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ABSTRACT 

 

ANALYSIS OF TRANSCRIPTOME DATA FOR THE EVALUATION OF 
METABOLIC DEREGULATION IN CANCER 

 
 
 

Sheraj, Ilir 
Doctor of Philosophy, Biology 

Supervisor : Prof. Dr. Sreeparna Banerjee 
 
 

June 2021, 180 pages 

 

The great potential of cancer metabolism in tumor development as well as treatment 

has been appreciated in recent years. In this study, an extensive list of enzymes 

relevant to central cellular metabolism and metabolite transporters were manually 

curated. A pan cancer differential expression of these genes between tumor and their 

normal counterpart was analyzed in an attempt to better understand tumor 

bioenergetics, catabolism and anabolism in general. Major deregulation of these 

genes, particularly the enzymes involved in NADPH metabolism was observed in 

Liver Hepatocellular Carcinoma (LIHC). LIHC is an extremely aggressive treatment 

resistant disease with poor prognosis and overall survival (OS), probably due to the 

ability of the organ to detoxify chemotherapy drugs. AKR1B10 is an NADPH 

utilizing enzyme whose expression was increased from a very early stage in most 

LIHC patients and was associated with low OS. However, mechanistic 

underpinnings of this association are unknown. To address this and the context in 

which it occurs we hypothesized a potential connection of AKR1B10 with the 

pentose phosphate pathway (PPP), a glucose metabolizing pathway that generates 

NADPH. Using various bioinformatics and computational approaches, we found that 

AKR1B10 works in concert with PPP and a number of other detoxifying enzymes to
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enhance tumor aggressiveness. In addition, we report the use of latest tools in 

machine learning to build multi-gene signature prognostic models for highly 

significant LIHC patient stratification. 
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ÖZ 

 

KANSERDE METABOLİK DEREGÜLASYONUN 
DEĞERLENDİRİLMESİ İÇİN TRANSKRİPTOM VERİLERİNİN 

ANALİZİ 
 
 
 

Sheraj, Ilir 
Doktora, Biyoloji 

Tez Yöneticisi: Prof. Dr. Sreeparna Banerjee 
 

 

Haziran 2018, 180 sayfa 

 

Kanser metabolizmasının tümör gelişiminde olduğu kadar tedavideki büyük 

potansiyeli de son yıllarda takdir edilmiştir. Bu çalışmada, merkezi hücresel 

metabolizma ve metabolit taşıyıcıları ile ilgili kapsamlı bir enzim listesi manuel 

olarak küratörlüğünü yaptı. Bu genlerin tümör ve normal muadilleri arasında bir pan 

kanser diferansiyel ekspresyonu, tümör biyoenerjisini, katabolizmasını ve genel 

olarak anabolizmi daha iyi anlamak amacıyla analiz edildi. Bu genlerin, özellikle 

NADPH metabolizmasında yer alan enzimlerin, Karaciğer Hepatoselüler 

Karsinomda (LIHC) büyük ölçüde düzensizleşmesi gözlendi. LIHC, muhtemelen 

organın kemoterapi ilaçlarını detoksifiye etme yeteneğinden dolayı, kötü prognoz ve 

genel sağkalıma sahip, son derece agresif, tedaviye dirençli bir hastalıktır. 

AKR1B10, çoğu LIHC hastasında ekspresyonu çok erken bir aşamada artan ve 

düşük OS ile ilişkili olan, NADPH kullanan bir enzimdir. Bununla birlikte, bu 

ilişkinin mekanik temelleri bilinmemektedir. Bunu ve meydana geldiği bağlamı ele 

almak için, NADPH üreten bir glikoz metabolize edici yol olan pentoz fosfat yolu 

(PPP) ile AKR1B10un potansiyel bir bağlantısını varsaydık. Çeşitli biyoinformatik 

ve hesaplama yaklaşımlarını kullanarak, AKR1B10un PPP ve bir dizi başka 
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detoksifiye edici enzimle uyumlu çalıştığını ve tümörün agresifliğini arttırdığını 

bulduk. Ek olarak, son derece önemli LIHC hasta sınıflandırması için çok gen imzalı 

prognostik modeller oluşturmak için makine öğreniminde en son araçların 

kullanımını rapor ediyoruz. 

 

Anahtar Kelimeler: Tümör Metabolizması, LIHC, AKR1B10, TCGA 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Tumor Statistics for 2020 

There are many definitions for cancer, but the simplest is uncontrolled cell division 

resulting in tumors that can spread to other organs in the advanced stages (1) . 

According to World Health Organization’s Global Cancer Observatory 

(GLOBOCAN) statistics, there were 19.3 million new cancer cases and nearly 10 

million cancer-caused deaths around the world for the year 2020, making it the 

leading cause of death globally, surpassing cardiovascular diseases and stroke for the 

first time (2). In addition, the incidence of breast cancer also is currently at highest 

with 11.7% of the total burden, followed by lung (11.4%) and prostate (7.3%). When 

it comes to total mortality, lung cancer still has the highest mortality rate (18%) 

followed by liver (8.3%) and stomach (7.7%) (Figure 1.1). 

 

According to the same study, cancer incidence is expected to increase to 28.5 million 

cases globally by 2040. It is also estimated that about 1 in 3 people will develop 

cancer sometimes during their lifetime (2). Cancer is a highly complex disease with 

more than 200 varieties diagnosed to date, each having different characteristics and 

requiring different treatment approaches. However, all of them can be roughly 

classified into three main categories depending on their tissue of origin. Carcinomas, 

comprising over 90% of all cancers, are solid tumors originating from epithelial cells. 

Sarcomas are solid tumors originating from connective tissues of bones and muscle. 

Finally, leukemia and lymphomas arise from white blood cells. It is also common 

practice to name the tumors according to their organs of origins (1). 
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Figure 1.1. Global Incidence and Mortality for 10 Most Common Cancers in 2020. 

(Left panel) Percentage for the total burden and (right panel) percentage of mortality by 

cancer types. The data were retrieved from Sung et al. (2). 

1.2 Basic Genetics of Cancer 

According to their origin, cancers can be divided into two groups: sporadic and 

hereditary. Knudson first proposed the two-hit hypothesis according to which, for a 

sporadic cancer to develop and a normal cell to lose control of its normal division 

cycle, both alleles of a tumor suppressor gene need to be mutated. Given that such 

events are rare, sporadic tumors generally develop later in life. In the case of 

hereditary cancers, since at least one allele has already been inherited in the mutated 

form from one of the parents, receiving a second hit has a higher probability, so such 

patients develop cancer early in life (3).  

 

Genetic changes can occur as a result of DNA replication errors which occur 

spontaneously in every cellular replication cycle since the DNA polymerase enzyme 

is not error-free. A second factor is mutations in DNA repair genes, which reduce 

the fidelity of the respective enzymes in fixing spontaneous DNA mutations that 

occur all the time. Another very important contributing factor is mutagens, which 

vary from solar UV radiation, to the food we consume, chemicals we are exposed to 

at work or the places we live in. Yet another important factor causing mutations and 
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even cellular transformation is viruses such as Human Papilloma or Sarcoma viruses, 

or hepatitis B and C viruses in the liver (1).  

 

According to the current understanding, cancer is widely accepted as a genetic 

disease arising from mutational changes of the genome. High-throughput sequencing 

studies have shown cancers to have multiple genetic mutations such as single 

nucleotide changes leading to missense and nonsense mutations, multiple nucleotide 

deletions and rearrangements, large chromosomal translocations, gain or loss of 

whole chromosomal regions, as well as specific gene amplifications or deletions. In 

addition, cellular epigenetic profile such as methylation and acetylation are changed, 

as well as expression of long and short non-coding RNAs such as lncRNAs, miRNAs 

and snoRNAs involved in silencing of certain genes or overall chromosomal 

structure maintenance, among other functions (4). 

 

Three types of genes are essential for controlling cell division; oncogenes, which are 

activated in cancer and drive cell division; tumor-suppressor genes, which serve as 

brakes on cell proliferation and have to be inactivated for a normal cell to be 

transformed into a cancerous one; and stability genes which are involved in 

maintenance of genomic integrity and also have to be inactivated for cell 

transformation to occur (1). Activation of oncogenes can occur either by gain-of-

function mutations, epigenetic activation generally in the form of hypomethylation, 

or gene fusions resulting from chromosomal rearrangement, or insertion of viral 

expression elements near their promoters. Tumor suppressors and stability genes are 

inactivated from deleterious mutations or epigenetic silencing (5). 

1.3 Hallmarks of Cancer 

Hallmarks of cancer were first proposed by Hanahan & Weinberg (6) in an attempt 

to  summarize the outcome of cancer research from different disciplines and identify 

common biological capabilities which sustain tumor growth, proliferation and 
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metastasis. These functional capabilities are proposed to be acquired by cancer cells 

via different mechanisms in various time points through the course of tumorigenesis 

allowing the cell to survive, proliferate and disseminate (7). As the understanding of 

the disease’s pathology and molecular biology grew, they were expanded beyond the 

six original hallmarks (6), namely (a) sustaining proliferative signaling, (b) evading 

growth suppressors, (c) resisting cell death, (d) inducing angiogenesis, (e) enabling 

replicative mortality and (f) activating invasion and metastasis. Two enabling 

hallmarks which make possible the acquisition of the above six hallmarks are (g) 

genome instability and mutation, and (h) tumor-promoting inflammation. Finally, 

two emerging hallmarks of (i) deregulating cellular energetics and (j) avoiding 

immune destruction were also added to the list, making them a total of 10 hallmarks 

(7). Since the central topic of this study is tumor metabolism, a more detailed 

overview of this particular topic is provided in the section below. 

1.4 Tumor Metabolic Rewiring 

Reprogramming of energy metabolism with a shift from the more energy efficient 

oxidative phosphorylation (OxPhos) to fermentation in the presence of oxygen (also 

known as aerobic glycolysis or Warburg Effect) was first proposed and 

experimentally shown by Otto Warburg in 1926, unleashing a new era in the 

biochemical characterization of tumor cells with a focus on mitochondrial function 

(8,9). According to the original idea of Warburg, cancers arise from a gradual and 

irreversible respiratory impairment, and only tumor cells capable of increased 

aerobic glycolysis to compensate for OxPhos would be able to replicate and form 

cancers, while others would die as a result of insufficient energy (10).  

 

The idea of impaired respiration in tumor cells was supported by four main 

quantitative variables: high glycolysis/respiration ratio, low absolute oxygen 

consumption, uncoupled or inefficient respiration, and low succinate oxidative 

response (11). With better understanding and characterization of glycolytic 
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processes and improvement in experimental procedures, aided also by the ability to 

obtain pure tumor cells and grow them in serum culture while carrying out the above-

mentioned measurements, the distinction in tumor and normal cells became even 

sharper. In addition, isotope tracing experiments showed that normal cells produced 

at least twice as much labeled 14CO2 as compared to tumor cells (11). However, the 

idea had its own opponents, the most outspoken of whom was Sidney Weinhouse 

who refuted it using a set of diverse and not well-controlled data to reject the 

hypothesis as too simplistic to explain a complex disease such as cancer (12).  

 

Eventually Weinhouse won the argument partially aided by the death of Warburg in 

1970 and because of his recognition of the importance of genetics (13). With 

improvements in genetic methods such as cloning and sequencing, focus shifted 

towards genetic mechanisms of cancer, leading to the proposal of “Somatic Mutation 

Theory of Carcinogenesis” according to which cancer is a genetic disease that 

advances with increased mutation burden (14). The discovery of oncogenes (15), 

proposal of the two-hit hypothesis by Knudson (3), the stepwise model of colorectal 

cancer development by Vogelstein (16) as well as major improvements in 

sequencing technologies after 1990s completely overshadowed the more 

cumbersome biochemical studies of tumorigenesis. These developments lead to the 

idea of finding a set of consistently recurring mutations in oncogenes and/or tumor 

suppressor genes and develop drugs to target them as a means of eradicating tumors 

just like the eradication of other diseases by means of antibiotics (17).  

 

In order to achieve this aim, in 2005 a new idea was proposed to use new next-

generation sequencing technologies (NGS) not only for whole tumor genome 

sequencing, but to also quantify their transcriptome, methylome and proteome as 

well, and for a fraction of patients their adjacent normal tissues were included to 

make it possible to compare deregulated signaling pathways and find druggable 

targets. This was called The Cancer Genome Atlas (TCGA) network and its first 

outcome was the study of human glioblastoma (18). In total, tumors from over 
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11,000 patients in addition to a fraction of normal adjacent tissues were sequenced 

and their gene mutations, genomic rearrangements, mRNA and miRNA expression, 

methylation patterns and a targeted number of important signaling proteins were 

characterized. The data were also made public in various format to be harnessed by 

researchers all over the world (https://www.cancer.gov/). 

 

Despite the high hopes in this sheer amount of information made available by 

massive amounts of genomic, transcriptomic and methylation data, soon it was 

realized that cancers were highly heterogeneous; moreover, the same tumor in the 

same patient showed high degrees of heterogeneity, making it difficult to find a small 

set of targetable mutations or signaling pathways (19,20). One of the success stories 

of this approach was the development of Gleevec (Imatinib), which targets a very 

rare tumor known as chronic myelogenous leukemia (CML). However, Imatinib 

turned out to be an exception as other similar drugs targeting important signaling 

pathways and protein kinases turned out to be too toxic with no real long-term 

benefits for the patients (21). This is mostly because tumors, due to their heterogenic 

nature can quickly develop resistance against these drugs by undergoing clonal 

expansion, reducing the effectiveness of the drugs along with the return of a more 

aggressive form of the tumor that is frequently lethal for the patient. 

