
AN EFFICIENT IMPLEMENTATION OF ONLINE MODEL PREDICTIVE
CONTROL WITH PRACTICAL INDUSTRIAL APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OKAN ARPACIK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2021

Approval of the thesis:

AN EFFICIENT IMPLEMENTATION OF ONLINE MODEL PREDICTIVE
CONTROL WITH PRACTICAL INDUSTRIAL APPLICATIONS

submitted by OKAN ARPACIK in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Assist. Prof. Dr. Mustafa Mert Ankaralı
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Kemal Leblebicioğlu
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Mustafa Mert Ankaralı
Electrical and Electronics Engineering, METU

Prof. Dr. Umut Orguner
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Ozan Keysan
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. İsmail Uyanık
Electrical and Electronics Engineering, Hacettepe University

Date:04.08.2021

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Okan Arpacık

Signature :

iv

ABSTRACT

AN EFFICIENT IMPLEMENTATION OF ONLINE MODEL PREDICTIVE
CONTROL WITH PRACTICAL INDUSTRIAL APPLICATIONS

Arpacık, Okan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Mustafa Mert Ankaralı

August 2021, 81 pages

The demand to utilize modern control algorithms for industrial applications is much

more intensive. Model-predictive-controller (MPC), which is one of the modern op-

timal control policies, has gained more attention in servo drive and other industrial

applications in recent years due to increased computational capabilities of embedded

platforms and evident control performance benefits compared to more classical con-

trol methods. A digital MPC algorithm at each sampling instant produces the optimal

control input sequence for a given prediction horizon while also guaranteeing that

input and state-trajectories do not violate some set of constraints. Its optimization

based capability brings more flexibility to include the additional requirements such as

energy efficiency, quality of the systems’ control input. Solving constraint optimiza-

tion problems in each step requires excessive computational complexity and burden,

which is the main drawback of online MPC over classical methods. In this thesis, we

demonstrate the feasibility of online MPC in high sample frequency applications and

provide some suggestions for practical implementation. We implemented the exist-

ing dual active set solver by replacing two common methods in the matrix update step

to increase the performance in terms of execution speed. We also provide the linear

v

approximation for the nonlinear constraints by taking the tradeoff between accuracy

and speed into account. The proposed structure is successfully verified via both PIL

simulation and experimental testing. In addition, two different processors, which are

commonly used in motion control applications, perform the PIL simulation and ex-

perimental testing separately to certify the feasibility of our implementation in terms

of execution speed and using minimal memory space.

Keywords: Active-Set Method, Constraints, Field weakening, Gimbal Platform, Model

Predictive Control(MPC), Quadratic Programming (QP), Real-time Optimization, Syn-

chronous Machine

vi

ÖZ

ÇEVRİMİÇİ MODEL ÖNGÖRÜLÜ KONTROLÜN PRATİK
ENDÜSTRİYEL UYGULAMALARIYLA ETKİLİ BİR UYGULAMASI

Arpacık, Okan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Mustafa Mert Ankaralı

Ağustos 2021 , 81 sayfa

Endüstriyel uygulamalarda modern kontrol algoritmalarının uygulanma talebi hiç ol-

madığı kadar fazladır. Modern kontrol metotlarından biri olan Model Öngörülü Kont-

role(MPC), gömülü platformların hesaplama kabiliyetlerindeki artış ve klasik kontrol

metotları üzerinde içermiş olduğu yeteneklerden ötürü son yıllarda servo ve endüstri-

yel uygulamalarında ilgi artmıştır. Sayısal MPC algoritması, her bir hesap adımında

belirlenen öngörü penceresinde sistemdeki kısıtları da sağlayacak şekilde optimal

kontrol girdisini üretmektedir. Optimizasyon tabanlı yapısı, sistemler için ek istekle-

rin örneğin; enerji verimliliği veya kontrol işaretinin kalitesi, eklenmesinde daha fazla

esneklik sağlamaktadır. Çevrimiçi MPC’nin en büyük dezavantajı olan her bir hesap

adımında kısıtlı optimizasyon problemini çözmek çok fazla işlem gereksinimine ih-

tiyaç duymaktadır. Bu tezde, çevrimiçi model öngörülü kontrolün yüksek örnekleme

frekanslarında uygulanabilirliğini gösterdik ve pratik uygulamalar için öneriler sun-

duk. Mevcut ikili aktif küme metodunu matris güncelleme adımında bilinen iki matris

metotlarıyla değiştirerek performansı çalışma hızı bakımından artırdığımızı göster-

dik. Ayrıca, doğrusal olmayan kısıtlamalar için hız ve doğruluğu da dikkate alarak

vii

doğrusal yaklaşımlar gerçekleştirdik. Önerilen yaklaşım hem PIL simülasyonu hem

de deneysel testlerle başarılı bir şekilde doğrulandı. Buna ek olarak, uyarlamamızın

hem çalışma hızı hem de az hafıza kullanımı bakımından uygulanabilirliğini onayla-

mak için PIL simülasyonu ve deneysel testler hareket kontrol uygulamalarında çokça

kullanılan iki farklı işlemciler ile gerçekleştirildi.

Anahtar Kelimeler: Aktif Küme Methodu, Kısıtlar, Alan Zayıflatma, Gimbal Plat-

form, Model Öngüörülü Kontrol, Karesel Programlama , Gerçek-zamanlı Optimizas-

yon, Senkron Sakine

viii

To my family and my beloved ones,

ix

ACKNOWLEDGMENTS

First of all, I would like to express my sincere feelings about my supervisor M. Mert

Ankaralı for his support and guidance on taking the right actions during my thesis

period. I am thankful for having the opportunity under his supervision that lead me

to complete my thesis successfully.

I feel fortunate for having innovative, talented colleagues at Aselsan Inc. that help to

increase my engineering strength and gain perspectives on how to look at a problem

to resolve. I would like to thank those people, starting from M. Burak Gürcan. Other

colleagues, Ercan Çandır and Umut Gökkaya always support me to never lose my

motivation and belief. I would like to open an extra bracket to Aykut Demirel for his

modest personality and assistance to my works.

I would like to acknowledge Aselsan Inc., which provides hardware setup and physi-

cal platforms that make the implementation phase of this thesis easier.

I owe the special thanks to my friends, especially Onur Karahan, Ömer Herekoğlu,

Fatih Karaca, and Çevikalp Sütunç, who have always walked with me no matter what

happens and never spare their support on me.

I reserved to final statements for my great family. I gain my self-reliance thanks to

their endless and limitless supports. They always gave me the power to overcome the

problems that I encountered in tough times.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 The Motivation and Scope of the Thesis 1

1.2 The Outline of the Thesis . 3

1.3 Preliminaries . 4

2 MODEL BASED PREDICTIVE CONTROL 7

2.1 Receding Horizon Control . 8

2.2 Problem Formulations . 10

2.2.1 System Model . 10

2.2.2 Augmented State Formulations 11

2.2.2.1 Offset-free tracking 11

xi

2.2.2.2 Alternative State Choices 12

2.2.3 Generating State Matrices . 12

2.2.4 Casting the Formulations into Quadratic Program(QP) Problem 15

3 ONLINE OPTIMIZATION IN MPC . 21

3.1 Unconstrained Case in QP . 22

3.2 Active-Set Methods for Solving QP 23

3.2.1 Dual Active Set Solver . 25

3.2.2 Implementation Details of Efficient Matrix Updating Strategy . 30

3.3 Real Time Implementation . 33

3.3.1 Rotating Antenna Example 34

3.3.2 Cessna Citation 500 Example 35

4 IMPLEMENTATION OF MPC FOR ELECTRIC MOTOR: PMSM 41

4.1 System Modeling . 42

4.1.1 Mathematical Model . 42

4.1.2 Field Weakening Operation 43

4.1.3 Model Verification . 45

4.2 Controller Design . 47

4.2.1 Constraints . 49

4.3 Results . 51

4.3.1 PIL Simulation Results . 52

4.3.2 Experimental Results . 54

5 IMPLEMENTATION OF MPC FOR GIMBAL PLATFORM 59

5.1 System Modeling . 60

xii

5.2 Controller Design . 65

5.3 Results . 67

6 CONCLUSION & FUTURE WORKS . 71

REFERENCES . 73

APPENDICES

A MATRIX UPDATING PART IN SOLVER 79

A.1 Givens Rotations . 79

A.2 Householder Reflection . 80

xiii

LIST OF TABLES

TABLES

Table 3.1 The comparison of Householder and Givens Rotation Methods about

their counts of operations . 32

Table 3.2 Comparison execution time of the different MPC application for the

rotating antenna example. 1 It is the estimated data based on the timing

information in [1], that reported time is calculated by taking Hp = 20 . . . 35

Table 4.1 PMSM and CONTROLLER Parameters 51

Table 5.1 GIMBAL and CONTROLLER Parameters 67

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 The illustration of the Receding Horizon Control idea. In each

step, the horizon is shifting over time to generate the optimal control

sequence. 9

Figure 2.2 The illustration of the relation between MPC controller and the

system itself. MPC produces the change of the control input, whereas

the input is applied to the system after integration. 13

Figure 2.3 The overall timing diagram to execute the online calculations in

each sample step. 19

Figure 3.1 The illustration of a flowchart for the dual active set solver. . . . 29

Figure 3.2 The illustration of the updating the vector with size 4 via Givens

Rotation and Householder Reflection. 32

Figure 3.3 Basic diagram of antenna angular positioning system. 35

Figure 3.4 Performance result of the rotating antenna example based on the

Dual Active Set Method. Figure also include the maximum execution

time of the problem when it is solved by primal method. 36

Figure 3.5 The number of iteration of Cessna example with scaled(bottom)

and not scaled(top) results. The infeasible solutions are indicated by

blue dots. 37

xv

Figure 3.6 The execution time and overall results of the Cessna example.

The maximum execution time(652µsec) calculated at the maximum

number of iteration occurred, which is the both pitch angle and altitude

rate hit their limits. 38

Figure 4.1 Permanent Magnet Synchronous Motor d-q axes Equivalent Cir-

cuits [2] . 43

Figure 4.2 Current and voltage circles for different speed values of the PMSM. 44

Figure 4.3 Top: The friction related with velocity and its polynomial ap-

proximation. Bottom: The operation part of the coasting down of the

motor velocity to its stationary value. 46

Figure 4.4 Overall performances of the open loop responses of the model

for both simulation and experiment. 48

Figure 4.5 The schematic of the proposed structure for field weakening op-

eration. 49

Figure 4.6 The schematic of voltage and current constraint which depends

on the linear approximations . 50

Figure 4.7 PIL simulation results of tracking performances for speed and

current references. The id current enters the scene after t = 2s to

weaken the flux that enables the motor tracks the desired speed value.

Between t = 2 − 2.3s iq does not perfectly track the desired value

because of linear approximation on the constraint. The algorithm regu-

lates the voltage value to satisfy the constraints. 52

Figure 4.8 Execution time is strictly less than the maximum allowed time

through the operation in PIL simulation. The execution time and the

number of iterations are consistent except at a point at which the maxi-

mum overshoot on id current occurs. 53

xvi

Figure 4.9 Test bench used in experiment of field weakening operation.

It consists of PMSM connected to the dynamo and the custom-made

driver unit. 54

Figure 4.10 Tracking performances of speed and current loops and the volt-

ages which are generated from online MPC in experimental testing.The

tracking performances are successfully fulfilled and are similar with the

simulation results thanks to well-constructed plant model 55

Figure 4.11 Execution time and the number of iteration in the real time ex-

periment to generate the suitable voltages for both axis while satisfying

constraints. 56

Figure 4.12 The real time experiment values of both voltages and currents

lie inside the linear approximation polygons that represents the circle.

There is small deviation on the edge of the linear approximations be-

cause of the noise level in our measurements. 57

Figure 5.1 The 2 axes gimbal platform to be used in target tracking appli-

cation (Photo Courtesy of ASELSAN Inc.). 59

Figure 5.2 The Bode plot representation of traverse axis of gimbal platform

calculated via input-output data. 61

Figure 5.3 The Bode plot representation of traverse axis of gimbal platform

calculated via input-output data. 63

Figure 5.4 The Bode plot representation of model and real data taken from

traverse axis of gimbal platform. 64

Figure 5.5 The delay buffer in discrete domain. 65

Figure 5.6 The improvement with MPC on the friction effect that causes to

stick the gimbal platform at zero crossing. 68

Figure 5.7 The improvement with MPC for square wave input reference

under torque limitation. 69

xvii

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

AS Active Set

CCS Continuous Control Set

DAC Digital to Analog Converter

EMF Electro-motor Force

FCS Finite Control Set

FOC Field Oriented Control

FW Field Weakening

ISE Integral Square Error

KKT Karush Kuhn Tucker

LTI Linear Time Invariant

MPC Model Predictive Control

MP-TC Model Predictive Torque Control

MTPA Maximum Torque Per Ampere

PID Proportional Derivative Integral

PIL Processor In the Loop

PMSM Permanent Magnet Synchronous Motor

PWA Piece-Wise Affine

PWM Pulse Width Modulation

RHC Receding Horizon Control

QP Quadratic Programming

VSI Voltage Source Inverter

xviii

CHAPTER 1

INTRODUCTION

1.1 The Motivation and Scope of the Thesis

The demand from control algorithms has reached beyond the capability of conven-

tional or classical techniques. Although the classical approaches such as PID proved

their reliability in many applications, the control algorithms evolved in such a way

to meet the requirements of modern control applications. Modern control methods

such as predictive control for industrial applications have been getting more atten-

tion to control such systems thanks to their features over classical approaches. Like

other optimal control techniques, MPC derives optimal control signals to the system

according to the pre-defined cost function. What makes the MPC different from the

other optimal control algorithms is to handle the system’s constraints explicitly. The

clarity of MPC is to use the model of the process to make predictions on the future

evolution of the plant. It basically produces the optimal control input by taking the

constraints and the future system behaviors into consideration. This technique is not

only applicable to the special classes of the system but many from aerospace to auto-

motive and still growing to extend to many other areas.

In addition to tracking phenomena, which is the minimum requirement from the con-

trol algorithm, modern industrial applications need to utilize energy efficiency, exploit

the driver unit to its maximum capacity and produce the optimal control signals by

taking all these requirements into account. The idle speed control or the tempera-

ture control in the vehicle are only two examples for such systems where the fuel

efficiency is included in the control algorithms as an additional requirement. On the

other hand, such algorithms usually bring more computational complexity and bur-

1

den since it solves an optimization problem to produce the optimum control inputs to

the system. However, as the computational power of embedded platforms evolved,

the adoption of MPC in a wide range of control applications, including but not lim-

ited to high-bandwidth plants and challenging performance specifications, have also

increased in the past two decades [3].

In the literature, studies have integrated MPC-type algorithms for the control of

electrical drive systems where the computational demand is higher. Several stud-

ies adopted online optimization-based MPC algorithms for regulating torque output

of PMSMs (MP-TC). Like our motivation in this thesis, most of the studies imple-

mented MPC in a “high-performance” processor and consuming a large amount of

memory space. The authors also intended to improve their methodology to make

it implementable with a low-cost embedded platform with far less CPU power and

memory space in the future work section of their works.

