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ABSTRACT 

 

EXTRACTING EXPLICIT RELATIONAL INFORMATION FROM A NEW 

RELATIONAL REASONING TESTBED WITH A LEARNING AGENT 

 

Küçüksubaşı, Faruk 

MSc., Department of Modelling and Simulation 

Supervisor: Assist. Prof. Dr. Elif Sürer 

 

July 2021, 70 pages 

 

In recent studies, reinforcement learning (RL) agents work in ways that are specialized 

according to the tasks, and most of the time, their decision-making logic is not 

interpretable. By using symbolic artificial intelligence techniques like logic programming, 

statistical methods-based agent algorithms can be enhanced in terms of generalizability 

and interpretability. In this study, the PrediNet architecture is used for the first time in an 

RL problem, and in order to perform benchmarking, the multi-head dot-product attention 

network (MHDPA) was used. By using the PrediNet module, relational information 

among the objects in the environment can be extracted explicitly. This information is in a 

form that can be processed in logic programming tools, and the network becomes more 

interpretable. In order to measure the relational information extraction performances of 

these two methods, a new test environment, relational-grid-world (RGW), is developed. 

RGW environment can be generated procedurally from objects with different features, 

pushing the agent to make complex combinatorial selections in this environment. In the 

performed tests and the RGW environment, a baseline environment called Box-World is 

used for comparing both environments and networks separately. The results show that 

both MHDPA and PrediNet architecture have similar performances in both environments, 

and the RGW environment is able to measure the relational reasoning capacity of the 

networks. 

Keywords: Reinforcement learning, relational reinforcement learning, relational 

reasoning, relation networks, attention networks 
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ÖZ 

 

YENİ BİR İLİŞKİSEL AKIL YÜRÜTME TEST ORTAMINDAN BELİRGİN 

İLİŞKİSEL BİLGİLERİ BİR ÖĞRENME AJANI İLE ÇIKARMAK 

 

Küçüksubaşı, Faruk 

Yüksek Lisans, Modelleme ve Simülasyon Anabilim Dalı 

Tez Yöneticisi: Dr. Öğr. Üyesi Elif Sürer 

 

Temmuz 2021, 70 sayfa 

 

Son çalışmalarda, pekiştirmeli öğrenme (RL) ajanları görevlere göre özelleşmiş şekillerde 

çalışmaktadır ve çoğu zaman karar verme mantıkları yorumlanamamaktadır. Mantık 

programlama gibi sembolik yapay zeka teknikleri kullanarak, istatistiksel yöntemlere 

dayalı aracı algoritmaları genelleştirilebilirlik ve yorumlanabilirlik açısından 

geliştirilebilmektedirler. Bu çalışmada, PrediNet mimarisi ilk kez bir RL probleminde 

kullanılmış ve kıyaslama yapmak için “multi-head dot-product attention network” 

(MHDPA) kullanılmıştır. PrediNet modülü kullanılarak, ortamdaki nesneler arasındaki 

ilişkisel bilgiler açıkça çıkarılabilmektedir. Bu bilgiler, mantık programlama araçlarında 

işlenebilecek bir formdadır ve ağ daha yorumlanabilir hale gelmektedir. Bu iki yöntemin 

ilişkisel bilgi çıkarma performanslarını ölçmek için yeni bir test ortamı, “Relational-Grid-

World” (RGW) geliştirilmiştir. RGW ortamı, farklı özelliklere sahip nesnelerden 

prosedürel olarak oluşturabilir ve bu ortamda ajanı karmaşık kombinatoryal seçimler 

yapmaya zorlamaktadır. Gerçekleştirilen testlerde ve RGW ortamında, hem ortamların 

hem de ağların ayrı ayrı karşılaştırılmasını sağlamak için Box-World adı verilen bir 

referans ortam kullanılmaktadır. Sonuçlar, hem MHDPA hem de PrediNet mimarisinin 

her iki ortamda da benzer performanslara sahip olduğunu ve RGW ortamının ağların 

ilişkisel muhakeme kapasitesini ölçebildiğini göstermektedir.  

Anahtar Sözcükler: pekiştirmeli öğrenme, ilişkisel pekiştirmeli öğrenme, ilişkisel akıl 

yürütme, ilişki ağları, ilgi ağları  
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1. Problem Statement 

Most complex decision-making and optimization problems cannot be solved with 

analytical methods or provide time-efficient and exact solutions. In order to overcome this 

issue, there are problem-specific numerical methods. However, these tools may not reach 

the global optimum solution if the problem has a high order state-space system. Even for 

low-dimensional systems, there is a risk of finding a local optimal solution. Therefore, 

there are some analytical and numerical tricks to decrease the difficulty of the problems, 

such as linear approximation and random search. However, these methods are not 

sufficient for some of the nonlinear and high-dimensional systems. 

There is not much major progress on numerical techniques in the current literature, but 

there are significant improvements on computer hardware and data acquisition sources. 

These improvements with some numerical tricks bring significant changes to high-

dimensional data processing studies. Because of the mathematical structure of the method, 

they are called Deep Neural Networks. These networks can quickly process nonlinear and 

high-dimensional data (image, sound, and text). However, these networks are often task-

specific, and they are unsuitable for interpretability. Apart from these, they are data 

inefficient compared to classical optimization methods. This thesis focuses on data 

inefficiency, generalizability, and interpretability problems of these methods. 

Another problem is that if the problem comes from real-life applications, there should be 

a sufficient model of the system of interest to solve it. Games can model simple everyday 

life decision-making problems. The games are the easiest ways of generating data for well-

defined decision-making problems because an agent’s (controller or intelligent unit of the 

system) action in the environment can be guided easily by giving a reward or penalty. The 

optimization algorithm that drives the agent (training) will find optimal solutions to the 

problem, environment, or game. However, when the solution is determined based on a 

model, there will be some model errors. These errors will affect the performance of the 
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optimized solutions in real life. Therefore, models like games help develop optimization 

algorithms before using them on actual data. 

Moreover, humans make decisions based on their complex ideas and emotions, which are 

difficult to model. In order to model this kind of problem, huge modeling errors should be 

taken into account. Also, if the purpose is to understand human nature in decision-making 

and improve this process, this modeling method may not be suitable. 

1.2. Aim of the Thesis 

This thesis reduces the disadvantages of statistical decision-making algorithms such as 

inefficiency, generalizability, and interpretability by merging statistical methods (Deep 

Reinforcement Learning) and symbolic AI methods based on relational operators. This 

will enable us to reach a trainable agent model that can find associations between the 

environmental objects and their cause and effect relations. This thesis focuses on 

extracting more robust associative information of the environmental objects. Although 

determining the cause and effect relations from data is very puzzling, accessing this 

information brings robust and reliable decision-making algorithms. 

 

In order to measure the performances of the decision-making algorithms, there should be 

test environments where experiments are done appropriately. These test environments 

should contain interrelated objects, and they should be procedurally producible. There are 

not enough simple environments to conduct relationality and causality experiments. 

Therefore, this thesis aims to develop an environment where relationality tests can be 

conducted. Then, the developed test environment will be compared with a baseline 

environment from the literature. Also, the baseline and developed environment will be 

used for training and comparing decision-making algorithms. 

1.3. Contributions 

Two simple environment models are used in order to generate samples for optimization 

algorithms. The first test environment is Box-World (Zambaldi et al., 2019), which models 

a sequential color matching problem. This model is used in order to test the relational 

information usability performance of the algorithms. It is a visual environment, so there 

is also a need for image processing operations. The second environment is called 

Relational-Grid-World (RGW), a new environment that models a path and sequential 

decision-making problem. These two environments are used for two relation-based 

reinforcement learning methods. One of them is a Relational Network with multi-head 

dot-product attention (MHDPA) module, also used in (Zambaldi et al., 2019). In this way, 

the novel RGW environment is also tested by the same network as the Box-World, and its 

reliability is checked. In addition to MHDPA, PrediNet (Shanahan et al., 2020) is also 

used for training the RL agent. PrediNet architecture is used in an image-based task in a 

reference study. Its network depends not only on object relations but also on scalar 
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relational values in different relational representation dimensions. In this study, it is used 

for the first time in a dynamic environment. After the training process, its performance is 

compared with the MHDPA network. The ultimate aim of this study is to contribute to 

combining symbolic and statistical methods in AI studies. 

 

The main contributions made by this thesis can be briefly summarized as follows: 

 Development of the RGW 1  environment to measure the relational reasoning 

capacities of neural networks 

 The first use of the PrediNet architecture in a reinforcement learning problem 

 Comparison of PrediNet architecture with relational network architecture based on 

MHDPA in RGW and the Box-World environment (baseline) 

 Demonstration of the functionality of the RGW environment by training two 

different relational network architectures in the RGW 

 

The work reported in this thesis formed the basis of the following journal publication: 

 Küçüksubaşı, F. & Sürer, E. (2021). Relational-grid-world: a novel relational 

reasoning environment and an agent model for relational information extraction. 

Turkish Journal Of Electrical Engineering & Computer Sciences, 29(2), 1259-

1273. 

1.4. Outline of the Thesis 

In the following chapters of the thesis, studies about the subject of focus will be presented. 

In Chapter 2, studies in the literature on the related subjects will be presented. Later, in 

Chapter 3, the methodology of the used reinforcement learning model established by 

utilizing the literature will be explained in detail. In Chapter 4, the principles of the two 

environments will be shared and discussed. Then, in Chapter 5, the results of the 

preliminary tests for selecting some critical parameters for the agent architecture will be 

shared. This chapter will share and interpret the test results obtained with the final 

environment and model configuration. Finally, the obtained results and their contributions 

to the literature will be summarized, and future studies will be mentioned in Chapter 6. 

 

 

1RGW (2020). Relational-Grid-World - The source code [online]. Website https://github.com/farukksubasi/Relational-Grid-World 

[accessed 22 August 2021]. 
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CHAPTER 2 

 

2. RELATED WORK 

 

2.1. Basic Reinforcement Learning Methods 

In order to find the optimum way of acting in an environment, there should be an 

intelligent unit that explores the environment and acts based on its observations. There are 

many ways of finding the optimal solution. This thesis will focus on the Reinforcement 

Learning (RL) method, which is improved by neural networks (Tesauro, 1995; Tesauro, 

2002), and specifically the Deep Reinforcement Learning (DRL) method (Mnih et al., 

2015; Mnih et al., 2019). DRL field has varying sub-methods, and most of them are 

developed for limited cases. There are many open problems about RL, such as the 

exploration-exploitation problem. This problem occurs because of the uncertainty of the 

observations. The agent does not know if it observes all of the patterns in the environment. 

Therefore, it should always decide between exploiting its past observation and trying to 

find new observations. Even if the agent saw the all-state space of the model, there may 

be some state sequences that cause different returns. Therefore, the agent should act 

inconsistently with its observations in order not to miss other possible solutions. However, 

if the agent acts too inconsistent with observation, it will not converge to any solution. 

This situation is called the exploration-exploitation dilemma in the RL domain. Methods 

have also been developed for observing unexplored areas by including the frequency of 

new observations in the environment into the loss function (Pathak, Agrawal, Efros, & 

Darrell, 2017; Reizinger & Szemenyei, 2019). In RL problems, the delay between the 

instants of observation and rewarding is a fundamental problem in the field because the 

agent will be challenged during matching observations and their potential returns. Also, 

in environments whose state space is relatively large, it is hard to find optimal solutions. 

 

There are two types of learning methods for the RL algorithms. If the environment model 

is partially or fully pre-known, the agent can control its actions by deducting this 

information (state transition and reward functions), creating a policy. This method is 

called model-based RL. However, most of the time, the environment model is not known 

or accurately modeled. Moreover, the computational cost will increase exponentially. 

Therefore, the agent should observe the model without any pre-knowledge so that this 
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method may take high-risk actions early in the learning process. This method is called 

model-free RL, and a model-free RL method is used in the study. The agent should create 

a memory containing past experiences in the environment. Classic RL methods use tabular 

methods in order to create a memory. In these tables, the agent stores state-action or state-

total reward expectations. However, when the state space of the environment increases, 

the tabular method will not work anymore because combinations of the state will grow 

quadratically. 