 

Over 250 oncogenes and 700 tumor suppressor genes involved in almost every 

cellular function and signaling pathway have been catalogued and characterized to 

various degrees. A large proportion of these proteins play essential roles in 

controlling metabolic flux through key metabolic pathways that favor the growth and 

proliferation of tumors (22). In addition, anaerobic glycolysis originally proposed by 

Warburg is recognized as probably the only common process among all known 

tumors and has turned out to be essential for tumor detection by fluorodeoxyglucose 

positron emission tomography (FDG-PET) (23). Recognizing the importance of the 

Warburg effect, a new idea has started to become popular among researchers about 
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potential roles of oncogenes in controlling metabolic reconstitution necessary for 

tumor growth and proliferation (24,25). 

 

Initially, large-scale studies harvesting microarray data supported this idea and a 

modified version of Warburg’s original theory was proposed according to which 

metabolic rewiring of tumors under the control of oncogenes is an important part of 

tumor survival and proliferation (26). Other studies harvesting the information from 

TCGA datasets showed that metabolic genes (27) and transcription factors 

controlling their expression (28) undergo major changes in tumors to maximize their 

survival and growth capabilities, opening a new page in cancer research and 

expanding the original ideas of Warburg to include other important metabolic 

processes beyond glycolysis, such as amino acid, lipid and vitamin metabolism (29)

in addition to the well-studied processes of nucleotide biosynthesis which have been 

used as drug targets for a long time. 

 

Recent research has once again put mitochondria at the central stage of tumor 

metabolism, albeit not for bioenergetics but because of the central role of 

tricarboxylic acid cycle (TCA) and anaplerotic reactions. The metabolism of 

glutamate, which is the most abundant amino acid in circulation and can be used for 

energy production via TCA as well as biosynthesis of other macromolecules in the 

cell has taken the center stage (30,31). In addition, mitochondria have other well-

known metabolic functions for cell growth and survival which had surprisingly been 

neglected until recently; it is the organelle from which acetyl-CoA, the precursor of 

fatty acid biosynthesis as well as histone acetylation is generated (32). Mitochondria 

provide cells with ample amounts of NADPH, which is essential for biosynthetic 

reactions and mitigation of oxidative stress via ROS (33), and it is the site of 

synthesis of important oncometabolites such as 2‐hydroxyglutarate, succinate and 

fumarate as a result of mutations in certain TCA enzymes. These oncometabolites 

have important tumorigenic functions in hypoxia and epigenetic changes, but at the 

same time they show great potential for tumor screening and early detection (34,35). 
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1.5 Liver Cancer 

1.5.1 Global Incidence, Mortality and Risk Factors 

Liver cancer by incidence is the sixth most common tumor in the world with 906,000 

new cases and second deadliest with over 830,000 (Figure 1.1). Moreover, this tumor 

is disproportionally more common in males compared to females with 2-3 times 

higher rates for both incidence and mortality. If we look at the data closely, liver 

cancer is the fifth most common tumor among males with 6.3% of total burden and 

tenth among females with only 3% in 2020. Despite the lower incidence, by 

mortality, it was the second deadliest in males with 10.5% and sixth in females with 

5.7% of the total burden (2). Moreover, the disease shows heterogenic distribution 

and is more common in developing countries compared to developed ones. It is also 

the most common tumor among men in Eastern and Southeastern Asia as well as 

Northern and Western Africa, and its mortality rates are the highest in these four 

regions (2).  

 

Liver cancer is not a single tumor type but a collection of subtypes, the most common 

being liver hepatocellular carcinoma (LIHC, also known as hepatocellular 

carcinoma, HCC), which accounts for nearly 80% of the total cases followed by 

intrahepatic cholangiocarcinoma with 15% and a number of other rare types 

accounting for less than 5% of the total burden (2,36). If the tumor is detected at an 

early stage it can easily be treated by surgical resection, however by the time it is 

diagnosed, less than 20% of the patients are eligible for this approach and as a result, 

the 5-year survival of liver cancer patients is less than 10%, while longer-term 

survival rate drops to 3%-5% (36). 

 

There are a number of risk factors associated LIHC, most of them leading first to 

chronic infection and cirrhosis, and ultimately LIHC. Studies have shown that over 

80% of LIHC cases have cirrhosis as a preexisting condition. Risk factors include 
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hepatitis B (HBV) and C (HCV) viruses, heavy alcohol consumption, food 

contaminated or enriched in aflatoxins, high body-mass index (BMI), type-2 

diabetes, and smoking (37). As a result of successful vaccination campaigns against 

HBV and HCV, the number of hepatitis-related cases have dramatically dropped in 

many developing countries and now the increase in cases is mostly attributed to the 

non-viral causes mentioned above. One such important factor is nonalcoholic fatty 

liver disease (NAFLD), which is becoming prevalent especially in western countries 

due to increasing rates of obesity and associated metabolic syndrome. This has been 

correlated with the recent surge in the number of LIHC in developed countries, 

although their association is being disputed due to lack of supporting population-

level studies (38).  

1.5.2 Molecular Biology and Genetics of LIHC 

Recent whole-genome sequencing studies have revealed a lot of important 

information about single nucleotide polymorphisms (SNPs) as well as major 

genomic rearrangements such as deletions and amplifications that take place during 

liver tumorigenesis (39). However, implementing these approaches to LIHC has not 

been as straightforward as in other tumors because of high stromal composition and 

normal cells included in the resected samples, thus confounding the results and

making their replication difficult. In addition, as mentioned previously LIHC is 

generally the result of chronic conditions such as cirrhosis, hepatitis due to viral 

infection, metabolic syndrome and fibrosis, making the distinction between normal

and tumor tissue challenging and blurring the stages from normal tissue to dysplastic 

lesions to full-blown LIHC (40). 

 

In an attempt to understand genomic changes and correlate them with disease 

etiology to better classify and treat LIHC tumors, a large meta-analysis including 31 

comparative genomic hybridization (CGH) studies for a total of 785 LIHC and 30 

premalignant dysplastic nodules was carried out (41). The study showed 
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amplifications in 17q, 6p, 8q and 1q, varying from 22.2-57.1% of the cases. On the 

other hand, deletions in 13q, 17p, 4q, 16q and 8p were present among 26.2-38% of 

the patients analyzed. Some of these alterations correlated with the presence of HBV 

or differentiation grade of LIHC, while others were enriched in early stages of 

dysplasia. In addition, both amplifications and deletions were seen in the 

chromosomal arms on which well-established oncogenes and tumor suppressor 

genes such as MYC and RB1 are located. Importantly, the study also showed that 

these regions also encode other suspected oncogenes that modulate the WNT 

pathway such as AXIN2, WISP1, and FZD3 (41).  

 

In similar studies based on integration of genomic data from various cancers, 

researchers have discovered 12 essential pathways that drive tumorigenesis by 

determining cell survival, cell fate and genomic maintenance (42). Based on these 

findings, LIHC is currently being considered as a multistep process that involves 

genetic and epigenetic changes, mainly affecting signaling pathways controlled by 

chromatin modifications and altered canonical pathways of β-catenin, TP53, Wnt, 

epidermal growth factor (EGFR) and Myc (42). These results were reconfirmed and 

expanded by the most comprehensive study on LIHC to date carried out by the 

TCGA network which among others showed that a number of genes essential for 

metabolic reprogramming such as Albumin (ALB), Apolipoprotein B (APOB), and 

Carbamoyl-Phosphate Synthase 1 (CPS1) which carries out the rate-limiting step of 

urea cycle were downregulated by either hypermethylation or mutation. In addition, 

the same study identified important therapeutic targets in the Wnt pathway such as 

MDM4, MET, IDH1 and TERT among others. Finally, the authors reported the 

importance of immune checkpoint proteins such as CTLA4, PD1, and PDL1 for 

targeted immunotherapeutic approaches in the future (39). 
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1.5.3 Diagnosis, Staging and Treatment of LIHC 

Early detection of liver tumor is a major challenge as the disease goes through a long 

evolution from liver injury or chronic infection to cirrhosis and eventually LIHC. 

The tumor is generally detected at late stages and the survival of patients is very 

short. However, improvements in computer tomography (CT) scans and introduction 

of machine learning algorithms are making the process of tumor detection and image 

segmentation better (43). Recently, incorporation of the latest developments in deep 

neural networks with Gaussian mixture methods (GMM) trained on CT images 

increased tumor detection accuracy above 98% and they hold great promisses not 

only in aiding radiologists to detect LIHC cases as early as possible, but also to better 

understand the real growth and spread of the tumor in the organ (44). 

 

Heterogeneity of liver tumors is a challenge for drug targeting as well. This is also 

compounded by the natural function of the liver as the center of metabolism where 

numerous chemicals are metabolized daily, including drugs (45). As a result, the best 

treatment options currently are resection by surgery and transplantation. For early 

stage tumors, radiotherapy and ablation have been shown to be very effective, 

however early detection in generally difficult in liver cancer (36). Adjuvant therapy 

options such as Sorefanib (46) and Brivanib (47) have not shown any significant 

difference in disease-free (DFS) or overall survival (OS) while acyclic retinoid 

decreased recurrence rate from 49% to 27% within a 3 years follow-up period (48). 

Many tyrosine kinase inhibitors that target vascularization have already undergone 

phase II and III clinical trial, however the extension of patient OS has been between 

2-4 months while toxicity very high (49–53). Combination therapies have also been 

tried but to no avail as toxicity turned out to be a major preventative factor (54,55). 

After immunotherapy showed very promising results in other tumors such as 

leukemia, the feasibility of checkpoint blockage started to also be explored in LIHC. 

In a small pilot study of 20 patients with advanced stage of LIHC, anti-CTLA4 

monoclonal antibody tremelimumab was used and the results were very encouraging 
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with patients having a median DFS of 6.5 months (56). Another similar monoclonal 

antibody which inhibits immune checkpoint signaling is the PD1 blocker is 

nivolumab. A phase II multi-center study showed nivolumab to be safe and the initial 

results of the ongoing trial are very promising (57). 

 

The information provided in this section was not intended to be an exhaustive 

coverage of the available literature on all different therapeutic approaches in clinical 

use and/or under investigation against LIHC. However, they clearly show that most 

of the approaches do not provide any significant advantage to the patients, and even 

those few months of OS extension are generally accompanied by sometimes major 

side effects due to drug or treatment toxicity. As a result, there is an urgent need for 

better and more enduring approaches other than kinase inhibitors to improve both 

prognosis and treatment of LIHC. 

1.6 AKR Genes and their Role in Tumorigenesis 

1.6.1 General Characteristics of AKR Genes  

AKR protein family has an ancient evolutionary history and all its members share a 

conserved (β/α)8 barrel plus a pyridine nucleotide binding pocket (58). There are 

currently over 150 genes belonging to this family distributed among three domains 

of life, and while some of them have been characterized biochemically, others are 

simply discovered by sequence analysis. Studies indicate it is highly likely that all 

these members originated by duplication events and were modified for different 

substrates through a long evolutionary history. Analysis of sequence homology have 

divided AKRs into 15 families with more than 40% sequence homology among each 

other, while between members of subfamilies the sequence homology is over 70% 

while structural homology is above 90% (59). Their nomenclature is very 

straightforward, starting with AKR followed by a number representing family (eg. 
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AKR1), then a letter representing subfamily (eg. AKR1B) and finally another 

number representing the member within the subfamily (eg. AKR1B10).  

 

According to a report based on NCBI database search, a total of 58 actual and 

potential members of the AKR family were identified in the human genome (60). 

Among them, 15 members represented by three families have been characterized and 

classified as AKR1, AKR6 and AKR7. Furthermore, AKR1 is divided into 5 

subfamilies, namely A (1 member: AKR1A1), B (3 members: AKR1B1, AKR1B10 

and AKR1B15), C (4 members: AKR1C1, AKR1C2, AKR1C3 and AKR1C4), D (1 

member: AKR1D1) and E (1 member: AKR1E2). AKR6 has 3 members (AKR6A3, 

AKR6A5, AKR6A9), and finally AKR7 has two members (AKR7A2 and 

AKR7A3). The remaining members were either pseudogenes, AKR genes predicted 

from sequence, or other proteins showing sequence and potentially functional 

similarity to AKRs (60). Our main focus in this study is AKR1B10 and some 

members of AKR1C family.  

 

Aldo-Keto-Reductase family 1, member 10 (AKR1B10) enzyme was originally 

named as aldose reductase-like-1 (ARL-1) (61,62) due to its sequence homology 

with AKR1B1 member of the same subfamily, the first to be characterized and 

implicated in diabetic pathophysiology (58). AKR1B10 is a cytosolic enzyme 

showing 71% sequence identity to AKR1B1 and utilizes NADPH as a cofactor to 

reduce a variety of substrates such as retinaldehydes, lipid peroxidation byproducts, 

as well as xenobiotics. AKR1B1 on the other hand shows higher preference for 

glucose, which it reduces to sorbitol, a pathway that may have very important 

implications in cancer metabolism (63). Studies have shown that during 

hyperglycemia, AKR1B1 can convert up to 30% of total glucose into sorbitol, while 

in normal condition it reduces only about 3% (64). Additionally, AKR1B1 is 

ubiquitously expressed among multiple tissues while AKR1B10 is highly expressed 

in gastrointestinal tract in addition to thymus, liver and kidney, albeit at lower levels 

in the last three organs. Both genes are located next to each other on chromosome 
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7q32-33 bands and each contains 10 exons. The protein products of both genes 

consist of 316 amino acids and there are no reports of alternatively-spliced variants 

to date (61,62). AKR1B15 on the other hand was characterized very recently in a 

study which showed that the gene is located on the same chromosome as the other 

two AKR1B members, it has over 90% sequence homology with AKR1B10, and the 

enzyme uses NADPH as a cofactor. However, based on limited enzymatic studies, it 

was shown to act as a steroid reductase, to be predominantly localized in 

mitochondria and highly expressed in adipose tissue, testis and placenta (65). 