Implementing MPC in low-cost processors, which are widely used in industrial ap-

plications, boosts us to investigate this application. The challenge of reducing the

computational complexity in the online optimization problem with sample time in

order of µs is another motivation source. We chose to control the PMSM as our first

example that dominates most of the industrial servo applications due to its long-term

usage, power density, and torque-speed characteristic. We replace the MPC in place

of two different PI controllers for currents loops in the FOC algorithm. Thus, we

demonstrate the practical feasibility of our implementation in a high bandwidth sys-

tem. Model-based approaches increase the quality of the controller for motion control

applications by taking the model-based nonlinear effects in the systems into account.

MPC is a suitable alternative for other model-based approaches thanks to its natural

structure, allows to include the effects in the system, and has the ability to produce

optimal control input while respecting the dominant undesirable effects in the system.

MPC might overcome the disturbances that affect the system performance by includ-

ing them in the model if they are measurable or adding integral action in the MPC

if they are unmeasurable. As our second example, we implement MPC to control

the one axis of the gimbal platform. We provide some additional information about

dealing with the delay term in the system that most practical industrial applications

suffer from.

2

In this thesis, we implement the MPC with practical industrial applications, i.e., field

weakening operation in PMSM, which requires fast sample frequency and controlling

the gimbal platform to deal with friction and take the delay in the system into account.

1.2 The Outline of the Thesis

This thesis is organized to give the mathematical background for MPC and Active Set

Solver and their implementation on industrial applications. Throughout the thesis, we

provide some practical implementation suggestions for the readers.

• In the first chapter of the thesis, we provide some mathematical preliminaries

for further usage and describe our motivation and scope of this work.

• In the second chapter, we describe the mathematical background for model

predictive control. The problem formulations to meet different requirements

and their condensed form(after casting QP) are provided.

• In the third chapter, we present the online optimization in MPC, first introduc-

ing the unconstrained case. Then, the quadratic programming that depends on

the dual active set solver is expressed for its two methods: primal and dual. We

provide implementation details of efficient matrix updating strategy in dual ac-

tive set solver as the proposed algorithm. Finally, we evaluate our approach in

the two common literature examples by comparing them in terms of executing

speed.

• In the fourth chapter, we implement the MPC in a widely used industrial motor:

PMSM. We provide the mathematical model and motor model verification pro-

cedure for PMSM. The controller design procedure for multi-variable systems

and linear approximation for nonlinear constraints are also provided. We firstly

evaluated the field weakening operation under PIL simulations to ensure that

our implementation is feasible. Then, we tested our algorithm as a final step in

custom-made PMSM under a laboratory environment.

• In the fifth chapter, we implement the MPC in the gimbal platform to control

the traverse axis of the platform, for which we eliminated the effect of the fric-

3

tion by including a linear approximated friction model in the MPC. The perfor-

mance of MPC for the gimbal platform is evaluated via physical experiments.

• In the last chapter of this thesis, we conclude by discussing the results and

providing our plans for future works.

1.3 Preliminaries

Before introducing the basics of the MPC, we will provide some basic mathematical

definitions in this section of the thesis for the ease of readers. The definitions are the

basis for the mathematical background of quadratic optimization and the active set

method. Further information is available in the textbooks [4, 5].

Definition 1.3.1 (Convex Set) A set S ⊂ Rn is said to be convex if line segment

any two points in the set S lies completely in the set. S is said to be convex set if

∀x̄1, x̄2 ∈ S, we have

λx̄1 + (1− λ)x̄2 ∈ S, 0 ≤ λ ≤ 1 (1.1)

Definition 1.3.2 (Convex Function) Let f : S → R is non-empty convex set in Rn, f

is said to be convex function if

f(λx̄1 + (1− λ)x̄2) ≤ λf(x̄1) + (1− λ)f(x̄2) (1.2)

∀x̄1, x̄2 ∈ S

0 ≤ λ ≤ 1

Definition 1.3.3 (Quadratic Programming) An optimization problem is said to be

quadratic programming if the convex objective function is in the quadratic form and

it is subject to linear constraints,

min
z

1

2
zTHz + zTg (1.3a)

subject to

Wz ≤ b

Wez = be (1.3b)

4

where H ∈ Rnxn
≥0 , g ∈ Rnx1,W ∈ Rmxn, b ∈ Rm, We ∈ Rmexn, be ∈ Rme .

Definition 1.3.4 (Active Set) For the problem in(1.3), Active Set is defined as to in-

clude equality constraints,i.e.,

WA(z̃) = {i ∈ k|Wiz̃ = bi} (1.4)

where k = {1, 2, . . . , n} is set of the constraint indexes and WA(z̃) is active set.

Definition 1.3.5 (KKT Conditions) For a solution of optimization problem to be opti-

mal, first-order necessary condition, also known as Karush-Kahn-Tucker(KKT) con-

ditions, must be satisfied. Given a problem,

minimize f(z)

subject to: g(z) ≤ 0

h(z) = 0 (1.5)

the conditions for this problem expressed as

∇f(z) +
m∑
i=1

λi∇gi(z) +
r∑

j=1

µj∇hj(z) = 0 , stationarity

g(z) ≤ 0 , primal feasibility

h(z) = 0

λ ≥ 0 , dual feasibility

∀i ∈ 1, . . . ,mλigi(z) = 0 , complementary slackness

(1.6)

5

6

CHAPTER 2

MODEL BASED PREDICTIVE CONTROL

Model predictive control (MPC) is a modern control policy family widely used for

controlling systems while satisfying a set of constraints. Its relatively simple struc-

ture, ability to satisfy the constraints on both inputs and states, explicitly handling the

multivariable system, and taking the model itself into consideration to generate opti-

mal control sequence to the system are the significant features of the model predictive

control[6, 7]. MPC solutions are also easier to adapt to different applications and pro-

vide great scalability in large-scale applications where the same control strategy needs

to be applied to different versions of the same application. One of the most (if not the

most) popular feedback control strategies that can enforce such constraints while also

ensuring other critical system properties such as stability is the constrained MPC. It

is a powerful tool in the sense that it estimates the future behavior of the system and

generates the optimal input at each time step.

Several designations such as Generalized Predictive Control(GPC), Receding Hori-

zon Control(RHC)[8] have been made to replace the name of MPC since the first use

of the MPC idea in the late 70s. The early implementation of MPC was utilized to

fulfill the requirements in the petrochemical industry, where the required sample time

is slow. Shell Oil Engineers developed the first reported algorithm as the name of

Dynamic Matrix Control with the model derived from input-output experiments[9].

Since then, technological progress in the chip industry enables the utilization of such

algorithms in systems with faster dynamics, e.g., from automotive to aerospace. The

usage of MPC in systems with much faster dynamics also has gained more attrac-

tion over the past two decades[3]. Nowadays, it is even possible to see MPC imple-

mentations in the control of power electronics and electrical drives where sampling

7

frequency requirements are several orders of magnitude higher than ones used in the

initial deployments of MPC [10, 11].

Even though MPC provides a solid framework for advanced and high-performance

control system design, it brings some undeniable disadvantages, precisely extra com-

putational burden and increased implementation complexity, over dominantly adopted

classical approaches. In that respect, researchers in the MPC domain mainly focus

on solving computational and implementation complexity problems. Bemporad et al.

[12, 13] proposed the explicit quadratic regulator for constrained systems which tech-

nically pushes the majority of the computations of the MPC algorithm to an offline

pre-processing phase that increased the applicability and popularity of the MPC in

experimental and industrial platforms. Specifically, this method generates a lookup

table of Piece-wise Affine (PWA) functions that can radically reduce the execution

time compared to online MPCs. On the other hand, memory requirements can grow

dramatically with the dimension of the system and constraints. In addition to being

a memory-dependent type of controller, the core advantage of the algorithm tends to

break down with changes in the system model, such as physical parameters, which

could require the repetition of the whole offline pre-processing phase.

2.1 Receding Horizon Control

MPC is nearly universally implemented as a digital/discrete control. It generates an

input sequence at each sampling instant for the indicated horizon to minimize the

related cost function while respecting the specified constraints. The idea of calcu-

lating the manipulated signals online is commonly referred to as Receding Horizon

Control. In order to generate the optimal manipulated signal, a finite horizon optimal

control problem shall be solved in each sample according to the desired performance

criteria. MPC aims to find an optimal input signal that will drive the system to the

desired configuration by minimizing a quadratic cost function. The tracking of the

desired set-point is the minimum criteria to be fulfilled. Fig.2.1 illustrates the idea of

the receding(shifting) horizon control over the predictions on state and manipulated

variables. Hp determines the maximum number of future responses from time k., the

parameter Hu is referred to as the parameter for the prediction of the number of free

8

moves. There is a degree of freedom to select the Hu parameter independently of

the Hp, and it is commonly chosen as Hu < Hp. The values of manipulated signals

from Hu to Hp are holding as constant. Taking the Hu parameter less than Hp helps

to reduce the computational burden since the optimization dimension is determined

by Hu. Once MPC calculates the control input sequences, only the first element of

the sequence is applied to the system. In the next time step, the optimization prob-

lem is repeated over the shifted horizon to find a new sequence that may differ from

the previous one. MPC computes the optimization in each sample rather than hold-

ing the control signal constant over the prediction horizon due to the fact that there

could be a deviation between prediction and the system behavior through each step.

This receding computation enables the regulation of the deviation from one sample to

another. Solving an optimization algorithm at each sample time step is costly accord-

ing to sample time and memory usage limitations. However, the computing control

variable at each step has the advantage of rendering the system more responsive to

disturbances and more robust to modeling errors or uncertainties on the model or its

parameters.

Energies 2017, 10, 1098 10 of 24

this problem, in this study, we propose an appropriate control threshold for Hp, that is, the feedback

correction mechanism is removed when
4

1
() 10e k

 and vice versa.

1k k 1k 2k 1k M Pk

Control horizon Hu

Prediction horizon Hp

Past output
Predicted future output

Past control action
Future control action

Past Future

Set-point

(.)y

Input

Reference

Future behaviour

(.)u

Output

Sampling instant

Figure 5. General concept for model predictive control (MPC).
Reference Trajectory

In MPC applications, the reference trajectory is one of the advantages of a predictive control
scheme. The reference trajectory denotes a first order exponential curve used to make a gradual
transition to the desired set-point value. If the value of the output function ()y k should move to the
desired value r(k) along a reference trajectory with respect to the sampling time instant k, the
output reference trajectory over the prediction horizon can be denoted as [46]:

(P) (P 1) (I)r(P),

() (),
r r

r e

y k y k k

y k y k

(24)

where 1 1

1 1

() ()

() ()

e k e k
diag

e k e k

 is an adjustable variable, in which 0 ,0 1 ,

this value constitutes an adjustable value 1 1
0 (())/ (()) 1e k e k that could influence the

response of the system. Figure 6 plots two trajectory forms according to two different values of ζ
when the reference r(P)k is constant. Observed from this figure, the reference trajectory is fast
tracked according to the small values of ζ as shown in the curve of

_ 1 (P)ry k ;
 if this value of ζ is

increased, the reference trajectory becomes the curve of
_ 2 (P)ry k , slowly giving rise to a

smoother response.

_1(P)ry k

(P)r k

()y k

k

Past Future

Set-point

_ 2 (P)ry k

Figure 6. Reference trajectory according to the different values of ζ.

Figure 2.1: The illustration of the Receding Horizon Control idea. In each step, the

horizon is shifting over time to generate the optimal control sequence.

9

2.2 Problem Formulations

2.2.1 System Model

Model predictive controllers rely on parametric dynamic models of the process. These

models can be obtained via empirical techniques, e.g., linear data-driven system iden-

tification, via modeling using first principles, e.g., modeling mechanical and electrical

components, or a mixture of both approaches. MPC chooses the best control action

based on predictions by solving the optimal control problem over a pre-defined hori-

zon. MPC uses a system model as the algorithm’s fundamental property to predict

the future responses of the system. The linear time-invariant(LTI) system model is

considered in the form of discrete state-space form in this thesis, and it is given by

the following equations,

xk+1 = Axk +Buuk (2.1)

yk = Cxk (2.2)

Here xk ∈ Rnx represents the states of the system, uk ∈ Rnu is control signal, and

yk ∈ Rny is the output vector. The A,Bu and C matrices are used to describe the

system.

Sensing elements play a crucial role in feedback control strategies. Most of the prac-

tical applications include related sensing elements to measure the system states. Even

if all states in the system are measurable in most cases, they may be noisy in practical

application due to uncertainty in measurement or switching noise in the driver. MPC

utilizes an observer by using the discrete state-space form of the system model in-

stead of direct usage of measurements to increase the quality of the state information

and reduce the effects of measurement noises, which lead to undesirable ripples in the

steady-state. In this context, MPC uses the output of the observer at each step in the

computation of control actions, which is very a common practice in practical MPC

applications[14, 15]. Thanks to its simple and effective structure, we implement the

well-known observer method, i.e., Luenberger Observer,

10

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k) (2.3)

where x̂k is the estimated state. L is user-specified observer matrix and it is selected

as steady-state Kalman filter gain.

The noticeable absent topic of this thesis is to provide background for the stability

of MPC. However, the primary focus of this work is not to investigate the stability

of the closed loop system as it is proved with several approaches over the past three

decades [16, 7, 17, 18]. The literature survey on the stability investigation of MPC in

[16] formalized the conditions for closed loop stability for different cases, e.g., open

loop stable/unstable. It is shown that the nominal stability is achieved via extending

the prediction horizon that captures the dynamics of open loop stable or introducing

terminal set or terminal constraint that drive the states to predefined set at the end.

2.2.2 Augmented State Formulations

It is inevitable in the practical applications that the model includes uncertainties or

parameter mismatches that lead to undesirable effects on the system’s performance

or causes to have offset for reference tracking applications. MPC for LTI systems

assumes that the system model or its parameters are constant over the prediction.

Therefore, the algorithm requires some external control mechanism to handle this

issue. On the other hand, there could be some other modifications to the system

state based on the system requirements. In this section, we introduce new states or

modifications to the states that are presented to fulfill system requirements.

2.2.2.1 Offset-free tracking

In order to have zero offsets in tracking the desired set-point, integral action, which

is the well-known method in the feedback control, is presented in the algorithm. It

is also possible to avoid the offset in the predictions due to modeling error by using

this approach. A common technique to utilize the integral action is introducing the

11

integrator state by extending the existing state-space model.xk+1

xi
k+1

 =

 A 0

−C I

xk +

B
0

uk +

0
I

 rk (2.4)

yk =
[
C 0

]
xk (2.5)

2.2.2.2 Alternative State Choices

In the standard formulation of the LTI system, u is taken as the input while x rep-

resents the system states. However, it is sometimes more convenient to express the

system model with the combination or modified form of the existing states or inputs.

One might as well desire to penalize the rate of change of the system input. Therefore,

the algorithm requires a new augmented state that represents the change of the input.

Furthermore, the change of the control signal goes to zero as tracking performance is

satisfied, i.e., steady-state.

Introducing the new augmented state that meets the specification as,

∆uk
def
= uk − uk−1 (2.6)

uk = uk−1 +∆uk (2.7)

xk+1 = Axk +Buk = Axk +Buk−1 +B∆u (2.8)

Define: x̃k = uk−1 (2.9)xk+1

x̃k+1

 =

A B

0 1

xk

x̃k

+

B
1

∆uk (2.10)

The boundary is related to integrating the produced optimization variable, i.e., change

of the input. Fig. 2.2 represents this relation that includes the discrete integral in the

intersection of the plant and the controller.

