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Assoc. Prof. Dr. İsmail Serdar Bakal
Industrial Engineering, METU

Assoc. Prof. Dr. Seçil Savaşaneril Tüfekci
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ABSTRACT

A JOINT POLICY FOR PREVENTIVE MAINTENANCE AND SPARE PART
INVENTORY CONTROL

Kaya, Tuna Berk

M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Zeynep Pelin Bayındır

Co-Supervisor: Assoc. Prof. Dr. İsmail Serdar Bakal

August 2021, 97 pages

Machine failures are the primary cause of production disruption in manufacturing sys-

tems, leading to significant profit loss. Preventive maintenance activities can adjust

the frequency of failures to a certain point. Both failure and preventive maintenance

activities are conducted by using spare parts. It is reasonable to stock spare parts in

the inventory since procurement lead times of spare parts are common, and economies

of scale are available. Maintenance and inventory control are usually planned by dif-

ferent functional units in the industry, although jointly managing them can change

the profits of the companies. In this study, we propose a joint preventive mainte-

nance and inventory management policy. The objective is to maximize the expected

long-run profit rate, characterized by utilizing Renewal Reward Theory. We also in-

troduce five decentralized decision-making strategies, which are usually applied in

practice. Through computational analyses, performances of the proposed joint policy

and decentralized decision-making strategies are investigated under different levels

of problem parameters.
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ÖZ

ÖNLEYİCİ BAKIM VE YEDEK PARÇA ENVANTER KONTROLÜ İÇİN
BİR POLİTİKA

Kaya, Tuna Berk

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Zeynep Pelin Bayındır

Ortak Tez Yöneticisi: Doç. Dr. İsmail Serdar Bakal

Ağustos 2021 , 97 sayfa

Makine arızaları, üretim sistemlerinde üretim kesintisinin başlıca nedenidir ve önemli

kar kayıplarına yol açar. Önleyici bakım faaliyetleri, arıza sıklığını belirli bir noktaya

kadar ayarlayabilir. Hem arıza hem de önleyici bakım faaliyetleri yedek parça kulla-

nılarak yapılmaktadır. Yedek parçaların tedarik süreleri yaygın olduğundan ve ölçek

ekonomileri mevcut olduğundan, stokta yedek parça bulundurmak mantıklıdır. Ba-

kım ve envanter kontrolü genellikle sektördeki farklı fonksiyonel birimler tarafından

planlanır, ancak bunları birlikte yönetmek şirketlerin karlarını değiştirebilir. Bu ça-

lışmada, ortak bir önleyici bakım ve envanter yönetimi politikası öneriyoruz. Amaç,

Yenileme Ödül Teorisi kullanılarak karakterize edilen beklenen uzun vadeli kar ora-

nını maksimize etmektir. Ayrıca, genellikle pratikte uygulanan beş merkezi olmayan

karar verme stratejisini de tanıtıyoruz. Hesaplamalı analizler yoluyla, önerilen ortak

politika ve merkezi olmayan karar verme stratejilerinin performansları, farklı problem

parametreleri seviyeleri altında araştırılmaktadır.
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CHAPTER 1

INTRODUCTION

Production systems rely on maintenance activities to keep the equipment up and run-

ning as production equipment may be subject to failure in nature. Maintenance/ repair

activities performed upon failure are called corrective maintenance, whereas preven-

tive maintenance is conducted before equipment failure occurs. Preventive mainte-

nance is a planned activity that aims to keep the components in their operating state.

Both preventive and corrective maintenance activities usually require spare parts. So,

conducting any type of maintenance that requires component replacement is con-

strained by the availability of spare parts. Shortages of spare parts cause delays in

maintenance activities. Furthermore, production may stop due to shortages when a

failure occurs. It is reasonable to stock spare parts in the inventory since procurement

of spare parts has a corresponding lead time, and economies of scale are available in

the system. So, there is a trade-off between maintenance-related and inventory-related

costs. Therefore, decisions on maintenance planning and inventory management must

be considered together and optimized jointly.

In this study, we aim to propose a joint policy for preventive maintenance and spare

parts provisioning problem that maximizes the expected long-run profit rate of the

system. We consider a manufacturing system that generates revenue as long as it is

operational. We concentrate on a single critical component that is vital for the system

to operate. The critical component is prone to failure. When the critical component

fails, the system fails. A malfunctioned component is non-repairable, so it should

be replaced with its spare part. Conducting preventive maintenance is cheaper than

conducting corrective maintenance since it is a planned activity and prevents adverse

effects of failure on the system. Preventive and corrective maintenance can only be

1



done if a spare part is available. For each spare part order, a fixed ordering cost is

incurred. Also, procurement cost is incurred for each ordered spare part. Spare parts

are stocked in the inventory for upcoming maintenance activities. Inventory holding

cost is incurred for each stocked spare part in the inventory.

We propose a joint age-based preventive maintenance and continuous review inven-

tory control policy to address the problem. Age-based preventive maintenance is a

threshold policy that components are preventively maintained when their age reaches

the predetermined threshold. Spare parts are ordered in batches of the same size, and

ordering time is set as a function of the preventive maintenance threshold and the

supplier lead time. It is reasonable to give the orders in batches since economies of

scale are available in the system. The expected long-run profit rate under our pro-

posed policy is characterized by utilizing Renewal Reward Theory. The objective is

to maximize the expected long-run profit rate. The decisions are age-based preven-

tive maintenance threshold and order quantity of spare parts. Although we character-

ize our proposed policy’s objective function, its calculation is computationally hard.

Therefore, we introduce two approximations.

Furthermore, preventive maintenance and spare parts inventory management are usu-

ally planned by different functional units in the industry. These decentralized decision-

making strategies are called sequential approaches. They decide on preventive main-

tenance threshold by using maintenance-related costs and then decide order quan-

tity using the predetermined preventive maintenance threshold value and inventory-

related costs. In our study, five sequential approaches are presented. These decen-

tralized decision-making strategies in our study differ from each other in terms of

considered parameters in their objective function. We want to show that sequential

approaches can be improved by considering all of the system parameters.

To the best of our knowledge, the objective function of a given policy for any age-

based preventive maintenance and continuous review inventory control policy is never

characterized before, when there is supplier lead time and emergency orders are not

allowed. It is hard to characterize the spare part demand during the supplier lead

time when emergency orders are not allowed. However, there may be cases in which

emergency orders are not an option under supplier lead time. So, we propose a joint

2



policy that the objection function can be analytically characterized, easy to apply, and

appropriate for comparison with different decentralized approaches. Furthermore,

decentralized decision-making strategies (sequentially optimized decision variables)

are employed for comparing our joint policy. One of our aims is to clarify the benefits

of utilizing a joint approach instead of a sequential one, as in the literature. Addition-

ally, we also want to investigate the possible improvements that can be made within

the scope of sequentially optimized decision variables. Although the decisions on

maintenance and inventory control are sequentially made, one can utilize different

objective functions for sequential approaches by using different parameters.

Although we characterize the long-run average profit rate under our proposed policy,

its calculation is complicated. So, we provide two approximations to handle this issue.

Also, we want to show that, while the decision on order size is made, besides using

inventory-related costs, using the rest of the parameters may increase the company’s

profits. We want to provide managerial insights to the firms that using a joint approach

is not an option under their environment.

The rest of the study is organized as follows. In Chapter 2, we give an overview

of maintenance and inventory policies, studies focusing on joint maintenance and

inventory control problem in the literature and contributions of this study. In Chap-

ter 3, we describe the problem environment and introduce our proposed joint policy

for maintenance and inventory control problem with its analytical derivations under

different settings. Furthermore, two approximations of the proposed policy and five

decentralized decision-making strategies are presented. In Chapter 4, we carry out

computational experiments. We provide a simulation optimization procedure of our

proposed policy. The comparison of approximations and sequential approaches is

made, and we present our findings. In Chapter 5, we conclude the study by providing

a summary of our findings and suggesting future research directions.

3
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CHAPTER 2

LITERATURE REVIEW

Preventive maintenance is the set of scheduled activities implemented on equipment

to keep them in working condition and prevent costly unplanned downtime due to

equipment breakdowns. Conducting maintenance activities that require component

replacements is constrained by the availability of the associated component’s spare

parts. Therefore, as long as the component is in working condition, spare part de-

mand occurs due to preventive and corrective maintenance. Maintenance activities

are delayed in the unavailability of spare parts. Delayed maintenances for failed com-

ponents possibly cause additional costs due to disruption of production.

Spare parts are usually procured from outside suppliers, possibly by a lead time. In

addition, there are economies of scale in the ordering. These all favor keeping spare

parts inventory. Stocking high inventory levels of spare parts decreases the proportion

of delayed maintenance activities on one side, and on the other side causes inventory

holding cost. The trade-off between maintenance-related and inventory-related costs

is pointed out in the literature ([1], [2]). Hence, decisions on maintenance activities

and inventory management of associated spare parts should be made jointly.

In this study, we focus on the joint problem of preventive maintenance and spare part

inventory control which is first studied by Falkner [3]. In the rest of this chapter, we

introduce maintenance and inventory policies used in the joint maintenance and in-

ventory control literature. Then, studies that focus on the joint problem of preventive

maintenance and spare part inventory control are reviewed. We restrict our review to

the studies which consider independently working critical components that are prone

to failure. The critical components’ lifetimes are independent and identically dis-

tributed. Also, the critical parts are non-repairable in all of the reviewed studies. Our

5



contributions to the existing literature are presented at the end of this chapter.

Van Horenbeek et al. [4] provides a review of studies on joint maintenance and in-

ventory optimization. The most frequently used maintenance policies are:

• Age-based preventive maintenance: Spare part is replaced either at failure time

or when the age of the component reaches a predetermined threshold [5].

• Block replacement: Maintenance is conducted periodically at prearranged points

in time. This policy is not concerned with the failure history of the component.

• Group maintenance: In a multi-component environment, due to dependencies

between the components, maintenance activity is conducted for all components

at a fixed time [6].

• Condition-based maintenance: It is a predictive strategy in which the com-

ponent’s state is monitored. Maintenance is conducted when the state of the

component reaches a predetermined threshold level.

Inventory control policies can be examined under two categories, which are contin-

uous and periodic review inventory control policies. The inventory level is contin-

uously monitored in the continuous review policies, and order is placed when an

inventory level is reached. Often used continuous review policies are:

• (s, S) policy: Whenever the inventory level becomes s or below, an order of

size S − s is placed.

• (s,Q) policy: Whenever the inventory level becomes s or below, an order of

size Q is placed.

Note that (s, S) and (s,Q) are identical when S − s = Q and demand is a unit.

In the periodic review policies, the inventory level is periodically monitored, and

an order is placed when a predetermined inventory position is reached. The most

commonly used continuous review policies are:

• (R, s, S) policy: In every R time period, the inventory position is checked. If

the inventory level is at s or below, an order of size S − s is placed.

6



• (R, S) policy: In this policy, an order is placed every R period to raise the

inventory position to S.

• (R,Q) policy: In every R time period, an order of size Q is placed.

Next, we review the studies which are most aligned with our research direction.

Acharya et al. [1] consider a joint maintenance and inventory provisioning problem in

a multi-component environment. The components are independent and identical. The

probability of a single component failure increases with its age. They utilize block

replacement as the preventive maintenance policy. For inventory replenishment, they

consider an (R, S) policy where the orders can be only placed at the preventive main-

tenance times of the components. Therefore, periodic review interval of the inventory

becomes a decision variable for their policy. They consider both single-period and

multi-period models. In the single-period model, spare parts are procured at every

maintenance point, whereas in the multi-period model, an order is placed once in

every k > 1 maintenance point. The objective of the models is to minimize the long-

run expected total cost rate. The considered cost terms in the study are inventory

holding, fixed ordering, backordering, corrective, and preventive maintenance costs.

They derive their objective function and use a search algorithm for finding the opti-

mal decision variables. For the single-period model, they compare two cases; (i) only

the maintenance-related costs are considered, (ii), in addition to maintenance-related

costs, inventory-related costs are considered. It is shown that block replacement inter-

val is much larger when only maintenance-related costs are considered in the single-

period model. Results show that optimal replacement interval is much shorter under

multi-period setting than under single-period setting. Also, the objective function is

improved in the multi-period setting.

Armstrong and Atkins [7] study joint optimization of maintenance and inventory

management problem for a single component setting. The failure rate of the com-

ponent increases in its age. They employ age-based replacement as the preventive

maintenance policy. In the study, periodic review is considered in which review in-

terval is a decision variable of the problem. Only a single spare part can be ordered

at review points if the inventory is out of stock and there is no outstanding order. The

supplier lead time is constant. The objective is to minimize the long-run expected

7



total cost rate. The considered cost terms are inventory holding, shortage, corrective

maintenance, and preventive maintenance costs. They employ an analytic approach

and show that the cost function is pseudoconvex. They compare the results of the

joint approach with sequentially optimized decision variables. Results show that the

joint approach outperforms the sequentially optimized decision variables. Armstrong

and Atkins [8] extend their study by adding age-dependent operating and mainte-

nance cost as well as a constant lead time for the maintenance action. Also, they

introduce emergency orders. In addition, they propose service constraints on fill rate

and waiting time and characterize their objective function.

Kabir and Al-Olayan [9] consider a joint optimization of age-based maintenance and

inventory provisioning policy for a single component. They use the (s, S) policy for

inventory management. Supplier lead time and lifetime of the component are random

and follow Weibull Distribution in their setting. Emergency orders are not allowed.

The objective is to find optimal preventive maintenance age of the component, re-

order and order up to inventory level by minimizing total expected cost in a planning

horizon. Simulation optimization is employed as a solution approach. Forty simula-

tion runs are taken for each problem instance. Common random numbers are used in

simulation runs to draw consistent conclusions between alternative policy parameters.

They compare their joint policy with the Barlow and Proschan [10] policy that policy

parameters are optimized sequentially. Joint policy performs better than sequential

policy almost in all problem instances. In their follow-up work, Kabir and Al-Olayan

[11] extend their study by considering a multi-component environment. They reach

the same conclusions regarding the joint approach and sequential approach. The same

environment excluding emergency orders is studied by Kabir and Farrash [12] under

the same policy. The simulation is used for the solution approach. Similar to pre-

vious work, the joint policy is compared with sequential policy. The joint approach

is still superior to the sequential approach when emergency orders are not an option.

Kabir and Farrash [13] study the same environment considered by Kabir and Farrash

[12]. Instead of continuous inventory review, they consider periodic inventory review.

They use age-based preventive maintenance, and a periodic (R,Q) policy, review in-

terval R is a parameter of the problem, and Q is the decision variable representing

the order quantity. They compare their proposed periodic review policy with Kabir

8



and Farrash’s continuous review policy. Periodic review policy performs worse than

continuous review policy when levels of the shape parameter of Weibull distribution

and the number of components in the system are low. An increase in both of these

parameters results in a better performing periodic review policy than the continuous

review policy. Although this result seems counter-intuitive at first glance, recall that

the (s,Q) policy can only reorder at inventory level changes. Whereas the (R,Q)

policy places the orders independently from the inventory level. In reality, orders can

be placed anytime, independent of the inventory position. One can modify the (s,Q)

policy by introducing postponement time, p, for orders as follows. In a (s,Q, p) pol-

icy, whenever inventory position becomes s, wait for p times and place the order of

size Q. So, suppose the optimal value of postponement time is not zero for a given

problem instance. In that case, there is a possibility that the (R,Q) policy performs

better than the (s,Q) policy.

Hu et al. [14], extend Kabir and Al-Olayan [11]’s study by not allowing emergency

orders. Therefore, instead of emergency ordering cost, shortage cost is added to the

model. The same inventory control policy is considered. When the inventory runs

out of stock and the preventive maintenance threshold is reached for the component,

maintenance activity is delayed until the order is received. Since emergency orders

are not allowed, it is reasonable to keep the component in working condition until

failure occurs if no spares are available for preventive maintenance activity. For nu-

merical analysis, they use Kabir and Al-Olayan [11]’s dataset. Comparison is made

between the proposed policy and policy reported by Kabir and Al-Olayan [11]’s study.

Hu et al. [14]’s policy performs better than Kabir and Al-Olayan [11]’s policy in al-

most all problem instances.

Sarker and Haque [15] study preventive maintenance and spare provisioning problem

in a multi-component environment. They consider a manufacturing system that ma-

chines are used in production lines. They utilize block replacement as maintenance

policy, and (s, S) policy is used for inventory control. They assume random lifetime

and supplier lead times which follow Weibull Distribution. Emergency ordering is

allowed with a cost that is three times of regular ordering cost. Also, they consider

random replacement times for maintenance activities. Simulation is used for opti-

mizing policy variables that minimizing total cost in a finite planning horizon. They

9



consider cost and statistical parameters, which are used by Kabir and Al-Olayan [11].