 

Similar to AKR1Bs, AKR1Cs also utilize NADPH as a cofactor for their enzymatic 

reactions but they are clustered together on chromosome 10, p15-p14 bands (66). 

They share much higher sequence homology, ranging between 84%-98% (67), and 

different from AKR1B subfamily, their main function is steroid metabolism, 

especially phase I biosynthetic reactions (68). AKR1C1 and AKR1C2 are expressed 

in many tissues, while AKR1C3 and AKR1C4 are expressed almost exclusively in 

prostate and liver, respectively. More specifically, AKR1C enzymes are involved in 

androgen biosynthesis, particularly 5a-dihydrotestosterone (5a-DHT) and its 

inactivation, metabolism of estrogen and progesterone, neurosteroids, bile acid 

synthesis (particularly AKR1C4 in liver), and side chain of steroids to make them 

prone to conjugation by phase II enzymes (69). 

1.6.2 Enzymatic Actions and Tumorigenic Effects of AKR1 Family 

AKR proteins share a common (β/α)8 barrel and a nucleotide- binding pocket which 

is occupied preferentially by NADPH. Members of the AKR1 family are monomeric, 

while members of other families form higher quaternary structures, more particularly 

dimeric (AKR7) and tetrameric (AKR6) through certain residue interactions found 

in specific loops (59). The 3-dimensional structure of AKR1B10 bound to NADP+ 

is shown in Figure 2.2. 
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Figure 1.2 Three-Dimensional Structure of AKR1B10 

The two images represent the front (left panel) and rear (right panel) view of AKR1B10 

protein and they are colored according to secondary structures. Dark grey shows 8 alpha-

helixes, cyan the 8 betta-strands and yellow the loops connecting them. NADP+ is shown in 

ball-and-stick mode. The structure with PDB ID 4GQG was downloaded from protein 

databank (58) and images were generated with ChimeraX (70). 

 
Although there are minor differences in reaction mechanisms of each AKR1 

member, overall they consist of two steps: first, a hydride ion is transferred from 

NADPH to the substrate, forming a ternary complex of enzyme-substrate-cofactor. 

Next, a hydrogen proton from the solvent attacks and releases the aldol form of the 

substrate and the oxidized form of NADP+ (59). The substrates of AKRs include a 

wide range of chemicals that contain aldehyde and ketone moieties that are reduced 

to alcohols, making them indispensable for detoxification of many carbonyl 

compounds (AKR1B10) that are either produced as byproducts of normal cellular 

processes or cellular stress, chemical transformations which could be activation or 

deactivation of steroid hormones (AKR1C), or detoxification of xenobiotic 

compounds, many of them used in cancer chemotherapy, making them available to 

phase II conjugation processes for clearance from the body (AKR1B and AKR1C) 
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(71). Many in vitro enzymatic experiments with different substrates are available in 

some excellent studies (61,72–75). 

 

Since AKR enzymes in general and AKR1 family in particular require NADPH for 

their enzymatic actions, they may have broad but yet unexplored implications for 

cellular physiology. NADPH is synthesized through many metabolic pathways in the 

cell, first and foremost by pentose phosphate pathway (PPP) which branches from 

glycolysis, but depending on cell type and context, other pathways such as one-

carbon cycle and anaplerotic reactions can also generate ample amounts of the 

cofactor (33). Cells maintain a high NADPH/NADP ratio even during glucose 

shortage partially to cope with oxidative stress among many other essential cellular 

processes (76). Thus, overexpression of AKR proteins, in addition to their 

detoxification functions, may also tip the balance of NADPH/NADP which may 

potentially affect certain cellular processes. 

 

AKR1s, in addition to general detoxification reactions have also been found to be 

important in retinoid signaling which is essential for cellular differentiation. The 

enzymes play an important role at the junction where retinal is either oxidized by 

aldehyde dehydrogenases (ALDHs) to retinoic acid and lead to cellular 

differentiation, or reduced by AKR1B10/C1/C3 to retinol, in this way depriving the 

cell of retinoic acid. This balance is thought to be determined by the availability of 

the aforementioned enzymes (77). Another important process where AKR1B10 is 

involved is in protein prenylation through the mevalonate pathway. Enzyme kinetic 

studies showed low Km and high catalytic efficiency of AKR1B10 compared to 

AKR1B1 towards Farnesal (FAL) and Geranylgeranial (GGAL), converting them 

into their alcohol forms (78). Similar to retinoids, aldehyde FAL and GGAL are 

intermediates that can be either oxidized by alcohol dehydrogenases (ADH) to their 

carboxylic forms which among others induce apoptosis, or reduced by AKR1B10 

into alcoholic products FOH and GGOH, which are then phosphorylated to 

pyrophosphate forms and used to prenylate cellular proteins mostly involved in 
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signal transduction such as G-proteins regulating MAP kinase pathways and cellular 

proliferation (79).  

 

An additional role of AKR1B10 was found when Ma et al. (2008) reported that 

AKR1B10 blocked degradation of acetyl-CoA carboxylase α (ACACA), the rate 

limiting enzyme for de novo fatty acid synthesis, thus enhancing tumorogenicity of 

breast cancer cells (80). These authors showed that AKR1B10 could physically 

interact with ACACA and block ubiquitin-dependent degradation. This could be a 

novel role of AKR1B10 in addition to its conventional enzymatic function. Last but 

not least, AKR1B10 is involved in cancer chemoresistance. Studies have shown that 

AKR1B10 reduces the antiemetic 5-HT3 receptor antagonist dolasetron, anticancer 

drugs oracin and daunorubicin, as well as tobacco carcinogenic compounds such as 

NNK. These actions happen in cancers with high expression of AKR1B10 such as 

liver and lung where AKR1B10 inactivates the drugs by either reducing them into 

less harmful forms, or by reducing and detoxifying the highly reactive carbonyl 

products generated by ROS after chemotherapy, which are normally expected to 

damage tumor cells and force them to undergo apoptosis (79). In both ways, 

AKR1B10 and other members of AKR1 family have been shown to play crucial role 

in cancer resistance to chemotherapy; therefore, agents that block them during such 

treatments are still under investigation (81).  

 

The expression of AKR1B10 shows a mixed pattern with up- or downregulation in 

various tumors. In some tumors expression of AKR1B10 is associated with poor 

prognosis, while in others with better prognosis for tumor patients. Various studies 

have shown that expression of AKR1B10 is downregulated while that of AKR1B1 

is upregulated in colorectal cancer. Their expression was combined into a gene 

signature that could stratify patients into low and high-risk groups (82,83). Another 

study showed that AKR1B10 expression is regulated by p53 in colon and its 

suppression inhibits apoptosis, while its overexpression inhibited cellular 

proliferation by a yet unknown mechanism (84). However, Yan et al. (2007) found 
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that silencing AKR1B10 by siRNA in HCT-8 colon cancer cell line reduced 

proliferation of cells treated with acrolein and crotonaldehyde, two toxic ketogenic 

compounds (85). These seemingly contradictory results can be explained by the 

enzymatic function of AKR1B10 which is reduction of toxic aldose compounds into 

less harmful alcoholic forms. Gastrointestinal tract in general, and colon in particular 

are under constant pressure of organic toxic compounds coming either from the food 

or byproducts of gut microbiome, so downregulation of AKR1s would expose the 

cells to attacks, causing mutation and cancer. On the other hand, during 

chemotherapy AKR1s acts again in the same way, reducing the drugs into harmless 

compounds, making the cells resistant (86).  

 

The expression of AKR1B10 has also been reported to be upregulated in many tumor 

types, first and foremost in LIHC from which the gene was first isolated and 

characterized (61). Thus, in an early study using tissue microarray with 

immunohistochemistry staining, the elevated status of AKR1B10 in most of the 

tumors as compared to normal adjacent tissues was confirmed, but higher AKR1B10 

expression was associated with better DFS and OS (87). In contrast, according to 

another report using the same approach, high AKR1B10 levels were associated with 

poor OS and DFS and this was linked to AKR1B10 metabolizing sphingosine 1-

phosphate (S1P) which in turn induced cellular proliferation (88). In agreement with 

the last study, a large multi-center study found elevated levels of AKR1B10 protein 

in serum of early and late stage LIHC patients. Additionally, the same report showed 

the potential of AKR1B10 as a biomarker for early and late-stage tumor detection in 

AFP-positive and negative LIHC patients. However, when both proteins were 

combined into a single risk signature, sensitivity and specificity were better than each 

of them individually (89). 

 

Another recent study put the expression AKR1B10 under the control of IRAK1, a 

member of NF-B pathway and found AP1 binding site on its promoter. Higher 

expression of IRAK1 was associated with poor OS, and this observation was linked 
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to increased drug resistance and cellular stemness in LIHC cell lines (90). These 

results show that there is a contradiction among different clinical studies regarding 

the status of AKR1B10 and its potential as a biomarker for LIHC. These 

contradictions were addressed in a review analyzing 9 clinical studies regarding the 

association between AKR1B10 expression and LIHC patients’ clinical outcome, and 

according to the authors, the differences can be explained by early versus advanced 

LIHC stages as well as the presence of HBV, HCV, Cirrhosis and other yet unknown 

factors involved in initiation and advancement of LIHC (91).  

 

Enhanced expression and specific activity of AKR1B10 and AKR1B1 has been 

reported in all stages of breast cancer as compared to normal adjacent tissue, both 

before and after surgery and this was associated with drug resistance. To prove that 

claim, the same study showed that expression of these two enzymes was induced by 

proteasome inhibitor bortezomib in HT-29 breast cancer cell line in vitro (92). 

Another study also showed that expression of AKR1B10 was elevated in HER2+ 

and ER- breast cancers, however its overexpression does not affect tumor behavior 

in primary sites, but it is associated with increased metastatic relapse in secondary 

sites. In addition, in vivo studies showed that tumor cells with high AKR1B10 

expression shifted their dependency from glycolysis to fatty acid oxidation, a 

phenomenon that can explain the association of AKR1B10 expression and metastatic 

relapse. Finally, the same study showed that AKR1B10 protected cells from 

oxidative stress generated by fatty acid oxidation (93). High expression of AKR1B10 

was also associated with low DFS while showing no association with OS in lung 

adenocarcinoma (94). 

1.7 NADPH Biosynthetic Pathways in Eukaryotic Cell 

There are three main sources of NADPH in the eukaryotic cell: PPP, one-carbon 

cycle (OCC) also known as the folic acid cycle, and anaplerotic reactions, in 

particular Malate Dehydrogenase or Malic Enzyme 1 (ME1) but also to a certain 
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extents Isocitrate Dehydrogenase 1 (IDH1) in the cytosol and IDH2 in the 

mitochondria (Figure 1.3). 

 

 

Figure 1.3 NADPH Synthetic Pathways. 

Yellow color shows glycolysis, TCA and anaplerotic reactions, green color shows PPP, red 

shows OCC, and blue shows major pathways the reactions lead to. 

Metabolic flux studies have shown that PPP is the main contributor, but depending 

on cell type and context, OOC can sometimes take over (33). PPP consists of two 

branches, the oxidative branch which oxidizes glucose 6-phosphate to ribulose 6-

phosphate and uses those electrons to reduce NADP+ into NADPH in three 

enzymatic steps. Two of these steps include the enzymes Glucose 6-Phosphate 

Dehydrogenase (G6PD) and Phosphogluconate Dehydrogenase (PGD) that carry out 

the actual oxidation reactions and produce 2 molecules of NADPH. The other branch 

is called the non-oxidative branch which is carried out by TKT and TALDO1 



 

 
 

21 

enzymes; it uses glycolytic intermediates fructose 1,6-bisphosphate (F16BP) and 

glyceraldehyde 3-phosphate (G3P) to synthesize ribulose 6-phosphate leading to 

nucleotide biosynthesis, or vice versa. The activity of each branch is determined by 

cellular needs. Thus, during anabolism cells need to synthesize new lipids and 

nucleotides as well as to keep oxidative stress under check, and in this setting both 

the reducing and non-reducing arms of the pathway direct the metabolite flow 

towards the production of more NADPH and nucleotides. However, during the 

catabolic mode, the non-reducing arm works in reverse and funnels the metabolites 

into glycolysis for producing ATP. In this way the cell generates the necessary 

reducing power to keep oxidative stress under check and satisfies its energy needs 

(95). 

 

Folate is an important element of one-carbon metabolism and its real biological 

significance has not been understood yet. Some of the cellular processes it is 

involved include nucleotide synthesis, gene expression regulation, cell division, and 

metabolism of amino acids, especially Serine and Glycine. Folate was recently 

shown to be a major contributor of the cellular NADPH pool, almost equal to PPP, 

depending on the physiological conditions of the cell (33). Briefly, the pathway takes 

place in the cytosol and mitochondria, with some enzymes having similar functions 

but located in different cellular compartments (Figure 1.3). By convention, cytosolic 

enzymes are labeled as 1 and mitochondrial enzymes as 2. The enzymes involved in 

reducing NADP to NADPH are methylenetetrahydrofolate dehydrogenase 1 

(MTHFD1) and Aldehyde Dehydrogenase 1 Family Member L1 (ALDH1L1) in 

cytosol, and MTHFD2 and ALDH1L2 in the mitochondria. 