2.2.3 Generating State Matrices

The fundamental property of MPC is to predict the system to generate the best possi-

ble selections of the control input sequence. The number of the predicted future steps

is determined by the Hp parameter. As is mentioned, the algorithm has the ability to

12

SYSTEM
MODEL

MPC
CONTROLLER

z
z-1

𝛥u u

CONTROLLER

REAL SYSTEM

Figure 2.2: The illustration of the relation between MPC controller and the system

itself. MPC produces the change of the control input, whereas the input is applied to

the system after integration.

determine the number of Hu free moves of the manipulated input in the future. Since

these two and other parameters are specified in the building of the algorithm step,

future steps of the model are calculated offline and saved as constant values to feed

the algorithm in the online calculations.

The number of the free moves in the future in terms of change of the control signals,

uk = uk−1 +∆uk

uk+1 = uk−1 +∆uk +∆uk+1

...

uk+Hu−1 = uk−1 +
Hu−1∑
i=0

∆uk+i (2.11)

and the system state xk is predicted Hp steps in the future as,

xk+1 = Axk +Buk = Axk +B(uk−1 +∆uk)

xk+2 = Axk+1 +Buk+1 = Axk+1 +B(uk−1 +∆uk +∆uk+1)

xk+2 = A2xk + (B + AB)(uk−1) + (B + AB)∆uk +B∆uk+1

...

xk+Hp = AHpxk +

Hp−1∑
i=0

AiBuk−1 +

Hp−1∑
i=0

AiB∆uk + . . .

Hp−Hu∑
i=0

AiB∆uk+Hu−1

(2.12)

13

Substituting the equation 2.12 in the equation in 2.1, the future output responses cal-

culated as,

yk+1 = Cxk+1 = C(Axk +B(uk−1 +∆uk)) (2.13)

yk+2 = CA2xk + C(B + AB)(uk−1) + C(B + AB)∆uk + CB∆uk+1

...

yk+Hp = C

(
AHpxk +

Hp−1∑
i=0

AiBuk−1 +

Hp−1∑
i=0

AiB∆uk + . . .

Hp−Hu∑
i=0

AiB∆uk+Hu−1

)
(2.14)

Together with, it can be defined as more compact form with the following equation

for (k + i)th time instant,

yk+i = CAk+ixk + C
i∑

w=0

AwB

(
uk−1 +

w+k∑
j=k

∆uj

)
. (2.15)

The output is in vector form with the size of Hp × 1 and its equation stated as the

following equation,
yk+1

yk+2

...

yk+Hp

 = Ψxk + Ωuk−1 +Θ

∆uk

∆uk+1

...

∆uk+Hu−1

 (2.16)

where

Θ =

CB 0 . . . 0

C(AB +B) CB . . . 0
...

...

C(
∑Hp−1

i=0 AiB) C(
∑Hp−2

i=0 AiB) . . . C(
∑Hp−Hu

i=0 AiB)

(2.17)

Ω =

CB

C(AB +B)
...

C(
∑Hp−1

i=0 AiB)

 , Ψ =

CA

CA2

...

CAHp

14

2.2.4 Casting the Formulations into Quadratic Program(QP) Problem

The core of the optimal control problem is introducing the cost function to generate

the optimal control moves based on the requirements. In almost all feedback control

systems, the primary goal of the control algorithm is to track the desired set-point.

The cost function also includes other elements in order to have the desired character-

istic. As an example, consider the cruise control in the vehicles. The main objective

is to follow the predetermined desired speed from the vehicle. In addition, one might

include the energy efficiency in the cost function that enables one to consider the

fuel quantity. For this case, the control algorithm has to ensure the balance between

tracking and the control effort, i.e., energy efficiency, so that it produces optimal con-

trol input in each step. The balance, i.e., the penalizing of each element in the cost

function based on their significance, is determined by the weighting gain matrices.

There are several ways to define the related cost function, e.g., l1 norm, l2 norm. It

is common to utilize the l2 norm in order to make the cost function quadratic. The

cost function fundamentally determines the desired performances of the system, i.e.,

minimizing a weighted sum of tracking error and control effort, which is dominantly

formulated as a quadratic cost function. In addition to reducing the quadratic cost

function to achieve the desired level of control performance, MPC must also ensure

that state, output, and input trajectories satisfy some constraints, generally formu-

lated as linear equalities and inequalities. In that respect, the sub-problem of MPC at

each step turns into a quadratic programming problem. In this context, the quadratic

programming problem of the MPC action takes the following form

min
∆u

Hp∑
i=1

||Q
1
2 (yk+i − rk)||22 +

Hu−1∑
j=0

||R
1
2∆uk+j||22 (2.18a)

subject to: xk+i+1 = Axk+i +Buuk+i (2.18b)

yk+i+1 = Cxk+i+1 (2.18c)

uk+i = uk+i−1 +∆uk+i (2.18d)

umin
i ≤ uk+i ≤ umax

i (2.18e)

ymin
i ≤ yk+i+1 ≤ ymax

i (2.18f)

∆uk+j+Nu = 0 (2.18g)

15

j = 0, . . . , Hp −Hu − 1, i = 0, . . . , Hp − 1 (2.18h)

where Q and R are the positive definite weight matrices associated with tracking

error and input effort, respectively. Feasible values are selected for Hp and Hu so as

to keep the balance between capturing the dynamics of the system and reducing the

complexity of the resulted QP problem[19].

Let us rewrite the cost function in (2.18) in a more compact form to cast it in quadratic

form. We denote J to represent the value of the cost function,

J = (yk − yrefk)TQ(yk − yrefk) + ∆uT
kR∆uk (2.19)

The weight matrices shall be positive definitive or semi-definite for the convexity of

the problem. It is also worth noticing that one may adjust each element in the gain

matrices for their purposes, and off-diagonal elements are usually left as zero if there

are no alternative formulations.

To collect the cost function with respect to ∆u, i.e., optimization variable, equation

in (2.16) is substituted into (2.19)

J = ∆uT
k (ΘTQΘ)︸ ︷︷ ︸

H

∆uk − 2ΘTQ(yrefk −Ψxk − Ωuk−1)︸ ︷︷ ︸
gk

∆u+ . . .

· · ·+ (yrefk −Ψxk − Ωuk−1)
TQ(yrefk −Ψxk − Ωuk−1)︸ ︷︷ ︸

constant

(2.20)

Since the constant(bias) term has no effect on the decision variable but the value of the

cost function, it can be excluded from the cost function. The resulting terms depend

only on the optimization variable. As we have that H term is positive definite, it is

clear that the result of the optimization problem will be the global optimum.

In order to include the constraints into the quadratic problem, three polyhedral sets

are defined to cover the change of input, input, and states.

The first constraint is on the change of the input, which is also the optimization vari-

able. It is simply defined as putting the bounds on the future predicted value of the

16

decision variable in the form of a linear constraint.

−I 0 . . . 0

0 −I . . . 0
...

...

0 0 . . . −I
I 0 . . . 0

0 I . . . 0
...

...

0 0 . . . I

∆uk

∆uk+1

...

∆uk+Hu−1

 ≤

−∆umin

−∆umin

...

−∆umin

∆umax

∆umax

...

∆umax

(2.21)

Rather than formulating the input increment, the second type constraint is formulated

by introducing integration matrices of the decision variable to cover the manipulated

input itself. The limits on the voltage or the valve position can be examples of the

input constraint.

uk = uk−1 +∆uk (2.22)

uk+1 = uk−1 +∆uk +∆uk+1

...

uk+Hu−1 = uk−1 +∆uk + · · ·+∆uk+Hu−1

or

uk

uk+1

...

uk+Hu−1

 =

I

I
...

I

uk−1 +

I 0 . . . 0

I I . . . 0
...

...

I I . . . I

∆uk

∆uk+1

...

∆uk+Hu−1

 (2.23)

17

or augmented together:

−I 0 . . . 0

0 −I . . . 0
...

...

0 0 . . . −I
I 0 . . . 0

0 I . . . 0
...

...

0 0 . . . I

∆uk

∆uk+1

...

∆uk+Hu−1

 ≤

−umin + uk−1

−umin + uk−1

...

−umin + uk−1

umax − uk−1

umax − uk−1

...

umax − uk−1

(2.24)

The last constraint is defined to bound the states in the system. There could be some

constraints that require special attention, such as avoidance of forbidden zones or cur-

rents not to exceed its rated value in the electric motor. The formulation of constraint

on states takes the system model into account to predict the future responses whether

they violate the limits in the present or future.

By using the equation in (2.16), the constraints on the output of the system with

respect to ∆u is given via the following equation:

−Θ
Θ

∆uk

∆uk+1

...

∆uk+Hu

 ≤

−

ymin

ymin

...

ymin

+Ψxk + Ωuk−1

ymax

ymax

...

ymax

−Ψxk − Ωuk−1

(2.25)

Given system structure and constraints formulation, the quadratic optimization prob-

lem can be defined as:

min
z

1

2
zTHz + zTg (2.26a)

subject to

Wz ≤ b (2.26b)

18

Algorithm 1 presents the summary of the MPC updating process in each sample time.

Most of the algorithm inputs can be calculated offline that saves computational time.

The timing diagram in Fig. 2.3 illustrates the online calculations in each sample step

Algorithm 1 MPC updating procedure in each sample step
Input: (H, g,W, b)

1 : yk← collect measurement from the system:

2 : Compute error based on the present reference rk and output yk

3 : (g, b)← Update g and b vectors corresponding linear terms in the quadratic

problem 2.26

4 : zk← solve the optimization problem such that:

minz J (zk) : 1
2
zTk Hzk + zTk g

subject to: Wzk ≤ b

5 : ∆uk ← select the first element from the Hu optimum sequence

6 : uk ← uk−1 +∆uk integrate to calculate the optimal control inputs

7 : x̂k+1← Update states via observer

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k)

to compute new control actions for the system.

Update
Control Input

ADC CONTROLLER DAC SUPY IDLE

Read
ADC

Compute Control
Action:

MPC QP Solver

Supervisory:
Comm,

Wathdogs,etc Idle
Task

k-1 k k+1 k+2

Figure 2.3: The overall timing diagram to execute the online calculations in each

sample step.

19

20

CHAPTER 3

ONLINE OPTIMIZATION IN MPC

Solving the optimization problem in each sample plays a crucial role in the con-

strained MPC. As is mentioned, it is possible to transform MPC formulation into

a convex quadratic optimization problem with linear constraints for linear-dynamical

systems. Thus, researchers and engineers have long been focused on adapting quadratic

programming(QP) techniques in the MPC domain. One of the critical tasks in online

MPC is to compute the solution of the problem 2.26 to give an "accurate" solution

within the sampling time, which is generally in the order of milliseconds or even sub

milliseconds for the majority of the modern control applications. In this thesis, one

of our main focuses is to efficiently implement an active set method that provides the

solution inside the allocated time for QP and uses minimal memory space. Before

starting to introduce the solving methods for QPs, let us define the parametric QP,

Definition 3.0.1 The QP is called as parametric QP, if it defined as,

min
z

1

2
zTHz + zTgk (3.1a)

s.t. Wz ≤ bk (3.1b)

where gk and bk are dynamically changing vectors depending on the information of

the system at kth step.

The reason to define the parametric QP is that only the constraint and gradient vectors

in the MPC formulation are changing over each sample step based on the optimiza-

tion variable. The Hessian and the constraint matrix, i.e., left half of the constraint

relation, are calculated offline and saved as constant values to be used throughout the

operations. This section of the thesis aims to provide the methods for solving the

21

QP by starting from an unconstraint case. As a further contribution, hints and some

suggestions for the practical implementation are also addressed.

3.1 Unconstrained Case in QP

The solution of the unconstrained QP is straightforward as opposed to the constraint

case since the Hessian matrix is constructed to be as positive definite, so the prob-

lem is strictly convex. Therefore, it only checks the first-order condition to find the

optimum global point, i.e.,

∇(J) = 0 that is, Hz + gk = 0 (3.2)

Since we deal with finding the solution for parametric QPs, i.e., gradient g is the only

parameter that changes over each step, and it is trivial to obtain the solution via only

matrix-vector multiplication.

∆u = −H−1gk (3.3)

On the other hand, there are several approaches in the literature[4] to find the optimal

solution for unconstrained QPs where the inverse of the Hessian matrix is required in

each sample. For those cases, taking the inverse of the matrix costs heavily in terms

of computational complexity. Therefore, one technique is to apply Cholesky decom-

position to calculate the inverse of the matrix to reduce the computational burden. In

this approach, H matrix is assumed as positive definite. It can be decomposed as the

product of the two matrices, i.e., multiplication of lower triangular and its conjugate

transpose.

H = LLT (3.4)

The inverse of the matrix is then calculated by applying forward and back substitution

methods, respectively.

L LT z︸︷︷︸
y

= −gk −−−−→
back-subs

Ly = −gk −−−−−−→
forward-subs

y∗ (3.5)

22

3.2 Active-Set Methods for Solving QP

The idea of the active set method is to impose all constraints as equalities when they

are active at the current iteration. In other words, this method uses the fact that the

solution of the constraint QP lies on the boundary of the constraints. Otherwise,

the solution will be inside the constraints, which is the optimum global point, i.e.,

unconstrained case. The problem is reduced to the sub-problem of QP with equality

constraints i.e. WAz = bA where A denotes active set.

min
z

1

2
zTHz + zTgk (3.6a)

subject to

WAz = bA (3.6b)

The solution is found iteratively starting from a feasible point by adding the violated

constraint into or dropping the blocking constraint from the active set in each iteration.

The active set method has different variations: primal, dual, and primal-dual[5].

The primal method starts from the primal feasible initial point z0 and iterates by

maintaining primal feasibility in each iteration until dual feasibility (i.e., Lagrange

multipliers is greater than zero) is reached[5, 20]. The algorithm requires an auxiliary

method, e.g., the simplex method, to provide the initial feasible point. It is also pos-

sible to obtain the initial feasible working set when the initial feasible point is found.

Note that the number of constraints might be more than the size of the optimization

variable(n). The range space of the solution space can be represented by the linear

combination of n linearly independent vectors. Therefore, the working set includes

linearly independent constraint vectors only up to n, since the other constraints are

only the linear combination of the constraints inside the working set.

The next iteration of the optimization variable is chosen as,

zk+1 = zk + τ k∆zk, τ ∈ R≥0 (3.7)

The ∆z represents the direction point from the present point to the optimal point.

Once the ∆z equals zero, i.e., no more direction, the optimality conditions(Lagrange

multipliers) must be checked. If there are negative Lagrange multipliers, then the

23

corresponding constraint must be dropped from the active set since it is no longer a

feasible constraint for the present point. If there are more negative Lagrange mul-

tipliers than one, then the constraint related to the most negative multiplier must be

dropped.

