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ABSTRACT 

MULTIVARIATE FORECASTING OF GLOBAL HORIZONTAL 

IRRADIATION USING DEEP LEARNING ALGORITHMS 

Vakitbilir, Nuray 

Master of Science, Sustainable Environment and Energy Systems Program 

Supervisor: Asst. Prof. Dr. Cem Direkoğlu 

February 2021, 104 pages 

Increasing photovoltaic (PV) panel instalments jeopardise the electrical grid 

frequency, especially in island countries, such as Cyprus. For a continuous growth 

in the PV instalments in Northern Cyprus as well as minimal usage of conventional 

energy sources in power generation, it is of utter importance for a grid manager to 

possess information on the energy production of PV panels, hence knowledge on 

received radiation, i.e. Global Horizontal Irradiation (GHI). Therefore, the prediction 

of GHI plays an essential role in the growth of renewable energy in Northern Cyprus. 

This study focuses on forecasting long-term and short-term GHI for Kalkanlı, 

Northern Cyprus. For long-term forecasting, a dataset is obtained from NASA while 

the short-term GHI prediction is carried out with a dataset recorded at METU NCC. 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) 

algorithms are employed for the long-term GHI forecasting. Support Vector 

Regression (SVR) is employed in addition to CNN and LSTM algorithms in the 

short-term GHI estimation. For both datasets, hybrid and stand-alone models are 

constructed, and their performances evaluated extensively. Additionally, seasonal 
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forecasting is carried out for the short-term GHI estimation with a hybrid model of 

CNN, LSTM and SVR. 

 

Keywords: Global Horizontal Irradiation, Deep Learning, Time-Series Forecasting, 

Seasonal Forecasting, Hybrid Forecasting Algorithms 
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ÖZ 

DERİN ÖĞRENME ALGORİTMALARI KULLANARAK KÜRESEL 

YATAY IŞINLAMANIN ÇOK DEĞİŞKENLİ TAHMİNİ  

Vakitbilir, Nuray 

Yüksek Lisans, Sürdürülebilir Çevre ve Enerji Sistemleri 

Tez Yöneticisi: Yrd. Doç. Dr. Cem Direkoğlu 

Şubat 2021, 104 sayfa 

Artan fotovoltaik (PV) panel kurulumları, özellikle Kıbrıs gibi ada ülkelerinde 

elektrik şebekesi frekansını tehlikeye atıyor. Kuzey Kıbrıs'ta PV kurulumlarında 

sürekli bir büyüme ve aynı zamanda güç üretiminde geleneksel enerji kaynaklarının 

minimum kullanımı için, bir şebeke yöneticisinin PV panellerinin enerji üretimi 

hakkında bilgi sahibi olması, dolayısıyla alınan radyasyon, yani Küresel Yatay 

Işınlama (GHI) hakkında bilgi sahibi olması son derece önemlidir. Bu nedenle, GHI 

tahmini Kuzey Kıbrıs'ta yenilenebilir enerjinin büyümesinde önemli bir rol 

oynamaktadır. Bu çalışma, Kuzey Kıbrıs Kalkanlı için uzun vadeli ve kısa vadeli 

GHI tahminine odaklanmaktadır. Uzun vadeli tahminler için NASA'dan bir veri seti 

elde edilirken, kısa vadeli GHI tahmini ODTÜ KKK'da kaydedilen bir veri seti ile 

gerçekleştirilmiştir. Uzun vadeli GHI tahmini için Evrişimli Sinir Ağı (CNN) ve 

Uzun Kısa Süreli Bellek (LSTM) algoritmaları kullanılmıştır. Kısa vadeli GHI 

tahmininde CNN ve LSTM algoritmalarına ek olarak Destek Vektör Regresyonu 

(SVR) kullanılmıştır. Her iki veri kümesi için de hibrit ve bağımsız modeller 

oluşturulmuş ve performansları kapsamlı bir şekilde değerlendirmiştir. Ek olarak, 
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CNN, LSTM ve SVR'nin hibrit modeli ile kısa vadeli GHI tahmini için mevsimsel 

tahmin gerçekleştirilmiştir. 

 

Anahtar Kelimeler: Küresel Yatay Işınlama, Derin Öğrenme, Zaman Serisi Tahmin, 

Mevsimsel Tahmin, Hibrit Tahmin Algoritmaları 
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CHAPTER 1  

1 INTRODUCTION 

1.1 Motivation 

Energy is an import aspect of economic growth [1]. Growth in the economy results 

in improved life quality which, along with increasing population, contributes to the 

rise in energy demand. Until 2019, global energy demand was increasing and 

expected to reach 30% by 2040 [2]. However, in the light of recent events, i.e. global 

pandemic and resulting worldwide lockdown, International Energy Agency (IEA) 

[3] has presented in the latest analysis that the global energy demand has decreased 

by 3.8% compared to 1st quarter of 2019, and will likely to decrease further by 6% 

shall the lockdowns continue in the coming months, and economic recoveries take 

place slowly. In the same analysis, it is reported that the demand for conventional 

energy sources, namely coal (by 8%), oil (by 5%), and natural gas (by 2%), as well 

as nuclear power, has decreased. In contrast, demand for Renewable Energy Sources 

(RES) increased by 1.5% so far.  

As a result of global warming caused by greenhouse gas emissions from 

conventional energy sources, many countries have been focusing on RES to meet the 

increasing energy demand [4]. RES play a crucial role in combating global warming 

by reducing the energy produced from conventional sources [5]. Additionally, RES 

is suggested to be taking part in increasing life quality as well as contributing to the 

development of the economy [5]. More countries are expected to integrate renewable 

energy sources, specifically solar energy, into their energy supply in the coming 

years [4], [6]–[8].  
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Among the renewable energy sources, solar energy is the main focus of interest as 

there is tremendous growth in solar photovoltaic (PV) system installation in many 

countries [4], [7], [9], including Northern Cyprus. PV panels convert sunlight, i.e. 

solar radiation, into electricity [10]. However, the PV output is very intermittent and 

unstable, as it is a weather-dependent energy source [8], [11]. PV cannot produce 

electricity in the absence of sunlight. [8], [11]. However, the production quantity 

varies due to variables such as the variation of the ambient temperature, humidity, 

cloud movements, etc. [8], [10]. As its energy output is unstable, it makes the 

difficult task of balancing demand and supply of electricity in the isolated electrical 

grids, e.g. like in islands, even more challenging [6], [9], [10], [12]–[14].  

Additionally, Voyant et al. [15] stated that a grid manager should know about a PV 

production at least one hour ahead due to delay in starting a power generation system. 

With the knowledge of PV power output, the grid manager would know the amount 

of power to be added to the grid at a particular time [16]. Thus, the production from 

conventional energy sources can be decreased according to the power output of the 

PVs. On another note, the PV power output knowledge is very valuable in the smart 

grids in terms of power scheduling, unit commitment and grid regulation [17]. 

Extensive integration of the solar energy to the existing or future electricity grids 

enhances the need for radiation forecasting as it helps mitigate the intermittency by 

giving information about the future energy production [6]–[9], [12], [18]–[22]. 

Forecasting solar radiation is a crucial and ongoing task on different time-horizons 

for various power system applications, as stated by many researchers [6], [8], [10], 

[13], [14], [22]–[25]. Figure 1.1 illustrates the application points of short-term GHI 

information concerning the prediction horizon. 
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Figure 1.1. Short-term radiation forecasting scale for typical target applications [8] 

In addition to the areas mentioned, knowledge in solar radiation data could be utilised 

in infrastructure and maintenance planning [18], [22], [26], [27], solar energy-related 

policymaking [20], and energy storage options which depend on the knowledge of 

solar energy production [6], [13]. Additionally, apart from utilisation in energy-

related areas, radiation information is needed in various tools to access climate 

impacts on agriculture [28]. 

1.2 Objectives 

This study aims to address the gap in the literature in terms of having an adequate 

GHI estimation model for Kalkanlı and surrounding regions for the safe and 

sustainable integration of solar energy to the electrical grid in Northern Cyprus. The 

effects of seasonality are also investigated. To achieve this objective, firstly, the 

datasets, which are NASA and Middle East Technical University Northern Cyprus 

Campus (METU NCC), are analysed and preprocessed so that the forecasting 

algorithms can easily interpret the feature of the data. Next, prediction algorithms 

are constructed using Convolutional Neural Networks (CNN), Long Short-Term 

Memory (LSTM) and Support Vector Regression (SVR). Five algorithms are 

designed for the NASA dataset; four stand-alone algorithms: LSTM and CNN with 

two different datasets, and one hybrid algorithm of CNN and LSTM.  
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For the METU NCC dataset, two forecasting methods, i.e. annual and seasonal 

forecasting, are adopted. In annual forecasting, all samples in the dataset regardless 

of seasons are used to estimate GHI. Stand-alone algorithms of CNN, LSTM and 

SVR, and hybrid algorithms of CNN and LSTM, i.e. C-LSTM and CN-M, and SVR, 

i.e. CM-SVR, are constructed in annual forecasting. In seasonal forecasting, 

however, the dataset is separated into four sub-datasets depending on the months of 

the seasons, i.e. summer, fall, winter and spring. For each season, a hybrid algorithm 

of  CNN, LSTM and SVR, i.e. CM-SVR, is constructed and trained with samples of 

the corresponding season separately. After training and finalising all models, the 

performances of each model are evaluated by employing commonly used evaluation 

metrics. 

1.3 Overview of the Thesis 

The thesis is made of five chapters. The background information and summaries of 

the related work on solar radiation are provided in Chapter 2. In Chapter 3, the study 

area and dataset descriptions are presented as well as detailed explanations for the 

prediction networks modelled for the study. Chapter 4 provides the results of the 

modelled forecasting networks, comparison, and discussion. Finally, conclusions 

and recommendations are presented in Chapter 5. 

1.4 Publication Related to this Study 

Vakitbilir N., Hilal A., Direkoğlu C. (2021) Prediction of Daily Solar Irradiation 

Using CNN and LSTM Networks. 14th International Conference on Theory and 

Application of Fuzzy Systems and Soft Computing – ICAFS-2020. ICAFS 2020. 

Advances in Intelligent Systems and Computing, vol 1306. Springer, Cham. 

https://doi.org/10.1007/978-3-030-64058-3_28 [29] 

https://doi.org/10.1007/978-3-030-64058-3_28
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CHAPTER 2  

2 BASIC CONCEPTS AND REVIEW OF RELATED WORK 

In this section, initially, basic concepts related to radiation and radiation forecasting 

are briefly explained. Radiation prediction related research are then provided in the 

following section. 

2.1 Basic Concepts 

2.1.1 Radiation 

Solar radiation that reaches the PV panel is classified into four categories. Direct 

Normal Irradiance (DNI) is the radiation type that reaches the surface without 

disruption, while Diffuse Horizontal Irradiance (DHI) is scattered by the atmosphere, 

e.g. by the clouds. The other type, Ground Reflected Irradiance (GRI), is reflected 

from the ground as the name suggests. The last type is the Global Horizontal 

Irradiance (GHI), which is the amount of radiation reaching a horizontal surface. 

Figure 2.1 illustrates the solar radiation incidents on a tilted surface.  

DNI is a useful component for concentrating solar technologies. On the other hand, 

for PV panels, GHI is the relevant radiation type to be predicted. If GHI cannot be 

measured directly, it could be computed by (2.1) [30]. 

GHI = DHI + DNI ∙ cos⁡(θ) (2.1) 

where θ refers to the angle between the beam radiation and the vertical line, i.e. solar 

zenith angle. 
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Figure 2.1. Types of solar radiation incidents on a tilted surface [31] 

The amount of solar radiation reaching the ground changes drastically depending on 

the place on the Earth since the incoming radiation angle affects the climate of a 

location at different latitudes. In Figure 2.2, the spatial distribution of long-term 

averaged GHI values around the world are illustrated. As mentioned previously, PV 

production is strongly affected by local atmospheric conditions of a region [10], 

[19]–[21] since GHI is affected by weather variations, which also results in non-

linear characteristics of GHI [32]. Therefore, solar radiation forecasting model 

should be developed for a specific region using the corresponding region’s climatic 

variables [21]. 
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Figure 2.2. Spatial distribution of averaged GHI around the world [33] 

2.1.2 Forecasting Algorithms 

For the GHI forecasting, there are several approaches used in the literature. These 

approaches include the physical models, empirical models, statistical models, 

Numerical Weather Prediction (NWP) models, image-based models, and machine 

learning (ML) algorithms. Physical models, such as relative sunshine-based 

broadband model, the physical-based model for the tropical environment and the 

efficient physical-based model to name a few, correlate sky and atmospheric 

conditions to radiation through mathematical formulations [34].  

Similar to physical models, empirical models also employ mathematical 

formulations, in which various meteorological parameters are used. Empirical 

methods are categorised mainly as sunshine-based, cloud-based, temperature-based, 

and other meteorological parameter-based models [35]. On the other hand, statistical 

models use statistics based on historical data, i.e. time-series data, to predict future 

values. Autoregressive model, persistence, and k-nearest neighbour interpolator are 

the common statistical models [36].  
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NWP models employ mathematical models utilising explanatory variables, e.g. 

cloud motion and direction, as input data [6], [32]. Image-based models use satellite 

images for prediction. They are proven to be very effective models for radiation 

forecasting; however, image availability, along with real-time image processing, 

among others, cause this model to be unpractical [32]. 

ML algorithms which are classified as artificial intelligence models solve problems 

that the explicit algorithms cannot represent [6]. Linear algorithms simply try to fit 

a line over a set of data points, as shown in Figure 2.3, by computing one weight for 

each input variable. Support Vector Regression (SVR), Linear Regression, Decision 

Tree, XGBoost, etc., are commonly used linear learning algorithms. 

 

Figure 2.3. A linear ML algorithm example; linear regression fitting a line over a set 

of data points where y represents actual values, while X represents predicted values  

Artificial Neural Network (ANN) algorithms, on the other hand, are non-linear self-

adaptive ML techniques for processing the information just the way a brain does 
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[37]. They are composed of interconnected elements, commonly known as neurons, 

nodes or units [38]. The neurons placed in two or more layers interact through 

weighted connections, as shown in Figure 2.4. ANN learns from experience, i.e. past 

data, and develop a relationship between a set of input and output parameters even 

when the underlying relations are complex and non-linear [6], [21], [37]. Since the 

forecasting is the prediction of the future by understanding the past, ANN algorithms 

become a great applicant for the task [37]. When it comes to GHI estimation, many 

researchers [26], [39], [40] proved that ML algorithms outperform NWP models, as 

a result of non-linear and complex characteristics of GHI.  