 

The third main source of NADPH in the cell comes from the anaplerotic reactions of 

the TCA cycle, particularly from three reactions, one in the mitochondria and two in 

the cytosol (Figure 1.3). The first and most important one is cytosolic ME1 which 

oxidizes malate transferred from the mitochondria via the malate-aspartate shuttle 

into pyruvate by reducing one NADP+ to produce NADPH. The second enzyme is 
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IDH1 which oxidizes Isocitrate into α-Ketoglutarate (αKG) in the cytosol by 

transferring the electrons to NADP+ to produce NADPH, or vice versa. IDH1 

enzyme is unique because when mutated, instead of converting Isocitrate into αKG, 

it reduces the latter into 2-Hydroxyglutarate (D-2HG), an oncometabolite that is 

found commonly in gliomas and myeloid leukemia. D-2HG is known to inhibit the 

enzymatic actions of many αKG-dependent dioxygenases, such as histone 

demethylases, thus causing major epigenetic changes in cells harboring such 

mutations (96). The final NADP-reducing enzyme is IDH2, the counterpart of IDH1 

functioning in mitochondria which oxidizes Isocitrate into αKG during TCA and 

transfers the electrons to NADP+ instead of NAD+, which is the preferred cofactor 

of IDH3 and it has important roles in mitigating mitochondrial ROS (97). 

1.8 Transcriptomics as Surrogate for Determining Cellular Metabolic 

State 

Given the complexity of regulatory mechanisms used by cells to regulate enzyme 

expression and stability, as well as the flux through metabolic pathways, it may seem 

unfeasible to try to understand metabolism by means of transcriptomics. However, 

recent studies on proteomics have established a strong correlation between gene 

transcription and protein abundance in many cancers, especially the liver (98). It is 

a well-known fact that metabolic flux depends on multiple factors, such as the 

abundance of the metabolite itself, the availability and kinetics of one and/or multiple 

enzymes, competition among many enzymes for the same substrate where there is 

pathway branching as well as enzyme inhibition by various negative feedback 

mechanisms. This is further compounded by post-translational modifications of the 

enzymes and SNPs, which can drastically change their kinetics (99). However, recent 

integrated studies on transcriptomics and metabolomics for breast cancer have 

shown strong evidence that metabolite abundance and therefore metabolic flux is 

strongly correlated with transcriptional abundance in tumors (100,101). 

Additionally, using transcriptomics to understand metabolomic profile of cancers is 
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an easy and effective way when compared to the more tedious, complicated, 

expensive, and still not well-established methods of capturing, defining and 

quantifying all the metabolites in a cell or tissue (102,103).  

 

Several studies based on transcriptomics either from microarray or RNA-sequencing 

have already used transcriptomics to understand the metabolic state of tumors. In 

one of the earliest studies of this nature, metabolic gene expression differences 

between 22 different tumors and their matched normal tissues were compared and it 

was found that different tumors overexpress different isoforms of metabolic 

enzymes, especially glycolytic ones. Moreover, despite changes in metabolic gene 

expression, overall metabolic profiles of tumors were more similar to their tissue of 

origin than to other tumors (104). In another more recent study, TCGA data were 

utilized to compare metabolic gene changes between different tumors, and major 

dysregulation in mitochondrial genes involved in oxidative phosphorylation were

detected. This state was correlated with poor prognosis and upregulation of EMT 

genes (27), a case that lends support to the idea of respiration injury in tumors.  

 

Another similar study also used TCGA data to compare the expression of genes 

comprising 7 major metabolic pathways between 33 tumor types and classify them 

accordingly. It was found that increased beta-oxidation was associated with better 

patient prognosis, whereas elevated expression of genes involved in vitamin, 

carbohydrate and nucleotide metabolism was associated with poor prognosis. The 

remaining two pathways of energy integration and amino acid metabolism had mixed 

results and were dependent on tumor type (101). In one of the latest such studies, the 

expression of genes for 114 metabolic pathways from KEGG database were 

evaluated in 26 tumors and their adjacent normal samples. In addition to reporting 

pathway dysregulations that were either tumor-specific or common across many 

tumor types, changes in the expression of a number of important transcription factors 

called master metabolic transcription regulators (MMTRs) were also detected (102). 
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All these studies have established the accuracy and feasibility of transcriptomics as 

an accurate representation of the metabolic state of the cells. Based on these 

premises, we also used transcriptomics to study and interpret the changes in 

metabolic profile of carbohydrate, lipid and amino acid across multiple cancers and 

their adjacent normal tissues, as well as all metabolic the pathways in LIHC. 

1.9 Aims, Hypothesis and Novelty 

Cancer metabolism has gathered huge momentum in recent years because of its great 

potential in cancer management and therapy, and also because of the failure of 

conventional therapeutic approaches to deliver according to expectations. We started 

this study by manually curating an extensive set of enzymes as well as carbohydrate 

and amino acid transporters and compared the expression of these genes between 

cancer and matched normal tissues in 20 different tumor types We selected all 

enzymes that take part in carbohydrate, lipid, and amino acid metabolism, both 

catabolic and biosynthetic.  

 

Additionally, all transporters for carbohydrate and amino acids in the cell, as well as 

some important mitochondrial channels were included. Finally, we also evaluated 

the expression of genes that are involved in anaplerotic reactions that are important 

for integrating these pathways together, and electron transport chain (ETC) in an 

attempt to understand whether mitochondrial ETC was deregulated in tumors. To 

our knowledge, this is the first study to specifically evaluate the expression of this 

specific set of genes and find important commonalities and differences between 

tumors. We also evaluated the prognostic value of some of these enzymes and 

transporters across different tumors. 

 

The pan cancer transcriptome data indicated major deregulation of NADP/NADPH 

utilizing enzymes across many tumor types. We specifically selected LIHC as liver 

is the hub of metabolism and showed major deregulation in NADPH pathways. We 
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observed a strong and significant upregulation in AKR1B10 at very early stages of 

LIHC; this enzyme utilizes NADPH and is considered as a potential biomarker for 

poor prognosis. Using different in silico approaches, we evaluated the hypothesis 

that there exists an interaction between AKR1B10 and PPP, a major branch of central 

carbohydrate metabolism that reduces NADP to NADPH. Our data suggest that 

LIHC tumors with high AKR1B10 expression showed very strong association with 

PPP and other NADPH related pathways, along with enzymes of Phase II 

conjugation reactions. Thus, it can be envisaged that AKR1B10 high tumors can 

detoxify chemotherapeutic drugs and mitigate oxidative stress, which would 

otherwise slow their progress.  

 

Finally, genes that were a part of a network with AKR1B10 as the hub was used to 

train a multi-gene prognostic risk signature and test it on external datasets using two 

different machine learning approaches. This was done in an attempt to better stratify 

LIHC patients across different datasets and we showed once again the importance of 

PPP as possible target for better patient stratification and tumor therapeutics.  

 

To our knowledge, this is the first detailed study of the possible molecular 

mechanisms that increase the aggressiveness of AKR1B10High tumors. It is also the 

first to hypothesize and show a direct link between AKR1B10 and PPP using in silico 

tools. Finally, we also built a prognostic score that can be generalized across datasets, 

and although its accuracy is not as high as some already published in literature, its 

main advantage is its specificity as it is based on a single molecular pathway whose 

expression can be manipulated or targeted in the future.
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CHAPTER 2  

2 MATERIALS AND METHODS 

This study was carried out on publicly available data from patients and cell lines. 

Also, all the software and functions to carry out the analysis are open source. The 

sections below will describe briefly the methods and parameters used in data mining, 

processing and statistical analysis to obtain the results presented in the next chapter. 

2.1 Datasets 

We used 24 publicly available datasets in this study, 20 TCGA tumor cohorts, 3 

tumor microarrays and one CCLE. The TCGA cohorts and the number of samples 

for each of them are shown in Table 2.1. It should be noted that half of the samples 

represent tumors and the other half normal adjacent tissues. 

 

GSE6764 contains 75 liver samples taken from 48 patients of various stages, starting 

from healthy liver tissue to advanced stages of liver tumor. Samples were collected 

in three different medical centers in New York (USA), Barcelona (Spain) and Milan 

(Italy). The transcriptome of these samples was quantified using Affymetrix HGU-

133 Plus2 array platform (105). GSE76427 dataset contains 167 samples, 115 

primary liver tumors and 52 adjacent healthy tissue, all collected in Singapore. The 

transcriptome of these samples was quantified using Illumina HumanHT-12 V4.0 

expression bead chip (106). GSE14520 dataset contains 225 primary liver tumor 

samples obtained from Chinese and US citizens and the transcriptome was quantified 

by Affymterix HGU-133A array platform (107). In this study, only the normal 

samples from GSE6764 were used. 
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Table 2.1 Information Regarding TCGA Cohorts 

Cohort ID Cohort Name Sample Number 

BLCA Bladder Urothelial Carcinoma 38 

BRCA Breast Invasive Carcinoma 224 

CESC Cervical and Endocervical Cancers 6 

CHOL Cholangiocarcinoma 18 

COAD Colon Adenocarcinoma 82 

ESCA Esophageal Carcinoma 16 

HNSC Head and Neck Squamous Cell Carcinoma 86 

KICH Kidney Chromophobe 46 

KIRC Kidney Renal Clear Cell Carcinoma 144 

KIRP Kidney Renal Papillary Cell Carcinoma 62 

LIHC Liver Hepatocellular Carcinoma 100 

LUAD Lung Adenocarcinoma 118 

LUSC Lung Squamous Cell Carcinoma 102 

PAAD Pancreatic Adenocarcinoma 8 

PCPG Pheochromocytoma and Paraganglioma 6 

PRAD Prostate Adenocarcinoma 104 

READ Rectum Adenocarcinoma 20 

STAD Stomach Adenocarcinoma 27 

THCA Thyroid Carcinoma 118 

UCEC Uterine Corpus Endometrial Carcinoma 70 

 

2.2 RNA Sequencing Data Acquisition and Pre-processing 

All TCGA RNA sequencing data were downloaded from TCGA repository by 

TCGABiolink package (108,109). In order to obtain better quality data, instead of 

using the older RSEM version of read counts which are available on firehose 

database (http://gdac.broadinstitute.org/), we downloaded the more recent and more 

accurate HTSeq read counts for each cohort (110). The code below shows the 

function for downloading HTSeq read counts for LIHC cohort. 
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CancerProject = "TCGALIHC" 

queryDown = GDCquery(project = CancerProject,  

                      data.category = "Transcriptome Profiling", 

                      data.type = "Gene Expression Quantification",  

                      workflow.type = "HTSeq – Counts") 

GDCdownload(query = queryDown) 

LIHCRnaseqSE = GDCprepare(query, save = TRUE,  

                           save.filename = "TCGA_LIHC_gene_exp.rda", 

                           summarizedExperiment = FALSE) 

 

First, the cohort name is defined, which is first located on the cloud by GDCquery() 

function and downloaded on the machine by GDCdownload(). Then, the data is 

converted into table format by GDCprepare() function and saved into RData format 

(.rda) which is easy to upload into R software for downstream analysis. By changing 

the name of “CancerProject” according to the cohort IDs shown in table 3.1, the data 

for all cohorts can be downloaded for further processing. Next, clinical data for all 

samples was extracted and tumor to normal matching was done by patient id. In 

addition, all non-aligned read counts were removed from the expression matrix by 

detection and removal of non-ensembl IDs. At the end of this process, the results 

shown in table 3.1 were obtained. For LIHC on the other hand, we used all the tumor 

samples, not only those with normal matches. This was based on clinical data to

remove all patients without survival follow-up, or more than one sequenced sample 

per patient, and we were eventually left with 364 primary LIHC tumors and 50 

normal samples. 

2.3 RNA-Sequencing Differential Gene Expression 

For differential gene expression (DGE), DESeq2 package was used according to 

instructions (111). Briefly, patients were divided into two groups, normal and tumor 

or AKR1B10High and AKR1B10Low, or any other combination necessary, and a 

general linear model (GLM) was constructed with a single variable. Afterwards, all 
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probes with zero read counts were filtered out of the expression matrix to make 

computation easy and DGE was carried out. Statistical significance of the genes was 

calculated by Wald’s test corrected for multiple hypothesis by Benjamini-Hochberg 

(BH) procedure referred to as FDR in the text (FDR < 0.05). However, the log2 fold 

change (LFC) varies according to our purpose and it is specified on every occasion. 

In addition, we also obtained the variance-stabilizing transformations (VST) values 

of each gene which produces data in the logarithmic scale of base 2 (log2) by 

removing the dependence of the variance on the mean. This is achieved normalizing 

the data with respect to the dataset size and normalization factors introduced in the 

GLM (112). In this way, VST transformation removes the bias introduced by adding 

a constant to deal with zero values which in contrast to microarray are very common 

in RNA sequencing. The VST values are used for all downstream analysis, such as 

boxplots showing gene expression between various conditions, clustering and 

heatmaps. 

2.4 Methylation Analysis 

Raw methylation signal files (.idat) were downloaded from TCGA database using 

TCGABiolink package. Afterwards, they were separated according to conditions 

explained in results chapter based on matches of patient ids between RNA 

sequencing and methylation. For sample pre-processing we used minifi package 

(113) and quantile normalization (114). All samples passed the quality criteria 

(mean-detection p-values < 0.05) and all the probes with no signal were removed. 