 

In order to solve this problem, (Mnih et al., 2015; Schaul, Horgan, Gregor, & Silver, 2015) 

suggest value function approximators based on deep neural networks (LeCun, Bengio, & 

Hinton, 2015; Schmidhuber, 2015). These approximators can convert classic state lookup 

tables to continuous nonlinear functions (Mnih et al., 2019). Reinforcement learning and 

deep neural network fusion were tested on various Atari games in Arcade Learning 

Environment (Bellemare, Naddaf, Veness, & Bowling, 2013). This fusion has been used 

previously, but it faced problems such as policy divergence. Therefore, innovative 

mechanisms have been used in the algorithm to avoid divergence. The most important of 

these mechanisms is the experience replay method (Mnih et al., 2015); the agent’s 

experience is stored and randomly used in the training process of the neural network. In 

this way, the network uses more randomized data, and the training process becomes data-

efficient. For practical purposes, the screenshot of the game has been down-sampled after 

the conversion from the RGB representation to the grayscale. Action (policy) is taken as 

output after passing the input to two convolutional and fully connected layers. The Q-

learning method (Watkins & Dayan, 1992) is used to calculate loss function (temporal 

difference error). So, this is a model-free, off-policy algorithm created by using RL from 

end to end. This algorithm has been tested without changing the hyperparameters and 

architecture on seven different games. During the test, the ϵ-greedy policy was applied, 

and the ϵ value was decreased linearly from 1 to 0.1. At the same time to reduce the 

runtime, three or four frames from the game were not taken as input. When the 

experiments were completed, the results were compared with a human player, SARSA 

(Rummery & Niranjan, 1994), HyperNEAT (Stanley, D’Ambrosio, & and Gauci, 2009) 

algorithms, and it achieved state-of-the-art results in six games out of seven games. This 

algorithm, called Deep Q-Learning (DQN), successfully integrated raw-sensor data by 

integrating Q-learning, neural network, and experience replay methods for self-control. 

2.2. Statistical and Symbolic Methods 

Function approximators are not preferable in small environments because the function 

approximation process needs many samples, and tabular methods can quickly solve this 

environment. Although it has disadvantages in small environments, it can provide 

solutions in complex and realistic environments. Not only data inefficient but also 

interpretability and generalization is a challenging problem for DRL methods. Because, 

in order to construct a nonlinear function approximator, there should be a massive amount 

of data. Even if the function approximator is constructed correctly, the agent’s decisions 

will not be traceable because numerically trained nonlinear functions are just numbers 
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from a high-level perspective. Deep RL methods try to find associations between the 

states, actions, and rewards. However, there may be a simple cause-and-effect relationship 

between them. So, understanding the causality in the data will be a solution for the 

disadvantages of DRL (Garnelo & Shanahan, 2019). Classic AI algorithms are mostly 

hand-crafted and based on symbolic manipulations of the state, objects, and actions. These 

methods are better than modern methods in interpretability, generalizability, and data 

inefficiency. All of the decision logic is well-defined, and the boundaries of the algorithm 

are prior knowledge. 

 

In a study (Garnelo, Arulkumaran, & Shanahan, 2016), the authors say that deep 

reinforcement learning (DRL) methods need large training datasets. Their transfer 

learning skills may not be sufficient, and they do not have enough abstract reasoning 

capabilities. They state that, also, symbolic methods cannot use rich information from the 

real world without using statistical methods. Moreover, RL agents can be combined with 

classical symbolic AI methods for the development of robust agents. Then, they propose 

a new agent model under the title of deep symbolic reinforcement learning domain. After 

introducing the network architecture of a three-stage RL agent, they present experimental 

results conducted on the novel toy example. In this toy example, the agent travels through 

the environment and interacts with two types of objects that reward positive (“x” objects) 

and negative (“o” objects). The absolute value of these rewards is equal. Four different 

test configurations were created by using this toy example. In the first configuration, there 

are only “o” objects in the environment. In the second configuration, there are “x” and “o” 

objects placed uniformly. The third configuration is the random configuration of the first 

configuration. Finally, the last configuration is the random positioning of the second one. 

 

The first stage of the presented agent, called “low-level symbol generation,” is used as an 

object detection algorithm that uses the high-level raw inputs in the CNN layer. In the 

second stage, called “representation building,” some operations are performed on the 

frames in the environment. The first of these operations, defined as spatial proximity, 

calculates the Euclidean distance between the two objects in a frame. Secondly, the type 

transitions operation follows whether the same object turns into a different object between 

the two consecutive frames. By using the third operation, the number of neighboring 

objects around any object is obtained. In this way, it is calculated whether another object 

is approaching. The fourth and final operation is symbolic interactions and dynamics. By 

this operation, the position differences of the objects between two consecutive frames are 

obtained. In this way, local navigation can be provided. In the third and final stage of the 

agent architecture, there is a reinforcement learning method. In the article, a Q-learning 

algorithm that uses epsilon-greedy exploration is used as the RL method. The DQN model 

was used as a reference to compare the proposed agent model. When the experimental 

results are examined, it is seen that the DQN algorithm is more successful in uniform 

positioning environment configurations. However, in the case of positioning randomly, 

the presented agent model gives better results. In this way, it has been seen that the RL 

agent, which uses symbolic operations, is more robust to a disturbance like an object 

positioning. However, training these algorithms is challenging because of the hand-crafted 

programming. Also, high-dimensional data cannot be processed with them. Therefore, 
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classic and modern techniques should be merged to create robust algorithms (Garnelo & 

Shanahan, 2019). 

2.3. Relational Networks 

Some studies focus on object relations in the environment (Džeroski & Driessens, 2001; 

Driessens & Džeroski, 2004). Extraction of relational information from the environment 

may be vital in bridging between symbolic and statistical techniques. The relation 

Networks (Santoro et al., 2017) study shows that the relational dependency of objects in 

the environment improves the performance of the neural networks. Novel Relation 

Networks architecture is used for an image-based task based on positionally and visually 

dependent geometrical objects. In the Relation Networks study, the pairwise features of 

the objects in an image are processed through a multi-layer perceptron. The result obtained 

from this processing represents the relation between the two objects. This network is tested 

in more than one test environment in the study. In one of the test environments, there are 

objects with different colors and geometric shapes in the same image. Different questions 

are asked to the network about the geometric and positional relations between these 

objects. For example, the “How many objects have the same shape as the blue object?” 

question is asked to the network. This question is a relational question, and in order to be 

answered, the geometric shape of the blue object must be associated with the geometric 

shapes of other objects. If the question is “What is the shape of the blue object?” this 

question would be non-relational and could be answered independently from other objects. 

After processing the environment image with CNN, the obtained features are pairwise 

matched and combined with the embedded vector obtained with the LSTM architecture 

of the question sentence. Then, the relations of the entities are determined by processing 

the combined vector with a Multi-Layer Perceptron (MLP) layer. These detected relations’ 

values are summed up, and the answer to the question sentence is created with a different 

MLP layer. In the results, architectures using relational networks show higher 

performance in tasks requiring relational reasoning than architectures consisting only of 

MLPs. However, in non-relational questions, the relational network does not differ 

because understanding the relationship between the objects is no longer important. Instead 

of a relational network, a mapping function between each object and its shape will be 

sufficient for non-relational questions. 

In the other test environment in the relational network study, there are moving circular 

objects with different colors. Some of these circular objects are connected by springs and 

rigid connections, and some are moving freely. The environment image is transferred to 

the relational network without showing these connections. After CNN processes the 

environment image, it obtains the features of the objects in the frame. Each feature is 

paired with another and transferred to the multi-layer perceptron. As a result of the MLP 

output, the value of how many of these circular objects are connected is obtained, and the 

network is trained by comparing its output with the ground truth values. As a result of the 

training, it is seen that thanks to the relational network method used, higher accuracy is 

obtained than complex MLP networks. Via the Relational Network, moving objects with 
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invisible connections are detected. It can be said that the network’s awareness of 

connections means that the relational module indirectly recognizes the physical law 

underlying the movement of the objects. By using this connection information, the 

existence of the spring equation can be extracted. By using powerful and complex 

networks, the images used in these problems can be processed quite efficiently. However, 

the cause-and-effect relationships underlying the environment should be well understood 

to solve the problem. Relational networks can solve problems that require relational 

reasoning with higher performance compared to other methods. 

Moreover, complex image problems like Raven’s Progressive Matrices (RPM), which 

measure humans’ abstract thinking capabilities, can be solved with RN (Barrett, Hill, 

Santoro, Morcos, & Lillicrap, 2018). In the reference study, RPM (Raven & Court, 1938) 

questions are tried to be solved through neural networks. RPM questions are frequently 

used in visual IQ tests prepared for humans. RPM questions are about guessing what 

happens in the following image by understanding the relationship between consecutive 

images created according to a particular rule. These relationships need to be established 

through features such as shape positions and line colors in the image. Also, there are 

multiple answer options in RPM questions. Of course, there will be more than one rule in 

which each answer is somehow suitable for the given visual sequence, but in tests 

performed on humans, the correct answer is the answer in which this rule is created most 

simply. Therefore, the neural network model must have sufficient abstract reasoning 

ability to solve RPM questions that can even be challenging for human intelligence. The 

authors created new tests procedurally based on RPM tests, and they proposed a new 

dataset called Procedurally Generated Matrices (PGM). They carried out experiments on 

PGM using six neural network models, one of which is the proposed novel architecture. 

The architecture of the novel Wild Relation Network (WReN) network model, which is 

proposed in the article, is a very similar variant of Relation Networks (Santoro et al., 

2017). WReN network outputs the prediction score for each of the eight answer options. 

Apart from the proposed network, baseline models used in experiments are as follows: 

CNN-MLP network is a simple four-layer Convolutional and two-layer fully connected 

combined neural network. Long Short Term Memory (LSTM) (Hochreiter & 

Schmidhuber, 1997) experiments are based on the standard implementation of LSTM. 

ResNet-50 is a popular CNN-based benchmark network architecture. The Wild-ResNet 

model, an adaptation of the ResNet architecture, can produce scores similar to WReN. 

Finally, Context-blind ResNet architecture is used. Instead of showing the questions, only 

answer options are shown to the neural network in this model. In this way, it was measured 

by the possibility of giving the correct answer only by looking at the answer options. 

According to the results obtained in experiments on the PGM dataset using these models, 

it was reported that the novel WReN network model outperformed other models and 

produced nearly 14% higher correct solution than even the second most successful model. 
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2.3.1 MHDPA Models 

In the study of the relational network (Santoro et al., 2017), the authors accessed relational 

information using pairwise combinations of the objects in the environment. On the other 

hand, in this study, attention networks are used to determine the relations between the 

objects, which are frequently used in the Natural Language Processing (NLP) domain. 

The MHDPA algorithm performs the same operation as the relational network architecture 

presented in the study of the relational network. The MHDPA algorithm has the advantage 

of being more well-defined due to its use in the field of NLP compared to the method used 

in the relational network. However, in both algorithms, the process of crossing object 

features is used while detecting object relations. Thanks to attention networks, the low-

level feature vectors of the objects are made dot-product (MHDPA (Vaswani et al., 2017)) 

with each other (as much as the number of heads). As a result of this operation, the 

attention of the objects in the environment is found on each other, and an N x N (N: object 

number) matrix is obtained. This matrix is then passed through different Multi-Layer 

Perceptrons to produce the policy and value functions of the agent. In this study, they train 

the agent with a synchronous advantage actor-critic (A2C) framework. In this way, the 

agent’s neural network training process becomes much faster. Apart from this agent 

architecture, a new relational reasoning environment is also presented in the article. In the 

environment called Box-World, there are boxes of different colors. Each box acts as a key 

that unlocks the other box in its color. In this way, it releases the other box to which it is 

attached. In this novel environment, the agent must learn the relationship between the 

boxes’ colors, establish a forward relationship between the lock-key boxes, and decide 

where to move. The architecture presented in the article has been tested in the Box-World 

environment. With the increase in the number of attention modules in the agent 

architecture, it was seen that the agent acted with quite a high solution accuracy in the 

Box-World environment experiments. It can be seen on the graphs that the agent was 

trained for a long time to solve the environment at almost 100% accuracy. This agent 

neural network architecture’s success using the MHDPA method is significant, but it has 

weaknesses due to its long training period. 

