

Tanh functions are generally used to limit the output value of the perceptron, while

ReLU behaves linearly above a certain threshold. The second is a discrete model,

where a threshold function, such as a step function, is applied after the activation

function to produce the outputs as a 0 or a 1. A mathematical model of a perceptron

can be seen in Eq. 2.2. Above mentioned activation functions are summarised in

12

Table 2.1 and their graphical representations are given in Fig. 2.9.

Table 2.1: Some of the popular activation functions used in NNs.

Sigmoid Tanh Step ReLU

1
1+e−x

ex−e−x

ex+e−x =

1, if x > 0

0, otherwise
=

x, if x > 0

0, otherwise

5 3 1 0 1 3 5

1.0

0.5

0.5

1.0

Sigmoid

5 3 1 0 1 3 5

1.0

0.5

0.5

1.0

Tanh

5 3 1 0 1 3 5

1.0

0.5

0.5

1.0

Step

5 3 1 0 1 3 5

5

3

11

3

5
ReLU

Figure 2.9: Some of the popular activation functions used in NNs. Their mathematical

descriptions are given in Table 2.1.

In the early years of NNs, researchers implemented multi-perceptron learning schemes

and tried to train them to learn mathematical functions. Their attempts mostly re-

sulted in failure due to the lack of learning capacity and not using activation functions

in their architectures, combined with inefficient algorithms that required excessive

computational resources. This situation lasted until the 1980s. Since then, backpropa-

gation is used to train multi-layer perceptrons. Backpropagation is a gradient descent

based algorithm to train NNs. Although the name backpropagation was first used by

Rumelhart et al. in 1986 [31], similar algorithms had been already proposed by many

researchers in different contexts since the 1960s [32, 33].

The invention of backprogation has led to many breakthroughs. Researchers started to

train multi-layer perceptron models with larger learning capacities. Due to the multi-

layered structure and their relevance to neurons, perceptron model-based machine

learning became known as Deep Learning (DL), and these models became popular to a

wider audience as Deep Neural Networks (DNNs). DNNs can be represented visually.

Vertically stacked perceptrons form a layer and different layers are stacked horizontally.

13

Layers can have different number of perceptrons depending on the design of the model.

A generic DNN architecture is displayed in Fig. 2.10. One of the most significant

developments of the early days of DL was the application of DNNs to recognize hand-

written images by LeCun et al. in 1989 [34]. Many more models rapidly emerged later

and showed promising results for many pattern recognition tasks such as classifying

steady vowels from speech spectra of a person [35]. However, the second development

phase also suffered from the lack of large amounts of computational power required to

train large models.

x0
x1

...

xn

ŷ0

ŷ1

Inputs

Input Layer

Hidden Layers

Output Layer

Outputs

Figure 2.10: Graphical representation of a generic Deep Neural Network model. Input

(x̂) is fed to an input layer to increase the dimension size. Then, its output is passed

through a set of hidden layers. Finally, an output layer reduces the dimension to the

desired value to obtain predictions (ŷ).

Advances in Central Processing Unit (CPU) technology did not yet provide enough

computational resources to meet the extensive requirements of training large DNN

models in the 1990s. A solution for this challenge was presented from a different

processing unit, called Graphical Processing Unit (GPU) in 2009. GPUs contain

thousands of cores that enable tremendous amounts of parallelization in computational

tasks based on matrix multiplication. DNN models, which need a lot of large matrix

multiplications benefited from the power of parallelization provided by the GPUs [36].

The speed-up gained by using GPUs to train DNNs enabled the training of large scale

models and started the biggest era of DL [37, 38]. It is important to note that GPUs

are used more broadly in computing not just for ML applications.

The HEP.TrkX project showed an initial Recurrent Neural Network (RNN) and Graph

14

Neural Network (GNN) approach to the particle track reconstruction problem using

a limited dataset [5]. They extended their results in the Exa.TrkX project showing

promising accuracy in tracking [6] with the help of an end-to-end architecture and

using a larger dataset. Recently, a GNN based particle flow reconstruction model,

Machine Learned Particle Flow (MLPF) [39], successfully showed a linear scaling in

the pile-up (as opposed to quadratic scaling of the traditional methods), which was

considered as a breakthrough in the HEP community. This increased expectations in

the potential of GNNs in particle tracking in dense environments.

2.3.3 Recurrent Neural Networks

In the RNN model, the output of a NN layer is connected to other NN layers in

a recurrent structure. The iterative number of layers caused the gradients of the

NN layers to decrease and resulting in a decrease in trainability of these types of

NNs [40]. This problem is named the vanishing gradients problem due to the decrease

of gradients [41]. Their performance suffered from the vanishing gradients problem

in the early days. The introduction of the LSTM [42] blocks that are used besides

the RNN layers [43] solved this problem by limiting the effect of previous data by

the help of a structure called the "forget gate". The HEP.TrkX project proposed using

LSTMs similarly to Kalman Filters to overcome this problem [23]. In this approach,

each layer’s measurements are fed to LSTM blocks which combine this information

with the output of the previous blocks in the RNN structure. Outputs are then fed to

Fully Connected (FC) NNs to give the final prediction. The pipeline of the model can

be seen in Fig. 2.11.

2.3.4 Graph Neural Networks

GNNs are NN models that use the data in the form of graphs. A graph can be thought

as an extended form of images, where each data point has a connection to some

other data points with a certain weight. A graph has 3 attributes; u represents global

(environmental) features that might be shared across different graphs. V = {vi}i=1:Nv

represents features that belongs to nodes. Last but not least, E = {(ek, rk, sk)}k=1:Ne

15

Figure 2.11: RNN approach of the Hep.TrkX project. Each detector layer measure-

ments are fed to an LSTM block. Recurrent LSTM blocks propagate information

through different layers. Outputs of each LSTM block is then fed to an FC block to

obtain target tracks. Figure is retrieved from [5].

represents the features of the edges via ek, while rk and sk are indices of the receiving

and sender nodes respectively. They form the graph G = (u, V, E) following the

formalism of Battaglia et al. [44]. These attributes can be seen on an example graph in

Fig. 2.12.

The approach of the HEP.TrkX project was to encode the hits as the nodes and the

potential tracks as the edges of a graph [5]. They built a model with 3 major blocks.

The InputNet increases the dimensions of the node attributes by using a multi layer

perceptron. The EdgeNet takes all the edges one by one and predicts whether each

edge is a true or fake connection. The NodeNet takes each node and its neighbours as

inputs weighted by the outputs of the EdgeNet. The recursive iterations of EdgeNet

and NodeNet allow the network to aggregate the information throughout the graph.

The pipeline of the model can be seen in Fig. 2.13. The HEP.TrkX GNN model is

chosen to be the base of the Hybrid GNN model, presented in this thesis, due to its

success. The working principles, of which, will be detailed in Chapter 4.

16

Attributes

vi
ek

<latexit sha1_base64="4ton1cC0/WpHTbJYOP5RCFkc+ww=">AAAB83icbVDLSsNAFL3xWeur6tLNYBG6KokIuiy4cVnBPqAJZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIphh2WiET1Q6pRcIkdw43AfqqQxqHAXji9K/zeEyrNE/loZikGMR1LHnFGjZV8P6ZmEkY5zofTYa3uNt0FyDrxSlKHEu1h7csfJSyLURomqNYDz01NkFNlOBM4r/qZxpSyKR3jwFJJY9RBvsg8J5dWGZEoUfZJQxbq742cxlrP4tBOFhn1qleI/3mDzES3Qc5lmhmUbHkoygQxCSkKICOukBkxs4QyxW1WwiZUUWZsTVVbgrf65XXSvWp6btN7uK63GmUdFTiHC2iABzfQgntoQwcYpPAMr/DmZM6L8+58LEc3nHLnDP7A+fwBXXGRzQ==</latexit><latexit sha1_base64="4ton1cC0/WpHTbJYOP5RCFkc+ww=">AAAB83icbVDLSsNAFL3xWeur6tLNYBG6KokIuiy4cVnBPqAJZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIphh2WiET1Q6pRcIkdw43AfqqQxqHAXji9K/zeEyrNE/loZikGMR1LHnFGjZV8P6ZmEkY5zofTYa3uNt0FyDrxSlKHEu1h7csfJSyLURomqNYDz01NkFNlOBM4r/qZxpSyKR3jwFJJY9RBvsg8J5dWGZEoUfZJQxbq742cxlrP4tBOFhn1qleI/3mDzES3Qc5lmhmUbHkoygQxCSkKICOukBkxs4QyxW1WwiZUUWZsTVVbgrf65XXSvWp6btN7uK63GmUdFTiHC2iABzfQgntoQwcYpPAMr/DmZM6L8+58LEc3nHLnDP7A+fwBXXGRzQ==</latexit><latexit sha1_base64="4ton1cC0/WpHTbJYOP5RCFkc+ww=">AAAB83icbVDLSsNAFL3xWeur6tLNYBG6KokIuiy4cVnBPqAJZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIphh2WiET1Q6pRcIkdw43AfqqQxqHAXji9K/zeEyrNE/loZikGMR1LHnFGjZV8P6ZmEkY5zofTYa3uNt0FyDrxSlKHEu1h7csfJSyLURomqNYDz01NkFNlOBM4r/qZxpSyKR3jwFJJY9RBvsg8J5dWGZEoUfZJQxbq742cxlrP4tBOFhn1qleI/3mDzES3Qc5lmhmUbHkoygQxCSkKICOukBkxs4QyxW1WwiZUUWZsTVVbgrf65XXSvWp6btN7uK63GmUdFTiHC2iABzfQgntoQwcYpPAMr/DmZM6L8+58LEc3nHLnDP7A+fwBXXGRzQ==</latexit><latexit sha1_base64="4ton1cC0/WpHTbJYOP5RCFkc+ww=">AAAB83icbVDLSsNAFL3xWeur6tLNYBG6KokIuiy4cVnBPqAJZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIphh2WiET1Q6pRcIkdw43AfqqQxqHAXji9K/zeEyrNE/loZikGMR1LHnFGjZV8P6ZmEkY5zofTYa3uNt0FyDrxSlKHEu1h7csfJSyLURomqNYDz01NkFNlOBM4r/qZxpSyKR3jwFJJY9RBvsg8J5dWGZEoUfZJQxbq742cxlrP4tBOFhn1qleI/3mDzES3Qc5lmhmUbHkoygQxCSkKICOukBkxs4QyxW1WwiZUUWZsTVVbgrf65XXSvWp6btN7uK63GmUdFTiHC2iABzfQgntoQwcYpPAMr/DmZM6L8+58LEc3nHLnDP7A+fwBXXGRzQ==</latexit>

u

vsk vrk

u

vi

ek

Figure 2.12: Attributes of a graph. Circles represents nodes and vi is the feature matrix

of ith node. Arrows represent the edges and ek is the feature matrix of the kth edge.

Square represents the global features and u is the global feature matrix. Figure is

retrieved from [44].

Figure 2.13: The GNN model of the HEP.TrkX project [5]. The model takes a graph

as its input and feeds it to InputNet to increase the dimensions of node features. Then,

recurrent EdgeNet and NodeNet models update the graph features. An EdgeNet is

used at the final layer to extract edge features of the graph to decide whether if the

edges of the graph are true or fake connection.

2.3.5 Quantum Computing Based Approaches

Quantum Computing is a relatively new type of computing, which uses qubits rather

than bits. Qubits have properties such as superposition and entanglement that have

no equivalent in classical bits. On top of that, the Hilbert Space ("state space" of

qubits) grows with 2n, while the "state space" of classical bits only grows linearly

in classical computing. These features open new possibilities in computation, both

in algorithm development and in physical realization of Quantum Computers which

are very active fields of research. An extensive overview of Quantum Computing and

methods relevant to this thesis will be presented in Chapter 3.

Researchers at CERN became attracted to QC as well as ML due its potential in

17

reducing the scaling of certain algorithms [45]. Multiple attempts to use Quantum

Computing in particle track reconstruction were made using quantum adiabatic com-

puting. Bapst and Zlokapa et al. use a pattern recognition approach [8, 9], while Quiroz

et al. combines quantum adiabatic computing with Quantum Associative Memory [10].

Recently Magano et al. used Quantum search routines to reduce scaling of parts of the

traditional tracking methods [2].

2.3.5.1 Quantum Adiabatic Computing

Quantum adiabatic computing, also known as Quantum Annealing (QA) is one of two

major paradigms in Quantum Computing with the other being circuit-based Quantum

Computing. It uses adiabatic evolution of quantum states to approach the ground

state of a certain Hamiltonian [46]. The adiabatic theorem states that if a Hamiltonian

is in the ground state and if the Hamiltonian is slowly varied to represent another

system, the system will stay in the ground state. This allows some problems to be

approximately solved [45], such as the Quadratic Unconstrained Binary Optimization

(QUBO) problem given in Eq. 2.3. This defines the target Hamiltonian for n qubits,

where the J and h matrices sets the two body coupling strength of the spin states in

z-direction, as the σz is the Pauli-Z matrix. After preparing the target Hamiltonian, the

system is evolved during a predetermined time. Then, the spin states are measured

to get binary {−1, 1} (or {0, 1} depending on the convention) output for each of the

qubits and the result is expected to be an approximate solution that minimizes the

HQUBO given in Eq. 2.3.

HQUBO =
n∑

i,j=1

Jijσ
z
i σ

z
j +

n∑
i=1

hiσ
z
i (2.3)

The QA approaches to particle track reconstruction uses the Denby-Peterson formu-

lation [47, 48], and in fact improves it, to map the problem into a QUBO [9]. The

Hamiltonian HDP , where a, b, c are hits (triplets), rab is the 3D distance vector, θabc

is the 3D angle that is formed by three hits is given in Eq. 2.4. If hits i and j belong

to same particle, sij is 1 and 0, otherwise [9]. A graphical representation of these

variables are presented in Fig. 2.14.

18

HDP = −1

2

[∑
a,b,c

(
cosλ θabc
rab + rbc

sabsbc

)
− α

(∑
b 6=c

sabsac +
∑
a6=c

sabscb

)

− β
(∑

a,b

sab −N
)2] (2.4)

a

b c

rab
rbc

θabc

Figure 2.14: Coordinate definitions of a triplet in Denby-Peterson representation. a, b

and c represent spatial coordinates of three hits. rab and rbc are the 3D distance vectors

between hits. θabc is the 3D angle between the two distance vectors. Figure is retrieved

from [9]

Although the QA methods show great performance, they also suffer from a scaling

problem, which is intrinsic to all QA methods. Zlokapa et al. showed that the

annealing time needed to get a result increases exponentially with the number of track

segments [9]. Furthermore, there are hardware limitations such as number of qubits,

accurate measurements of qubits and decoherence, which is a finite duration a qubit

can hold information. These factors limits the QA methods’ to scalability to larger

data-sets.

In this work, a new look at the problem is presented by combining GNNs and circuit-

based Quantum Computing (the second paradigm in Quantum Computing) to investi-

gate the potential of particle tracking.

2.4 The TrackML Challenge and the Dataset

As a part of the preparations for HL-LHC conditions, researchers created the TrackML

Challenge to invite experts in Machine Learning to contribute to improving perfor-

mance of particle track reconstruction in 2018 [11]. They created a simulated dataset

19

to resemble the HL-LHC conditions using an open-source A Common Tracking Soft-

ware (ACTS) [49]. A generic detector architecture that is common to most tracking

detectors is used to simulate the events. A drawing of the detector layout can be seen

in Fig. 2.15. After the conclusion of the challenge, the dataset is still being used by

many researchers in the field, to benchmark their results. This work follows the same

trend and uses the TrackML dataset, which is hosted on the Kaggle website [50].

3000− 2000− 1000− 0 1000 2000 3000
z [mm]

0

200

400

600

800

1000

r

[
m
m
]

Figure 2.15: Layer geometry of the TrackML detector. Tracking layers with barrel

and end-cap geometries are shown on the left. The r-z plane projection of the overall

geometry is shown on the right with respective colors according to their geometries.

Figure is adapted from [11].

The TrackML detector consists of 3 types of silicon detector layers and has barrel

and end-cap regions. The barrel region is located at the center as shown in Fig. 2.15.

The end-cap region has the detectors attached on disk at the outer regions in the same

figure. Both the barrel and end-cap regions consists of 3 types of layers. The inner

layers are pixel detectors, plotted in blue. The outer layers (red and green) are strip

detectors, where the outmost (green) layer have less resolution. The 3D geometry of

these 3 types of layers are also shown in Fig. 2.15.

The dataset contains 10000 bunch-crossing events that are results of hard QCD interac-

tions that generate a tt̄-pair with an additional 200 soft QCD interactions to resemble

high pile-up conditions of HL-LHC. There are 4 files for each event and their physics

contents are listed in Table 2.2. The hits file contains information regarding the

spatial coordinates of particle hits as well as unique identifiers for both the hit and the

module that registered it. The cells file contain more details about hits, such as the

20

cells of the module that registered the hit along with a value for the electrical signal

that is deposited by the particle. The particles file contains information about the

particles’ physical properties such as position, velocity, momentum and number of hits

it created throughout the detectors. Finally, the truth file provides the information

regarding the particles true trajectory, momentum and a weight value that is used in

the TrackML challenge to benchmark the results.

21

Table 2.2: Physics contents of different types of TrackML files [11].

File Name Description

Hits

• a unique identifier for each hit

• (x,y,z) location of each hit

• a unique identifier for each module that registered a hit

Cells

• a unique identifier for each hit

• a unique identifier for each cell of the channels of the module

that registered a hit

• value of the electrical signal that is deposited by the particle

Particles

• a unique identifier for each particle

• initial velocity vector each particle

• initial momentum vector each particle

• number of hits left by each particle

Truth

• a unique identifier for each hit and the unique particle identi-

fier that belongs to that hit

• (x,y,z) true location of the intersection point with the hit and

the particle trajectory

• true particle momentum at the intersection point

• weights for each hit that is used to calculate TrackML score

22

CHAPTER 3

QUANTUM COMPUTING AND MACHINE LEARNING

Humankind has been in a search to increase the computational power since the inven-

tion of abacus. The search gained a momentum after the invention of digital computers,

which is also known as the beginning of the third industrial revolution. All fields

from fundamental sciences to industrial applications required more processing power

to advance their technology and improve our understanding of the nature. However,

certain problems turned out to require exponentially more processing power with

an increasing system size, making some problems almost impossible to solve with

finite resources. Schrödinger’s equation, which expresses the behaviour of Quantum

Mechanics, is one of these problems. In 1982, Richard P. Feynman authored a famous

article, where he states we need computers that are based on Quantum Mechanics

to simulate Quantum systems [51]. This and many more valuable ideas led to the

development of Quantum Computers that we can access even through a web browser

today [52, 53].