Differential methylation analysis (DMA) was carried out using limma package with 

M-values while beta-values are used later for visualization purposes. The way beta 

and M-values are calculated differs, and the common practice is to use M-values for 

DMA and beta values for visualization purposes (115). 
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2.5 Microarray Data Acquisition and DGE 

There were no raw transcription quantification values for GSE76427 dataset, 

therefore the processed and normalized values were downloaded from gene 

expression omnibus (GEO) database using the GEOquery package from 

Bioconductor and log2-transformed. The same approach was used to download 

clinical data as well. The normalization quality of expression data was checked 

before they were used for further analysis. Some genes such as AKR1B10 and 

AKR1B15 which are important for this study had negative expression values as a 

result of normalization, therefore all the samples having negative values for these 

genes were removed when building the cox regression models. For GSE14520 and 

GSE6764 datasets, raw expression data were available on GEO, therefore they were 

downloaded with GEOquery package and normalized using robust multiarray

averaging (RMA) method (116,117). Probe annotation for GSE14520 and GSE6764 

were done using the hgu133a.db and hgu133plus2.db packages from Bioconductor, 

respectively. 

 

GSE6764 was used for DGE analysis which was carried out using limma package 

(118). As will be shown in section 3.2, DGE analysis were carried out multiple times 

for this particular dataset, so each time the patients were divided into different groups 

based on the clinical data and differential expression matrices were designed 

accordingly. Afterwards, DGE was carried out by fitting a GLM to the data and the 

statistical significance for each probe was determined by t-statistic with BH 

correction (FDR < 0.05). The LFC cut-off for this dataset was 0.5 LFC between the 

conditions of interest. 

2.6 CCLE RNA Sequencing and Drug Sensitivity Data 

The pre-aligned, raw read counts in HTSeq format for more than a thousand cell 

lines were downloaded from the cancer cell lines encyclopedia (CCLE) database of 
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Broad Institute (https://portals.broadinstitute.org/ccle/data). Then, expression data 

for 25 liver tumor cell lines were selected and normalized with DESeq2 package 

using a GLM with a constant as variable since we were not interested in differential 

expression but only data normalization. The normalized and VST-transformed read 

counts were then used for further analysis. Metabolome data for CCLE were also 

downloaded from the same database and no processing was necessary as the data 

were already in normalized and clean format. 

 

We also utilized the drug sensitivity analysis on liver tumor cell lines from Cancer 

Therapeutic Response Portal (CTRP) (http://portals.broadinstitute.org/ctrp/). 

Briefly, AKR1B10 gene and liver cell lines were selected and queried for correlation 

of drugs’ area under the curve (AUC) values and AKR1B10 expression in the portal. 

Candidates were selected and their correlations re-confirmed by using CCLE RNA 

sequencing expression data and AUC values obtained from National Cancer Institute 

database (https://ocg.cancer.gov/ctd2-data-project/broad-institute-screening-

dependencies-cancer-cell-lines-using-small-molecules-0). All correlation 

coefficients and their significance were calculated by Pearson correlation. 

2.7 Reverse Phase Protein Array 

Reverse Phase Protein Array (RPPA) is a recent technology developed to quantify a 

selected set of proteins across multiple samples and conditions simultaneously. It 

cannot quantify all peptides in the cell like mass spectrometric approaches, but 

depending on the purpose, the necessary antibodies are used to design chips and 

quantify proteins accordingly. It is especially useful for studying proteins involved 

in signal transduction and/or a selected set of biological pathways because it can 

detect both the protein and its modified version by post-translation modifications 

such as phosphorylation (119). We downloaded the pre-processed and normalized 

RPPA data for 184 LIHC samples from Firebrowser database 

(http://gdac.broadinstitute.org/) and matched them with RNA sequencing samples 
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according to unique patient ids and carried out differential expression analysis using 

limma package. 

2.8 Gene Set Enrichment Analysis 

Gene Set Enrichment Analysis (GSEA) is a sensitive method for detecting whole 

pathways enriched in one condition as compared to another. For this study, GSEA 

desktop application was downloaded from Broad Institute (http://www.gsea-

msigdb.org/gsea/downloads.jsp) and it was run in Windows operating system. 

Expression and phenotype files formats and their contents were prepared in 

accordance with the software’s user guide (https://www.gsea-

msigdb.org/gsea/doc/GSEAUserGuideFrame.html). Expression file was composed 

of VST-transformed read counts and ensemble ids were used for gene annotation. 

All enrichments were run in 1000 permutations and different molecular signature 

databases (MsigDBs) were used, all of them explained in more detail in the relevant 

sections in Chapter 3. 

2.9 Gene Ontology Terms Enrichment 

For Gene Ontology (GO) term enrichment, various online servers such as David  

(https://david.ncifcrf.gov/tools.jsp), and Gprofiler (http://biit.cs.ut.ee/gprofiler/gost) 

were used, however their output format is difficult to work with. Instead, all the 

results shown in this study were the output of clusterProfiler package run on R (120). 

Overall, there was good agreement between the three approaches, but in addition to 

good graphical representation, clusterProfiler has the advantage of further trimming 

the number of GO output by removing GO terms with common genes. One special 

requirement of clusterProfiler is that it works only with ensemble gene ids to carry 

out enrichment analysis, and for RNA sequencing this was easy as all the genes were 

annotated with ensemble numbers. However, microarray annotation is based on 

probes which were converted into ensemble IDs by using genome-wide annotation 
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package org.Hs.eg.db from Bioconductor. All enrichments were carried out on genes 

passing the significance threshold (FDR < 0.05) and LFC > 1 for RNA-sequencing 

and LFC > 0.5 for microarray. We also checked for 3 ontology terms, biological 

process (BP) which enriches genes according to their overall biological function in 

the cell such as certain biological pathways, cellular component (CC) which enriches 

genes according to their locations in various cellular components such as organelles 

or plasma membrane, and molecular function (MF) which enriches genes by their 

activities such as certain biochemical reactions or cellular processes such as transport 

(http://geneontology.org/docs/ontology-documentation/). All the GO term 

enrichments in this study were done using the same stringent statistical criteria of p 

< 0.01 and its BH-correction (FDR) < 0.05. After trimming the GO output, a number 

of GO terms were selected and represented graphically using the dropGO() and 

barplot() functions from the same package, respectively. 

2.10 Metabolic Enzymes Database 

To date, there does not exist a comprehensive and consistent database representing 

all metabolic enzymes of the eukaryotic cell, but the numbers are changing according 

to enzymes’ cellular function (121). In order to collect as many enzymes as we could 

for this study, an indirect approach was taken. First, using the org.Hs.eg.db package, 

all the ensemble gene IDs were converted into Enzyme Commission (EC) number, 

a unique ID for each enzyme annotating its main properties which are assigned 

according to the specifications of the International Union of Biochemistry and 

Molecular Biology (IUBMB). Next, all metabolic genes available in the KEGG 

database were downloaded and their entrez IDs were also converted into ensemble 

IDs, a unique gene annotation number that solves the confusion of multiple symbols 

for one gene. Afterwards, the list generated by the first approach was compared with 

the list of KEGG and the two groups were found to agree in approximately 65% of 

the genes. This is the case because either not all enzymes have IUBMB IDs, or the 

databases are not updated regularly, or because KEGG is not all-comprehensive 
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(121). After removing duplicates by keeping ensemble IDs are reference, 2427 

unique enzymes were obtained representing a large fraction of characterized 

enzymes in human cells. 

2.11 Clustering and Heatmaps 

For all cluster analysis, Euclidean distance and Ward’s Agglomerative Hierarchical 

Clustering Method (ward.D2) were used (122). This was not a random choice, but it 

was found to give the best separation among 2 or more groups, and it was 

computationally more feasible as compared to correlation-based distance 

calculation. All clustering analysis was carried out in R. Heatmaps were generated 

by using either pheatmap or gplot packages, respectively, and they are indicated in 

the relevant figures. All expression values of the genes were taken from log2-

transformed for microarray and VST-transformed data tables for RNA sequencing 

and scaled by row before cluster and heatmap visualization. In microarray data, for 

the cases of genes with multiple probes, only the probe with the highest variance was 

retained while the others were discarded. This was done by calculating the variance 

of the entire dataset, re-order in descending order, and keeping only one unique gene 

symbol. 

2.12 Survival Analysis and Gene Signature 

For TCGA-LIHC survival analysis, clinical data downloaded from TCGA were 

used. For patients with more than one sequenced sample, only one was retained and 

those without follow-up survival data were removed. Survival period was converted 

into months on the basis of 365-days year. We used VST-data to avoid spurious 

correlations arising from adding constants before log2-transformation. For survival 

analysis, surviver and survminer packages were used and significance level was set 

as log-rank p-value < 0.05. A similar procedure was followed for microarray data 

used as external validation cohorts. 75% of patients in TCGA-LIHC cohort were 
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used to train a model starting with 17 candidate genes. Initially, MyStepwise package 

was used to reduce the number of genes into 4 which were used to create a cox 

regression model and fit it into two independent datasets; GSE76427 and GSE14520, 

but the absence of AKR1B15 probe in GSE14520 dataset prevented us from seeing 

the real power of this model to generalize. As a result, we used a second approach 

with glmnet package based on least absolute shrinkage and selection operator 

(LASSO) regularization (123) and obtained a signature based on 2 genes only. 

Further details are provided in the relevant section. 

2.13 Data Manipulation and Other Visualization Graphs 

All data manipulation such as cleaning, rearrangements and transformations were 

done with dplyr package or other necessary packages from tidyverse. All bar charts, 

pie charts, boxplots, radar plots, volcano plots, scatter and correlation plots were 

done using ggplot2 package. 

2.14 Software and Statistical Analysis 

All the analysis for this study were carried out in R programming language on Linux 

operating system, Ubuntu 20.04 LTS distribution. Any other software is mentioned 

specifically within the text. All the R code for downloading and processing the data, 

as well as statistical analysis for this entire study is available in Github repository 

(https://github.com/ilirsheraj/Thesis).  
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CHAPTER 3  

3 RESULTS AND DISCUSSION 

This chapter consists of four main sections. The first section summarizes the results 

of a pan-cancer study on the expression of metabolic genes across 20 tumors and 

their matched adjacent tissues. Detailed analysis and results are available in a 

published manuscript (DOI:10.1038/s41598-021-93003-3). Sections 2-5 show 

detailed analysis of LIHC metabolism with an emphasis on the AKR1B10 and PPP 

pathway. 

3.1 A Pan-Cancer Transcriptomic Study Showing Tumor-Specific 

Alterations in Cancer Metabolism 

We aimed to evaluate transcriptome data to determine metabolic rewiring in 20 

different cancer types with a specific focus on the expression of rate-limiting 

enzymes in different biochemical pathways. Differential expression analysis of 

genes involved in carbohydrate metabolism, including their transportation across 

plasma membrane, glycolysis, gluconeogenesis, PPP and hexosamine biosynthetic 

pathway; fatty acid metabolism-related processes of lipid biosynthesis and

modification, beta oxidation, ketone body oxidation and biosynthesis; amino acid 

metabolism-related processes of amino acid transportation across plasma membrane, 

transamination reactions, amino acid oxidation, polyamine pathway, folic acid and 

urea cycles; and finally electron transport chain (ETC), TCA and anaplerotic 

reactions, were carried out. 

 

For this purpose, RNA-Sequencing read counts of 1386 samples of tumors and their 

adjacent normal tissues constituting 20 different tumor cohorts were downloaded 

from TCGA using TCGABiolink package. Differential expression between tumor 
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and normal samples for each cohort was carried out with DESeq2 package. The 

metabolic genes included in this study were mostly based in information available 

on Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(https://www.genome.jp/kegg/pathway.html) and Molecular Signature Database 

(MsigDB) (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). The relevant 

genes were compared to data available in the literature; some genes that were deemed 

irrelevant for our purpose were removed, and others not available in any of the above 

collections were added manually.  

3.1.1 Carbohydrate Transport, Glycolysis, PPP and Hexosamine 

Pathway 

My analysis showed enhanced glycolytic flux in almost all tumors, starting from 

hexose transporters in plasma membrane. Many transporters, particularly GLUT1 

which has the highest affinity for glucose, mannose and galactose (124) were 

upregulated to various degrees in almost all tumors. A similar pattern was observed 

for enzymes controlling the main steps of glycolysis: hexokinases (HKs), especially 

the high-affinity HK2 and HK3, phosphofructokinase (PFKs) and pyruvate kinases 

(PKs). I also showed the overexpression of lactate transporters (MCT1-4), in 

particular MCT-4 which is known for its importance in exporting lactate from highly 

glycolytic cells (125). All these enzymes have been shown to be essential in driving 

glycolytic flux in tumors (126). Different tumors were observed to show 

upregulation of different isoforms of the same enzymes and transporters. An 

upregulation of PPP was observed, which reinforces the importance of NADPH for 

both biosynthesis and oxidative stress mitigation, two essential processes for tumor 

survival and proliferation (127). Another important pathway that integrates 

carbohydrate, lipid, nucleotide and amino acid metabolism is the hexosamine 

biosynthetic pathway (128). While the pathway was generally upregulated in tumors, 

its degree of change was not as high as glycolysis and PPP. The number of genes up- 

and downregulated in each tumor are shown in the radar plot in Figure 3.1. 
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Figure 3.1 Carbohydrate Metabolism Differentially Expressed Genes.  

Blue line represents downregulated and red line upregulated genes (FDR <0.05, LFC > 0.5).  

Numbers are shown within the plot. 

 

Another important pathway that integrates carbohydrate, lipid, nucleotide and amino

acid metabolism is the hexosamine biosynthetic pathway (128). While the pathway 

was generally upregulated in tumors, its degree of change was not as high as 

glycolysis and PPP. The number of genes up- and downregulated in each tumor are 

shown in the radar plot in Figure 3.1. 