On the other hand, if the ∆z is different from zero, the algorithm takes a step in the

direction of ∆z with step length τ . The reason to include the τ term as the product

of the ∆z is to avoid the primal infeasibility since there can be a violation in the

non-active constraints when moving from zk to zk+1. If there is a violation, the step

size of the direction is determined to satisfy the corresponding violation. The related

constraint is called a blocking constraint and must be added to the active set. The

value of the step length is determined as follows,

τ = min
(
1,min

i/∈Wk

(W T
q z

i − bq

W T
q ∆zi

| W T
q ∆zi < 0

))
(3.8)

The active-set method adds or drops only a constraint in each iteration. Thus, the

algorithm shows its strength for medium or small-size problems, which is the case of

most embedded MPC in terms of execution speed and solution accuracy[21, 22]. Fur-

thermore, the algorithm reaches the optimum point, even in ill-conditioned problems,

in a finite number of iteration[23]. We provide the summary of the primal method

active-set method via Algorithm 2.

Algorithm 2 Primal Active Set Method
Input: Generate a (non-optimum) feasible starting point z0 which satisfy Wz ≤ b.

Create the initial working set with constraints active W0 =
{
z|W T

i zk = bi
}

for k=0... do

Construct the active set matrix WA = [aTi], i ∈ Wk and solve KKT(Karush-

Kuhn-Tucker): H W T
A

WA 0

∆z∗

λ∗

 =

−(Hzk + gk)

0

 (3.9)

if ∆z == 0 then

Check all Lagrange multipliers λi corresponding constraints in the Active Set

if λi ≥ 0 then stop and return optimal point: i.e. (z∗)

else

24

Remove the constraint, which has the most negative λ from Wk

end if

else

Compute the step length via Eq-3.8

Update the optimization variable via Eq-3.7

if Blocking constraint found then

Add it to the current active set,i.e., Ai+1 ←Ai ∪ q

end if

end if

end for

3.2.1 Dual Active Set Solver

This section describes the details of the dual active set solver, which is a very attrac-

tive method for solving small and medium-size problems and provides infeasibility if

there is no solution for related QP. As opposed to the primal method, the dual method

starts from dual feasible initial points z0,λ0. It aims for primal feasibility and main-

tains dual feasibility in each iteration until no violated constraints exist[24, 25]. In

this work, we use a dual-active set solver that is based on the works of Goldfarb and

Idnani [24]. The pair (z∗,λ∗) is the optimal point of the problem (2.26) with equality

constraints if they satisfy the first-order necessary condition by solving the following

linear equation:

 H W T
A

WA 0

︸ ︷︷ ︸

KKT

z
λ

 =

−gk
bk

 (3.10)

The solution of (3.10) exists if the KKT matrix is not singular. MPC formulation

enables that the Hessian matrix H is positive definite i.e. nonsingular, and if WA is

full row-rank in the current iteration, the inverse of the matrix exists.

Several direct methods can be applied to explicitly take inversion of the KKT matrix,

such as Schur complement, null-space, and range-space approach[20]. The range-

25

space approach is used to express explicit inversion of the KKT matrix. H W T
A

WA 0

H−1(I −W T
AZWAH

−1) H−1W T
AZ

ZWAH
−1 −Z

 = I (3.11)

where Z = (WAH
−1W T

A)
−1. To calculate the pair (∆z,∆λ), two operators are de-

fined as;

K = ZWAH
−1 (3.12)

G = H−1(I −W T
AK) (3.13)

where WA ∈ Rnaxn.

Goldfarb and Idnani [24] suggest that the dual-method can use the unconstrained

optimum point of the objective function as their initial value.

(z0, λ0)← (−H−1g, 0) (3.14)

In contrast, the primal method needs an auxiliary algorithm that provides a feasible

starting point and active set. Thus, the dual-method, except for some basic matrix

operations, does not require a preliminary calculation phase as in the primal method.

Also, the dual-method finds the optimal solution with fewer iterations compared to the

primal method that makes the dual method more efficient than primal method [24]. In

addition, the solution of the unconstrained problem is trivial in the dual-method since

it starts with the unconstraint optimum point.

The primal and dual variables are updated in each iteration according to the equation

(3.15) so that the most violated constraint becomes active(feasible) at iteration k while

maintaining dual feasibility.

zi+1 = zi + αi∆zi,

λi+1 =

λi

λk
p

+ αi

∆λi

1

 (3.15)

where the direction variables ∆z, ∆λ are updated via the following equations,

∆zi = GW T
A , (3.16)

∆λi = KW T
A (3.17)

26

In opposition to the primal method, there are two-step length parameters in the dual

method for primal and dual variables, respectively. The step length must be minimum

enough to satisfy the violated constraint, if exists, and also must be minimum enough

to maintain the dual feasibility. Therefore, primal and dual step lengths are firstly

determined separately to fulfill their properties. As a result, their minimum value is

taken to be used in the algorithm to maintain both feasibilities.

Three cases occur according to the value of the primal-dual step length. It is either

equals to the primal or dual variable if their value is less than ∞. The dual method

can detect whether there is an infeasibility by using the primal-dual step length, i.e.,

if the value is∞, there is no direction to take.

1. Full step can be taken if αi = αi
primal

2. Partial step can be taken if αi = αi
dual and the kth blocking constraint must be

dropped from active set such that k ← argmin
k∈A

(− λi

∆λi |∆λi
k < 0)

3. Problem is infeasible if αi =∞

Note that if the algorithm terminates with infeasibility result, the optimization vari-

able ∆u can be set to either its previous or to zero since its terminated value might be

undesirable to the system. Algorithm 3 summarizes the processes in the dual active

set solver.

Algorithm 3 Dual Active Set Solver[24]
Input: (H, g,W, b)

Step-1. Initialization of the algorithm:

set i←0, (z,λ)←(−H−1g, 0), A←∅, J←Z−1, n0
a ← 0

Step-2. Constraint violation check:

set q ←

 k ∈ (I\A|(Wkz
i
k − bk) > 0)

0, otherwise
Step-3. Termination condition check:

if q = 0 then, stop and return optimal active set: i.e. (z∗, λ∗) and corresponding

active set Ai(z∗)

end if

27

Step-4. Calculate step directions:

∆zi = GW T
A (primal direction)

if ni
a > 0 then, calculate the dual direction

∆λi = KW T
A (dual direction)

end if

Step-5. Calculate step lengths:

αi
primal ←

 ∞, if ∥∆zi∥ == 0
WT

q zi−bq

WT
q ∆zi

, otherwise

αi
dual ←

 ∞, if ∄k

− λi
k

∆λi
k
, otherwise

s.t. argmin
k∈A

(− λi

∆λi |∆λi
k < 0)

αi ← min(αi
primal, α

i
dual)

Step-6. Check for feasibility and take a partial step in dual space:

if αi
primal =∞ then

if αi
dual =∞ then,stop and return QP is infeasible

else

Drop blocking constraint i.e.

Ai+1 ←Ai\k: k calculated in Step-5

λi+1
p ← λi

p + αi, λi+1 ← λi + αi∆λi

ni+1
a ← ni

a − 1, and i← i+ 1

Update R and J matrices and go to Step-4

end if

end if

Step-7. Take a full step in primal and dual space

zi+1 ← zi + αi∆zi, λi+1 ← λi + αi∆λi, λi+1
p ← λi

p + αi

if αi = αi
primal then

Add current violated constraint in the active set i.e. Ai+1 ←Ai ∪ q

ni+1
a ← ni

a + 1, and i← i+ 1

Update R and J matrices and go to Step-2

else

Drop blocking constraint i.e.

Ai ←Ai−1\k: k calculated in Step-5

ni+1
a ← ni

a − 1, and i← i+ 1

Update R and J matrices and go to Step-4

28

end if

Output: (z∗, λ∗) and A(z∗) and return flag

We also draw the flowchart of the dual active set solver in order to make the algorithm

plain and understandable. Fig. 3.1 illustrates the overall progress in the algorithm in

terms of flow diagrams.

 𝑞 0

𝛼𝑝𝑟𝑖𝑚𝑎𝑙
𝑖 ∞

𝛼𝑑𝑢𝑎𝑙
𝑖 ∞

stop and return

QP is infeasible!

𝛼 𝑖 𝛼𝑑𝑢𝑎𝑙
𝑖

Drop blocking constraint i.e.

 𝔸 𝑖 1 ← 𝔸 𝑖 \ 𝑘

Update J and R matrices

Drop blocking constraint i.e.

 𝔸 𝑖 1 ← 𝔸 𝑖 \ 𝑘

 𝜆 𝑖 1 𝜆 𝑖 𝛼 𝑖 Δ𝜆 𝑖

𝜆𝑝
𝑖 1 𝜆𝑝

𝑖 𝛼 𝑖

Update J and R matrices

Add current violated constraint in the

active set i.e. 𝔸 𝑖 1 ← 𝔸 𝑖 ⋃ q

Update J and R matrices

Calculate step lengths:

𝛼𝑝𝑟𝑖𝑚𝑎𝑙
𝑖 , 𝛼𝑑𝑢𝑎𝑙

𝑖

𝛼 𝑖 ≜ min 𝛼𝑝𝑟𝑖𝑚𝑎𝑙
𝑖 , 𝛼𝑑𝑢𝑎𝑙

𝑖

 Constraint violation check:

𝑞 ← 𝑘 ∈ 𝕀\𝔸 | 𝑊𝑘𝑧𝑘
𝑖 𝑏𝑘 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Take full step in primal and dual

space: 𝑧 𝑖 1 ← 𝑧 𝑖 𝛼 𝑖 Δ𝑧 𝑖 ,

𝜆 𝑖 1 𝜆 𝑖 𝛼 𝑖 Δ𝜆 𝑖 ,

𝜆𝑝
𝑖 1 𝜆𝑝

𝑖 𝛼 𝑖 .

Calculate step directions:

Δ𝑧 𝑖 𝒢𝑊𝑞
′ (primal direction)

Δ𝜆 𝑖 𝒦𝑊𝑞
′ (dual direction)

stop and return

optimal solution set:

𝑧∗, 𝜆∗ , 𝔸 𝑖 𝑧∗

Initialization

𝑧0, 𝜆0 ← 𝐻 1𝑔, 0

 𝔸 ← ∅

no

yes

no

yes

yes

yes

no

no

Figure 3.1: The illustration of a flowchart for the dual active set solver.

We utilize matrix factorizations to calculate primal- and dual-step directions in Step 4

instead of updating operators, G and K, explicitly in each iteration for computational

29

efficiency. Let Cholesky decomposition of H be

H = ZZT (3.18)

where Z is the lower triangular matrix, and QR decomposition of L:

L =
[
Q1 Q2

]R
0

 (3.19)

such that

L = Z−1W T
A . (3.20)

Rewriting the operators in (3.12) and (3.13) by replacing Cholesky and QR decom-

positions, we can obtain

G = J2J
T
2

K = R−1J1
(3.21)

where

J =
[
J1 J2

]
= L−T

[
Q1 Q2

]
(3.22)

In the section 3.2.2, we provide the details of the efficient matrix updating procedure

to accelerate the algorithm in terms of speed.

3.2.2 Implementation Details of Efficient Matrix Updating Strategy

Givens Rotation and Householder Reflection are two common approaches to compute

the QR factorization[26]. The details of the two algorithms are described with a basic

example in Appendix A for the ease of the reader. In the active set method, there

is only single constraint addition to or deletion from the active set in each iteration.

Therefore, it is more costly to utilize QR decomposition of L in each iteration than

updating J and R matrices via numerically stable methods [24]. The algorithm starts

with the J = Z−T and R = ∅ as their initial point and then, continuing to update

them whenever WA matrix changes until the algorithm gives the optimum points. Our

implementation uses the Householder Reflection method to update J and R matrices

in the constraint addition step. When the new constraint is added into active set the

30

relations in (3.19) and (3.19) becomes;

Z−1
[
W T

A W T
i

]
= Q

 R rn1
i

0(n−na)x(na−1) rn2
i

 (3.23)

There is only one rotation matrix applied to every new constraint to make the R matrix

upper triangular due to they enter into the active set from the end. Applying the

rotation matrix to each side;

QnZ
−1
[
W T

A W T
i

]
= QnQ

 R rn1
i

0(n−na)x(na−1) rn2
i

 (3.24)

= Q̂

R rn1

i

0(1)x(na−1) r

0(n−na−1)x(na−1) 0(n−na−1)x(1)

 (3.25)

Since the rotation matrix Qn is orthogonal, it does not hinder to hold the property

(3.18) after multiplication with Z−1[14]. Our implementation uses the Givens Ro-

tation method to update matrices in the constraint deletion from the active set. Un-

like the constraint addition step, there might be more rotations in the deletion step

depending on the constraint place since the deletion can be anywhere inside the ac-

tive set [27]. Fig.3.2 illustrates the updating procedure for both Givens Rotation and

Householder Reflection method in the first constraint is added into the active set case.

The Householder Reflection method takes the vector as a whole to rotate, whereas the

Givens method updates it as a piece of the vector with size 2.

We choose two different methods for updating the matrices to increase the algorithm’s

computational efficiency and reduce the execution time. We compare the two algo-

rithms in both addition and deletion steps over their total floating-point operations

(flops) inside the algorithms, enabling us to assess the overall computational cost in

the updating process independent of the adopted hardware. The number of flops in

our measurements also includes
√

operation in addition to 4 basic mathematical op-

erations i.e. (±, ∗,÷). We divide the operations into 2 subgroups; (±, ∗) and (÷,
√

)

since the number of the cycles to execute the÷ and
√

operations cost more than the

(±, ∗) in almost all types of computing units.

To be more precise, suppose that the active set is empty and let n be the dimension

of solution space. In the worst-case scenario, when the first constraint is added into

31

0

0

0

0

0

0

0

00

House‐Holder
Reflection
Method

Givens
Rotation

Givens
Rotation

Givens
Rotation

Figure 3.2: The illustration of the updating the vector with size 4 via Givens Rotation

and Householder Reflection.

the active set, the methods shall perform n− 1 calculations to transform R into upper

triangular form if the Givens Rotation method is adopted. In contrast, there is a

single column operation that enables less number of calculations in the Householder

Reflection method. Suppose now that the active set has n constraints and the first

column i.e., first-in constraint, is removed from the set. Both methods now shall

perform n− 1 step to complete updating the process. The number of flops needed to

be executed in the Householder method is almost 50% less than the Givens Rotation

in QR decomposition [28]. However, using the fact that the R is in upper Hessenberg

form in constraint deletion brings more flexibility in executing fewer flops.

Table 3.1: The comparison of Householder and Givens Rotation Methods about their

counts of operations

House-Holder Givens Rotation

Constraint Addition

(+,−, ∗)|(÷,
√

) 93|2 84|9

Constraint Deletion

(+,−, ∗)|(÷,
√

) 147|6 102|9

32

Table 3.1 provides the overall number of flops for constraint addition and deletion

steps of both algorithms. The numbers in the table represent the total number in

our efficient C-code implementation by taking the dimension of the solution space

as 4. The count of (±, ∗) is slightly different in the constraint addition, whereas

there is a significant difference in the number of (÷,
√

) which is the main part

of the execution speed. On the other hand, the main difference comes from (±, ∗)
operations in constraint deletion procedure that dominates the overall performance in

terms of speed.

To be more precise, we provide an example according to the clock cycles information

for operations in C28x processors provided by Texas Instruments. The ÷ operation

takes 24 clock cycles while
√

operation takes 28 clock cycles [29]. On the other

hand, 2 clock cycles are required to calculate (+,−, ∗) operations [30]. Therefore, we

can obtain the total clock cycles for both methods in constraint addition and deletion

steps. The Householder Reflection method is more suitable in the constraint addition

step since it only takes the 238 clock cycles to update the matrix as Givens Rotation

requires 396 clock cycles. On the other hand, Givens Rotation shows its effectiveness

in the constraint deletion step since 432 clock cycles are needed to update the matrix.