ANN’s could be formed in two different ways. One way is a Feed-Forward Neural 

Network (FFNN), with two components: input and output vector. The information 

obtained from an input vector is used to calculate an output vector where the weights 

are decided explicitly [41], [42]. A simple FFNN is illustrated in Figure 2.4. 

Convolutional Neural Network (CNN), Single-Layer Perceptron (SLP), Multilayer 

Perceptron (MLP), Extreme Learning Machine, and Radial Basis Function (RBF) 

are some of the FFNN algorithms. The other way to form an ANN is Recurrent 

Neural Network (RNN), which contains loops where output is fed back to its input 

[43]. Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) are the 

most effective RNN models. 
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Figure 2.4. Structure of a simple ANN showing the flow direction of information 

and errors though feed-forward and back-propagation, respectively 

ANN algorithms are made of 3 layers called the input layer, hidden layer and output 

layer, which can be seen in Figure 2.4. If the hidden layer consists of more than one 

layer, the ANN algorithm is called Deep Learning (DL) algorithm. The multiple 

layers in the algorithm improve the overall performance of the neural network 

enabling it to learn sophisticated relations and correlations that are way ahead of the 

traditional ML algorithms [22], [44]. In DL algorithms, weights are adjusted through 

gradient vector, which represents, for each weight, the increase or decrease in error 

if the weights were increased with a small amount [45].CNN, RNN, LSTM, Diagonal 

Recurrent Wavelet Neural Network (DRWNN), Wavelet Neural Network (WNN) 

are some of the DL algorithms. 
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In ML, the learning process can proceed through two different approaches: 

supervised and unsupervised learning. In supervised learning, the output value is 

introduced to the algorithm along with input data; hence the algorithm tries to 

minimise the error accordingly. In unsupervised learning, on the other hand, the ML 

algorithm is fed only by a group of patterns, and the algorithm itself tries to settle 

down to a steady-state after several iterations [42]. 

In supervised learning, depending on the output, the ML algorithm could be either 

classification or regression. In classification, the outcome is a categorical, i.e. 

discrete, value while in regression, the output is numerical, i.e. continuous, value. 

This study uses regression in forecasting algorithms. 

2.1.3 Model Input Variables 

The GHI forecasting analysis can be carried out in two different methods, i.e. annual 

forecasting and seasonal forecasting. In annual forecasting, all data points in a dataset 

are used to train and test the forecasting algorithm. On the other hand, in the seasonal 

forecasting, designed algorithms are trained and tested with separate sub-datasets 

that are created depending on the months of the season. Recent studies mostly 

conducted in the Mediterranean region have been utilising seasonal forecasting 

method.  

Additionally, two different datasets can be used in GHI prediction. The first dataset 

is called time-series or historical data, which is a sequence of observations ordered 

through equally spaced time intervals. Time-series data is commonly used in the 

literature for short-term GHI prediction [26]. The second dataset includes 

meteorological variables, i.e. features. These variables include but not limited to 

sunshine duration, ambient temperature, relative humidity, wind speed, wind 

direction, pressure, date, time and so on [21]. Seldom, geographical variables, i.e. 

longitude, altitude and elevation, are used along with meteorological features in GHI 

forecasting.  



 

 

 

12 

Forecasting models can be based on time-series dataset or meteorological and 

geographical dataset. They can also be based on a hybrid dataset which considers 

both radiation and meteorological dataset as input features [6]. Aggarwal and Saini 

[46] refer to time-series forecasting, which uses past data of GHI values as input 

data, as endogenous forecasting and the hybrid forecasting as exogenous forecasting, 

which is also called multivariate forecasting. In this study, datasets are represented 

as endogenous or exogenous. 

Although the endogenous dataset is commonly used in the literature, Ferrari et al. 

[36] suggest utilising meteorological data to improve the learning model as an 

outcome of their research. 

2.1.4 Model Evaluation Metrics 

Various most common score matrices in regression model evaluation are adapted in 

this study to evaluate the performance of the prediction models. These evaluation 

models are Mean Absolute Error (MAE) in Wm-2, Mean Absolute Percentage Error 

(MAPE) in %, Root Mean Square Error (RMSE) in Wm-2, normalised RMSE (n-

RMSE) and Coefficient of Determination (R2), the mathematical formulation of 

whom are illustrated in Equation (2.2) to (2.6), respectively [4]. 

MAE =
1

N
∑ |GHIr,i − GHIp,i|

N

i=1
 (2.2) 

MAPE =
1

N
∑ |

GHIr,i − GHIp,i

GHIr,i
|⁡

N

i=1
 (2.3) 

RMSE = √
1

N
∑ (GHIr,i − GHIp,i)2

N

i=1
 (2.4) 

nRMSE =
1

GHIr,i
√
1

N
∑ (GHIr,i − GHIp,i)2

N

i=1
 (2.5) 
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R2 =
∑ (GHIp,i − GHIm,i)

2N
i=1

∑ (GHIr,i − GHIm,i)2
N
i=1

 (2.6) 

where GHIr, GHIp and GHIm are the ith measured (real), predicted and mean GHI 

values, respectively, while N is the number of data points.  

In forecasting problems where only small errors are accepted, RMSE is employed 

instead of its predecessor [8]. nRMSE is frequently calculated instead of RMSE for 

a meaningful comparison. Mohammadi et al. [47] defined ranges for nRMSE in order 

to measure a model’s performance. The ranges are tabulated in Table 2.1. 

Table 2.1. Model performance classified according to nRMSE value 

nRMSE Model Precision 

< 0.10 Excellent 

0.10 − 0.20 Good 

0.20 − 0.30 Fair 

> 0.30 Poor 

 

RMSE and MAE being close to each other as value means that the forecast model 

has only small deviations from the real data [48]. Additionally, R2 measures how 

well the predictions fit the data. In other words, it illustrates the difference between 

the predicted values and the variance of the errors [49]. The value of R2 varies 

between zero to one where zero means that the regression forecasting poorly fit the 

data while one means perfect fit. Finally, Yadav & Chandel [21] has classified 

MAPE results of radiation forecasting in terms of forecasting accuracy, which is 

tabulated in Table 2.2. Although it is commonly used, MAPE has many 

disadvantages argued by several researchers [50]–[52]. Resulting in biased and 

underestimated results, and its inability to deal with zero predictions are the most 

prominent disadvantages of MAPE. Therefore, in this study, we do not consider 

MAPE in our model evaluation methods.  
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Table 2.2. Classification of prediction accuracy with corresponding MAPE value 

% MAPE Prediction Accuracy 

≤ 10% High 

10% − 20% Good 

21% − 49% Reasonable 

≥ 50% Inaccurate 

 

In addition to error metrics, the absolute difference between prediction and forecast 

value, i.e. Absolute Prediction Error (APE) is evaluated through histograms. APE is 

calculated through Equation (2.7). 

APE = |GHIr,i − GHIp,i| (2.7) 

The input data is usually divided into three sets, that are called training, validation 

and testing sets. The training set is used to fit the model, and the validation set is 

used for hyperparameter tuning while the testing set is used to evaluate the final 

model [53]. Both training and testing sets are evaluated with an error metric. The 

resulting difference between the two error values gives an idea of the model’s overall 

performance.  

Lower training error compared to testing errors suggests overtrained, i.e. overfitted, 

model. Overtraining is the result of high variance in which the model learns outliers, 

i.e. noise. A overfitted model fails to generalise its output to fit unseen data [6]. On 

the other hand, when the model cannot recognise the underlying patterns in the 

dataset, the model said to be underfitted. Underfitting causes the model to lose its 

ability to determine the relationship between the actual and predicted output, which 

is also known as high bias. 

 A visual representation of the decrease in error value over the training and testing 

sets as the complexity of the model increases, which is also known as bias-variance 

trade-off, is illustrated in Figure 2.5. 
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Figure 2.5. Bias-variance trade-off graph [6] 

2.2 Review of Related Work 

There is a vast extent of radiation forecasting studies in the literature, as mentioned 

earlier. For instance, some focuses on forecasting GHI, while others focus on DNI 

prediction. Furthermore, the methods used for radiation forecasting also differ 

significantly, e.g. numerical correlations, image classification, DL algorithms, etc. 

Literature review of this study focuses exclusively on ML employing studies. 

Selected studies are grouped depending on the region studied in the following 

sections. 

2.2.1 GHI Estimation Around the World 

In this section, the research concerning the radiation forecasting for the various parts 

of the world is presented in the following paragraphs. 
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Ghimire et al. [4] developed a combined model of CNN and LSTM, i.e. CLSTM, for 

prediction of half-hourly GHI for Alice Springs, Australia. They compared the novel 

model to stand-alone models that are CNN, LSTM, RNN and DNN. It is found that 

using hourly endogenous data of GHI give MAPE of 4.84% for CLSTM, which 

outperforms the rest of the models. 

Alzahrani et al. [8] applied an LSTM model to forecast short-term GHI for a solar 

farm in Canada. The model uses GHI values of four climatic conditions: a few 

clouds, scattered clouds, overcast, and clear sky. The developed model was then 

compared to SVR and FFNN models. Results show that LSTM performs better than 

the other two models with nRMSE of 0.086. 

Qing and Niu [13] built an LSTM model to predict hourly day-ahead GHI for 

Santiago, Cape Verde. They compared the LSTM model with persistence, LR, and 

Back-Propagated Neural Network (BPNN) models. The models take hourly 

temperature, dew point, humidity, visibility, wind speed, and meteorological type as 

input parameters, whereas GHI as the output parameter. It is found that the LSTM 

model performs better than the rest of the models with RMSE of 76.24 W m-2. 

Fan et al. [18] used SVR and XGBoost models to estimate daily GHI as a function 

of temperature and precipitation data for three different stations in China. Later, they 

compared the performance of these two models with four commonly used empirical 

models. It is found that SVR performs better than the rest of the models with an 

average value of 3.14 MJ m-2 day-1. 

Cao and Lin [54] elaborated DRWNN model to forecast hourly and daily GHI for 

Shanghai and Macau, China using GHI time-series data. They compared their result 

with sunshine based empirical models, i.e. Collares-Pereiraand Rabl, Ångström –

Prescotta, and BPNN algorithm. RMSE is found to be 0.96 MJ m-2 day-1 and 0.048 

MJ m-2 h-1 for daily and hourly GHI prediction, respectively. The results indicate that 

the DRWNN model performs better than the reference models. 
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Khosravi et al. [55] carried out a comparative study of three-layer Feed-Forward 

Neural Network (MLFNN), Radial Basis Function Neural Network (RBFNN), SVR, 

Fuzzy Inference System (FIS) and neuro-FIS (ANFIS) models to estimate GHI using 

seven years data for Abu Musa Island, Iran. They have applied two different datasets 

to each model. The first group uses the data of pressure, temperature, wind speed, 

relative humidity and local time, and the second one uses endogenous data of GHI. 

Results show that the models with meteorological input achieve relatively lower 

RMSE, and the lowest RMSE is obtained for SVR with 1.05 Wh m-2. 

Zang et al. [56] proposed CNN-LSTM hybrid model for forecasting short-term GHI 

for 34 stations in Texas, USA. In this proposed model, the two dimensional-CNN 

(2D-CNN) algorithm is fed with meteorological data while the LSTM algorithm 

receives GHI time series data as input. Outputs of these two algorithms are then 

combined in a fully connected layer before the final output. The hybrid model’s 

performance is compared to hybrid 2D-CNN-ANN, hybrid ANN-LSTM, and stand-

alone ANN, 2D-CNN, LSTM, and SVR. The resulting MAE and RMSE show that 

in almost all stations. The 2D-CNN-LSTM hybrid model achieves the lowest error 

values between 37.20 to 52 W/m2 and 69.26 to 86.33 W/m2, respectively. The 

authors also studied the effects of seasonal prediction. In seasonal forecasting, hybrid 

models perform better than the stand-alone models where 2D-CNN-LSTM (2CL) 

hybrid model achieving the lowest errors in most of the seasons and stations. The 

studies presented in this section are listed in Table 2.3 for easier observation and 

comparison.   
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Table 2.3. Summary of the research related to the GHI forecasting for various part 

of the world 

Reference Dataset Models Best Result Country 

Ghimire 

et al. [4] 

Endogenous 

data 

CLSTM 

CNN 

LSTM 

RNN 

DNN 

MAPECLSTM = 

4.84% 

Alice 

Springs, 

Australia 

Alzahrani 

et al. [8] 

Endogenous 

data 

LSTM 

SVR 

FFNN 

nRMSELSTM =0.086 Canada 

Qing and 

Niu [13] 

Meteorological 

data 

LSTM 

LR 

BPNN 

RMSELSTM = 76.24 

W m-2 

Santiago, 

Cape Verde, 

USA 

Fan et al. 

[18] 

Meteorological 

data 

SVR 

XGBoost 

RMSESVR =  3.14 

MJ m-2 day-1 
China 

Cao and 

Lin [54] 

Endogenous 

data 
DRWNN 

RMSEhourly =  0.048 

MJ m-2 h-1 

RMSEdaily = 0.96 

MJ m-2 day-1 

Shanghai 

and Macau, 

China 

Khosravi 

et al. [55] 
Exogenous data 

MLFNN, 

RBFNN, SVR, 

FIS, ANFIS 

RMSESVR =  1.05 

Wh m-2 

Abu Musa 

Island, Iran 

Zang et 

al. [56] 

Meteorological 

data, 

Endogenous 

data 

2CL,  ANN-

LSTM, ANN, 

2D-CNN, 

LSTM, SVR 

MAE2CL = 37.20 – 

52 W m-2 RMSE2CL 

= 69.26 – 86.33 W 

m-2 

Texas, USA 
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2.2.2 GHI Forecasting for Mediterranean Region 

Cyprus is located in the Mediterranean region. Therefore, analysing the GHI 

prediction research for this area is essential to have a better understanding of the 

effects of the climate and incoming radiation angle on radiation forecasting. In this 

section, selected studies for the Mediterranean region are demonstrated in the 

following paragraphs. 

Guariso et al. [14] estimated hourly-GHI using FFNN and LSTM. The prediction 

models utilise time-series data of GHI for Milan, Italy. They compared their models 

to persistence and clear-sky models. The MAE and RMSE of FFNN and LSTM 

models are found to be in similar ranges with average values of 41.46 and 82.83 W 

m-2, respectively, which are relatively lower than achieved by the persistence and 

clear-sky models.  