They compare their joint policy with a sequentially optimized block replacement pol-

icy and (s, S) policy. In all problem instances, the joint approach yields better results

than the sequential one.

Mardin and Dekker [16] modify Sarker and Haque [15]’s policy by considering the

separate spare part ordering for corrective replacement and block replacement. They

used simulation optimization as the solution approach. Numerical analysis is con-

ducted for five different policies, which are only conducting corrective replacement

with (s, S) inventory control policy, sequential block replacement with (s, S) inven-

tory control policy, Sarker and Haque’s policy, Mardin and Dekker [16]’s policy, and

age-based maintenance with (s, S) inventory control policy. Results show that the

proposed policy and age-based policy are superior to the rest. Proposed policy per-

forms worse than age-based policy in most of the problem instances. The exceptional

problem instances that proposed policy perform better than age-based policy have

longer supplier lead time, high shortage cost, and high ordering cost.

Brezavscek and Hudoklin [2] consider a block replacement and periodic review of in-

ventory provisioning policy in a multi-component environment. Replenishment cycle

length, T , and order up-to level, S, are the decision variables of the policy. Supplier

lead time, τ , is deterministic and assumed to be shorter than the replenishment cycle

length. Therefore, there is at most one outstanding order at any time. Reorder point

is a function of replenishment cycle length and supplier lead time. After T − τ units

of time in a replenishment cycle, an order is placed. Block replacement is conducted

immediately at the time of order arrival. They approach the problem analytically by

deriving the objective function under their proposed policy by utilizing the renewal

process. The objective is to minimize the long-run expected total cost rate. A compar-

ison is made between the joint approach and sequential approach. An average of 13%

of cost savings is obtained by utilizing the joint approach instead of the sequential

approach.

Huang et al. [17] extend Brezavscek and Hudoklin [2]’s study by considering random

supplier lead times. The maintenance policy remains the same except when there are

not enough spares in the inventory for conducting preventive maintenance to all com-
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ponents, then block replacement time is postponed to a time when enough spare parts

become available. Also, introducing random supplier lead time causes replenishment

cycle length to be random. Their numerical analysis shows that optimality conditions

are hard to find even when the order up-to level is the only decision variable.

Bulbul et al. [18] study joint optimization of preventive replacement and spare parts

inventory planning in a manufacturing system that consists of multiple identical and

independently working machines. The failure probability of the critical part increases

in its age. There is no supplier lead time. They do not impose any maintenance or

inventory policy; instead, they propose a dynamic programming formulation for the

exact solution. The objective is to minimize total cost in a finite planning horizon.

They state that exact dynamic programming formulation provides the optimal policy

in state and stage-dependent. Therefore, they introduce three heuristic approaches

which are Steady-State Approximation, which approximates the finite horizon prob-

lem to an infinite horizon problem for a single unit, Stationary Policy, which considers

an age-based preventive maintenance policy, and a (R, S) inventory control policy

and Myopic Approach which considers only the state variables (does not consider

stage). The numerical analysis shows that, generally, the Myopic Approach performs

worse than the other two approaches. Stationary Policy performs better than rest

when the number of machines is relatively large. In the opposite case, when the num-

ber of machines is relatively small, Steady State Approximation performs better than

the rest.

Panagiotidou [19] study joint optimization of spare parts ordering and age-based pre-

ventive replacement problem for a multi-component environment. The components’

lifetimes follow Weibull Distribution. Preventive maintenance is conducted when the

age of the component reaches the preventive maintenance threshold. Continuous re-

view (s, S) is used as the inventory management policy. Corrective maintenance,

preventive maintenance, fixed ordering, shortage, and inventory holding costs are

considered. The objective is to minimize expected long-run costs by optimizing pre-

ventive maintenance threshold, reorder level, and order up-to level of spare parts.

The problem is approached analytically by utilizing Renewal Reward Theorem. The

objective function is derived under the proposed policy. Instead of observing every

age of component, inter-replacement time distribution is derived. After any mainte-
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nance point of any component, it is known that a component is as good as new. The

remaining ages of the components are considered distributed randomly according to

the preventive maintenance threshold and probability density function of time to fail-

ure of a component in the long run. The optimal decision variables are found through

a search algorithm. In the numerical analysis, the proposed policy is compared with

sequential optimization of decision variables. It is shown that the proposed policy is

superior to the sequential approach. Also, exponential approximation of replacement

time is studied. The exponential approximation of replacement time is costly, espe-

cially in problem instances, including a small number of components and short lead

times.

The reviewed studies in the literature that are most relevant to our research scope are

summarized in Table 2.1.
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We study the joint preventive maintenance and spare parts inventory control problem

in a production system that is continuously monitored. Revenue is earned as long as

the system is operational. The functionality of the system depends on a single criti-

cal component. The critical component is prone to failure. Corrective maintenance

should be conducted upon failure. Maintenance activities use spare parts. Spare parts

are outsourced and may be held in the inventory for the smoothness of the manufac-

turing process. Emergency orders are not allowed. Considered cost terms are fixed

ordering, unit procurement, inventory holding, maintenance, and failure costs.

The objective is to maximize the expected long-run profit rate since the considered

system generates revenue as long as it operates. We propose a joint age-based pre-

ventive maintenance and continuous review inventory control policy. We characterize

the objective function under our proposed policy. Two approximations are used since

the proposed policy requires complicated computation. We compare our joint policy

with five different sequential approaches. Those five sequential policy differs from

each other by their objective function for order quantity decision.

To the best of our knowledge, the studies that propose a joint age-based preventive

maintenance and continuous review inventory control policy that focus on an en-

vironment where there is supplier lead time and emergency orders are not allowed

never provide the derivation of their objective function under their proposed policy.

We want to fill the gap in the literature by proposing a joint age-based preventive

maintenance and continuous review inventory policy that can be analytically char-

acterized, easy to understand, and appropriate for comparison with the sequential

approaches. In addition, as in the studies in the literature, we compare the results

of our joint policy with the sequential approaches to show the critical problem pa-

rameters that yield significant profit gaps between joint and sequential approaches.

Furthermore, we compare sequential approaches in themselves to provide managerial

insights to the decision-makers in the different functional units of the same organiza-

tion where a joint approach is not an option. In the literature, sequential approaches

consider maintenance-related costs while deciding preventive maintenance threshold

and inventory-related costs while deciding order size. We characterize the objective

functions of ordering decisions of sequential approaches by using inventory-related

costs and using some of the parameters defined in the problem.

14



CHAPTER 3

PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATIONS

This chapter discusses the preventive maintenance and spare parts inventory planning

problem. In Section 3.1, we describe the problem environment. Then, we explain our

proposed policy in Section 3.2. Special cases of the proposed policy are discussed

in Section 3.3 and 3.4. Section 3.5 presents two approximation methods for our pro-

posed policy. Later, to measure the inefficiency of sequential optimization compared

to joint optimization, we introduce five sequential optimization methods in Section

3.6.

3.1 Problem Environment

We consider a joint preventive maintenance and spare parts inventory planning prob-

lem in a manufacturing system. The system generates a revenue of r (see Table 3.1)

per unit time when it is operational. We concentrate on a continuously monitored

critical component that is vital for the system to operate. Let X be a non-negative

random variable representing the lifetime of the critical component with a known

probability density function, f(x). The critical component is prone to failure, which

is attributed to wear-outs. When the critical component fails, the system fails. A

malfunctioned component is non-repairable, so it should be replaced with its spare

part. “Corrective maintenance”, is conducted upon failure of the critical component,

with a cost of Cc. The system is assumed to be as good as new after the replacement

of the critical part. The critical component can also be replaced before it fails. This

operation is known as “preventive maintenance” and can be conducted at a cost of Cp

when the system is operating. The replacement time is negligible for both corrective
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and preventive maintenance. Preventive maintenance is less costly than corrective

maintenance since it is a scheduled activity and prevents possible adverse effects of a

failure to the system. All of these aspects of the replacement activities are indirectly

covered by Cp and Cc.

Preventive and corrective maintenances can only be done if a spare part is available

for the critical component. Spare parts are ordered from an outside supplier. The

supplier’s lead time is constant and L time units. When an order is placed, a fixed or-

dering cost of Ck and a unit procurement cost of Cu for each ordered unit is incurred.

At the time of maintenance activity, if there are no spare parts in the inventory, the

system has to wait until a spare part becomes available. Emergency ordering is not

possible. An inventory holding cost of Ch per unit per time is charged for the spare

parts in the inventory.

In this environment, we propose a preventive maintenance and spare part inventory

policy that maximizes the long-run average profit rate. The parameters used through-

out the study is summarized in Table 3.1.

Table 3.1: Notation

Parameters

X Random variable representing the lifetime of a critical part.

Xi Random variable representing ith installed critical part’s lifetime.

f(x) Probability density function (pdf) of X .

F (x) Cumulative distribution function (cdf) of X .

L Supplier lead time.

r Revenue per unit time obtained when the system is in operating

condition.

Cc Unit corrective maintenance cost.

Cp Unit preventive maintenance cost.

Ch Unit inventory holding cost per unit time.

Cu Unit procurement cost.

Ck Fixed cost of ordering.
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3.2 Proposed Policy

We employ an age-based preventive maintenance approach since the critical compo-

nent has an increasing failure rate. In this approach, the critical component is replaced

by a new one when its age reaches the preventive maintenance threshold, τ , if a spare

part is available. If no spare part is available, the preventive maintenance is post-

poned to the earliest time when an item becomes available in inventory. If a failure

occurs before the age of the critical component reaches the preventive maintenance

threshold, then corrective maintenance action is taken. Similarly, if spare parts are

not available at the time of the failure, the corrective replacement must wait until a

spare part becomes available.

To replenish the spare part inventory, we propose batch ordering due to fixed order-

ing cost, where Q is the order quantity. To hold minimum inventory level, orders

are placed such that zero inventory level is ensured when the order is received. To

maintain this condition, we propose setting the order time as if all the remaining

maintenance activities are preventive maintenance until the order receipt. The timing

of the orders is discussed in detail in Sections 3.3 and 3.4 for the exceptional cases,

which are absence and existence of supplier lead time, respectively.

In such a system, the objective is to maximize the long-run average profit rate. In

order to derive long-run average profit rate, one can model the system describing

it by two-dimensional state space, (A(t), I(t)), for t > 0 where A(t) be the status

of the critical component which is in use in the system at time t and I(t) be the

inventory level at time t. Non-negative continuous values that A(t) takes correspond

to the critical component’s age at time t. Whereas A(t) = −1 represents the case

that the critical component in use has failed at time t. So, the state space of A(t) is

defined as A(t) ∈ {−1} ∪ [0,∞). Under our proposed policy, a spare part is used

for maintenance activities every time an order is received. Therefore, state-space of

I(t) becomes I(t) ∈ {0, 1, ..., Q − 1}. The additional notation used for describing

the proposed policy is summarized in Table 3.2.
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Table 3.2: Notation Used for Proposed Policy

Indices

t Time. t ∈ [0,∞).

State

Variables

A(t) Age of the critical component used in the system at time t. Age -1

means that the critical component is failed and it is not replaced yet.

A(t) ∈ {−1} ∪ [0,∞).

I(t) On-hand spare parts inventory level at time t.

I(t) ∈ {0, 1, ..., Q− 1}.

Decision

Variables

τ Preventive maintenance threshold of the critical component in use.

Q Order quantity for spare parts.

We propose a reasonable policy that is easy to understand and apply. Maintenance

activity is conducted either at the time of failure or critical component’s age reaches

the preventive maintenance threshold, whichever happens first. The order time is

scheduled when the inventory level and age of the critical component become prede-

termined levels. An order at a size of Q is placed at the scheduled time or failure time

of the component, whichever happens first.

Under our proposed policy, we can define stochastically identical cycles between suc-

cessive order arrivals. It is ensured that each time an order arrives, either preventive

or corrective maintenance is conducted immediately. Therefore, the age of the critical

component in use is always at age zero, A(t) = 0, where t is the time just after the

order receipt. Also, a spare part in the newly arrived order is used for the mainte-

nance activity at the time of order receipt. So, the on-hand spare parts inventory level

is always I(t) = Q − 1, where t is the time just after the order receipt. Recall that

on-hand spare parts inventory is zero just before the order receipt. This means that Q

many maintenance activities are conducted between successive order arrivals. Also,
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the critical components’ lifetimes are independent and identically distributed with a

common probability density function. Therefore, the maintenance events between

the order arrivals are stationary. So, it can be said that the system states regenerate

themselves at the time of each order receipt to the (A(t) = 0, I(t) = Q− 1). There-

fore, under our proposed policy, we consider a regenerative stochastic process with

the renewal points at the time of order arrivals.

In order to derive the long-run average profit of the system, the Renewal Reward The-

ory is utilized. Expected profit per unit time in a single regeneration cycle represents

the long-run behavior of the expected profit per unit time in the whole regenerative

stochastic process. Let Tn be the sequence of non-negative random variables, in-

dependent and identically distributed with a common probability density function.

{Tn, n ≥ 1} denote random variable representing the time between (n − 1)st and

nth order arrivals. Let {Rn, n ≥ 1} be the random variable representing the reward

gained in the Tn. Let R(t), t ≥ 0 be the total reward earned up to time t. Rn and R(t)

include all of the cost items and revenue of the system. Then we have the following

equations:

P

{
lim
t→∞

R(t)

t
=
E[R1]

E[T1]

}
= 1, (3.1)

P

{
lim
t→∞

E[R(t)]

t
=
E[R1]

E[T1]

}
= 1. (3.2)

In other words, only by analyzing a single renewal cycle, the long-run average reward

rate can be found. G(τ,Q) is used for the long-run average reward rate throughout

the thesis. Let R as the rewards earned in a single renewal cycle and T as the length

of a single renewal cycle. Therefore G(τ,Q) is:

G(τ,Q) =
E[R(τ,Q)]

E[T (τ,Q)]
. (3.3)

The expected reward and cycle length per renewal cycle calculations are derived under

the special case and general case in Sections 3.3 and 3.4, respectively.
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3.3 Proposed Policy with No Supplier Lead Time

When there is no supplier lead time, order timing becomes trivial. After the inventory

level drops to zero, an order should be placed when a spare part is needed by either

preventive or corrective maintenance. The derivation of long-run average profit rates

when Q = 1, L = 0 and Q > 1, L = 0 are given in Section 3.3.1 and Section 3.3.2,

respectively.

3.3.1 Derivation of Long-Run Average Profit Rate When Q=1, L=0

Notice that when Q = 1 and L = 0, the system state I(t) = 0 ∀t. Therefore, one

needs only A(t) for t ≥ 0 to derive the objective function under our policy. Notice

that inventory holding cost is not included in this case since I(t) = 0 ∀t.

We define “maintenance cycle” term that corresponds to the time between any two

successive maintenance activities. Let Xi be the random variable represents the ith

lifetime of the critical component in use. Therefore, ith maintenance cycle has a

length of min(Xi, τ). If the critical component fails before the preventive mainte-

nance threshold, then the maintenance cycle has the length equivalent to the spare

part’s failure time. Otherwise, maintenance cycle has the length equivalent to the pre-

ventive maintenance threshold. In Figure 3.1 and the rest of the manuscript, Sn be the

replacement time of the nth spare part, where:

S0 = 0, Sn =
n∑
i=1

min{Xi, τ}, n = 1, 2, ... (3.4)

The sample path of the system state under the proposed policy, when there is no

supplier lead time and spare part order quantity is equal to one, is given in Figure

3.1.
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t

A(t)

τ

S1 S2 S3

Renewal Cycle I Renewal Cycle II Renewal Cycle III

Figure 3.1: Sample Path of Age of the Critical Component in Use When L = 0,

Q = 1

As it can be seen in Figure 3.1, at the time of every maintenance action, ordering and

order receipt at the order size of one is observed simultaneously. The system state

regenerates itself at each maintenance point since, at any maintenance action, the

age of the critical component becomes zero, A(t) = 0. The maintenance cycle and

renewal cycle terms are equivalent to each other in this case. The renewal cycles given

in Figure 3.1 differ from each other according to the type of maintenance conducted at

the end of the renewal cycle. In the first renewal cycle, the critical component works

until its age is τ , and preventive maintenance is conducted. In the second and third

renewal cycles, critical components fail before the preventive maintenance threshold.

Hence, corrective maintenance action is taken at the time of the failure.