In comparison, the Householder reflection method requires 450 clock cycles.

3.3 Real Time Implementation

This section covers the real-time MPC implementation and its comparison with liter-

ature examples to show the feasibility of the algorithm in terms of execution speed.

The rotating antenna and Cessna Citation 500 examples are selected to analyze the

efficiency of the proposed algorithm since there are several studies [31, 32, 33, 34, 1]

in the literature to provide the execution speed of these two examples that enables us

to compare them with our implementation. While we only provide the solution and

comparison for the rotating antenna example, we examine some additional properties

in Cessna Citation 500 example in terms of feasibility of the QP solver, e.g., scaling

the original algorithm to eliminate the effect of the numerical problems. We ver-

ify the effectiveness of the algorithm via processors-in-the-loop(PIL) simulations in

Matlab/Simulink environment by using the F28377S control card provided by Texas

33

Instruments.

3.3.1 Rotating Antenna Example

The goal of this problem is to regulate the angle difference between the antenna and

the target so that the direction of the antenna always points at the target object [35].

The system, as illustrated in Fig. 3.3, basically consists of an antenna and electric

motor, which is directly coupled. It is assumed that all state variables are measurable

and defined as the position of the antenna (θ and θrrad) and the angular velocity of the

antenna (θ̇rad/sec). The CT state-space model is discretized via the forward-Euler

method with sample time Ts = 0.1s to obtain the discrete-time state-space model

structure as

xk+1 =

θk+1

wk+1

 =

1 0.1

0 0.99

xk +

 0

0.0787

uk (3.26)

yk =
[
1 0

]
xk (3.27)

For this example, MPC controller designed with Hp = 10 and Hu = 3 to make them

comparable with the other applications. The tuning weights are specified as R = 1

and Q = 3. In addition, the voltage supplied to drive the electric motor is limited to

−2V ≤ uk ≤ 2V (3.28)

The system is firstly evaluated in the primal active set solver. We implement the

primal method to analyze the efficiency of the second method. Fig. 3.4 illustrates the

tracking performance, input voltage under constraint, and the execution time of the

overall MPC algorithm with the primal method. The maximum execution time that in-

cludes the necessary MPC steps in addition to optimization solver is about 0.252µsec.

The desired target angle is applied as the step input with the change of (0− π) to op-

erate the system as close to the constraint as possible for stressing the optimization

solver. On the other hand, Figure 3.4 shows the result of efficient implementation of

the dual active set method. We observe from the results that executing the algorithm

via dual method approximately two times faster than primal method.

34

Antenna
Direction

Target

Object

𝜃𝑟 𝜃

Figure 3.3: Basic diagram of antenna angular positioning system.

We compare the efficiency of the algorithm with other studies in the literature in

terms of execution speed. Table-3.2 shows that the implementation of the efficient

dual method has the best execution time performance among the other studies.

Execution Times (ms) of the Rotating Antenna Example

Dual

Active Set OP

max time

Currie[31]

Interior Point QP

max time

Vouzis[1]

Modified Newton

max time1

Amira[32]

Interior Point QP

average time

Hp 10 10 10 4

Hc 3 3 3 3

tsol(ms) 0.095 0.153 8.4 10.586

Table 3.2: Comparison execution time of the different MPC application for the rotat-

ing antenna example. 1 It is the estimated data based on the timing information in [1],

that reported time is calculated by taking Hp = 20

3.3.2 Cessna Citation 500 Example

This example is provided by J.Maciejowski in [7] to validate the performances of

the MPC under some set of constraints on both control input and states. The single-

input multi-output(SIMO) state-space model is obtained by linearizing the dynamics

of the Cessna Citation 500 aircraft. The elevator angle is the manipulated variable in

35

0 5 10 15 20

Time (sec)

0

100

200

300
Execution Time of MPC with Primal Method

0 5 10 15 20

Time (sec)

0

50

100

Execution Time of MPC with Dual Method

0 5 10 15 20

Time (sec)

-5

0

5

P
o
s
it
io

n
 (

ra
d

) Angular position of Antenna

Command

Antenna Position

0 5 10 15 20

Time (sec)

-2

0

2

4

V
o
lt
a
g
e
 (

V
)

Control Signal (Volt)

Figure 3.4: Performance result of the rotating antenna example based on the Dual

Active Set Method. Figure also include the maximum execution time of the problem

when it is solved by primal method.

the system (u(rad)), pitch angle (y1(rad)) and altitude of the aircraft (y2(m)), and

altitude rate (y3(m/sec)) are the outputs of the system respectively. The linearized

continuous time state-space model is defined as

ẋ[4x1] =

−1.2822 0 0.98 0

0 0 1 0

−5.4293 0 −1.8366 0

−128.2 128.2 0 0

x[4x1] +

−0.3
0

−17
0

u (3.29)

36

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

0

5

10

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

0

5

10

Figure 3.5: The number of iteration of Cessna example with scaled(bottom) and not

scaled(top) results. The infeasible solutions are indicated by blue dots.

y[3x1] =

0 1 0 0

0 0 0 1

−128.2 128.2 0 0

x[4x1] (3.30)

The CT model is discretized by taking the sample time as Ts = 0.5, the controller

parameters for prediction horizons are Hp = 10, Hu = 3, and weightings are Q = 1,

R = 1 in order to compare with the literature under the same operational conditions.

The elevator angle and its rate, pitch angle and, altitude rate are constrained to:

|∆u| ≤ 0.524rad/sec (30◦/sec) (3.31)

|u| ≤ 0.262rad (15◦) (3.32)

|y1| ≤ 0.349rad (20◦) (3.33)

|y3| ≤ 30m/sec (3.34)

The Cessna Citation 500 example suffers from numerical errors in the single preci-

sion calculations. The Hessian matrix in the optimization formulation H is calculated

based on the future predictions of the system that results to have huge power of the

37

state transition matrix, if the prediction horizon is large. In this example, H matrix is

in the order of 1e7 that causes numerical errors in the calculations. To overcome this

issue, the original optimization formulation in 2.26 is re-formulated as,

min
z

1

2
zT H̃z + zT g̃k (3.35a)

subject to

W̃z ≤ b̃k (3.35b)

where

H̃ = αH, g̃ = αg and, W̃ = βW, b̃ = βb.

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

200

400

600

0 5 10 15 20

Time (sec)

0

10

20

P
it
c
h

 A
n

g
le

 (
d

e
g
)

0 5 10 15 20

Time (sec)

0

200

400

A
lt
it
u
te

 (
m

)

0 5 10 15 20

Time (sec)

0

20

40

A
lt
it
u

te
 R

a
te

 (
m

/s
)

0 5 10 15 20

Time (sec)

-10

-5

0

5

E
le

v
a

to
r

A
n

g
le

 (
d

e
g

)

Figure 3.6: The execution time and overall results of the Cessna example. The max-

imum execution time(652µsec) calculated at the maximum number of iteration oc-

curred, which is the both pitch angle and altitude rate hit their limits.

38

The scaling of the original problem by using parameters α and β does not affect the

solution but helps to increase the accuracy of the solution. The scaling parameters

are usually chosen as to bound original problem in some range, e.g., ±1 or ±10.

The results in 3.5 show that most of the optimization steps resulted in the infeasible

solution. Scaling the original problem improves the accuracy of the solution where

the numerical problems occur.

Fig.3.6 illustrates the overall results for execution time and responses of the aircraft.

The Cessna aircraft follows the predefined setpoint(400m) and satisfies the system’s

constraints. The maximum execution time is measured as 652µsec, which is below

among the studies in the literature, e.g., the best execution time is 1.10ms [31, 33,

34].

39

40

CHAPTER 4

IMPLEMENTATION OF MPC FOR ELECTRIC MOTOR: PMSM

Permanent magnet synchronous motor (PMSM) is one of the most common electric

machines used in various industries due to its torque-speed characteristic and relia-

bility for long-term use. One of the most common techniques to control the PMSM

is vector control, also known as field-oriented control (FOC). Increased demand for

high-performance operations in electrical drive systems has led engineers to adopt

MPC and similar advanced model-based optimal algorithms for the control PMSM

machines.

Several applications with model predictive torque control(MP-TC) successfully ap-

plied to control PMSM by computing the control signal via online optimization PMSM

[15, 36]. In addition to these, some researchers also integrated field weakening opera-

tion with predictive control for some applications that require over-speed capabilities

of the motors [37, 38, 39, 40, 41]. Mynar et al.[38] implement explicit model pre-

dictive control in high performance dual-core i7 processor that results in consuming

a large amount of memory space. As a further investigation, the authors mention

performing such an algorithm in the low-cost motion controller. Most of the other

studies [37, 40, 41] adapted Finite Control Set (FCS) which basically finds the op-

timal switching position instead of producing the duty cycle as in Continuous Con-

trol Set(CCS) [38]. This approach couples the sample and switching frequency that

causes to operate the inverter at variable frequency. In [42], unconstrained MPC is

used to generate the d axis current reference and to satisfy the constraints, saturation

blocks are utilized.

The scarce resources in online CCS-MPC with the field weakening operation and its

implementation in low-cost platform encourage us to investigate this application. As

41

a further contribution, we address hints and some suggestions for the ease of practical

implementation.

4.1 System Modeling

MPC is a state-space domain model-based control policy; thus, we need to derive a

state-space representation for the PMSM system. We utilize the synchronous refer-

ence frame model (d-q model) because it makes the electrical variables stationary in

the steady-state [19] and enables the regulation of torque and flux content separately

(vector control) to achieve the maximum efficiency and perform the field-weakening

operation. Following equations models the dynamics for a PMSM based on d − q

reference frame model [43].

4.1.1 Mathematical Model

For a PMSM, d-q reference frame model is given by the following equations [43] and

q-axis and d-axis equivalent circuits are shown in Fig. 4.1 [2].

did(t)

dt
=

1

Ld

(Vd(t)−Rsid(t) + ωe(t)Lqiq(t)) (4.1a)

diq(t)

dt
=

1

Lq

(Vq(t)−Rsiq(t)− ωe(t)(Ldid(t) + λm)) (4.1b)

Te(t) =
3

2
pp(λmiq(t) + (Ld − Lq)id(t)iq(t)) (4.1c)

where

λm magnetic flux of the PM Wb

id − iq d axis, q axis current A

Vd − Vq d axis, q axis voltage V

Rs stator phase resistance Ω

Ld − Lq d axis, q axis inductance H

ωe rotor electrical speed rad/s

Te electromechanical torque output Nm

pp number of pole-pairs −

Finding a linear state-space approximation that can accurately capture the PMSM

42

Figure 4.1: Permanent Magnet Synchronous Motor d-q axes Equivalent Circuits [2]

dynamics is critical for implementing (linear) MPC algorithms. In this study, we fol-

low the approximation by Bolognani et al. [19] and treat the bilinear terms, ωe(t)id(t)

and ωe(t)iq(t), as new state variables and further assume that they are constant over

prediction horizon. We also integrate the measured rotor speed as an exogenous in-

put and again assume that it is constant over the prediction horizon. As a result,

the state- and input-vectors of the linear state-space PMSM model takes the form

[id iq ω̂eid ω̂eiq]
T and [Vd Vq]

T respectively. We finally discretize the CT state-space

model via the forward-Euler method with sample time Ts to obtain the discrete-time

state-space model structure as

xk+1 = Axk +Buuk +Gwk , yk = Cxk (4.2a)

A =

1− TsRs

Ld
0 0 TsLq

Ld

0 1− TsRs

Ld
−TsLq

Ld
0

02×2 I2×2

 (4.2b)

B =

Ts

Ld
0

0 Ts

Lq

02×2

 , G =

0

−Ts
λm

Lq

02×1

 , C =

 I2×2

02×2

T

4.1.2 Field Weakening Operation

The torque generated by the PMSM given by (4.1c) has two sources: permanent

magnet flux and rotor saliency. In a surface-mount PMSM, d-q axis inductances are

almost equal to each other (Ld≈Lq=L), and the torque is generated dominantly by

the magnet flux and q axis current. Therefore, in the normal operation of PMSM, i.e.,

below-rated speed, d axis current is set to 0 (id = 0) to produce maximum torque per

43

-90 -70 -50 -30 -10 10 30

-80

-60

-40

-20

0

20

40

240 rad/sec

275 rad/sec

310 rad/sec

345 rad/sec

Current

Constraint

Figure 4.2: Current and voltage circles for different speed values of the PMSM.

amperes (MTPA). In order to exceed the rated speed, negative id values are used to

limit the back EMF (ωeLdid + ωeλm) by creating an opposite magnetic flux to the

permanent magnet in the field-weakening region. A given i∗q reference can only be

achieved if a certain amount of negative i∗d current is applied. Applying negative id

current to reduce the back EMF so that the PMSM can reach the speed beyond its

rated speed is called a field-weakening operation. It technically modifies the current

references (i∗d, i
∗
q) at the operating speed to get maximum torque output. A common

way of vector control of the PMSM is realized by a voltage source inverter, which

includes six transistors fed by a DC voltage source. Therefore, electrical sources

are limited to the DC value of the voltage source (Vmax) and the maximum current

capability of the transistors (Imax). These limits are related to d− q axis variables as

V 2
max ≥ V 2

d + V 2
q , I2max ≥ I2d + I2q (4.3)

In the steady-state, derivative terms are equal to zero in (4.1a) and (4.1b). Rewriting

(4.3) by substituting steady-state forms of (4.1a) and (4.1b) yields

V 2
max

R2
s + L2ω2

e

≥ (id +
Lω2

eλm

R2
s + L2ω2

e

)2 + (iq +
Rsωeλm

R2
s + L2ω2

e

)2 (4.4)

44

The current equation in (4.3) represents the inner region of a circle whose center is at

the origin and radius is equal to (Imax). This circle is called the current circle. On the

other hand, the voltage equation represents the inner region of the voltage circle, for

which the center and radius are equal to

center =

(
− Lω2

eλm

R2
s + L2ω2

e

,− Rsωeλm

R2
s + L2ω2

e

)
, (4.5)

radius =
V 2
max√

R2
s + L2ω2

e

, (4.6)

respectively. The VSI cannot operate outside the current and voltage circles physi-

cally. Therefore, the operating point (id, iq) should be inside the circles at any time.

Note that the current circle is stationary while voltage circle parameters are func-

tions of the rotor’s electrical speed. To set a proper reference operating point (i∗d, i
∗
q)

voltage circle equation should be dynamically calculated and the limit values should

be updated. Fig. 4.2 illustrates the voltage and current circles for a PMSM with

Imax = 20A for different speed values. As shown in the figures, voltage circle

shrinks as the speed increases and separates from the current circle after a critical

speed value. 240 rad/s rotor speed value approximately separates constant torque

and constant power region. Voltage limit circle crosses the origin approximately at

310 rad/s rotor speed, which is the theoretical no-load speed. It is inevitable to have

id < 0 for higher speed demand than 310 rad/s, even if no load applies to the rotor

shaft. The operating point for the PMSM should be inside the intersection of the two

circles. Therefore, as the speed increases, maximum achievable iq is limited below

Imax value.