Voyant et al. [15] compared three different models on hourly GHI prediction for five 

locations in south-east France. The models are based on ANN and Autoregressive 

Component Moving Average (ARMA) algorithms. They also introduced seasonality 

into their forecasting models. For annual prediction in each location, the hybrid 

model of ANN and ARMA give better results than the stand-alone ANN and ARMA, 

with nRMSE ranging between 0.13 to 0.17. In seasonal estimation, the hybrid model 

performs the best in most of the locations and seasons. The lowest nRMSEs are 

achieved in summer season in all stations, while the highest nRMSEs are observed 

in the winter season.  

Sozen et al. [25] applied ANN to estimate monthly GHI for Turkey using three years 

of longitude, latitude, altitude, month, mean sunshine duration, and mean 

temperature values of 17 stations all across Turkey. They compared their results to 

the that of in the literature. The results show that ANN-based models perform better 

than the classical regression models. MAPE varies from 2.92% to 6.74%. 

Belaid and Mellit [57] built several SVR models for daily and mean-monthly 

forecasting of GHI for Ghardaïa, Algeria. The input data is an exogenous dataset 
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consisting of max, min, mean temperature values, and daily GHI. The SVR models 

are built using different combinations of input data. It is found that using 

temperature, GHI and sunshine duration as input variables give nRMSE as 0.13, and 

MAPE as 10.40%. 

Mazorra Aguiar et al. [58] modelled annual and seasonal hourly-GHI forecasting for 

two stations in Gran Canaria Island, Spain. They compared the performance of an 

ANN model to persistence model and NWP model. The input data to the algorithms 

consist of GHI, humidity, temperature, and satellite images. Both in annual and 

seasonal forecasting, ANN model outperforms rest of the models. The resulting 

RMSE ranges from 82.90 to 105.30 W m-2. In seasonal prediction, the lowest error 

is observed in the summer while the highest errors are observed in the winter season. 

A comparative summary of the studies mentioned above conducted in the 

Mediterranean region is listed in Table 2.4. 

Table 2.4. Summary of the studies concerning the GHI forecasting for several 

countries in the Mediterranean region 

Reference Dataset Models Best Result Country 

Guariso et 

al. [14] 

Endogenous 

data 

FFNN 

LSTM 

Persistence  

Clear-sky 

RMSEavg(FFNN & 

LSTM) = 82.83 W m-2 

MAEavg(FFNN & LSTM) 

= 41.46 W m-2 

Milan, Italy 

Voyant et al. 

[15]  
Exogenous data 

ANN  

ARMA 

Hybrid 

nRMSEhybrid = 0.13 

– 0.17 

South-east 

France 

Sozen et al. 

[25] 

Endogenous 

dataset 
ANN 

MAPE = 2.92% − 

6.74% 
Turkey 

Belaid and 

Mellit [57] 
Exogenous data SVR 

nRMSE = 0.13 

MAPE = 10.40% 

Ghardaïa, 

Algeria 
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Mazorra 

Aguiar et al. 

[58]  

Exogenous data 

and satellite 

images 

ANN 

Persistence 

NWP 

RMSEANN = 82.90 – 

105.30 W m-2 

Gran Canaria 

Island, Spain 

2.2.3 Prediction of Radiation for Cyprus 

As mentioned previously, due to radiation’s dependency on the local climate, 

radiation forecasting algorithms should be modelled using the region’s climatic 

variables. In this section, the radiation prediction studies for Cyprus are presented. 

Tymvios et al. [59] compared the performance of ANN and Ångström sunshine-

based empirical model in forecasting GHI for Nicosia, the Republic of Cyprus 

(ROC) using hourly GHI and sunshine duration. The results show that ANN 

performs better with R2 of 0.92 and normalised RMSE of 0.063. 

Jacovides et al. [60] investigated several numerical correlations on forecasting 

hourly DNI for Athalassa, ROC. They used numerical models to measure GHI and 

DHI from radiometric data. The lowest nRMSE is obtained as 0.34. 

Tapakis and Charalambides [61] predicted GHI for Limassol, ROC using cloud 

motion detection. The classification accuracy is found as 95%. 

Kasht [62] carried out a sky condition classification and GHI prediction study using 

one-year data of hourly GHI time-series and temperature data for Kalkanlı, Northern 

Cyprus (TRNC). She firstly applied K-means cluster to the daily clearness index 

calculated from GHI values. The resulting cluster information of three sky conditions 

is fed to support vector machine (SVM) to further characterise the sky conditions. 

For GHI estimation, simple regression is applied on hourly GHI and temperature 

data of only clear sky days. The RMSE of GHI forecasting is achieved as 0.14 for 

June. 

The studies mentioned previously for Cyprus are summarised in Table 2.5.  
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Table 2.5. Summary of radiation forecasting studies conducted for Cyprus 

Reference Dataset Models Best Result Country 

Tymvios et 

al. [59] 
Exogenous data 

ANN 

Ångström 

model 

R2
ANN = 0.92  

nRMSEANN = 0.063 
Nicosia, ROC 

Jacovides et 

al. [60] 

Radiometric 

data 

Numerical 

correlations 
nRMSE = 0.34 

Athalassa, 

ROC 

Tapakis and 

Charalambid

es [61] 

Cloud images 

Cloud 

motion 

detection 

Accuracy = 95% 
Limassol, 

ROC 

Kasht [62] Exogenous data 
Simple 

regression 
RMSE = 0.14 

Kalkanlı, 

TRNC 

 

Reviews of various forecasting algorithms for different radiation types are given in 

the references [6], [21], [63]–[66]. 

2.3 Gaps in the Literature 

As a conclusion of the literature review, it is identified that an adequate GHI 

forecasting model is required for Northern Cyprus. The justification for this 

conclusion could be explained in the following paragraphs. 

First of all, as mentioned previously, the received radiation is affected by the local 

climate of a region. Hence, a forecasting algorithm should be modelled for an area 

with data that belongs to that region. 

Secondly, for the Mediterranean region, the seasons have distinguishable 

characteristics. For summer and most of the spring, clear sky condition is observed, 

which results in a smoother transition in the received GHI. Whereas, in the winter 

and most parts of fall, overcast sky condition is observed, in which there are sharp 

fluctuations in received GHI. Thus, seasonality plays an essential role in GHI 
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estimation in the Mediterranean region. Several authors [15], [56], [58], [67] from 

Mediterranean countries applied seasonality to their GHI prediction research in 

recent years, while Cyprus lacks such a study. Hence, seasonality prediction should 

be applied to GHI forecasting for Cyprus. 

Additionally, in Cyprus island, the spatial distribution of GHI differs depending on 

the landform, which is illustrated in Figure 3.1. In other words, the received average 

GHI value for the mountains, i.e. Kyrenia Mountains and Trodos Mountains, is lower 

than than the plains of Mourphou. Hence, GHI estimation on a regional scale 

depending on a predominant landform is a necessity. 

Finally, Sperati et al. [68] concluded in their benchmarking study within the 

European Actions “Weather Intelligence for Renewable Energies” framework that 

more research is needed on short-term energy forecasting using different models, 

locations, and data for a complete overview of all possible scenarios around the 

world representing all possible meteorological conditions.  

Furthermore, CNN and LSTM algorithms recently started attracting attention for 

GHI forecasting. Researchers have been testing performances of these algorithms, 

as single and hybrid. CNN and LSTM algorithms have significant potential in terms 

of GHI prediction. Therefore, CNN and LSTM algorithms are employed in this 

study. Besides, single algorithms, hybrid of the two algorithms are constructed as 

well as a hybrid model combined with SVR, which is also a very well established 

algorithm for GHI prediction. 

Therefore, in this study, it is aimed to obtain short-term and long-term GHI 

forecasting algorithm for Kalkanlı in order to help PV integration to the electrical 

grid for continuous sustainable renewable energy growth in Northern Cyprus. 
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CHAPTER 3  

3 MATERIALS AND METHODOLOGY 

This thesis aims to carry out a GHI forecasting study for Kalkanlı, Northern Cyprus, 

using machine learning algorithms. Information on the study area, data used, and the 

algorithms employed are presented in detail in this chapter in the following sections.  

3.1 Study Area 

This study is a case study for Middle East Technical University Northern Cyprus 

Campus (METU NCC) Kalkanlı, Northern Cyprus, placed in the northern part of 

Cyprus island. Cyprus is an Eastern Mediterranean island located at 35°N and 33°E 

in the Mediterranean Sea. Mediterranean climate dominates over the island, resulting 

in a semi-arid climate with average temperatures of 30℃ and 13℃ in summer and 

winter, respectively. The summers are dry and mostly sunny on the island, while the 

winters are rainy and cloudy.  

Cyprus has excellent potential for receiving solar radiation. Figure 3.1 illustrates the 

spatial distribution of GHI potential over Cyprus. The yearly average GHI potential 

is 5.4 kWh m-2 [69].  

In Northern Cyprus, the majority of the electricity demand has been supplied by 

conventional energy sources. In recent years, the developments and affordability of 

PV panels have resulted in many households to install PV panels over their rooftops. 

There are also two PV-farms in Northern Cyprus that are placed in METU NCC, 

Kalkanlı and Serhatköy. Kalkanlı shown with a red mark has a great photovoltaic 

(PV) power potential. 
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Figure 3.1. The spatial distribution of GHI over Cyprus island [33] 

3.2 Data 

This thesis is carried in two separate parts. Forecasting algorithms are built with data 

taken from the NASA web archive in the first part and with data received from 

METU NCC in the second part. The following sections explain each dataset in 

further detail. 

3.2.1 NASA Dataset 

One of the datasets used in the first part of this study is obtained from NASA as daily 

values, available at [70]. NASA supplies data for various meteorological variables 

and radiation types. However, only relative humidity (RH), pressure (P), average, 
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minimum and maximum temperature (T, Tmin, and Tmax, respectively), wind speed 

(WS), wind direction (WD), radiation (GHI), and corresponding month (M) and date 

(D) information for Kalkanlı at the latitude of 35.26 and longitude of 33.02, Northern 

Cyprus between 1983 and 2019 are extracted for this study. The radiation data is 

originally obtained as kWh m-2 day-1 but converted to W m-2 for consistency with 

the literature. A sample set of features representing the data used in the first part of 

this study is given in Table 3.1. 

Table 3.1. A sample set of NASA data 

M D RH P T Tmax Tmin WD WS GHI 

7 1 50.7 99.38 27.38 31.78 23.3 270.1 5.23 704.17 

7 2 63.13 99.27 24.99 28.44 22.08 270.3 6.96 620.83 

7 3 65.57 99.14 24.92 28.25 21.94 266.38 7.35 606.67 

7 4 64.92 99.13 24.32 27.07 21.63 263.84 7.18 641.67 

7 5 61.97 99.22 25.94 29.18 22.82 270.54 6.11 679.17 

 

The average GHI for the study area is 431 W m-2 over the whole dataset. In Table 

3.2, the minimum and maximum data points of the input variables are listed along 

with their units. The variables' units are given only for convenience and do not affect 

the learning algorithms.  
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Table 3.2. Units and data ranges of input variables for NASA dataset 

Input variables Units Data range 

GHI W m-2 7.50 – 766.67 

T ℃ 4.61 – 33.29 

Tmin ℃ 2.70 – 29.78 

Tmax ℃ 6.35 – 38.72 

Wind speed m/s 0.56 – 13.48 

Wind direction degrees 0.00 – 359.95 

RH % 34.21 – 89.80 

P kPa 97.32 – 101.59 

 

Figure 3.2 demonstrates the temporal distribution of GHI data points over the whole 

NASA dataset in three-dimension. The highest data points of GHI are observed 

during the summer season, while the lowest points are obtained in the winter season. 

 

Figure 3.2. Temporal distribution of GHI throughout the NASA dataset 
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A two-dimensional representation of the change in GHI over the year 2018 is shown 

in Figure 3.3, where the fluctuations in GHI can be observed more clearly. In the 

winter season, observed GHI is relatively lower than that observed in the Summer 

season. On the other hand, the fluctuations in GHI is higher in the fall, winter, and 

spring season while in the summer season, the GHI values are more steady. 

 

Figure 3.3. Change in GHI values over the year 2018 

A box plot illustrating the distribution of GHI values for each month for the whole 

dataset is displayed in Figure 3.4. From the box plot, it is observed that most of the 

months except the months of summer have a wide range of data points, resulting 

from the sharp fluctuations in the GHI values. 
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Figure 3.4. Distribution of daily GHI data throughout the whole NASA dataset 

In Figure 3.5, the temporal distribution of temperature data points over the whole 

NASA dataset is illustrated. The highest data points of temperature, similar to GHI 

values, are observed during the summer season, while the lowest points are recorded 

in the winter season. 



 

 

 

31 

 

Figure 3.5. Temporal distribution of temperature over NASA dataset 

 

Figure 3.6 presents a two-dimensional representation of temperature change over the 

year 2018. When Figure 3.3 and Figure 3.6 are compared, it can be concluded that 

there is a connection between GHI and temperature since both curves show a similar 

trend. 
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Figure 3.6. Change in temperature values over the year 2018 

3.2.2 METU NCC Dataset 

The second dataset used for the second part of this study is recorded in the PV farm 

in METU NCC, Kalkanlı. There were two separate data files initially. The first data 

file contained meteorological variables such as temperature, wind speed on various 

height, humidity, etc., recorded at the wind tower between 2013 and 2017. In 

contrast, the second data file included GHI and DNI data recorded on the PV farm 

between 2010 and 2017. All data are recorded at 10 minutes intervals. Both data files 

are matched and combined in a single dataset. The resulting dataset consists of 

radiation (GHI), relative humidity (RH), pressure (P), temperature (T), wind speed 

at various elevation (WS60, WS50, WS40, and WS30), wind direction (WD), with 

the corresponding month (M), day (D), hour (H), and minute (M) information 

between 2013 and 2017. 
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Table 3.3 shows a sample set of the variables available in the METU NCC dataset. 

First and last three rows of data are shown for a complete representation. It should 

be noted that the time is in the 24-hour format. 