The realizations of reward and renewal cycle length with given random variable X in

a single renewal cycle are:

R(τ |X) =

−Ck − Cu + τr − Cp, if X ≥ τ

−Ck − Cu +Xr − Cc, otherwise.
(3.5)

T (τ |X) =

τ, if X ≥ τ

X, otherwise.
(3.6)
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Expected reward and expected renewal cycle length of the system under the proposed

policy become:

E[R(τ)] = −Ck − Cu +

τ∫
0

(xr − Cc)f(x)dx+

∞∫
τ

(τr − Cp)f(x)dx, (3.7)

E[(T (τ)] =

τ∫
0

xf(x)dx+

∞∫
τ

τf(x)dx. (3.8)

In (3.7), fixed ordering cost, Ck, is only incurred once since the renewal cycle is

defined between successive order arrivals. Total procurement cost in a renewal cycle

is Cu since order quantity is one.

The third term gives the expected total revenue and maintenance cost when corrective

maintenance action is taken at the end of the renewal cycle. In this case, revenue is

gained until the failure of the critical part. The fourth term gives the expected total

revenue and maintenance cost when preventive maintenance is conducted at the end of

the renewal cycle. This time, revenue is earned for τ units of time. Similarly, in (3.8),

renewal cycle length depends only on the failure time and preventive maintenance

threshold of the critical part. The long-run average profit rate can be calculated as:

G(τ) =
E[R(τ)]

E[(T (τ)]
. (3.9)

3.3.2 Derivation of Long-Run Average Profit Rate When Q>1, L=0

In this case, sinceQ > 1, we need two dimensional state space, (A(t), I(t)), for t > 0

to derive the objective function. The sample path of the system states, when there is

no supplier lead time, and spare part order quantity is greater than one, is given in

Figure 3.2.
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Figure 3.2: The Sample Path of Inventory Level and Age of Critical Component in

Use When L = 0, Q > 1

As it can be observed in Figure 3.2, the time between successive ordering and or-

der receipt times constitute renewal cycles. Notice that within each renewal cy-

cle, there are always Q many maintenance cycles, and the maintenance that is per-

formed when an order is received is the last maintenance of a renewal cycle, at times

SQ, S2Q, ..., SnQ. Therefore, at the time of ordering/ order receipt, the renewal point

is observed, and the system states regenerate themselves to (A(t) = 0, I(t) = Q−1).

The lengths of maintenance cycles are independent and identically distributed random

variables. As the inventory is depleted with either preventive or corrective mainte-

nance, the number of spare parts kept in the inventory stay at the same inventory level

within each maintenance cycle. In this setting, the realizations of reward and renewal
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cycle length with given random variables of X’s in a single renewal cycle are:

R(τ,Q|X1, X2, ..., XQ)

= −Ck −QCu +

Q∑
i=1

[
min{Xi, τ}

(
r − Ch(Q− i)

)
− Cpφi − Cc(1− φi)

]
,

(3.10)

T (τ,Q|X1, X2, ..., XQ) =

Q∑
i=1

min{Xi, τ}, (3.11)

φi =

1, if Xi ≥ τ

0, otherwise.
, i = 1, 2, ..., Q

where φi is the indicator variable representing the type of maintenance activity con-

ducted at the end of ith maintenance cycle. If φi is one, then preventive maintenance

action is taken at the end of ith maintenance cycle. Otherwise, corrective maintenance

is conducted at the end of ith maintenance cycle.

The expected reward and expected renewal cycle length of the system under the pro-

posed policy are:

E[R(τ,Q)] = −Ck −QCu +

Q∑
i=1

[ τ∫
0

(
x
(
r − Ch(Q− i)

)
− Cc

)
f(x)dx

+

∞∫
τ

(
τ
(
r − Ch(Q− i)

)
− Cp

)
f(x)dx

]
,

(3.12)

E[T (τ,Q)] = Q

( τ∫
0

xf(x)dx+

∞∫
τ

τf(x)dx

)
. (3.13)

In (3.12), fixed ordering cost, Ck, is only incurred once as in the (3.7). In this case,

while total procurement cost in the renewal cycle is calculated, Cu is multiplied with

the order quantity at the size of Q.

Expected total reward and expected cycle length calculations are done as in the (3.7)

and (3.8), except for this time Q many maintenance cycles are observed in a renewal

cycle. The long-run average profit rate calculated as:

G(τ,Q) =
E[R(τ,Q)]

E[T (τ,Q)]
. (3.14)
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3.4 Proposed Policy with Supplier Lead Time

WhenL > 0, order timing is more complicated. In our proposed policy, assuming that

spare parts are used by preventive maintenance only, orders are placed to be received

when the inventory level is zero, and it is time for the next preventive maintenance.

Recall that the maximum length of a maintenance cycle is equal to the preventive

maintenance threshold of the critical component. Let d�e and b�c be the operators

which round up and round down a given fraction to the nearest integer, respectively.

The maximum number of preventive maintenance activities that are possible during

supplier lead time is
⌈
L
τ

⌉
. Then,

⌊
L
τ

⌋
many of those preventive maintenance activities

use the spare parts in the inventory. In contrast, the last preventive maintenance ac-

tivity uses the spare part at the upcoming batch since the last preventive maintenance

activity is conducted at the time of order receipt. Therefore, an order is placed when

inventory level is
⌈
L
τ

⌉
− 1 or equivalently

⌊
L
τ

⌋
. However, placing the order imme-

diately after inventory level drops to
⌊
L
τ

⌋
may not ensure zero inventory level at the

time of order receipt. If all the maintenance activities are preventive maintenance af-

ter inventory level drops down to
⌊
L
τ

⌋
, the duration of time of conducting all of those

preventive maintenance activities is τ
⌈
L
τ

⌉
. Therefore, after inventory level drops to⌊

L
τ

⌋
, an order is placed after waiting for τ

⌈
L
τ

⌉
− L units of time provided that the

component in use does not fail until that time. If the failure is observed before the

scheduled time, the order is placed immediately.

Let TW be the random variable representing the time between ordering and mainte-

nance point prior to ordering. TW can be defined as an expression of waiting time of

scheduled order time and lifetime of the critical component in use at the maintenance

cycle that ordering occurs:

TW = min

{
τ

⌈
L

τ

⌉
− L,X

Q−
⌊
L
τ

⌋}, (3.15)

where, X
Q−
⌊
L
τ

⌋ is the lifetime of the critical component in use when the inventory

level is bL
τ

⌋
. Scheduling procedure for order timing is illustrated in Figure 3.3.
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Figure 3.3: Illustration of Ordering Time

We restrict ourselves to having at most one outstanding spare part order, which is a

common assumption in the literature [2], [14], [20]. In order to ensure the restriction,

the following inequality should be satisfied:

τQ ≥ L, (3.16)

which means that the maximum possible renewal cycle length should be at least equal

to supplier lead time. This restriction allows modeling the system as a renewal reward

process under the proposed policy. First, let us restrict the order size equal to one,

Q = 1. The derivation of long-run average profit rates when Q = 1, L > 0 and

Q > 1, L > 0 are given in Section 3.4.1 and Section 3.4.2, respectively.

3.4.1 Derivation of Long-Run Average Profit Rate When Q=1, L>0

As in the Section 3.3.1, A(t) for t > 0 is sufficient to represent the system state and to

derive the objective function. Also, there is no inventory holding cost since I(t) = 0

∀t.

As we allow at most one outstanding order, we have τ > L from (3.16). So, while

placing the order, we propose adjusting the ordering time to receive the order when
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preventive maintenance demands a spare part. Therefore, an order is placed when

the critical component in use reaches the age of τ − L. If the critical component in

use fails before the age of τ − L, an order is placed immediately when it fails. The

sample path of the system states, when there is supplier lead time and spare part order

quantity is equal to one is given in Figure 3.4.

t

A(t)

τ

−1

τ − L

S1 S2 S3

L L L

Renewal Cycle I Renewal Cycle II Renewal Cycle III

Figure 3.4: The Sample Path of Age of the Critical Component in Use When L ≥ 0,

Q = 1

Renewal cycles are defined between successive order receipts. In Figure 3.4, three

realizations of renewal cycles, which are the only possible realizations, are shown. In

renewal cycle I, critical component failure is not observed until τ . Therefore, the spare

part order is placed at the scheduled time, τ−L. Also, the system operates throughout

the entire cycle, and the renewal cycle ends with a preventive maintenance action

since the age of the critical component in use reaches the preventive maintenance

threshold parameter, τ . In renewal cycle II, the order is placed at the scheduled time,

τ −L as in renewal cycle I. However, the component in use fails before its preventive

maintenance time, which is the same time as the order receipt. Therefore, there is a

downtime in this renewal cycle. A corrective maintenance action is taken immediately

at the time of order receipt. This renewal cycle’s length is also τ . In renewal cycle III,

the critical component in use fails before τ − L. Therefore, an order is placed at the
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time of failure. Downtime is observed, which is equal to the duration of lead time.

Corrective maintenance action is taken when the order arrives. The cycle length is

the sum of the lifetime of the critical component in use and supplier lead time. The

realization of reward and renewal cycle with given random variable X in a single

renewal cycle are:

R(τ |X) =

−Ck − Cu + τr − Cp, if X ≥ τ

−Ck − Cu +Xr − Cc, otherwise.
(3.17)

T (τ |X) =

τ, if X ≥ τ − L

X + L, otherwise.
(3.18)

As it can be seen, random reward realization stays the same as in Equation (3.5), in

Section 3.3. The change is at cycle length since downtime can be realized in a given

renewal cycle. Cycle length differs from Equation (3.6) since the cycle ends with the

receipt of the order, which takes L units of time. The expected reward and expected

renewal cycle length of the system under the proposed policy are:

E[R(τ)] = −Ck − Cu +

τ∫
0

(xr − Cc)f(x)dx+

∞∫
τ

(τr − Cp)f(x)dx, (3.19)

E[T (τ)] = L+

τ−L∫
0

xf(x)dx+

∞∫
τ−L

(τ − L)f(x)dx. (3.20)

Equation (3.19) is same as Equation (3.7). In (3.20), expected renewal cycle length is

sum of supplier lead time, and expected time until an order is placed. The long-run

average profit rate calculated as:

G(τ) =
E[R(τ)]

E[T (τ)]
. (3.21)

3.4.2 Derivation of Long-Run Average Profit Rate When Q>1, L>0

When we consider order quantities greater than one, the policy becomes as stated in

Section 3.2. We need a two dimensional state space, A(t), I(t),to characterize the

system’s objective function under the proposed policy. In order to ensure that there is

at most one outstanding order, inequality introduced in (3.16) should be enforced.
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When the inventory level drops to
⌊
L
τ

⌋
units, the system waits for τ

⌈
L
τ

⌉
− L units

of time to place an order of size Q provided that the component in use does not fail

by that time. If the critical component in use fails before the age τ
⌈
L
τ

⌉
− L, then the

order is placed immediately. Note that the inventory level is definitely zero when the

order arrives, and the proposed policy calls for a maintenance as soon as the order

arrives. If the component installed in the system has failed before the order receipt,

then corrective maintenance is conducted at the time of order arrival.

We introduce a new random variable, TE , to simplify the realizations in the renewal

cycles. Let TE be the random variable representing the time between the order receipt

and maintenance point prior to the order receipt. In other words, it is the length of the

last maintenance cycle in a renewal cycle. TE can be defined as:

TE = L+ TW −min
{
X
Q−
⌊
L
τ

⌋, τ}− Q−1∑
i=Q−

(⌊
L
τ

⌋
−1
)min

{
Xi, τ

}
(3.22)

L + TW is the time between the maintenance event that decreases I(t) to
⌊
L
τ

⌋
and

the arrival of the order. The third term is the length of the maintenance cycle that

ordering occurs. Recall that TW is the minimum of τ
⌈
L
τ

⌉
− L and X , where X is the

(Q−
⌊
L
τ

⌋
)
th lifetime of the critical component in use. So, if the critical component

in use at the maintenance cycle that ordering occurs fails before the scheduled time

of order, then the second and third terms cancel out each other. Otherwise, the time

between ordering and maintenance event just after the ordering is calculated by the

second and third term and deducted from the remaining time of the order arrival. The

last term is the total time between the maintenance that drops I(t) to
⌊
L
τ

⌋
− 1 and the

maintenance at before the order arrival.

TE realization depends on the lengths of maintenance cycles, which are observed after

the ordering until inventory becomes zero. Since the ordering time is set in a way that

ensures zero inventory level at the time of order receipt, every failure that occurs after

the inventory level drops to I(t) to
⌊
L
τ

⌋
increases the length of TE . TE could take any

value between [τ, L]. If all the maintenance actions are preventive maintenance after

an order is placed, then TE realization takes its lower bound value, which is τ . On

the other hand, if all the lifetimes of the critical components in use after the ordering

are equal to zero, XQ−bL
τ
c+1 = 0, XQ−bL

τ
c+2 = 0, ..., XQ−1 = 0, and the lifetime
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of the critical component in use at the maintenance cycle in which ordering occurs is

less than the waiting time, TW = XQ−bL
τ
c, then TE realization becomes L, which is

the upper bound value of it. The sample path of the system states when supplier lead

time exists, and spare part order quantity is greater than one is given in Figure 3.5.
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In Figure 3.5, each renewal cycle corresponds to one of the three different character-

istics that can be observed in the renewal cycles. Those renewal cycles differ from

each other with the lifetime of the critical component in use at the maintenance cy-

cle in which ordering occurs. In renewal cycle I, the next maintenance subsequent

to ordering is of preventive, so the order is placed at its scheduled time. Therefore,

TW = τ
⌈
L
τ

⌉
−L. In renewal cycle II, the next maintenance subsequent to ordering is

corrective. However, since failure time is after the scheduled time of order, again TW

realization becomes, TW = τ
⌈
L
τ

⌉
− L. In renewal cycle III, since failure is observed

during the waiting time of ordering, ordering and corrective maintenance occur to-

gether at the time of failure immediately. Therefore, TW realization becomes equal to

the lifetime of the critical component, TW = XQ−bL
τ
c. TW realization is important for

our proposed policy since the ordering time directly affects the expected reward and

expected renewal cycle length calculations. The realization of renewal cycle length

with given random variables of X’s in single a renewal cycle is:

T (τ,Q|X1, X2, ..., X
Q−
⌈
L
τ

⌉) = TW + L+

Q−
⌈
L
τ

⌉∑
i=1

min{Xi, τ}. (3.23)

It can be seen in (3.23) that cycle length depends on the maintenance points before

the ordering as well as the maintenance time at the maintenance cycle in which the

ordering occurs.

Recall that TW + L is the time between the maintenance event that decreases I(t) to⌊
L
τ

⌋
and the arrival of the order. The third term is the total time between start of the

renewal cycle and maintenance event that drops I(t) to
⌊
L
τ

⌋
, which is the inventory

level at the time of ordering. Maintenance points before the ordering are identical to

each other, the length of each is min(X, τ). After the ordering, supplier lead time is

observed until the end of the renewal cycle. We can reorganize Equation (3.23) by

plugging (3.15) into it, which yields:

T (τ,Q|X1, X2, ..., X
Q−
⌊
L
τ

⌋)
= min

{
τ

⌈
L

τ

⌉
− L,X

Q−
⌊
L
τ

⌋}+ L+

Q−
⌈
L
τ

⌉∑
i=1

min{Xi, τ}.
(3.24)
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Therefore, expected renewal cycle length of the system under proposed policy is:

E[T (τ,Q)] =


τ
⌈
L
τ

⌉
−L∫

0

xf(x)dx+

∞∫
τ
⌈
L
τ

⌉
−L

(
τ

⌈
L

τ

⌉
− L

)
f(x)dx

+ L

+

(
Q−

⌈
L

τ

⌉) τ∫
0

xf(x)dx+

∞∫
τ

τf(x)dx

 .
(3.25)

In (3.25), the first term calculates the expected time between the ordering and the

maintenance point before the ordering. The second term is the deterministic supplier

lead time observed from the ordering to order receipt. The third term calculates the

expected times of maintenance cycles before the maintenance cycle in which ordering

occurs.

The realization of reward with given random variables of X’s in a single renewal cycle

is:

R(τ,Q|X1, X2, ..., XQ) = −Ck −QCu

+

Q−1∑
i=1

[
− Cpφi − Cc(1− φi) +min{Xi, τ}

(
r − Ch(Q− i)

)]
+
[
− CpφQ − Cc(1− φQ) +min{XQ, TE}r

]
,

(3.26)

φi =

1, if Xi ≥ τ

0, otherwise.
, i = 1, 2, ..., Q− 1

φQ =

1, if XQ ≥ TE

0, otherwise.

where φi and φQ are the indicator variables representing the type of maintenance

activity conducted at the end of ith and Qth maintenance cycles, respectively. If φi

and φQ are one, then preventive maintenance action is taken at the end of ith and Qth

maintenance cycles, respectively. Otherwise, corrective maintenance is conducted at

the end of the corresponding maintenance cycles.