4.1.3 Model Verification

Even though the PMSM model is well-known and the producer provides its param-

eters, we developed a test bench to verify the motor model and its parameters for

field weakening operation and model predictive control. The verification procedures

are discussed in [44, 45]. The first experiment is to identify the value of the resistor

and inductance for the d − q axis. The rotor shaft is locked to prevent the rotation

of the motor, i.e., avoid the back-emf so that we can find these parameters properly.

Once we ensure that the motor is fully locked, we applied step-like voltage requests

45

40 60 80 100 120 140 160 180 200 220

0.12

0.14

0.16

0.18

0.2

0.22

0 1 2 3 4 5 6 7 8

50

100

150

200

250

300

Figure 4.3: Top: The friction related with velocity and its polynomial approximation.

Bottom: The operation part of the coasting down of the motor velocity to its stationary

value.

for each axis separately. The resistor values for each voltage request are calculated

in steady-state via DC component relation, i.e., R = V/I . On the other hand, the

inductance values are found via the following equation,

i(t) =
V

R
(1− e−

t
τ), where τ =

L

R
(4.7)

Time constant values are extracted from the data, i.e., time change from zero to

63% of the steady-state value to find the inductance values. Since the main aim is

to create the motor model for performing the simulations so that control algorithms

run perfectly before experimental testing, the mechanical parts of the model are also

considered. Therefore, their parameters are identified via different methods. We start

with identifying the friction of the overall system that consists of the friction in the

bearing of the motor(mainly at a negligible level) and the connection with the rotor

46

shaft with dynamo. Since our application is to perform the field weakening, we only

take care of the dynamic relationship between the velocity of the rotor and the friction

torque. The following equation represents the general formulation of the mechanical

side of the PMSM.

dw(t)

dt
=

1

J
(Te − bw −H0 − Tload) (4.8)

where J represents inertia, Te and Tload torques are electrical input and load torque

respectively. The other terms b and H0 are the friction terms to represent viscous and

Coulomb frictions. In order to eliminate the effect of inertia, we collect the torque val-

ues at steady-state velocity. Starting from the 40(rad/sec) to 220(rad/sec) velocity,

the torque values are saved to derive the relation with velocity. We utilize first-order

polynomial fit to represent the overall friction with the combination of static and dy-

namical relation. We derived the relationship for both positive and negative sides, as

in Fig.4.3, and taking the average of them to be applied in the model. Once we

have the friction terms, inertia is the only left term to be found. In this case, we apply

the torque to the system to reach its maximum velocity. Then, we unplug the motor

from the power source to coast down the stationary value by itself, i.e., eliminating

the Te term from the equation. The time-domain solution of the first-order equation

of the overall mechanical side equation by extracting Te is provided via the following

equation,

w(t) = (w0 +
H0

b
e−

b
H
t)− H0

b
(4.9)

The Fig.4.3 illustrates the coasting down of the motor for both simulation and exper-

iment after finding the H term via MATLAB/Optimization Toolbox. Once we ensure

that the parameters of the motor are obtained separately, we apply varying q axis and

constant d axis voltages to ensure that the overall model matches the actual motor.

The performances of the open loop responses of the model for both simulation and

experiment are provided via Fig.4.4

4.2 Controller Design

The essential feature of the MPC over standard PI-FOC handles constraints explicitly

without using any add-on structure. It combines the two different controllers into a

47

0 5 10 15 20 25 30 35

0

50

100

150

200

0 5 10 15 20 25 30 35

0

10

20

30

40

0 5 10 15 20 25 30 35

0

10

20

30

40

Figure 4.4: Overall performances of the open loop responses of the model for both

simulation and experiment.

single loop and produces optimal control inputs to the system. The standard structure

of FOC utilizes a cascaded loop, which includes the current loop in the inner while

speed is in the outer loop. The standard architecture is preserved by placing MPC

in place of the PI controller with its components in the current loop since the main

bounds in PMSM come from voltage and current limitations. The MPC follows the

references provided by the speed loop for the q axis and sets zero for the d axis to

imply the MTPA when the motor operates below its rated speed.

The algorithm is also responsible for dynamically generating the required d axis ref-

erence by monitoring q axis current and motor velocity to perform field weakening

operation, which enables to produce MTPA at beyond rated speed. Fig. 4.5 illustrates

48

the overall proposed structure that we implement for the CCS-MPC field weakening

operation.

State
Observer

PMSM

abc

dq

αβ

dq

MPC
FW

Operation

SVM

s

PI

ia

ib

θm

ωm

ωr

VD C

id

iq

ic

VqVd

îd
îq

Tre f

Figure 4.5: The schematic of the proposed structure for field weakening operation.

4.2.1 Constraints

Unlike the classical linear controllers, MPC does not require add-on implicit struc-

tures to handle the system’s constraints. Under the MPC umbrella, the controllers

explicitly address linear convex constraints (equalities and inequalities) on state vari-

ables, system outputs, and control/input signals in the system representation. In

PMSM drive applications, upper and lower limits on voltage and current variables are

the most dominant type of adopted constraints. The supply voltage on DC-link en-

forces a maximum value on the voltage supply to the drive, and it is Vmax = VDC/
√
3

for space vector modulation [46]. The peak stator current determines an upper bound

constraint on the stator current variable.

We can transform the voltage and current constraints to 2-norm condition in (d, q)

axis plane, such that;

x ∈ R2 s.t. ||x||2 < Imax

u ∈ R2 s.t. ||u||2 < Vmax

(4.10)

We apply two polygonal approximations to transform these two quadratic constraints

into linear form to adapt them into the MPC framework as well as reduce the imple-

49

mentation complexity [19].

Vmax

Vq

Vd

Imax

Id

Iq

Figure 4.6: The schematic of voltage and current constraint which depends on the

linear approximations

As for the voltage limit, we adopt an octagonal shape that combines the two constraint

lines into one in the d axis direction. Since the q axis is responsible for generating

torque to meet the load torque in the motor shaft, it is undesirable to give all DC-link

voltage only for the d axis.This approximation has an acceptable level of underesti-

mation, 70% of the maximum voltage value for the d axis. We can formally define

the voltage constraint using the following equation;− 1√
2+1

0 − 1√
2+1

1√
2+1

0 1√
2+1

1 −
√
2+2√
2+1

−1 −1
√
2+2√
2+1

1

T Vd

Vq

 =
[
Vmax

]
6x1

(4.11)

We modify the constraint adaptation above for the current implementation by crop-

ping out the polygon’s right half-plane since the only negative current of the d axis

is used for field weakening operation. Fig. 4.6 illustrates the schema for these two

constraints. The constraint on current according to the figure is given by the following

equation; − 1√
2+1

0 − 1√
2+1

1 −
√
2+2√
2+1

−1

T Id
Iq

 =
[
Imax

]
3x1

(4.12)

In practical application, it is highly suggested setting the voltage limit to DC-link

voltage measurement, if available, in every step for the case of any change in voltage

that may be different from its constant value.

50

4.3 Results

The MPC with developed QP Solver algorithm has been verified in normal, Processor

in the Loop(PIL) simulations and experimentally tested on the custom-made PMSM.

The proposed controller structure is implemented in both C2000 for PIL simulation

and C6000 for the experimental testing.

Table 4.1: PMSM and CONTROLLER Parameters

Parameter Value

(J,B) (6.10−3kgm2, 49.10−5Nm/(rad/s))

λm 0.0106 Wb

Rs 120 mΩ

Ld ≈ Lq 220 µH

Torque Constant 0.09 Nm/Arms

pp 4

Ts 200µs

(Hp, Hu) (4, 2)

(Q,R) (I2×2,
1
20
I2×2)

(P, I) (2, 0.5)

Vmax 24/
√
3 V

Imax 20 A

Both processors have floating-point capability provided by Texas Instruments. Hav-

ing cost-effective products and being widely used in many industries, especially for

motion control, are the main reasons to choose the Texas Instruments processor family

for this work. The MPC with QP solver algorithm is efficiently implemented in plain

C code and has been carried out in F28377S and C6713B to ensure the consistency

of our implementation in different types of processors with different specifications.

The MPC design parameters, along with all the related motor parameters, are listed

in Table 4.1. Since the algorithm uses a cascaded structure, two different sample

times are scheduled; T fast
s = 200µs is for the fast loop, i.e., current controller, and

T slow
s = 1ms is for the slow loop, i.e., speed controller.

51

0 0.5 1 1.5 2 2.5 3

0

100

200

300

0 0.5 1 1.5 2 2.5 3

-10

-5

0

0 0.5 1 1.5 2 2.5 3

0

10

20

Figure 4.7: PIL simulation results of tracking performances for speed and current

references. The id current enters the scene after t = 2s to weaken the flux that

enables the motor tracks the desired speed value. Between t = 2 − 2.3s iq does not

perfectly track the desired value because of linear approximation on the constraint.

The algorithm regulates the voltage value to satisfy the constraints.

4.3.1 PIL Simulation Results

Prior to performing experimental testing, the PIL simulation of the proposed algo-

rithm is carried out to analyze the efficiency of the implementation in terms of exe-

cution speed and memory usage. PIL simulation environment enables debugging the

code easily and provides the execution speed of selected blocks by using a related

CPU timer.

52

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

Fast Loop

Max Allowed Time

0 0.5 1 1.5 2 2.5 3

0

2

4

6

8

10

Figure 4.8: Execution time is strictly less than the maximum allowed time through

the operation in PIL simulation. The execution time and the number of iterations are

consistent except at a point at which the maximum overshoot on id current occurs.

Thus, it is possible to detect the code part where the main computational burden of the

algorithm lies. MATLAB/Simulink environment is chosen to perform PIL simulation

in the F28377S processor. The main controller algorithm runs in the processor, as

the simulation part involves the PMSM model and the desired set point for the speed

loop. Simulation and the real-time environments communicate through serial connec-

tion. Since the main reason for PIL simulation is to provide that our implementation

is feasible, only the tracking of speed and current loop and the success of fulfilling

constraints are evaluated. Fig. 4.7 illustrates the tracking performances of the pro-

posed algorithm for both speed and current loop. The maximum reachable speed of

the PMSM with the supplied voltage level is 310 rad/s, the id current enters the scene

at t = 2s to weak the flux to achieve the desired speed set point, i.e., 320 rad/s.

Fig. 4.8 shows the timing and the number of iterations that the controller executes.

53

The execution time always lies under the predetermined sample time. As an addi-

tional note, the execution time in PIL simulation does not include the ADC readings,

their parsing process, and the DAC step, which are the necessary parts for real-time

application. In addition, the algorithm consumes only 3.5kB out of 164kB memory

space that demonstrates the feasibility in terms of using minimal memory.

4.3.2 Experimental Results

After successful demonstration of the proposed algorithm via PIL simulations, ex-

perimental testing is carried out. The processor which executes the algorithm is now

moved to the C6000 series, i.e., C6713B, to perform the algorithm. Fig. 4.9 shows

the test bench that is used throughout the experimental testing step. It includes

Figure 4.9: Test bench used in experiment of field weakening operation. It consists

of PMSM connected to the dynamo and the custom-made driver unit.

the dynamo, which is connected to the motor shaft and the motor driver unit. We

measure the motor’s position via a resolver attached to the rotor shaft. The velocity

is obtained by using a resolver to digital converter(RDC) that performs the feedback

structure to generate the velocity rather than directly taking the position’s derivative.

The driver unit is custom-made and has the ability to be replaced with a different

processor according to the requirements. Fig. 4.10 presents the d− q axis voltages

and overall tracking performances of the algorithm for speed and current loops. Our

experimental scenario split the reference angular velocity signal into two regions to

54

0 0.5 1 1.5 2 2.5

0

100

200

300

0 0.5 1 1.5 2 2.5

-10

-5

0

0 0.5 1 1.5 2 2.5

-10

0

10

20

0 0.5 1 1.5 2 2.5

-10

0

10

Figure 4.10: Tracking performances of speed and current loops and the voltages

which are generated from online MPC in experimental testing.The tracking perfor-

mances are successfully fulfilled and are similar with the simulation results thanks to

well-constructed plant model

evaluate the “constant”-torque and “constant”-power regions. We feed step-input type

reference signals in both zones to push the motor to operate around its limits (torque

and power) and stressing the optimization solver. Specifically, at t = 0, the system

starts at initially at rest condition, and at t = 0.25s, we supply the combined cascaded

control algorithm a constant angular velocity reference signal of ωref = 150rad/s

until t = 1.5s, where we jump the reference signal to ωref = 320rad/s. In the first

zone, i.e. t ∈ (0.25, 1.5)s, the motor dominantly operates at the torque limit (where

q axis current is constant) until the motor velocity reaches to the desired value (at

t ≈ 1.0s), and thus angular velocity increases almost linearly during this period. In

55

0 0.5 1 1.5 2 2.5

50

100

150

200
Fast Loop Max Allowed Time

0 0.5 1 1.5 2 2.5

0

2

4

6

8

10

Figure 4.11: Execution time and the number of iteration in the real time experiment

to generate the suitable voltages for both axis while satisfying constraints.

the second region, where the desired angular velocity is ωref = 320rad/s, the behav-

ior of the motor and controller is similar to the first zone until around t ≈ 2s, where

at that point field weakening operation activates. During this period, the algorithm

introduces a negative d axis current that reduces q axis current to respect the maxi-

mum torque per ampere criteria. We observe the effect of the linear approximation

on the current constraint, especially in the q axis, after t ≈ 2s since the algorithm

puts extra effort to satisfy the constraints that reduce tracking performance. Once the

motor angular velocity reaches its final desired value, the algorithm applies consistent

d− q axis currents to keep the motor at the desired speed and compensate for the fric-

tion. Fig. 4.11 illustrates the execution time in the experimental test that demonstrates

feasibility since computation time always stays inside the sampling time during the

operation. One should also note that the execution time also includes the ADC read-

ings, their parsing process, and the DAC phases. In addition to execution time, our

56

implementation is also feasible in terms of using minimal memory. The memory

occupancy of both algorithm and necessary QP data is only 6kB out of 192kB in

C6713B.

We also evaluate the state dependencies between d − q axis current and voltage by

picturing the actual motor data to illustrate the performances based on our linear ap-

proximation of the constraints. Fig. 4.12 presents the linear approximation polygons

on voltage and current constraints together with real-time experiment data. Apart

from the minor deviations on the lines because of noisy measurements and process

uncertainty, the electrical state’s values always respect the linear constraints.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

-20 -15 -10 -5 0

-20

-15

-10

-5

0

5

10

15

20

Figure 4.12: The real time experiment values of both voltages and currents lie inside

the linear approximation polygons that represents the circle. There is small deviation

on the edge of the linear approximations because of the noise level in our measure-

ments.

57

58

CHAPTER 5

IMPLEMENTATION OF MPC FOR GIMBAL PLATFORM

Gimbal platforms consist of a set of independent orthogonal axes that can rotate or

orient with respect to the base on which it is mounted. It has a wide range of us-

age from military to industrial applications such as surveillance, gun-turret platform,

target tracking or air-defense purpose on the military side while pointing application

on the telescope, mirror stabilization or drone’s camera for smooth recording on the

civilian usage side [47, 48]. Its usage usually requires more than one axis to track a

target or point to the desired object. The demand to increase the performance of such

platforms is more intensive since increased requirements on the precise pointing and

long-distance target tracking application. An example of such a platform for tracking

purposes is illustrated in Fig. 5.1.