Table 3.3. A sample set from the METU NCC dataset 

M D H M WS60 WS50 WS40 WS30 WD T RH P GHI 

2 19 6 50 1.81 2.03 2.34 2.23 69 10.53 79.83 1001 23.00 

2 19 7 0 1.65 1.66 1.52 1.44 94 11.63 76.42 1001 46.00 

2 19 7 10 0.96 0.77 0.71 0.68 103 12.48 75.32 1002 91.00 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

6 15 19 20 4.48 4.34 4.13 3.81 291 24.20 69.09 998 82.00 

6 15 19 30 3.25 3.13 2.95 2.78 280 23.96 69.95 997 41.00 

6 15 19 40 3.05 2.84 2.63 2.33 263 23.83 70.68 997 20.00 

 

The average GHI is 409 W m-2 over the whole METU NCC dataset, while it is 510 

W m-2 for the summer season and 275 W m-2 for the winter season. Minimum and 

maximum available data points for each variable are listed in Table 3.4 

Table 3.4. Input variables’ units and data ranges in METU NCC dataset 

Input variables Units Data range 

GHI W m-2 2.00 – 1247.00 

T ℃ -0.34 – 41.78 

Wind speed m/s 0.24 – 25.15 

Wind direction degrees 0.00 – 359.00 

RH % 6.59 – 95.95 

P mbar 975 – 1195 

 

Figure 3.7 demonstrates the temporal distribution of GHI data points over the whole 

METU NCC dataset in three-dimension. The summer season during noon, highest 

GHI values are obtained. Figure 3.7 illustrates that the change in GHI has higher 
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fluctuations during winter and spring seasons, while a smoother curve is obtained 

during summer to fall seasons. 

 

Figure 3.7. Temporal distribution of GHI throughout the METU NCC dataset 

Two-dimensional representations of the change in GHI values over a week in 

February, March, July and October months to represent all four seasons are 

illustrated in Figure 3.8 - (a), (b), (c) and (d), respectively. The x-axes show the 

continuous number of data points in a 10-minutes time interval, whereas the y-axes 

show the change in GHI amounts. The fluctuations that are observed in Figure 3.7 in 

the winter and spring seasons, i.e. November to May, are clearly illustrated on a daily 

basis in Figure 3.8 - (a) and (b). These fluctuations in the winter season are due to 

overcast sky condition. The smooth curves observed in Figure 3.7 in the summer and 

fall seasons,i.e. June to October, on the other hand, are shown in detail in Figure 3.8 

- (c) and (d) which are a result of clear sky. 
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Figure 3.8. Change in GHI values over a week in (a) February, (b) March, (c) June, 

and (d) October 

A box plot illustrating the distribution of GHI values over a day for the whole dataset 

is displayed in Figure 3.9. It is observed from the plot that the outliers are occurring 

prominently in the morning and the afternoon. The outliers are mostly caused by the 

difference between summer and winter seasons. 
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Figure 3.9. Distribution of GHI data in 10-minute interval throughout the whole 

METU NCC dataset 

In Figure 3.10, the temporal distribution of temperature data points over the whole 

METU NCC dataset is illustrated. The highest data points of temperature, similar to 

GHI values, are observed during the summer season, while the lowest points are 

recorded in the winter season. 
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Figure 3.10. Temporal distribution of temperature over METU NCC dataset 

3.3 Forecasting Algorithms 

CNN, LSTM and SVR algorithms are employed in this study for GHI forecasting in 

Kalkanlı. The algorithms and the main activation functions used in the algorithms 

are elaborated in the following chapters. 

3.3.1 Activation Functions 

Activation functions are mathematical equations, usually non-linear, that derive a 

node's output in neural networks [71]. There are various activation functions such as 

sigmoid function, threshold function, piecewise linear function etc. [71]. In this 

study, Rectified Linear Unit (ReLU), and sigmoid function (σ), which are defined in 

Equations (3.1) and (3.2), respectively, are employed in the forecasting algorithms. 
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ReLu(x) = max⁡(0, x) (3.1) 

σ(x) =
1

1 + e−x
 (3.2) 

3.3.2 Convolutional Neural Networks (CNN) 

CNN is one of the most popular ANN algorithms commonly used in the deep 

learning field [72]. One of the main advantages of using CNN is its powerful ability 

to achieve non-linear feature extraction [73]. Various architectures of CNN are 

available in the literature, resulting from different combinations and numbers of 

layers. These layers are mainly made of convolutional layer, pooling layer and fully 

connected layer, i.e. dense layer [74].  

 Convolutional Layer 

The convolutional layer's main aim is to generate feature maps from the input data 

using filters, i.e. neurons composed of kernels [4]. Each kernel is used to generate 

one feature map. An activation function is applied to introduce non-linearity to the 

convolutional layer. ReLu, Sigmoid and tanh are the commonly used algorithms as 

activation functions in CNN. Each kernel represents a different weight matrix. The 

weight values and a bias term are updated during the training phase. The 

mathematical formula of the convolutional layer is shown in Equation (3.3) [22], 

[43], 

𝑦𝑖,𝑗,𝑘
𝑙 = 𝐹((𝑤𝑘

𝑙 )𝑇⁡𝑥𝑖𝑗
𝑙 +⁡𝑏𝑘

𝑙 ) (3.3) 

where the weight and bias of kth convolutional kernel in the lth layer are represented 

as 𝑤𝑘
𝑙  and 𝑏𝑘

𝑙 , respectively. 𝑥𝑖𝑗
𝑙  is the input patch in the lth layer, concentrated at the 

location (i,j). F() represents the activation function. All regions of the input are 

shared with the weight 𝑤𝑘
𝑙  which reduces the training time and the complexity of the 
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network. In Figure 3.11-a, the convolutional layer is presented in which all the 

mentioned steps to produce future maps are shown. 

 Pooling Layer 

The primary purpose of pooling layer is to decrease the resolution of the feature map. 

Usually, this layer is used between two convolutional layers. The mathematical 

representation of the pooling layer is shown in Equation (3.4) [22], [43],  

𝑃𝑖,𝑗,𝑘
𝑙 = 𝑃𝑜𝑜𝑙(𝑦𝑚,𝑛,𝑘

𝑙 ) (3.4) 

where, (m,n) ∈ Ri,j which represent the region around the location (i,j). Pool () 

describes the type of pooling operation used in the layer. Average pooling and max 

pooling are the pooling operations that are used most often.  The pooling layer usually 

increases network accuracy while decreasing the training time by reducing the 

number of parameters in the network [43]. Both the pooling function block and the 

downsized matrices are presented in  Figure 3.11-b. 

 Fully Connected Layer 

This layer's main task is to perform high-level reasoning by transporting the learned 

feature in the network to one space [74], as shown in Figure 3.11-c. The fully 

connected layer, also called dense layer, connects each neuron from the previous 

layers to every neuron in the current layer to create meaningful global information. 

Typically one or more dense layers are presented in CNN models after convolution 

and pooling layers [43]. The last dense layer generates the network output. 

There are various branches of CNN available. One dimensional CNN (1D-CNN) and 

two-dimensional CNN (2D-CNN) are commonly used CNN algorithms in the 

literature. The former is widely used to process numerical data such as 

meteorological variables and energy production, while the latter is frequently used 

for image and text processing. Both types of CNN models are composed of the same 
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main layers. However, the main difference occurs in the convolutional layer. The 

kernels slide in two dimensions on the input data in the 2D-CNN while in 1D-CNN, 

the sliding happens only in one dimension [73]. A sample for a 1D-CNN is illustrated 

in Figure 3.11 with all four main layers. In this study, various 1D-CNN algorithms 

are constructed for predictions using 1D convolutional and 1D pooling layers 

available in Keras library [75] and is simply called CNN for convenience. In 1D-

CNN, convolution involves sliding the filter over the input data which performs 

shift-multiply-sum procedure. In our implementation, this is done with cross-

correlation (used in typical CNNs). The output data length is made equal to length 

of the input data using padding operation in our 1D-Convolutional layer 

implementation. 

If needed, the output length can be made equal to the input length using padding and 

this mode is called ”same” padding convolution in keras 

 

 

Figure 3.11. The architecture of a general 1D-CNN 

3.3.3 Long Short-Term Memory (LSTM) 

LSTM is one of the RNN architectures. RNN algorithms are capable of deriving 

relations between consecutive events. On the other hand, they become insufficient 
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when relating the long-range events because of gradient vanishing or gradient 

exploding [22]. Gradient vanishing refers to the fast-exponential decrease of the 

gradient norm to zero. In contrast, the exploding gradient refers to an opposite event, 

resulting in a network that cannot learn from long data sequences [76].  LSTM is 

introduced to overcome the gradient vanishing and exploding problems with its 

memory cell, first introduced by Hochreiter and Schmidhuber [77], and extra forget 

gate included by Gers et al. [78]. Memory blocks in LSTM that include input, output 

and forget gate allow updating and controlling information flow in separate blocks 

[4]. 

Figure 3.12 illustrates a sample structure for an LSTM block. Forget gate ft, input 

gate it, intermediate state gt and output gate ot formulated in Equation (3.5) to 

Equation (3.8), respectively, 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑋𝑡 +𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓) (3.5) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑋𝑡 +𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) (3.6) 

𝑔𝑡 = 𝑅𝑒𝐿𝑢(𝑊𝑔𝑥𝑋𝑡 +𝑊𝑔ℎℎ𝑡−1 + 𝑏𝑔) (3.7) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑋𝑡 +𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜) (3.8) 

where σ refers to the non-linear activation function (sigmoid function), Wx and Wh 

are the weight matrices, and b is the bias of the relevant gates, Xt refers to input of 

the current time-step while ht-1 is the output of the previous time-step. Forget gate 

decides which information to keep from the previous memory cell (mt-1), while the 

input gate determines the information to preserve in the current memory cell (mt). mt 

is then calculated as given in Equation (3.9), 

𝑚𝑡 = 𝑔𝑡 ⊙ 𝑖𝑡 +𝑚𝑡−1 ⊙𝑓𝑡 (3.9) 

where ⊙ refers to Hadamard product. Then, the output gate decides of which 

memory cell to pass as output (ht) as formulated in Equation (3.10), 

ℎ𝑡 = 𝑅𝑒𝐿𝑢(𝑚𝑡) ⊙ 𝑜𝑡 (3.10) 
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The process given from Equation (3.5) to (3.10) continues taking place in the next 

time steps. Weights and biases are adjusted during the training by minimising the 

differences between the actual data and the predicted LSTM output. The predicted 

output of the LSTM (ӯt) is calculated by Equation (3.11), 

𝑦̅𝑡 = 𝑊𝑦ℎ𝑡 (3.11) 

 

Figure 3.12. Sample structure of LSTM unit 

3.3.4 Support Vector Regression (SVR) 

SVR is an ML algorithm in which the input vectors are mapped into high 

dimensional feature space by non-linear mapping Φ where linear regression occurs 

to find a relationship between input and output vectors [79]. SVR algorithm assigns 

a linear hyperplane, called a decision boundary to estimate input and output data 

relation, which is then used to predict future values represented in Equation (3.12) 

[80], 

𝑓(𝑥) = 𝑤 ∙ 𝜙(𝑥) + 𝑏 (3.12) 
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where w denotes learned weight vector, b is the threshold, Φ(x) is the mapping 

function, and f(x) represents the predicted value. 

There is a trade-off between minimising the training error and good generalisation 

behaviour. The algorithm aims to maximise the distance between the decision 

boundary and data points in order to control the trade-off and obtain a hyperplane 

with a good regression performance[81]. Equation (3.13) illustrates compound risk 

Rreg(f) to balance the trade-off  [81], 

𝑅𝑟𝑒𝑔(𝑓) =
𝐶

𝑁
∑𝐿𝜀(𝑓(𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

+
1

2
‖𝑤‖2 

(3.13) 

where C denotes to regularisation parameter, N is the sample size, Lε (f(xi),yi) refers 

to Vapnik’s ε-insensitive loss function while ||w||2 is the complexity term related to 

the complexity of the model. Rreg(f) results from model complexity and training 

errors and should be kept as low as possible. Vapnik’s ε-insensitive loss function is 

defined by Equation (3.14) [79].  

𝐿𝜀(𝑓(𝑥) − 𝑦) = {
|𝑓(𝑥) − 𝑦| − 𝜀 for⁡|𝑓(𝑥) − 𝑦| ≥ 𝜀

0 otherwise
 (3.14) 

where ε is the maximum error specified by the user to achieve the model's desired 

error, f(x) is the predicted and y is the actual value. When SVR is training, it solves 

Equations (3.15) and (3.16) [82]. 

minimize⁡
𝐶

𝑁
∑(𝜉𝑖

∗ + 𝜉𝑖)

𝑁

𝑖=1

+
1

2
‖𝑤‖2 (3.15) 

subject⁡to⁡ {
𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ 𝑒 + 𝜉𝑖

∗

〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝑒 + 𝜉𝑖
 

(3.16) 

where ξi is the distance between the bounds, which are defined by ε, and the predicted 

values outside the bounds. A simple SVR model is illustrated in Figure 3.13. 
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Figure 3.13. Sample structure of SVR model prediction [82] 

3.4 Experimental Setup 

The procedures followed for preprocessing the datasets and constructing the learning 

algorithms are explained in detail in the following sections. Forecasting models are 

constructed separately for each dataset. 

3.4.1 Data Preprocessing 

Preprocessing is transforming the data so that the algorithm can easily interpret the 

features of the data. Prior to the construction of the learning algorithms, each dataset 

is preprocessed in accordance with the steps shown in Error! Reference source not 

found., which is established following Alzahrani et al. [8]. 
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Figure 3.14. Flow chart for the preprocessing procedure for both datasets 

In data cleaning step, missing data and incorrect data readings are eliminated from 

the dataset or replaced with the average of previous data points. For the NASA 

dataset, the missing data points exist as -999. The rows with a value of -999 are 

removed the dataset. Missing values are observed before 1st June 1983 and after 31st 

August 2019, so removal of these points did not affect the continuity of the dataset. 

In METU NCC dataset, there were several data points missing in GHI and 

temperature. The data points where several days of data are missing are filled using 

the average of previous years on the same date. The remaining points are filled by 

linear interpolation. 

Following the data cleaning step, the non-useful data, i.e. night hours where GHI 

values are recorded as zero, are removed from the datasets. This step is particularly 

important as removing night hours leave only the meaningful data improving the 

prediction model’s performance [8]. For the METU NCC dataset, data is trimmed 

between 6-7 am and 5-7 pm depending on the season. This step is skipped in NASA 

dataset since the data are daily values. Figure 3.15 illustrates the three-dimensional 

distribution of GHI over the whole METU NCC after the night hours are removed. 