 

The possible problem of this method is that objects from the Convolutional Neural 

Network (CNN) output may not be correctly separated when processing a visually 

complex environment image. If the object features spread into each other, the relations of 

the objects may not be noticed as a result of the MHDPA algorithm. This clustering 

problem requires different expertise apart from RL. However, the clustering problem is 

not experienced in toy environments used for the development method of the architecture. 

Therefore, this potential problem can be neglected in an RL problem. Two-layer CNN is 

used for image processing in the relational MHDPA study. The image processing part of 

the relational network pipeline is essential to extract the right features of the objects. 

Although two CNN layers are sufficient to process the image of the environment used in 

the reference study, it may be necessary to define a more powerful image processing 

architecture for different environments. Although the agent is trained with the actor-critic 

method in the reference work, different RL frameworks can be used for training because 

the MHDPA module can work in different ways, regardless of the RL framework used. 
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Moreover, using MHDPA with more advanced RL methods will increase the reliability of 

the obtained relational information. 

2.3.2 PrediNet Models 

On the other hand, in the PrediNet study (Shanahan et al., 2020), the authors say that 

statistical deep learning methods will be more generalizable and interpretable using 

symbolic methods. Therefore, they try to establish a bridge between these two 

frameworks. They offer an agent model that can extract relational information between 

the objects in the image given and make it available later with post-processing. In this 

neural network architecture, the feature vector of different objects is applied dot-product 

with another object. In this way, the attention weight of the objects on each other can be 

calculated. The most important feature of this new architecture, presented in the article 

named PrediNet, allows different objects to be compared in the same relational 

representation space. In this way, the relationship between the objects can be obtained 

explicitly for a specific relational representation. PrediNet has been tested in an 

environment called Relations Games, with various tasks, to evaluate the architecture’s 

performance. In the same environment, architectures created with different MLP network 

configurations have also been tested. As a result, the accuracy of the PrediNet algorithm 

in the test sets is much better than baseline architectures. In addition, weights of neural 

network architecture, which stores relational information, trained using Relations Games 

dataset are processed in Prolog logical programming language for post processes. As a 

result of this processing, the relational information between the objects in any image can 

be compared explicitly using the Prolog language. 

The fact that explicit relational information obtained with PrediNet architecture can be 

processed with logical programming languages indicates that it can be boosted with 

propositional operations during its online operation. If the objects in the environment 

affect the solution of the environment due to any of their features, PrediNet architecture 

can realize the relationships of these features. These noticed feature relations contain the 

characteristics of the objects in the environment and can be used in the control algorithm 

based on their propositional relations by using correct symbolic operations. In the 

PrediNet study, the network is trained with the tasks made on static images, but the 

obtained explicit relational information is not used in the algorithm. After completing the 

network training, the relational information extracted is compared offline by determining 

certain thresholds. The task called “between” used in the study asks whether one of the 

three objects in the image of the decision algorithm is in the same row or column as the 

other two objects. In order to perform this task successfully, the agent must learn the 

positional relations of all objects between each other. It will be sufficient to look only at 

the positional relationship of the middle object between the other two objects. However, 

the algorithm can look at the positional relationship between the two objects at the ends. 

Although this situation does not harm the solution of the problem, it can be considered 

that the algorithm has chosen any solution instead of the easiest one. In the sample Prolog 

output presented in the PrediNet study, the explicit relational information values obtained 

after the “between” task are symbolically defined with different relation symbolic 
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parameters. Then, by looking at these relationship values, the threshold value required for 

an object to be in between was defined off-line. After this value is defined, all objects that 

provide the given value can be listed simply. If the threshold used in this example can be 

defined online within the network, these symbolic operations can also be used in the 

control or decision-making algorithm of the agent. However, to define this value, it is 

necessary to use relation values of the agent whose training has been completed and whose 

performance is reliable. Calculating this value online may cause a different stabilization 

problem. Even if the thresholds can be selected appropriately, the information about which 

features of the objects should be compared and which direction will not be taught in the 

network. In addition, the difficulty of correctly clustering objects in visually complex 

environments can make it difficult for this architecture to extract appropriate relational 

information. 

2.3.3 Causal Models 

Some of the RL problems can be solved by making inferences from the relations of objects 

in the environment. However, these inferences are mostly based on correlations without 

relying on cause and effect relationships between the objects. For example, in the study 

of the relational network (Santoro et al., 2017), it is an important factor that some object 

positions make correlated movements in estimating invisible connections between circular 

objects. However, by looking at this correlation, the physical relationship between objects 

cannot be formulated. In order to achieve this information, it is necessary to conduct 

controlled experiments in the environment. For example, moving one of the connected 

objects should be observed to detect which objects started the movement and in what 

pattern these objects moved. Only in this way can the connection between objects be 

clearly understood. A generic understanding cannot be developed simply by looking at 

correlations over random observations. Through controlled experiments, cause and effect 

between objects can be better understood, and object movements can be predicted in more 

general conditions using cause and effect information. In order to carry out such controlled 

experiments, the trained agent should only be able to make observations in which the 

control parameter is changed. The agent itself can perform these controlled experiments, 

but when it does, it will no longer be an RL agent, and it becomes a hand-crafted 

algorithm. It is convenient to create these controlled test conditions through the 

environment at the first stage. Procedurally controlled experiments can be produced 

thanks to the environment called Causal World (Ahmed et al., 2021). In this environment, 

three robotic arms and various tasks created for these arms are simulated realistically. 

Different dynamics can be created in the environment thanks to the cube-shaped objects 

of different weights, sizes, colors, and adjustable robotic arm weights. In this environment, 

during training, the agent (robotic arms) can be asked to lift cubes of varying weights in 

each episode and move them to the designated places. In this way, at the end of the 

training, the agent can learn how the cubes’ weights affect the solution of the task. It will 

then be able to learn how the dimensions affect the solution of the task by simply changing 

the cube dimensions. In this way, the agent learns the pure cause and effect relationships 

in the environment. By using this information, it will be able to produce more robust 

solutions when it encounters different task combinations: when the dimensions and 
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weights of the cubes change at the same time, or when the tasks that the agent is asked to 

do with the cubes (push, pick and pick and place). In addition, since the environment 

model simulates an actual robot arm mechanism, the trained agent can achieve the same 

performance in real robotic arms. The agent tries to implicitly understand the dynamic 

equations of the robotic arms and cubes using the causal world environment. The agent, 

which can solve each task with high performance, will have kept the information of what 

weight and size objects can be lifted by applying force. This knowledge should be 

consistent with the physical equation of the operation to be performed. 
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CHAPTER 3 

 

3. METHODOLOGY 

 

3.1. Markov Decision Processes 

This study is based on modern applications of the Reinforcement Learning concept. 

Reinforcement learning is a subfield of the machine learning field as supervised and 

unsupervised learning topics. There are two fundamental units in the system (Figure 1). 

The first one is an environment that contains states and reward functions. State elements 

may depend on past states. Reward function depends on states and state transitions. These 

are the fundamental elements of the environment. The agent unit, which can be called a 

controller, can act in the environment. The agent’s action may be transmitted to the 

environment, and according to the environment state transition policy, the agent’s state is 

changed by the environment. Simultaneously, the environment generates a reward to the 

agent from its reward function. This reward and state are transmitted to the agent from the 

environment, and it is called a feedback signal to the agent. This concept is the same as 

the controller (agent), the control signal (action), and the plant (environment) in the 

control theory. However, the all-state information of the environment may not be 

transmitted to the agent. These types of environments are called partially observable 

environments. On the other hand, if the agent can see all of the states’ environments, this 

is called a fully observable environment. 
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Figure 1: Interaction of the agent and environment (Adapted from Sutton & Barto, 1998). 

When there is a decision problem in an environment, and the future state of the 

environment can be extracted from the current state, these types of problems are called 

the “Markov Decision Process” (MDP) (Bellman R., 1957). In order to use methods for 

the MDP problem, Equation 1 must be satisfied by the environment. In these problems, 

there are four main attributes: state, action, reward, and transition. The sequence between 

these attributes are following: 𝑆𝑡, 𝑎𝑡, 𝑅𝑡+1, 𝑆𝑡+1, 𝑎𝑡+1, 𝑅𝑡+2 …  Moreover, predicting the 

next states of the environment only depends on its previous state. 

 

 𝑃(𝑆𝑡+1|𝑆𝑡) =  𝑃(𝑆𝑡+1|𝑆𝑡, 𝑆𝑡−1, 𝑆𝑡−2, … , 𝑆1 ) (1) 

State transition matrix stores the information of the transition probabilities between states 

in the environment. It has three inputs: two states and action and gives the probability of 

transition between two states under an action (Equation 2). This probability distribution 

determines the dynamics of an environment that is operating under MDP rules. Also, there 

is a reward function (Equation 3) for an MDP. Reward function and the transition 

possibilities are the characteristics of the MDP process. 

 

 Ptransition =  P(St+1 = S′ | St = S, at = a) (2) 

 R =  f( St, St+1, at) (3) 

An MDP ruled environment can be generated by Equation 2 and Equation 3. The 

Reinforcement Learning field’s ultimate aim is to maximize the received cumulative 

reward from the environment, making the situation an optimization problem. In order to 
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find the optimized solution, the agent should find an optimum state-action map while 

acting in the environment. The function of the state and action map is called the “policy” 

(𝜋(𝑠)) of the agent, and most of the time, it is the optimized property of the agent. Also, 

another important property of the agent is the “value function” (𝑉(𝑠)) of the agent. It is 

also a map from the current state and the weighted sum of the expected rewards from the 

rest of the episode. Collecting the incoming rewards by multiplying with a certain weight 

(discount factor) eliminates the possibility of reaching an infinite sum and prioritizing the 

rewards to be received in time. Also, a Q value function is the same as the value function, 

except it gives the expected return only for a specific action in the current state. 

The Bellman Equation can solve an MDP problem, a linear equation, but it is 

computationally expensive for large state space problems. In order to solve large state 

space problems, there are some numerical techniques that are based on Bellman Equation, 

such as dynamic programming (Bellman R. E., 1957), Temporal Difference (Sutton & 

Barto, 1998) and Monte-Carlo tree search (Coulom, 2006) methods. The most challenging 

case is where the state transition and reward functions are not known. In order to solve 

this model-free problem, there are several techniques. In this thesis, the used model is 

based on temporal difference (TD) methods. The most popular version of the TD is called 

Q-learning (Equation 4) (Sutton & Barto, 1998). 

 𝑄(𝑆, 𝑎) ⃪ 𝑄(𝑆, 𝑎) + 𝛼(𝑅 + 𝛾 max
𝑎′

𝑄(𝑆, 𝑎′) − 𝑄(𝑆, 𝑎))  (4) 

In this method, the Q value is updated according to observations without knowing the 

environment (model-free). This method is value-based reinforcement learning because the 

agent tries to map states-action pairs with their expected returns. The other way of 

controlling the agent in an environment is optimizing the policy function directly. This 

type of optimization is called policy-based reinforcement learning. The value-based 

methods also generate policy function, but they produce implicitly, unlike policy-based 

methods. 

3.2. Deep Reinforcement Learning Methods 

Deep learning is a sub-branch of machine learning and has gained popularity with 

improvements in hardware and the ability to access large amounts of data. With the 

outperforming of image processing algorithms created using deep neural networks 

(Krizhevsky, Sutskever, & Hinton, 2012) in competitions, deep learning has become one 

of the hot topics in academic and industrial studies. Deep neural networks can be briefly 

summarized as a very nonlinear optimization process to create the function that will give 

the desired output from the input vector given to the network. At first, the data fed as input 

is multiplied by random trainable weight matrices, and scalar trainable bias values are 

added to this multiplication. After adding the bias values, the output is put into various 

nonlinear activation functions such as ReLU, sigmoid, and softmax to create nonlinear 

approximations. The output of these functions is processed in the same way with another 

set of trainable weights and biases. The final output is processed with the weight and bias 
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set to bring the processed input-output dimensions to the desired output size. The resulting 

output is then evaluated via a loss function. If the ground truth output from the relevant 

data is known for that data, the loss function is obtained by comparing the network output 

and the ground truth values, and this method is called supervised learning. By looking at 

the change of this loss function, the network weight and bias parameters are changed at a 

specific rate, and this process is called the training process. If the ground truth values are 

not known beforehand, the data given to the network as input is reconstructed over the 

network, and the network tries to reproduce the input. In this way, the hidden patterns in 

the data fed as input are displayed within the network. This representation can then be 

used to process data that the network has never seen. The process of training is called 

unsupervised learning. 