Figure 5.1: The 2 axes gimbal platform to be used in target tracking application

(Photo Courtesy of ASELSAN Inc.).

59

The most popular implementation of such platforms is to stabilize the platform against

disturbances so that it keeps its direction without any deterioration on the pointing of

the object. For this purpose, the measurement with respect to the constant inertial

frame is required. The gyroscope provides the orientation or angular velocity with

respect to the inertial frame so that the platform can hold itself constant by means of

the gyroscope. In this application, we examine the platform in terms of increasing the

set-point tracking performance by comparing it with one of the well-known classical

controllers.

5.1 System Modeling

The crucial part in the development of MPC is to provide the system model that

captures the overall system dynamics and possibly representing them in a simple

manner. In this context, we assume that the traverse axis of the gimbal is a rigid body

and ignoring the flexible structures that reveal at higher frequency in resonance and

anti-resonance form. We represent the mathematical model of the traverse axis of the

gimbal platform via a first-order differential equation and given with the following

equations.

Te = Jẇ (5.1)

To ensure that the basic model is sufficient to represent the system dynamics, we also

create a test bench to identify the system model via input-output data. The system

identification also provides additional information from the system, such as delay or

flexible body structures (i.e., determining whether it is ignorable). The key point in

data-driven system identification is the richness of the input-output data. The input

signal should be rich enough to excite different system characteristics, making them

observable at the output signal. In this context, we apply a sine wave input signal to

the system whose amplitude is constant, and frequency is swept from 1Hz to 120Hz.

A critical point in the concatenation of the different frequency sinusoidal signals is to

ensure the smoothness and continuity of the input. To achieve this, we adjusted the

duration of each sine wave, ensuring that an integer number of periods is completed

before switching to the subsequent frequency. This approach provides a way to ana-

60

100 101 102 103
-80

-60

-40

-20

M
a
g
n
it
u
d
e
 (

d
B

)

100 101 102 103

Frequency (Hz)

-400

-200

0

P
h
a
s
e
 (

A
n
g
le

)

Figure 5.2: The Bode plot representation of traverse axis of gimbal platform calcu-

lated via input-output data.

lyze the system response in the frequency domain. The system response according to

our input signal is presented in Fig. 5.2 as Bode plot.

According to the Bode plot, the characteristic of the system approximately matches

with its mathematical model, i.e., representing the traverse axis as a rigid body. The

inertia term is calculated from low frequency amplitude value of the Bode plot. On

the other hand, the phase plot cannot be exactly represented via a rigid body approach

since it decreases dramatically as the frequency increases. It is because of the delay

term in the model that might result from group delay at the measurements and the

delay at the driver unit. We approximate the overall system dynamics via equation

5.2 by taking the tradeoff between the accuracy and the computational complexity of

the system into account.

Te(s) = Grigid(s)e
−st (5.2)

The system response in Fig. 5.2 does not include the friction effect, which reveals

especially at a lower speed and dominates the system response due to stick-slip phe-

nomena. The MPC can handle the friction term by including it in the system model to

eliminate its effect on the system. Several studies in the literature model friction and

eliminate its effect via several approaches [49, 50, 51]. The most dominant part of

61

the friction term occurs at a point that breaks away from zero velocity, namely static

friction. The friction is the function of the velocity, and the friction effect is almost

linearly getting higher with the velocity of the system, known as viscous friction. The

transition between the static and dynamic part of the friction is represented via the

well-known Stribeck model in the literature. Equation 5.3 represents the mathemati-

cal model of the complete friction that covers static, viscous, and Stribeck effects.

Tf (w) = Tc + (Ts − Tc)e
−w/ws + Tww (5.3)

where Tc, Ts and Tw are Coulumb, static and viscous frictions respectively and the ws

is the Stribeck velocity. We performed various experiments in the gimbal platform to

determine the parameters in the friction equation. We drive the gimbal platform under

constant speed starting from 0.2deg/s to 10deg/s by collecting large measurement

samples to obtain a well-approximation of the friction model. We repeated the veri-

fication test at different speed values for negative and positive directions to increase

the repeatability. We observed from the measurements that the friction torque values

for both directions are slightly equal to each other. Thus, the overall model is only

considered for only one side of the velocity.

The mathematical model of friction is highly nonlinear. We shall rearrange the non-

linearity via linear approximation to include in MPC. We can approximate the non-

linear curves of the friction by the combination of two linear by making the tradeoff

between accuracy and speed [52]. Fig. 5.3 illustrates the approximation of the fric-

tion together with its original curves. The two lines intersect at wb velocity in which

maximum accuracy lost occurs. These lines can be obtained via first-order Taylor

series expansion of the original equation. The two lines on positive sides are derived

via the following equations.

y+1 = T 1
f+(w) = Ts +

∂Tf (w)

∂w

∣∣∣
w=0

= Ts + (Tv −
Ts − Tc

ws

)w (5.4)

y+2 = T 2
f+(w) = Tf (wmax) +

∂Tf (wmax)

w
(w − wmax)

= Tf (wmax) + (Tv −
Ts − Tc

ws

e−wmax/ws)(w − wmax) (5.5)

The resulting approximation leads to describe the friction term as partial piecewise

62

𝑤𝑔

𝑇𝑒

𝑤𝑏
+

𝑦1
+

𝑦2
+

𝑦1
− 𝑦2

−

𝑤𝑏
−

Figure 5.3: The Bode plot representation of traverse axis of gimbal platform calcu-

lated via input-output data.

function via following,

Tf =

a1 + b1w if |w| ∈ (0, wb]

a2 + b2w if |w| ∈ (wb, wmax]

The parameters of the linear lines are determined via Matlab/Optimization Toolbox.

The result of the system identification based on the Bode plot in 5.2 together with the

identified linear model is illustrated in Fig. 5.4.

Since the state-space model is required to construct the MPC, the discrete-time model

that contains an only rigid body with sample time Ts is obtained via Forward Euler

approximation, and it is given in the following equations,

ẇ =
Te − Tf

J
(5.6)

ẇ ≈ wk+1 − wk

Ts

wk+1 = wk +
Ts

J
(Te − Tf) (5.7)

The delay term is the missing part in the discrete state-space model. There are several

approaches to include the delay term in the linear state-space model:

63

100 101 102 103
-80

-60

-40

-20

M
a
g
n
it
u
d
e
 (

d
B

) Real

Model

100 101 102 103

Frequency (Hz)

-400

-300

-200

-100

0

P
h
a
s
e
 (

A
n
g
le

) Real

Model

Figure 5.4: The Bode plot representation of model and real data taken from traverse

axis of gimbal platform.

• The easiest way is to ignore the delay term in the design process if it is not

dominant according to sample time. However, it shall be included in the analy-

sis since it is essential to investigate the effect of the delay term in the stability

analysis.

• The second method is to utilize the Pade approximation for the delay term. It

is worth noticing that the prediction horizon should be long enough to include

the delay dynamics in the Pade approximation since the resulting system has

a non-minimum phase. This results in undershoot at the beginning of the re-

sponse that confuses the controller if it does not have information on the future

characteristic [53].

• The last method is to approximate the delay term as a delay buffer in discrete

domain, as illustrated in Fig. 5.5. In this way, the system holds the memory of

the past control signal during the delay interval [54].

The overall system model with delay dynamics in the discrete state-space form is

64

𝑢(𝑘) 𝑢(𝑘 − 1) 𝑢(𝑘 − 2) … 𝑢(𝑘 − 𝑇𝑑)

Figure 5.5: The delay buffer in discrete domain.

given in the following equations,

xk+1 = Axk +
[
B 0 . . . 0

]T
ud
k (5.8)

ud
k+1 = Adelud

k +Bdeluk (5.9)

where

Adel =

0 1 0 . . . 0
...

...
...

0 0 . . . 0 1

0 0 . . . 0 0

 , Bdel =
[
0 . . . 0 1

]T
(5.10)

5.2 Controller Design

The essential feature of the MPC over classical controller handles constraints explic-

itly without using any add-on structure. It combines the two different controllers into

a single loop and produces optimal control inputs to the system. The standard servo

structure utilizes a cascaded loop, including the current loop in the inner while speed

is in the outer loop. The standard architecture is preserved by putting MPC in place

of the PI controller with its components in the speed loop. The dynamics of the cur-

rent loop are also included in the MPC formulation since it has a series connecting

to the system model. Note that the system identification in Fig. 5.2 determines the

system model via measured torque and velocity from the system that excludes the

motor dynamics. The dynamics of the current loop(closed-loop) are in the form of a

first-order low pass filter with a cut-off frequency at 100Hz(validated via simulation

and verified via an experimental test). The final system model from the point of view

65

of the speed loop is formulated by cascading torque loop dynamics and 5.8,

xf
k+1 = Afxf

k +Bfuf
k +Gfw (5.11)

yfk = Cfxf
k (5.12)

where xf
k ∈ R7 and G is the measured disturbance generated from the friction model.

The controller excludes the friction model so that the MPC generates the control sig-

nal based on the standard form. The MPC includes the friction model at the end of the

control signal to eliminate the friction effect. Note that we determine the maximum

torque limit in each step based on the friction value that is generated from velocity.

The requirement from the MPC for the gimbal platform is to behave as a regulator

while respecting the constraints. In this context, we utilize the MPC formulation for

tracking requirements that also adopted for the PMSM example. Thus, the optimal

control input for the gimbal platform in each step is obtained as the solution of the

following formulations.

min
∆u

Hp∑
i=1

||Q
1
2 (yk+i − rk)||22 +

Hu−1∑
j=0

||R
1
2∆uk+j||22 (5.13a)

subject to: xk+i+1 = Axk+i +Buuk+i (5.13b)

yk+i+1 = Cxk+i+1 (5.13c)

umin
i ≤ uk+i ≤ umax

i (5.13d)

i = 0, . . . , Np − 1 (5.13e)

3.3 is the solution of the problem for an unconstrained case if no violation of the

constraints. The solver starts with the unconstrained case and searches if there is a

violation. If exists, it solves the constraint optimization to produce the optimal control

input under constraint. For the gimbal platform application, the control input is the

only variable that we bound. The speed loop is responsible for providing the reference

input for the torque loop. We take the limit on the torque so that MPC respects the

limitation on torque when generating optimal input. According to system dynamics,

the torque has a direct relation with acceleration, i.e.,Te

J
= ẇ. Thus, the rate of change

of the desired set-point for the speed loop will not be limited. We formulate the torque

constraint with the following equation.

u ∈ R s.t. |u| < Tmax (5.14)

66

5.3 Results

We verified the effectiveness of the MPC over classical methods via experimental

results on the real gimbal platform. We compare the results of MPC with standard

PID controller to demonstrate the improvements in the tracking performance of the

speed controller. We implement MPC on the custom-made controller unit that in-

cludes the C6713B processor. The test bench depicted in Fig.5.1 includes a gimbal

platform that is mounted on a fixed platform. The gimbal consists of the following

components: direct-drive PMSM motor, custom-made controller unit, mechanical

structure, high-resolution camera(for pointing and tracking), sub-components for as-

sembly. Our feedback path includes the following sensors: encoder(for position and

commutation), gyroscope(for angular speed and stabilization), and current transduc-

ers(for inner loop). The parameters of the system and controller are listed in Ta-

ble. 5.1. The delay in the system is approximately 4.8ms, which is almost equal to

Td ≈ 5Ts. Thus, we extend the state-space model with five extra delay input resulting

in 7 states in the overall system. We perform several simulations before implement-

Table 5.1: GIMBAL and CONTROLLER Parameters

Parameter Value

J 2.58kgm2

(Ts, Tc, Tw) (2.7Nm, 2.27Nm, 0.015 Nm
deg/s

)

(wb, ws) (0.3, 0.5)deg/s

Ts 1ms

(Hp, Hu) (10, 5)

(Q,R) (I10×10, 0.01I5×5)

(P, I) (0.25, 5)

Tmax 26Nm

ing the MPC on the real gimbal platform. The controller weighting matrices and other

parameters such as prediction and control horizon are tuned to their final values via

simulations. We also extend the prediction and control horizons in simulations which

67

do not enhance the tracking performance noticeably. Our test procedure includes two

cases: first, improve the closed-loop performance at lower speed by eliminating the

effect of friction. For this, we apply a sinusoidal wave and observe the zero-crossing

point of our implementation. As the second case, we apply the step-like set-point for

the speed loop to operate the system close to the limits. We compare the MPC with

standard PID to demonstrate the improvements in the tracking. As for the first case,

the MPC usually generates the optimal control input from an unconstrained solution

since the rate change of the speed loop is generally less than the upper bound of the

acceleration with sinusoidal input. On the other hand, the optimization solves the

constrained optimization problem for step-like input that generates the optimal con-

trol signal while respecting torque constraint. Fig. 5.6 illustrates the improvements

of the MPC for the friction effect by comparing standard PID.

0 1 2 3 4 5 6 7 8 9 10

-2

0

2 PID

MPC

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

1

2

PID

MPC

Figure 5.6: The improvement with MPC on the friction effect that causes to stick the

gimbal platform at zero crossing.

In the second example, we apply the step-line set-point for the speed loop as given in

Fig. 5.7. The PID controller does not include any add-ons that explicitly enable us to

compare the two controllers’ performances. We observe the effect of the overshoot

that takes place in PID because of integral wind-up phenomena. The MPC is aware

68

of the constraints during the prediction and control horizon that allows taking action

for producing the optimal control input to the system so that the output has almost

no overshoot, whereas PID has. We compare the effectiveness of the two algorithms

according to ISE(integral-square of error) criteria. There is an approximately 4.8%

improvement in MPC.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-20

0

20

ref

MPC

PID

1.1 1.2 1.3 1.4 1.5 1.6

15

20

25

ref

MPC

PID

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-20

0

20
MPC

PID

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

300

350

Figure 5.7: The improvement with MPC for square wave input reference under torque

limitation.

69

70

CHAPTER 6

CONCLUSION & FUTURE WORKS

This thesis demonstrated the feasibility of online MPC with different industrial ap-

plications by applying the beneficial properties of linear MPC over classical control

strategies. The dual active set solver with an efficient matrix updating procedure has

been successfully carried out to find the optimal control signals for the system by

satisfying the system constraints. We evaluate the proposed approach in two different

literature examples to demonstrate its performance by comparing it with literature

results.

As the first industrial application, we chose to perform the MPC in PMSM with field

weakening operation. We evaluate the performances of the algorithm in both con-

stant torque and constant power regions. To operate the motor in a constant power

region, i.e., field weakening region, we include voltage limitation inside the algorithm

to generate proper d axis current reference. The reason to perform the proposed al-

gorithm in two different zones is to demonstrate the feasibility of our implementation

under direct torque control operation. We have rearranged the linear approximation

on the constraints by combining the two constraint lines to reduce the number of

constraints. The feasibility of the proposed controller structure was verified via PIL

simulation and physical experiment. The results demonstrated the practical feasibility

of the algorithm to control the PMSM in the laboratory environment.

We chose to control the one axis of the gimbal platform as a second example. The

well-known friction model is re-arranged as the combination of linear lines so as to

include it in the linear MPC. We compare the results with the classical approach to

eliminate the effect of friction where it affects the system’s performance, especially

at the lower speed. Furthermore, the proposed approach was verified in the low-cost

71

motion control unit to certify that our implementation is viable. As a further con-

tribution to the gimbal platform, we will investigate the stabilization of the gimbal

platform under known and unknown disturbances. We will include the measured dis-

turbances in the model and add integral action for unknown disturbances to increase

the effectiveness of the algorithm under disturbances.