Dataset 

Removing inutile data 

Removing inutile variables 

Splitting into train and test datasets 

Data cleaning 
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Figure 3.15. GHI distribution after the removal of night hours in METU NCC dataset 

Next, the variables used as input for the algorithms are finalised in the variable 

removing step, which reduces the dimensionality of the dataset to increase the 

performance of the model. The removing inutile variables step is carried out 

manually taking similar studies from literature as a reference point. For this purpose, 

meteorological data in NASA dataset consist of mean, maximum and minimum 

temperature, wind speed, wind direction, pressure, relative humidity, and the 

corresponding month and day data along, as shown in Table 3.1. Similarly, the 

mentioned variables of NASA dataset are included in METU NCC dataset as well 

except for minimum and maximum temperature. The corresponding hour and minute 

information are added to METU NCC dataset, additionally. However, wind speed 

variables at 60, 50 and 40 meters are removed from the dataset since they have 

similar values as wind speed at 30 meters. 

The variable removing step is followed by splitting the input dataset into training 

and testing datasets. The training dataset consists of 80% of the whole dataset, while 

the remaining 20% is left for the testing set, following the rule of thumb. 
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Additionally, 10% of the training set is used as a validation set in the training process 

to guide the parameter optimisation in each algorithm. Validation is used to prevent 

overfitting, and adjust hyperparameters such as learning rate, number of hidden 

layers and units in these layers, number of epochs and size of mini batches. The 

validation and testing sets are used instead of a cross-validation methods since these 

methods tend to have high computational cost on deep learning algorithms. This rule 

is applied to all datasets in all algorithms. 

NASA dataset is used both exogenously and endogenously. There are meteorological 

variables and GHI data in the exogenous dataset, as mentioned in Table 3.1, while 

in the endogenous dataset, only GHI time-series data exist. For both of the dataset, 

separate forecasting algorithms are constructed.  

METU NCC dataset is used as exogenous and endogenous in two different prediction 

methods. The first method is a widely used annual prediction method. The second 

method is seasonal prediction recently gaining attention from researchers to forecast 

GHI, specifically in the Mediterranean region. In seasonal forecasting, unlike annual 

forecasting, the years in the dataset is separated into seasons. As mentioned in the 

literature review, this method mostly results in better prediction results in the 

Mediterranean region. In annual forecasting, the performance of stand-alone models 

are compared to hybrid models’ performance. On the other hand, only hybrid 

algorithms are developed for seasonal forecasting. 

The dimension of the input tensor of all training and testing sets are in the form of 

(sample_size, time-step, features). Detailed information on the input dimensions for 

both NASA dataset and METU NCC exogenous dataset are given in Table 3.5. In 

the endogenous dataset, the number of features is one which refers to GHI time-

series. The output of all algorithms is a scalar value.  
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Table 3.5. Input tensor dimensions of each dataset  

Dataset Method 
Sample_size 

Time-step Features 
Training Validation Testing 

NASA Annual 9507 1056 2641 7 

10 METU 

NCC 

Annual 75173 8353 20882 

10,30,60 
Seasonal 

Summer 21098 2344 5861 

Fall 16074 1786 4466 

Winter 14676 1631 4077 

Spring 23317 2591 6478 

3.4.2 Construction of Learning Algorithms 

In this section, the construction of the prediction algorithms and the finalised model 

parameters are discussed. The algorithms are implemented in Python 3.7 [83], using 

freely available Keras [84], Tensor Flow [85] and Sklearn [86] libraries. For each 

dataset, different algorithms are built and presented in separate sections. The first 

section is about the prediction algorithms built for the NASA datasets, followed by 

the second section that covers the algorithms constructed for METU NCC datasets. 

In this study, it is aimed to obtain a model that is able to predict short-term GHI using 

10-minute interval data, i.e. METU NCC dataset. However, algorithm constructions 

are applied with the NASA dataset as well in order to have guiding models for the 

regions in Northern Cyprus where ground-level data collection is absent. 

In the training process for deep learning algorithms, MSE is used for hyperparameter 

tuning, while the MAE is used as the objective function to be minimised in each 

dataset. Additionally, the learning rate for all the algorithms is kept at 0.01 while the 

activation function in CNN and LSTM layers are selected as ReLU. Also, the pooling 

layer in CNN is not added to the constructed algorithms since it decreases the 

algorithms' performance considerably. 
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 Algorithms for NASA Dataset 

In this study, we initially started working with NASA dataset for long-term GHI 

forecasting. For both exogenous and endogenous datasets generated from NASA 

data, separate CNN, LSTM and hybrid CNN and LSTM algorithms are developed. 

Algorithms are trained for GHI forecasting at 7-day lead times, i.e. time-step. In 

other words, with NASA dataset, we aimed to predict the coming eighth day, since 

GHI forecasting with a week ahead horizon could give valuable information on solar 

energy availability and sustainability during a robust solar-powered system design 

[4].  

The parameters of each algorithm are optimised manually through several trials. 

Additionally, the layers and neurons are also configurated randomly until the 

optimum bias-variance is achieved, as was shown in Figure 2.5. Exogenous 

algorithms are trained with input dimensions (10563, 7, 10), and tested with 

dimensions (2641, 7, 10) where numbers represent the number of samples, the time-

step, and the number of features, respectively. Whereas endogenous algorithms are 

trained with dimensions (10563, 7, 1), and tested with dimensions (2641, 7, 1). In all 

of the algorithms, the optimiser is selected as Adam after grid search. 

CNN algorithm for the exogeneous dataset is composed of two convolutional layers 

followed by two fully connected layers. As mentioned previously, the loss is 

calculated by MAE while the metric is chosen as MSE in every neural network. The 

batch size and number of epochs are set as 550 and 100, respectively. 

Another CNN algorithm is constructed for the endogenous dataset, which has three 

convolutional layers and three dense layers. As mentioned earlier, the pooling layer 

is not added to this algorithm as well due to performance issues. In this CNN 

algorithm, the batch size is optimised as 800 while the epochs are set to 100. 

Following the construction of stand-alone CNN models, stand-alone LSTM 

algorithms are constructed for both datasets. The LSTM algorithm for the exogenous 

dataset is built with three LSTM layers and three dense layers. The recurrent 
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activation of the LSTM layer is kept as the sigmoid function. The batch size and 

number of epochs are set as 450 and 90, respectively. 

The second LSTM algorithm is established for the endogenous dataset. The 

algorithm also has three LSTM layers, followed by three dense layers. The recurrent 

activation of the LSTM layer is again left as the sigmoid function. The batch size 

and number of epochs are set as 500 and 90, respectively. 

Finally, a hybrid model of CNN and LSTM is designed where the outputs of CNN 

and LSTM are merged and fed into fully connected layers for a final GHI prediction. 

This hybrid algorithm is called CN-M for convenience. The CNN part of the hybrid 

algorithm is built to have two convolutional layers. LSTM, similarly, consists of 

three layers. The outputs of these two algorithms are then merged and fed into three 

fully connected layers. CNN is fed with exogenous data, and LSTM is fed with 

endogenous data. A flow chart showing the construction of the hybrid algorithm is 

illustrated in Figure 3.16. The batch size and number of epochs are set as 750 and 

50, respectively.  

 

Figure 3.16. Flow chart showing the hybrid CN-M algorithm 

Optimised hyperparameters of each layer in all NASA algorithms are presented in 

Table 3.6 along with the number of neuron and batch size. 

CNN LSTM 

Exogenous dataset Endogenous dataset 

Dense layers 

Prediction results 
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Table 3.6. Training hyperparameters in each layer for the constructed forecasting 

algorithms 

Layer (L) 

CNN -

Exogeneous 

CNN - 

Endogeneous 

LSTM -

Exogeneous 

LSTM - 

Endogeneous CN-M 

L1 Input Input Input Input Input 

L2 

Conv1d 

(f=64, k=4) 

Conv1d 

(f=64, k=4) LSTM (u=50) LSTM (u=25) 

Conv1d  

(f=68, k=3) 

L3 

Conv1d 

(f=128, k=8) 

Conv1d 

(f=128, k=8) LSTM (u=150) LSTM (u=100) 

Conv1d  

(f=128, k=3) 

L4 Flatten 

Conv1d 

(f=240, k=8) Dense (40) Dense (50) 

Conv1d 

 (f=240, k=3) 

L5 Dense (100) Flatten Dense (20) Dense (20) Flatten 

L6 Dense (50) Dense (100) Dense (1) Dense (1) LSTM (u=5) 

L7 Dense (1) Dense (50) - - LSTM (u=10) 

L8 - Dense (1) - - LSTM (u=30) 

L9 - - - - Merge 

L10 - - - - Dense (40) 

L11 - - - - Dense (20) 

L12 - - - - Dense (1) 

Epochs 100 100 90 90 50 

Batch size 550 800 450 500 750 

Optimiser Adam Adam Adam Adam Adam 

 

where Conv1d refers to the convolutional layer of CNN, k is the kernel size, and u 

refers to the unit number in LSTM layer. 

 Algorithms for METU NCC Dataset 

After forecasting with NASA dataset, we moved on to constructing algorithms for 

short-term GHI prediction with METU NCC dataset. There are two methods of GHI 



 

 

 

52 

prediction, as mentioned before, namely annual and seasonal forecasting. Exogenous 

and endogenous datasets formed from METU NCC data are used in both methods. 

In annual forecasting, all data points in the dataset are used for training and testing. 

However, in seasonal forecasting, data points are separated according to seasons, and 

the algorithms are built for each season.  

The following sections cover algorithm construction of stand-alone CNN, LSTM and 

SVR algorithms as well as hybrid CNN-LSTM and CNN-LSTM-SVR algorithms 

for annual forecasting followed by hybrid algorithms for the seasonal forecasting. 

Each algorithm is trained on multiple time horizons, i.e. 10 minutes, 30 minutes and 

60 minutes to estimate coming 10th-minute value. In other words, with 10-minute 

lead time, the algorithm predicts the 20th minute, while with the 30-minute horizon 

it predicts the coming 40th minute. The parameters of each algorithm are optimised 

manually through many trials. Additionally, the layers and neurons are also 

configurated through grid search. Similar to NASA algorithms, the activation 

function of CNN and LSTM is selected as ReLU while the optimiser is chosen as 

Adam. 

3.4.2.2.1 Annual Forecasting 

In this forecasting method, all samples in the METU NCC dataset is divided into 

training, testing and validation sets. Construction of the stand-alone and hybrid 

algorithms are explained in detail in the following sections. 

3.4.2.2.1.1 Stand-alone Algorithms 

Stand-alone algorithms of CNN, LSTM and SVR are designed in order to compare 

with the performances of the hybrid algorithms. Due to high computational cost, 

manual grid search is applied to select the hyperparameters in each layer of CNN 

and LSTM algorithms, and SVR following heuristics. 
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Firstly, CNN algorithm is developed for the exogenous METU NCC dataset. It is 

designed to have three convolutional layers connected to three fully connected 

layers. Hyperparameters in each layer and parameters are listed in Table 3.7.  

Next, LSTM algorithm is developed with the endogenous dataset. It contains two 

LSTM layers with two dense layers, which are shown in Table 3.7. The number of 

epochs and batch size are set as 100 and 300, respectively. 

Finally, SVR algorithm is developed for the endogenous dataset. C and ε are selected 

as 10 and 0.05, and the kernel is set as RBF.  

Table 3.7. Training parameters and input data information for the stand-alone 

algorithms of annual forecasting 

Layer (L) CNN LSTM 

L1 Input Input 

L2 Conv1d (f=50, k=4) LSTM (u=7) 

L3 Conv1d (f=100, k=6) LSTM ( u=10) 

L4 Conv1d (f=150, k=8) Dense (20) 

L5 Flatten Dense (1) 

L6 Dense (50) - 

L7 Dense (10) - 

L8 Dense (1) - 

Epochs 100 100 

Batch size 500 300 

Optimiser Adam Adam 

3.4.2.2.1.2 Hybrid Algorithms 

Hybrid algorithms are the main objective of this study. In the following paragraphs, 

three different hybrid algorithm construction are introduced. 

The first hybrid algorithm is a combination of CNN and LSTM, which is named C-

LSTM for convenience. In this algorithm, CNN  layers are used for feature extraction 
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step before LSTM layers. There are three convolutional layers connected to two 

LSTM layers by a time distributed layer. Two fully connected layers follow LSTM 

layers to give the prediction output. Convolutional layers are fed with the exogenous 

dataset. The batch size and epochs are chosen as 150 and 100, respectively. 

The second hybrid algorithm is designed to feed CNN only exogenous data while 

feeding endogenous data to LSTM and feed their output to dense layers for final 

output. The algorithm is called CN-M for convenience, as mentioned before, and it 

has the same construction flow as the one shown in Figure 3.16. The CNN is 

composed of four convolutional layers, while LSTM has three layers. The outputs of 

both layers are merged and fed to two dense layers. In this algorithm, batch size and 

epochs are optimised as 150 and 300, respectively. Hyperparameters in each layer of 

both hybrid forecasting algorithms are summarised in Table 3.8.  
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Table 3.8. Training parameters and input data information for the hybrid algorithms, 

C-LSTM and CN-M, of annual forecasting 

Layer (L) C-LSTM CN-M 

L1 Input Input Input 

L2 Conv1d (f=28, k=3) Conv1d (f=12, k=9) LSTM (u=10) 

L3 Conv1d (f=50, k=5) Conv1d (f=50, k=6) LSTM (u=30) 

L4 Conv1d (f=68, k=8) Conv1d (f=100, k=3) LSTM (u=150) 

L5 Flatten Conv1d (f=150, k=3) Flatten() 

L6 TimeDistributed Flatten() - 

L7 LSTM (u=5) Merge 

L8 LSTM (u=12) Dense (50) 

L9 Dense (30) Dense (1) 

L10 Dense (1) - 

Epochs 100 100 

Batch size 800 500 

Optimiser Adam Adam 

 

The final hybrid algorithm is designed similar to CN-M algorithm except CNN and 

LSTM are constructed as algorithms, and their output is merged and fed to an SVR 

model that is named CM-SVR. A flow chart simply illustrating the construction of 

the CM-SVR algorithm is presented in Figure 3.17. CNN algorithm is made of three 

convolutional layers. The output of the convolutional layer is then flattened and fed 

to two fully connected layers. The batch size and number of epochs of CNN are set 

as 500 and 100, respectively. LSTM algorithm consists of two LSTM layers, 

followed by two fully connected layers. The number of epochs and batch size 

optimised as 100 and 300. These two algorithms are trained, and the resulting 

predictions are combined in an array to feed to SVR algorithm. In SVR algorithms, 

hyperparameters C and ε are set as 14 and 0.05, respectively while the kernel is 

chosen as RBF. Table 3.9 lists the details on hyperparameters of each layer in all 

algorithms. 
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Figure 3.17. Flow chart showing the hybrid CM-SVR algorithm 

Table 3.9. Training parameters and input data information for the hybrid algorithm, 

CM-SVR, of annual forecasting 

Layer (L) CNN LSTM 

L1 Input Input 

L2 Conv1d (f=50, k=4) LSTM ( u=7) 

L3 Conv1d (f=100, k=6) LSTM ( u=10) 

L4 Conv1d (f=150, k=8) Dense (20) 

L5 Flatten Dense (1) 

L6 Dense (50) - 

L7 Dense (10) - 

L8 Dense (1)  

Epochs 100 100 

Batch size 500 300 

Optimiser Adam Adam 

Merge Output 1 Output 2 

SVR C=14, kernel=RBF, ε=0.05 

 

CNN LSTM 

Exogenous dataset Endogenous dataset 

SVR 

Prediction results 
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3.4.2.2.2 Seasonal Forecasting 

In seasonal forecasting method, the METU NCC dataset is divided into four sub-

datasets. The division is based on months depending on the seasons, namely summer, 

fall, winter and spring. For seasonal forecasting, only CM-SVR algorithms are 

developed for each season, and each algorithm is built separately with the 

corresponding season. CNN algorithm is fed with the exogeneous dataset while the 

LSTM is fed with the endogenous dataset. Finally, SVR model is fed with an array 

prepared by combining outputs of CNN and LSTM. 