The third and last subheading of the machine learning field is reinforcement learning. In 

this field, the decision-making algorithm is optimized in an environment that acts 

according to specific rules. The agent acting in the environment tries to make the optimum 

actions according to its observations. In this respect, it is somewhat similar to supervised 

learning. This method allows classical tabular methods such as Q-learning to be used as 

functions via deep neural networks. Studies in which reinforcement learning methods are 

used with the deep neural network are collected under the sub-title of deep reinforcement 

learning. Since networks need many samples and providing stability is more complex than 

tabular methods, some problems that are not seen in tabular methods can be seen when 

using neural networks in these problems. 

3.2.1 Actor-Critic Architechtures 

The policy-based algorithm’s main disadvantage comes from the instability of the network 

due to the high variance in the gradients. However, the value-based methods are not good 

at environments with high state space. The actor-critic method (Konda & Tsitsiklis, 2000) 

(Figure 2) combines both policy-based and value-based methods. It takes advantage of 

both algorithms. The value network tries to estimate the expected returns of the states. 

Simultaneously, the policy network generates state-action mapping according to feedback 

that comes from the value network. This way, the policy network drives (actor) the agent, 

while the value network sends feedback (critic) to the policy network’s loss function. 
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Figure 2: Actor-Critic method architecture (Adapted from Sutton & Barto, 1998).  

The actor-critic method can be modified with parallel training frameworks like A3C 

(Mnih et al., 2016) and A2C methods. These networks use more than one agent (worker 

networks) in order to train actor-critic models. For example, the A3C network uses N 

different policy and value networks, and their training process continues collectively. 

These worker networks send their gradient matrices to a global actor-critic network 

asynchronously. Then, these worker networks update their weights from this global 

network. In this way, the global network is trained with a high variance network. In this 

thesis, the A3C architecture is used to train the relational network and PrediNet modules. 

Unlike regular actor-critic models, A3C is using a different loss function parameter for 

the policy network. The policy network’s gradients are based on the advantage function 

rather than the value function. The advantage function is calculated as: 

 𝐴(𝑠) = 𝑄(𝑆, 𝑎) − 𝑉(𝑆) (5) 

Using the advantage function, the policy network realizes the relative advantage of 

making an action over the other possible actions in a state. Moreover, there is also an 

entropy term in the policy loss function to direct the agent to explore the environment to 

avoid local minimum solutions. Then, the loss functions of the value and policy networks 

are given in Equation 6 and Equation 7 (Mnih et al., 2016). 
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 𝐿(𝜃1 )𝑣𝑎𝑙𝑢𝑒 = ∑(𝑉(𝑆) − 𝑅)2 
(6) 

 𝐿(𝜃2)𝑝𝑜𝑙𝑖𝑐𝑦 = −𝑙𝑜𝑔(𝜋(𝑠))  ∗  𝐴(𝑠)  −  𝛽 ∗ 𝐻(𝜋) (7) 

Then, gradient calculations are made over the obtained loss functions, and the network 

weights are updated as follows: 

 
𝑑𝜃1

 ⃪ 𝑑𝜃1
+

𝜕𝐿(𝜃1
′  )𝑣𝑎𝑙𝑢𝑒

𝜕𝜃1
′  

(8) 

 𝑑𝜃2
 ⃪ 𝑑𝜃2

+ ∇𝜃2
′ 𝐿(𝜃2

′  )𝑝𝑜𝑙𝑖𝑐𝑦 (9) 

, where 𝜃1  and 𝜃2  are global network’s trainable parameters, and 𝜃1
′ and 𝜃2

′ are local 

worker’s trainable parameters. With the asynchronous update of the trainable parameters 

of the policy and value networks, the agent’s network quickly becomes stable thanks to 

the high variance data of the A3C model. 

3.2.2 Attention Networks 

Attention networks are very frequently used tools in the field of the Natural Language 

Process (NLP). These tools can be used in any sequence-to-sequence algorithms as well 

as in NLP problems. In the sequence-to-sequence transforming process, attention 

networks are a good way to represent the sequence’s attention independently from their 

distances. The sequence (𝐸) is multiplied with the query weight matrix (𝑊𝑞) which is the 

network’s trainable parameter, and then it is multiplied by the key weight matrix (𝑊𝑘) 

which is also a trainable parameter to get the Q and K matrices (Equation 10 and Equation 

11). 

 𝑄 = 𝐸𝑊𝑞 , (10) 

 𝐾 = 𝐸𝑊𝑘, (11) 

Then the dot-products of the resulting Q matrix and the transpose of the K matrix are 

calculated. As a result of this process, due to the nature of the dot-product operation, the 

values of the object features in both matrices that are close to each other are increased, 

and the values of the distant ones are further reduced. In this way, the level of attention of 

their objects on each other is obtained. Then the softmax operation is applied to the matrix 

obtained after dot-product, which is divided by a scale factor (√𝑑𝑘) . The obtained 

attention distributions are normalized between 0 and 1 by the softmax operation. The 

matrix obtained as a result of this process is called the attention weight matrix (Equation 

12). 

 
Matt(E) =  softmax (

Q𝐾𝐓

√dk

 ) 
(12) 
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Finally, the attention matrix is multiplied by the V matrix (Equation 13), and the resulting 

matrix (Equation 14) is sent from the relational module to be used in the continuation of 

the network. 

 𝑉 = 𝐸𝑊𝑣 (13) 

 AH(E)  = Matt𝑉 (14) 

This attention matrix can be examined in post-processing, and the attention levels of the 

words on each other can be seen. The name self-attention is used in this process because 

Q, K, and V matrices are created for the sequence itself. The (Vaswani et al., 2017) study 

showed that generating more than one of these matrices for the same sequence and then 

combining them (Figure 3 and Figure 4) and creating multiple attention representations 

improved the performance of the NLP algorithms. Every set of the query, key, and value 

matrices are called one head, and the method which concatenates several matrices is called 

Multi-Head Dot-Product Attention (MHDPA). 

 

 

Figure 3: Scaled Dot-Product Attention Architecture (Adapted from Vaswani et al., 2017). 

 

 

Figure 4: Multi-Head Attention Architecture (Adapted from Vaswani et al., 2017). 

More than one representation space is created thanks to the multi-head transformer 

architecture, and more than one attention matrix is obtained. The increase in representation 

diversity enables the sampled data to be processed more detailed and unbiased. For these 

reasons, multi-head attention networks, which are becoming more common in the field of 

NLP, can also be used in reinforcement learning to strengthen the relational reasoning 

capacity of the agent algorithm. If the attention weight between the objects in the agent’s 

environment can be derived correctly, the agent can create its policy in the environment 

more accurately. Apart from optimizing the agent’s learning process, the agent’s decisions 
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based on when the training is completed can be interpreted through the attention matrix. 

Therefore, attention networks can offer a solution to the interpretability problem. 

However, to create a solution to the generalizability problem, it will be necessary to know 

the more precise (cause-effect) relations instead of the object relations in the environment 

(a kind of associational information). The use of this information, on the other hand, will 

enable making both more precise and more generalizable decisions by using symbolic 

mathematical operations instead of statistical methods. Therefore, attention networks will 

not provide a definitive solution to the generalizability problem. 

3.2.3 Relational Networks 

Relational networks are deep reinforcement learning methods with relational reasoning 

capability. Thanks to these methods, objects or states with relatively strong relations can 

be detected, enhancing the agent’s decision-making and controlling performance. In order 

to understand these relational connections, it is necessary to determine the interactions of 

objects with each other. The most direct way to detect these relations is to close the 

optimization loop by inserting the feature vector of complete combinations of the objects 

into a neural network. Attention network tools mentioned in the previous section can be 

used to create all combinations in this way. This tool can infer the relations of the objects 

in an MDP environment, just as the levels of relations of words in a sentence are inferred. 

In this way, it will be easier to interpret the decisions made by the RL agent, and it will be 

easier to notice the cause-effect-based phenomena in the environment. In this way, more 

interpretable and generalizable results can be obtained. 

 

The study (Zambaldi et al., 2019) that relational networks are used in a DRL problem, the 

environment frames (observations) are processed with a two-layer CNN, and resultant 

feature maps are sent to the operation called attention module. Each image frame’s feature 

maps (E) are put into the MHDPA process in this operation. The arrays that come out of 

the MHDPA process are then passed through the fully connected layer, and the output of 

the combinations is updated. The representations formed later are passed through four 

sequential fully connected layers, and n + 1  outputs are provided, of which n  policy 

outputs and one expected value. In this way, a reinforcement learning agent algorithm is 

driven using multi-head attention architecture. The attention matrix in the MHDPA core 

algorithm of this algorithm provides essential outputs in terms of the interpretability of 

the agent algorithm. 

Different attention values for more than one head from the MHDPA operation carry the 

relational information of the objects in the environment together with the agent’s 

observations. This information is also used iteratively by the agent in policy generation. 

The reason why the output of the MHDPA architecture cannot be used directly by the 

agent is that this information carries the attention information of the objects directly, 

instead of being a representation that the agent can generate policy. For these reasons, 

attention information is moved to a different representation by passing through more than 

one fully connected layer. This final representation is suitable for generating policy logits 

and value estimation values for the agent’s algorithm. In addition, softmax operation is 
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applied to the first four outputs of fully connected layers to create policy logits. In this 

way, the MHDPA method is put into the form that a reinforcement learning agent can use. 

Instead of this method, as the same authors applied in their previous work (Santoro et al., 

2017), the feature combinations of each object pair can be obtained with a multi-layer 

perceptron to extract relational reasoning information. Deriving relational information 

from this combination method would also have quadratic complexity, like MHDPA. 

Therefore, the two methods do not have many advantages over each other. 

3.2.4 PrediNet Architecture 

The PrediNet architecture provides exploring various relationships by using multi-head 

attention, as in relational network architecture. Differently, the object pairs in the 

environment are distributed to each different head. Since the same attention matrices are 

used in all heads, except for the 𝑊𝑞, the same relational representation is used in each one. 

The fact that the 𝑊𝑞 matrices are different in each head, allowing the j relations of different 

object pairs to be examined. By subtracting the results from this multi-head network 

(Figure 5), the relationships in j different relational representation spaces are revealed. It 

is anticipated that the network derives relational information independent from the 

position information of the objects. Therefore, in this study, unlike the reference 

procedure, the position information of the entities is not included in the difference vector. 

This relational information can be used for optimizing the actor-critic policy and value 

estimations. The relational information resulting from this network is formed in the 

propositional representation, and it is available to be used beyond the network pipeline. 

Because PrediNet can derive propositional information from high-dimensional data, it is 

suitable for symbolic operations and, therefore, induction operations for the data obtained 

statistically. 
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Figure 5: PrediNet Network Architecture (Adapted from Shanahan et al., 2020). 

The computational complexity in the PrediNet architecture is less than Relational 

networks because the relationship between only two entities is examined in each head 

instead of all the entities. Moreover, the 𝑊𝑘 and 𝑊𝑠 matrices are shared in all heads. For 

this reason, its performance as a decision-making algorithm is expected to be lower since 

it establishes fewer relationships than a relational network. For this reason, it is the most 

important advantage to extract propositional information from the environment. Since the 

positional information of the entities in the relational network is not used directly, also it 

is not used in PrediNet. This information is one of the differences between the original 

study and its use in this thesis. The propositional information created by PrediNet is 

𝐿: Input              𝑄𝑁
ℎ : Query array of 𝑁𝑡ℎ entity in 𝐻𝑡ℎℎ𝑒𝑎𝑑 

𝐾: Shared key matrix for all heads   𝑊𝑠: Shared linear mapping matrix for all heads 
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expressed with the R vector. R vector represents the scalar magnitudes of the relations of 

binary entity combinations at 𝐻 numbers heads for 𝑗 different relational representations. 