In (3.26), since the maintenance cycles lengths are independent and identically dis-

tributed except for the maintenance cycle in which order receipt occurs, the summa-

tion term considers the reward gained within the firstQ−1 many maintenance cycles.
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When we consider reward generated at the maintenance cycle in which order receipt

occurs, we need to compare XQ and TE realizations. If the critical component does

not fail until the order receipt, for example, XQ ≥ TE , the system is operational

through the entire renewal cycle. In this case, preventive maintenance is conducted

when order receipt occurs, φQ = 1. On the other hand, when the critical component

fails prior to the order receipt, for example, XQ ≤ TE , the system is not operational

from failure to time of order receipt. This time, corrective maintenance is conducted

at the time that order receipt occurs, φQ = 0.

Let RE be the random variable representing the reward earned during TE ,

RE = −CpφQ − Cc(1− φQ) +min{XQ, TE}r. (3.27)

Then, the expected reward of the system under the proposed policy is:

E[R(τ,Q)] =

Q−1∑
i=1

[ τ∫
0

(
x
(
r − Ch(Q− i)

)
− Cc

)
f(x)dx

+

∞∫
τ

(
τ
(
r − Ch(Q− i)

)
− Cp

)
f(x)dx

]
+E[RE]− Ck − CuQ.

(3.28)

E[RE] depends on the lifetime of the critical component in use at I(t) = 0, as well as⌈
L
τ

⌉
− 1 many maintenance points’ time just before the inventory level drops to zero.

The special case of E[RE],
⌈
L
τ

⌉
= 1, depends on only the lifetime of the critical part

in use at I(t) = 0, since the ordering and order receipt occur in the same maintenance

cycle. This case can be expressed as follows:

E

[
RE |

⌈
L

τ

⌉
= 1

]
=

τ∫
0

(
xr − Cc

)
f(x)dx+

∞∫
τ

(
τr − Cp

)
f(x)dx (3.29)

It can be observed that (3.29) is nothing but Equation (3.7) in Section 3.3.1, except

for the exclusion of fixed cost and procurement cost, since these costs are considered

in (3.28). For the rest of the cases, we can characterize E[RE] with the
⌈
L
τ

⌉
− 1 many

maintenance points’ time and the lifetime of the critical component in use at I(t) = 0.

To simplify the following characterizations, let Ym be the random variable represent-

ing the critical component’s maintenance time at the mth maintenance cycle, where
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m = 1 corresponds to the maintenance cycle that ordering occurs and m is incre-

mented by one for the subsequent maintenance cycles. Ym can be defined as:

Ym = min{Xm, τ}. (3.30)

Ym is independent and identically distributed with the probability density function

h(y). Notice that the following equality holds for TW :

TW = min

{
τ

⌈
L

τ

⌉
− L, Y1

}
. (3.31)

Also, we can characterize TE alternatively as follows:

TE = L+min

{
τ

⌈
L

τ

⌉
− L, Y1

}
− Y1 −

⌈
L
τ

⌉
−1∑

m=2

Ym (3.32)

Let n =
⌈
L
τ

⌉
. Therefore, E[RE] for the cases, in which n > 1 is:

E

[
RE | n =

⌈
L

τ

⌉
, n > 1

]

=

nτ−L∫
0

h(y1)

L∫
0

h(y2)

L−y2∫
0

h(y3)· · ·
L−y2−y3−...−yn−2∫

0

h(yn−1)

[ L−y2−y3−...−yn−1∫
0

(xnr − Cc)f(xn)dxndyn−1...dy3dy2dy1

]

+

nτ−L∫
0

h(y1)

L∫
0

h(y2)

L−y2∫
0

h(y3)· · ·
L−y2−y3−...−yn−2∫

0

h(yn−1)

[ ∞∫
L−y2−y3−...−yn−1

((
L−

n−1∑
m=2

ym

)
r − Cp

)
f(xn)dxndyn−1...dy3dy2dy1

]

+

τ∫
nτ−L

h(y1)

nτ−y1∫
0

h(y2)

nτ−y1−y2∫
0

h(y3)· · ·
nτ−y1−y2−...−−yn−2∫

0

h(yn−1)

[ nτ−y1−y2−y3−...−yn−1∫
0

(xnr − Cc)f(xn)dxndyn−1...dy3dy2dy1

]

+

τ∫
nτ−L

h(y1)

nτ−y1∫
0

h(y2)

nτ−y1−y2∫
0

h(y3)· · ·
nτ−y1−y2−...−−yn−2∫

0

h(yn−1)

[ ∞∫
nτ−y1−y2−y3−...−yn−1

((
nτ −

n−1∑
m=1

ym

)
r − Cp

)
f(xn)dxndyn−1...dy3dy2dy1

]
(3.33)
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In (3.33), the first n fold integrals correspond for the case that ordering is triggered by

component failure, and the last installed critical component in use in the renewal cycle

fails before the order receipt. Maintenance time, Y1, occurs prior to the scheduled time

of order. During supplier lead time, n−1 many maintenance activities are conducted,

which constitute n− 2 many i.i.d. maintenance cycles and the last maintenance cycle

in a renewal cycle. n − 2 many maintenance times corresponds for Y2, Y3, ..., Yn−1.

At the last maintenance cycle, the critical component fails prior to the order receipt.

The second n fold integrals are the same as the first n fold integrals except that at the

last maintenance cycle, the critical component does not fail until the order receipt,

and preventive maintenance is conducted at the time of order arrival. The third n fold

integrals correspond to the case that ordering occurs at its scheduled time, and the last

installed critical component in use in the renewal cycle fails before the order receipt.

So, at the start of the next maintenance cycle after the ordering, the remaining time

of the order arrival is nτ − y1. At the last maintenance cycle, the critical component

fails before order arrival time. The last n fold integrals are identical to the third term,

except the critical component in use at the last maintenance cycle survives until the

time of order receipt. The long-run average profit rate is:

G(τ,Q) =
E[R(τ,Q)]

E[T (τ,Q)]
. (3.34)

3.5 Approximations

Calculating the expected reward between the order receipt and prior maintenance

point, E[RE], requires evaluating
⌈
L
τ

⌉
fold integrals. So, evaluating the objective

function for given τ and Q values under the proposed policy requires complicated

computation. Therefore, two approximations for E[RE] are proposed.

Approximating E[RE] needs evaluating the time between the order receipt and prior

maintenance point, TE , (or equivalently the time period where inventory level is zero).

A renewal cycle length of the system under the proposed policy can be characterized

by utilizing TE:

T (τ,Q|X1, ..., XQ−1) =

Q−1∑
i=1

[
min{Xi, τ}

]
+ TE. (3.35)
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Since the maintenance points are identically distributed in terms of their duration,

except for the maintenance point at order receipt, simply summing all of the mainte-

nance cycles’ durations gives us the renewal cycle length. The expected cycle length

is then given by:

E[T (τ,Q)] = (Q− 1)

 τ∫
0

xf(x)dx+

∞∫
τ

τf(x)dx

+ E[TE]. (3.36)

Since Equations (3.25) and (3.36) are equal to each other, we can get the expected

time between order receipt and prior maintenance point as:

E[TE] =


τ
⌈
L
τ

⌉
−L∫

0

xf(x)dx+

∞∫
τ
⌈
L
τ

⌉
−L

(
τ

⌈
L

τ

⌉
− L

)
f(x)dx

+ L

−
(⌈

L

τ

⌉
− 1

) τ∫
0

xf(x)dx+

∞∫
τ

τf(x)dx

 .
(3.37)

In (3.37), the summation of the first term and L stands for the expected time between

the maintenance point prior to the ordering and the end of the renewal cycle. This

duration consist of
⌈
L
τ

⌉
many maintenance cycles where

⌈
L
τ

⌉
− 1 of them identically

distributed and the remaining one is TE . So, in the second term of the equation,

simply subtracting the sum of identical maintenance cycles’ expected times gives us

the E[TE].

By knowing the exact value of E[TE], we also need the expected operational time of

the system between order receipt and prior maintenance point to find E[RE]. Two

approximations tackle the problem of finding the expected operational time of the

system between order receipt and prior maintenance point, or in other words, expected

up-time of the system between order receipt and prior maintenance point. The exact

expression of expected up-time between order receipt and prior maintenance point is:

E

[
Up-time

]
= E

[
min

{
X,TE

}]
. (3.38)
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3.5.1 Approximation 1

The first approximation method considers the expected time of the system between

order receipt and prior maintenance point, E[TE], as well as the lifetime of the critical

part in use while approximating the expected operational time of the system between

order receipt and prior maintenance point, or in other words, expected up-time of the

system between order receipt and prior maintenance point accordingly:

E

[
Up-time

]
= E

[
min

{
X,E[TE]

}]
. (3.39)

In (3.39), Approximation 1 approximates up-time as the minimum of the lifetime of

the critical component in use and expected time of the system between order receipt

and prior maintenance point, E[TE]. Approximating up-time means approximating

generated revenue in the system between order receipt and prior maintenance point.

Maintenance costs are also affected by this approximation. If the lifetime of the crit-

ical component in use is less than E[TE], then we assume that the last maintenance

is corrective. Otherwise, preventive maintenance cost incurs. Consequently, Approx-

imation 1 approximates the expected reward earned between the order receipt and

prior maintenance point, E[RE1 ], as:

E[RE1 ] =

[ E[TE ]∫
0

(xr − Cc)f(x)dx+

∞∫
E[TE ]

(E[TE]r − Cp)f(x)dx

]
. (3.40)

3.5.2 Approximation 2

The second approximation method considers the expected time of the system between

order receipt and prior maintenance point, E[TE], as well as the expected lifetime of

the critical component in use, E[X], while approximating the expected up-time of the

system between order receipt and prior maintenance point accordingly:

E

[
Up-time

]
= min

{
E[X], E[TE]

}
. (3.41)

In (3.41), Approximation 2 approximates up-time as the minimum of expected life-

time of the critical component in use, E[X], or expected time of the system between

order receipt and prior maintenance point, E[TE]. According to the Approximation 2,
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the expected reward between the order receipt and prior maintenance point, E[RE2 ],

is approximated as:

E[RE2 ] =

E[TE]r − Cp, if E[X] ≥ E[TE]

E[X]r − Cc, otherwise.
(3.42)

3.5.3 Search Algorithm for Approximations

We propose a search algorithm for approximation methods to find τ ∗ and Q∗ values

where G(τ,Q) is maximized. In the search algorithm, while the G(τ,Q) is evaluated,

E[REi ] is used if ith approximation is considered. Let q be the index for represent-

ing batch size quantity, and τq be the preventive maintenance threshold value which

maximizes G(τ,Q) when Q = q.The search algorithm is:

1. q = 1.

2. Given Q = q, search for τq that maximizes G(τ,Q) from L
Q

to F−1(0.9999)

with step increments of 0.1.

3. Set q = q + 1.

4. Given Q = q, search for τq that maximizes G(τ,Q) from L
Q

to F−1(0.9999)

with step increments of 0.1.

5. If G(τq, Q = q) > G(τq−1, Q = q − 1), go to step 3.

6. Set Q∗ = q − 1 and τ ∗ = τq−1

The search algorithm is used for determining optimal Q∗ and τ ∗ values under the

corresponding approximation’s expected up-time evaluation. Therefore, G(τ ∗, Q∗) is

the approximation of the long-run average profit rate under the proposed policy.

3.6 Sequential Approaches

Preventive maintenance and spare parts inventory management are usually planned

by different functional units in the industry [21], although joint planning provides
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globally less costly solutions [9], [12], [11], [15], [2], [22], [23], [24], [16], [19],

[25]. In order to quantify the effect of decentralized planning in our environment, we

consider five different sequential optimization approaches. The general framework of

the sequential approaches are as follows:

1. Preventive maintenance threshold, τ ∗, is determined considering only maintenance-

related costs. It is assumed that a spare part is always available.

2. Batch size, Q∗, is determined considering all or some of the costs and revenue

terms.

3. Ordering time is determined by our proposed policy.

We first characterize how τ ∗ is obtained in step 1. Assuming that inventory is al-

ways available, we can define independent and identically distributed cycles between

each maintenance point since the lifetimes of the critical components in use are in-

dependent and identically distributed. So, at the start of each maintenance cycle, a

critical component in use is at the age zero. Therefore, the optimization problem can

be formulated by the renewal reward theorem. The realization of reward with a given

random variable X in a single maintenance cycle, Rm, is:

Rm(τ |X = x) =

−Cu − Cp, if x ≥ τ

−Cu − Cc, otherwise.
(3.43)

The realization of renewal cycle length with a given random variable X in a single

maintenance cycle, Tm, is:

Tm(τ |X = x) =

τ, if x ≥ τ

x, otherwise.
(3.44)

The expected reward and expected renewal cycle length of the system in a single

maintenance cycle are:

E[Rm(τ)] = −Cu +

τ∫
0

−Ccf(x)dx+

∞∫
τ

−Cpf(x)dx, (3.45)

E[Tm(τ)] =

τ∫
0

xf(x)dx+

∞∫
τ

τf(x)dx. (3.46)
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Furthermore, τ ∗ is found where the long-run average maintenance cost rate, Gm, is

minimized:

Gm(τ) =
E[Rm(τ)]

E[Tm(τ)]
. (3.47)

Sequential approaches differ from each other in how they determine the order quan-

tity, Q∗. The differences can be examined under two categories; considered revenue

and costs terms, and assumption made on time between two subsequent spare time

demand occurrences. These sequential approaches are named as S1, S2, S3, S4, and

S5.

3.6.1 Derivation of Objective Function When S1 is Employed

Let Λ be the inter-event time between two subsequent spare part demands. In S1, we

solve the order quantity decision by assuming that unit demand occurs every Λ = τ

period. Also, S1 considers only inventory-related costs, Ch and Ck. Since the revenue

is not considered in this approach, supplier lead time also becomes obsolete. The

sample path of system states realization becomes as in Figure 3.6.

0 t

I(t)

Q− 1

Q− 2

Q− 3

1

Λ Λ Λ Λ Λ Λ Λ Λ

Figure 3.6: Sample Path of Sequential Approaches with Deterministic Demand

Since the revenue is not considered in this approach, up-time of the system does not
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considered. Therefore, total cost over a replenishment cycle, RS1(τ
∗, Q) is:

RS1(τ
∗, Q) = Ck + τ ∗Ch

(Q− 1)Q

2
, (3.48)

and length of a replenishment cycle, TS1(τ ∗, Q), is:

TS1(τ
∗, Q) = τ ∗Q. (3.49)

Since no random aspects are taken into account, Q∗ can be found by minimizing total

cost over a single replenishment cycle length as follows:

GS1(τ
∗, Q) =

RS1(τ
∗, Q)

TS1(τ ∗, Q)
. (3.50)

3.6.2 Derivation of Objective Function When S2 is Employed

In S2, the order quantity is determined based on the assumption that unit demand

occurs every Λ = E[X] periods. Also, S2 considers inventory-related costs, Ch and

Ck. Since the revenue is not considered in this approach, supplier lead time also

becomes obsolete. The sample path of system states realization becomes as in Figure

3.6. Therefore, total cost over a replenishment cycle, RS2(τ
∗, Q) is:

RS2(τ
∗, Q) = Ck + E[X]Ch

(Q− 1)Q

2
, (3.51)

and length of a replenishment cycle, TS2(τ ∗, Q), is:

TS2(τ
∗, Q) = E[X]Q. (3.52)

Again, since no random aspects are taken into account, Q∗ can be found by minimiz-

ing total cost over a single replenishment cycle length as follows:

GS2(τ
∗, Q) =

RS2(τ
∗, Q)

TS2(τ ∗, Q)
. (3.53)

3.6.3 Derivation of Objective Function When S3 is Employed

In S3, we solve the order quantity decision by assuming that unit demand occurs

every Λ = E[min(X, τ)] periods. Also, S3 considers inventory-related costs, Ch

and Ck. Since the revenue is not considered in this approach, supplier lead time also
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becomes obsolete. The sample path of system states realization becomes as in Figure

3.6. Therefore, total cost over a replenishment cycle, RS3(τ
∗, Q) is:

RS3(τ
∗, Q) = Ck + E[min{X, τ ∗}]Ch

(Q− 1)Q

2
. (3.54)

and length of a replenishment cycle, TS3(τ ∗, Q), is:

TS3(τ
∗, Q) = E[min{X, τ ∗}]Q. (3.55)

Again, since no random aspects are taken into account, Q∗ can be found by minimiz-

ing total cost over a single replenishment cycle length as follows:

GS3(τ
∗, Q) =

RS3(τ
∗, Q)

TS3(τ ∗, Q)
. (3.56)

3.6.4 Derivation of Objective Function When S4 is Employed

In S4, when determining the order quantity, inventory-related costs, Ch and Ck, and

revenue are taken into account. So, replenishment cycle length calculations include

the supplier lead time’s effect this time. The proposed policy’s objective function

is employed for determining order quantity. However, maintenance-related costs are

not included in the objective function. Also, predetermined τ ∗ is a parameter of the

objective function of S4. Therefore, the realization of reward with given random

variables of X’s in a single replenishment cycle, RS4(τ
∗, Q) is:

RS4(τ
∗, Q|X1, ..., XQ) =

Q−1∑
i=1

[
min{Xi, τ

∗}r −
(
Ch(Q− i)

)]

+

[
min{XQ, TE}r

]
− Ck.