A Quantum Computer (QC) employs qubits rather than the classical bits and need

specific manipulation and measurement techniques that depend on the physical nature

of the qubits. Unlike classical bits, qubits can have superposition states where they

store both 0 and 1 with a certain weight, which can only be accessed when the qubits

are measured. Qubits can also be entangled with each other meaning that they can

interact with each other without external intervention. These two facets bring a new

understanding to our classical computational perspective and open many doors to

potential applications that we might not be able to imagine as of today.

The most famous application is the Shor’s algorithm in the field of cryptography.

Shor’s algorithm uses QCs to solve the integer factorization problem in polynomial

23

time, which would threaten the cryptosystems that depend on prime number factoriza-

tion [54]. RSA is a public-key cryptosystem, based on the computational hardness of

prime number factorization and it is widely used to secure most of the internet connec-

tions from bank transactions to private messages [55]. Another promising application

is the Grover’s algorithm, which is a search algorithm, that can find a marked item in a

set of N elements in O(
√
N) queries, while the best classical algorithm needs at least

O(N) queries [56]. There are also applications, such as the Harrow-Hassidim-Lloyd

(HHL) algorithm, that can speed-up solving systems of linear equations [57].

Applications of QCs also cover simulating Quantum systems. The Variational Quan-

tum Eigensolver (VQE), which estimates the ground state of a given Hamiltonian is

an important step toward realizing Feynman’s dream [58]. Researchers showed in

many instances, that one can estimate the ground state energy of various molecules

at different bond lengths [59]. Early success of variational methods in Quantum

Chemistry led researchers to use them to solve machine learning problems in a similar

fashion to DL [60–62].

This chapter gives an overview of the circuit-based QC paradigm, followed by a

look at the current and future of the QC hardware. Then, the Variational Quantum

Classification method - the backbone of this work - is studied in depth.

3.1 Circuit-based Quantum Computing

A Quantum circuit is a representation of sequential operations on qubits. Each qubit

is placed on a line and operations on them are represented with certain shapes in this

representation. This provides an easy visualization for the operations on qubits and

simplifies the reconstruction of the braket notation from the circuit.

In the braket notation of quantum mechanics, states (Ψ) are represented with the bra

(〈|) and the ket (|〉) signs, which are the Hermitian conjugate of one another.

|ψ〉 = 〈ψ|† (3.1)

The density matrix of a quantum state represents the system with the given |ψ〉, such

24

that;

ρ = |ψ〉 〈ψ| (3.2)

There are two types of quantum states depending on the restriction on the density

matrix. Pure states are states with a unit length and their density matrix is defined as;

Tr[ρ2] = 1 (3.3)

Mixed states on are combinations of pure states and follow a different constraint;

Tr[ρ2] < 1 (3.4)

Two-level (e.g. a spin 1/2 system) pure and mixed states can be visualized with the

help of the Bloch sphere. Pure states are located on the surface, while mixed states are

located inside the sphere. Representations of these states on the Bloch sphere can be

seen in Fig. 3.1, where θ is the angle to the z-axis, and the ϕ is the angle to the x-axis

on the x-y plane.

Figure 3.1: Bloch sphere representation of quantum states. A pure (|ψ〉) is shown

with a black arrow. A mixed (ξ) state is shown with a red arrow. Figure is retrieved

from [63].

25

In this work, we only consider two-level pure states. Therefore, the constraint set by

Eq. 3.3 will be valid throughout. Such a generic state can be represented as;

|ψ〉 = cos
θ

2
|z; ↑〉+ eiϕ sin

θ

2
|z; ↓〉 (3.5)

It is also possible to represent these states with matrices. In this notation, a qubit’s

state can be represented with a 1x2 matrix. The convention is to define the spin-up

(in the positive z-direction) state as the |0〉 or |↑〉 and the spin-down (in the negative

z-direction) state as the |1〉 or |↓〉. This convention allows representing the states

similar to {0, 1} binary representation of the classical computing.

|0〉 = |z; ↑〉 =

1

0

 |1〉 = |z; ↓〉 =

0

1

 (3.6)

Quantum states of many qubits can be combined by using the tensor product, to be

viewed as a single object. The overall state becomes a matrix with the size 1x2Nqubits .

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN〉 (3.7)

Reading out a value from a qubit is different compared to the classical case. This

procedure is referred to as a measurement in QC. A measurement of a state, defined

as |ψ〉 = a |0〉 + b |1〉, where a and b are complex scalars, can result in two of the

outcomes with a certain probability defined by the modulus square of each coefficients,

with the condition of their sum being 1. This means that, different outcomes might

observed each time the state is measured.

P (0) = ‖a‖2 (3.8)

P (1) = ‖b‖2 (3.9)

P (0) + P (1) = 1 (3.10)

The ambiguity in measurement can be reduced by taking multiple measurements.

Expectation value is the weighted average of the probabilities, where the weights are

26

eigenvalues of the observable. If the measurements along the z-direction, the Pauli-Z

matrix is considered

σZ =

1 0

0 −1

 (3.11)

and the expectation value of the Pauli-Z observable is given as;

E = 〈ψ|σZ |ψ〉 = (+1)‖a‖2 + (−1)‖b‖2 = ‖a‖2 − ‖b‖2 (3.12)

Manipulation of quantum states are done by using unitary operations. A unitary

operation is a norm preserving square matrix such that, its Hermitian conjugate is its

inverse and has the dimensions of 2n × 2n for an n qubit state. Unitary operations are

called quantum gates in QC. The number of elementary gates applied to a qubit is

called the circuit depth. A generic unitary single qubit gate can be defined as

U(θ, φ, λ) =

 cos(θ/2) −eiλsin(θ/2)

eiφsin(θ/2) ei(λ+φ)cos(θ/2)

 (3.13)

All of these operations can be expressed with the circuit representation with ease. As a

convention, all states are initially set to |0〉. Then unitary operations (e.g. U) on qubits

are applied. The final measurements can be represented graphically with a meter sign,

as seen in Fig. 3.2. This example can be extended to any number of qubits and gates

with ease, as shown in Fig. 3.3.

|0〉 U

Figure 3.2: A single qubit circuit representation. The qubit starts with the |0〉 initial

state. A unitary operation U is applied as shown with the box. Then, the measurement

operation is performed as shown with a meter sign in a box.

In QC, certain single and multiple gates are widely used, that have special names due

to their significance. For example, the Pauli-X gate is usually referred to as the NOT

27

|0〉
|0〉
|0〉
|0〉

U0
U1

U2

U3

U4

Figure 3.3: An arbitrary Quantum circuit with various qubits and multi-qubit gates.

Unitary operations can be applied to multiple qubits as shown in the figure.

gate (or X gate), as it flips the state in the z-basis, as seen in Eq. 3.14. Hadamard (H)

gates, named after Jacques Hadamard, are generally used to create superposition of

states. Matrix representation of the Hadamard gate and how it acts on states can be

seen in Eq. 3.15. A list of all relevant gates in this work are presented in Appendix A.

σX = X =

0 1

1 0

 X |0〉 = |1〉

X |1〉 = |0〉
(3.14)

H =
1√
2

1 1

1 −1

 H |0〉 =
1√
2
|0〉+

1√
2
|1〉

H |1〉 =
1√
2
|0〉 − 1√

2
|1〉

(3.15)

Single qubit gates can be combined together with the tensor product to form multi-

qubit gates. However, the reverse is not generally true. There are multi-qubit gates

that cannot be separated to single qubit representations. The most important gates

are controlled operations that have the possibility to entangle qubits. Controlled NOT

(CNOT or CX) gate can be used to create entanglement between qubits that are in

superposition. The CNOT gate acts as a X gate on the second qubit, if the first qubit is

in the |1〉 state. The matrix form of CNOT and how it acts on different states can be

28

seen in Eq. 3.16.

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


CX |00〉 = |00〉

CX |01〉 = |01〉

CX |10〉 = |11〉

CX |11〉 = |10〉

(3.16)

We can further combine the H gate with the CX gate to obtain the entangled states such

as,

|Ψ〉 =
1√
2
|00〉+

1√
2
|11〉 (3.17)

and also graphically as shown in Fig. 3.4,

|0〉

|0〉
H

Figure 3.4: Bell state preparation circuit.

The state given in Eq. 3.17 is generally referred to as on of the Bell state and has

a fundamental role in Quantum Information Theory. The given Bell state defines a

state such that, if one measures any of the qubits, the state of the other qubit would

be determined without a measurement. This simple circuit can be tested by using a

publicly available Quantum Computer. For this purpose, the Bell state preparation

circuit given in Fig. 3.4 is prepared and executed 1000 times on the ibmqx2 [52]

device and the results with statistical error bars are compared with simulation results

obtained by using imbq_qasm_simulator [64] and plotted on Fig. 3.5.

There are two important points that need attention. The first point is the difference

between the numbers of |00〉 and |11〉 observations. These two states should have

equal probability according to Equations 3.9, 3.10 and 3.17. The main reason for

29

00 01 10 11
Outcome

0

100

200

300

400

500

Nu
m

be
r o

f O
bs

er
va

tio
n

ibmq_qasm_simulator
ibmqx2

Figure 3.5: Histogram of Bell state measurements. 1000 Bell state are prepared and

then measurement outcomes are plotted. ibmqx2 results are plotted in orange and

ibmq_qasm_simulator results are plotted in blue.

the observed difference is finite sampling of the states and referred to as shot noise.

Although the outcomes are not ideal (500/500), the ideal outcome is still in the

statistical error limits. The effects of shot noise will be discussed in detail in the

following sections. The second discrepancy is the unexpected outcome of the two

states |01〉 and |10〉. The reason for observing these states is due to noisy hardware of

Quantum Computers. There are various sources that introduce noise on the Quantum

systems. Dealing correctly with noise is one of the greatest challenges in front of

future Quantum Computers. In the next section, an overview of the current state of the

QC hardware is presented to help understanding the current status.

3.2 State of Quantum Computing Hardware

It is important to understand the technical limitations of Quantum Computers be-

fore proceeding to the details of algorithms, which will be shaped by them. Current

Quantum Computers are noisy, meaning they can produce false results, have low

connectivity between qubits and do not allow implementation of complicated algo-

rithms. The name "Noisy Intermediate Scale Quantum (NISQ) era" [65] emphasises

30

this situation.

There are many ways to build a Quantum Computer, which makes comparisons across

different devices very difficult. Therefore it is important to understand what different

hardware paradigms offer. To do this, we present a brief overview of the some publicly

available QC hardware in Section 3.2.1, then we compare their properties according to

DiVincenzo’s criteria [66] in Section 3.2.2. Finally, we present a benchmark that aims

to quantify the quality of different hardware in Section 3.2.3.

3.2.1 Quantum Computing Hardware Paradigms

Many hardware and software technologies have been developed to build Quantum

Computers and all of them have their advantages and disadvantages. One of the

earlier devices are Quantum Annealers, whose working principles were discussed in

Section 2.3.5.1. The DWave QC company [67] uses superconducting qubit technol-

ogy to exploit a natural evolution of quantum states. Thanks to chip manufacturing

advancements in semiconductor industry, they can build systems with as large as

5000 qubits [68]. Their devices showed great success in several optimization tasks,

from particle tracking [9] to traffic flow optimization [69]. However, this number

shouldn’t be misleading as their qubits can only do annealing, meaning that they are

mostly used to estimate the result of a problem, instead of finding the exact solution

(they can also be used to find a minimum in some cases). On the other hand, other

companies work on Quantum Computers which hopes to implement any given unitary

operation. Companies such as IBM [52], Google [70] and Rigetti [71] also use the

superconducting qubit technology to build their gate based Quantum Computers. This

technology has seen a great interest from companies due to its easy scalability and

the availability of the semiconductor technology to build such devices. One of the

major setbacks they are facing is the limited connectivity and short decoherence time

of qubits.

Another popular approach, adopted by IonQ [72] and Honeywell [73], is to use trapped

ions in a crystal. This technology solves some of the problems of superconducting

qubits with very large decoherence times and full connectivity. However, they suffer

from scalability due to few available qubits in a single crystal. Recently, Honeywell

31

proposed using movable electric charges to solve the scalability problem [73].

Using photons as qubits has also gained popularity in the last years. Zhong et al.

recently showed a Quantum computational advantage using boson sampling [74] and

the company Xanadu [75] introduced their photonic chip-based devices [76]. There

are many other approaches to build Quantum Computers, but listing all of them would

be beyond scope of this thesis. Connectivity architecture (topologies) of some of the

existing Quantum Computers with different technologies can be seen in Figure 3.6.

As mentioned earlier, superconducting devices have less connectivity between qubits

as shown in Figures 3.6a, 3.6c and 3.6d. The figure shows that different companies are

testing different topologies to increase the connectivity of their qubits. On the other

hand, the ion trap approach provides full connectivity as shown in Fig. 3.6b.

(a) ibmq_montreal (v1.9.7) [52, 77] (b) IonQ [72]

(c) Rigetti Aspen-9 [71] (d) Google Sycamore [70]

Figure 3.6: Topologies of Quantum Computers with different technologies. Supercon-

ducting qubit devices have low connectivity (a,c,d), while ion trap devices have full

connectivity (b).

32

3.2.2 DiVincenzo’s Criteria

In the beginning of the 2000s, David P. DiVincenzo has put together 5 + 2 (optional)

requirements that are needed to build a quantum computer system [66]. These can be

listed as follows,

• A scalable physical system with well characterized qubits

• The ability to initialize the state of the qubits to a simple fiducial state, such as

|000〉

• Long relevant decoherence times, much longer than the gate operation time

• A "universal" set of quantum gates

• A qubit-specific measurement capability

• The ability to interconvert stationary and flying qubits (optional)

• The ability to faithfully transmit flying qubits between specified locations (op-

tional)

The first requirement is to have "a scalable physical system with well characterized

qubits" [66]. A well characterized qubit means that the physical parameters of the

qubit is known such that the internal Hamiltonian can be fully defined. Achieving the

scalibility of the qubits might require different methods depending on the hardware

paradigm. As it was discussed in the above paragraphs, different technologies provide

different means to achieving scalability. Superconducting qubits solve this by limiting

connectivity and trapped ion qubits are proposed to solve this with the help of moving

electrical charges [73].

The second one is "the ability to initialize the state of the qubits to a simple fiducial

state, such as |000〉" [66]. It is very important to know the state of qubits before

starting to do operations with them. This criteria requires the system to be able set the

state of all qubits to a pre-determined value, such as |000〉 or |111〉. This way the user

can know the state of the qubits before starting to apply some operations on them.

33

The third criteria requires the systems to have long decoherence times [66]. Deco-

herence is loss of information as a consequence of interaction with the environment.

A generic state has the possibility to end up in |0〉 or |1〉 states in a certain time

frame. Therefore, decoherence times should be longer than the gate operation times,

assuming that there is enough time to apply gates before states transform into other

unknown states. There are two widely used measures of decoherence in the literature.

Longitudinal coherence time (T1) is the time that it takes for a state in the excited state

to decay to the ground state. Transverse coherence time (T2) is the time it takes for

either of the basis states to flip [78]. A Quantum Computer can also have qubits with

different T1 and T2 times, making some of the qubits less favorable. Also, as it was

previously discussed, trapped ion qubits outperform superconducting qubits in both

T1 and T2 [72, 77]. These values are generally provided by companies as a measure

of the quality of their qubits. Some examples of T1 and T2 times of several Quantum

Computers are given in Table 3.1.

Table 3.1: Decoherence properties of some available Quantum Computers with differ-

ent architectures as of 6 April 2021. These figures are subject to change as companies

update their systems.

Device Num. of Qubits Avg. T1 [s] Avg. T2 [s] Avg. Gate time [ns]

IonQ [72] 11 10000 0.2 1231

Google Sycamore [70] 32 16.04× 10-6 N/A 12

Rigetti Aspen-9 [71] 32 29.67× 10-6 18.39× 10-6 60-160

ibmq_montreal (v1.9.7) [52, 77] 27 113× 10-6 122× 10-6 199-309

The next criteria requires systems to have universal set of gates. In classical computing,

universal logic gate sets are defined as the set of gates that can implement any boolean

function using finite amount of gates (e.g. {AND, NOT}, {OR, NOT}). Similarly, a

"universal quantum gate set" is a set of gates that can implement any given unitary

function using finite gates (e.g. {H, CX, π/8}) [78]. As a design choice, Quantum

Computer providers usually determine a set of gates that can be implemented on a

certain device and use those gates from the set to implement any other gates a user

may require. For example, one can implement CX, ID, RZ, SX and X gates natively on

ibmq_montreal (v1.9.7) and any other unitary gate can be implemented by combining

34

these gates with an operation called transpiling [52]. Definitions of these gates are

presented in Appendix A.

The last criteria is "the ability to measure a specified qubit". Measurement is the

process of reading out the state of the qubit. This process records the quantum state

as classical bit. It is important for a Quantum Computer not to change the state of

other qubits while measuring a qubit as it will damage the quality of the recorded

result. On top of this, there can also be measurement errors on a single qubit, meaning

that a state in |1〉 might be measured as a |0〉 state due to instrument noise. As an

example, IBM reports the single qubit readout assignment error to be 6.0 × 10-3 on

their ibmq_montreal device [77].

The two optional criteria involve Quantum communication. First requires the system

to be able transmit the state of a qubit, that is used to transmit information between

different quantum systems (flying), to a qubit that is on the device (stationary). The

second requires to transmitting a quantum state accurately, such that the state does not

change during the process.

There are many types of errors in QC, like those listed above. There are also various

architectures and technologies with advantages and drawbacks. All of these factors

makes it hard to quantify the quality of a Quantum Computer. To help with this

situation, researchers from IBM proposed a volumetric benchmark called Quantum

Volume (QV or VQ) [79].

3.2.3 Quantum Volume

QV determines a Quantum Computer’s capacity to produce reliable heavy outputs

with square circuits. A square circuit is a circuit with equal depth (number of gate

layers) and width (number of qubits). QV is defined for a QC with m qubits as the

logarithm of the largest possible square circuit with d(m) qubits, that has a probability

of larger than 2/3 to produce heavy outputs as given in Eq 3.18 [79].

log2VQ = arg max
m

min(m, d(m)) (3.18)

35

Using QV as a benchmark has become more attractive, compared to number of qubits,

to show which company has the most powerful device. Recently, IBM announced

ibmq_montreal, which is a 27 qubit device with a QV of 64 [77] and Honeywell

announced their device, which has 6 qubits, with a QV of 64 [73]. Different hardware

systems are better or worse at satisfying the DiVincenzo’s criteria. There is still no

clear leading technology that proved itself superior to others as of 2021.