3.1.2 Fatty Acid Metabolism 

Fatty acids (FAs) metabolism had been overlooked for years in cancer research but 

its importance has been recognized recently. FAs are important for many cellular 

processes. As they are the constituents of plasma and organelle membranes, they are 

involved in cellular signaling, and when oxidized produce immense amounts of 

energy per molecule as compared to carbohydrates (129–131). Overall, our analysis 

shows significant downregulation of genes involved in fatty acid oxidation (FAO) in 

different tumor types, both the main beta oxidation pathway and ketone body 
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breakdown. These findings support recent studies that have found that patients 

undergoing intermittent fasting or kept under ketogenic diet showed better response 

to cancer chemotherapy (132).  

 

This reduction could be for two reasons: first, FA oxidation requires oxygen as it 

takes place in mitochondria while tumors grow under hypoxic conditions, and since 

the general state of tumors is proliferation, synthesizing and breaking FAs down 

simultaneously would be a futile cycle. The expression of enzymes involved in fatty 

acid biosynthesis (FAS) on the other hand was found to be significantly upregulated 

in most of the tumors. In addition, we also observed major changes in FA modifying 

enzymes which can lead to significant changes in tumors’ overall lipidome, affecting 

their membrane composition, cellular signaling, growth and proliferation. Figure 3.2 

summarizes the number of FA metabolism genes that are up- and downregulated in 

20 tumor cohorts. 

 

 

Figure 3.2 Fatty Acid Metabolism Differentially Expressed Genes. 

Blue line represents downregulated and red line upregulated genes (FDR <0.05, LFC > 0.5).  

Numbers are shown within the plot. 
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3.1.3 Amino Acid Metabolism 

Amino acids (AAs) are essential for cell survival and proliferation because they are 

the basic building blocks of proteins, are essential for oxidative stress response 

especially through glutathione and proline, and they are utilized for energy through 

anaplerotic and trans-amination reactions. AA availability in the cell is associated 

with an overall anabolic state while their deficiency is associated with overall 

catabolism (133–135). Eukaryotic cells cannot synthesize most of the AAs so they 

have to be obtained from the diet (136).  

We observed the overexpression of AA transporters in the plasma membrane, 

especially Glutamine, Serine, Cysteine and Glycine among others, showing 

increased AA flux into tumor cells. AA oxidation on the other hand was generally 

decreased, indicating that tumors, despite increasing AA flux (auxotrophs), do not 

utilize them for energy but preserve them either for coping with oxidative stress or 

for protein synthesis. This idea is supported by increased expression of enzymes 

involved in Serine, Proline, and Arginine biosynthesis, as well as downregulation of 

urea cycle enzymes, which collect amino groups produced by deamination reactions 

during AA breakdown (137). In addition, we found significant overexpression of 

genes involved in the polyamine pathway which has recently been found to be 

important for cancer progression and aggressiveness (32). Figure 3.3 summarizes the 

number of differentially expressed genes involved in AA metabolism and transport. 
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Figure 3.3 Amino Acid Metabolism Differentially Expressed Genes. 

Blue line represents downregulated and red line upregulated genes (FDR <0.05, LFC > 0.5).  

Numbers are shown within the plot. 

3.1.4 TCA, Anaplerosis and ETC 

TCA, besides being the main pathway for ATP synthesis, also functions as the 

integrative point of many biological pathways such as carbohydrates, AA and FA 

oxidation and biosynthesis. Thus, controlling its flow is essential for tumor growth 

and proliferation (138). My data shows that the changes in anaplerosis and TCA are 

mostly tumor-specific. However, we observed a general decrease in the expression 

of pyruvate dehydrogenase and pyruvate transporters (MCP1/2) in the mitochondria. 

Depletion of MCP1/2 has been shown to force cells to shift their energy sources to 

glutaminolysis in normoxic conditions (139). The expression of IDH1, IDH2 and 

ME1 also varied among different tumors. I also found that in most tumors, the 

expression of mitochondrially-encoded, core enzymes of the ETC were significantly 

downregulated while those with higher ETC enzyme expression had increased 

expression of uncoupling enzymes, a group of mitochondrial channels that uncouple 
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the electron gradient, turning it into heat rather than ATP (140–142). Finally, we also 

found a general downregulation of electron transfer flavoproteins (ETFs) which 

transfer electrons from the initial step of beta oxidation or branched AA oxidation in 

the mitochondrial matrix to complex II of ETC. Also, changing between tumors, 

either some or all proteins of the glycerophosphate shuttle, an important electron 

transfer system that oxidizes cytosolic NADH and transfers its electrons to ETC were 

also downregulated (Figure 3.4).  

 

 

Figure 3.4 TCA, Anaplerosis and ETC Metabolism Differentially Expressed Genes. 

Blue line represents downregulated and red line upregulated genes (FDR <0.05, LFC > 0.5).  

Numbers are shown within the plot. 

 

Overall, the expression of carbohydrate and AA transporters was found to be 

significantly overexpressed in tumors. In addition, tumors had higher expression of 

glycolytic, PPP and hexosamine enzymes. Essential AAs were not utilized for energy 

generation but were funneled into protein synthesis while amino groups were used 

for the synthesis of other AAs through transamination and polyamines. Tumors also 

showed decreased FA and ketone body oxidation, a surprising state since these 
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molecules are very rich energy sources. FA biosynthesis on the other hand was 

increased and the expression of FA modifying enzymes showed major changes. 

Overall, the decrease in FA oxidation can be explained by the general lack of oxygen 

and an overall anabolic state of the cell, while dysregulation of FA modifying 

enzymes needs careful consideration since the lipidome profile has major 

implication in cellular physiology (143). Contrary to data generated from cell culture 

experiments, I did not find very significant changes in anaplerotic reactions and 

TCA. This is likely because tumor samples grow and proliferate in a dynamic 

environment. The overall findings of this study are shown schematically in Figure 

3.5. 

 

 

Figure 3.5 Schematic Drawing Showing the Flow of Metabolites in Tumors. 

3.1.5 Expression NADPH Metabolizing Enzyme  

Figure 3.5 indicates that NADPH is one of the central players in metabolic 

deregulation in cancer cells. The major NADPH synthesizing pathways in the cell 

are the PPP, one-carbon cycle (OCC) and some enzymes involved in anaplerotic 
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pathways (33). Among the NADPH utilizing enzymes is AKR1B10, which requires 

electrons from NADPH to carry out its enzymatic reactions. Therefore, we evaluated 

the expression of AKR1B10 and several NADPH-synthesizing enzymes shown in 

Figure 1.3 across all 20 tumor cohorts and represented them in a heatmap (Figure 

3.6). 

 

 

Figure 3.6 Expression of AKR1B10 and NADPH Synthesizing Enzymes Across 

TCGA Cohorts. 

Heatmap was constructed with Euclidean distance and Ward.D2 linkage. Color bar at the 

top shows expression changes in LFC. 

 

AKR1B10 was significantly upregulated in 8 tumors while G6PD was significantly 

upregulated in more than half of the tumors. Of relevance to the current study, 

AKR1B10 together with genes involved in especially in PPP but to various extent 

also in OCC and anaplerosis were highly upregulated in LIHC tumors as compared 

to adjacent normal tissue. These data support the building of our hypothesis for a 

common regulatory network for enzymes utilizing NADP(H) as a coenzyme in 

LIHC.  
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3.2 Stepwise LIHC Development 

3.2.1 Microarray Gene Expression 

LIHC is a very heterogeneous tumor and its progression generally involves multiple 

stages. In order to understand the stage-wise progression at the molecular level, raw 

gene expression data from the dataset GSE6764 as well as the relevant clinical 

information were download from the Gene Expression Omnibus (GEO). In this 

study, the authors classified 75 liver samples from 48 patients into different 

categories and stages according to conventional pathological classification 

appropriate for the liver (Table 3.1). Afterwards, overall gene expression was 

evaluated using microarray technology (105).  

 

Table 3.1 Sample Pathology 

Sample Type Number 

 Healthy Tissue 10 

Cirrhosis Viral 10 

Cirrhosis Non-Viral 3 

Low-Grade Dysplasia 10 

High-Grade Dysplasia 7 

Very-Early HCC 8 

Early HCC 10 

Advanced HCC 7 

Very-Advanced HCC 10 

 

It should be emphasized that healthy liver tissues were not taken from livers affected 

either by cirrhosis or tumor, but from healthy patients without any liver pathology. 

Cirrhosis samples were also of two types, infected with HCV and non-viral. There 

were two grades of dysplasia, low-grade and advanced. LIHC samples were 

separated into very-early and early LIHC with well to moderate differentiation, and 
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advanced and very advanced LIHC stages with poor differentiation and 

macrovascular invasion (105).  

 

Using data from GSE6764, we could also follow the evolution in expression of all 

metabolic genes represented in the microarray. More importantly, this dataset made 

it possible to check whether AKR1B10 and PPP genes’ expression changes in very 

early pathological stages of liver, or it changes in more advanced stages of tumor. 

After raw data were downloaded, all samples were normalized together using robust 

multiarray averaging (RMA) method as described in Chapter 2. 

Next, an unsupervised cluster analysis for the whole transcriptome was performed to 

see how well the transcriptome profile agreed with pathological classification. The 

best separation was achieved by using Euclidean distance and Ward.D2-based 

linkage (Figure 3.7). 

 

 

Figure 3.7 Unsupervised Hierarchical Clustering of GSE6764 Transcriptome. 

Color labeling: red represents all tumor samples from very early to very advanced. Blue 

represents normal samples, green cirrhotic and yellow dysplastic. More detailed labeling is 

given by the initial letter codes as follows: “c” stands for control, “ci”, cirrhotic, “cin”, 

cirrhotic non-viral, “lg”, low-grade dysplasia, “hg”, high-grade dysplasia, “ve”, very early, 

“e”, early, “a”, advanced and “aa” very advanced. 

 



 

 
 

48 

Clustering analysis shows that (with few exceptions) tumor samples were well-

separated from the others, while normal, cirrhotic and dysplastic samples clustered 

closer to each other. This is also in agreement with the cluster analysis in the original 

article (105). Since there are few samples for each stage, we decided to aggregate 

them into larger but more pathologically heterogeneous groups to increase statistical 

power, an approach also used in the original study (105). However, before this step, 

we checked the number of significantly differentially expressed genes between the 

substages. For this purpose, differential gene expression (DGE) analysis between 

viral cirrhosis versus non-viral cirrhosis, low- versus high-grade dysplasia, very-

early versus early LIHC and advanced versus very-advanced LIHC were carried out 

using the limma package. In all cases, no significantly differentially expressed genes 

(DEGs) were found (FDR < 0.05) as shown in Figure 3.8. Although this may 

introduce some loss of data because of sample heterogeneity, the increase in 

statistical power from more samples overall outweighed the drawbacks. 

 

 

Figure 3.8 Volcano Plots Showing DGE Between Different Substages in GSE6764. 

Contrasts are shown on top of each plot, y-axis shows negative log10 of adjusted p-value, 

and the x-axis the log2-fold change. The horizontal line separated the two conditions under 

investigation. None of the genes reached statistical significance (FDR < 0.05). 
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3.2.2 Differential Expression Analysis Between Aggregated Stages 

Since no gene was found to show a strong differential expression, we aggregated the 

samples into 5 groups and renamed them as shown in Table 3.2. 

 

Table 3.2 Aggregated Sample Pathology 
 

Sample Type Number 

 Healthy Tissue 10 

Cirrhosis Viral 13 

Dysplasia 17 

Early HCC 18 

Advanced HCC 17 

 

We next carried out DGE analysis between each pathological stage and normal 

healthy liver samples using limma. Results show an increasing number of DEGs with 

advancing disease stage as expected (Figure 3.9). 

 

 

Figure 3.9 Volcano Plots of DGE Between Normal and Pathological Tissue. 

Vertical lines show the 0.5 LFC and horizontal line the FDR = 0.05, the cut-offs used for 

significance. All genes passing these filters are colored in blue. 
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Using FDR<0.05 and LFC >0.5, we carried out gene ontology (GO) enrichment 

analysis using clusterProfiler (120) package with FDR <0.01 for genes up- and 

downregulated in all pathological stages each compared to the normal tissues. There 

were multiple GO terms that showed enrichment for all comparisons, with majority 

of them being redundant because the same gene is found in more than one GO term. 

In order to make the results simpler, similar GO terms were removed by first using 

simplify function of the same package and then manually choosing the most 

representative ones. Figure 3.10 shows the top GO terms enriched from differentially 

expressed genes in cirrhosis when compared to normal samples. 

 

 

Figure 3.10 GO Term Enrichment for Genes Up- and Downregulated in Cirrhosis. 

The numbers at the bottom of each graph show the number of genes per each GO term. 
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As the figure shows, many metabolic processes were downregulated in cirrhotic cells 

such as amino acid and fatty acid catabolism. Of major importance could be the 

downregulation of folate cycle and vitamin metabolism, but the real biological 

significance of these processes, to our knowledge, has not been studied. On the other 

hand, cirrhosis showed increased expression of genes constituting multiple GO terms 

related to inflammation, wound healing, viral defense and extracellular matrix 

organization. All of these pathways are expected to be enriched in the state of 

cirrhosis. Figure 3.11 shows the top GO terms enriched from differentially expressed 

genes in dysplasia as compared to normal. Here also we can see an enrichment of 

GO terms relevant to inflammation and extracellular processes. On the other hand, 

genes downregulated in dysplasia (highly expressed in normal tissues) are again of 

a metabolic nature. 