The summer season dataset is made of the months June, July and August. CNN 

algorithm is made of three convolutional layers. The output of the convolutional 

layer is then flattened and fed to three dense layers. LSTM algorithm consists of two 

layers, followed by two fully connected layers. Finally, in SVR model, the 

hyperparameters C and ε are set as 2 and 0.05, respectively while the kernel is chosen 

as RBF. 

For the fall season, only September, October and November months are included in 

the dataset. CNN, LSTM and SVR algorithms are designed similar to the algorithms 

for the summer season. CNN algorithm is made of four convolutional layers. The 

output of the convolutional layer is then flattened and fed to two fully connected 

layers. There are two layers in LSTM algorithm, which are followed by two fully 

connected layers. Finally, in SVR model, the hyperparameters C and ε are set as 1 

and 0.05, respectively while the kernel is chosen as RBF. 

In the winter season, December, January and February months are selected in the 

dataset. There are three convolutional and two dense layers in CNN while LSTM 

algorithm has three LSTM layers and two dense layers. C and ε in SVR are set as 10 

and 0.03, respectively.  

Finally, the spring dataset is composed of March, April and May.  CNN algorithm is 

composed of three convolutional layers and three dense layers. LSTM algorithm as 

well has three LSTM layers and three dense layers. C and ε in SVR are set as 4 and 
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0.05, respectively. A detailed list of all hyperparameters in each layer in all 

algorithms is presented in Table 3.10. 

Table 3.10. Layers in hybrid CM-SVR algorithm for seasonal forecasting 

Layer (L) Summer Fall Winter Spring 

L1 Input Input Input Input 

L2 

Conv1d 

(f=50, k=4) 

Conv1d 

(f=20, k=4) 

Conv1d 

(f=50, k=4) 

Conv1d 

(f=50, k=4) 

L3 

Conv1d 

(f=100, k=6) 

Conv1d 

(f=200, k=6) Dropout (0.2) 

Conv1d 

(f=100, k=6) 

L4 

Conv1d 

(f=150, k=8) 

Conv1d 

(f=75, k=6) 

Conv1d 

(f=70, k=6) 

Conv1d 

(f=150, k=6) 

L5 Flatten 

Conv1d 

(f=150, k=8) 

Conv1d 

(f=100, k=8) Flatten 

L6 Dense (50) Flatten Flatten Dense (50) 

L7 Dense (10) Dense (10) Dense (15) Dense (10) 

L8 Dense (1) Dense (1) Dense (1) Dense (1) 

Epochs 100 100 100 100 

Batch size 500 500 400 500 

Optimiser Adam Adam Adam Adam 

L9 Input Input Input Input 

L10 LSTM ( u=7) LSTM ( u=10) LSTM ( u=3) LSTM ( u=20) 

L11 LSTM ( u=10) LSTM ( u=15) LSTM ( u=7) LSTM ( u=100) 

L12 Dense (20) Dense (20) LSTM ( u=11) LSTM ( u=15) 

L13 Dense (1) Dense (1) Dense (20) Dense (30) 

L14 - - Dense (1) Dense (20) 

L15 - - - Dense (1) 

Epochs 100 100 150 100 

Batch size 300 300 600 500 

Optimiser Adam Adam Adam Adam 
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SVR 

C=2.0, 

kernel=RBF, 

ε=0.05 

C=1.0, 

kernel=RBF, 

ε=0.03 

C=10.0, 

kernel=RBF, 

ε=0.03 

C=4.0, 

kernel=RBF, 

ε=0.05 

 

Table 3.11 lists the search space of the hyperparameters used in grid search for all 

algorithms constructed in this study. 

Table 3.11. Training hyperparameters in each layer for the constructed forecasting 

algorithms 

Algorithm Hyperparameters Search Space 

Conv1D - filters [10, 12, 28, 50, 64, 70, 75, 100, 128, 150, 200,  240, 300] 

Conv1D - kernel size [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20] 

LSTM - units [3, 4, 5, 7, 10, 15, 20, 25, 30, 40, 50, 100, 150, 200, 240]  

Dense [10, 15, 20, 25, 30, 40, 50, 100, 150] 

Batch size [30, 50, 100, 200, 300, 400, 450, 500, 550, 600, 750, 800] 

Number of Epochs [10, 20, 50, 70, 90, 100, 150] 

Activation function [ReLU, sigmoid, softmax, softplus] 

C [1, 2, 3, 4, 5, 10, 11, 12,13, 14, 15, 16, 20] 

ε [0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15,0.35, 0.2] 

Kernel [RBF, poly, linear, sigmoid] 
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CHAPTER 4  

4 RESULTS AND DISCUSSION  

This chapter presents GHI forecasting results and performance assessment for both 

NASA and METU NCC datasets with various learning algorithms at different 

forecasting horizons. The first section presents the GHI forecasting analysis for the 

NASA dataset, while the second section covers the forecasting results and discussion 

for the METU NCC dataset. 

4.1 GHI Prediction Analysis of NASA Dataset 

The NASA dataset for Kalkanlı is obtained from [70] and preprocessed prior to the 

training of the forecasting algorithms, as mentioned in section 3.4.1. Two different 

datasets, i.e. exogenous and endogenous datasets, are created from the NASA 

dataset. The exogenous dataset consists of meteorological variables and GHI data, 

which are listed in Table 3.1, whereas the endogenous dataset is made of only GHI 

data.  

For GHI prediction with NASA dataset, CNN and LSTM algorithms are employed. 

Both CNN and LSTM algorithms are constructed for each dataset, adding up to four 

different forecasting models. In addition to these models, a hybrid algorithm of CNN 

and LSTM, i.e. CN-M, is constructed feeding exogeneous dataset to CNN and 

endogenous dataset to LSTM algorithms and combining their output in a fully 

connected layer for a final result. After the construction of the algorithms, i.e. CNN, 

LSTM and CN-M, in section 3.4.2.1 for the NASA dataset, the training is initialised. 

In training, the time-step is chosen as seven days lead in order to deliver useful 

information on radiation availability for a future solar-powered system design. 

Hyperparameter of the algorithms is optimised by manual grid search due to the high 
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computational cost of an automated grid search. After the algorithm training, the 

resulting models are evaluated using MAE, RMSE, n-RMSE and R2 in the testing 

stage. A flow diagram summarising the process of GHI forecasting from dataset to 

final result for NASA dataset is illustrated in Figure 4.1. 

 

Figure 4.1. Flow chart of the forecasting procedure for the NASA dataset 

The evaluation results of each forecasting model are tabulated in Table 4.1, where 

the best results in each evaluation metric are shown in bold. The reported evaluation 

results are the mean of five separate runs for each model where data is randomly 

partitioned into training, validation and test set. The hybrid model achieves slightly 

better results than the remaining four models. It also has an MAE of 19.9 and 21.7 

W m-2 for training and validation sets, respectively. However, according to Table 

2.1, the n-RMSE results of all models are in the good model precision range with 

slight differences among each other. Also, the prediction outcome of each model has 

small deviations from the real data since MAE and RMSE values are in close range. 

Additionally, R2 results illustrate that all models fit the data very good. 
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Table 4.1. Summary of GHI prediction model performances with corresponding 

dataset type, best results in each evaluation metric is shown in bold 

Models 

MAE  

(W m-2)  

RMSE  

(W m-2) n-RMSE R2 

CNN – exogeneous 21.5 34.0 0.16 0.86 

CNN – endogeneous 19.7 31.2 0.15 0.87 

LSTM – exogeneous 21.0 33.3 0.16 0.85 

LSTM – endogeneous 21.2 31.3 0.15 0.87 

CN-M 19.3 30.4 0.14 0.88 

 

In order to assess the performance of the algorithms better and understand the error 

distribution, the APE of each model with the testing dataset is drawn on a histogram. 

The histograms of each model are illustrated in Figure 4.2, where the y-axis shows 

the APE frequency in percentages, while the x-axis represents the APE ranges in 10 

W m-2 interval. The hybrid model and CNN model constructed with the endogenous 

dataset result in around 50% of APE as less than 10 W m-2. In other words, these 

models will predict the GHI with a maximum deviation error of 10 W m-2 half of the 

prediction time. While both models result in relatively similar results, model 

preference could be made based on computation time which is 2 seconds in the 

hybrid model while it is 6 seconds in the CNN model.  
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Figure 4.2. APE frequency histograms generated by the results of testing set, a) CNN 

– exogenous, b) CNN – endogenous, c) LSTM – exogenous, d) LSTM – endogenous, 

e) CN-M 

4.2 GHI Forecasting Analysis of METU NCC Dataset 

GHI and meteorological data with a 10-minute time interval for METU NCC, 

Kalkanlı, are used in this part of the study. The dataset is preprocessed, and two 

datasets are created from it, similar to the NASA dataset. The exogenous dataset 
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consists of meteorological variables and GHI data, listed in Table 3.3, whereas the 

endogenous dataset is made of only GHI data.  

CNN, LSTM and SVR algorithms are employed for the GHI forecasting with METU 

NCC dataset. There are two different forecasting methods followed in this part, i.e. 

annual and seasonal forecasting, Hybrid algorithms of CNN, LSTM, and SVR, 

namely C-LSTM, CN-M and CM-SVR, are created and compared with the 

performance of stand-alone algorithms, i.e. CNN, LSTM and SVR, in the annual 

forecasting part. In the seasonal forecasting part, the performance of models for each 

season is evaluated through the hybrid algorithm CM-SVR. After the construction 

of the algorithms for the METU NCC dataset, the training is initialised. The 

constructed algorithms are trained on several time-horizons, i.e. time interval of 10 

minutes, 30 minutes and 60 minutes. Hyperparameter of the algorithms is optimised 

by manual grid search due to high computational cost. After the algorithm training, 

the resulting models are evaluated using MAE, RMSE, n-RMSE and R2 in the testing 

stage. A flow diagram summarising the process of GHI forecasting from dataset to 

final result for METU NCC dataset is illustrated in Figure 4.3.  
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Figure 4.3. Flow chart of the forecasting procedure for the METU NCC dataset 

Testing results of stand-alone and hybrid prediction algorithms for the METU NCC 

dataset are listed in Table 4.2 with corresponding evaluation metric score in three 

forecasting horizons, where the best results are shown in bold. Similar to NASA 

dataset, the reported evaluation results of METU NCC dataset are the mean of five 

separate runs for each model where data is randomly partitioned into training, 

validation and test set. In terms of evaluation metrics’ results, the models perform 

similarly. Similar to the NASA dataset models, the models for the METU NCC 

dataset also have a good model precision according to Table 2.1, with n-RMSE 

changing between 0.14 to 0.17. CN-M achieves better results with respect to MAE 

among the hybrid algorithms. CN-M also has an MAE of 28.3 and 37.8 W m-2 for 
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training and validation sets, respectively. Additionally, R2 results illustrate that all 

models fit the data quite well. On the other hand, all evaluation results suggest that 

CM-SVR performs poorly in 10-minutes forecasting lead. 

Table 4.2. Summary of GHI prediction model performances in different time-leads 

for annual forecasting, best results are shown in bold  

Evaluation 

Metrics MAE (W m-2) RMSE (W m-2) n-RMSE R2 

Lead time 

(minutes) 10 30 60 10 30 60 10 30 60 10 30 60 

CNN 30.9 30.1 30.0 53.9 53.2 52.5 0.15 0.15 0.14 0.95 0.95 0.95 

LSTM 37.0 33.8 32.0 56.4 57.4 56.2 0.15 0.16 0.15 0.95 0.95 0.95 

SVR 37.2 - - 56.5 - - 0.16 - - 0.95 - - 

C-LSTM 31.0 30.3 38.3 53.9 53.4 62.9 0.15 0.14 0.17 0.96 0.96 0.94 

CN-M 31.0 29.6 31.0 53.9 53.0 53.6 0.14 0.14 0.15 0.96 0.95 0.96 

CM-SVR 49.3 30.1 30.1 89.4 53.1 53.9 0.24 0.14 0.14 0.88 0.96 0.96 

 

Figure 4.4 and Figure 4.5 demonstrate the frequency of APE on a histogram for 

stand-alone and hybrid models, respectively. Although the models performed 

similarly in terms of evaluation metrics, stand-alone CNN and SVR result in poor 

prediction outputs. On the other hand, stand-alone LSTM has a high MAE result in 

the 30-minute horizon, indicating a high average error magnitude. However, LSTM 

histogram shows that more than 40% of the APE is 10 W m-2. 