Although QV became popular in some parts of the industry, there also has been

discussions on whether the QV is enough to capture all properties of Quantum Com-

puters. Some proposals have been made to extend the definition to deeper circuits [80].

Researchers are also working on error correction and error mitigation techniques to

increase performance of these devices. It is also important to note that benchmarking

Quantum Computers is an active field of research.

Quantum Computers built until today and accessible to researchers are very few in

numbers. This limits prototyping new algorithms. Some of the QC companies provide

access to researchers from all over the world, allowing them to use their devices from

the comfort of their own laptops. IBM provides free access to multiple devices with

varying number of qubits and QVs, while Amazon Braket provides paid access to QCs,

built by D-Wave, Rigetti and IonQ. Counting both paid and free methods there are not

more than 20 publicly available Quantum Computers at the moment. This situation

led many researchers to build QC simulators, that uses classical processors (CPUs and

GPUs).

QC simulators provide a way to build QC models without the need of a real device,

but they are computationally expensive due to the size of the exponentially increasing

Hilbert Space. There are many types of simulators that can focus on different aspects

of the computation. State Vector/Density Matrix simulators keep the whole state

representation, allowing users to estimate the state without a measurement, with the

cost of high RAM requirements, while pure state simulators allow fast simulation by

not allowing mixed states to occur. Some popular open-source libraries that allows

users to easily simulate Quantum circuits are Qiskit [64], Pennylane [81] and Cirq [82].

Quantiki provides an extended list of these libraries [83].

36

3.3 Variational Quantum Classification

Although some early quantum algorithms such as Shor’s factorization algorithm [54],

or the HHL algorithm that solves certain sets of linear equations [57] promised a

quantum speed-up, they are not implementable at large scales on current Quantum

devices due to noise and limitations on the number of qubits [84]. For this reason,

algorithms that can be implemented on NISQ hardware, such as Variational Quantum

Algorithm (VQA) attracted a lot of interest from the QC community [85]. Flexibility of

VQA methods led researchers to experiment with many types of problems from solving

energy levels of a Hamiltonian with the VQE [58] to developing new ways to handle

classical machine learning tasks with Variational Quantum Classifiers (VQCs) [60–62].

VQAs are hybrid algorithms that leverage both classical processing (CPUs, GPUs, etc.)

and Quantum Processing Units (QPU). A VQA first takes inputs from a training set and

encodes that into quantum states on the QPU according to the choice of ansatz (also

called Parametrized Quantum Circuit (PQC)). The ansatz can also have parametrized

and trainable gates that are independent from the input data. The ansatz is implemented

and measured multiple times (the amount is called number of shots) to estimate an

expectation value on the QPU. Then, the output value is fed to a cost function to

determine the size of the error, which will be used by a classical optimizer to update

the trainable parameters of the ansatz. After the parameters are updated, a new sample

from the training set is fed to the algorithm and this process is repeated until the cost

function reaches a minimum or a cutoff. A schematic of this iterative process can be

seen in Figure 3.7.

The number of shots that is used estimate the expectation value has significant impor-

tance on the performance of VQAs. When the measurements are read from a QPU,

they become classical information and can only hold values of 0 or 1. For this reason,

to estimate an expectation value, the same circuit needs be implemented and measured

multiple times to reduce statistical errors. M measurements allows estimation of an

observable Ĉ with ε finite precision with the following condition [86];

M ≥ V ar[Ĉ]

ε2
(3.19)

37

Run and Measure

|0i

|0i

..
.

|0i

U(xi; ✓̂)

𝑥!

𝑥"

𝑥#

Evaluate the
cost function

𝐶 𝜃
N times

Optimizer

Update 𝜃⃗ to find arg	min$ 𝐶(𝜃)

Training set

QPU

Figure 3.7: Training schematic of a generic VQA. A set of data is fed to the model

sequentially. The QPU uses the data to execute the pre-determined ansatz. The output

is obtained through measurements, which can be repeated N times. The output is

evaluated with a cost function. The optimizer updates the parameters of the ansatz to

minimize the cost function. The process is repeated until the cost value reaches to a

minimum or a cutoff.

Then, according to Eq. 3.19, number of measurements scales with inverse square of

the precision. Expectation values can be calculated analytically by using simulators.

Most QC simulators also allow creating noise models to emulate the behaviour of the

noisy hardware. However, this aspect of the simulators is not used in this work due to

immense computational resources required to simulate Quantum circuits under noise.

An example test scenario can be created by using a simple circuit. In this case, we

used the default Pennylane [81] simulator as it allows for both simulating Quantum

Circuits as well as access to most of the publicly available hardware. Fig. 3.8 shows

the absolute errors (absolute value of the difference) of different scenarios with respect

to the analytical expectation value of an arbitrary but same circuit. The plot shows

the errors obtained with different shots using the simulator. As expected, the error

levels of 0.1 is achieved with shots close to 100. The plot also shows multiple results

obtained from various QC hardware with 1000 shots, and is a good indication of their

noise level. It is important to note that the errors calculated are not a benchmark as

they are results of a single circuit and do not represent devices’ performances.

38

Pennylane
 default simulator

IonQ ibmq_quito ibmq_bogota Rigetti 910 2

10 1

100

Ab
so

lu
te

 E
rro

r

shots:1
shots:10
shots:100
shots:1000

Figure 3.8: Absolute errors of expectation values of an example Quantum circuit1 with

different shots. The errors are calculated with respect to analytical expectation value

obtained from the default Pennylane simulator and error bars represent ± standard

deviation of 10 independent runs.

The optimization process of VQAs are similar to classical DL methods. This led

researchers to use VQAs for classical machine learning tasks such as classification,

where one tries to assign a label to each data sample [85]. These methods have been

called many names in the literature such as Quantum Circuit Learning [60], VQCs [61]

and Quantum Neural Network (QNNs) [62]. It is important to note here that the name

QNNs are given only due to their resemblance to classical Neural Networks and they

do not always implement structures such as perceptrons, which are the building blocks

of Neural Networks.

The following sections give an in depth look to the details of the VQCs and their

constituents.

1The Quantum circuit used in this example is a 4 qubit and 1 layer configuration used in Section 3.3.3.3 and is

plotted in Fig. 3.19.

39

3.3.1 Information Encoding

Information or data is the input of all machine learning models. As a famous saying

goes "garbage in, garbage out", quality of data and how it is used is an important

factor on the performance of ML models. This situation persists in Quantum Machine

Learning models as well. In QC, a new type of data, called "quantum data", holds

the information of a quantum system captured by quantum sensors and stored in

qubits [87]. It is also possible for qubits to store classical information. Storing

classical information requires applying a certain set of operations (set of gates) to

qubits and this process is called information encoding or embedding. An embedding

of data x is realized by a unitary Sx that acts on the initial |0〉⊗N state with N qubits

can be expressed as [88];

|φ〉 = Sx |0〉⊗N (3.20)

There are certain properties of a good embedding [88]. First of all, an embedding

should have polynomial number of gates in the size of the dataset and the number of

qubits. Then, the embedding should be bijective to provide a unique representation

for all of the data samples. NISQ hardware brings additional restrictions to the em-

bedding methods with three criteria. First, circuits with subpolynomial depth due to

low decoherence times. Second, hardware efficient circuits due to low connectivity.

Hardware efficient circuits respect the connectivity of the qubits when applying multi-

ple qubit gates. Third, use of native gates to reduce the total depth of circuits. There

are multitude of proposed methods to encode classical information to qubits, such as

basis, amplitude and angle embeddings, which will be given as examples here.

Basis encoding embeds the information to binary states with a finite precision τ . With

this encoding, m binary strings of x with N features can be embedded in a superposition

using N × τ qubits. There are linear algorithms that can implement such superposition

states [87, 89, 90]. However basis encoding results in a very sparse amplitude matrix

which makes it inefficient at large scales [91]. An example of basis encoding x1 = (11,

40

01) and x2 = (00, 11) is;

|D〉 =
1√
2
|1101〉+

1√
2
|0011〉 (3.21)

Amplitude encoding embeds data in the probability amplitudes of states. The ampli-

tudes needed to be divided to ‖x‖22 to ensure normalization. The state, where a data

vector x ∈ RN is encoded using only N qubits, can be expressed as in Eq.3.22 [88].

In contrast to basis encoding, amplitude encoding requires O(1/|xi|2) measurements

on average, in order to have enough statistics to discriminate the amplitudes. Another

downside of using amplitude encoding is the need for extensive classical computation.

Similar to basis encoding, amplitude encoding can also be implemented in linear

time, but they both require many expensive multi-qubit gates [91]. A full amplitude

encoding can go further and make use of all available amplitudes saving some number

of qubits, as it would only require log2N qubits. However, such an embedding requires

O(2N) time to prepare [91].

|D〉 =
1

‖x‖22

N∑
i=1

xi |i〉 (3.22)

Angle (Qubit) encoding provides an embedding that needs constant depth and easy to

implement circuits. In this embedding, where a data vector x ∈ RN can be encoded

using N qubits and N single qubit RY gates as given in Eq. 3.23 [88]. Angle encoding

provides flexibility in choice of the rotation axis to embed data. An example embedding

of 1000 data points uniformly sampled between [0, 2π], plotted on the Bloch Sphere

can be seen in Fig. 3.9.

|D〉 =
N⊗
i=1

cos(xi) |0〉+ sin(xi) |1〉 (3.23)

Dense angle embedding further improves the angle embedding by exploiting the phase

of the states to embed the data vector x ∈ RN using N/2 qubits with the small cost of

additional single qubit gates. The mathematical representation of this embedding is

41

x
y

|0

|1

RX

RY

Figure 3.9: Angle embedding representations on the Bloch Sphere. Single qubit

encoding with RY is plotted with blue circles and RX in red.

given as [88];

|D〉 =

N/2⊗
i=1

cos(πx2i−1) |0〉+ e2πix2sin(πx2i−1) |1〉 (3.24)

There are many other types of embedding such as the general qubit embedding, which

generalizes the angle embedding and Feature Maps that creates entanglements of

data points between qubits. Recently, it has also been shown that the choice of the

embedding can help avoid hardware noise, as some embeddings are more robust

to certain noise sources [88]. There are also approaches where the embedding is

repetitively applied in between variational layers [92], and it has been showed that the

selection of embedding impacts the expressive power of a quantum model [93]. It is

for sure that, the choice of embedding is an integral part of building a VQC.

3.3.2 Parametrized Quantum Circuits

Parametrized Quantum Circuits (PQCs) are tunable circuits that consists of a set of

trainable parameters and is a prominent factor in determining the learning capacity of

a VQA. There are many proposed ways to build a PQC. First, there are mathematically

42

driven, fixed architectures that focus on solving certain problems such as the Quantum

Approximate Optimization Algorithm (QAOA) [94]. Then, there are PQC models that

are built to express physical systems such as the Unitary Coupled-Cluster Singles and

Doubles (UCCSD) ansatz [95]. This is followed by models inspired from physical

systems such as Matrix Product State (MPS) [96], Tree Tensor Network (TTN) [97]

and Multi-scale Entanglement Renormalization Ansatz (MERA) [97]. Lastly, there are

hardware efficient circuits models [98]. The last two types of PQC models are suited

best for machine learning tasks as their architectures are problem agnostic.

First of these two categories can be called hierarchical architectures. The Hamiltonians

that are defined by some of these PQCs were already in use in quantum many body

physics. MPS for instance, can be used to express quantum states of many particles that

lie on a chain in one spatial dimension (1D) formation. Similarly, TTNs can express

quantum states of particles that lie on a tree structure [99]. These types of PQCs start

with using some certain number of qubits, then gradually decrease the number of

qubits used in each layer. Their architecture is determined by the type of interactions

and the number of qubits. Towards the end of the algorithm, the interacting number of

qubits reduces to one and measurement is performed on this qubit. This architecture

allows these type of circuits to be good PQC candidates in the NISQ era, as they have

limited interaction between qubits and are not very deep. These circuits are often built

with the help of 2 qubit gate blocks which both have entangling gates such as (e.g. CX,

CZ) and parametrized gates (e.g. RY , RX). An example construction of such a 2 qubit

gate is given in Fig.3.10. Examples of these architectures are presented in their 4 qubit

configurations can be seen in Fig.3.11.

Ui =
Ui0

Ui1

Figure 3.10: An example construction of a two qubit parametrized gate.

The second type of PQCs provides a more flexible and generic architecture. They

consist of major building blocks, called layers. First of them is the parametrized

layer, which consists of single qubit gates that might consist of both parametrized

43

U0

U1

U2

(a) MPS [96]

U0

U1

U2

(b) TTN [97]

U0

U1

U2

U3

(c) MERA [97]

Figure 3.11: Some of the hierarchical architecture types of PQCs in their 4 qubit

configurations.

and non-parametrized gates. The second layer type is the entangling layer and it is

responsible for creating interactions between qubits with the help of entangling gates.

When these two layers are combined, they are referred as a PQC layer, and a complete

PQC consists of multiple layers. At the end of the circuit, any qubit can be measured

depending on the design choice. These facets allow this architecture to express a very

wide range of Hamiltonians, while still allowing NISQ applications. An example

configuration of these layers is given in Fig.3.12.

Figure 3.12: A generic variational Quantum circuit with an arbitrary PQC. An infor-

mation encoding layer encodes the classical information on the Hilbert Space of qubits.

Then a series of parametrized and entangling layers are used to transform the encoded

state. At the end, the quantum state is measured.

There are many ways to build both of these layers. Their design is usually restricted

by the hardware. In low connectivity cases, entangling gates that only act on the

nearest neighbour qubits might be preferred (Fig. 3.13a). However, in certain cases,

44

the hardware might allow all-to-all connections (Fig. 3.13b). The parametrized layers

are also very flexible. Design choices such as axis and amount of rotation gates remain.

While one can only use a single axis rotation in each layer (Fig. 3.13c), it is also

common to stack different axis rotations in a single layer (Fig 3.13d).

(a) (b)

RY

RY

RY

RY

(c)

RY

RY

RY

RY

RX

RX

RX

RX

RY

RY

RY

RY

(d)

Figure 3.13: Example 4 qubit toy configurations for entangling and parametrized layers.

An entangling circuit with nearest neighbour (2D) interactions (a). An entangling

circuit with all-to-all interactions (b). A PQC with a single layer of gates (c). A PQC

with multiple layers of gates (d).

It is important to point out here that the architecture presented here is not a fixed

blueprint. There are instances where the entangling layers include parametrized gates

such as controlled rotation gates (e.g. CRX) and parametrized layers that consists of

two qubit gates. The checkerboard (nearest-neighbour (2D)) ansatz given in Fig. 3.14

is one example to these kind of models [98].

There has been significant progress in designing and testing different PQCs in the last

few years. Most of these models has been tested and showed promising performance

in various machine learning tasks [100]. However, the question of which model is

best for any given problem still lacks an answer. There has been several attempts to

45

...

Figure 3.14: A nearest-neighbor (checkerboard) PQC architecture. The gray boxes

represent 2 qubit parametrized gates which may include parametrized and/or entangling

gates. Figure is adapted from [98].

quantify properties of PQCs models. One of the most interesting of these attempts

introduced two descriptors to quantify a PQC model’s ability to express different states

and create entangles states called expressibility and capacity of entanglement [101].

Expressibility measures a PQC model’s ability to represent pure states uniformly in

the Hilbert Space. This metric is calculated numerically by comparing fidelities of

statevector samples from the PQC model and from Haar random matrices. Haar ran-

dom matrices are unitary matrices that satisfy the Haar measure for uniformity [102].

Fidelity is a measure that quantifies the closeness of two quantum states. At each sam-

pling, two random instances from the PQC is obtained and their fidelity is computed.

This operation is also performed for Haar random states.

F = |〈ψθ|ψφ〉|2 (3.25)

These samples are collected until there is enough statistics to obtain a probability

distribution of fidelities that can represent the distribution well enough. Finally,

Kullback-Leibler (KL) divergence [103] of these distributions are calculated to obtain

the value of the Expressibility descriptor [101].

E = DKL(P̂PQC(F ; θ) ‖ PHaar(F)) (3.26)

The E value gets smaller as the PQC model gets better at expressing more states in the

Hilbert Space. This makes E hard to compare for highly expressive circuits. Recently,

46

researchers started using an altered version (E’) such that, it is the negative of the

logarithm of E [104].

E ′ = −log10(E) (3.27)

This way, E’ grows as the PQC model gets more expressive. In Fig. 3.15, we present

a comparison of these values for two different PQC models with various number of

layers with 5000 samples for 4 qubits that represent a large enough dataset so that the

statistical error bars are negligible [101]. Model a+c uses circuit in Fig. 3.13c as its

parametrized layer, while Model Model a+d uses circuit in Fig. 3.13d. Both of these

models use the same entangling layer (Fig. 3.13a) to create a controlled expressibility

test. The increase of E’ at each layer shows that additional gates increase a model’s

expressive power, but this value saturates after certain amount of layers. As expected,

the model with a higher number of parameters and degrees of freedom (Model a+d)

can access more states, resulting in a larger E’ value.

The second descriptor is the Entangling Capability. As the name suggests, this de-

scriptor quantifies the model’s ability to create entangled states. This metric is also

numerically calculated by averaging Meyer-Wallach entanglement measures [105]

of samples with high enough statistics [101]. Meyer-Wallach entanglement measure

(Q) calculates the average linear entropy (i.e. 1 − {ρ2}) of all the single qubit re-

duced states [106]. For example, a fully entangled 2 qubit state
(
|Ψ〉 = |00〉+|11〉√

2

)
has Q(|Ψ〉) = 1 and a state with no entanglement (e.g. |Φ〉 = |01〉) has Q(|Φ〉) = 0.

Then, the Entangling Capability is calculated by taking the averages Meyer-Wallach

entanglement measure over the set of sampled states as given in Eq. 3.28 below [101].

Ent =
1

‖S‖
∑
θi∈S

Q(|ψθi〉) (3.28)

We can compare different entangling layers similar to the comparison in Fig. 3.15 with

same statistics. For this purpose let’s consider two models with same parametrized

layers (Fig. 3.13c). Model a+c uses the nearest neighbour fashion entangling gates

(e.g. Fig. 3.13a), while Model b+c uses an all-to-all type entangling layer (e.g.

Fig. 3.13b). As it can be seen from the figure, the Entangling Capability increases

47

1 2 3 4 5
Number of Layers

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Ex
pr

es
sib

ilit
y

(
lo

g 1
0(

Ex
pr

))

Haar Random

Model a+c
Model a+d

Figure 3.15: Model Expressibility vs. number of layers comparing two PQCs with

different parametrized layers.. Expressibility of Model a+c is plotted in orange and

Model a+c in blue for different number of layers. Both models saturate after some

certain number of layers. Model a+c reaches to values of Haar Random states with

more layers, while Model a+c saturates to a lower value.

with increasing number of layers and starts to saturate after some point. Both of the

models converge near the Entangling Capability of Haar Random states, while it is

hard to reach the maximally entangled limit. Results of Fig. 3.15 and 3.16 show that

as a model has more layers, having more parametrized and entangling gates, the values

reach to values of Haar random unitary transformations.