(3.57)

Equation (3.57) is nothing but Equation (3.26) where the maintenance-related costs

are excluded, which are Cp, Cc and Cu. Therefore, the expected reward of the system

under S4 is:

E[RS4] =

Q−1∑
i=1

[ τ∗∫
0

(
x
(
r − Ch(Q− i)

))
f(x)dx

+

∞∫
τ∗

(
τ ∗
(
r − Ch(Q− i)

))
f(x)dx

]
+ E[RE]− Ck,

(3.58)
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In Equation (3.58),E[RE] term is determined as it is explained in the approximations.

When we consider the realization of the replenishment cycle length, it can be seen that

it is the same as in Equation (3.23). Therefore, the expected length in a replenishment

cycle is the same as in Equation (3.25), except for the usage of predetermined τ ∗.

Q∗ can be found by maximizing expected reward over expected replenishment cycle

length as follows:

GS4(τ
∗, Q) =

E[RS4(τ
∗, Q)]

E[T (τ ∗, Q)]
. (3.59)

3.6.5 Derivation of Objective Function When S5 is Employed

In this approach, while determining the Q∗ value of the batch size, inventory-related

costs, which are Ch and Ck, revenue gained per unit time r and maintenance-related

costs, which are Cc, Cp and Cu, are considered. This approach is similar to the pro-

posed policy. The only difference is that instead of an integrated solution approach, a

sequential solution approach is used. So, the expected reward and cycle length for a

single renewal cycle in the proposed policy determine the batch size. Since this is a

sequential approach, predetermined τ ∗ age is used while deciding the spare part order

quantity. As in S4, S5 also employs approximations for determining E[RE]. There-

fore, Q∗ can be found by maximizing expected reward over expected replenishment

cycle length as follows:

GS5(τ
∗, Q) =

E[R(τ ∗, Q)]

E[T (τ ∗, Q)]
. (3.60)

Notice that the decision on order quantity represents the level that the inventory man-

agement function captures the systemic impact of inventory control. Besides inves-

tigating the trade-off utilizing a joint approach instead of a sequential approach, we

also want to show the importance of capturing the system behavior as a whole, even

in a decentralized decision-making system. The summary of sequential approaches is

provided in Table 3.3.
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Table 3.3: The Summary of Sequential Approaches

Methods Cost Terms Considered While Deciding Q∗ Demand for the Spare Part

S1 Ch, Ck τ ∗

S2 Ch, Ck E[X]

S3 Ch, Ck E[min(X, τ ∗)]

S4 Ch, Ck, r As in the Proposed Policy

S5 Ch, Ck, r, Cc, Cp, Cu As in the Proposed Policy

3.6.6 Search Algorithm for Sequential Approaches

We use search algorithms for sequential approaches to find τ ∗ and Q∗ values where

GSj(τ
∗, Q) is minimized for j = 1, 2, 3 and maximized j = 4, 5 sequential approach.

The general structure of the search algorithm is:

1. Search for τ ∗ that minimizes Gm(τ) from 0 to F−1(0.9999) with step incre-

ments of 0.1.

2. Set q =
⌈
L
τ∗

⌉
.

3. Given Q = q evaluate GSj(τ
∗, Q).

4. Set q = q + 1.

5. Given Q = q evaluate GSj(τ
∗, Q).

6. Return step 4 until GSj(τ
∗, Q = q) ≥ G(τ ∗, Q = q − 1) for j = 1, 2, 3, and

GSj(τ
∗, Q = q) ≤ G(τ ∗, Q = q − 1) for j = 4, 5.

7. Set Q∗ = q − 1.

The search algorithm is used for determining optimal Q∗ and τ ∗ values under the

corresponding sequential approach.
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CHAPTER 4

COMPUTATIONAL STUDIES

In this chapter, we aim to answer several research questions. First, we want to in-

vestigate the performances of approximations. We have two approximation methods

that differ in how they approximate the system’s down-time (or equivalently up-time

during the inventory level is zero). Approximations are reasonable since they are

practical to use. However, the approximations’ performances need to be checked ei-

ther they result in similar performances with the best policy parameters. Also, by

proposing two approximations (approximation 2 utilize a rougher approximate of up-

time than approximation 1), we want to point out the importance of approximating the

down-time in the system. Second, we want to examine the performances of sequential

approaches. We have five sequential approaches that differ in how they decide order

quantity. The decision is made by different costs and revenue parameters under each

sequential approach. We want to show that awareness of all system parameters may

yield better performances under sequential approaches. This is important since one

can characterize his/her objective function by also considering the parameters in other

functional units if the joint decision is not a viable option. Third, we want to examine

the performances of the proposed joint approach and decentralized decision-making

strategy. By doing so, the importance of realizing the trade-off between maintenance-

related and inventory-related costs is clarified. Also, the parameter levels that affect

the long-run average profit rate deviation from the best policy are examined to show

the percentage of losses acquired using a sequential approach.

In order to clarify the above research questions, firstly, we need to find the optimal

decision variables under the proposed policy as well as for the approximations and se-

quential approaches. In Chapter 3, search procedures for determining the preventive
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maintenance threshold of the critical component and order quantity are introduced

for approximations and sequential approaches. However, we need to obtain the op-

timal policy parameters under our proposed policy as well. We can characterize the

proposed policy’s long-run average profit rate function analytically. However, com-

puting the long-run average profit rate function is hard to obtain. Therefore, we use

simulation optimization to obtain the optimal policy parameters. We searched τ and

Q values by brute force in the simulation. The policy parameters which yield the

maximum long-run average profit rate are selected as the best solution.

We conduct a computational study to analyze the policy variables found in approxi-

mations and the sequential approaches. We simulate given policy parameters found

by approximations and sequential approaches to obtain long-run average profit rates

of the policies. We use the percentage of long-run average profit rate deviation of a

given policy from the best solution as the primary performance measure. For a given

problem instance, the percent deviation of a given policy from the best policy, ∆%,

can be expressed as:

∆% =
G∗ −G
G∗

, (4.1)

where G∗ and G are the long-run average profit rates under the best policy and the

given policy, respectively.

The rest of the chapter is organized as follows: In Section 4.1, we introduce the simu-

lation optimization procedure. In Section 4.2, the full factorial experiment is demon-

strated. In Section 4.3 and Section 4.4, analysis of approximations and sequential

approaches are discussed, respectively. In Section 4.5, remarks on the approaches are

delivered.

4.1 Simulation Optimization

In order to obtain the best policy parameters under our proposed policy, we use a

simulation optimization algorithm. The simulation optimization algorithm is imple-

mented in MATLAB R2021a on an Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz

processor and 32 GB of RAMS computer. The codes are available upon request.

The algorithm consists of three main parts: the inner loop, outer loop, and simulation
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subroutine. The inner loop of the algorithm searches for the τ values. The outer loop

of the algorithm searches for the Q values. The simulation subroutine simulates the

system under our proposed policy for a given pair of τ and Q. It returns the long-run

average profit rate for a given policy. Let q be the searched order quantity at any level

of the algorithm. Let τ ∗q be the τ value which yields the maximum long-run average

profit rate, given that Q = q. The general procedure we used for the simulation

optimization algorithm can be seen in Figure 4.1.

Call SIMULATION

Increment

τ by 0.1
F (τ) ≥ 0.9999?

τ ∗q = arg max
τ

G(τ, q)

G(τ∗q , q) <

G(τ∗q−1, q − 1)?

Increment

q by 1.
Set τ = L

q
.

Set q = 1.

start

Set τ ∗ = τ ∗q−1, Q
∗ = q − 1

stop

Yes

No

Yes

No

Figure 4.1: Main Algorithm of Simulation Optimization

In Figure 4.1, the main algorithm of our simulation optimization procedure is pre-
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sented. The inner loop of the algorithm searches τ values. We use 0.1 step size while

searching for τ values starting from L
q

, until F (τ) exceeds 0.9999. The lower bound

for τ search is nothing but the policy restriction, τ ≥ L
Q

, introduced in Chapter 3,

which is used for not allowing more than one outstanding spare part order. The upper

bound for the search, F (τ) = 0.9999, is the limit when the probability of corrective

maintenance is practically 100%. When the search in the inner loop is completed for

a q value, the τ value that yields the maximum long-run average profit rate, τ ∗q , is

selected and reported.

The outer loop of the algorithm searches Q values to vary starting from one and using

unit increments. The search for Q continues as long as the long-run average profit

rate keeps increasing in Q. The search stops at the time when the long-run average

profit rate starts decreasing, R(τ∗q ,q)

T (τ∗q ,q)
<

R(τ∗q−1,q−1)
T (τ∗q−1,q−1)

. The reason for choosing such a

termination condition for searching Q values is as follows; Although we could not

prove concavity or unimodularity of the long-run average profit rate function, when

we employ numerical analysis, the function seems to be unimodal in Q. A typical

long-run average profit rate function is provided in Figure 4.2.

Figure 4.2: Long-run average Profit Rate Function: r = 150, Ch = 1, Cc = 200,

Cp = 25, Ck = 50, Cu = 200, L = 30, λ = 25, α = 2.

In Figure 4.3, we examine maximum long-run average profit rates for each Q value
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(G(τ ∗, Q), for Q = 1, 2, ...) for the problem instance provided in Figure 4.2 except

for Q = 1, which yields a very low long-run average profit rate and causes poor

precision in the graph. The graph of the maximum long-run average profit rates,

including Q = 1, can be seen in Appendix A. The long-run average profit rate is

unimodal in Q.
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Figure 4.3: Unimodal Behaviour of Long-run Average Profit Rate Function in Q,

Excluding Q = 1.

When the termination condition of the outer loop is satisfied, it is known that the max-

imum long-run average profit rate is observed whenQ∗ = q−1 and the corresponding

preventive maintenance threshold of the critical component, τ ∗ = τ ∗q−1.

We also examine maximum long-run average profit rates for each τ value (G(τ,Q∗))

for the problem instances provided in Figure 4.2 except for the interval τ = [0, 7.5],

which yields a very low long-run average profit rate and causes poor precision in

the graph. The graph of the maximum long-run average profit rates, including τ =

[0, 7.5], can be seen in Appendix A.
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Figure 4.4: Unimodal Behaviour of Long-run Average Profit Rate Function in τ ,

Excluding τ = [0, 7.5].

Although τ also seems unimodal, we do not want to enforce any stopping condition

that concerns long-run average profit rate while searching for τ values since τ is a

continuous variable and fluctuation in simulation may results with a premature result.

The simulation subroutine is a discrete event simulation algorithm. Four different

events can occur in the system. Each event has its corresponding subroutine as fol-

lows:

• PREV subroutine used for preventive maintenance events,

• FAIL subroutine used for component failure events,

• PLACE subroutine used for ordering events,

• RECE subroutine used for order receipt events.

The termination condition for the simulation is the number of order receipt events that
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occurred throughout the simulation run. Let j be the counter for order receipt events,

and let J be the maximum number of order receipt events allowed in a simulation

run. When j reaches J , the termination condition is satisfied, and the simulation

subroutine returns to the main algorithm. We use J = 10000 for all of the problem

instances. Our preliminary runs show that J = 10000 is satisfactory enough for

the precision of the long-run average profit rates. The maximum relative half-length

observed is 0.018.

In order to interpret the performances of the policies, we also define secondary per-

formance measures. Let TNOW be the simulation clock. The performance measures

evaluated at the end of the simulation run and the statistical variables used for calcu-

lating them can be seen in Table 4.1.

Table 4.1: Secondary Performance Measures and Their Statistical Variables

Notation

δup Cumulative amount of time that the system is in operating condition

at time TNOW.

δspa Cumulative amount of time that at least one spare part is available

at time TNOW.

δpm Cumulative number of conducted preventive maintenance activities.

at time TNOW.

%∆up Percentage of time that the system is in operating condition,
δup

TNOW
.

%∆spa Percentage of time that at least one spare part is available,
δspa

TNOW
.

%∆pm Percentage of maintenances that are preventive maintenance,
δpm
QJ

.

The flowchart of the discrete event simulation can be seen in Figure 4.5.
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Subroutine SIMULATION

Call INIT

Remove first event from event list,

Update simulation clock, TNOW =Event time.

Event type?

Call

PLACE

Call

FAIL

Call

PREV

Call

RECE

j < J?

Compute and report

G(τ,Q) = R
TNOW

∆up% = δup
TNOW

∆spa% = δspa
TNOW

∆pm% = δpm
JQ

Return

No Yes

Figure 4.5: Discrete Event Simulation of the System under Proposed Policy

The simulation algorithm starts with the initialization step (see Figure 4.6), which is

called INIT. In this step, the simulation clock, TNOW , is set to zero. The problem

parameters r, Ch, Cc, Cp, Ck, Cu, L and lifetime distribution of the critical component

is defined according to corresponding problem instance. The system states, which are

inventory level, I , and age of the critical component, A, are initialized to I = Q − 1

and A = 0. A is only used for determining whether the system is in up or down

condition. Simply, if the system is in working condition, A = 0. Otherwise, A = −1.

54



The statistics that are used in the simulation are set to zero. The lifetime of the critical

component in use, x, is generated. If the lifetime of the critical component has a value

that is less than the preventive maintenance threshold of the critical component, then

the failure event is scheduled at time TNOW + x. In the opposite case, preventive

maintenance is scheduled at time TNOW + τ . After scheduling the first event and

inserting it in the event list, the initialization step finishes.

Subroutine INIT

Set TNOW = 0,

Initialize parameters,

Initialize system state, I = Q− 1, A = 0

Initialize statistics (all zero),

Generate lifetime of the critical component, x.

x < τ?

Schedule preventive maintenance

event at time τ , insert it in the

event list.

Schedule failure event

at time x, insert it in

the event list.

Return

No Yes

Figure 4.6: Subroutine Initialization

After the initialization step, the scheduled event is removed from the event list, and

the simulation clock is updated to the event time. According to the removed event,

the corresponding subroutine is called.

First, we examine the preventive maintenance event (see Figure 4.7). Let υ be the

time of the inventory level change in the previous event. (TNOW − υ) gives us
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the time between the current event and the most recent event that inventory level is

changed. (TNOW − υ) is needed for updating the statistics which are R, δup and

δspa. At the start of subroutine PREV, statistics are updated, as can be seen in Figure

4.7. I is decreased by one since the spare part is installed in the system. Also, υ is set

to TNOW after updating the other statistics.

Scheduling the upcoming events is similar to the same process in INIT. The differ-

ence is that if the inventory level is zero, regardless of the lifetime of the critical

component in use, a failure event is scheduled. Since there are no spare parts in the

inventory, preventive maintenance can not be scheduled. However, preventive main-

tenance can be conduct at the time of order receipt, and this event is considered in

the RECE subroutine. Therefore, it is known that if the simulation entered into the

PREV subroutine, then the system is in operating condition, and at least a spare part

is available in the inventory. Also, if I = bL
τ
c, then ordering event is scheduled. Let

Φ be an indicator variable representing whether the ordering event is in the event list

or not. If Φ = 1, then ordering is in the event list, and Φ = 0 otherwise. In the end,

PREV subroutine returns to the simulation subroutine.
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Subroutine PREV

R = R + (TNOW − υ)(r − ICh)− Cp,

δup = δup + (TNOW − υ),

δspa = δspa + (TNOW − υ),

δpm = δpm + 1,

I = I − 1,

υ = TNOW,

Generate lifetime of the critical component, x.

x < τ?

I = 0?