By using this scalar information, the magnitudes of the relative relational representation 

between two entities can be compared. For example, suppose it is known that the relational 

representation is the object dimensions. In that case, the dimensions of the two objects in 

the environment can be easily compared over these values, and additional operations can 

be performed according to the size of the objects in the environment. If there is a positional 

relationship in one of the representations, the distances of the objects can be read through 

these values, which can improve the decision-making algorithm. In the PrediNet 

architecture, relational information between the two entities is obtained by subtraction of 

the individual representations of the entities. The reason subtraction is preferred in this 

process is that the relative representational difference between the entities represents their 

relationship. It is essential to extract a relative representation based on the signs of the 

representations. For example, if the Euclidean distances are used instead of the subtraction 

operation, it would be impossible to understand the aspects of the relations. The absolute 

value of the difference between the entities will be obtained by using Euclidean distances. 

For example, the magnitude of the size difference between the objects will be known, but 

it will not be possible to obtain information about which one is larger or smaller. This 

difference information can also be obtained by using another signal-sensitive operation 

instead of subtraction. For example, another network that can extract the relative relations 

of representations can be used as an alternative for this operation. 

One of the problems of relational reasoning neural networks for raw visual data is to 

cluster the objects on the image correctly. The ability of the agent to distinguish objects 

in the environment from each other and the background will dramatically change the 

ability to do relational reasoning. If different objects are in the same entities for the agent, 

it creates misleading information that they are entirely dependent on each other. Moreover, 

the background image of the environment is included in the entities will create misleading 

information during the comparison of two objects. For example, in an environment where 

object dimensions are important for the solution, the dimensions will be evaluated 

incorrectly because the background will spread to the objects. For these reasons, it is 

important to do the object clustering correctly over the environment image. However, this 

problem is an image processing problem rather than an RL problem. For this reason, in 

theoretical RL algorithm studies, it would be appropriate to send the objects to the agent 

in a completely clustered manner. 

The R vector containing the relation information obtained from the PrediNet architecture 

can be processed in the Prolog logic programming language. The relational information 

for each head obtained from the R vector can be compared within the Prolog. In this way, 

queries can be made in relational representation spaces that are dimensionally large/small 

objects, positionally close/far objects, or physically meaningless representations for a 

certain object. These queries can be manipulated with symbolic operations within the 

agent architecture and used in the agent’s decision-making or control algorithm. In this 

way, generic algorithms can be developed independently from some of the environmental 

parameters. In addition, if the agent is controlled with symbolic manipulations in an 
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environment whose rules are pre-known, by using this relational information before the 

training process, the agent can move these relational vectors (𝑅) to the desired relational 

representation. For example, if there is a connection related to object dimensions in the 

environment, the agent’s actions can be directed by making symbolic decisions as if this 

dimension relation information is obtained in the agent algorithm. The relationship vectors 

of the agent in the PrediNet module will also be optimized to give priority to the object 

size information at the end of the training process. However, this method means that the 

task in the environment is known in advance, and thus the difficulty of the problem is 

reduced in advance. Because before the agent starts training, the algorithm will be trained 

knowing that the dimensions are an important parameter. For this reason, the symbolic 

operation added to the agent algorithm must be created without relying on prior 

knowledge of the environment, which prevents the symbolic operation from being 

complex. These symbolic operations must also be expressed with trainable parameters. 

Processing symbolic manipulation output of the previously prepared physical relations 

between two objects with a neural network can help overcome this problem. Although the 

PrediNet architecture is more suitable for generalization than relational networks, this 

cannot be said in terms of interpretability. Because, thanks to the attention matrix in 

relational networks, it is easier to visualize and understand which decision of the agent is 

due to which object’s relationship. However, in PrediNet architecture, this should be done 

for combinations of two objects over scalar relation values, reducing the interpretability 

of the agent’s decisions. On the other hand, the relationship of the exact combinations of 

all objects in the environment can be seen in the relational network. 

3.2.5 Mixed Architecture 

A3C, MHDPA, and PrediNet modules are used together in the network used in the 

experiments (Figure 6). Twelve different agents (workers) act in twelve different 

environments parallel and asynchronously using their networks (with different random 

weights). A3C architecture is used in the outermost shell of the algorithm for training the 

agent. The maximum number of parallel agents allowed on the hardware where the tests 

are performed is 12. The reason for choosing this method is that it can provide faster 

training thanks to its high variance sampling capability. In the inner shell of the A3C 

architecture, there are two layers of CNN models to process the input image. CNN is a 

deep neural network method that is frequently preferred in image processing due to its 

capability of detecting low-level features of the image quite well. Small-scale CNNs were 

used due to the relatively small image sizes of the environments the experiments are 

conducted. The feature maps obtained from the CNN layers for each worker are 

transferred to the Relational Module selected at the beginning of the training. According 

to this selection made at the beginning, a switch is made between MHDPA and PrediNet 

to determine which network output will be used. In order to make appropriate switching, 

the input sections of the versions of the MHDPA and PrediNet modules used in the 

reference articles were updated. As the output of this switching, features of the same size 

are derived from both modules. These obtained vectors were then sent to four consecutive 

fully connected layers as in the reference article (Zambaldi et al., 2019). Five values are 

calculated for each observation from the fully connected layer at the end of the neural 
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network pipeline. Four of them are softmaxed to create policy logits, and the resulting 

logits are used as policy function outputs for A3C. The fifth and last value is used as the 

value estimation value in A3C architecture without any extra processing. 

 

A loss value for the value function (𝑉(𝑠)) is calculated by comparing the value estimations 

with the reward obtained from the environment at that time step. Then, the loss calculation 

for the policy function is calculated with the advantage function, which is obtained from 

the value estimation (Equation 5). With these loss calculations, the gradient required for 

the policy and value functions networks is calculated. In this way, the value estimation 

function, which is the critic unit of the A3C, is trained according to the rewards coming 

from the environment. If the value function predicts the value of the reward obtained from 

the environment well, it will ensure that the policy network is well trained. Using these 

two function estimators together, the disadvantage of value-based methods in large state 

space environments and policy-based methods being unstable due to high variance 

gradients are minimized. The policy network, which is the actor unit of the A3C, tries to 

optimize the policy logits (statistical distribution values for movement in four directions) 

according to the feedback it receives from the value network. One of the four actions is 

selected for each environment while calculating the loss values according to the policy 

logits. The individual worker in the environment performs this selected action. According 

to this action, the environment updates the agent’s state and moves to the next time step. 

In this step, the worker observes the new state of the environment, and the same 

calculations are repeated. Each worker does not use the gradient values calculated in these 

iterations to update their networks. Each worker sends the gradients asynchronously to the 

global agent network, and the weight values in the global agent’s network are updated 

according to the gradient values from all workers. Workers who send the gradient values 

for this update then copy the weights of the global agent network to itself. In this way, all 

workers benefit from highly variance-trained network parameters that other workers 

improve. Workers are trained through different relational modules, depending on the 

relational module selection selected before the training starts. It can be said that the tests 

performed for both modules are carried out under equal conditions since both modules 

had the same structure upstream and downstream of the pipeline. Also, their architectures 

are similar to each other. 
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Figure 6: Mixed Architecture (Adapted from Küçüksubaşı & Sürer, 2021). 
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Most of the mixed architecture parameter sets are selected from the reference article of 

the MHDPA module. In order to compare the PrediNet and MHDPA methods, the same 

network parameters were used for both modules. Although the number of heads used 

during attention processes is the same, the unique number of relation values of the 

PrediNet algorithm was determined as a result of preliminary experiments (5.1). The only 

downside to using the same parameter set for both modules is that it misses its own best 

performance points from the two modules. However, finding the parameter sets that are 

the best is not preferred due to controlled experimentation (thus comparing their 

performance) and double the parameter tuning time. Therefore, the same hyperparameter 

set is used for both modules. As a result of preliminary experiments, it is understood that 

this approach is not wrong at all. Although the same parameter sets are used in the 

modules, the trainable parameter number of the two modules differs due to the architecture 

of the PrediNet. For this reason, differences in training periods are observed. 
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CHAPTER 4 

 

4. ENVIRONMENTS 

 

4.1. Relational-Grid-World Environment 

Relational-Grid-World (RGW) environment is developed for the analysis of the relation-

based reinforcement learning algorithms. There are eight objects (and empty grids) in the 

environment related to each other. RGW can be generated procedurally so that it can 

produce a high variance sample. Therefore, it can be used to train more robust neural 

networks. RGW configurations, which have 10 x 10 grid sizes as in Figure 7, are used in 

thesis experiments to understand objects’ effects easily.  

There are two configurations of RGW which is used. The only difference between them 

is the mountain and pit objects because they are penalty objects, increasing the complexity 

of the environment. The objects and their reward values are listed in Table 1. 

Table 1: Reward mechanism of the Relational-Grid-World objects. 

Object Terminal Enemy Using Sword Mountain Pit 

Reward  10 -1 1 -0.1 -1 

The main properties of each object are following: 

 Agent: The agent object (Figure 8-a) takes actions to the up, down, left, and right 

from its grid. It can go to only one grid for every step and cannot go on the wall 

objects. It is the only smart unit of the environment because it is driven by the 

output of the reinforcement learning algorithm. The main objective of the agent is 

getting maximum rewards from the environment. Also, it should reach the terminal 

state if there is a penalty for each step. This type of penalty is commonly used to 

find the optimum path between the spawn point of the agent and the terminal state, 
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and there should be a penalty for spending time on empty grids. If there is no 

penalty for each step, no reward for terminating, and no limit on the number of 

steps, the agent may never finish the episode. There is no reason for it to go to a 

terminal state in this situation. Unlike the other objects, an agent is necessary for 

the RGW environment to train reinforcement learning algorithms. 

 Terminal: The terminal object (Figure 8-b) is one of the objects which terminates 

the episode (pit object can also do). When it reaches this state, the agent is 

rewarded with +10 points to accelerate its search for an optimal path. Terminal 

state location is one of the most important objects for setting the configuration’s 

difficulty. Therefore, while generating a configuration, locating the terminal state 

will save time for adjusting the difficulty of the environment. 

 Wall: The wall object (Figure 8-c) is the most passive in the environment. They 

are used for users to create the basic structure of the environment configuration. 

Using these objects is the easiest way of adjusting the environment’s difficulty. 

Most of the time, the wall objects do not give the agent any positive or negative 

reward. They change the complexity of the environment indirectly. Also, they are 

not the necessary objects for the creation of a working environment. 

 Enemy: The enemy object (Figure 8-d) is one of the essential objects of the RGW 

environment in terms of the relational dependency with another object. The enemy 

object gives a penalty to the agent if the agent has not got the sword object. 

However, if the agent has it, the enemy gives positive or zero rewards. The most 

common reason for using this object is enforcing the agent to establish a 

relationship between the enemy and the sword objects. The most proper use of this 

object is to put it on the optimum path in the environment configuration and force 

the agent to pass over it. 

 

In the environment configurations used in this thesis, if the agent comes on the 

enemy object’s grid without having a sword, the agent is given a -1 penalty point. 

On the contrary, if it reaches the enemy grid with the sword, +1 reward point was 

given to the agent. Another way of using the enemy object is to position it to the 

environment in a dummy manner. In order to do this, the enemy object is placed 

on a non-optimal route to attract the agent’s attention. During the training process 

of the agent, while the enemy is on the optimal path in some episodes, it is kept as 

a dummy object in some episodes, and it is expected that the agent should 

understand whether or not it should go to the enemy object. Because in order to go 

to the enemy object, it will need to consider how it will go to the sword object, and 

in order to do this, the agent must be able to calculate more than one forward move. 

Moreover, increasing the number of enemy objects causes an increase in the 

complexity of the environment configuration. 

 Sword: The sword object (Figure 8-e) can be seen as a pair of enemy objects. It 

will be useless without any enemy object because it has no property except for 
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beating it. It can be used for the enemy objects multiple times. The sword and the 

enemy objects are the most important instruments to generate a relational 

dependency in RGW, which gives the name of the environment. Therefore, most 

of the time, they are used in the configurations. 

 Teleportation: The teleportation object (Figure 8-f) creates instant changes in the 

position of the agent. Due to their functionality, they must exist pairwise (entry 

and exit) in the environment. When the agent reaches a teleport object, it will 

appear over the other teleport object at the next time step. The main reason to use 

these objects is to distort the environment’s positional cause and reason structure. 

Therefore, the agent should be robust for dramatic changes in the position. 

Moreover, during configurations, teleport objects can provide great flexibility in 

shaping the optimum path. The agent can be directed to teleport objects by creating 

dead-ends at various points in the environment. 