Expressibility and Entangling Capability provide a systematic method to quantify PQC

model’s properties. However, both of these metrics are still not enough to answer the

initial question, which was how to choose a PQC model. Although these descriptors

provide a starting point for PQC design, they do not cover the whole picture. For

example, they do not account for the type of measurement and post processing, which

has been shown to have a significant effect on performance [95]. Secondly, they

evaluate the states starting from a |0〉⊗N initialization, which is not the case when

there is an information embedding layer before the PQC. For these reasons, in order to

maximize the benefit of using these models, there is a need for new metrics that can

48

1 2 3 4 5
Number of Layers

0.0

0.2

0.4

0.6

0.8

1.0

En
ta

ng
lin

g
Ca

pa
bi

lit
y Haar Random

No Entanglement

Maximally Entangled

Model a+c
Model b+c

Figure 3.16: Model Entangling Capability vs. number of layers comparing two PQCs

with different entangling layers. Entangling Capability of Model a+c is plotted in

orange and Model b+c in blue for different number of layers.

cover a larger set of PQCs and their properties.

3.3.3 Training Classical and Quantum Neural Networks

Similar to DL algorithms, QNNs require an iterative process (training) to find optimal

parameters that minimizes a cost function for a given set of inputs, as it was previously

shown in Fig. 3.7. In the past two decades, many techniques to train DL methods were

developed and luckily, most of them are applicable to QNN training [107].

3.3.3.1 Optimization

The training processes consist of 4 elements: data, model, cost function and optimizer.

We discussed details regarding the data and the model to some extent until this point.

The other two elements are investigated in this section.

Cost function (or loss function) quantifies a model’s performance over a given set of

49

inputs. If the task is a supervised learning task such as classification, then the model’s

output is compared against the input’s class label. Binary cross entropy is a robust

loss function, that is widely used in many classical DL applications. It also found

its way into Quantum Machine Learning tasks and proved itself very useful in many

occasions. Although there are many other loss functions, to keep the consistency with

the literature, this work employs binary cross entropy in all training processes. The

definition of the binary cross entropy loss function for a binary classification task,

where, N is number of data samples, yi is the binary truth label (i.e. yi ∈ {0, 1}) and

ŷi is the model output (i.e. ŷi ∈ [0, 1]) for the ith data sample is;

L = − 1

N

N∑
i=1

yilog(1− ŷi) + (1− yi)logŷi (3.29)

The binary cross entropy loss function scales the predictions with a logarithm function

allowing a smooth penalty and award for wrong and true predictions respectively. This

scaling for two classes with different predictions is presented in Fig. 3.17.

0.0 0.2 0.4 0.6 0.8 1.0
Prediction

0

1

2

3

4

5

6

7

Bi
na

ry
 C

ro
ss

 E
nt

ro
py

 L
os

s

Class 1
Class 0

Figure 3.17: Binary cross entropy for different predictions of a sample. Class 0 is

shown in blue and the true prediction of it should be 0, while the true prediction of

Class 1 is expected to be 1.

The final element in the training process is the optimizer. Optimizer combines the

other three ingredients, which were data, model and loss function, to update the

50

parameters of the model with the goal of optimizing the loss function (it can minimize

or maximize it depending on the definition). For a model that is parametrized with θ,

the optimization task is expressed as follows, where x is the dataset, y is the labels of

each sample from the dataset and L is the loss function;

argmax
θ

min(L(x, y; θ)) (3.30)

The loss functions of DL and QNN algorithms are generally non-convex, which means

that the loss landscapes consist of local minima. This makes non-convex optimization

an NP-hard problem, meaning that it takes exponentially more time to find the global

minima with respect to number of parameters. However, this is not a big problem, as

in most cases, a local minima within a certain error threshold is sufficient. Popular

non-convex optimization algorithms can be viewed in two groups, which are derivative

based and derivative free. Now, they will be briefly explained.

First group of algorithms use derivatives of the loss function. The partial derivatives

of each parameter with respect to the loss function is used to guide the optimizer to

optimal values. Training the model continues as the loss function gets better values at

each iteration. For example, Gradient Descent, the simplest form of these algorithms,

updates the parameters with the following rule, where η is the learning rate;

θ := θ − η∇θL(x, y; θ) (3.31)

In the early days of Machine Learning and DL, simplicity of the Gradient Descent

allowed fast prototyping. However, this algorithm couldn’t handle larger and more

complex models. Therefore, researchers constantly searched for ways to improve.

Adaptive Moment Estimation (ADAM) algorithm was born as a product of several

development stages of algorithms [107]. ADAM proved itself in many occasions and

was shown to be robust. This led many researchers to adapt ADAM and use it for most

of the DL and also QNN training schemes today.

ADAM adapts the learning rate for each parameter which allows a smooth movement

on the loss landscape. This is done by keeping a running average of gradients and their

51

second moments. The gradients’ running average (mt) can be expressed with;

mt = β1mt−1 + (1− β1)∇θL(x, y; θ) (3.32)

where β1 is the first decay term, and if we divide this term with (1− β1), we obtain;

m̂t =
mt

1− β1
(3.33)

The running average of second moments of gradients (vt) can be written as;

vt = β1vt−1 + (1− β2)(∇θL(x, y; θ))2 (3.34)

where β2 is the second decay term, and if we divide this term with (1− β2), we obtain;

v̂t =
vt

1− β2
(3.35)

Then, these two terms are used to adapt the learning rate such that θt represents the

parameters at iteration t;

θt+1 = θt − η
m̂t√
v̂t + ε

(3.36)

where ε is a very small value (e.g. 10−8) to avoid a possible division by zero. The

three so called "hyper-parameters" of ADAM has recommended values of 0.001 for η,

0.9 for β1 and 0.999 for β2 and these are generally used as the default values in many

open-source machine learning libraries such as Tensorflow [108], PyTorch [109] and

Scikit-learn [110].

Although ADAM is a very robust and well performing algorithm, it requires a lot of

classical resources to keep track of all the running averages. It also has a problem

common to all gradient descent type algorithms, which is the computational cost of

calculating gradients of all parameters. Novel classical DL algorithms might contain

52

millions of parameters, which is a burden on the optimization process. As it was dis-

cussed in Section 2.3.2, GPUs help speed-up these calculations and allow researchers

to train large models with the currently available computational resources [36–38].

However, this issue persists in optimization of VQA and presents itself as a significant

problem. This matter will be discussed in the next section.

The second group of optimizers in non-convex optimization is called derivative-free

optimizers. These algorithms basically explore the loss landscapes by evaluating

points on it and do not rely on the derivatives of the loss function [111]. Some popular

examples include Bayesian optimization [112], particle swarm optimization [113]

and Constrained Optimization by Linear Approximation (COBYLA) [112]. Although

these optimizers have a computational advantage by not calculating the gradients,

their ability to find good solutions has been shown to be limited as the system size

increases [114]. This is one of the major reasons why they are not widely used to

train classical DL algorithms. Although derivative-free methods had been used to

train VQAs [115, 116], their use in hybrid models where a VQA is combined with a

classical DL algorithm is generally not preferred.

3.3.3.2 Gradients in Variational Quantum Algorithms

Optimizers such as ADAM needs partial derivatives (gradients) of all parameters with

respect to the loss function. They can be obtained using back propagation [117]. In

classical DL, analytical gradients of all parameters can be computed with this method.

However, the situation is different in VQAs. Although one can get analytical gradients

and back propagate with the help of simulators, the gradient can only be estimated

numerically using hardware due to finite sampling [118].

There are proposals to estimate the gradients on QC hardware based on finite difference

methods (parameter shift rules) [81, 86]. The cost function of a PQC, which is

parametrized with the unitary operation U(x; θ) and observed with the M̂ operator,

can be expressed as;

C(x; θ) = 〈0|U(x; θ)†M̂U(x; θ)|0〉 (3.37)

53

Then, if the observable has two distinct eigenvalues, the parameter shift rule gives the

gradient as [119];

∇θiC(x; θ) = r[C(x; θi + π/4r)− C(x; θi − π/4r)] (3.38)

where the r is a constant number. Eq. 3.38 shows that, to calculate the gradient of a

single parameter, two different executions of the same circuit with shifted parameters

is required. This situation adds one more problem to train VQAs, because to obtain

gradients of a PQC with m parameters, 2m different PQC executions are needed.

Naturally, the parameter shift rules also suffer from finite sampling with the constraint

given in Eq. 3.19. In Fig. 3.38, the gradient errors for a single parameter of a PQC with

different settings are compared, using a simulator and various NISQ hardware similar

to the comparison in Fig. 3.8. The results here are in alignment with the constraint set

by Eq. 3.19 and they show that NISQ hardware can estimate gradients but with large

errors. All results are obtained 10 times and their mean are plotted.

Pennylane
 default simulator

IonQ ibmq_quito ibmq_bogota Rigetti 9

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

shots:1
shots:10
shots:100
shots:1000

Figure 3.18: Absolute errors of estimated gradient values of a PQC2 with different

number of shots. The errors are calculated with respect to the analytical value obtained

using the default Pennylane simulator and error bars represent standard deviation of

10 independent runs.

Training a model, whether classical or hybrid, comes with many challenges. Some of
2The Quantum circuit used in this example is a 4 qubit and 1 layer configuration of the PQC plotted in Fig. 3.19.

54

these challenges were already mentioned. There is another important aspect called the

vanishing gradient problem [41] that was discussed in Section 2.3.3, which requires

careful handling especially when training a VQA. The vanishing gradient problem

was initially observed in classical DL applications such as RNNs but is also observed

in VQAs and generally called the Barren Plateaus (BPs) [120], which will now be

explained.

3.3.3.3 Barren Plateaus in loss landscapes

RNNs have a layered structure similar to some PQC models. The size of the gradients

decrease exponentially with the increasing model size, which prevents optimizers to

propagate to further distances on the loss landscape. The Barren Plateau (BP) name is

given due to the flat shape of the loss landscape [120]. To mitigate the problem in the

classical case, researchers introduced a new model called LSTM that prevented the

vanishing gradients, which was discussed in Section 2.3.3 [43].

A similar situation also arose for training PQCs. It has been shown that some PQCs

have exponentially vanishing gradients with increasing number of layers and number

of qubits [120]. This can easily be shown with numerical simulations of a PQC which

fits that definition, and a simple PQC with 4 layers, given in Fig. 3.19 is chosen as an

example. Expectation values of the circuit with various number of qubits are obtained

only by varying the first parameter (θ1,1) and keeping the others fixed. The values are

plotted on Fig. 3.20. The plot clearly shows how the expectation values get flatter with

increasing number of qubits resulting in a BP.

|0〉

|0〉

|0〉

|0〉

RY (x1)

RY (x2)

RY (x3)

RY (x4)

RY (θ1,1)

RY (θ1,2)

RY (θ1,3)

RY (θ1,4)

...

RY (θn,1)

RY (θn,2)

RY (θn,3)

RY (θn,4)

Figure 3.19: The layout of the PQC that is used to obtain gradient samples. The gate

shown in red indicates the parameter whose gradient has been taken.

To give another example of this effect, 1000 samples of gradients of θ1,1 with varying

number of qubits and layers are collected. The variances for each instance is plotted

55

0 /2 3 /2 2
1, 1

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Ex
pe

ct
at

io
n

Va
lu

e

4 qubits
8 qubits
12 qubits
16 qubits

Figure 3.20: Expectation values of the PQC in Fig. 3.19 with 4 layers using various

number of qubits vs. the θ1,1 parameter.

in Fig. 3.21. This plot is a clear indication of BP formation, as the variance of the

gradients decreases exponentially with the number of qubits. The decrease can also be

observed with increasing number of layers. This phenomenon makes training larger

models difficult and sometimes impossible.

4 6 8 10 12 14 16
Number of Qubits

10 4

10 3

10 2

10 1

Va
r(

1,
1 E

)

2 layers
4 layers
8 layers

Figure 3.21: Variance of gradient of a single parameter of a PQC vs. number of qubits

and layers. The variances of the gradients that belongs to the first parameter of PQC

shown in Fig. 3.19. Different colors indicate number of layers the PQC contains.

56

BPs are one of the most significant obstacles against scalable VQAs [85]. In recent

years and especially last year (2020), there has been progress in this field. There is still

a lot to discover and unlocking the full potential of VQAs rely on better understanding

this phenomenon.

Some of the recent progress that involves BPs can be listed as follows. There is an

initialization strategy that allows PQCs to escape BPs, here the PQC is initialized to

act as an identity gate [121]. Also, some architectures (TTN like architectures) were

shown to be resistant to BPs [122]. The rate of entanglement propagation between

qubits causes BPs [123], which might be the reason why TTN-like architectures are

more resistant, as they generally limit interactions between qubits significantly. Last

but not least, certain types of noise can create BPs, which might forbid training larger

models in the NISQ era [124].

Variational Quantum Classification is a very young and promising method. There is

still a lot to understand, test and validate. In this work, we try to shed light to some of

the effects while trying to achieve a real life scale task.

57

58

CHAPTER 4

METHODOLOGY

In this Chapter, the methodology of the proposed QGNN model to solve the particle

track reconstruction problem is presented. The first section contains details of the

input dataset’s manipulation. Next, the proposed QGNN model is laid out with its

design details. Finally, some quality metrics that are used to quantify the performance

of the proposed QGNN model are presented.

4.1 Data Pre-processing

The publicly available TrackML Challenge dataset provides 10000 events with a

Pile-up of 200 events to emulate the HL-LHC conditions [11]. For this work, due

to computing time limitations, only 100 events were selected. The particulars of

the dataset have been already discussed in section 2.4. Now, how this dataset is

manipulated and later used to train and test the proposed model will be explained.

In most Quantum Machine Learning applications it is tedious to work with large

datasets due to long duration of simulations [83, 125], limited QV of NISQ devices [79],

as well as limited access to NISQ hardware [52, 53]. Thus, a pre-processing step to

simplify the dataset is necessary. For this purpose, only 100 events were selected and

randomly divided in half as the train and test sets for the QGNN model.

The HEP.TrkX project restricts the tracking detectors to cover only the barrel region

of the TrackML detector [5] to reduce total number of particles and make tracking

more straightforward. This is done in order to both reduce number of possible tracks

and resolve the ambiguity in identifying the particle trajectories. This work follows

59

the same approach and uses the TrackML files which were defined in Table 2.2. The

geometry in 2 cylindrical coordinates (r,z) and the selected barrel region can be seen

in Fig. 4.1 as it was explained in Chapter 2.2.

3000- 2000- 1000- 0 1000 2000 3000
z [mm]

0

200

400

600

800

1000

r

[
m
m
]

Figure 4.1: 2D projection of the TrackML detector geometry. The region delimited

with the black lines indicates the detector layers used in this work. Drawing is adapted

from [11].

Next in pre-processing, a restriction (pT > 1 GeV) is applied on the particles’ trans-

verse momentum (pT) to further reduce the number of particles. The transverse

momentum pT is the particles’ momentum along the transverse (x-y) plane, and deter-

mines how much they bend under the influence of a magnetic field. Particles with a

low pT bend more, while particles having a high pT bend less, cf. Eq. 2.1. Limiting the

minimum allowed pT reduces the number of particles significantly, while not losing

any interesting high pT transfer collisions, which are the main interest of physics

analyses. But, this comes with an unintended side effect, which makes the job of the

model easier, as more curved (low pT) tracks are harder to track. In order to be able to

compare our results to HEP.TrkX, the same data pre-processing is also used for it. The

pT distribution of the measurements (hits) of particles from the selected 100 events

used in this work can be seen in Fig. 4.2 and the total number of hits for train and test

datasets are given in Table 4.1.

After reducing the number of tracks, the events are converted to graphs. Particle hits

are the nodes of the graphs and the track segment candidates are defined as edges at

60

0 2 4 6 8
pT [GeV]

103

104

105

106

Nu
m

be
r o

f H
its

Train
Test

Figure 4.2: Stacked histogram of number of hits vs pT. Hits of particles that passed

through the barrel region of the TrackML detector from the selected 100 events are

plotted. The dashed line represents the 1 GeV pT threshold used in order to reduce

total number of particles and tracks. Values are plotted until 8 GeV for visual purposes.

Table 4.1: Number of particle hits before and after the pT cut in the train and test

datasets.

Dataset All hits Hits > 1 GeV

Train Set 1,865,514 278,791

Test Set 1,900,858 279,514

Total 3,766,372 558,305

this stage. Then a set of criteria (cuts) is applied to all possible graph edges to create

the final graphs. Here, the goal is to have as few fake edges as possible, and as many

true edges as possible.

The restrictions are defined in a cylindrical coordinate system, which is widely used in

HEP to leverage the symmetries of the detectors. We follow the same convention and

present some of the definitions visually in Fig. 4.3 for further clarification. Particles

travel along the z-axis and collide near z=0. Then, the products of the collisions travel

away from the interaction point and leave signals on the detectors. Pseudorapidity (η)

61

is a measure for the angle to the z-axis in HEP. Its definition is given in Eq. 4.1, where

φ is the angle to the z-axis.

η = − ln [(tan(φ/2))] (4.1)

Figure 4.3: A drawing of the cylindrical coordinate system for particle collisions. The

beam is on the z-axis and the particles collide near z=0. The r axis is the projection of

the transverse (x-y) plane.

The first criterion of graph construction is to keep only the edges that connect nodes

from consecutive detector layers. These edges are the track segment candidates. An

example drawing, which shows this selection process is given in Fig. 4.4, where edges

are drawn with dashed black lines.

Next, tracks with η larger than 5 are eliminated as they point towards the end-caps.

This cut is used as a sanity check, that eliminates these particles that the detector was

not able to measure geometrically. Also, the cut on the slope of particle track segments

(∆φ/∆r) is required to be smaller than 6× 10−4. where, φ is the angle to the z-axis.

Finally, z intercept (z0) of all edges is required to be smaller than 100 mm to eliminate

highly oblique edges. The distribution of fake and true edges with respect to these

parameters is shown in Fig. 4.5, along with the choice of cuts. These cuts are shown

with dashed lines. This step is important as it allows graph construction with fewer

fake edges and reduces the computation time significantly.