Since the model losses the information with linear assumptions, the linearized model

may sometimes not provide sufficient information about the overall dynamics of the

system to the model-based controller. Therefore, it is necessary to capture the non-

linear characteristic of the system where the linearized is not sufficient to increase

the quality of the controller. In this context, our research will continue to extend

the model-based approach control structure for Linear Time-Varying(LTV) and Lin-

ear Parameter- Varying(LPV) models, which are suitable alternatives to represent the

nonlinear dynamics of the system, to increase the performances.

72

REFERENCES

[1] P. D. Vouzis, L. G. Bleris, M. G. Arnold, and M. V. Kothare, “A system-on-a-

chip implementation for embedded real-time model predictive control,” IEEE

Transactions on Control Systems Technology, vol. 17, no. 5, pp. 1006–1017,

2009.

[2] D. Y. Ohm, “Dynamic model of pm synchronous motors,” Drivetech, Inc.,

Blacksburg, Virginia, www. drivetechinc. com, vol. 16, 2000.

[3] S. Kouro, M. A. Perez, J. Rodriguez, A. M. Llor, and H. A. Young, “Model

predictive control: MPC’s role in the evolution of power electronics,” IEEE

Industrial Electronics Magazine, vol. 9, no. 4, pp. 8–21, 2015.

[4] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization. Cambridge

university press, 2004.

[5] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Busi-

ness Media, 2006.

[6] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control

technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733–764, 2003.

[7] J. M. Maciejowski, Predictive control: With constraints. Pearson education,

2002.

[8] D. W. Clarke, C. Mohtadi, and P. Tuffs, “Generalized predictive control—part i.

the basic algorithm,” Automatica, vol. 23, no. 2, pp. 137–148, 1987.

[9] C. R. Cutler and B. L. Ramaker, “Dynamic matrix control - a computer control

algorithm,” in Joint Automatic Control Conference, no. 17, p. 72, 1980.

[10] P. Cortés, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Ro-

dríguez, “Predictive control in power electronics and drives,” IEEE Transactions

on Industrial Electronics, vol. 55, no. 12, pp. 4312–4324, 2008.

73

[11] S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young, A. Marquez,

and P. Zanchetta, “Model predictive control: A review of its applications in

power electronics,” IEEE Industrial Electronics Magazine, vol. 8, no. 1, pp.

16–31, 2014.

[12] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear

quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–

20, 2002.

[13] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit solu-

tion of model predictive control via multiparametric quadratic programming,”

in Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.

00CH36334), vol. 2, pp. 872–876. IEEE, 2000.

[14] A. G. Wills, G. Knagge, and B. Ninness, “Fast linear model predictive control

via custom integrated circuit architecture,” IEEE Transactions on Control Sys-

tems Technology, vol. 20, no. 1, pp. 59–71, 2011.

[15] G. Cimini, D. Bernardini, S. Levijoki, and A. Bemporad, “Embedded model

predictive control with certified real-time optimization for synchronous motors,”

IEEE Transactions on Control Systems Technology, 2020.

[16] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model

predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–

814, 2000.

[17] S. a. Keerthi and E. G. Gilbert, “Optimal infinite-horizon feedback laws for

a general class of constrained discrete-time systems: Stability and moving-

horizon approximations,” Journal of Optimization Theory and Applications,

vol. 57, no. 2, pp. 265–293, 1988.

[18] J. Rawlings and K. Muske, “The stability of constrained receding horizon con-

trol,” IEEE Transactions on Automatic Control, vol. 38, DOI 10.1109/9.241565,

no. 10, pp. 1512–1516, 1993.

[19] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Design and imple-

mentation of model predictive control for electrical motor drives,” IEEE Trans-

actions on Industrial Electronics, vol. 56, no. 6, pp. 1925–1936, 2008.

74

http://dx.doi.org/10.1109/9.241565

[20] P. E. Gill, N. I. Gould, W. Murray, M. A. Saunders, and M. H. Wright, “A

weighted gram-schmidt method for convex quadratic programming,” Mathemat-

ical Programming, vol. 30, no. 2, pp. 176–195, 1984.

[21] A. Bemporad, “A quadratic programming algorithm based on nonnegative least

squares with applications to embedded model predictive control,” IEEE Trans-

actions on Automatic Control, vol. 61, no. 4, pp. 1111–1116, 2015.

[22] A. Forsgren, P. E. Gill, and E. Wong, “Primal and dual active-set methods for

convex quadratic programming,” Mathematical Programming, vol. 159, no. 1,

pp. 469–508, 2016.

[23] P. Giselsson and S. Boyd, “Metric selection in fast dual forward–backward split-

ting,” Automatica, vol. 62, pp. 1–10, 2015.

[24] D. Goldfarb and A. Idnani, “A numerically stable dual method for solving

strictly convex quadratic programs,” Mathematical Programming, vol. 27, no. 1,

pp. 1–33, 1983.

[25] R. A. Bartlett and L. T. Biegler, “Qpschur: a dual, active-set, schur-complement

method for large-scale and structured convex quadratic programming,” Opti-

mization and Engineering, vol. 7, no. 1, pp. 5–32, 2006.

[26] G. H. Golub and C. F. Van Loan, Matrix Computations, vol. 3. JHU press,

2013.

[27] G. Knagge, A. Wills, A. Mills, and B. Ninness, “Asic and fpga implementation

strategies for model predictive control,” in 2009 European Control Conference

(ECC), pp. 144–149. IEEE, 2009.

[28] N. J. Higham, Accuracy and stability of numerical algorithms. SIAM, 2002.

[29] TEXAS INSTRUMENT, “C28x Floating Point Unit fastRTS Library Module:

User’s Guide,” 2010.

[30] TEXAS INSTRUMENT, “TMS320C28x FPU Primer, SPRAAN9A,” 2009.

[Online]. Available: https://www.ti.com/lit/an/spraan9a/spraan9a.pdf

[31] J. Currie, “Practical applications of industrial optimization: from high-speed

embedded controllers to large discrete utility systems: a thesis submitted to

75

https://www.ti.com/lit/an/spraan9a/spraan9a.pdf

auckland university of technology in fulfilment of the requirements for the de-

gree of doctor of philosophy (phd), 2014,” Ph.D. dissertation.

[32] A. K. Abbes, F. Bouani, and M. Ksouri, “A microcontroller implementation of

constrained model predictive control,” World Academy of Science, Engineering

and Technology, vol. 5, no. 8, pp. 655–662, 2011.

[33] K.-V. Ling, B. F. Wu, and J. Maciejowski, “Embedded model predictive control

(mpc) using a fpga,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 15 250–

15 255, 2008.

[34] M. S. Lau, S.-P. Yue, K. V. Ling, and J. M. Maciejowski, “A comparison of in-

terior point and active set methods for fpga implementation of model predictive

control,” in 2009 European Control Conference (ECC), pp. 156–161. IEEE,

2009.

[35] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model

predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10,

pp. 1361–1379, 1996.

[36] M. Preindl and S. Bolognani, “Model predictive direct torque control with finite

control set for pmsm drive systems, part 1: Maximum torque per ampere opera-

tion,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 1912–1921,

2013.

[37] M. Preindl and S. Bolognani, “Model predictive direct torque control with finite

control set for pmsm drive systems, part 2: field weakening operation,” IEEE

Transactions on Industrial Informatics, vol. 9, no. 2, pp. 648–657, 2012.

[38] Z. Mynar, L. Vesely, and P. Vaclavek, “Pmsm model predictive control with

field-weakening implementation,” IEEE Transactions on Industrial Electronics,

vol. 63, no. 8, pp. 5156–5166, 2016.

[39] J. Liu, C. Gong, Z. Han, and H. Yu, “Ipmsm model predictive control in flux-

weakening operation using an improved algorithm,” IEEE Transactions on In-

dustrial Electronics, vol. 65, no. 12, pp. 9378–9387, 2018.

76

[40] Y. Zhang, B. Zhang, H. Yang, M. Norambuena, and J. Rodriguez, “Generalized

sequential model predictive control of im drives with field-weakening ability,”

IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 8944–8955, 2018.

[41] Z. Zheng and D. Sun, “Model predictive flux control with cost function-based

field weakening strategy for permanent magnet synchronous motor,” IEEE

Transactions on Power Electronics, vol. 35, no. 2, pp. 2151–2159, 2019.

[42] J. Su, R. Gao, and I. Husain, “Model predictive control based field-weakening

strategy for traction ev used induction motor,” IEEE Transactions on Industry

Applications, vol. 54, no. 3, pp. 2295–2305, 2017.

[43] S. Chai, L. Wang, and E. Rogers, “A cascade mpc control structure for a pmsm

with speed ripple minimization,” IEEE Transactions on Industrial Electronics,

vol. 60, no. 8, pp. 2978–2987, 2012.

[44] M. Novak, J. Novak, and J. Chysky, “Experimental verification of high-speed

permanent magnet synchronous motor model,” in 2012 XXth International Con-

ference on Electrical Machines, pp. 2435–2440. IEEE, 2012.

[45] M. Kazerooni and N. C. Kar, “Methods for determining the parameters and char-

acteristics of pmsm,” in 2011 IEEE International Electric Machines & Drives

Conference (IEMDC), pp. 955–960. IEEE, 2011.

[46] M. Preindl, S. Bolognani, and C. Danielson, “Model predictive torque control

with pwm using fast gradient method,” in 2013 Twenty-Eighth Annual IEEE

Applied Power Electronics Conference and Exposition (APEC), pp. 2590–2597.

IEEE, 2013.

[47] J. Hilkert, “Inertially stabilized platform technology concepts and principles,”

IEEE Control Systems Magazine, vol. 28, no. 1, pp. 26–46, 2008.

[48] M. K. Masten, “Inertially stabilized platforms for optical imaging systems,”

IEEE Control Systems Magazine, vol. 28, no. 1, pp. 47–64, 2008.

[49] H. Olsson, K. J. Åström, C. C. De Wit, M. Gäfvert, and P. Lischinsky, “Friction

models and friction compensation,” Eur. J. Control, vol. 4, no. 3, pp. 176–195,

1998.

77

[50] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, “An integrated fric-

tion model structure with improved presliding behavior for accurate friction

compensation,” IEEE Transactions on Automatic Control, vol. 45, no. 4, pp.

675–686, 2000.

[51] C. C. De Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model for con-

trol of systems with friction,” IEEE Transactions on Automatic Control, vol. 40,

no. 3, pp. 419–425, 1995.

[52] L. Márton and B. Lantos, “Control of mechanical systems with stribeck friction

and backlash,” Systems & Control Letters, vol. 58, no. 2, pp. 141–147, 2009.

[53] M. Jankovic and I. Kolmanovsky, “Developments in control of time-delay sys-

tems for automotive powertrain applications,” in Delay Differential Equations,

pp. 55–92. Springer, 2009.

[54] S. Di Cairano, D. Yanakiev, A. Bemporad, I. V. Kolmanovsky, and D. Hrovat,

“Model predictive idle speed control: Design, analysis, and experimental eval-

uation,” IEEE Transactions on Control Systems Technology, vol. 20, no. 1, pp.

84–97, 2011.

78

APPENDIX A

MATRIX UPDATING PART IN SOLVER

Two common approaches to compute QR decomposition, i.e., Givens Rotation and

Householder Reflection that we utilize to update the matrices in the solver are pro-

vided with basic examples in this section of the thesis.

A.1 Givens Rotations

Givens Rotation(or plane rotation) introduces zeros to only one element of the vector

in each calculation. To be more precise, Given Rotation of a vector [α β]T requires

an orthogonal rotation matrix, which isc −s
s c

α
β

 =

r
0

 (A.1)

where r =
√
α2 + β2. The elements in the rotation matrix are calculated as,

c = α/r (A.2)

s = −β/r (A.3)

An example to compute the QR decomposition of matrix A ∈ R3×3 via Givens Ro-

tation method is provided in the following,

A =

X X X

X X X

X X X

−→G1

X X X

X X X

0 X X

−→G2

X X X

0 X X

0 X X

−→G3

X X X

0 X X

0 0 X

(A.4)

79

Hence, we obtain

G3G2G1︸ ︷︷ ︸
Q̃

A ⇐⇒ A = QR (A.5)

where Q̃ = QT .

To be more precise, a numerical example of 2 × 2 matrix is provided in order to

compute the QR decomposition via Givens Rotation method.

A =

3 1

4 1

 (A.6)

The rotation matrix is calculated according to equations in (A.1,A.2) for the first

column of the A matrix,

G1 =

 0.6 0.8

−0.8 0.6

 (A.7)

G1 is applied to A to compute the QR decomposition as,3 1

4 1

︸ ︷︷ ︸

A

=

0.6 −0.8
0.8 0.6

︸ ︷︷ ︸

Q

5 1.4

0 −0.2

︸ ︷︷ ︸

R

(A.8)

A.2 Householder Reflection

The matrix updating procedure in constraint addition via Householder Reflection

method is provided in this section with a basic example for the ease of the reader.

The reflection matrix is computed with the following equations,

H = I − 2vvT (A.9)

The application of the reflection matrix H to a vector,

Hx = (I − 2uuT

uTu
)x (A.10)

80

where

u =
v

∥v∥
(A.11)

u =

x1 + sign(x11) ∥x1∥

x2

...

xn

 (A.12)

We will apply the same example that we use in Givens Rotation section. In order to

build the reflection matrix, u vector is computed as

∥x1∥ =
√
32 + 42 = 5 (A.13)

u = x1 + sign(x11) ∥x1∥ e1 =

3
4

+ 5

1
0

 =

8
4

 (A.14)

By using the equation in (A.10), the reflection matrix is computed as,

H1 = I − 2uuT

uTu
=

−0.6 −0.8
−0.8 0.6

 (A.15)

H1 is applied to A to compute the QR decomposition as,3 1

4 1

︸ ︷︷ ︸

A

=

−0.6 −0.8
−0.8 0.6

︸ ︷︷ ︸

Q

−5 −1.4
0 −0.2

︸ ︷︷ ︸

R

(A.16)

81

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	The Motivation and Scope of the Thesis
	The Outline of the Thesis
	Preliminaries

	Model Based Predictive Control
	Receding Horizon Control
	Problem Formulations
	System Model
	Augmented State Formulations
	Offset-free tracking
	Alternative State Choices

	Generating State Matrices
	Casting the Formulations into Quadratic Program(QP) Problem

	Online Optimization in MPC
	Unconstrained Case in QP
	Active-Set Methods for Solving QP
	Dual Active Set Solver
	Implementation Details of Efficient Matrix Updating Strategy

	Real Time Implementation
	Rotating Antenna Example
	Cessna Citation 500 Example

	Implementation of MPC for Electric Motor: PMSM
	System Modeling
	Mathematical Model
	Field Weakening Operation
	Model Verification

	Controller Design
	Constraints

	Results
	PIL Simulation Results
	Experimental Results

	Implementation of MPC for Gimbal Platform
	System Modeling
	Controller Design
	Results

	Conclusion & Future Works
	REFERENCES
	Matrix Updating Part in Solver
	Givens Rotations
	Householder Reflection