 Mountain: The mountain objects (Figure 8-g) are the most useful objects while 

building the optimal path in a configuration. They give negative rewards to the 

agent, unlike the wall objects. In the experiments which are presented in this thesis, 

they give a -0.1 reward to the agent. In order to understand their effect, they are 

not used in Configuration-1 (Figure 7) and used in Configuration-2 (Figure 9) of 

the RGW environment. 

 

Figure 7: Relational-Grid-World Configuration-1. 

 Pit: The pit object (Figure 8-h) is another object that can terminate the episode 

other than the terminal object. Therefore, the agent may tend to the pit objects 
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when the environment is not configured well. If the agent does not make efficient 

actions for exploration, it may go to the pit object to terminate the environment. It 

may terminate the episode to escape from the other penalty points. Also, it is the 

second difference between the configurations which are used in the experiments. 

The pit object also gives a -1 reward point to the agent like the enemy object. 

 

 

 

(a) Agent 2               (b) Terminal 3              (c) Wall 4                 (d) Enemy 5 

             

 

      

(e) Sword6               (f) Teleportation 7        (g) Mountain 8              (h)  Pit9 

Figure 8: Relational-Grid-World Objects. 

During the generation of an RGW configuration, firstly, the grid size of the environment 

should be decided. The default setting for the grid size is 10 x 10. Increasing the grid size 

causes an increase in state space, requiring the agent algorithm to be trained in higher 

dimensions. Therefore, a larger grid size tests the stability and performance of the neural 

network instead of testing the agent’s core algorithm’s performance. For this reason, rather 

than enlarging the grid size, increasing the complexity with the variety and repetition of 

the objects in the environment is more useful in measuring the relational reasoning 

capacity of the algorithms. In order to do this, firstly, the location at which the agent 

spawns in the environment should be determined because the other objects should be 

 

2FAVPNG (2020). Robot - Robot Clip Art Vector Graphics Image [online]. Website https://favpng.com/png_view/robot-robot-clip-

art-vector-graphics-image-png/Jc5wb5r4 [accessed 17 July 2021]. 
3FLATICON (2020). Plug - Free Tools and utensils icons [online]. Website https://www.flaticon.com/free-icon/plug_31863 [accessed 

17 July 2021]. 
4 FAVPNG (2020). Wall - Clip Art [online]. Website https://favpng.com/png_view/brick-clipart-rectangle-square-brick-clip-art-

png/XhH1JjMX [accessed 17 July 2021]. 
5PNGEGG (2020). Villain - Fictional Character [online]. Website https://www.pngegg.com/en/png-nfhkb [accessed 17 July 2021]. 
6PNGWING (2020). Sword - Clip Art [online]. Website https://www.pngwing.com/en/free-png-nxuvd [accessed 17 July 2021]. 
7PNGIO (2020). Teleportation - Clip Art [online]. Website https://pngio.com/images/png-a1788695.html [accessed 17 July 2021]. 
8HICLIPART (2020). Mountain - Clip Art [online]. Website https://www.hiclipart.com/free-transparent-background-png-clipart-stcbr 

[accessed 17 July 2021]. 
9 FAVPNG (2020). Circle - Spiral Circle Clip Art [online]. Website https://favpng.com/png_view/circle-spiral-circle-clip-art-

png/wLy3E82g [accessed 17 July 2021]. 



35 

 

located according to this spawn point. After determining the spawn location of the agent, 

the condition for termination of the episodes should be determined. The terminal condition 

can be specified by the maximum episode length parameter, reaching the terminal object, 

or both. After the terminal condition is determined, it should be decided where the enemy 

(or enemies) and sword objects will be located in the environment. If these objects are not 

used, the RGW environment converges to a kind of maze problem. For this reason, these 

two objects are used most of the time. After the locations of these two objects are 

determined, the paths in which the agent will receive rewards are arranged using wall and 

pit objects. This path may be the shortest path to reaching the terminal or enemy objects 

by taking the sword. After these paths are specified, if it is anticipated to add an extra 

effect for increasing the agent’s position robustness, the agent’s optimum path can be 

manipulated with teleport objects. Also, the mountain objects can be located in the 

environment to make it difficult for the agent to detect the optimum path. Since the 

negative reward brought by the mountain object is lower than the other penalty objects, 

the optimum reward that the agent can earn can be adjusted by using this object. In this 

way, the agent’s recognition of the optimum path in the environment is made difficult to 

distinguish between other paths. 

 

Figure 9: Relational-Grid-World Configuration-2. 

It is expected that the relational information obtained from the generated RGW 

environment configuration can correctly point out the relations of the RGW objects. As 

expected, the strongest relationships should be between the agent and the terminal object 

because the agent wants to reach the terminal object no matter what is on the optimum 

path. This is because creating a configuration that will constantly give positive rewards in 

the RGW environment is not easy. For this to happen, there must be more than ten enemies 
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in the environment. As long as this situation is not created and there is a terminal object, 

the agent’s interest will be through the terminal object. Apart from this, if there are sword 

and enemy objects in the environment, and these two objects are located on the optimum 

path of the configuration, the agent is expected to realize the relationship between them. 

This relationship can also be noticed by the agent through other objects indirectly. For 

example, if there is a different object between these two objects on the optimum path, the 

agent can associate the object between the enemy and the sword object. The main reason 

for this situation is that the agent algorithms do not adequately understand the cause-and-

effect relationships in the environment. Agents often make sense of relationships in the 

environment through correlations. Much stronger symbolic operations must be used in the 

agent algorithm to be able to detect the connection between related objects directly. 

The main reason why the agent cannot realize this direct relationship is that after the agent 

receives the sword object, it visits another object, and then it stops on the enemy object. 

The agent supposes the object that is not causally related to the enemy object to gain 

positive points over the enemy. In this type of configuration, when a human player drives 

the agent, the player notices the relationship between the sword and the enemy for the first 

time. Human players realize this direct relationship because they use the knowledge of 

enemy-sword relation before playing the game. If two meaningless images are used 

instead of swords and enemy visuals, the human player may fall into the same mistake 

that the RL agent makes. However, as the human player drives the agent in the 

environment, the player will realize a direct relationship between these two objects after 

doing controlled experiments. Since the RL agent is not programmed to conduct 

controlled experiments, it will not fully determine this relationship. If the agent algorithm 

is programmed to perform such an experiment, the basic algorithm used by the agent will 

not be a statistical algorithm. It will be a logic-based algorithm. For these reasons, the fact 

that an agent trained in the RGW environment understands the direct relationship between 

enemy and sword objects will signify the capacity to notice cause-effect relationships in 

the environment. As a result of the training, the correct evaluation of the test in the 

environment needs to check the object relations of the agent. If the relationship between 

these two objects is noticed indirectly, the agent can notice the relationships but cannot 

understand the causality. Recognizing the cause and effect relationships in the 

environment will increase the generalizability ability of the agent algorithm. Apart from 

this, the interpretability of the agent algorithm also increases as the agent makes its 

decisions using this causal information. 

When an agent, which was trained in an environment configuration where the link 

between these two objects affects the optimum path, is trained in a configuration where 

the two objects do not affect the optimum path, information about the effects of the agent’s 

relational information on the policy can be obtained. For example, suppose the agent 

trained in an environment where these two objects are on the optimum path is put in an 

environment configuration where the enemy object is not on the optimum path. In that 

case, the agent will need to find the optimal path directly by not using this information, 

although it knows the sword-enemy relationship. This gives information about how much 

the agent can separate these two objects from their relationships with other objects. 



37 

 

4.2. Box-World Environment 

The Box-World is a 12 x 12-pixel environment which is firstly introduced in the relational 

deep reinforcement learning study (Zambaldi et al., 2019). This environment is designed 

to test relational network algorithms. The most important feature of the environment is 

that it is not too complex visually, allowing one to focus on the essence of relational 

problems more easily. The environment consists of grids, as in RGW. The most important 

object in the environment is the grid that symbolizes the agent, and in this environment, 

as in RGW, it can take actions in the up, down, right, and left directions, one grid at a 

time. Some grids contain objects called keys, locks, and gems. There is a key object of the 

same color for each lock object, but not necessarily a lock for each key object. Apart from 

that, the lock objects stand adjacent to the object of another color (it can be a key or a 

gem). In this way, if an agent which has a key visits a lock with the same color, the object 

adjacent to the lock is released, and the agent can take this object. If this free object is a 

gem, the episode is terminated. If it is another lock, the agent takes this lock and continues 

the episode. Some keys in the section can open more than one lock. By using this property, 

scenarios can be created where the agent never reaches the gem block. Therefore, before 

using the keys, the agent must predict which lock to open. Otherwise, it will hit a dead 

end and may end the episode with a low reward: How many locks should be unlocked 

before reaching the gem object, and how many distractor paths can be set procedurally via 

the environment configuration parameters. The rewards given by the objects in the 

environment and the color codes of the objects can be seen in Table 2. 

Three configurations of the Box-World environments (Figure 10, Figure 11, and Figure 

12) are used in the Relational Network and PrediNet architecture experiments. The 

configurations are determined in order to create three levels of difficulty. These 

difficulties are settled with the solution length and number of the distractor path. Also, 

each configuration can be generated procedurally within itself. The colors and the 

locations of the key-lock blocks are randomly determined in each episode. This makes the 

network’s training process harder in terms of robustness and generalizability. Also, the 

episode is terminated after 300 steps of the agent in every episode. In this way, long 

episodes are avoided, and training time is decreased. When the agents visit a key block, 

the key block is moved to the left corner of the environment rather than erased to simplify 

the network’s task. Therefore, there is no need to memorize every key taken by the agent. 

When the agent visits the lock block in the baseline Box-World environment, it should 

also visit the adjacent box to obtain a key or gem. However, in this thesis, experiments are 

done differently. When the agent visits a lock, an adjacent key or gem box has been 

received even if not visited by the agent. In this way, the training process was shortened, 

and limited hardware is used more appropriately. Moreover, this situation will not affect 

obtaining relational information in the environment, and it will only accelerate the agent’s 

learning process.  

 

The first configuration’s solution length is one step, with no distractor path (Figure 10). 

Therefore, the agent (grey) should go first to the key box (green) and then visit the other 

green box to obtain a gem. After reaching the gem, the episode restarts, then the key-lock 
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pair’s color and the objects’ initial location (including the agent) are redetermined. This 

is the easiest configuration that can be generalized from the Box-World after the 

configuration, containing only the agent and gem boxes. Therefore, the performance of 

the agent in this configuration will be a reference for the other ones. The first required 

skill from the agent algorithm is learning to locate itself and attending to the gem’s 

adjacent lock box’s color. Then, driving the agent box to the key box of the lock of the 

gem. Also, the agent should learn that the lock gem cannot be obtained, so the agent should 

first look at the gem’s adjacent box. 

 

Figure 10: Box-World (Zambaldi et al., 2019) Configuration-1. 

The second configuration consists of two locks (dark green) whose key boxes are the same 

(Figure 11). Therefore, one of the locks tries to distract the agents (the purple one) from 

the path of the gem’s lock. Also, the agent should open only one lock before reaching the 

gem box, so this configuration’s solution length is one step. In this configuration, the agent 

should notice that the dark green key box should be visited, and the agent should go to the 

adjacent gem box (white). If the agent goes to the distracter box (adjacent to the purple 

box), the -1 point penalty point will be given to the agent (Table 2). 

 

 

 

 



39 

 

Table 2: Rewarding of the Box-World objects. 

Object Agent Gem Key Lock Distractor 

Color  Grey White Any Color Any Color Any Color 

Reward  0 10 0 1 -1 

 

The last configuration of the Box-World environments contains two pairs of keys and 

locks (in Figure 12). Also, no distractor path directs the agent to a dead end. Therefore, 

this configuration can be assumed of a more challenging version of the first configuration. 

To pass the episode optimally, it must understand the lock-key network from the gem 

object and trace back to the first key. This configuration needs the ability to understand 

object relations in a more complex way. Also, the agent should be robust in terms of color 

perception because the box’s colors change in every episode. 

 

Figure 11: Box-World (Zambaldi et al., 2019) Configuration-2. 