In the end, 100 constructed graphs from 100 events are obtained with this method. The

62

Figure 4.4: A sketch of particle track reconstruction. Blue horizontal lines represent

detector layers. Orange star represents the particle interaction point. Green lines repre-

sent the trajectories of outgoing particles. Red circles represent detector measurements

of the particles and orange circles represent spurious hits. Dashed black lines represent

the potential track segments that connect measurements from two consecutive detector

layers.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
/ r [rad/mm] ×10 3

100

101

102

103

104

105

Nu
m

be
r o

f T
ra

ck
 S

eg
m

en
ts

fake
true

400 200 0 200 400
z0 [mm]

100

101

102

103

104

105

106
fake
true

Figure 4.5: Histogram of fake and true segments in construction of graphs from 100

events.] All fake (blue) and true (orange) segments obtained during the procedure

is plotted with respect to ratio of difference in φ to r (∆φ/∆r) (on the left) and z

intercept (z0) (on the right).

63

graph production is performed with 0.99 efficiency and 0.51 purity, where efficiency

and purity are defined in Eq. 4.2 and Eq. 4.3.

Efficiency =
Number of selected true track segments

Number of initial track segments
(4.2)

Purity =
Number of selected true track segments

Number of selected track segments
(4.3)

In return, this means 1% of the true track segments are lost and the QGNN model here

will then work to increase the purity from 51% to as high as possible.

After the graph construction, the dataset is expressed by 4 matrices; x ∈ IRNV ×3 stores

3 spatial coordinates of all nodes (in cylindrical coordinates; r, φ, z), Ri ∈ IRNV ×NE

and Ro ∈ IRNV ×NE stores input and output nodes of all edges, and y ∈ IRNV stores

the labels of edges. They are defined as follows;

R jk
i =

1, if kth edge is input of jth node

0, otherwise
(4.4)

R jk
o =

1, if kth edge is output of jth node

0, otherwise
(4.5)

y k =

1, if kth edge connects nodes that belong to same particle

0, otherwise
(4.6)

Constructed graphs have 8784 ± 1877 (1σ) edges (NE) and 5583 ± 804 (1σ) nodes

(NV) on average. An example graph, showing the fake and true edges in the transverse

plane, is presented in Fig. 4.6. Most of the fake edges are in between the first two

layers, since these can pass the ∆φ/∆r and z0 cuts due to being close to the origin.

On the other hand, true edges are distributed more evenly throughout the layers. The

total number of fake and true edges are similar as indicated by the purity of 0.51.

64

1000 500 0 500 1000
x [mm]

1000

500

0

500

1000

y
[m

m
]

Only Fake Edges (After Preprocessing)

1000 500 0 500 1000
x[mm]

y[
m

m
]

Only True Edges (After Preprocessing)

Figure 4.6: 2D projection of hits, fake and true edges of an event after pre-processing.

All hits are plotted with black circles. Fake (on the left) and true (on the right) edges

of a graph is plotted in the Cartesian coordinates (transverse plane). There are 5162

true and 5508 false edges plotted.

4.2 Hybrid Graph Neural Network

The Hybrid Quantum-Classical Graph Neural Network (QGNN) model takes a graph

as an input and provides a scalar output for each edge, which is the likelihood of an

edge being true. The model builds up on an Attention Passing Graph Neural Network

model [126] following the same strategy as the HEP.TrkX project [5]. In contrast to

the classical approach, the QGNN combines Multi Layer Perceptrons with QNN.

The QGNN consists of 3 parts, which are Input, Edge and Node Networks. The Input

Network is responsible for increasing the dimension of the input data. It takes the

spatial coordinate information (e.g. 3 cylindrical coordinates) and passes them through

a single fully connected neural network with a sigmoid activation. The output size

corresponds to the hidden dimension size (ND). Then, these new data points are

concatenated to form the initial node feature vector, where v ∈ IRNV ×(3+ND).

v = x⊕ φFC(x) (4.7)

65

Then, the node feature vector is fed into Edge and Node Networks, which process the

graph iteratively Niteration times, in order to obtain a final edge probability value (e)

for each of the edges. At the end of the model, the Edge Network is executed one more

time to obtain final edge probabilities (e ∈ IRNV). This pipeline is summarized with a

simple drawing in Fig. 4.7.

Figure 4.7: A schematic of the GNN architecture. The pre-processed graph is fed to an

Input Network, which increases the dimension of the node features. Then, the graph’s

features are updated with the Edge and Node Networks iteratively, Niteration times.

Finally, the Edge Network is used one more time to extract the edge features of the

graph that predicts the track segments.

4.2.1 The Edge Network

The Edge Network takes pairs of nodes into account and returns the probability for the

connection of the nodes. The initial connection between each pair of nodes is given by

the connectivity matrices Ri and Ro, which were defined in Eq. 4.4 and Eq. 4.5. Node

feature vectors of all initially connected edges are multiplied with Ri and Ro matrices

to obtain respective input (bi ∈ IRNE×3) and output (bo ∈ IRNE×3) feature vectors of

all edges as follows,

b jo =

NV∑
k=1

R kj
o vk b ji =

NV∑
k=1

R kj
i vk (4.8)

The feature vectors of input and output nodes of each edge (b ji and b jo are the input

and output feature vectors of the jth edge) are concatenated to be fed into a Hybrid

Neural Network (φEdgeNetwork, HNN). The HNN returns edges features (e ∈ IRNE).

This is the probability of how likely the edge is part of a real trajectory and then these

66

edge features are passed to the Node Network.

ej = φEdgeNetwork(b
j
o ⊕ b ji) (4.9)

4.2.2 The Node Network

The Node Network builds up on the edge feature matrix (e). Based on this input

information, the node features are updated. A triplet is formed by combining each

node of interest and its neighbors from upper and lower detectors. The node features

of the neighbors’ are weighted in this case with the corresponding edge features such

that,

v′j,input =

NE∑
k=1

R jk
i ekb

j
o v′j,output =

NE∑
k=1

R jk
o ekb

j
i (4.10)

Similar to the Edge Network, the triplet is fed to yet another HNN (φNodeNetwork),

vk := φNodeNetwork(v
′
k,input ⊕ v′k,output ⊕ vk) (4.11)

This time, the HNN returns new node features, v. The updated features are passed

again to the Edge Network and this process is repeated for Niteration times. As we

are interested in classifying hit segments, the final Network of the model is always

an Edge Network. This behavior can be altered to create a model that can achieve

different tasks, such as event classification or noisy hit detection.

4.2.3 The Hybrid Neural Network

The QGNN approach uses HNNs, which combine both classical and quantum layers.

The HNN model takes the input and feeds it to a single FC NN layer. The output

dimension of this layer is equal to number of qubits used by the quantum layer. Then,

the output of the classical layer is used in the encoding step of the quantum layer.

67

Finally, the measurements of the quantum layer are fed to another single FC NN,

which has the output dimension of 1 (in case of Edge Network) or hidden dimension

size (in case of Node Network). This architecture, as presented in Fig. 4.8, allows full

flexibility in choosing the number of hidden dimensions and the number of qubits as

well as choosing the type of the quantum model.

Figure 4.8: The HNN architecture design. The input is first fed through a classical

FC NN layer. Then, its output is encoded in the Quantum circuit. The outputs are

obtained as expectation values for each qubit from the circuit. A final FC NN layer is

used to combine the results of different qubit measurements. The same HNN design is

used in Edge (upper output and input dimension) and Node Networks (lower output

and input dimension). The input and output dimension sizes change according to the

network type.

The FC NNs of this model are standard classical layers, which have been widely used

since decades. Therefore are kept fixed (except their dimension) and test the QGNN

model with different quantum layers to understand potential benefits.

The QNN of choice consists of three consecutive parts. An Information Encoding

Circuit (IEC) encodes classical data to the states of the qubits followed by a PQC

that transforms these states to their optimal location in the Hilbert Space. Finally,

measurements are performed along the z-axis with the σz operator.

As it was discussed in Section 3.3.1, the information encoding has a significant

effect on the training capacity of QNN models. This requires a careful choice of

encoding [93] and an angle encoding here was selected for two reasons. An angle

encoding uses significantly less gates compared to other encoding methods, e.g. an

amplitude encoding, and it needs almost no classical processing [88]. The QNN

encodes the classical incoming information on the qubit states via rotational gates

68

in the desired axis. In order to obtain a unique and bijective representation of the

classical data, the rotation angle is limited to θ ∈ [0, π] due to the periodicity of the

cosine function. This is important since the expectation value is taken with respect to

the σz-operator at the end of the circuit execution. The angle encoding with the RY

gate is given as

|D〉 =
N⊗
i=1
{cos(xi) |0〉+ sin(xi) |1〉} (4.12)

The PQC is the part of the QNN model that will be tuned in order to provide the

desired output. As in classical NN layers, those initially randomly assigned variables

are optimized during training to fit certain training objectives, i.e., minimize the overall

loss function. In order to achieve a good training performance, choosing a good

combination of IEC and PQC is essential. Although there are several theoretical an

experimental studies [101, 104, 127], the current understanding of which combination

works best for which task is still limited [93]. Therefore, the IEC will be fixed to

a specific angle encoding so that two selected types of PQCs can be examined and

compared in this thesis.

The first PQC type used here consists of circuits with a hierarchical architecture.

MPS [96] and TTN [99] inspired circuits are selected from this group as shown in

Fig. 4.9 (a ,b). However, these PQCs measure only one qubit. Thus, they are only

implemented in case of the Edge Network as a multi-dimensional output is needed for

the Node Network. The second type of PQCs (as shown in Fig. 4.9 (c, d)) are more

common in the QML literature. They consist of repeated layers of parametrized gates

that are followed by controlled operations. These circuits act on all qubits equally,

meaning one can measure all qubits to obtain information. This makes them suitable

for both Edge and Node Networks. As it was discussed in Section 3.3.2, there are

descriptors for the second type of PQCs (Circuit 10 and 19)1.

Expressibility and Entangling Capacity provides information about the type of circuits

before training [101]. Circuit 10 and Circuit 19 are selected for comparisons. Circuit

19 has more Expressibility, whereas circuit 10 has a larger Entangling Capacity. As it
1Circuit 10 and Circuit 19 are initially defined in [101]. For this reason we don’t change their name and use the

same convention.

69

RY

RY

RY

RY

RY

RY

RY

(a) Matrix Product State (MPS) inspired 4 qubit circuit. Circuit is adapted from [96].

RY

RY

RY

RY

RY

RY RY

(b) Tree Tensor Network (TTN) inspired 4 qubit circuit. Circuit is adapted from [99].

RY

RY

RY

RY

RY

RY

RY

RY

RY

RY

RY

RY

RY

RY

RY

RY

a layer

(c) Circuit 10 in 3 layer and 4 qubit configuration. Adapted from [101].

RX

RX

RX

RX

RZ

RZ

RZ

RZ

RX

RX

RX

RX

RX

RX

RX

RX

RZ

RZ

RZ

RZ

RX

RX

RX

RX

a layer

(d) Circuit 19 in 2 layer and 4 qubit configuration. Adapted from [101].

Figure 4.9: The 4 qubit configurations of the PQCs used in this work.

70

can be seen in Fig. 4.10, Circuit 19 always has more Expressibility and Entangling

Capacity, and can yield similar values to the Haar Random case with enough number

of layers.

1 2 3 4 5 6 7 8 9 10
Number of Layers

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Ex
pr

es
sib

ilit
y

(
lo

g 1
0(

Ex
pr

)) Haar Random

Circuit 10
Circuit 19

1 2 3 4 5 6 7 8 9 10
Number of Layers

0.0

0.2

0.4

0.6

0.8

1.0

En
ta

ng
lin

g
Ca

pa
bi

lit
y Haar Random

No Entanglement

Maximally Entangled

Circuit 10
Circuit 19

Figure 4.10: Expressibility and Entanglement Capacity vs. number of layers for

some of the PQCs in their 4 qubit configurations. Expressibility (on the left) and

Entanglement Capacity (on the right) of Circuit 10 (orange) and 19 (blue) are plotted

with various number of layers.

4.3 Training the Model

Training hybrid quantum-classical NNs requires software that is able to differentiate

gradients for both classical and quantum NNs. Pennylane [81] is one of the most

popular open-source tools that provides this. Pennylane has been used along with

Pytorch [109] during the early stages of this work to train the model. However,

this combination turned out to be too slow to train the proposed QGNN model with

the TrackML dataset. A computational speed-up in training was achieved using

Qulacs [128]. Finally, the combination of Cirq [82], Tensorflow [108] and Tensorflow

Quantum [129] produced the optimal scenario, in which we were able to reduce the

duration of training to less than a week. The quantum circuit simulations are performed

by only taking analytical results into account, which analytical results do not reflect

hardware limitations. However, this choice was made in order to obtain results in a

reasonable amount of time.

71

The 100 events selected from the dataset are separated randomly with a 50/50 ratio to be

used as training and validation sets as it was mentioned in pre-processing. A weighted

binary cross entropy loss function is used to account for the uneven distribution of

true/fake segments. The Adam optimizer [107] with a learning rate of 0.01 is used

to train all trainable parameters of the hybrid model. The learning is done with a

batch size of 1 per graph and continued up-to 10 or 20 epochs depending on model

complexity. Batch size is the number of events that the optimizer uses to update the

parameters and an epoch corresponds to a full pass of the dataset. All models are

trained with a different initialization for 5 times.

4.4 Performance Metrics

There are many metrics used to quantify goodness of a classification besides the loss

function [117]. Although the optimizer only uses the loss function to train the model,

it is important to observe the models’ performance with respect to common metrics.

Some of these metrics require a threshold between 0 and 1 to make a prediction, such

that;

prediction =

True, output > threshold

False, output ≤ threshold
(4.13)

A prediction can belong to 4 possible groups in the binary classification task. These

groups and their names are given with the confusion matrix;

Table 4.2: Confusion matrix for binary classification.

Actual

Prediction
True False

True True Positive (TP) False Negative (FN)

False False Positive (FP) True Negative (TN)

Then, the metrics depending on the confusion matrix (accuracy, precision, recall and

F1 score) require a threshold. These will be discussed now. Accuracy is the ratio of

72

true classifications and defined as,

Accuracy =
TP + TN

TN + FP + FN + TP
(4.14)

A true random model produces an accuracy of 0.5, while a perfect model has an

accuracy of 1.0. Precision is the ratio of correct predictions of true edges to all true

predictions and defined as,

Precision =
TP

TP + FP
(4.15)

Precision measures a model’s ability not to classify fake edges as true edges. Recall is

the ratio of correct predictions of true edges to all true edges and defined as,

Recall =
TP

TP + FN
(4.16)

Recall measures the model’s ability to find all true edges. There is usually a trade-off

between precision and recall. A model with high precision low recall would be good

at selecting the true predictions with the cost of choosing only few. A model with

low precision and high recall would identify more samples as true but most of them

would be wrong. A good model should have high precision and high recall at the same

time [117]. Another possibility to quantify a model’s performance is the F1 Score,

which is a more inclusive metric. The F1 Score takes the harmonic mean of precision

and recall and is defined as

F1 Score =
2× Precision×Recall
Precision+Recall

. (4.17)

In the best case, the F1 score takes the value 1.0, and 0.0 in the worst case. There

are also metrics that do not require a specific threshold. One of these metrics is the

Area Under the Receiver Operating Characteristic Curve (ROC AUC or AUC) [130]

as shown in Fig. 4.11. As the name suggests, AUC is computed by calculating the area

under a Receiver Operating Characteristic (ROC) curve. The ROC curve is computed

73

Figure 4.11: ROC plot of an arbitrary model. The blue curve represents the ROC of

the model. The area under the blue line, highlighted in orange, represents the AUC.

The dashed red line shows the true random prediction and the dashed green line shows

the ideal prediction case.

by evaluating the model’s True Positive Rate (TPR) and False Positive Rate (FPR) at

various thresholds from 0.0 to 1.0. TPR and FPR is defined as,

TPR =
TP

TP + FN
(4.18)

FPR =
FP

FP + TN
(4.19)

ROC has the FPR on the x-axis, while the TPR is on the y-axis. Evaluating a model’s

performance at various threshold makes AUC a very inclusive metric. This way a

model’s performance can be quantified without a choice made by a user, while a choice

of threshold is required for those models that require it.

74

4.5 Hardware and Software Information

All results presented in this work used the following hardware and software specifica-

tions.

A Dell rack computer with two Intel Xeon Silver 4216 CPU, 4x64 GB 2933MHz

RAM, 2x1 TB SSD storage and two 2080 Ti Nvidia GPU. The open-source software

used for this work can be listed as follows. Python 3.8.5, NumPy v1.18.5 [131],

Cirq v0.9.1 [82], Tensorflow v2.3.1 [108], Tensorflow Quantum v0.4.0 [129], Scikit-

learn v0.23.2 [110], qpic v1.0.2 [132], Matplotlib v3.2.2 [133]. The project web-

site and codebase to reproduce all of the results presented here can be accessed

through https://qtrkx.github.io and https://github.com/QTrkX/

qtrkx-gnn-tracking.

75

https://qtrkx.github.io
https://github.com/QTrkX/qtrkx-gnn-tracking
https://github.com/QTrkX/qtrkx-gnn-tracking

76

CHAPTER 5

RESULTS & DISCUSSION

5.1 Results

In this section, training results of the proposed QGNN model with various settings

are presented. Trials are presented with 4 key comparisons of features that have a

significant effect on the performance of the model. The learning is performed with a

batch size of 1 per graph and continued up-to 10 or 20 epochs depending on model

complexity. All models are trained for 5 independent initializations and their mean is

presented. The shaded regions, in each graph, represent the ± standard deviation of

the best losses of all 5 runs. A 0.5 threshold is used for metrics that require a threshold.

Please refer to Section 4.3 for more details.

5.1.1 Embedding Axis Comparison

The embedding axis comparison considers angle embeddings over different axes of

the Bloch Sphere. For this comparison Circuit 10 and Circuit 19 are chosen as they

exhibit rotation gates with different axes.

A setting of 4 qubits is chosen for this comparison including a hidden dimension

size of 4 and a single layer PQC as well as an iteration number of 3. All models are

trained for 20 epochs and their best losses are plotted in Fig. 5.1. In both cases, the

y-axis embedding resulted in better loss values with a marginal difference to the x-axis

embedding. The z-axis embeddings performed the worst with both PQCs. Due to this

outcome, the y-axis angle embedding is considered for the rest of the trials.

Training curves of this comparison, with respect to different metrics, are presented in

77

X Y Z
Axis of Angle Embedding

0.40

0.41

0.42

0.43

0.44

0.45

Be
st

 L
os

s a
fte

r 2
0

ep
oc

hs

circuit 10
circuit 19

Figure 5.1: Axis of angle embedding comparison. The x-axis determines the axis of

the embedding, while the y axis shows the best loss values after 20 epochs of training.

All models are trained 5 times and their means are plotted in blue (circuit 10) and red

(circuit 19), respectively. The error bars represent the ± standard deviation of the best

losses of all 5 runs.