Among the hybrid models, CN-M and CM-SVR result in approximately 45% of APE 

less than 10 W m-2, performing better than the rest of the models when evaluation 

metrics’ results are also considered. Similar to NASA dataset, model preference 

could be made based on computation time which is approximately 20 seconds in the 

CM-SVR while 18 seconds in the CN-M model.  
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Figure 4.4. APE frequency histograms generated by the results of the testing set for 

the stand-alone models over 30-minutes forecasting horizon, a) CNN – endogeneous, 

b) LSTM – exogeneous, c) SVR – exogeneous 
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Figure 4.5. APE frequency histograms generated by the results of the testing set for 

the hybrid models, a) C-LSTM, b) CN-M, c) CM-SVR 
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Evaluation metric results of the testing set on CM-SVR for the seasonal prediction 

with METU NCC dataset are presented in Table 4.3 with corresponding evaluation 

metric score in three forecasting horizons. The CM-SVR model for the summer 

season produces the best results among all seasons as expected since clear sky 

conditions occur most prominently in the summer months, as illustrated in Figure 

4.6. On that note, the n-RMSE of the summer model has excellent precision, 

according to Table 2.1. On the other hand, the model of the winter season results in 

higher error outputs as a result of high fluctuations in GHI, i.e. overcast sky 

condition, as shown in Figure 4.7. Hence, the model has a fair precision with an n-

RMSE of 0.24. Additionally, the forecasting model for the spring season behaves 

similar to the model of the summer season, while the fall model performs closer to 

the winter model. Similar patterns are observed in R2 results that the summer and 

spring models fit almost perfectly on the actual data. 

Table 4.3. Summary of GHI prediction model performances in different time-leads 

for seasonal forecasting  

Evaluation 

Metrics MAE (W m-2) RMSE (W m-2) n-RMSE R2 

Lead time 

(minutes) 10 30 60 10 30 60 10 30 60 10 30 60 

Summer 24.5 25.0 25.3 40.8 41.5 41.4 0.08 0.08 0.08 0.97 0.97 0.97 

Fall 34.3 34.6 34.6 53.5 53.7 53.7 0.21 0.21 0.21 0.88 0.88 0.88 

Winter 35.0 35.0 35.4 55.3 56.0 55.2 0.24 0.24 0.24 0.88 0.89 0.89 

Spring 31.5 30.3 30.0 61.0 61.4 60.7 0.13 0.12 0.12 0.95 0.95 0.95 
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Figure 4.6. CM-SVR model prediction fitted over the actual data for the summer 

season for a clear-sky condition 

 

Figure 4.7. CM-SVR model prediction fitted over the actual data for the winter 

season for a scattered clouds sky condition 

Figure 4.8 demonstrate the frequency of APE on histograms for each season 

separately. Evaluation metric results comply with APE results for the winter season. 

Also, the models for the summer and spring predict 40% of the results with a 

deviation of less than 10 W m-2, performing better than the rest of the seasons. 
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Figure 4.8. APE frequency histograms generated by the results of the testing set for 

the seasonal forecasting with CM-SVR models, a) summer, b) fall, c) winter, d) 

spring  

The evaluation results of seasonal forecasting models are averaged and presented in 

Table 4.4 in order to compare the annual and seasonal forecasting models. On 

average, the seasonal forecasting models performs similar to the annual forecasting 

algorithm. In addition to the performances, all models in seasonal forecasting 

compute results in 1 second, making them the fastest forecasting models compared 

to stand-alone and hybrid models of annual forecasting. Hence, seasonal forecasting 

could be preferable to annual forecasting for the Meditteranean region, where the 

seasons have distinct patterns in GHI fluctuations.  
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Table 4.4. Averaged evaluation metric results of all seasons in different forecasting 

horizons 

Evaluation 

Metrics MAE (W m-2) RMSE (W m-2) n-RMSE R2 

Lead time 

(minutes) 10 30 60 10 30 60 10 30 60 10 30 60 

Averaged 31.3 31.2 31.3 52.8 53.2 52.8 0.16 0.16 0.16 0.92 0.92 0.92 
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CHAPTER 5  

5 CONCLUSION AND RECOMMENDATIONS 

In this study, it is aimed to deliver models to predict short-term and long-term GHI 

for Kalkanlı region for the sustainable and continuous growth of PV panels in 

Northern Cyprus. Because knowledge of solar radiation, i.e. GHI, information is 

essential, especially for the case of Northern Cyprus where there are limited energy 

production sources and a high rate of PV installation over rooftops. This study also 

contributes to ongoing research on developing prediction algorithms to accurately 

estimate solar radiation and energy production by testing different hybrid forecasting 

algorithms.  

Two different datasets from two different sources are used to construct forecasting 

algorithms. The first dataset is obtained from the website of NASA. It contains daily 

values of meteorological variables and GHI from 1983 to 2019. The dataset is 

initially preprocessed. Following the preprocessing step, two separate datasets are 

created from the NASA data, namely exogenous dataset, which contains 

meteorological variables and GHI, and endogenous dataset made of past data of GHI. 

The second dataset is obtained from METU NCC; hence it is called METU NCC 

dataset. It contains meteorological variables and GHI values over the 10-minute 

interval from 2013 to 2017. The METU NCC dataset is also preprocessed, similar to 

NASA dataset. Exogenous and endogenous datasets are also created from METU 

NCC dataset. 

Five prediction models are developed for the NASA dataset over seven days 

forecasting horizon. Four stand-alone CNN and LSTM models for exogenous and 

endogenous datasets and one CNN-LSTM hybrid model, i.e. CN-M, are constructed. 

The resulting errors indicate that although the differences are relatively small, the 

hybrid model is preferable as it has a lower computation time. One the other hand, 
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the CNN model with the endogenous dataset could be desirable in regions where 

meteorological variables are absent. 

For the METU NCC dataset, two different forecasting methods are followed, i.e. 

annual forecasting and seasonal forecasting. In annual forecasting, all data is used 

for training and testing. Overall, six different models are designed for annual 

forecasting; three stand-alone models, i.e. CNN, LSTM and SVR, and three hybrid 

models, i.e. C-LSTM, CN-M and CM-SVR. Among the models created with METU 

NCC dataset, CN-M performs relatively better than the remaining models with a 

lower computational cost.  

In seasonal forecasting, four sub-datasets are created based on the seasons. For each 

season, a CM-SVR model is designed. Evaluation results suggest that the summer 

model achieves the lowest error, while the winter model results in the highest error. 

For the Mediterranean region, where seasons have distinct sky condition patterns, it 

could be preferable to have different separate models for each season. When 

compared to the performance of annual forecasting models, seasonal models perform 

similarly on average. However, low computation cost makes the seasonal models 

desirable. 

The importance of this study is that it provides information on future GHI, which is 

the main parameter on PV power generation. The information on PV power output 

enables the power generation utility to maximise the use of PV panels and to decrease 

the use of conventional energy sources that contribute to global warming. In other 

words, a better prediction of GHI allows better planning of power generation from 

conventional sources. Hence, the energy production units with better efficiencies 

could be utilised. The PV power output knowledge is also an important factor in 

smart grids. 

In this study, we successfully constructed effective stand-alone and hybrid models 

for GHI forecasting. In future studies, the dataset sensitivity of the forecasting 

models in different parts of the world could be investigated. The performances of 

other related machine learning algorithms combined with deep learning algorithms 
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may also be examined. Additionally, the effects of longer forecasting horizons as 

well as different input variables could be analysed. Finally, the forecasting of PV 

output may be studied.   



 

 

 

78 

 

 



 

 

 

79 

REFERENCES 

[1] M. Ben Amar, “Energy consumption and economic growth: the case of 

African countries,” Autumn, 2012. 

[2] IEA, “World Energy Outlook 2019,” IEA, Paris, 2019. [Online]. Available: 

https://www.iea.org/reports/world-energy-outlook-2019. [Accessed: 03-Jul-

2020]. 

[3] IEA, “Global Energy Review 2020,” IEA, Paris, 2020. [Online]. Available: 

https://www.iea.org/reports/global-energy-review-2020/global-energy-and-

co2-emissions-in-2020#abstract. [Accessed: 03-Jul-2020]. 

[4] S. Ghimire, R. C. Deo, N. Raj, and J. Mi, “Deep solar radiation forecasting 

with convolutional neural network and long short-term memory network 

algorithms,” Appl. Energy, vol. 253, p. 113541, Nov. 2019. 

[5] M. Demirtas, M. Yesilbudak, S. Sagiroglu, and I. Colak, “Prediction of solar 

radiation using meteorological data,” 2012 Int. Conf. Renew. Energy Res. 

Appl. ICRERA 2012, pp. 1–4, 2012. 

[6] C. Voyant et al., “Machine learning methods for solar radiation forecasting: 

A review,” Renew. Energy, vol. 105, pp. 569–582, 2017. 

[7] S. Salcedo-Sanz, C. Casanova-Mateo, A. Pastor-Sánchez, and M. Sánchez-

Girón, “Daily global solar radiation prediction based on a hybrid Coral Reefs 

Optimization - Extreme Learning Machine approach,” Sol. Energy, vol. 105, 

pp. 91–98, 2014. 

[8] A. Alzahrani, P. Shamsi, C. Dagli, and M. Ferdowsi, “Solar Irradiance 

Forecasting Using Deep Neural Networks,” in Procedia Computer Science, 

2017, vol. 114, pp. 304–313. 

[9] B. Elliston and I. MacGill, “The potential role of forecasting for integrating 

solar generation into the Australian National Electricity Market,” Sol. 2010, 

Aust. Sol. Energy Soc., no. December 2010, pp. 1–11, 2010. 

[10] S. Ferrari et al., “Illuminance prediction through Extreme Learning 

Machines,” 2012 IEEE Work. Environ. Energy, Struct. Monit. Syst. EESMS 

2012 - Proc., pp. 97–103, 2012. 

[11] L. Mazorra-Aguiar and F. Díaz, “Solar radiation forecasting with statistical 

models,” in Green Energy and Technology, no. 9783319768755, Springer 

Verlag, 2018, pp. 171–200. 

[12] A. Fouilloy et al., “Solar irradiation prediction with machine learning: 

Forecasting models selection method depending on weather variability,” 

Energy, vol. 165, pp. 620–629, Dec. 2018. 

[13] X. Qing and Y. Niu, “Hourly day-ahead solar irradiance prediction using 



 

 

 

80 

weather forecasts by LSTM,” Energy, vol. 148, pp. 461–468, 2018. 

[14] G. Guariso, G. Nunnari, and M. Sangiorgio, “Multi-Step Solar Irradiance 

Forecasting and Domain Adaptation of Deep Neural Networks,” Energies, 

vol. 13, no. 15, p. 3987, Aug. 2020. 

[15] C. Voyant, M. Muselli, C. Paoli, and M. L. Nivet, “Hybrid methodology for 

hourly global radiation forecasting in Mediterranean area,” Renew. Energy, 

vol. 53, pp. 1–11, May 2013. 

[16] R. Nageem and R. Jayabarathi, “Predicting the Power Output of a Grid-

Connected Solar Panel Using Multi-Input Support Vector Regression,” in 

Procedia Computer Science, 2017, vol. 115, pp. 723–730. 

[17] C. Wan, J. Zhao, Y. Song, Z. Xu, J. Lin, and Z. Hu, “Photovoltaic and solar 

power forecasting for smart grid energy management,” CSEE J. Power 

Energy Syst., vol. 1, no. 4, pp. 38–46, Jan. 2016. 

[18] J. Fan et al., “Comparison of Support Vector Machine and Extreme Gradient 

Boosting for predicting daily global solar radiation using temperature and 

precipitation in humid subtropical climates: A case study in China,” Energy 

Convers. Manag., vol. 164, no. February, pp. 102–111, 2018. 

[19] M. Lazzaroni, S. Ferrari, V. Piuri, A. Salman, L. Cristaldi, and M. Faifer, 

“Models for solar radiation prediction based on different measurement sites,” 

Meas. J. Int. Meas. Confed., vol. 63, pp. 346–363, 2015. 

[20] R. Marquez and C. F. M. Coimbra, “Forecasting of global and direct solar 

irradiance using stochastic learning methods, ground experiments and the 

NWS database,” Sol. Energy, vol. 85, no. 5, pp. 746–756, 2011. 

[21] A. K. Yadav and S. S. Chandel, “Solar radiation prediction using Artificial 

Neural Network techniques: A review,” Renewable and Sustainable Energy 

Reviews, vol. 33. Elsevier Ltd, pp. 772–781, 01-May-2014. 

[22] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-Term 

Residential Load Forecasting Based on LSTM Recurrent Neural Network,” 

IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841–851, Jan. 2019. 

[23] G. Reikard, “Predicting solar radiation at high resolutions: A comparison of 

time series forecasts,” Solar Energy, vol. 83, no. 3. pp. 342–349, 2009. 

[24] H. T. C. Pedro and C. F. M. Coimbra, “Nearest-neighbor methodology for 

prediction of intra-hour global horizontal and direct normal irradiances,” 

Renew. Energy, vol. 80, pp. 770–782, 2015. 

[25] A. Sözen, E. Arcaklioglu, and M. Özalp, “Estimation of solar potential in 

Turkey by artificial neural networks using meteorological and geographical 

data,” Energy Convers. Manag., vol. 45, no. 18–19, pp. 3033–3052, Nov. 

2004. 



 

 

 

81 

[26] P. Krömer, P. Musilek, E. Pelikan, P. Krc, P. Jurus, and K. Eben, “Support 

Vector Regression of multiple predictive models of downward short-wave 

radiation,” Proc. Int. Jt. Conf. Neural Networks, pp. 651–657, 2014. 

[27] F. J. L. Lima, F. R. Martins, E. B. Pereira, E. Lorenz, and D. Heinemann, 

“Forecast for surface solar irradiance at the Brazilian Northeastern region 

using NWP model and artificial neural networks,” Renew. Energy, vol. 87, 

pp. 807–818, Mar. 2016. 

[28] G. P. Podestá, L. Núñez, C. A. Villanueva, and M. A. Skansi, “Estimating 

daily solar radiation in the Argentine Pampas,” Agric. For. Meteorol., vol. 

123, no. 1–2, pp. 41–53, 2004. 

[29] N. Vakitbilir, A. Hilal, and C. Direkoğlu, “Prediction of Daily Solar 

Irradiation Using CNN and LSTM Networks,” Springer, Cham, 2021, pp. 

230–238. 

[30] “PV Performance Modeling Collaborative | Global Horizontal Irradiance.” 

[Online]. Available: https://pvpmc.sandia.gov/modeling-steps/1-weather-

design-inputs/irradiance-and-insolation-2/global-horizontal-irradiance/. 