 

 

Figure 3.11 GO Term Enrichment for Genes Up- and Downregulated in Dysplasia. 

The numbers at the bottom of each graph show the number of genes per each GO Term. 
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GO term enrichment of genes upregulated in early LIHC stages as compared to 

normal tissues showed an upregulation of biological processes associated with 

chromosomal segregation, cell cycle checkpoint control and cellular replication, all 

of which are typical tumor-related processes. In contrast, genes downregulated 

(higher expression in normal tissues) were related to metabolic processes, especially 

lipid catabolic pathways (Figure 3.12). These results are in agreement with pan-

cancer analysis shown in section 3.1 of this chapter, and this could be significant as 

liver is known to preferentially oxidize fatty acids under normal conditions (144). 

 

 

Figure 3.12 GO Term Enrichment for Genes Up- and Downregulated in Early LIHC. 

The numbers at the bottom of each graph show the number of genes for each GO Term. 

 



 

 
 

53 

Finally, a similar analysis between advanced LIHC and normal tissues (Figure 3.13) 

showed a similar picture to that of early LIHC, but the number of DEGs was much 

higher and their LFC was larger, as would be expected from more advanced tumors.  

 

 

Figure 3.13 GO Term Enrichment for Genes Up- and Downregulated in Advanced 

LIHC. 

The numbers at the bottom of each graph show the number of genes for each GO Term. 

 

While the upregulation of genes involved in cell cycle, DNA replication, RNA 

metabolism and chromosomal maintenance in tumor was not a surprise, the 

downregulation of many genes involved in metabolism is important because of the 

normal functions of liver as an organ. Liver is the heart of metabolism and based on 
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the available nutrients in the blood, it manages their distribution as needed. Liver is 

known to use carbohydrates only when they are available in high very amounts in 

the blood by regulating their entry both into hepatocytes and entry into glycolysis by 

hexokinase IV which is known for its low affinity. The data from our pan-cancer 

study showed that this condition was reversed in LIHC. In addition, the liver 

preferentially oxidizes fats for both its own energy and for converting their end 

products into ketone bodies, which are released into the blood to be metabolized by 

other tissues (144). The liver also is the main organ where amino acids are converted 

into glucose by a process that operates in opposite direction of glycolysis called 

gluconeogenesis to maintain optimal sugar levels in the blood. The gluconeogenic 

enzymes were found to be downregulated in LIHC. Therefore, based on the results 

we obtained from exploratory analysis in this dataset as well as others, we decided 

to evaluate the expression of a comprehensive number of metabolic enzymes across 

all stages in this dataset and identify enzymes that were consistently up- and/or 

downregulated throughout the whole evolutionary stages of LIHC. 

3.2.3 Metabolic Gene Expression Among LIHC Stages 

Since the primary aim of this study is to evaluate the changes in metabolism-related 

genes of LIHC, the next step was to evaluate the expression of metabolic enzymes 

across all different pathological conditions found in the GSE6764 dataset. Using the 

approach described in detail in section 2.10, 2427 unique enzymes were obtained. 

The microarray probes were converted into ensemble IDs by using Affymetrix 

annotation package hgu133plus2.db and the probes pertaining to the enzymes 

filtered out. Eventually, 5220 probes representing 2271 unique enzymes were 

obtained. 

To reduce the noise introduced by multiple probes representing a single gene, the 

variance of each probe was calculated across all samples. For each enzyme, the probe 

with the highest variance was retained since larger variance carries more relevant 

information about a gene, while taking probe average would introduce a lot of noise 
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into the data. This approach may introduce some bias when thousands of genes are 

considered, but our main purpose at this stage was to visualize and cluster the 

samples as best as we could. Finally, the expression values of each gene were scaled 

and used to generate a heatmap whose distance and linkage were calculated by 

various methods. However, Euclidean distance and Ward’s linkage yielded the best 

separation shown by the heatmap (Figure 3.14). 

 

 

Figure 3.14 Enzyme Expression Heatmap for GSE6764. 

The heatmap shows the expression of 2271 enzymes. Cluster 1 and 2 which constitute the 

most distinct groups in tumor and other groups are marked by yellow and green color boxes. 

 

We observed that no matter what the tumor’s pathological stage was, metabolic 

enzymes could be used to separate them from normal, cirrhotic or dysplastic samples, 

but the same genes did not contribute towards the separation of cirrhosis and 

dysplasia from normal healthy samples. This is in agreement with GO term 

enrichments shown in Figures 3.10-3.13. In the heatmap we can see two well-

separated clusters for tumor samples and the rest. The constituent genes were 

retrieved and used for GO term enrichment (Figure 3.15). 
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Figure 3.15 GO Term Enrichment for Cluster 1 and Cluster 2 from Heatmap. 

The most representative GO terms were filtered out of hundreds of GO terms as it is 

explained in detail in chapter 2 and above. 

 

In full agreement with previous analyses, the first cluster which represents genes 

upregulated in tumors with respect to normal, cirrhosis and dysplasia shows GO 

terms involved in cancer proliferation such as tRNA loading, nucleotide 

biosynthesis, cellular glycosylation, oxidative stress, NADPH biosynthesis, lipid 

biosynthesis and modification etc. The AKR family of enzymes AKR1B10 and 

AKR1C1/2/3 were also present in this cluster together with PPP genes as well as 

other oxidative-stress related enzymes such as GPXs and TXNDs. In contrast, the 

second cluster is made of genes involved in lipid and ketone body oxidation, amino 

acid metabolism, alcohol, vitamin and retinol metabolism among others. The 

expression of all these genes is decreased in LIHC, more so in advanced stages 

(Figure 3.14). These results are also in full agreement with our RNA-Seq analysis, 

showing that liver has major rewiring of its metabolism to maximize growth and 
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proliferation. Overexpression of many drug-metabolizing enzymes as well as PPP 

which is a major contributor of NADPH in the cell could be very important factors 

in making chemotherapeutic drugs ineffective, thus these pathways require more 

attention in future research. 

3.2.4 Expression of AKR1B10 and genes of PPP 

Since AKR1B10 and enzymes of the PPP were found to be clustered in the highly 

differentially expressed subset of genes and significant enrichment of the GO term 

“NAPDH regeneration” was observed from the list of metabolically important 

enzymes, we evaluated these two pathways further. The expression of AKR1B10 is 

already known to have a high potential for a biomarker for the early detection of liver 

cancer. We therefore used data from GSE6764 to evaluate the expression of 

AKR1B10 and PPP genes in the normal tissue and follow their evolution through 

various pathological stages leading to advanced LIHC (Figure 3.16). 

 

As shown in Figure 3.16, the expression of AKR1B10 increased in a stage-wise 

manner leading to LIHC. However, in agreement with the available literature, not all 

tumors show consistent elevation in AKR1B10 expression as compared to normal, 

as reflected in the large variation observed in the different stages of the disease. The 

increase in the expression of the PPP genes was more uniform in tumor samples, 

especially G6PD and TKT which started to increase in expression uniformly from 

very early stage, while no change between normal and cirrhotic/dysplastic samples 

was observed. On the other hand, PGD and TALDO1 showed moderate increase in 

tumors but expression values were very noisy with high variation within the groups. 

 

When the aggregated samples were evaluated, the expression of AKR1B10 was seen 

to increase as the pathological grade of samples advanced from normal to LIHC 

(Figure 3.17). The expression of the PPP enzymes G6PD and TKT increased only in 

tumor, especially the advanced stages. 
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Figure 3.16 AKR1B10 and PPP Gene Expression Across Multiple LIHC Stages. 

Gene expression is shown for every stage starting from normal, viral cirrhosis (Viral_Cir), 

cirrhosis, low-grade dysplasia (Low_Dys), high-grade dysplasia (High_Dys), very-early 

(VE_LIHC), early (Ear_LIHC), advanced (Adv_LIHC) and very advanced (Vadv_LIHC) 

liver tumor. Note that y-axis is not to scale for the purpose of clarity. Except PGD, all had 

statistical significance which is not shown for clarity purposes (One-Way Anova, p < 0.05). 

 

 

Figure 3.17 Expression of AKR1B10 and PPP in Aggregated Pathological Stages. 

All except PGD showed statistical significance (One-Way Anova, p < 0.05). 
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Using the GSE6764 microarray dataset we established that the expression of 

AKR1B10 was upregulated at the very early stages of cirrhosis and dysplasia, 

followed by another increase in expression in LIHC from a very early stage. 

However, as has been shown in the literature, overexpression does not occur in all 

patients. 

 

In addition, we also showed that the enzymes of the PPP were also upregulated in a 

stage-wise manner in LIHC but not in cirrhosis or dysplasia. Together with this 

pathway, a number of enzymes whose activity depends on NADPH such as those 

involved in oxidative stress, xenobiotic detoxification (AKR1C), lipid, cholesterol 

and nucleotide biosynthesis were all upregulated. On the other hand, with this dataset 

we reconfirmed results obtained by RNA sequencing in our pan-cancer study. Our 

data suggest that LIHC is characterized by decreased lipid and amino acid 

catabolism, decreased alcohol/aldehyde pathways, as well as dysregulations in bile 

acid pathway, all of them essential processes for a healthy liver (145). 

3.3 TCGA RNA-sequencing of LIHC Normal and Matched Tumor 

Samples 

To further support the data on the expression of AKR1B10 and PPP genes from 

GSE6764 dataset, we evaluated their expression in the TCGA-LIHC dataset which 

is based on RNA Sequencing, thus providing absolute expression values for any gene 

of interest. In addition, having normal matched samples to compare with the cancers 

is important to understand the real changes happening in tumors because multiple 

factors such as genetic make-up, lifestyle, race, sex and scores of other known and 

unknown variables potentially affecting the results drastically (146). This dataset 

makes it possible to remove all these variables which may have introduced a lot of 

noise in GSE6764 dataset. The LIHC dataset in TCGA is also more comprehensive 

since it contains data on patient survival, their whole genome sequence as well as 
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whole methylome. All these pieces of information will be integrated in order to get 

a clearer picture about the role and state of AKR1B10 and PPP genes in LIHC. 

3.3.1 Differential Gene Expression of Normal and Matched Tumors 

Raw read counts for tumor and their adjacent normal tissues for 50 LIHC pateints 

were downloaded from TCGA server using TCGABiolink (109) package as 

explained in chapter 2. Afterwards, matched samples were normalized and DGE 

analysis was carried out by DESeq2 (111) using a general linear model (GLM) with 

single variable about samples’ status (normal and tumor). First, simple exploratory 

analysis showed good separation of samples at the level of whole transcriptome with 

the exception of two tumor samples that were clustered with normals (Figure 3.18). 

 

 

Figure 3.18 PCA Plot of Tumor and Matched Normal Samples. 

The plot represents the whole transcriptome. Blue dots show tumor and red dots normal 

samples. 

 

Figure 3.18 also confirms the well-known heterogeneity of LIHC. DGE analysis 

showed over 2000 and 5000 transcripts with significant differential expression 
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between normal and tumor samples (FDR < 0.05, 1LFC), respectively, the majority 

of them protein-coding genes but with a significant fraction of other genetic elements 

such miRNA, lincRNA and pseudogenes. A summary of the nature of those 

transcripts is shown in Figure 3.19. 

 

 

Figure 3.19 Summary of Significantly Differentially Expressed Transcripts Between 

Normal and Tumor Samples. 

 

Next, we evaluated the expression of AKR1B10 and PPP genes. With the exception 

of PGD, all of the genes were significantly upregulated in tumors as compared to 

normals. Figure 3.20 also shows that the variance in the expression of AKR1B10 

was very high in both normal and tumor, and the gene was upregulated in 80% of 

tumor samples as compared to normal and downregulated in 20% others. On the 

other hand, G6PD, TKT and TALDO1 had lower variation in expression. In addition, 

G6PD was upregulated in 85% of samples, while TKT and TALDO1 only in about 

50%. 
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Figure 3.20 AKR1B10 and PPP Gene Expression in Tumor and Normal Samples. 

The horizontal lines connect each tumor sample to its matched normal. All except PGD show 

highly significant change (Wald’s test, p < 0.001). 

 

These data confirmed the results obtained from the microarray dataset GSE6764, and 

also showed the change of these particular genes within patients. A representative 

sample of 50 patients has enough power to generalize these results over the 

population albeit with caution. We next evaluated the dependence of the expression 

of these genes for different grades (Grade and TNM), Neoplasm histologic state (G-

Stage) and patient sex (Figure 3.21) as well as their correlation with Buffa (147), 

Ragnum (148) and Winter (149) hypoxia scores (Figure 3.22). The results in Figure 

3.21 show a tendency of the expression of AKR1B10 to increase with increasing G-

Stage and there was a significant change in expression between G1 and G3. On the 

other hand, G6PD showed a stage-wise increase in expression, a pattern observed in 

TKT, albeit not as consistent. The other two enzymes showed no significant change 

in expression. For tumor grade (I-IV), only G6PD showed an increase in expression 

as the tumor advanced, a pattern seen in the GSE6764 dataset while the other 

enzymes had no significant change. The expression of none of the enzymes across 

T-stage reached statistical significance except G6PD. Finally, all the enzymes had 

significantly increased expression in males compared to females. 
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Figure 3.21 AKR1B10 and PPP Enzyme Expression Dependency. 

Expression differences of the enzymes were checked with respect to Neoplasm histologic 

state (G-Stage), tumor stage (I-IV), T-stage (T1-T4) and gender (female versus male). 