Fig. 5.2 in the same scales for ease of comparison and each row represents a different

axis of embedding. Circuit 10 slightly outperforms circuit 19 in all cases. The learning

curves are very similar in the case of x and y axis embeddings but standard deviations

of Circuit 10 are tighter for loss, accuracy and AUC. In contrast to these, the z axis

embedding performs poorly and has a considerably larger standard deviation for both

PQCs. After 20 epochs, all models start to converge, meaning that the optimizer is

close to find a local or global minima. Different final values show different learning

capacities of models.

5.1.2 Number of Layers Comparison

Next, the number of layers are compared for models with a different amount of PQC

layers. For this purpose, two models with circuit 10 and circuit 19 with a hidden

dimension size of 4 and an iteration number of 3 are selected. The best losses obtained

after 20 epochs of training is plotted with respect to number of layers in Fig. 5.3.

In both cases, the model’s performance did not improve with an increasing number

78

0 5 10 15 20

0.40

0.42

0.44

Lo
ss

X axis embedding

0 5 10 15 20

0.40

0.42

0.44

Y axis embedding

0 5 10 15 20

0.40

0.42

0.44

Z axis embedding

0 5 10 15 200.70

0.75

0.80

Ac
cu

ra
cy

0 5 10 15 200.70

0.75

0.80

0 5 10 15 200.70

0.75

0.80

0 5 10 15 200.800

0.825

0.850

0.875

0.900

AU
C

0 5 10 15 200.800

0.825

0.850

0.875

0.900

0 5 10 15 200.800

0.825

0.850

0.875

0.900

0 5 10 15 200.6

0.7

0.8

F1
 S

co
re

0 5 10 15 200.6

0.7

0.8

0 5 10 15 200.6

0.7

0.8

0 5 10 15 200.7

0.8

0.9

1.0

Pr
ec

isi
on

0 5 10 15 200.7

0.8

0.9

1.0

0 5 10 15 200.7

0.8

0.9

1.0

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

Re
ca

ll

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

circuit 10 circuit 19

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

Figure 5.2: Embedding axis comparison training curves. Three columns are X, Y and Z

axis embeddings respectively and each row presents results for a different performance

metric. All models are trained 5 times and their means are plotted in blue (circuit

10) and red (circuit 19), respectively. The shaded regions represent the ± standard

deviation of the best losses of all 5 runs.

of layers. But, it is also hard to say it did not get worse due to low statistics. The

increasing size of the error bars indicate that both models become harder to train, the

more layers they contain.

79

1 3 5 7
Number of Layers

0.40

0.41

0.42

0.43

0.44

Be
st

 L
os

s a
fte

r 2
0

ep
oc

hs

circuit 10
circuit 19

Figure 5.3: Number of layers comparison. The x-axis determines the number of PQC

layers, while the y axis shows the best loss values after 20 epochs of training. All

models are trained 5 times and their means are plotted in blue (circuit 10) and red

(circuit 19), respectively. The error bars represent the ± standard deviation of the best

losses of all 5 runs.

Training curves of this comparison, with respect to different metrics, are presented in

Fig. 5.4. Circuit 10 slightly outperforms circuit 19 with models that have less layers.

But this situation seems to change with an increasing number of layers. The standard

deviation of the training curves also gets significantly larger with an increasing number

of layers. The models with more layers reach a plateau later for loss, accuracy and

AUC.

5.1.3 Number of Iterations Comparison

The number of iterations are compared looks to see the effect of graph iterations on

model performance. A comparison of 1, 3, 5 and 7 iterations with a hidden dimension

size of 4, with 4 qubits and single layer PQC hybrid model is performed with Circuit

10 and Circuit 19 and the results are presented in Fig. 5.5. The training results show

that the best loss is obtained for 3 iterations for the hybrid cases. However, this is

not true in the classical case, as the classical model continues to improve with more

iterations.

80

0 5 10 15 20

0.40

0.42

0.44

Lo
ss

1 Layer

0 5 10 15 20

0.40

0.42

0.44

3 Layers

0 5 10 15 20

0.40

0.42

0.44

5 Layers

0 5 10 15 20

0.40

0.42

0.44

7 Layers

0 5 10 15 200.70

0.75

0.80

Ac
cu

ra
cy

0 5 10 15 200.70

0.75

0.80

0 5 10 15 200.70

0.75

0.80

0 5 10 15 200.70

0.75

0.80

0 5 10 15 200.800

0.825

0.850

0.875

0.900

AU
C

0 5 10 15 200.800

0.825

0.850

0.875

0.900

0 5 10 15 200.800

0.825

0.850

0.875

0.900

0 5 10 15 200.800

0.825

0.850

0.875

0.900

0 5 10 15 200.6

0.7

0.8

F1
 S

co
re

0 5 10 15 200.6

0.7

0.8

0 5 10 15 200.6

0.7

0.8

0 5 10 15 200.6

0.7

0.8

0 5 10 15 200.7

0.8

0.9

1.0

Pr
ec

isi
on

0 5 10 15 200.7

0.8

0.9

1.0

0 5 10 15 200.7

0.8

0.9

1.0

0 5 10 15 200.7

0.8

0.9

1.0

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

Re
ca

ll

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

circuit 10 circuit 19

Figure 5.4: Comparison of training curves for different (1, 3, 5 and 7) layers. Each

column represents models with a different number of layers, while each row presents

results for a different performance metric. All models are trained 5 times and their

means are plotted with blue (circuit 10) and red (circuit 19) lines. The shaded regions

represent the ± standard deviation of the best losses of all 5 runs.

Training curves of this comparison with respect to different metrics are presented in

Fig. 5.6 in the same scale for ease of comparison. Results are presented for 1, 3, 5

and 7 layers in different columns. In the hybrid cases, the model gets harder to train

81

1 3 5 7
Number of Iterations

0.40

0.41

0.42

0.43

0.44

Be
st

 L
os

s a
fte

r 2
0

ep
oc

hs

hybrid (10)
hybrid (19)
classical

Figure 5.5: Comparison of the number of iterations. The x-axis determines the number

of graph iterations, while the y axis shows the best losses after 20 epochs of training.

All models are trained 5 times and their means are plotted in blue (circuit 10), red

(circuit 19) and orange (HEP.TrkX [5]) respectively. The error bars represent the ±
standard deviation of the best losses of all 5 runs.

with the increasing number of iterations. Both the performance with respect to almost

all metrics gets worse and the standard deviations grow after number of an iteration

number of 3. In contrast, the classical model continues to improve marginally with

more iterations.

5.1.4 Hidden Dimension Size Comparison

Performance of models with different hidden dimension sizes are compared to investi-

gate how they scale. This comparison is made with the choice of Nqubits = Nhid.dim.,

3 iterations and using only a single layer of the PQCs. Two different configurations of

PQCs are compared. Models with the labels circuit 10 and circuit 19 use

the same circuits with different initial parameters for the Edge and Node Networks, as

it was done in previous comparisons. While the models with TTN-10 and MPS-10

labels use circuit 10 for the Node Network, a TTN or an MPS type of PQC is

used in case for the Edge Network. TTN and MPS circuits are not used in the Node

Network, because the Node Network needs an output dimension size that is equal to

82

0 5 10 15 20

0.40

0.45

0.50

Lo
ss

hybrid (10)

0 5 10 15 20

0.40

0.45

0.50 hybrid (19)

0 5 10 15 20

0.40

0.45

0.50 classical

0 5 10 15 20
0.725

0.750

0.775

0.800

Ac
cu

ra
cy

0 5 10 15 20
0.725

0.750

0.775

0.800

0 5 10 15 20
0.725

0.750

0.775

0.800

0 5 10 15 200.800

0.825

0.850

0.875

0.900

AU
C

0 5 10 15 200.800

0.825

0.850

0.875

0.900

0 5 10 15 200.800

0.825

0.850

0.875

0.900

0 5 10 15 200.6

0.7

0.8

F1
 S

co
re

0 5 10 15 200.6

0.7

0.8

0 5 10 15 200.6

0.7

0.8

0 5 10 15 200.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

0 5 10 15 200.6

0.7

0.8

0.9

1.0

0 5 10 15 200.6

0.7

0.8

0.9

1.0

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

Re
ca

ll

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

1 3 5 7

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

Figure 5.6: Comparison of the training curves of number of iterations. The first two

columns represent hybrid models with Circuit 10 and Circuit 19, and the last column

is for the classical HEP.TrkX model [5]. Each row presents results for a different

performance metric. All models are trained 5 times and their means are plotted with

different colored lines for each number of iteration. The shaded regions represent the

± standard deviation of the best losses of all 5 runs.

the hidden dimension size. However, TTN and MPS circuits only measure a single

qubit. The definitions of the models used in this comparison are also given in Table 5.1

83

for further clarification.

Table 5.1: Model labels and their respective PQCs used in different parts of the

network.

Label PQC of Edge Network PQC of Node Network

MPS-10 MPS Circuit 10

TTN-10 TTN Circuit 10

The results show in all settings that the model performance improves with increasing

hidden dimension size. The model with circuit 10 outperforms the rest consis-

tently. However, there seems to be a saturation of the best loss as the hidden dimension

size increases.

4 8 16
Hidden Dimension Size

0.40

0.41

0.42

0.43

0.44

0.45

Be
st

 L
os

s a
fte

r 1
0

ep
oc

hs

circuit 10
circuit 19
TTN-10
MPS-10

Figure 5.7: Comparison of hidden dimension size. The x-axis determines the hidden

dimension size, while the y axis shows the best losses after 10 epochs of training. All

models are trained 5 times and their means are plotted in blue (circuit 10), red

(circuit 19), orange (TTN-10) and green (MPS-10) respectively. The error bars

represent the ± standard deviation of the best losses of all 5 runs.

Training curves of this comparison with respect to different metrics are presented in

Fig. 5.8. circuit 10 slightly outperforms other models consistently for all hidden

dimension sizes. All models improve with increasing the hidden dimension size and

84

0 5 10 15 20

0.40

0.42

0.44

Lo
ss

hid. dim. size = 4

0 2 4 6 8 10

0.40

0.42

0.44

hid. dim. size = 8

0 2 4 6 8 10

0.40

0.42

0.44

hid. dim. size = 16

0 5 10 15 20

0.76

0.78

0.80

Ac
cu

ra
cy

0 2 4 6 8 10

0.76

0.78

0.80

0 2 4 6 8 10

0.76

0.78

0.80

0 5 10 15 200.800

0.825

0.850

0.875

0.900

AU
C

0 2 4 6 8 100.800

0.825

0.850

0.875

0.900

0 2 4 6 8 100.800

0.825

0.850

0.875

0.900

0 5 10 15 200.6

0.7

0.8

F1
 S

co
re

0 2 4 6 8 100.6

0.7

0.8

0 2 4 6 8 100.6

0.7

0.8

0 5 10 15 200.7

0.8

0.9

1.0

Pr
ec

isi
on

0 2 4 6 8 100.7

0.8

0.9

1.0

0 2 4 6 8 100.7

0.8

0.9

1.0

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

Re
ca

ll

0 2 4 6 8 10
Epoch

0.5

0.6

0.7

0.8

circuit 10
circuit 19

TTN-10
MPS-10

0 2 4 6 8 10
Epoch

0.5

0.6

0.7

0.8

Figure 5.8: Comparison of training curves for hidden dimension sizes. Each column

represents models with different hidden dimension sizes (4, 8, 16), while each row

presents results for a different performance metric. All models are trained 5 times

and their means are plotted with blue (circuit 10), red (circuit 19), orange

(TTN-10) and green (MPS-10) lines. The shaded regions represent the ± standard

deviation of the best losses of all 5 runs.

also do not seem to show large standard deviations indicating a good scaling.

Finally, the hybrid model is compared against the classical model at different hidden

85

dimension sizes and presented in Fig. 5.9. For this comparison, 3 iterations and the

same choice of Nqubits = Nhid.dim. is employed. This result shows that the hybrid

model scales and behaves similarly to the classical model until a hidden dimension

size of at least 16.

101 102

Hidden Dimension Size

0.38

0.40

0.42

0.44

Be
st

 L
os

s a
fte

r 1
0

ep
oc

hs

hybrid (10)
hybrid (19)
classical

Figure 5.9: Comparison of hybrid and classical models for different hidden dimension

sizes. All models are trained 5 times and their means are plotted in blue (Circuit 10),

red (Circuit 19), orange (HEP.TrkX [5]) respectively. The x-axis determines the hidden

dimension size, while the y axis shows the best loss values after a training of 10 epochs.

The error bars represent the ± standard deviation of the best losses of all 5 runs.

5.2 Discussion

There are several factors that determine performance of hybrid quantum classical

models. This work presents a systematic study of these factors and analyze their affect

on selected QGNN models.

The embedding of classical information is one of the key components that determine

the effectiveness of hybrid models. It was shown in this work that, this can be

achieved with a simple angle encoding. Results indicate that PQCs that consist of

RY parametrized gates benefit from embeddings on x or y axes but z-axis embedding

performs poorly. The main reason of this outcome is the fact that the measurements are

86

also along this axis (σZ operator was used to perform all measurements). Therefore,

the extraction of information depends heavily on the choice of PQC in this case.

Fig 5.1 shows the results for single PQC models, which do not have enough depth to

do achieve a transformation on the Bloch Sphere such that any embedding axis can

benefit. Thus, both models performed poorly under z-axis embedding.

Recently it was shown that the accuracy of a model significantly improves with a better

embedding [134]. For example, the Feature Map embedding requires polynomial depth

and it is hard to simulate and Tensorflow Quantum is not able to differentiate them as

of version 0.4.0 [129]. For this reason, only results obtained with angle embedding

were presented here. In general, the accuracy of the proposed QGNN model should

improve with a better embedding.

After that, a comparison to understand the effect of more layers on the models’ per-

formance were presented. As it was previously discussed, adding more layers to

the model improves expressibility and entanglement capacity [101] at the cost of

introducing Barren Plateaus [120], which reduce trainability of a model. There are

contrasting results in the literature on how expressibility and entanglement capacities

affect the training performance. Recently, both a positive [104] and an anti correla-

tion [127] between expressibility and accuracy was shown. The second also found

that more expressive models perform worse and also overfit more. On the other hand,

entanglement has been shown to limit the trainability of models depending on how it

propagates between qubits [123, 135].

Fig 5.3 shows that models with increasing expressivity and entanglement capacity

perform worse. In this way, our results are consistent with results from [127]. This

behaviour is thought to be the result of a Barren Plateau formation [120].

The next feature of the QGNN model analyzed here was the number of graph iterations.

It is an important parameter that determines a GNN model’s performance as it allows

for the propagation of information to further nodes [5, 126]. Training results in Fig. 5.5

show that the best loss is obtained for 3 iterations for the hybrid cases. However, this is

not the case for the classical model. Hep.TrkX team reports an iteration number of 8 as

the optimal value for their model with 128 hidden dimensions [5, 136]. The increase

in best loss with increasing number of iterations might be due to a low expressive

87

capacity of the whole model, as this comparison is made only for a hidden dimension

size of 4. Therefore, an analysis with more hidden dimension size is necessary to

understand the observed behaviour. However, this could not be performed due to the

long simulation times required by larger models.

Next, a comparison of models’ performance with respect to increasing hidden dimen-

sion size was given in Fig 5.7. In this comparison, two types of PQCs were targeted.

Circuit 10 and Circuit 19 are PQCs that measure all qubits, while TTN and MPS

are PQCs that measure only one qubit. The important difference to note here is the

TTN-like circuits have been shown not to exhibit Barren Plateaus. Results showed that

in all cases, the training capacity of the model improved. However, no improvement

was observed when the Edge Network of the model used TTN or MPS PQCs instead

of Circuit 10, which should have shown Barren Plateau formation. In both cases,

a similar scaling is observed. This result might be due to presence of encoder and

decoder classical Neural Networks in the HNN architecture, which could dominate the

model for smaller hidden dimension sizes.

Finally, the selected QGNN models’ performance is compared with the HEP.TrkX

model [5]. The results showed that both models perform and scale similarly at low

hidden dimension sizes. Although we were not able to show an improvement over the

classical model, an improvement might be achieved with further modifications to the

model. These include but are not limited to using more sophisticated embeddings such

as the Feature Map [134], using PQCs that do not exhibit Barren Plateaus [120, 135],

or methods to avoid them during training [137].

88

CHAPTER 6

CONCLUSION

HEP experiments are constantly upgrading with new technologies to obtain higher

statistics and better measurements of HEP processes. The rapidly developing hardware

requires the software to improve with it, to provide optimal results. This is very much

the case in the upcoming HL-LHC and will continue to be the case for future HEP

experiments.

Recent developments show that GNNs have a huge potential to play a considerable role

overcoming the track reconstruction problem [5, 136]. However, their power is limited

to the size of the GPU memories, and therefore need additional methods. Although

future developments in GPU or maybe Tensor Processing Unit (TPU) technologies

might resolve this problem, it would be beneficial to search for new possibilities to use

GNN.

The flexibility of VQAs provides a ground for ML researchers to implement algorithms

that can achieve similar tasks to the ones that exist in classical DL paradigms. Although

this field of research is developing very fast and has become very popular in recent

years, there is still no clear evidence for a VQA model to show an advantage in a

classical problem [138]. However, this should not restrain us from continuing the

search.

In this work, we have implemented a QGNN to solve the particle track reconstruction

problem. The proposed method showed similar performance compared to its classical

counterpart within the number of qubits limit of NISQ devices.

Furthermore, we have investigated the proposed model’s scaling abilities and trainabil-

ity limits and obtained parallel results to recent developments in the literature. Most

89

importantly, we have observed that neither an increase in expressibility nor an increase

in entangling capacity do not improve a hybrid model’s performance in the low qubit

limits. These results cover important properties of HNNs and would be insightful for

future model designs.

The current state of NISQ hardware and the classical simulation restrictions prevented

us from providing more extended results. However, we predict that the current pace of

research in the field will allow these algorithms to be implemented on NISQ hardware

and provide more insight to solve the Barren Plateau problem very soon.

90

REFERENCES

[1] L. Evans and P. Bryant, “LHC Machine”, Journal of Instrumentation, vol. 3,

no. 08, S08001, Aug. 2008. DOI: 10.1088/1748-0221/3/08/s08001.

[2] D. Magano, A. Kumar, M. Kālis, A. Locāns, A. Glos, et al., “Investigating

Quantum Speedup for Track Reconstruction: Classical and Quantum Compu-

tational Complexity Analysis”, 2021. arXiv: 2104.11583 [quant-ph].

[3] G. Apollinari, O. Brüning, T. Nakamoto, and L. Rossi, “Chapter 1: High

Luminosity Large Hadron Collider HL-LHC”, CERN Yellow Report, May

2017. DOI: 10 . 5170 / CERN - 2015 - 005 . 1. arXiv: 1705 . 08830

[physics.acc-ph].