[Accessed: 28-Nov-2020]. 

[31] K. Mallon, F. Assadian, and B. Fu, “Analysis of On-Board Photovoltaics for 

a Battery Electric Bus and Their Impact on Battery Lifespan,” Energies, vol. 

10, no. 7, p. 943, Jul. 2017. 

[32] F. V. Gutierrez-Corea, M. A. Manso-Callejo, M. P. Moreno-Regidor, and M. 

T. Manrique-Sancho, “Forecasting short-term solar irradiance based on 

artificial neural networks and data from neighboring meteorological stations,” 

Sol. Energy, vol. 134, pp. 119–131, Sep. 2016. 

[33] “Global Solar Atlas.” [Online]. Available: https://globalsolaratlas.info/map. 

[Accessed: 01-Oct-2020]. 

[34] L. Feng, W. Qin, L. Wang, A. Lin, and M. Zhang, “Comparison of Artificial 

Intelligence and Physical Models for Forecasting Photosynthetically-Active 

Radiation,” Remote Sens., vol. 10, no. 11, p. 1855, Nov. 2018. 

[35] F. Besharat, A. A. Dehghan, and A. R. Faghih, “Empirical models for 

estimating global solar radiation: A review and case study,” Renewable and 

Sustainable Energy Reviews, vol. 21. Pergamon, pp. 798–821, 01-May-2013. 

[36] S. Ferrari, M. Lazzaroni, V. Piuri, L. Cristaldi, and M. Faifer, “Statistical 

models approach for solar radiation prediction,” in Conference Record - IEEE 

Instrumentation and Measurement Technology Conference, 2013, pp. 1734–

1739. 

[37] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural 

networks: The state of the art,” Int. J. Forecast., vol. 14, no. 1, pp. 35–62, 

Mar. 1998. 



 

 

 

82 

[38] A. T. C. Goh, “Back-propagation neural networks for modeling complex 

systems,” Artif. Intell. Eng., vol. 9, no. 3, pp. 143–151, Jan. 1995. 

[39] A. McGovern, D. J. Gagne, J. Basara, T. M. Hamill, and D. Margolin, “Solar 

energy prediction : An international contest to initiate interdisciplinary 

research on compelling meteorological problems,” Bull. Am. Meteorol. Soc., 

vol. 96, no. 8, pp. 1388–1393, 2015. 

[40] I. Bilionis, E. M. Constantinescu, and M. Anitescu, “Data-driven model for 

solar irradiation based on satellite observations,” Sol. Energy, vol. 110, pp. 

22–38, 2014. 

[41] F. S. Wong, “Time series forecasting using backpropagation neural 

networks,” Neurocomputing, vol. 2, no. 4, pp. 147–159, Jul. 1991. 

[42] D. Svozil, V. Kvasnička, and J. Pospíchal, “Introduction to multi-layer feed-

forward neural networks,” in Chemometrics and Intelligent Laboratory 

Systems, 1997, vol. 39, no. 1, pp. 43–62. 

[43] A. Burkov, “The Hundred-Page Machine Learning Book,” 2019. 

[44] H. Shi, M. Xu, and R. Li, “Deep Learning for Household Load Forecasting-

A Novel Pooling Deep RNN,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 

5271–5280, Sep. 2018. 

[45] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 

7553. Nature Publishing Group, pp. 436–444, 27-May-2015. 

[46] S. K. Aggarwal and L. M. Saini, “Solar energy prediction using linear and 

non-linear regularization models: A study on AMS (American Meteorological 

Society) 2013-14 Solar Energy Prediction Contest,” Energy, vol. 78. pp. 247–

256, 2014. 

[47] K. Mohammadi, S. Shamshirband, M. H. Anisi, K. Amjad Alam, and D. 

Petković, “Support vector regression based prediction of global solar radiation 

on a horizontal surface,” Energy Convers. Manag., vol. 91, pp. 433–441, Feb. 

2015. 

[48] A. Gensler, J. Henze, B. Sick, and N. Raabe, “Deep Learning for solar power 

forecasting - An approach using AutoEncoder and LSTM Neural Networks,” 

in 2016 IEEE International Conference on Systems, Man, and Cybernetics, 

SMC 2016 - Conference Proceedings, 2017, pp. 2858–2865. 

[49] R. H. Inman, H. T. C. Pedro, and C. F. M. Coimbra, “Solar forecasting 

methods for renewable energy integration,” Progress in Energy and 

Combustion Science, vol. 39, no. 6. pp. 535–576, Dec-2013. 

[50] P. Goodwin and R. Lawton, “On the asymmetry of the symmetric MAPE,” 

Int. J. Forecast., vol. 15, no. 4, pp. 405–408, Oct. 1999. 

[51] S. Makridakis, “Accuracy measures: theoretical and practical concerns,” Int. 



 

 

 

83 

J. Forecast., vol. 9, no. 4, pp. 527–529, Dec. 1993. 

[52] C. Tofallis, “A better measure of relative prediction accuracy for model 

selection and model estimation,” J. Oper. Res. Soc., vol. 66, no. 8, pp. 1352–

1362, Aug. 2015. 

[53] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. 

One Lake Street Upper Saddle River: Prentice Hall Press, 2009. 

[54] J. Cao and X. Lin, “Study of hourly and daily solar irradiation forecast using 

diagonal recurrent wavelet neural networks,” Energy Convers. Manag., vol. 

49, no. 6, pp. 1396–1406, 2008. 

[55] A. Khosravi, R. N. N. Koury, L. Machado, and J. J. G. Pabon, “Prediction of 

hourly solar radiation in Abu Musa Island using machine learning 

algorithms,” J. Clean. Prod., vol. 176, pp. 63–75, Mar. 2018. 

[56] H. Zang, L. Liu, L. Sun, L. Cheng, Z. Wei, and G. Sun, “Short-term global 

horizontal irradiance forecasting based on a hybrid CNN-LSTM model with 

spatiotemporal correlations,” Renew. Energy, vol. 160, pp. 26–41, Nov. 2020. 

[57] S. Belaid and A. Mellit, “Prediction of daily and mean monthly global solar 

radiation using support vector machine in an arid climate,” Energy Convers. 

Manag., vol. 118, pp. 105–118, Jun. 2016. 

[58] L. Mazorra-Aguiar, B. Pereira, M. David, F. Díaz, and P. Lauret, “Use of 

satellite data to improve solar radiation forecasting with Bayesian Artificial 

Neural Networks,” Sol. Energy, vol. 122, pp. 1309–1324, Dec. 2015. 

[59] F. Tymvios, C. Jacovides, S. Michaelides, and C. Scouteli, “Comparative 

study of Ångström’s and artificial neural networks’ methodologies in 

estimating global solar radiation,” Sol. Energy, vol. 78, no. 6, pp. 752–762, 

Jun. 2005. 

[60] C. Jacovides, F. Tymvios, V. Assimakopoulos, and N. Kaltsounides, 

“Comparative study of various correlations in estimating hourly diffuse 

fraction of global solar radiation,” Renew. Energy, vol. 31, no. 15, pp. 2492–

2504, Dec. 2006. 

[61] R. D. Tapakis and A. G. Charalambides, “Monitoring Cloud Motion in Cyprus 

for Solar Irradiance Prediction,” Conf. Pap. Energy, vol. 2013, pp. 1–6, 2013. 

[62] H. Kasht, “Sky conditions classification and estimation of solar radiation for 

clear sky days,” Middle East Technical University Northern Cyprus Campus, 

2018. 

[63] A. Mellit, “Artificial Intelligence technique for modelling and forecasting of 

solar radiation data: a review,” Int. J. Artif. Intell. Soft Comput., vol. 1, no. 1, 

p. 52, 2008. 

[64] D. S. Kumar, G. M. Yagli, M. Kashyap, and D. Srinivasan, “Solar irradiance 



 

 

 

84 

resource and forecasting: a comprehensive review,” IET Renew. Power 

Gener., vol. 14, no. 10, pp. 1641–1656, Jul. 2020. 

[65] M. Guermoui, F. Melgani, K. Gairaa, and M. L. Mekhalfi, “A comprehensive 

review of hybrid models for solar radiation forecasting,” Journal of Cleaner 

Production, vol. 258. Elsevier Ltd, p. 120357, 10-Jun-2020. 

[66] M. Guermoui, F. Melgani, and C. Danilo, “Multi-step ahead forecasting of 

daily global and direct solar radiation: A review and case study of Ghardaia 

region,” J. Clean. Prod., vol. 201, pp. 716–734, Nov. 2018. 

[67] L. Benali, G. Notton, A. Fouilloy, C. Voyant, and R. Dizene, “Solar radiation 

forecasting using artificial neural network and random forest methods: 

Application to normal beam, horizontal diffuse and global components,” 

Renew. Energy, vol. 132, pp. 871–884, Mar. 2019. 

[68] S. Sperati, S. Alessandrini, P. Pinson, and G. Kariniotakis, “The ‘Weather 

Intelligence for Renewable Energies’ Benchmarking Exercise on Short-Term 

Forecasting of Wind and Solar Power Generation,” Energies, vol. 8, no. 9, pp. 

9594–9619, Sep. 2015. 

[69] M. Ilkan, E. Erdil, and F. Egelioglu, “Renewable energy resources as an 

alternative to modify the load curve in Northern Cyprus,” Energy, vol. 30, no. 

5, pp. 555–572, 2005. 

[70] “POWER Data Access Viewer.” [Online]. Available: 

https://power.larc.nasa.gov/data-access-

viewer/?fbclid=IwAR1yPlfK_3RPZbL3RWwHIrizUeq8SugivFCDN7ASnIe

uC8lfO-3TJSlrlRg. [Accessed: 09-May-2020]. 

[71] J. D. Rios, A. Y. Alanis, N. Arana-Daniel, and C. Lopez-Franco, “Artificial 

neural networks,” in Neural Networks Modeling and Control, E. N. Sanchez, 

Ed. Elsevier, 2020, pp. 117–124. 

[72] H. Zang et al., “Hybrid method for short-term photovoltaic power forecasting 

based on deep convolutional neural network,” IET Gener. Transm. Distrib., 

vol. 12, no. 20, pp. 4557–4567, Nov. 2018. 

[73] F. Wang et al., “Generative adversarial networks and convolutional neural 

networks based weather classification model for day ahead short-term 

photovoltaic power forecasting,” Energy Convers. Manag., vol. 181, no. 

August 2018, pp. 443–462, 2019. 

[74] J. Gu et al., “Recent advances in convolutional neural networks,” Pattern 

Recognit., vol. 77, pp. 354–377, May 2018. 

[75] “Conv1D layer.” [Online]. Available: 

https://keras.io/api/layers/convolution_layers/convolution1d/. [Accessed: 14-

Feb-2021]. 



 

 

 

85 

[76] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training 

recurrent neural networks,” 2013. 

[77] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural 

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. 

[78] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual 

prediction with LSTM,” in IEEE Conference Publication, 1999, vol. 2, no. 

470, pp. 850–855. 

[79] K. R. Müller, A. J. Smoła, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. 

Vapnik, “Predicting time series with support vector machines,” in Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 1997, vol. 1327, pp. 999–

1004. 

[80] M. Wauters and M. Vanhoucke, “Support Vector Machine Regression for 

project control forecasting,” Autom. Constr., vol. 47, pp. 92–106, Nov. 2014. 

[81] R. C. Deo, X. Wen, and F. Qi, “A wavelet-coupled support vector machine 

model for forecasting global incident solar radiation using limited 

meteorological dataset,” Appl. Energy, vol. 168, pp. 568–593, Apr. 2016. 

[82] T. Kleynhans, M. Montanaro, A. Gerace, and C. Kanan, “Predicting Top-of-

Atmosphere Thermal Radiance Using MERRA-2 Atmospheric Data with 

Deep Learning,” Remote Sens., vol. 9, no. 11, p. 1133, Nov. 2017. 

[83] M. F. Sanner, “Python: A programming language for software integration and 

development,” Journal of Molecular Graphics and Modelling, vol. 17, no. 1. 

pp. 57–61, 1999. 

[84] N. Ketkar and N. Ketkar, “Introduction to Keras,” in Deep Learning with 

Python, Apress, 2017, pp. 97–111. 

[85] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” 

Proc. 12th USENIX Symp. Oper. Syst. Des. Implementation, OSDI 2016, pp. 

265–283, May 2016. 

[86] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. 

Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011. 

  



 

 

 

86 

 

 



 

 

 

87 

APPENDICES 

 Forecasting Results for NASA Dataset 

 

Figure A.1. Prediction performance of exogenous LSTM over a year 
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Figure A.2. Prediction performance of endogenous LSTM over a year 

 

Figure A.3. Prediction performance of exogenous CNN over a year 
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Figure A.4. Prediction performance of endogenous CNN over a year 

 

Figure A.5. Prediction performance of hybrid CN-M over a year 
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Figure A.6. Predicted and actual GHI values on a scattered plot for exogenous LSTM 

over the testing set 
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Figure A.7. Predicted and actual GHI values on a scattered plot for endogenous 

LSTM over the testing set  
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Figure A.58. Predicted and actual GHI values on a scattered plot for exogenous CNN 

over the testing set  
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Figure A.9. Predicted and actual GHI values on a scattered plot for endogenous CNN 

over the testing set  



 

 

 

94 

 

Figure A.10. Predicted and actual GHI values on a scattered plot for CN-M over the 

testing set  
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 Forecasting Results for METU NCC Dataset 

 

Figure B.1. Predicted and actual GHI values on a scattered plot for CNN over the 

testing set 
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Figure B.2. Predicted and actual GHI values on a scattered plot for LSTM over the 

testing set 
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Figure B.3. Predicted and actual GHI values on a scattered plot for SVR over the 

testing set 
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Figure B.4. Predicted and actual GHI values on a scattered plot for C-LSTM over 

the testing set 
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Figure B.5. Predicted and actual GHI values on a scattered plot for CN-M over the 

testing set 
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Figure B.6. Predicted and actual GHI values on a scattered plot for CM-SVR over 

the testing set 
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Figure B.7. Predicted and actual GHI values on a scattered plot for the summer 

season over the testing set 
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Figure B.8. Predicted and actual GHI values on a scattered plot for the fall season 

over the testing set 
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Figure B.9. Predicted and actual GHI values on a scattered plot for the winter season 

over the testing set 
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Figure B.10. Predicted and actual GHI values on a scattered plot for the spring season 

over the testing set 
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