Schedule preventive maintenance

event at time TNOW + τ , insert

it in the event list.

Schedule failure event at

time TNOW + x, insert it

in the event list.

I = bL
τ
c?

Schedule ordering event at time

TNOW + τdL
τ
e − L, insert it in

the event list. Set Φ = 1.

Return

Yes No

Yes

No

Yes

No

Figure 4.7: Subroutine Preventive Maintenance

Second, we examine the failure event, (see Figure 4.8). The procedure for updating

statistics is similar to the same process in PREV. However, if there are no spare parts
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in the inventory, only the reward, and cumulative up-time is updated. A is set to

−1, and the FAIL subroutine returns to the main algorithm since events can not be

scheduled until the order receipt. If there is a spare part in the inventory, statistics are

updated, as can be seen in Figure 4.8.

Scheduling the upcoming events is similar to the same process in PREV. The only

difference is that a failure can trigger ordering. So, if the ordering is in the event

list, Φ = 1, then ordering event is removed from event list and subroutine PLACE is

called.
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Subroutine FAIL

I = 0?

R = R + (TNOW − υ)(r − ICh)− Cc,

δup = δup + (TNOW − υ),

δspa = δspa + (TNOW − υ),

I = I − 1,

υ = TNOW,

Generate lifetime of the critical component, x.

R = R + (TNOW − υ)r,

δup = δup + (TNOW − υ),

A = −1.

x < τ?

I = 0?

Schedule preventive maintenance

event at time TNOW + τ , insert

it in the event list.

Schedule failure event at

time TNOW + x, insert it

in the event list.

I = bL
τ
c?

Schedule ordering event at time

TNOW + τdL
τ
e − L, insert it in

the event list. Set Φ = 1.

Return

Φ = 1?

Remove ordering event

from event list, Call

PLACE.

Yes No

Yes

No

No

Yes

No

Yes

No

Figure 4.8: Subroutine Failure
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The ordering subroutine, PLACE (see Figure 4.9), only schedules the order receipt

event and inserts it into the event list. Also, since the ordering event is removed from

the event list, Φ is set to zero.

Subroutine PLACE

Schedule the order receipt event

at time TNOW + L, insert it in

the event list. Set Φ = 0

Return

Figure 4.9: Subroutine ordering

Lastly, RECE subroutine (see Figure 4.10) is called if an order receipt event occurs.

At the start of the RECE, the system is checked whether it is in working condition or

not. A is set to zero if a failure occurred before the order arrival. According to A,

statistics are updated. Then, the inventory level is updated to Q − 1 since the order

has arrived and one of the spare parts is installed in the system. Counter of the order

receipt, j, is increased by one. The process of scheduling the next event is identical

to the process in INIT.
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Subroutine RECE

A = −1?

R = R + (TNOW − υ)r − Cp −QCu − Ck,

δup = δup + (TNOW − υ),

δpm = δpm + 1.

I = Q− 1,

υ = TNOW,

j = j + 1,

Generate lifetime of the

critical component, x.

R = R−Cc−QCu−Ck.
A = 0,

x < τ?

Schedule preventive maintenance

event at time TNOW + τ , insert

it in the event list.

Schedule failure event at

time TNOW + x, insert it

in the event list.

Return

No

Yes

No Yes

Figure 4.10: Subroutine Order Receipt

When the order counter reaches J , the simulation is terminated and performances are

calculated.
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After determining the preventive maintenance threshold and order quantities, five in-

dependent replications (n = 5) are made for each problem instance under each ap-

proach. The termination condition for a single simulation run is determined as 2000

order receipts. With these five independent replications, we constructed 95% confi-

dence intervals to the long-run average profit rates. LetG and σ as the mean and stan-

dard deviation of the long-run average profit rate of the five replications, respectively.

Since population variation is not known, we use t-distribution while constructing the

confidence intervals. Therefore, the confidence intervals become:

G± t(.975,n−1)
σ√
n

(4.2)

We use common random numbers as a variance reduction technique under each prob-

lem instance under each approach. At the start of each simulation run, the Mersenne

Twister generator with seed zero is initiated to generate failure times of the critical

components. We employ common random numbers to increase statistical efficiency

and to compare alternatives under similar experimental conditions [9]. Using vari-

ance reduction results in obtaining confidence intervals with higher precision than

those constructed without implementing any variance reduction technique under the

same amount of computational effort. Therefore, differences in each performance of

approaches are more likely caused by policy parameters instead of fluctuations due to

random numbers used in the simulation runs.

4.2 Full Factorial Experiment

A full factorial experiment is implemented to investigate the effects of the problem

parameters on the resulting policies and observe the percent long-run average rate

deviation of each approach from best policy under different problem instances.

We assume that the lifetime of the critical components follows the Weibull Distribu-

tion. The pdf of the Weibull distribution is:

f(x) =
k

λ

(x
λ

)k−1
e−(x/λ)

k

, (4.3)

where λ is the scale parameter, and k is the shape parameter. In the literature, Weibull

distribution is widely used as the lifetime distribution of deteriorating systems ([3],
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[9], [11], [12],[13], [15], [21], [14], [22], [26], [23], [27], [28], [16], [29], [19]). The

parameter levels of factors that are used in the full factorial experiment can be seen in

the Table 4.2.

Table 4.2: List of Parameter values Used for Full Factorial Design

Parameters Levels

L Supplier lead time 20, 30, 60

r Revenue per unit time obtained when the system

is in operating condition 50, 75, 150

Cc Unit corrective maintenance cost 100, 200, 400

Cp Unit preventive maintenance cost 25

Ch Unit Inventory holding cost per unit time 0.5, 1, 2

Cu Unit procurement cost 200

Ck Fixed cost of ordering 25, 50, 200

(λ, k) Scale and shape parameter of Weibull distribution (24.54, 1.5),

(25, 2),

(24.13, 5)

In total, 729 problem instances are considered in the full factorial experiment. For

L, r, Cc, Ch and Ck parameters, three levels are considered. We select a single value

for Cp since only the difference between Cc and Cp levels matters. We also consider

three levels for the shape parameter of the Weibull distribution. Scale parameter of the

Weibull distribution is selected so that the expected lifetime of the critical component

remains the same.

Scale parameters are selected to ensure an increasing failure rate exists, (k > 1).

Probability density functions of the Weibull distributions that are considered in the

full factorial experiment can be seen in the Figure 4.11.
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Figure 4.11: Probability Density Functions of Weibull Distribution.

Descriptive statistics of the considered probability density functions of the Weibull

distribution are provided in the Table 4.3.

Table 4.3: Descriptive Statistics of Considered Probability Density Functions

(λ, k) Mean Median Mode Variance Skewness

(1.5, 24.54) 22.15 19.22 11.80 226.29 1.07

(2, 25) 22.15 20.81 17.68 134.13 0.63

(5, 24.13) 22.15 22.42 23.07 25.75 −0.25

From Figure 4.11 and Table 4.3, it can be seen that, as the shape parameter increases,

the variance of the distribution decreases drastically.

4.3 Comparison of Approximations

In this section, we investigate the overall performances of the approximations and the

effects of utilizing approximations on the policy parameters. A1 and A2 corresponds

for Approximation 1 and Approximation 2 in the rest of the manuscript, respectively.
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In 672 out of 729 problem instances, A1 statistically performs better than A2. On the

other hand, there are no problem instances where A2 statistically performs better than

A1. In more than 99% of the problem instances, A1 results in statistically insignificant

long-run average profit rate deviation from the best policy. In contrarily, in more than

92% problem instances, A2 results in statistically significant long-run average profit

rate deviation from the best policy. Overall performances of the approximations in

terms of percentage deviation from the best policy are summarized in Table 4.4.

Table 4.4: Performances of the Approximations

Number of instances

∆% < 0.1 0.1 < ∆% < 1 1 < ∆% < 10 10 < ∆% < 20 ∆% > 20

A1 655 74 0 0 0

A2 18 114 390 153 54

Worst ∆% Average ∆% Best ∆%

A1 0.88 0.04 0.00

A2 50.89 7.50 0.00

A1 results in a much lower percentage deviation from the best policy compared to A2.

In almost 90% of the problem instances, A1 results in less than 0.1 percent deviation

from the best policy. In comparison, A2 results with a more than 1 percent deviation

from the best policy in more than 80% problem instances.

For 169 problem instances, A1 could find the best policy parameters. The problem

instances in which A1 results with the best policy parameters can be seen in Appendix

B. On average, 0.04 percent profit deviation is observed, and even in the worst result,

0.88 percent profit deviation is obtained. The problem parameters, in which the worst

result of A1 is observed, are r = 50, Ch = 2, Cc = 100, Ck = 25, L = 60, k = 1.5.

In contrarily, A2 only achieves the best policy parameters in 7 problem instances. It

should be noted that A1 can also find the best policy parameters in those problem

instances. On the average, A2 performs with a 7.5 percent deviation, far beyond the

worst result of A1. Worst performance of A2 results in the 50.89 percent deviation
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from the best policy’s long-run average profit rate. The best and worst percent profit

deviations observed for A2 can be seen in Table 4.5.

Table 4.5: Problem Instances in which Approximation 2 Performs at Best and Worst

r Ch Cc Ck L (λ, k) ∆%

50 1 100 25 60 (24.13, 5) 0 Best

50 2 100 25 60 (24.13, 5) 0 Best

50 2 100 50 60 (24.13, 5) 0 Best

50 2 200 25 60 (24.13, 5) 0 Best

50 2 200 50 60 (24.13, 5) 0 Best

75 2 100 25 60 (24.13, 5) 0 Best

75 2 100 50 60 (24.13, 5) 0 Best

75 2 100 50 60 (24.13, 5) 0 Best

50 2 400 200 20 (24.54, 1.5) 50.89 Worst

The common parameter levels among the problem instances in which A2 performs

best are L = 60 and (λ, k) = (24.13, 5). Those are the highest levels of supplier lead

time and shape parameter of the Weibull Distribution. When we look at the problem

instance in which A2 performs worst, it is seen that supplier lead time and shape

parameter of the Weibull distributions take their lowest levels, L = 20 and (λ, k) =

(24.54, 1.5). In order to further investigate the effects of the problem instances on the

performances of the approximations, the average ∆% values and the average of the

policy parameters with respect to each parameter level are given in Table 4.6. The

average of the secondary performance measures with respect to each parameter level

is given in Table 4.7.
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Table 4.6: Average ∆% and Policies of Approximations

Parameter Levels Approximation 1 ∆% Approximation 2 ∆%

r = 50 0.06 8.21

r = 75 0.04 7.01

r = 150 0.03 7.29

Ch = 0.5 0.03 8.41

Ch = 1 0.03 7.49

Ch = 2 0.06 6.61

Cc = 100 0.03 7.48

Cc = 200 0.03 7.70

Cc = 400 0.06 7.34

Ck = 25 0.04 7.73

Ck = 50 0.04 8.33

Ck = 200 0.04 6.45

L = 20 0.03 11.73

L = 30 0.04 7.25

L = 60 0.05 3.53

k = 1.5 0.06 12.75

k = 2 0.04 7.76

k = 5 0.02 2.01
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Table 4.7: Secondary Performance Measures of the Approximations

Best Policy Approximation 1 Approximation 2

∆up% ∆spa% ∆pm% ∆up% ∆spa% ∆pm% ∆up% ∆spa% ∆pm%

r = 50 93.57 76.71 48.03 93.63 76.34 48.67 89.19 65.04 56.11

r = 75 95.34 78.89 53.68 95.41 78.75 54.10 89.21 65.09 56.17

r = 150 97.20 81.74 62.51 97.21 81.51 62.90 89.27 65.39 56.30

Ch = 0.5 96.54 85.96 51.02 96.61 86.03 51.45 89.92 67.81 56.71

Ch = 1 95.48 79.71 54.95 95.49 79.73 55.20 89.26 65.21 56.21

Ch = 2 94.09 71.65 58.25 94.14 70.84 59.02 88.49 62.49 55.67

Cc = 100 94.90 81.87 46.00 94.97 81.84 46.72 89.07 66.52 53.32

Cc = 200 95.29 79.10 54.12 95.37 78.94 54.46 88.93 66.39 53.89

Cc = 400 95.92 76.36 64.10 95.90 75.83 64.49 89.66 62.60 61.38

Ck = 25 95.20 75.55 57.15 95.22 75.17 57.46 87.68 60.98 55.78

Ck = 50 95.26 77.81 55.84 95.33 77.58 56.43 87.91 62.19 55.99

Ck = 200 95.65 83.96 51.24 95.69 83.85 51.79 92.07 72.35 56.81

L = 20 96.04 84.43 52.71 96.13 84.01 53.53 85.52 80.65 50.37

L = 30 95.54 75.88 53.01 95.56 75.82 53.38 89.43 48.61 55.21

L = 60 94.53 77.02 58.50 94.55 76.77 58.76 92.72 66.24 63.00

k = 1.5 92.46 83.73 34.17 92.66 83.41 35.76 83.41 60.84 49.10

k = 2 94.98 81.02 51.09 94.98 80.74 51.62 87.85 65.47 52.67

k = 5 98.68 72.58 78.96 98.60 72.46 78.30 96.40 69.21 66.82

Average 95.37 79.11 54.74 95.41 78.87 55.22 89.22 65.17 56.19

It seems that the poor performance of A2 is mainly caused by setting order quan-

tity lower. In all problem instances, the order quantity found by A2 highly deviates

from the best policy’s order quantity. In the high levels of supplier lead time, to ob-

tain a specific preventive maintenance threshold value, A2 is forced to increase its

order quantity. Therefore, A2’s order quantity comes closer to the best policy’s order

quantity, which causes a decrease in percent profit deviation while supplier lead time

increases. While the shape parameter increases, both approximations perform better.

Since the variation of the lifetime of the critical part decreases, there is an increase in

the accuracy of downtime approximations.

When we examine the rest of the parameters, policy parameters in best policy and pol-
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icy parameters in A1 are similar to each other. While revenue increases, policies tend

to increase their percentage up-time as expected. An increase in the percentage of

up-time can be achieved by decreasing the preventive maintenance threshold and/or

increasing the order quantity. Decreasing the preventive maintenance threshold is

reasonable because the system becomes more likely to do preventive maintenance,

resulting in a decrease in the system’s downtime. Conducting preventive maintenance

at the early ages of the critical component also causes an increase in the percentage

of conducted preventive maintenance activities. Recall that downtime can only be

observed when the system runs out of stock. So, increasing order quantity means

adding a maintenance cycle to the renewal cycle, which has 100% up-time, resulting

in an increase in the percentage of spare part availability. When inventory holding

cost increases, the system favors decreasing their percentage of spare part availabil-

ity. So, both policy parameters are decreased. Decreasing the preventive maintenance

threshold means a faster turnover of spare parts. Decreasing the preventive main-

tenance threshold also causes an increase in the percentage of conducted preventive

maintenance activities. Decreasing order quantity means avoiding higher levels of

inventory. When corrective maintenance cost increases, A1 and A2 tend to raise their

percentage of conducted preventive maintenance activities. Therefore, A1 and A2

decrease preventive maintenance threshold values, which also causes an increase in

the percentage of up-time. While fixed cost increases, A1 and A2 seek to increase

their renewal cycle lengths. Therefore an increase is observed in both policy parame-

ters. This behavior increases the percentage of spare part availability and reduces the

percentage of conducted preventive maintenance activities.

It can be concluded that A1 performs better than A2. It is not surprising since A2

employs a rough approximation for the system’s downtime, while A1 uses a more

accurate approximation. However, the results show that precision is crucial while

approximating the downtime since even a small proportion of downtime may signifi-

cantly affect the system’s long-run average profit rate.
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4.4 Comparison of Sequential Approaches

In this section, we investigate the overall performances of the sequential approaches.

We aim to observe the percentage of loss due to considering decentralized decision-

making rather than considering a joint policy. Also, we intend to investigate the

improvement in the long-run average profit rate due to considered parameters in the

objective function utilized by sequential approaches. In the previous section, it is

concluded that A1 performs better than A2. Therefore, E[RE] is approximated by

utilizing A1 in S4 and S5. Comparative performances of the sequential approaches

can be seen in Table 4.8, ((i, j)th entry of the table corresponds for the number of

problem instances that ith approach performs statistically better than jth approach in

terms of long-run average profit rate).