[4] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, et al., “A Comprehensive Survey

on Graph Neural Networks”, IEEE Transactions on Neural Networks and

Learning Systems, vol. 32, no. 1, pp. 4–24, 2021, Publisher: IEEE, ISSN:

21622388. DOI: 10.1109/TNNLS.2020.2978386.

[5] S. Farrell, P. Calafiura, M. Mudigonda, Prabhat, D. Anderson, et al., Novel

deep learning methods for track reconstruction, 2018. arXiv: 1810.06111

[hep-ex].

[6] D. Murnane, “CTD2020: Graph Neural Networks for Track Finding”, Zenodo,

Apr. 2020. DOI: 10.5281/zenodo.4088460.

[7] J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in particle

physics”, Machine Learning: Science and Technology, vol. 2, no. 2, p. 021 001,

Jan. 2021. DOI: 10.1088/2632-2153/abbf9a.

[8] F. Bapst, W. Bhimji, P. Calafiura, H. Gray, W. Lavrijsen, et al., “A Pattern

Recognition Algorithm for Quantum Annealers”, Computing and Software for

Big Science, vol. 4, no. 1, p. 1, Dec. 2019, ISSN: 2510-2044. DOI: 10.1007/

s41781-019-0032-5.

91

https://doi.org/10.1088/1748-0221/3/08/s08001
https://arxiv.org/abs/2104.11583
https://doi.org/10.5170/CERN-2015-005.1
https://arxiv.org/abs/1705.08830
https://arxiv.org/abs/1705.08830
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/1810.06111
https://doi.org/10.5281/zenodo.4088460
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1007/s41781-019-0032-5

[9] A. Zlokapa, A. Anand, J.-R. Vlimant, J. M. Duarte, J. Job, et al. (2019).

“Charged particle tracking with quantum annealing-inspired optimization”.

arXiv: 1908.04475 [quant-ph].

[10] G. Quiroz, L. Ice, A. Delgado, and T. S. Humble, “Particle Track Classifi-

cation Using Quantum Associative Memory”, 2020. arXiv: 2011.11848

[quant-ph].

[11] S. Amrouche, L. Basara, P. Calafiura, V. Estrade, S. Farrell, et al., “The

Tracking Machine Learning Challenge: Accuracy Phase”, in The NeurIPS

2018 Competition, Springer International Publishing, Nov. 2019, pp. 231–

264. DOI: 10.1007/978-3-030-29135-8_9. arXiv: 1904.06778

[hep-ex].

[12] S. Amrouche, L. Basara, P. Calafiura, D. Emeliyanov, V. Estrade, et al. (2021).

“The Tracking Machine Learning challenge : Throughput phase”. arXiv: 2105.

01160 [cs.LG].

[13] CERN Accelerator Complex, https://stfc.ukri.org/research/

particle-physics-and-particle-astrophysics/large-

hadron- collider/cern- accelerator- complex/, Accessed:

2021-02-01.

[14] Taking a closer look at LHC, https : / / www . lhc - closer . es /

taking_a_closer_look_at_lhc/0.lhc_p_collisions, Ac-

cessed: 2021-02-16.

[15] The CMS Detector, https://cms.cern/detector, Accessed: 2021-

02-01.

[16] ATLAS Collaboration, “Observation of a new particle in the search for the

Standard Model Higgs boson with the ATLAS detector at the LHC”, Physics

Letters B, vol. 716, no. 1, pp. 1–29, 2012, ISSN: 0370-2693. DOI: 10.1016/

j.physletb.2012.08.020.

[17] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with

the CMS experiment at the LHC”, Physics Letters B, vol. 716, no. 1, pp. 30–61,

2012, ISSN: 0370-2693. DOI: 10.1016/j.physletb.2012.08.021.

92

https://arxiv.org/abs/1908.04475
https://arxiv.org/abs/2011.11848
https://arxiv.org/abs/2011.11848
https://doi.org/10.1007/978-3-030-29135-8_9
https://arxiv.org/abs/1904.06778
https://arxiv.org/abs/1904.06778
https://arxiv.org/abs/2105.01160
https://arxiv.org/abs/2105.01160
https://stfc.ukri.org/research/particle-physics-and-particle-astrophysics/large-hadron-collider/cern-accelerator-complex/
https://stfc.ukri.org/research/particle-physics-and-particle-astrophysics/large-hadron-collider/cern-accelerator-complex/
https://stfc.ukri.org/research/particle-physics-and-particle-astrophysics/large-hadron-collider/cern-accelerator-complex/
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.lhc_p_collisions
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.lhc_p_collisions
https://cms.cern/detector
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021

[18] “Evidence for Higgs boson decays to a low-mass dilepton system and a photon

in pp collisions at
√
s = 13 TeV with the ATLAS detector”, CERN, Geneva,

Tech. Rep. ATLAS-CONF-2021-002, Feb. 2021.

[19] The Inner Detector, https://atlas.cern/discover/detector/

inner-detector, Accessed: 2021-02-01.

[20] F. Ragusa and L. Rolandi, “Tracking at LHC”, New Journal of Physics, vol. 9,

no. 9, pp. 336–336, Sep. 2007. DOI: 10.1088/1367-2630/9/9/336.

[21] CMS Collaboration, “Description and performance of track and primary-vertex

reconstruction with the CMS tracker”, Journal of Instrumentation, vol. 9,

no. 10, P10009–P10009, Oct. 2014. DOI: 10.1088/1748-0221/9/10/

p10009.

[22] R. Frühwirth, “Application of kalman filtering to track and vertex fitting”,

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 262, no. 2, pp. 444–

450, 1987, ISSN: 0168-9002. DOI: https://doi.org/10.1016/0168-

9002(87)90887-4.

[23] S. Farrell, D. Anderson, P. Calafiura, G. Cerati, L. Gray, et al., “The HEP.TrkX

Project: deep neural networks for HL-LHC online and offline tracking”,

EPJ Web Conf., vol. 150, p. 00 003, 2017. DOI: 10.1051/epjconf/

201715000003.

[24] G. Cerati, “Vertexing and Tracking Algoritms at High Pile-Up”, Proceedings

of The 23rd International Workshop on Vertex Detectors — PoS(Vertex2014),

vol. 227, p. 037, 2015. DOI: 10.22323/1.227.0037.

[25] “Expected Tracking Performance of the ATLAS Inner Tracker at the HL-

LHC”, CERN, Geneva, Tech. Rep. ATL-PHYS-PUB-2019-014, Mar. 2019,

https://cds.cern.ch/record/2669540.

[26] “Fast Track Reconstruction for HL-LHC”, CERN, Geneva, Tech. Rep. ATL-

PHYS-PUB-2019-041, Oct. 2019, https://cds.cern.ch/record/

2693670.

[27] Benchmarking Working Group, https://w3.hepix.org/benchmarking.

html, Accessed: 2021-06-21.

93

https://atlas.cern/discover/detector/inner-detector
https://atlas.cern/discover/detector/inner-detector
https://doi.org/10.1088/1367-2630/9/9/336
https://doi.org/10.1088/1748-0221/9/10/p10009
https://doi.org/10.1088/1748-0221/9/10/p10009
https://doi.org/https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1051/epjconf/201715000003
https://doi.org/10.1051/epjconf/201715000003
https://doi.org/10.22323/1.227.0037
https://cds.cern.ch/record/2669540
https://cds.cern.ch/record/2693670
https://cds.cern.ch/record/2693670
https://w3.hepix.org/benchmarking.html
https://w3.hepix.org/benchmarking.html

[28] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity”, Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, 1943, ISSN:

1522-9602. DOI: 10.1007/BF02478259.

[29] A. M. Turing, Mechanical intelligence. North-Holland, 1992, ISBN: 9780444880581.

[30] F. Rosenblatt, “The perceptron: a perceiving and recognizing automaton”,

Cornell Aeronautical Laboratory, Tech. Rep. Report 85-60-1, 1957.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors”, Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1,

1986, ISSN: 1476-4687. DOI: 10.1038/323533a0.

[32] H. J. Kelley, “Gradient Theory of Optimal Flight Paths”, ARS Journal, vol. 30,

no. 10, pp. 947–954, 1960. DOI: 10.2514/8.5282.

[33] A. E. Bryson, “A gradient method for optimizing multi-stage allocation pro-

cesses”, Proceedings of the Harvard Univ. Symposium on digital computers

and their applications 3–6 April 1961, 1962.

[34] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, et al., “Back-

propagation applied to handwritten zip code recognition”, Neural Computation,

vol. 1, no. 4, pp. 541–551, 1989. DOI: 10.1162/neco.1989.1.4.541.

[35] B. Yegnanarayana, “Artificial neural networks for pattern recognition”, en,

Sadhana, vol. 19, no. 2, pp. 189–238, Apr. 1994, ISSN: 0973-7677. DOI:

10.1007/BF02811896.

[36] K. S. Oh and K. Jung, “GPU implementation of neural networks”, Pattern

Recognition, vol. 37, no. 6, pp. 1311–1314, 2004, ISSN: 0031-3203. DOI:

https://doi.org/10.1016/j.patcog.2004.01.013.

[37] R. Raina, A. Madhavan, and A. Y. Ng, “Large-Scale Deep Unsupervised

Learning Using Graphics Processors”, in Proceedings of the 26th Annual

International Conference on Machine Learning, ser. ICML ’09, Montreal,

Quebec, Canada: Association for Computing Machinery, 2009, pp. 873–880,

ISBN: 9781605585161. DOI: 10.1145/1553374.1553486.

[38] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep,

Big, Simple Neural Nets for Handwritten Digit Recognition”, Neural Comput.,

94

https://doi.org/10.1007/BF02478259
https://doi.org/10.1038/323533a0
https://doi.org/10.2514/8.5282
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1007/BF02811896
https://doi.org/https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/10.1145/1553374.1553486

vol. 22, no. 12, pp. 3207–3220, Dec. 2010, ISSN: 0899-7667. DOI: 10.1162/

NECO_a_00052.

[39] J. Pata, J. Duarte, J.-R. Vlimant, M. Pierini, and M. Spiropulu. (2021). “Mlpf:

efficient machine-learned particle-flow reconstruction using graph neural net-

works”. arXiv: 2101.08578 [physics.data-an].

[40] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks”, in Proceedings of the 30th International Conference on

International Conference on Machine Learning - Volume 28, ser. ICML’13,

Atlanta, GA, USA: JMLR.org, 2013, III–1310–III–1318. DOI: 10.5555/

3042817.3043083.

[41] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, J. Kolen, et al., “Gradi-

ent flow in recurrent nets: the difficulty of learning long-term dependencies”,

in A field guide to dynamical recurrent neural networks. Wiley-IEEE Press,

2001, pp. 237–243.

[42] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Com-

put., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, ISSN: 0899-7667. DOI: 10.

1162/neco.1997.9.8.1735.

[43] F. Gers, “Long short-term memory in recurrent neural networks”, Ph.D. dis-

sertation, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,

2001.

[44] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,

et al., Relational inductive biases, deep learning, and graph networks, 2018.

arXiv: 1806.01261 [cs.LG].

[45] W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, et al., “Quantum

machine learning in high energy physics”, Machine Learning: Science and

Technology, Oct. 2020, ISSN: 2632-2153. DOI: 10.1088/2632-2153/

abc17d.

[46] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum Computation

by Adiabatic Evolution”, arXiv:quant-ph/0001106, Jan. 2000, arXiv: quant-

ph/0001106.

95

https://doi.org/10.1162/NECO_a_00052
https://doi.org/10.1162/NECO_a_00052
https://arxiv.org/abs/2101.08578
https://doi.org/10.5555/3042817.3043083
https://doi.org/10.5555/3042817.3043083
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1806.01261
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1088/2632-2153/abc17d

[47] B. Denby, “Neural networks and cellular automata in experimental high energy

physics”, Computer Physics Communications, vol. 49, no. 3, pp. 429–448,

1988, ISSN: 0010-4655. DOI: 10.1016/0010-4655(88)90004-5.

[48] C. Peterson, “Track finding with neural networks”, Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detec-

tors and Associated Equipment, vol. 279, no. 3, pp. 537–545, 1989, ISSN:

0168-9002. DOI: 10.1016/0168-9002(89)91300-4.

[49] X. Ai, C. Allaire, N. Calace, A. Czirkos, I. Ene, et al., “A Common Tracking

Software Project”, arXiv:2106.13593 [hep-ex, physics:physics], Jun. 2021,

arXiv: 2106.13593.

[50] TrackML Particle Tracking Challenge, https://www.kaggle.com/c/

trackml-particle-identification, Accessed: 08-02-2021.

[51] R. P. Feynman, “Simulating physics with computers”, Int. J. Theor. Phys.,

vol. 21, no. 6, pp. 467–488, 1982, ISSN: 1572-9575. DOI: 10.1007/BF02650179.

[52] IBM Quantum, https://quantum-computing.ibm.com/, Accessed:

2021-04-06.

[53] Amazon Web Services Braket, https://aws.amazon.com/braket/,

Accessed: 2021-05-17.

[54] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer”, SIAM J. Comput., vol. 26, no. 5, pp. 1484–

1509, 1997, ISSN: 00975397. DOI: 10.1137/S0097539795293172.

arXiv: 9508027 [quant-ph].

[55] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital sig-

natures and public-key cryptosystems”, Commun. ACM, vol. 21, no. 2, pp. 120–

126, Feb. 1978, ISSN: 0001-0782. DOI: 10.1145/359340.359342.

[56] L. K. Grover, “A fast quantum mechanical algorithm for database search”,

in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of

Computing, ser. STOC ’96, Philadelphia, Pennsylvania, USA: Association

for Computing Machinery, 1996, pp. 212–219, ISBN: 0897917855. DOI: 10.

1145/237814.237866.

96

https://doi.org/10.1016/0010-4655(88)90004-5
https://doi.org/10.1016/0168-9002(89)91300-4
https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification
https://doi.org/10.1007/BF02650179
https://quantum-computing.ibm.com/
https://aws.amazon.com/braket/
https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/9508027
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866

[57] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear

systems of equations”, Phys. Rev. Lett., vol. 103, no. 15, pp. 1–4, 2009, ISSN:

00319007. DOI: 10.1103/PhysRevLett.103.150502.

[58] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, et al., “A

variational eigenvalue solver on a photonic quantum processor”, Nat. Commun.,

vol. 5, no. 1, p. 4213, 2014, ISSN: 2041-1723. DOI: 10.1038/ncomms5213.

[59] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, et al., “Quan-

tum Chemistry in the Age of Quantum Computing”, Chem. Rev., vol. 119,

no. 19, pp. 10 856–10 915, Oct. 2019, ISSN: 0009-2665. DOI: 10.1021/acs.

chemrev.8b00803.

[60] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning”,

Phys. Rev. A, vol. 98, no. 3, pp. 1–3, 2018, ISSN: 24699934. DOI: 10.1103/

PhysRevA.98.032309. arXiv: 1803.00745.

[61] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric quantum

classifiers”, Phys. Rev. A, vol. 101, no. 3, pp. 1–8, 2020, ISSN: 24699934. DOI:

10.1103/PhysRevA.101.032308. arXiv: 1804.00633.

[62] E. Farhi and H. Neven, “Classification with quantum neural networks on near

term processors”, arXiv, 2018, ISSN: 23318422. arXiv: 1802.06002.

[63] La sphère de bloch, http://stla.github.io/stlapblog/posts/

BlochSphere.html, Accessed: 2021-04-19.

[64] H. Abraham, AduOffei, R. Agarwal, I. Y. Akhalwaya, G. Aleksandrowicz, et

al., Qiskit: An Open-source Framework for Quantum Computing, 2019. DOI:

10.5281/zenodo.2562110.

[65] J. Preskill, “Quantum computing in the NISQ era and beyond”, Quantum,

vol. 2, no. July, pp. 1–20, 2018, ISSN: 2521327X. DOI: 10.22331/q-

2018-08-06-79. arXiv: 1801.00862.

[66] D. P. DiVincenzo, “The Physical Implementation of Quantum Computa-

tion”, Fortschritte der Phys., vol. 48, no. 9-11, pp. 771–783, 2000, ISSN:

00158208. DOI: 10.1002/1521-3978(200009)48:9/11<771::

AID-PROP771>3.0.CO;2-E. arXiv: 0002077 [quant-ph].

97

https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.98.032309
https://arxiv.org/abs/1803.00745
https://doi.org/10.1103/PhysRevA.101.032308
https://arxiv.org/abs/1804.00633
https://arxiv.org/abs/1802.06002
http://stla.github.io/stlapblog/posts/BlochSphere.html
http://stla.github.io/stlapblog/posts/BlochSphere.html
https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/1801.00862
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://arxiv.org/abs/0002077

[67] D-Wave: The Quantum Computing Company, https://www.dwavesys.

com, Accessed: 2021-04-08.

[68] Advantage; The first and only quantum computer built for business, https:

//www.dwavesys.com/sites/default/files/Advantage_

Datasheet_v9_0.pdf, Accessed: 2021-04-08.

[69] F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, et al., “Traf-

fic flow optimization using a quantum annealer”, arXiv:1708.01625 [quant-ph],

Aug. 2017, arXiv: 1708.01625.

[70] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, et al., “Quantum

supremacy using a programmable superconducting processor”, Nature, vol. 574,

no. 7779, pp. 505–510, 2019, ISSN: 1476-4687. DOI: 10.1038/s41586-

019-1666-5.

[71] Rigetti, https://www.rigetti.com, Accessed: 2021-04-06.

[72] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, et al., “Benchmark-

ing an 11-qubit quantum computer”, Nat. Commun., vol. 10, no. 1, p. 5464,

2019, ISSN: 2041-1723. DOI: 10.1038/s41467-019-13534-2.

[73] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, et al.,

“Demonstration of the QCCD trapped-ion quantum computer architecture”,

arXiv, vol. 592, no. July 2020, 2020, ISSN: 23318422. DOI: 10.1038/

s41586-021-03318-4. arXiv: 2003.01293.

[74] H. S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, et al., “Quantum

computational advantage using photons”, Science, vol. 370, no. 6523, pp. 1460–

1463, 2020, ISSN: 0036-8075. DOI: 10.1126/science.abe8770.

[75] Xanadu, https://www.xanadu.ai, Accessed: 2021-04-08.

[76] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, et

al., “Quantum circuits with many photons on a programmable nanophotonic

chip”, Nature, vol. 591, no. 7848, pp. 54–60, 2021, ISSN: 1476-4687. DOI:

10.1038/s41586-021-03202-1.