Moreover, more than one key-lock pair whose colors change will be more challenging 

than the first configuration in color robustness. The agent’s exploration skill should be 

more in this configuration than the first and second one because the agent should recognize 

a more complex sequence of the boxes. In order to recognize this sequence, the number 

of random actions of the agents should increase. Moreover, in order to decrease the 

learning time of the agent, every step may be penalized. In this way, the agent will 

converge to the optimum path more easily. 
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Figure 12: Box-World (Zambaldi et al., 2019) Configuration-3. 

The Box-World environment provides a procedural model to generate primary cause and 

effect experiments in different difficulty levels. Solver algorithms for these environments 

can be easily written manually, but the experiment’s main purpose is to create a solver 

with a self-learning capability. Then, more complex causality problems may be solved by 

the developed algorithms. Most of the phenomena in real-life work on causality, and 

understanding the mechanics of the cause and effect by self-learner tools will help 

humanity in real-life problems. Difficulty levels of the Box-World configurations can be 

increased, but to avoid hardware limits, more simple cases are selected in the 

configuration where they can still reflect the fundamental problem of the Box-World 

environment. If the complexity of the configurations increases, the agent’s training 

process takes a longer time. 

Unlike Box-World, the Relational-Grid-World environment does not change the objects’ 

position in each episode because locating the objects randomly may cause unsolvable 

configurations. In future work, this feature will be added to RGW, and the agent must be 

robust for the positional changes of the objects. Therefore, RGW configurations are 

generated manually in this thesis. The visuals of example configurations created in the 

RGW and BW environments are given in Appendix. Moreover, unlike Box-World, the 

objects have got different features like positional and key-lock relation. 

On the other hand, the Box-World environment’s difficulty level can be adjusted 

systematically from the solution length, the distractor number, and the distractor path 

length from the environment’s configuration parameters. The RGW has not got specific 

conjuration parameters that help to adjust the level of difficulty. Moreover, RGW’s visuals 

are more complex than the Box-World, but this is not an essential property to measure 

relation-based capabilities of the decision-making algorithms. 
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CHAPTER 5 

 

5. RESULTS AND DISCUSSION 

 

5.1. Preliminary Experiments For Parameter Tuning 

There are many hyperparameters of the networks because of the complexity of the 

network architectures. Before training all configurations of the environments, 

hyperparameter tuning is necessary. Reference articles (Zambaldi et al., 2019; Shanahan 

et al., 2020) of the networks have published some hyperparameters in their works. For the 

initial guess of the parameters, reference values are used. However, there is a need for 

fine-tuning these parameters, so a few pre-experiments are done for the MHDPA network. 

Then, all hyperparameters are synchronized with PrediNet in order to make reliable 

comparisons. 

 

Firstly, the A3C framework’s agent number, the outermost layer of the network, is tuned 

according to the limit of the processor of the working hardware. The number of parallel 

agents is selected as 12 because of the hardware limitation. Because of the difference of 

parallel computation framework with reference article, training took a longer time than 

the A2C and IMPALA (Espeholt et al., 2018) methods. However, this does not mean that 

there will be a difference in final results (Zambaldi et al., 2019) because core agent 

modules are the same. In order to accelerate the training process, experiments are done in 

different hardware simultaneously. Also, convolutional neural network architecture 

parameters are used directly from reference articles because trained environments are the 

same. Therefore, there is no need for a change in the input of the network. 

 

Learning rates of the networks are selected according to preparation experiments. In 

Figure 13, the effect of the learning rate after 2000 episodes can be seen. There is a 

profound change in the performance of the model between 2E-2 and 1E-3 rates. With a 

large learning rate, there is no improvement in the neural network. When it is smaller than 

1E-3, there are small changes in performance, so the 2E-4 value is selected for the learning 

rate to make time-efficient and performance-efficient training. With the increase in the 

learning rate, the success rate decreases because training speed decreases. Hence, with the 

same number of samples, a larger learning rate shows weaker performance. On the other 
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hand, with the decrease in the learning rate, the network avoids the optimal point of 

networks’ weight. 

 

 

Figure 13: Learning rate experiments for Box-World with RN. 

The same learning rate with Box-World is not the best learning rate for the RGW 

environment. From Figure 14, it can be seen less learning rate than the BW’s gives better 

results in terms of the total reward getting from 3000 episodes RGW. RGW’s success of 

measure is not boolean because there is a solution more than one. Hence, the success of 

the agent models is determined based on the total reward. The main reason for the 

difference in the larger RGW learning rate than BW is the difference in reward function 

rather than environmental dynamics. Also, Figure 14 shows that the agent’s performance 

does not improve much with the decrease in the learning rate. However, higher learning 

rates have insufficient performance relative to the optimum rate. 
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Figure 14: Learning rate experiments for RGW with RN. 

Besides the learning rate, there may be dramatic changes in the network’s weights during 

the training. In order to prevent this situation, gradients of the weights can be clipped with 

a specific value. Table 3 shows the performances of the model for different gradient values 

after 2000 episodes. From the table, it is easy to say that choosing 400 as a clip value is 

appropriate. However, there is no significant change in performance depending on the 

gradient clip. This is because the gradients are small enough to stay below the clip value 

most of the time. 

 
Table 3: Gradient Clip-Performance Relation. 

Gradient Clip 40 400 4000 

Success  25.8% 26.3% 23.7% 

 

As expected, the change on gradient clip is not effective on the model’s performance and 

the learning rate. However, the number of heads parameter of the MHDPA network and 

the number of relation parameters of PrediNet models are essential as learning rates 

because the model’s performance, computational efficiency, and post-process quality 

depend on these parameters. Figure 15 shows the success ratios for a different number of 

heads for the MHDPA network. It is easily seen that there is no dramatic change 

depending on the number of heads. However, the elapsed time of four training processes 
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is distinguishable because tunable parameters grow almost proportional to head numbers. 

Hence, choosing heads number small enough to have efficient elapsed time but large 

enough to generate more information about relations of objects is favorable. 

 

Figure 15: Number of head versus Success Ratios of MHDPA. 

Experience replay is provided by a buffer that stores N number of observations, and then 

the stored observations are used to calculate the gradient of the network. Large buffer sizes 

increase the variation on sampled data, so the network trains healthier data. However, 

increasing the buffer size required more GPU memory. Therefore, the buffer size is used 

at the maximum value (40 observations) that the GPU memory can handle where the 

training is done. 

 

Another critical parameter is the relation numbers in the PrediNet architecture. This value 

determines the number of relational representations of the network. For example, one of 

them may represent the color relations or may represent relative positional information. 

These relations may not be physical properties that are understandable by humans. In order 

to choose the number of relation values, a grid search is applied for five values. Results 

for each value can be seen in Figure 16. Success ratio increases with a decrease in the 

number of relations since the number of parameters in the network architecture decreases. 

Therefore, the network is trained faster for this specific configuration of the Box-World. 
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However, there is a nonlinear behavior at the value 32, and it has the best performance 

than other values. The possible reason for this situation is that the Box-World 

configuration for these experiments is more suitable to represent that specific value. 

 

Figure 16: Dimension of relational representation versus success ratio of PrediNet. 

On the other hand, the elapsed time of the training does not change much with an 

increasing number of relations. Hence, choosing a large relation dimension is more 

favorable because a larger representation space provides more information about the 

environment. However, the relation number to be used in the PredinNet module is chosen 

as 4, which is the value that provides the second-best performance, not to complicate the 

post-process operations. Creating a high number of relations for each pair of objects will 

increase the number of explicit relational values obtained and make it challenging to 

compare objects in post operations. The final parameter sets for the networks can be seen 

in Table 4. 
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Table 4: Network parameters. 

 

 

Image Processing Section 

1st Convolutional Network (w/ ReLU activation) 

Output Channel Size 12 

Kernel Size 2 

Stride 1 

2nd Convolutional Network (w/ ReLU activation) 

Output Channel Size 24 

Kernel Size 2 

Stride 1 

Relational Module Section 

Option-1 (Multi-Head Dot-Product Attention Network) 

Number of heads 4 

Query size 64 (for BW), 32 (for RGW) 

Key size 64 (for BW), 32 (for RGW) 

Value size 64 

Stride (pooling) 1x1 

Output size 26 

Option-2 (PrediNet) 

Number of heads 4 

Query size 64 (for BW), 32 (for RGW) 

Key size 64 (for BW), 32 (for RGW) 

Number of relations 8 

Output size 26 

Actor-Critic Section 

1st Fully Connected Layer  26 → 256 (w/ ReLU activation) 

2nd Fully Connected Layer  256 → 128 (w/ ReLU activation) 

3rd Fully Connected Layer  128 → 64 (w/ ReLU activation) 

4th Fully Connected Layer (policy) 64 → 4 (w/ Softmax operation) 

4th Fully Connected Layer (value) 64 → 1  

Learning Parameters (for 12 actors) 

Optimizer RMSprop without momentum 

Optimizer epsilon 0.1 

Optimizer decay 0.99 

Gradient clip 400 

Learning rate 2e-4 (for BW), 2e-3 (for RGW) 

Buffer 40 

Entropy scale 0.01 (for BW), 0.02 (for RGW) 
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5.2. Relational-Grid-World Experiments 

5.2.1 RGW Configuration-1 

Figure 17 shows the total rewards of the agents with MHDPA and PrediNet modules after 

the 60.000 episodes of training in the RGW Configuration-1. There is no significant 

performance difference between the two modules. PrediNet algorithm gives closer but 

less performance than the RN with MHDPA module since the PrediNet is not optimized 

for decision-making. It provides more processable information about the objects’ relations 

while making reasonable decisions in the environment. The total reward returned from the 

environments is positive for both modules because Configuration-1 has no penalty objects.  

 

Figure 17: Total Rewards of the modules in RGW Configuration-1. 

5.2.2 RGW Configuration-2 

The difference between the second experiment on the RGW environment and the first one 

is mountain and pit objects. These objects give the agent a negative reward (penalty), so 

when we look at Figure 18, both modules’ total reward is negative. Also, their final overall 

penalties are close. Hence, it can be said that there is not much difference between these 

two modules in the RGW Configuration-1 environment. Moreover, PrediNet provides 

extra information about the relations between the objects. 
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Figure 18: Total penalty of the modules in RGW Configuration-2. 

Relational Network extracts interpretable information about its decision mechanism due 

to the nature of the MHDPA module. There is an object’s attention matrix at the core of 

the module. The attention matrix for the agent objects at the first step in an episode can be 

seen in Figure 19 where: 

 

 Object 1: Agent 

 Object 2: Sword Object 

 Object 3: Teleportation Object 

 Object 4: Enemy 

 

Figure 9 shows that the optimal path of the configuration for the agent is direct paths on 

objects at the following sequence: (2) Sword -> (3) Teleport -> (4) Enemy. 

 

After the training process, the agent’s attention matrix points to the enemy object, not the 

terminal state, because the enemy object is neighbor with the terminal state. Therefore, 

attention on terminal or enemy objects can be considered the same. It can be seen in Figure 

19 that in addition to the enemy, the agent’s attention is on the terminal, sword, and 

teleport objects, respectively. It is known that the agent is most interested in the enemy 

object (Figure 19). It can be seen which object is most interested in the enemy object 

through Figure 20. A teleportation object is an object that shows the most attention to the 

enemy object. This situation is consistent with the optimal path of the configuration 

because the agent should visit the teleported state to go to the enemy object and the 

terminal state. 
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Figure 19: The agent’s attention heat map in RGW Configuration-2. 

Also, it can be seen that the second-most attention on the enemy comes from the sword 

objects, and this is what is expected in terms of the object sequence of the optimal path. 

There are no objects that have a strong relationship except swords and enemy objects. 

However, there is no direct evidence of this relationship from the attention heat maps of 

these two objects. The reason for this phenomenon comes from the bias of the statistical 

learning method. It determines the associations between the objects in the environment. If 

the agent had conducted controlled experiments, the direct link between the enemy and 

the sword object would have been noticed. This shows that the decision-making 

algorithm’s symbolic methods are still weak compared to statistical methods. However, it 

is still more interpretable than other RL algorithms in terms of relational information. 
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Figure 20: Attentions on the enemy object in RGW Configuration-2. 

From the heat map of the attentions on the teleportation object (Figure 21), the most 

attending object to the teleportation is the sword object. This is also consistent with the 

optimal path sequence. Moreover, there is no strong attention on teleportation objects 

except the sword. 
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Figure 21: Attentions on the teleportation object in RGW Configuration-2. 