Table 4.8: Comparative Performances of the Sequential Approaches

Deviation from the Best Policy’s ∆%

S1 S2 S3 S4 S5 Insignificant Significant

S1 - 36 0 0 0 69 660

S2 246 - 0 0 0 40 689

S3 308 98 - 0 0 83 646

S4 602 636 580 - 2 115 614

S5 607 643 588 75 − 148 581

Recall that the hierarchical structure between sequential approaches that S1, S2, and

S3 only consider inventory-related costs, S4 considers the inventory-related costs and

revenue, and S5 considers all problem parameters. It is observed that, generally, when

a sequential approach considers an additional parameter, it results in a better perfor-

mance than the rest of the sequential approaches which do not consider that parameter.

The gap between the performances of the first three sequential approaches and the last

two sequential approaches can be seen clearly. Also, a minor increase in the perfor-

mances is observed between S5 and S4 due to considering maintenance-related costs

while determining order quantity. At 36 of the problem instances, S1 statistically

performs better than S2. These problem instances’ common property is the high lev-
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els of corrective maintenance cost values, which causes low preventive maintenance

threshold values. S1 assumes that the replenishment cycle length is τQ, whereas S2

assumes the replenishment cycle length as E[X]Q. Since the preventive maintenance

threshold takes lower values on those problem instances, S1 uses a more accurate

approximation of the replenishment cycle length. In contrast, S2 approximates the

replenishment cycle length relatively poorly. Also, all of the approaches’ long-run

average profits significantly differ from the best policy’s long-run average profits in

most of the problem instances. The best-performing approach, S5, is indifferent from

the best policy only for 20% of the problem instances. Overall performances of the

sequential approaches in terms of percentage profit deviation from the best policy are

summarized in Table 4.9.

Table 4.9: Performances of the Sequential Approaches

Number of instances

∆% < 0.1 0.1 < ∆% < 1 1 < ∆% < 10 10 < ∆% < 20 ∆% > 20

S1 35 98 225 77 294

S2 2 128 253 135 211

S3 41 102 246 129 211

S4 49 194 465 21 0

S5 52 214 446 17 0

Worst ∆% Average ∆% Best ∆%

S1 70.17 19.28 0.00

S2 67.93 13.91 0.08

S3 67.93 13.67 0.00

S4 14.69 2.80 0.00

S5 14.07 2.54 0.00

S1, S2, and S3 result in more than 20% deviation from the best policy in the most of

the problem instances. S4 and S5 performed better than the rest of the approaches by

considering the revenue generated in the system. In most of the problem instances,

S4 and S5 deviate from the best policy less than 2%.
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On average, S1 is the worst performing approach with the 19.28 percent deviation

from the best policy. S2 and S3 do not differ from each other drastically. There is

a slight improvement when the expected replacement time is assumed instead of the

expected lifetime of the critical component while computing a single maintenance

cycle length. S4 and S5 are far better than the rest of the approaches since they utilize

downtime information. Also, there is a slight improvement when the maintenance-

related cost of the system is considered.

The best and worst percentage deviations observed for sequential approaches can be

seen in Table 4.10 below.

Table 4.10: Problem Instances in which Sequential Approaches Performed at Best

and Worst

r Ch Cc Ck L (λ, k) ∆%

S1
75 2 400 200 20 (24.13, 5) 0 Best

150 0.5 100 50 60 (24.54, 1.5) 70.17 Worst

S2
50 2 400 200 60 (24.13, 5) 0.08 Best

150 2 100 25 60 (24.54, 1.5) 67.93 Worst

S3
75 2 400 200 20 (24.13, 5) 0 Best

150 2 100 25 60 (24.54, 1.5) 67.93 Worst

S4
75 2 400 200 20 (24.13, 5) 0 Best

50 2 100 25 60 (24.54, 1.5) 14.69 Worst

S5
75 2 400 200 20 (24.13, 5) 0 Best

50 2 100 25 60 (24.54, 1.5) 14.07 Worst

It is observed that all sequential approaches present their worst performance when

corrective maintenance cost and shape parameter of the Weibull distribution are at

their lowest levels, Cc = 100, (λ, k) = (24.54, 1.5), supplier lead time is at its high-

est level L = 60, and fixed cost is at its low levels, Ck = 25. Also, since S1, S2, and

S3 do not concern revenue generated in the system while deciding the policy param-

eters, they perform their worst when level of revenue is at its highest, r = 150. As

expected, sequential approaches achieve their best performance in the opposite case,

when Cc = 400, (λ, k) = (24.13, 5), L = 20 and Ck = 200. In order to further
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study the consequences of the problem instances on the performances of the sequen-

tial approaches, the average percent profit deviation values, ∆%, and the average of

the policy parameters with respect to each parameter level are given in Table 4.11.

The average of the secondary performance measures with respect to each parameter

level is given in Table 4.12.

Table 4.11: Average ∆% and Policies of Sequential Approaches

Parameter Levels S1 ∆% S2 ∆% S3 ∆% S4 ∆% S5 ∆%

r = 50 17.83 12.11 11.85 3.26 2.67

r = 75 19.19 13.83 13.59 2.78 2.60

r = 150 20.84 15.80 15.57 2.37 2.35

Ch = 0.5 17.15 11.97 11.70 1.60 1.42

Ch = 1 19.92 13.82 13.45 2.64 2.38

Ch = 2 20.78 15.95 15.86 4.16 3.81

Cc = 100 29.48 19.93 19.93 4.13 3.98

Cc = 200 20.03 14.32 14.29 2.75 2.51

Cc = 400 8.35 7.49 6.79 1.53 1.13

Ck = 25 23.50 19.03 18.91 3.15 2.87

Ck = 50 21.10 14.62 14.40 2.97 2.70

Ck = 200 13.26 8.09 7.69 2.28 2.05

L = 20 15.55 10.00 9.78 1.70 1.47

L = 30 19.33 13.30 13.00 2.64 2.42

L = 60 22.97 18.44 18.23 4.06 3.72

k = 1.5 36.62 24.35 24.22 4.30 3.76

k = 2 19.45 15.52 15.02 3.29 3.04

k = 5 1.78 1.88 1.77 0.82 0.82
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Recall that in sequential approaches, we first decide the critical component’s pre-

ventive maintenance threshold and then decide the order quantity of spare parts. At

determining the preventive maintenance threshold step, it seems that setting the pre-

ventive maintenance threshold lower is not as beneficial as in the joint policy. In the

absence of downtime information, high values of preventive maintenance threshold

are selected in the sequential approaches. This is the main problem of the sequen-

tial approaches that they decide on a much higher preventive maintenance threshold

than the preventive maintenance threshold decided in the best policy. Also, since the

policy parameters are decided sequentially, and the preventive maintenance thresh-

old is set according to only considering maintenance-related costs, the preventive

maintenance threshold can not react to most of the problem parameters. Therefore,

sequential approaches have stationary preventive maintenance threshold values when

revenue, inventory holding cost, fixed cost, and supplier lead time levels are changed.

In addition, since revenue is not concerned with S1, S2, and S3, order quantity is also

stationary in those policies when the revenue level is changed.

The first three approaches and the last two approaches mostly have the same behaviors

according to a parameter level change. Firstly, we examine the first three approaches.

These approaches become even worse as the revenue level increases. As it is said in

Section 4.3, order quantity can be used to increase up-time. By ignoring the system’s

revenue, those approaches develop low order quantity values. So, the absence of

revenue information affects both of the policy parameters in those approaches. This

explains observing r = 150 at the worst-performing problem instance of the first

three sequential approaches.

S4 and S5 can react to the increase in revenue level by increasing their order quanti-

ties. The improvement is significant. The percentage of up-time values are increased

at least 12% from the first three approaches to the last two approaches. As a result

of an increase in order quantity, the system’s percentage of spare part availability

is increased. For the percentage of conducted preventive maintenance activities, it

is counter-intuitive to observe an increase in the first place since this performance

measure is related to the preventive maintenance threshold. However, an increase in

order quantity also triggers an increase in the percentage of preventive maintenance

activities. Recall that maintenance cycles are identically distributed except for the
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last maintenance cycle in a renewal cycle. The probability of conducting preventive

maintenance at the last maintenance is less or equal to the probability of conducting

preventive maintenance at the rest of the maintenance cycles. In addition, the ex-

pected length of the last maintenance cycle is greater or equal to the expected length

of any remaining maintenance cycles. Therefore, introducing an additional mainte-

nance cycle at the start of the renewal cycle increases the frequency of conducted

preventive maintenance activities. The percent profit deviation is improved for the

last two approaches at the high values of revenue level.

As inventory holding cost increases, all of the approaches’ performances decline.

The approaches react to the change by lowering their order quantity values. How-

ever, since they can not change their preventive maintenance threshold values, which

should be done in this case, the percent profit deviation from the best policy increases.

When corrective maintenance cost increases, the changes in the preventive mainte-

nance threshold values are drastic. The same behavior is observed while fixed cost

increases. The preventive maintenance threshold is greatly sensitive to changes in

the levels of corrective maintenance cost and fixed cost in the sequential approaches.

That is why the best and worst-performing problem instances observed at Cc = 400,

k = 5 and Cc = 100, k = 1.5 respectively. Also, in the 81 problem instances, in

which Cc = 100, k = 1.5, the preventive maintenance threshold is found at its upper

limit, which means never conduct preventive maintenance in practice.

While supplier lead time increases, S4 and S5 increase their order quantity values

to lower the decrease in the percentage of up-time. Order quantity increase is also

observed in the first three approaches. However, the increase is related to the policy

constraint, τQ ≥ L, instead of the percentage of up-time performance. In order to

ensure the restriction, an increase in order size is observed.

In addition, we also compare the best approximation, A1, and sequential approach,

S5, with each other to see the differences between a joint policy and a sequential

policy. The results show that A1 performs statistically better than S5 in 573 out of 729

of the problem instances. On the other hand, there is no problem instance in which S5

performs statistically better than A1. So in the rest of the 156 problem instances, A1

and S5 find policy variables that result in the statistically indifferent long-run average
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profit rates. The parameter levels observed for these problem instances can be seen in

Table 4.13.

Table 4.13: Parameter Level’s Occurrence in the Problem Instances Result with In-

different for A1 and S5

Parameter level Number of problem instances

r = 50 86

r = 75 49

r = 150 21

Ch = 0.5 64

Ch = 1 51

Ch = 2 41

Cc = 100 4

Cc = 200 33

Cc = 400 119

Ck = 25 38

Ck = 50 45

Ck = 200 73

L = 20 79

L = 30 51

L = 60 26

k = 1.5 24

k = 2 39

k = 5 93

The most occurred parameter levels are Cc = 400, k = 5 and r = 50 in order. It

is not surprising to see the highest levels of corrective maintenance cost and shape

parameter of the Weibull distribution since these are the S5’s best performing param-

eter settings. The main cause for 86 problem instances resulted indifferent for A1 and

S5 because confidence intervals’ half-length proportion to the mean is highest at the

parameter level r = 50.

It can be concluded that the performance of the sequential approaches is positively
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correlated with the number of problem parameters defined in the decision maker’s

objective function. The revenue information dramatically affects the performances

of the sequential approaches. Therefore, S1, S2, and S3 are inferior to S4 and S5

in all problem instances. Considering the maintenance-related costs while deciding

order quantity also slightly impacts the quality of the policies. This is because the

last maintenance cycle observed in a replenishment cycle is not identical to the rest

of the maintenance cycles. Also, when we compare A1 with the best sequential ap-

proach, S5, the results show that considering a joint policy yields better results than

considering a sequential approach.

4.5 Summary of Results

We observe several specific features of the approximations and sequential approaches

according to the full factorial experiment outcomes. Our conclusions are as follows:

• A1 performs better than A2 under all 729 problem instances. Recall that A2

uses a rougher approximation for approximating up-time between order receipt

and prior maintenance epoch than A1. This finding indicates the importance of

precision in approximation.

• A1 results in almost the same long-run average profit rate of best policy param-

eters in all problem instances. Therefore, it is reasonable to use A1 instead of

searching for the best policy by brute force.

• When the contribution of maintenance-related costs to the objective function

increases, all sequential approaches perform better since the preventive main-

tenance threshold is prioritized in the optimization process of sequential ap-

proaches.

• S1, S2, and S3 perform worse than S4 and S5. Since the first three sequential

approaches do not include revenue term in their objective function, this finding

shows us the importance of realizing the down-time of the system.

• S5 performs slightly better than S4. Although it may be seen as counter-

intuitive in the first place, maintenance-related costs could also affect the deci-
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sion on order quantity since the last maintenance cycle in a renewal cycle is not

identically distributed with the rest of the maintenance cycles.

• S4 and S5 utilize changing order quantity more drastically than A1 to response

parameter level changes since sequential approaches are not capable of fine-

tuning their preventive maintenance threshold parameter to the parameter level

changes except for the maintenance-related costs.

• The comparison between a joint policy and a decentralized policy shows that

joint policy results in far more better than decentralized policy. Especially when

the variance of considered critical component’s lifetime is high, supplier lead

time is high, the difference between the corrective and preventive maintenance

costs is low, inventory holding cost is high, and fixed ordering cost is low.

In summary, one can utilize a joint policy to improve their earnings instead of se-

quentially decide on maintenance and inventory decisions. The trade-off between

maintenance-related and inventory-related costs does exist, and this trade-off signif-

icantly affects the overall performances of the policies. In such situations where the

joint decision on maintenance and inventory policies is not a feasible option, one can

still increase his/her profits by considering the characteristics of the different func-

tional units in a manufacturing system.
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CHAPTER 5

CONCLUSION

The equipment in any manufacturing system is prone to failure. Equipment failure

results in downtime in the system and causes significant profit losses. It is impossible

to eliminate the failures entirely. However, one can utilize preventive maintenance

activities to maintain the continuity of production. We consider a single critical com-

ponent of an equipment that must be replaced both in failure and preventive mainte-

nance activities. Hence, the availability of spare parts affects the operating condition

of the production process. It is reasonable to hold spare part inventory on hand since

economies of scale are available in the system. Therefore, the decisions on preventive

maintenance activities and spare part inventory must be made jointly.

This study focuses on the joint problem of preventive maintenance planning and spare

part inventory control. We consider a system with a single equipment that includes a

single critical component. If the critical component fails, the system fails. There is

supplier lead time for orders, and emergency orders are not allowed. We propose an

age-based preventive maintenance policy together with a fixed batch size order. The

proposed policy’s objective function is to maximize the expected long-run profit rate

that consists of revenue generated, inventory holding cost, procurement cost, fixed

ordering cost, preventive maintenance cost, and corrective maintenance cost terms.

We characterize the objective function of the proposed policy by utilizing Renewal

Reward Theorem. For the ease of application of our proposed policy, we introduce

two approximation methods. In the literature, the trade-off between maintenance-

related and inventory-related costs is represented by comparing sequential approaches

and joint approaches. However, it is not the primary purpose of these studies. We also

utilize sequential optimization by introducing five sequential approaches that differ
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in how they construct their objective function while deciding on order quantity. We

want to further investigate the behavior of sequentially made decisions to provide

managerial insights to the firms that joint policy is not viable in their environment.

The major characteristics of our environment are continuously monitored system

states, constant supplier lead time, and not allowing emergency orders. Several stud-

ies consider a similar environment. However, the objective functions of the proposed

policies are never characterized in these studies since the demand during the supplier

lead time, when emergency orders are not allowed, is hard to characterize. We want

to fill the gap in the literature by characterizing the objective function of our proposed

policy under the environment mentioned above. In addition, we compare the results

of joint policy with sequential approaches to show the critical environmental param-

eters that yield significant profit losses due to using decentralized decision-making

strategies. Lastly, we compare sequential approaches in themselves. This comparison

is made for providing insights to the decision-makers that are employed in separate

functional units in the same organization. Considering the rest of the parameters be-

sides inventory-related cost terms while deciding order quantity may yield significant

improvements in the objective function of the whole system.

Through computational study, we investigate performances of joint policy, approxi-

mations, and sequential approaches under different problem instances concerning the

expected long-run profit rate. Our analyses reveal the following:

• Approximation 1 performs far better than Approximation 2, which indicates

the importance of approximating the system’s up-time.

• Approximation 1 and best policy result in almost the same expected long-run

profit rate under all problem instances. Therefore, it can be concluded that

utilizing approximation 1 is reasonable in practice.

• The performance gap between joint policy and sequential approaches expands

with a longer supplier lead time, relatively low-cost difference between pre-

ventive and corrective maintenance activities, and high variation in considered

critical component’s lifetime.

• Introducing revenue term to the sequential approaches yields a drastic improve-
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ment in terms of the long-run profit rate of the system. S4-S5 perform far better

than the rest of the sequential approaches by considering revenue term.

• In S5, introducing maintenance-related costs to the ordering decision’s objec-

tive function yields a slight improvement in terms of expected long-run profit

rate. Therefore, it can be concluded that even the joint approach is not an option

for such systems; communication between different functional units can result

in better results than fully separated decision-making strategies.