98

https://www.dwavesys.com
https://www.dwavesys.com
https://www.dwavesys.com/sites/default/files/Advantage_Datasheet_v9_0.pdf
https://www.dwavesys.com/sites/default/files/Advantage_Datasheet_v9_0.pdf
https://www.dwavesys.com/sites/default/files/Advantage_Datasheet_v9_0.pdf
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://www.rigetti.com
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://arxiv.org/abs/2003.01293
https://doi.org/10.1126/science.abe8770
https://www.xanadu.ai
https://doi.org/10.1038/s41586-021-03202-1

[77] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. Borgorin, et al.,

“Demonstration of quantum volume 64 on a superconducting quantum com-

puting system”, Quantum Sci. Technol., vol. 64, 2021, ISSN: 2058-9565. DOI:

10.1088/2058-9565/abe519. arXiv: 2008.08571.

[78] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition. Cambridge University Press, 2010. DOI:

10.1017/CBO9780511976667.

[79] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta,

“Validating quantum computers using randomized model circuits”, Phys. Rev. A,

vol. 100, no. 3, p. 32 328, 2019, ISSN: 24699934. DOI: 10.1103/PhysRevA.

100.032328. arXiv: 1811.12926.

[80] R. Blume-Kohout and K. Young, “A volumetric framework for quantum

computer benchmarks”, Quantum, vol. 4, pp. 1–28, 2020, ISSN: 2521327X.

DOI: 10.22331/Q-2020-11-15-362. arXiv: 1904.05546.

[81] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, et al., Pennylane:

automatic differentiation of hybrid quantum-classical computations, 2020.

arXiv: 1811.04968 [quant-ph].

[82] Cirq Developers, Cirq, version v0.10.0, Mar. 2021. DOI: 10.5281/zenodo.

4586899.

[83] List of QC simulators, https://quantiki.org/wiki/list-qc-

simulators, Accessed: 2021-04-08.

[84] J. Abhijith, A. Adedoyin, J. Ambrosiano, P. Anisimov, A. D. Bärtschi, et

al., “Quantum algorithm implementations for beginners”, arXiv, 2018, ISSN:

23318422. arXiv: 1804.03719.

[85] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, et al., “Varia-

tional Quantum Algorithms”, 2020. arXiv: 2012.09265 [quant-ph].

[86] G. G. Guerreschi and M. Smelyanskiy, Practical optimization for hybrid

quantum-classical algorithms, 2017. arXiv: 1701.01450 [quant-ph].

99

https://doi.org/10.1088/2058-9565/abe519
https://arxiv.org/abs/2008.08571
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1103/PhysRevA.100.032328
https://arxiv.org/abs/1811.12926
https://doi.org/10.22331/Q-2020-11-15-362
https://arxiv.org/abs/1904.05546
https://arxiv.org/abs/1811.04968
https://doi.org/10.5281/zenodo.4586899
https://doi.org/10.5281/zenodo.4586899
https://quantiki.org/wiki/list-qc-simulators
https://quantiki.org/wiki/list-qc-simulators
https://arxiv.org/abs/1804.03719
https://arxiv.org/abs/2012.09265
https://arxiv.org/abs/1701.01450

[87] M. Schuld and F. Petruccione, Supervised Learning with Quantum Computers,

ser. Quantum Science and Technology. Cham: Springer International Pub-

lishing, 2018, ISBN: 978-3-319-96423-2. DOI: 10.1007/978-3-319-

96424-9.

[88] R. Larose and B. Coyle, “Robust data encodings for quantum classifiers”, Phys.

Rev. A, vol. 102, no. 3, pp. 1–24, 2020, ISSN: 24699934. DOI: 10.1103/

PhysRevA.102.032420. arXiv: 2003.01695.

[89] D. Ventura and T. Martinez, “Quantum associative memory”, Information

Sciences, vol. 124, no. 1, pp. 273–296, 2000, ISSN: 0020-0255. DOI: 10.

1016/S0020-0255(99)00101-2.

[90] C. A. Trugenberger, “Probabilistic quantum memories”, Phys. Rev. Lett.,

vol. 87, p. 067 901, 6 Jul. 2001. DOI: 10.1103/PhysRevLett.87.

067901.

[91] M. Schuld and F. Petruccione, “Quantum Information”, in Supervised Learning

with Quantum Computers. Springer International Publishing, 2018, pp. 75–125,

ISBN: 978-3-319-96423-2. DOI: 10.1007/978-3-319-96424-9_3.

[92] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran, “Quantum embeddings

for machine learning”, arXiv, 2020, ISSN: 23318422. arXiv: 2001.03622.

[93] M. Schuld, R. Sweke, and J. J. Meyer, “Effect of data encoding on the ex-

pressive power of variational quantum machine learning models”, Phys. Rev.

A, vol. 103, no. 3, p. 032 430, 2021. DOI: 10.1103/PhysRevA.103.

032430.

[94] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimiza-

tion Algorithm”, arXiv:1411.4028 [quant-ph], Nov. 2014, arXiv: 1411.4028.

[95] J. Lee, W. J. Huggins, M. Head-Gordon, and K. B. Whaley, “Generalized

Unitary Coupled Cluster Wave functions for Quantum Computation”, J. Chem.

Theory Comput., vol. 15, no. 1, pp. 311–324, Jan. 2019, ISSN: 1549-9618. DOI:

10.1021/acs.jctc.8b01004.

[96] A. S. Bhatia, M. K. Saggi, A. Kumar, and S. Jain, “Matrix product state–based

quantum classifier”, Neural Comput., vol. 31, no. 7, pp. 1499–1517, 2019,

ISSN: 1530888X. DOI: 10.1162/neco_a_01202. arXiv: 1905.01426.

100

https://doi.org/10.1007/978-3-319-96424-9
https://doi.org/10.1007/978-3-319-96424-9
https://doi.org/10.1103/PhysRevA.102.032420
https://doi.org/10.1103/PhysRevA.102.032420
https://arxiv.org/abs/2003.01695
https://doi.org/10.1016/S0020-0255(99)00101-2
https://doi.org/10.1016/S0020-0255(99)00101-2
https://doi.org/10.1103/PhysRevLett.87.067901
https://doi.org/10.1103/PhysRevLett.87.067901
https://doi.org/10.1007/978-3-319-96424-9_3
https://arxiv.org/abs/2001.03622
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1021/acs.jctc.8b01004
https://doi.org/10.1162/neco_a_01202
https://arxiv.org/abs/1905.01426

[97] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, et al., “Hierarchical

quantum classifiers”, npj Quantum Inf., vol. 4, no. 1, 2018, ISSN: 20566387.

DOI: 10.1038/s41534-018-0116-9. arXiv: 1804.03680.

[98] A. V. Uvarov, A. S. Kardashin, and J. D. Biamonte, “Machine learning phase

transitions with a quantum processor”, Phys. Rev. A, vol. 102, p. 012 415, 1

Jul. 2020. DOI: 10.1103/PhysRevA.102.012415.

[99] Y.-Y. Shi, L.-M. Duan, and G. Vidal, “Classical simulation of quantum many-

body systems with a tree tensor network”, Phys. Rev. A, vol. 74, p. 022 320, 2

Aug. 2006. DOI: 10.1103/PhysRevA.74.022320.

[100] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, et al., “Varia-

tional Quantum Algorithms”, arXiv, pp. 1–29, 2020, ISSN: 23318422.

[101] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Expressibility and Entangling

Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical

Algorithms”, Advanced Quantum Technologies, vol. 2, no. 12, p. 1 900 070,

2019. DOI: https://doi.org/10.1002/qute.201900070.

[102] M. Lundberg and L. Svensson, “The Haar measure and the generation of

random unitary matrices”, in Processing Workshop Proceedings, 2004 Sensor

Array and Multichannel Signal, 2004, pp. 114–118. DOI: 10.1109/SAM.

2004.1502919.

[103] S. Kullback and R. A. Leibler, “On Information and Sufficiency”, The Annals

of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951. DOI: 10.1214/

aoms/1177729694.

[104] T. Hubregtsen, J. Pichlmeier, P. Stecher, and K. Bertels, “Evaluation of pa-

rameterized quantum circuits: on the relation between classification accuracy,

expressibility, and entangling capability”, Quantum Mach. Intell., vol. 3, no. 1,

p. 9, 2021, ISSN: 2524-4914. DOI: 10.1007/s42484-021-00038-w.

[105] D. A. Meyer and N. R. Wallach, “Global entanglement in multiparticle sys-

tems”, Journal of Mathematical Physics, vol. 43, no. 9, pp. 4273–4278, 2002.

DOI: 10.1063/1.1497700.

101

https://doi.org/10.1038/s41534-018-0116-9
https://arxiv.org/abs/1804.03680
https://doi.org/10.1103/PhysRevA.102.012415
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/https://doi.org/10.1002/qute.201900070
https://doi.org/10.1109/SAM.2004.1502919
https://doi.org/10.1109/SAM.2004.1502919
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/s42484-021-00038-w
https://doi.org/10.1063/1.1497700

[106] G. K. Brennen, “An observable measure of entanglement for pure states of

multi-qubit systems”, Quantum Info. Comput., vol. 3, no. 6, pp. 619–626, Nov.

2003, ISSN: 1533-7146. DOI: 10.5555/2011556.2011561.

[107] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, in

3rd International Conference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio

and Y. LeCun, Eds., 2015. arXiv: 1412.6980 [cs.LG].

[108] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, et al., “Tensorflow: a system

for large-scale machine learning”, in 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[109] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, et al., “Pytorch: an

imperative style, high-performance deep learning library”, in Advances in

Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A.

Beygelzimer, F. d’Alché-Buc, E. Fox, et al., Eds., Curran Associates, Inc.,

2019, pp. 8024–8035. arXiv: 1912.01703 [cs.LG].

[110] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, et al., “Scikit-

Learn: Machine Learning in Python”, J. Mach. Learn. Res., vol. 12, pp. 2825–

2830, Nov. 2011, ISSN: 1532-4435.

[111] G. G. Guerreschi and M. Smelyanskiy, Practical optimization for hybrid

quantum-classical algorithms, 2017. arXiv: 1701.01450 [quant-ph].

[112] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization

of machine learning algorithms”, in Advances in Neural Information Process-

ing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

Eds., vol. 25, Curran Associates, Inc., 2012. DOI: 10.5555/2999325.

2999464.

[113] J. Kennedy and R. Eberhart, “Particle swarm optimization”, in Proceedings

of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995,

1942–1948 vol.4. DOI: 10.1109/ICNN.1995.488968.

[114] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review of

algorithms and comparison of software implementations”, J. Glob. Optim.,

102

https://doi.org/10.5555/2011556.2011561
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1701.01450
https://doi.org/10.5555/2999325.2999464
https://doi.org/10.5555/2999325.2999464
https://doi.org/10.1109/ICNN.1995.488968

vol. 56, no. 3, pp. 1247–1293, 2013, ISSN: 1573-2916. DOI: 10.1007/

s10898-012-9951-y.

[115] Z. C. Yang, A. Rahmani, A. Shabani, H. Neven, and C. Chamon, “Optimizing

Variational Quantum Algorithms Using Pontryagin’s Minimum Principle”,

Phys. Rev. X, vol. 7, p. 021 027, 2 May 2017. DOI: 10.1103/PhysRevX.

7.021027.

[116] D. Wecker, M. B. Hastings, and M. Troyer, “Training a quantum optimizer”,

Phys. Rev. A, vol. 94, p. 022 309, 2 Aug. 2016. DOI: 10.1103/PhysRevA.

94.022309.

[117] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[118] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, “Evaluating

analytic gradients on quantum hardware”, Phys. Rev. A, vol. 99, p. 032 331, 3

Mar. 2019. DOI: 10.1103/PhysRevA.99.032331.

[119] G. E. Crooks, Gradients of parameterized quantum gates using the parameter-

shift rule and gate decomposition, 2019. arXiv: 1905.13311 [quant-ph].

[120] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, “Bar-

ren plateaus in quantum neural network training landscapes”, Nat. Commun.,

vol. 9, no. 1, pp. 1–8, 2018, ISSN: 20411723. DOI: 10.1038/s41467-

018-07090-4. arXiv: 1803.11173.

[121] E. Grant, M. Ostaszewski, L. Wossnig, and M. Benedetti, “An initialization

strategy for addressing barren plateaus in parametrized quantum circuits”,

Quantum, vol. 3, 2019, ISSN: 2521327X. DOI: 10.22331/q-2019-12-

09-214. arXiv: 1903.05076.

[122] A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger, et al., “Absence

of Barren Plateaus in Quantum Convolutional Neural Networks”, 2020. arXiv:

2011.02966 [quant-ph].

[123] C. O. Marrero, M. Kieferová, and N. Wiebe, “Entanglement Induced Barren

Plateaus”, 2020. arXiv: 2010.15968.

103

https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1103/PhysRevA.94.022309
https://doi.org/10.1103/PhysRevA.94.022309
http://www.deeplearningbook.org
https://doi.org/10.1103/PhysRevA.99.032331
https://arxiv.org/abs/1905.13311
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4
https://arxiv.org/abs/1803.11173
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/10.22331/q-2019-12-09-214
https://arxiv.org/abs/1903.05076
https://arxiv.org/abs/2011.02966
https://arxiv.org/abs/2010.15968

[124] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, et al., “Noise-Induced

Barren Plateaus in Variational Quantum Algorithms”, 2020, ISSN: 23318422.

arXiv: 2007.14384.

[125] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, et al., “A flexible

high-performance simulator for verifying and benchmarking quantum circuits

implemented on real hardware”, npj Quantum Information, vol. 5, no. 1, p. 86,

Oct. 10, 2019, ISSN: 2056-6387. DOI: 10.1038/s41534-019-0196-1.

[126] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, et al., Graph

attention networks, 2018. arXiv: 1710.10903 [stat.ML].

[127] V. Leyton-Ortega, A. Perdomo-Ortiz, and O. Perdomo, “Robust implementa-

tion of generative modeling with parametrized quantum circuits”, Quantum

Mach. Intell., vol. 3, no. 1, p. 17, 2021, ISSN: 2524-4914. DOI: 10.1007/

s42484-021-00040-2.

[128] Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai, et al., Qulacs: a

fast and versatile quantum circuit simulator for research purpose, 2020. arXiv:

2011.13524 [quant-ph].

[129] M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, et al.,

Tensorflow quantum: a software framework for quantum machine learning,

2020. arXiv: 2003.02989 [quant-ph].

[130] A. P. Bradley, “The use of the area under the roc curve in the evaluation of

machine learning algorithms”, Pattern Recogn., vol. 30, no. 7, pp. 1145–1159,

Jul. 1997, ISSN: 0031-3203. DOI: 10.1016/S0031-3203(96)00142-2.

[131] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, et al.,

“Array programming with NumPy”, Nature, vol. 585, no. 7825, pp. 357–362,

Sep. 2020. DOI: 10.1038/s41586-020-2649-2.

[132] T. G. Draper and S. A. Kutin, <q|pic>: Quantum circuits made easy, https:

//github.com/qpic/qpic, 2020.

[133] J. D. Hunter, “Matplotlib: A 2D graphics environment”, Computing in Science

& Engineering, vol. 9, no. 3, pp. 90–95, 2007. DOI: 10.1109/MCSE.2007.

55.

104

https://arxiv.org/abs/2007.14384
https://doi.org/10.1038/s41534-019-0196-1
https://arxiv.org/abs/1710.10903
https://doi.org/10.1007/s42484-021-00040-2
https://doi.org/10.1007/s42484-021-00040-2
https://arxiv.org/abs/2011.13524
https://arxiv.org/abs/2003.02989
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/qpic/qpic
https://github.com/qpic/qpic
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55

[134] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, et al., “The power of

quantum neural networks”, 2020. arXiv: 2011.00027 [quant-ph].

[135] K. Zhang, M.-H. Hsieh, L. Liu, and D. Tao, Toward trainability of quantum

neural networks, 2020. arXiv: 2011.06258 [quant-ph].

[136] X. Ju, S. Farrell, P. Calafiura, D. Murnane, Prabhat, et al., “Graph Neural

Networks for Particle Reconstruction in High Energy Physics detectors”, 2020.

arXiv: 2003.11603.

[137] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti, “An initialization

strategy for addressing barren plateaus in parametrized quantum circuits”,

Quantum, vol. 3, p. 214, 2019, ISSN: 2521-327X. DOI: 10.22331/q-

2019-12-09-214. arXiv: 1903.05076.

[138] H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, et al., “Power

of data in quantum machine learning”, Nature Communications, vol. 12, no. 1,

p. 2631, May 2021, ISSN: 2041-1723. DOI: 10.1038/s41467-021-

22539-9.

105

https://arxiv.org/abs/2011.00027
https://arxiv.org/abs/2011.06258
https://arxiv.org/abs/2003.11603
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/10.22331/q-2019-12-09-214
https://arxiv.org/abs/1903.05076
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1038/s41467-021-22539-9

106

APPENDIX A

DEFINITIONS OF QUANTUM GATES

X =

0 1

1 0

 Y =

0 −i
i 0

 Z =

1 0

0 −1

 (A.1)

H =
1√
2

1 1

1 −1

 S =

1 0

0 −i

 T =

1 0

0 eiπ/4

 (A.2)

RX(θ) =

 cos(θ/2) −isin(θ/2)

−isin(θ/2) cos(θ/2)

 (A.3)

RY (θ) =

cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)

 (A.4)

RZ(θ) =

e−iθ/2 0

0 eiθ/2

 (A.5)

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (A.6)

107

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Particle Track Reconstruction
	The Large Hadron Collider
	Problem Definition
	Approaches to Particle Track Reconstruction Problem
	Traditional Approach
	Deep Learning Based Approaches
	Neural Networks

	Recurrent Neural Networks
	Graph Neural Networks
	Quantum Computing Based Approaches
	Quantum Adiabatic Computing

	The TrackML Challenge and the Dataset

	Quantum Computing and Machine Learning
	Circuit-based Quantum Computing
	State of Quantum Computing Hardware
	Quantum Computing Hardware Paradigms
	DiVincenzo's Criteria
	Quantum Volume

	Variational Quantum Classification
	Information Encoding
	Parametrized Quantum Circuits
	Training Classical and Quantum Neural Networks
	Optimization
	Gradients in Variational Quantum Algorithms
	Barren Plateaus in loss landscapes

	Methodology
	Data Pre-processing
	Hybrid Graph Neural Network
	The Edge Network
	The Node Network
	The Hybrid Neural Network

	Training the Model
	Performance Metrics
	Hardware and Software Information

	Results & Discussion
	Results
	Embedding Axis Comparison
	Number of Layers Comparison
	Number of Iterations Comparison
	Hidden Dimension Size Comparison

	Discussion

	Conclusion
	REFERENCES
	Definitions of Quantum Gates