Finally, Figure 22 shows that the attention matrix on the sword object. It can be seen that 

the most interest comes from the agent and adjacent grid regions of the agent. With this 

final step, the optimal path sequence of RGW Configuration-2 is reached in terms of high-

level objects of the environment.  

 

After training the RGW environment with Relational Network, the attention matrix gives 

the high-level interpretability of the dynamics of the objects. These results show that the 

RGW environment is suitable for relational information extraction experiments. 

Moreover, the PrediNet module shows comparable performance to the MHDPA module 

with the same hyperparameters. Also, according to the relational deep reinforcement 

learning study (Zambaldi et al., 2019), it extracts scalar relational values in different 

relational representation dimensions. Based on these experiments, it has been shown that 

the RGW environment is a suitable environment for such relational experiments, and the 

PrediNet algorithm can obtain extra information from the environment by providing a 

performance close to the equivalents. 
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Figure 22: Attentions on the sword object in RGW Configuration-2. 

5.3. Box-World Experiments 

Three experiments are done in the Box-World environment. Each experiment is done in 

different configurations of the Box-World environment, which are mentioned in 4.2. The 

performance parameters of the MHDPA and PrediNet modules are determined from the 

mean and standard deviation of the last 1000 episodes. If the agent reaches the gem object, 

the episode counts as successful. Otherwise, episode counts are not successful. This way, 

it showed that the agent’s success possibility randomly generated environments for each 

configuration. 

5.3.1 BW Configuration-1 

Configuration-1 consists of one pair of key-lock, and its solution length is one step. This 

configuration is chosen to present reference performance values. From Table 5, the 

performance of both models is almost above 30%. This means the agents of both learning 

algorithms show significant success in this environment. The chance that the agent 

accidentally finds the right solution is 2.3%. The PrediNet module’s performance is ~7 

points less than the MHDPA. The main reason for this, the PrediNet algorithm has not got 

a specialized architecture for this task, but it generates additional information rather than 

the MHDPA module. Unlike MHDPA, PrediNet can generate relational scalar values of 

the objects in different representational dimensions. Moreover, the standard deviation of 
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the PrediNet is approximately half of the MHDPA’s. This means PrediNet makes less 

accurate but more precise actions than the MHDPA. 

 

The success rate of the MHDPA in relational networks is higher than 36.5% in the 

reference study because of the difference in training framework (A2C), the parallel agent 

number, and the length of the training time. However, these variables do not affect the 

final result of the network because they only accelerate training and increase the training 

sample variant. The core algorithms are the same as the reference work. 

 
Table 5: Performance of the modules in Box-World Configuration-1 (mean and standard deviation). 

Module MHDPA PrediNet 

Success [%] 36.5 ± 1.3 29.3 ± 0.7 

 

5.3.2 BW Configuration-2 

The second BW configuration contains two locks with one key. One lock directs agents 

to the distractor path, which has a dead end, and the other directs the agent to the gem box. 

Therefore, the success ratios of the modules are less than Configuration-1, as expected. 

From Table 6, it can be seen that the successes of the modules decrease ~14 points for 

MHDPA and ~7 points for the PrediNet. Unlike Configuration-1, both modules’ 

performances are close to each other. This means PrediNet architecture can replace the 

MHDPA algorithm while also providing extra information about the environmental 

dynamics. Moreover, as before, PrediNet architecture shows more precise performance 

than the MHDPA module. 

Table 6: Performance of the modules in Box-World Configuration-2 (mean and standard deviation). 

Module MHDPA PrediNet 

Success [%] 22.8 ± 0.8 22.5 ± 0.5 

 

5.3.3 BW Configuration-3 

There are two pairs of key-lock objects in the third configuration of the BW environment. 

The complexity of the solution path is one level higher than Configuration-1, so it is 

appropriate to compare it with Configuration-1. From Table 7, it can be seen that 

performances of both modules decrease with increasing solution length. The performance 

decrease for the MHDPA is almost one-fourth, and for the PrediNet is almost one-third. 

This decline is completely coming from the increase in the solution length. Unlike the 

other configuration experiments, the PrediNet module shows three points better 

performance than the MHDPA module. Also, PrediNet is not more precise than MHDPA 
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in these results. There may be an inverse relationship between the accuracy and precision 

of the modules. 

 
Table 7: Performance of the modules in Box-World Configuration-3 (mean and standard deviation). 

Module MHDPA PrediNet 

Success [%] 8.8 ± 0.3 11.3 ± 0.9 

 

According to the experiments and results summarized above, conducted in three different 

Box-World environments, it is understood that the MHDPA module performs better than 

PrediNet in most cases. Apart from this, it is mentioned in the MHDPA reference work 

(Zambaldi et al., 2019) that it performs better than regular network architecture. However, 

the PrediNet architecture performs closely with MHDPA and provides additional 

information about the environment. Therefore, the PrediNet architecture can be used to 

combine statistical and symbolic AI methods. 

 

It was observed that the results obtained in the Box-World environment using the MHDPA 

module were lower than the reference article. The reference article’s relational network 

can achieve over 80% success in Box-World environments with up to 10 solution lengths 

(the detailed calculation of performance is not included in the reference article. Therefore, 

the possibility of differences in performance measurements with this thesis should be 

considered). The biggest reason for this difference is the use of A2C architecture with 100 

agents. Since A2C architecture uses hardware resources more efficiently than A3C, it can 

provide a more efficient learning base. Apart from this, due to the limitations of hardware 

resources, more than 12 agents were not used during the training in this thesis. The 

increase in the number of agents increases the variance of the samples taken from the 

environment and decreases the bias in the sample. Because of these differences, a lower-

performing agent could be trained compared to the reference study. Realizing training 

processes with higher capacity hardware over cloud systems and A2C architecture in the 

agent algorithm will help overcome this situation. Apart from the factors related to 

hardware and algorithm structures, which are the main factors affecting the elapsed time, 

network parameters can also be considered as minor factors. The preliminary experiments 

determined that the number of heads and relation parameters also affected the elapsed 

time. Although these parameters do not change the network architecture, they cause the 

number of trainable parameters to grow. 

 

Apart from the parameters showing the agent performance, another advantage of the 

PrediNet module over MHDPA is that the learning process progresses faster per unit time, 

not per episode. The most important reason for this is that the PrediNet module has a 

relatively simpler architecture than MHDPA, and the number of trainable parameters is 

less than MHDPA. Because as the number of parameters with trainable increases, the time 

required for the network to provide a stable performance also increases. Moreover, 

theoretically, this increase in training time will vary exponentially according to the 
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number of trainable parameters. Therefore, a low elapsed time feature can be added to the 

advantages of the PrediNet module. Apart from this, by ensuring that the number of 

episodes per unit time is the same as MHDPA, higher performance training can be done 

by increasing the complexity in PrediNet. Limiting the number of steps made by the agent 

to 300 in the environment has enabled the training of both networks to be limited. The 

biggest reason for the variation in elapsed time between the two networks is not the long 

or short duration of each episode but the difference in the time the networks process the 

environment image to generate the required output for the agent. Parallel training of 

agents, an important advantage of the A3C method, ensures that each agent can be trained 

on different processor cores. Worker agents train global networks instead of training their 

networks so that the CPU can be used effectively. 
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CHAPTER 6 

 

6. CONCLUSION 

 

 

As a result of the increase in the amount of data, increase in processing capacities, and the 

improvements of deep learning methods, there are significant developments in decision-

making algorithms. One of the biggest shortcomings of these algorithms is that they are 

often not generic for different data and environments, are inefficient in terms of data, and 

have weak interpretability. On the other hand, classical decision-making algorithms based 

on symbolic operations do not have these problems, but they do not have self-learning 

capability, which is more important than modern methods’ problems. Therefore, using the 

advantages of modern methods and classical methods by fusing them, these problems can 

be solved. In order to achieve this combination, modern neural network architectures must 

be made open to symbolic manipulations. MHDPA and PrediNet architectures lay the 

groundwork for statistical methods to be applied to symbolic operations. In this thesis, 

various experiments were carried out in two different environments using these two 

architectures. One of the environments used is presented for the first time in the reference 

article using the MHDPA module. This is why both the MHDPA model and Box-World 

environment can be used as baselines for PrediNet and RGW environments. 

 

As a result of the experiments, it has been seen that the PrediNet architecture has a lower 

performance than the MHDPA. However, it can play an important role in the bridge to be 

built between symbolic and statistical methods since the training time is shorter than 

MHDPA. It can extract propositional information suitable for symbolic post-processing 

from the environment. According to the reference article, this propositional information 

can be used downstream of the network pipeline to increase performance. The 

hyperparameters used for the two modules are chosen close to each other to provide a 

controlled experimental environment. If these parameters are chosen independently of 

each other, there may be significant differences in the performance of the two modules. 

Depending on these parameters of the architectures, inferences can be made about the 

estimated performance changes in the primary experiments section. Thanks to these tests, 

sensitivity analyzes are made for some parameters of the architectures. Apart from the 

deep neural network models used, it has been observed that the RGW environment, which 

is presented, can also measure the relational reasoning capacities of network architectures 
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and, unlike the Box-World, it contains objects with more diverse features. It has been seen 

that the ability to adjust more systematic complexity in the Box-World environment is an 

advantage over the RGW environment. The image processing operation of RGW and BW 

environments are done in the same way, and it is shown that the architecture used for BW 

in the reference models is also sufficient for RGW. Since the RGW environment is 

visually more complex, using more powerful CNN structures during image processing 

will increase the agent’s performance in the RGW. 

 

The generalizability capabilities of the pipelines created using PrediNet, and MHDPA 

modules are still insufficient to reach artificial general intelligence because the agents are 

still explicitly trained for an environment. For example, when an agent is trained in an 

RGW environment with different visuals and the same mechanics as the RGW 

environment, it is clear that the agent’s performance will be as an untrained agent. 

Although the problem does not change, since all the information learned by the agent is 

directly dependent on the visual characteristics of the environment, changing these visuals 

will cause them not to be able to use the information the agent learns. The agent needs to 

see the environment images only as a variable in the solution sequence and understand 

that the connection between the objects exists independently from the visuals. Apart from 

the generalizability problem, the data inefficiency problem is not solved with PrediNet 

and MHDPA methods. Because at the center of the agent algorithm lies a method trained 

with a statistical method, and large numbers of samples are needed to adjust a large 

number of tunable parameters of this method. In order to solve this problem, it would be 

appropriate to place algorithms based on symbolic operations at the center of agent 

architectures. Even if the PrediNet and MHDPA modules do not entirely solve these two 

problems, their solutions will depend on the development of object relations-based 

methods. In order to reach general intelligence, the most considerable ability brought by 

deep learning methods is the self-learning capability. Using this ability in symbolic 

methods would be an essential step. 

 

Moreover, the relational reasoning measuring abilities of the Box-World and Relational-

Grid-World environments are shown through the results. However, these environments 

allow the agent to be taught about direct or indirect object connections instead of cause 

and effect relationships in the environment. Although this situation is more similar to real 

life, the environment used can give direct cause-effect relationships to the agent, and train 

the agent in this regard will contribute to the theoretical studies. 

 

Future studies plan to ensure that the RGW environment, which can be produced 

procedurally but needs to be controlled manually, can be generated for each episode 

without the need for manual control. In this way, high variance sampling is provided from 

the RGW environments, so the performances of the networks will increase. Moreover, 

RGW object icons can be recreated in order to increase the originality of the environment. 

Also, doing experiments with different networks (non-relational networks) and comparing 

the performances of different networks with baselines will increase the reliability of the 

RGW. In order to do these experiments, there is no need for extra modification on RGW. 

Also, the RGW environment can be used for real-life modeling problems like maze 
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problems. Apart from the environmental considerations, also there is future work for the 

agent algorithms. Scalar relational values, which are the output of the PrediNet module, 

are planned to be used in closed-loop within network optimization. The information 

obtained from the environment through statistical methods will be processed with 

symbolic operations. The relationships between objects will be revealed in more precise 

ways, such as to cause and effect. Revealing such relationships will allow algorithms to 

recognize different situations instead of principles based on presuppositions forgotten by 

people in the environment. 
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