As a future research direction, one can consider ordering time as a decision variable of

the policy. However, it should be noted that the expected reward calculation is compu-

tationally challenging even with our ordering setting. Moreover, the single equipment

environment of our study can be relaxed to a multi equipment environment; in that

case, state-space and problem complexity increase. However, introduced approxima-

tions of our proposed policy can be utilized for multi equipment environments.

83



84



REFERENCES

[1] D. Acharya, G. Nagabhushanam, and S. Alam, “Jointly optimal block-

replacement and spare provisioning policy,” IEEE Transactions on Reliability,

vol. 35, no. 4, pp. 447–451, 1986.

[2] A. Brezavscek and A. Hudoklin, “Joint optimization of block-replacement and

periodic-review spare-provisioning policy,” IEEE Transactions on Reliability,

vol. 52, no. 1, pp. 112–117, 2003.

[3] C. H. Falkner, “Jointly optimal inventory and maintenance policies for stochas-

tically failing equipment,” Operations Research, vol. 16, no. 3, pp. 587–601,

1968.

[4] A. Van Horenbeek, J. Buré, D. Cattrysse, L. Pintelon, and P. Vansteenwegen,

“Joint maintenance and inventory optimization systems: A review,” Interna-

tional Journal of Production Economics, vol. 143, no. 2, pp. 499–508, 2013.

[5] R. Barlow and L. Hunter, “Optimum preventive maintenance policies,” Opera-

tions research, vol. 8, no. 1, pp. 90–100, 1960.

[6] R. P. Nicolai and R. Dekker, “Optimal maintenance of multi-component sys-

tems: a review,” Complex system maintenance handbook, pp. 263–286, 2008.

[7] M. J. Armstrong and D. R. Atkins, “Joint optimization of maintenance and in-

ventory policies for a simple system,” IIE transactions, vol. 28, no. 5, pp. 415–

424, 1996.

[8] M. J. Armstrong and D. A. Atkins, “A note on joint optimization of maintenance

and inventory,” IIE transactions, vol. 30, no. 2, pp. 143–149, 1998.

[9] A. Z. Kabir and A. S. Al-Olayan, “Joint optimization of age replacement and

continuous review spare provisioning policy,” International Journal of Opera-

tions & Production Management, vol. 14, no. 7, pp. 53–69, 1994.

85



[10] R. Barlow, F. Proschan, and L. Hunter, “Mathematical theory of reliability john

wiley and sons inc,” New York, vol. 4, pp. 927–929, 1965.

[11] A. Z. Kabir and A. S. Al-Olayan, “A stocking policy for spare part provision-

ing under age based preventive replacement,” European journal of operational

research, vol. 90, no. 1, pp. 171–181, 1996.

[12] A. Z. Kabir and S. Farrash, “Simulation of an integrated age replacement and

spare provisioning policy using slam,” Reliability Engineering & System Safety,

vol. 52, no. 2, pp. 129–138, 1996.

[13] A. Z. Kabir and S. Farrash, “A fixed interval ordering policy for joint optimiza-

tion of age replacement and spare part provisioning,” International Journal of

Systems Science, vol. 28, no. 12, pp. 1299–1309, 1997.

[14] R. Hu, C. Yue, and J. Xie, “Joint optimization of age replacement and spare

ordering policy based on genetic algorithm,” in 2008 International Conference

on Computational Intelligence and Security, vol. 1, pp. 156–161, IEEE, 2008.

[15] R. Sarker and A. Haque, “Optimization of maintenance and spare provision-

ing policy using simulation,” Applied Mathematical Modelling, vol. 24, no. 10,

pp. 751–760, 2000.

[16] F. Mardin and R. Dekker, “Simultaneous optimization of block replacement and

spare part ordering time for a multi component system with separate spare part

ordering for block and failure replacements,” Journal of Engineering and Tech-

nological Sciences, vol. 65, no. 3, pp. 378–387, 2016.

[17] R. Huang, L. Meng, L. Xi, and C. R. Liu, “Modeling and analyzing a joint

optimization policy of block-replacement and spare inventory with random-

leadtime,” IEEE Transactions on Reliability, vol. 57, no. 1, pp. 113–124, 2008.
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Appendix A

UNIMODAL BEHAVIOUR OF EXPECTED LONG-RUN PROFIT RATE

FUNCTION
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Figure A.1: Unimodal behaviour of Average Long-Run Profit Rate function in Q.
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Figure A.2: Unimodal behaviour of Average Long-Run Profit Rate function in τ .
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Appendix B

PROBLEM INSTANCES THAT A1 PERFOMS AT BEST AND WORST

Table B.1: Problem Instances which Approximation 1 Performed at Best and Worst

r Ch Cc Ck L (λ, k) ∆%

50 0.5 100 50 60 (24.54, 1.5) 0 Best

50 0.5 200 25 30 (24.54, 1.5) 0 Best

50 0.5 200 200 60 (24.54, 1.5) 0 Best

50 1 100 25 30 (24.54, 1.5) 0 Best

50 1 100 50 60 (24.54, 1.5) 0 Best

50 1 200 25 30 (24.54, 1.5) 0 Best

50 1 200 25 60 (24.54, 1.5) 0 Best

50 1 200 50 30 (24.54, 1.5) 0 Best

50 1 200 50 60 (24.54, 1.5) 0 Best

50 1 200 200 60 (24.54, 1.5) 0 Best

50 2 100 25 30 (24.54, 1.5) 0 Best

50 2 100 50 60 (24.54, 1.5) 0 Best

50 2 100 200 30 (24.54, 1.5) 0 Best

50 2 100 200 60 (24.54, 1.5) 0 Best

50 2 200 25 30 (24.54, 1.5) 0 Best

50 2 200 25 60 (24.54, 1.5) 0 Best

50 2 200 50 30 (24.54, 1.5) 0 Best

50 2 200 200 30 (24.54, 1.5) 0 Best

50 2 400 25 60 (24.54, 1.5) 0 Best

50 2 400 50 20 (24.54, 1.5) 0 Best

50 2 400 50 60 (24.54, 1.5) 0 Best
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Table B.2: Problem Instances which Approximation 1 Performed at Best and Worst

Cont’

r Ch Cc Ck L (λ, k) ∆%

75 0.5 100 25 60 (24.54, 1.5) 0 Best

75 0.5 100 50 60 (24.54, 1.5) 0 Best

75 0.5 100 200 60 (24.54, 1.5) 0 Best

75 0.5 200 25 30 (24.54, 1.5) 0 Best

75 0.5 200 25 60 (24.54, 1.5) 0 Best

75 0.5 200 50 30 (24.54, 1.5) 0 Best

75 0.5 200 50 60 (24.54, 1.5) 0 Best

75 1 100 25 30 (24.54, 1.5) 0 Best

75 1 100 25 60 (24.54, 1.5) 0 Best

75 1 100 50 30 (24.54, 1.5) 0 Best

75 1 100 50 60 (24.54, 1.5) 0 Best

75 1 100 200 60 (24.54, 1.5) 0 Best

75 1 200 25 30 (24.54, 1.5) 0 Best

75 1 200 25 60 (24.54, 1.5) 0 Best

75 1 200 50 30 (24.54, 1.5) 0 Best

75 1 200 50 60 (24.54, 1.5) 0 Best

75 1 400 25 20 (24.54, 1.5) 0 Best

75 1 400 25 60 (24.54, 1.5) 0 Best

75 1 400 50 60 (24.54, 1.5) 0 Best

75 2 100 200 30 (24.54, 1.5) 0 Best

75 2 200 25 30 (24.54, 1.5) 0 Best

75 2 200 25 60 (24.54, 1.5) 0 Best

75 2 200 50 30 (24.54, 1.5) 0 Best

75 2 200 50 60 (24.54, 1.5) 0 Best

75 2 200 200 30 (24.54, 1.5) 0 Best

150 0.5 100 25 30 (24.54, 1.5) 0 Best

150 0.5 100 50 30 (24.54, 1.5) 0 Best

150 0.5 100 200 30 (24.54, 1.5) 0 Best

150 0.5 200 200 30 (24.54, 1.5) 0 Best
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Table B.3: Problem Instances which Approximation 1 Performed at Best and Worst

Cont’

r Ch Cc Ck L (λ, k) ∆%

150 1 100 200 60 (24.54, 1.5) 0 Best

150 1 400 25 60 (24.54, 1.5) 0 Best

150 1 400 50 20 (24.54, 1.5) 0 Best

150 1 400 50 60 (24.54, 1.5) 0 Best

150 2 100 25 60 (24.54, 1.5) 0 Best

150 2 100 50 60 (24.54, 1.5) 0 Best

150 2 200 25 20 (24.54, 1.5) 0 Best

150 2 200 25 60 (24.54, 1.5) 0 Best

150 2 200 50 60 (24.54, 1.5) 0 Best

150 2 200 200 60 (24.54, 1.5) 0 Best

150 2 400 25 20 (24.54, 1.5) 0 Best

150 2 400 50 20 (24.54, 1.5) 0 Best

150 2 400 200 20 (24.54, 1.5) 0 Best

150 2 400 200 60 (24.54, 1.5) 0 Best

50 0.5 100 25 30 (25.00, 2.0) 0 Best

50 0.5 100 200 30 (25.00, 2.0) 0 Best

50 0.5 100 200 60 (25.00, 2.0) 0 Best

50 0.5 200 200 30 (25.00, 2.0) 0 Best

50 0.5 400 200 20 (25.00, 2.0) 0 Best

50 1 100 25 30 (25.00, 2.0) 0 Best

50 1 100 25 60 (25.00, 2.0) 0 Best

50 1 100 50 30 (25.00, 2.0) 0 Best

50 1 100 50 60 (25.00, 2.0) 0 Best

50 1 100 200 30 (25.00, 2.0) 0 Best

50 1 100 200 60 (25.00, 2.0) 0 Best

50 1 200 25 60 (25.00, 2.0) 0 Best

50 1 200 50 60 (25.00, 2.0) 0 Best

50 1 200 200 60 (25.00, 2.0) 0 Best

50 1 400 200 20 (25.00, 2.0) 0 Best
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Table B.4: Problem Instances which Approximation 1 Performed at Best and Worst

Cont’

r Ch Cc Ck L (λ, k) ∆%

50 2 100 25 30 (25.00, 2.0) 0 Best

50 2 100 50 30 (25.00, 2.0) 0 Best

50 2 100 50 60 (25.00, 2.0) 0 Best

50 2 100 200 30 (25.00, 2.0) 0 Best

50 2 200 50 60 (25.00, 2.0) 0 Best

50 2 200 200 60 (25.00, 2.0) 0 Best

50 2 400 25 60 (25.00, 2.0) 0 Best

75 0.5 100 25 60 (25.00, 2.0) 0 Best

75 0.5 100 50 20 (25.00, 2.0) 0 Best

75 0.5 100 50 30 (25.00, 2.0) 0 Best

75 0.5 100 200 60 (25.00, 2.0) 0 Best

75 0.5 200 25 60 (25.00, 2.0) 0 Best

75 0.5 200 50 60 (25.00, 2.0) 0 Best

75 0.5 400 200 30 (25.00, 2.0) 0 Best

75 1 100 25 30 (25.00, 2.0) 0 Best

75 1 100 25 60 (25.00, 2.0) 0 Best

75 1 100 50 20 (25.00, 2.0) 0 Best

75 1 100 50 60 (25.00, 2.0) 0 Best

75 1 100 200 30 (25.00, 2.0) 0 Best

75 1 100 200 60 (25.00, 2.0) 0 Best

75 1 200 25 30 (25.00, 2.0) 0 Best

75 1 200 50 60 (25.00, 2.0) 0 Best

75 1 200 200 60 (25.00, 2.0) 0 Best

75 1 400 25 60 (25.00, 2.0) 0 Best

75 1 400 50 60 (25.00, 2.0) 0 Best

75 1 400 200 30 (25.00, 2.0) 0 Best

75 2 100 50 60 (25.00, 2.0) 0 Best

75 2 100 200 30 (25.00, 2.0) 0 Best

75 2 400 25 30 (25.00, 2.0) 0 Best
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Table B.5: Problem Instances which Approximation 1 Performed at Best and Worst

Cont’

r Ch Cc Ck L (λ, k) ∆%

75 2 400 25 60 (25.00, 2.0) 0 Best

75 2 400 50 30 (25.00, 2.0) 0 Best

75 2 400 50 60 (25.00, 2.0) 0 Best

75 2 400 200 60 (25.00, 2.0) 0 Best

150 0.5 100 25 30 (25.00, 2.0) 0 Best

150 0.5 100 50 30 (25.00, 2.0) 0 Best

150 0.5 100 200 60 (25.00, 2.0) 0 Best

150 0.5 400 200 30 (25.00, 2.0) 0 Best

150 1 100 200 60 (25.00, 2.0) 0 Best

150 1 200 50 60 (25.00, 2.0) 0 Best

150 1 400 50 30 (25.00, 2.0) 0 Best

150 2 100 25 20 (25.00, 2.0) 0 Best

150 2 100 25 60 (25.00, 2.0) 0 Best

150 2 100 50 20 (25.00, 2.0) 0 Best

150 2 100 200 20 (25.00, 2.0) 0 Best

150 2 200 25 60 (25.00, 2.0) 0 Best

150 2 200 200 20 (25.00, 2.0) 0 Best

150 2 400 25 60 (25.00, 2.0) 0 Best

150 2 400 50 30 (25.00, 2.0) 0 Best

50 0.5 100 50 60 (24.13, 5.0) 0 Best

50 0.5 400 50 20 (24.13, 5.0) 0 Best

50 0.5 400 50 30 (24.13, 5.0) 0 Best

50 1 100 25 30 (24.13, 5.0) 0 Best

50 1 100 25 60 (24.13, 5.0) 0 Best

50 1 100 50 20 (24.13, 5.0) 0 Best

50 1 100 200 20 (24.13, 5.0) 0 Best

50 1 100 200 30 (24.13, 5.0) 0 Best

50 1 200 50 20 (24.13, 5.0) 0 Best

50 1 400 200 30 (24.13, 5.0) 0 Best
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Table B.6: Problem Instances which Approximation 1 Performed at Best and Worst

Cont’

r Ch Cc Ck L (λ, k) ∆%

50 2 100 25 60 (24.13, 5.0) 0 Best

50 2 100 50 20 (24.13, 5.0) 0 Best

50 2 100 50 60 (24.13, 5.0) 0 Best

50 2 100 200 60 (24.13, 5.0) 0 Best

50 2 200 25 60 (24.13, 5.0) 0 Best

50 2 200 50 60 (24.13, 5.0) 0 Best

50 2 200 200 30 (24.13, 5.0) 0 Best

50 2 400 200 20 (24.13, 5.0) 0 Best

50 2 400 200 30 (24.13, 5.0) 0 Best

75 0.5 100 50 30 (24.13, 5.0) 0 Best

75 0.5 100 200 20 (24.13, 5.0) 0 Best

75 0.5 100 200 60 (24.13, 5.0) 0 Best

75 0.5 200 25 20 (24.13, 5.0) 0 Best

75 0.5 200 50 60 (24.13, 5.0) 0 Best

75 0.5 200 200 20 (24.13, 5.0) 0 Best

75 0.5 400 25 20 (24.13, 5.0) 0 Best

75 1 100 200 20 (24.13, 5.0) 0 Best

75 1 100 200 60 (24.13, 5.0) 0 Best

75 1 400 25 20 (24.13, 5.0) 0 Best

75 1 400 200 20 (24.13, 5.0) 0 Best

75 1 400 200 60 (24.13, 5.0) 0 Best

75 2 100 25 20 (24.13, 5.0) 0 Best

75 2 100 25 60 (24.13, 5.0) 0 Best

75 2 100 50 20 (24.13, 5.0) 0 Best

75 2 100 50 60 (24.13, 5.0) 0 Best

75 2 100 200 20 (24.13, 5.0) 0 Best

75 2 400 25 20 (24.13, 5.0) 0 Best

150 0.5 100 50 20 (24.13, 5.0) 0 Best

150 0.5 100 200 20 (24.13, 5.0) 0 Best
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Table B.7: Problem Instances which Approximation 1 Performed at Best and Worst

Cont’

r Ch Cc Ck L (λ, k) ∆%

150 1 100 200 20 (24.13, 5.0) 0 Best

150 1 200 25 20 (24.13, 5.0) 0 Best

150 1 400 50 20 (24.13, 5.0) 0 Best

50 2 100 25 60 (24.54, 1.5) 0.88 Worst
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