Statistical significance was calculated by One-Way Anova with Tukey’s post-hoc. Only bars 

of significant changes are shown for clarity. (*: p < 0.05, **: p < 0.01, ***: p<0.001). 

 

 

Figure 3.22 Correlations of Gene Expression with Buffa Hypoxia Score. 

Pearson coefficients (r) and their significance are shown on top of scatterplots. 
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Correlation analysis of expression of our genes of interest with the 3 available 

hypoxia scores showed no correlation between AKR1B10 and any of the scores. 

G6PD on the other hand was strongly positively correlated with all the scores 

(Pearson r = 0.58-0.61, p < 0.001). PGD and TKT were also correlated with all scores 

albeit weakly, while TALDO1 showed no correlation with Ragnum Score (r = -0.02, 

p=0.7). Scatter plots showing the correlation of each of these genes with Buffa score 

are shown in Figure 3.22 while the plots of two other scores are omitted. These 

results indicate that PPP, especially its rate-limiting enzyme G6PD is highly 

expressed as tumors become more hypoxic, an event that would be expected as 

hypoxia is associated with oxidative stress and the NADPH synthesized by the 

oxidative arm of PPP is upregulated to rescue tumors from death (95). 

3.3.2 Overall Differential Gene Expression and GO Term Enrichment 

We carried out GO term enrichment analysis for the genes that are differentially 

expressed between normal and tumor in the TCGA-LIHC dataset. As hundreds of 

GO terms were enriched especially for biological processes, many genes were found 

in more than one GO term, thus further filtering was done to remove redundant GO 

terms as explained before. Figure 3.23 shows the main GO terms enriched in tumor 

and normal tissues. In almost complete agreement with microarray data, we observed 

that tumors were mostly enriched in genes involved in DNA replication processes, 

nuclear morphology and amino acid transport. On the other hand, genes 

downregulated are involved in essential liver functions such as lipid catabolism, 

gluconeogenesis and its regulation, and bile acid metabolism. In addition, the retinol 

pathway is well-known to be downregulated in many tumors. Surprisingly, some of 

the most enriched terms were related to immune response, and these data are in good 

agreement with data reported on the suppression of immunity in liver tumors (150). 

This is an interesting area especially after the promising success of 

immunotherapeutic approaches in many tumors, including liver (56).  
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Figure 3.23 BP GO Terms Enriched for Genes Significantly Upregulated and 

Downregulated in LIHC. 

The numbers at the bottom of each graph show the number of genes for each GO Term. 

 

Since many of the enriched processes were enzymatic, the GO term enrichment for 

molecular functions (MF) was carried out. This is a separate category that classifies 

genes according to their molecular functions in the cell such as binding certain 

molecules, transportation, detoxification etc. The results of this analysis is shown in 

Figure 3.24. 

 

MF GO terms enrichment shows that besides the conventional extracellular matrix 

and DNA replication-related processes, a significant number of genes upregulated in 

tumors were members of ion channel family, an important group of gated channels 

whose function depends on mechanical, chemical and electrical stimuli. These 

channels are essential for normal cellular physiology and they have been found to 

regulate cellular apoptosis, migration and proliferation, all of them important 

hallmarks of cancer (151). MF GO terms enriched in normal tissue on the other hand 
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were related to immunity, lipid catabolism, bile acid metabolism (tetrapyrrole), 

monooxygenase enzyme family and amino acid catabolism, especially urea cycle 

which is one of the vital liver functions. 

 

 

Figure 3.24 MF GO Terms Enriched for Genes Significantly Upregulated and 

Downregulated in LIHC. 

The numbers at the bottom of each graph show the number of genes for each GO Term. 

3.3.3 Metabolic Genes Differential Expression 

When GO terms output was analyzed more carefully, we observed the enrichment of 

several metabolic processes. However, most of the pathways tend to lose statistical 

power because of the large number of genes selected for enrichment, majority of 

them related to GO terms with hundreds of genes such as cell division, DNA 

replication etcetera, thus metabolic pathways with few genes did not get enriched. 

Since the main focus of this study is metabolism in tumor, besides overall DGE, we 
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evaluated in more detail the expression of the enzymes identified in section 2.10. 

Following a similar approach, 2424 enzymes were identified in TCGA-LIHC dataset 

and their expression in tumor versus normal was analyzed. In total, 1497 enzymes 

(~60% of all) showed significant differential expression between tumor and the 

adjacent normal tissues (FDR < 0.05), 513 of which were chosen for the more 

stringent criterion of more than 1LFC. Among them, 264 were upregulated and 249 

were downregulated in tumors, a surprisingly balanced distribution. The expression 

of these enzymes is shown as a heatmap in Figure 3.25. 

 

 

Figure 3.25 Significantly Differentially Expressed Enzymes between Tumor and 

Normal LIHC Samples. 

The cluster on the right shows tumor samples, and the cluster on the left normals. The yellow 

box in the tumor cluster shows one of the two main subclusters which were further analyzed. 

Heatmap was constructed with Euclidean distance and Ward.D2 linkage. Color bar at the 

top shows expression changes in LFC. 

 

Both tumors and normal samples were almost completely separated into two major 

clusters. In addition, while the expression of genes is almost uniform in normal 
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samples except a small outgroup, they form two separate subclusters in tumors 

(highlighted in yellow on the heatmap) which are quite different from each other. 

This shows that tumor samples have a lot of heterogeneity, not an unexpected feature 

especially for liver cancer, and that they may have profound transcriptional and 

mutational differences that may lead to different clinical outcomes. 

 

In the first subcluster, the expression of enzymes is stronger and more uniform, 

irrespective of whether they are down- or upregulated as compared with the samples 

highlighted by the yellow box. Of note, AKR1B10 clustered with TKT, G6PD, ME1, 

TXNRD and UGT enzymes in the first subcluster, and their expression is higher in 

tumors. When individual genes constituting the GO terms enriched in normal 

samples were checked individually, we observed that they are involved in many 

normal physiological liver functions, including fatty acid oxidation in both 

mitochondria and peroxisomes. We next examined the expression of Cytochrome 

P450s (CYPs). Out of 28 CYPs that showed significant DGE between normal and 

tumors, 22 were downregulated and 6 were upregulated in tumors. The 6 upregulated 

CYPs included CYP7A1, CYP17A1, CYP19A1 (sterol metabolism), CYP27B1, 

CYP2R1 (vitamins) and CYP2F1 (xenobiotics).  

 

The downregulated CYPs are mostly involved in the metabolism of eicosanoids, 

fatty acids and vitamins (152). CYP540s are important enzymes involved in drug 

metabolism, especially xenobiotic detoxification, cholesterol and bile acid 

metabolism, as well as lipid modifications, changing many signaling pathways or 

even the lipidome composition of tumors where they are suppressed, overexpressed 

or mutated (152). They harvest the reducing electrons from NADPH and transfer 

them to their substrates which get reduced generally to less toxic forms. However, 

there are also many other cases when CYP450s act as activators of carcinogens, 

especially certain CYP450 genetic variants (153). The suppression of nearly 50% of 

all known CYP450s in liver tumor, majority of them involved in lipid metabolism 

could be important and deserves more attention. Lipids are important components of 
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plasma and other organelle membrane makeup, and as a result may have huge 

implications on cellular physiology such as membrane potential which can 

drastically affect cellular bioenergetics, survival and function, cell motility and 

apoptosis. 

 

We also observed that the expression of aldehyde/alcohol dehydrogenases 

(ADH/ALDH), which reduce NAD+ during their enzymatic reactions to produce 

NADH were downregulated. The only exception was ALDH3A1 which uses NADP+ 

as co-factor instead of NAD+ (154). NAD-reducing retinol dehydrogenase 16 (all-

trans) (RDH16) and xanthine dehydrogenase (XDH) had the same fate as well. 

Another class of enzymes significantly downregulated in tumor samples were 

flavoproteins, or those using flavin adenine dinucleotide (FAD) as a cofactor for 

oxidizing their substrates and generate its reduced form (FADH). These enzymes 

include dimethylglycine dehydrogenase (DMGDH), glutaryl-CoA dehydrogenase 

(GCDH), isovaleryl-CoA dehydrogenase (IVD), and phosphoglycerate 

dehydrogenase (PHGDH), in addition to Acyl-CoA dehydrogenase (ACADs). This 

phenomenon can be speculated to be either due to hypoxia and the inability of cells 

to be supplied with enough oxygen, therefore inhibiting their ability to metabolize 

fatty acids. Another reason could be the decreased levels of Succinate 

Dehydrogenase (Complex II, shown in pan-cancer metabolism section) in 

mitochondria which oxidizes FADH to FAD via ACAD in the first step of beta 

oxidation, making it unavailable for another reaction cycle. 

 

Besides the classical kinases involved in cell cycle and DNA replication, enzymes 

involved in lipid biosynthesis were significantly upregulated in tumors as shown in 

section 1 of this chapter (Figure 3.2). Additionally, members of AKR family 

(AKR1B10, AKR1C3) and PPP (G6PD, TKT and TALDO1 (below 1 LFC)) were 

upregulated. The enzymes involved in glycolysis were also drastically upregulated 

while the expression of those involved in gluconeogenesis was suppressed (Figure 

3.1). This may explain the mechanism by which the expression of ADH/ALDHs was 
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decreased, while that of AKRs was increased. Since increased aerobic glycolysis 

(Warburg effect) increases the pool of NADH in the cytosol, it can lead to 

suppression of reactions carried out by NAD-reducing ADH/ALDH enzymes by 

mass-action, while enhanced PPP, which reduces NADP+ into NADPH can lead to 

increased expression of NADPH-oxidizing AKR family members as well as 

ALDH3A1. The mechanism is shown graphically in Figure 3.26. 

 

 

Figure 3.26 Proposed Mechanism for Suppressing ADH/ALDH and Enhancing 

AKR Expression in LIHC. 

Arrows show the direction of reactions while blunt arrows show inhibition. Dashed lines 

show our proposed interaction between AKRs and PPP. 

3.3.4 Differential Gene Expression Analysis of Tumor Subclusters 

As shown in the heatmap in Figure 3.25, we obtained two major subclusters in tumor 

samples and more importantly, the expression of AKR1B10 as well as other PPP 

genes was higher in the first subcluster. Given that LIHC is well-known to be highly 

heterogeneous, deeper analysis of such clusters can provide a better picture from 

both a metabolic and possibly clinical perspective. Therefore, tumor samples from 

each cluster were retrieved and analyzed separately with their matched normals and 

evaluated for DGE. As expected, the expression of AKR1B10 as well as many other 

genes involved in biosynthetic and detoxification reactions were drastically different 
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between tumor and normal samples.  Figure 3.27 shows a summarized picture of the 

enzymes showing significant differential expression (FDR < 0.05, 1LFC) for both 

between cluster 1 and 2 (highlighted in yellow in Figure 3.25) with their respective 

normal tissues, as well as between the clusters themselves. 

 

 

Figure 3.27 Venn Diagrams Summarizing DGE Between Tumor Clusters and 

Matched Normals. 

(A) Genes downregulated in tumor (upregulated in normal). (B) Genes upregulated in tumor. 

Normal_All and Tumor_All stands for 50 samples, while Cluster_1 and Cluster_2 were 

defined above. Venn diagram was generated in Bioinformatics & Evolutionary Genomics 

Server (http://bioinformatics.psb.ugent.be/webtools/Venn/). 

 

As was expected from the heatmap, cluster 1 had more uniform gene expression, 

thus there were more than double up-and downregulated genes with respect to their 

matched normal tissues as compared to cluster 2. In cluster 1, the profile of up- and 

downregulated enzymes was similar to that of entire set of 50 samples, however the

scale of change (in LFC) was more dramatic, as was expected from the sharp 

boundaries on the heatmap in Figure 3.25. For example, DGE of AKR1B10 changed 

from 3.8 to 4 LFC and that of G6PD was even more dramatic from 2.29 to 2.83 LFC 

(Figure 3.28). Additionally, more AKR family members such as AKR1B1 and 

AKR1C2-3 showed more than 1 LFC in this cluster. On the other hand, enzymes 
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involved in betta oxidation, ADH/ALDHs and CYPs showed a more dramatic 

decrease in cluster 1 when compared to all 50 tumors taken together. 

 

 

Figure 3.28 AKR1B10 and PPP gene Expression by Clusters. 

Normal_50 and Tumor_50 show the expression of the genes for all 50 samples of tumor and 

normal tissues. Normal_CL1 and Tumor_CL1 show expression of genes in cluster 1 tumor 

and matched normals, and Normal_CL2 and Tumor_CL2 show the expression of genes in 

cluster 2 tumor and matched normals. Significance bars are not shown for clarity, however 

none of the genes showed significant change between cluster 2 tumors and their matched 

normals. In addition, PGD had no significant change between normal and tumor for all 

samples, but it showed significant change between Tumor_CL1 and Tumor_CL2. 

 

When DGE between cluster 2 and its normal sample was compared, none of AKR 

family members (except AKR1C3) or PPP genes were significantly upregulated. In 

addition, some of the enzymes involved in fatty acid oxidation did not show any 

significance, and for those that did, all had lower LFC values as compared to cluster 

1 tumors matched to their normal samples. Cluster 1 also had stronger glycolysis as 

shown by the expression of some glycolytic enzymes such as Hexokinases (HK1/2), 

Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH), Enolase (ENO2) and 

Pyruvate Kinase (PKM/P). On the other hand, some CYP450s and enzymes involved 
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in beta oxidation were significantly higher in cluster 2 as compared to 1. We can 

therefore conclude that cluster 1 with higher PPP and more glycolysis has larger 

pools of NADH and NADPH, and therefore less expression of NAD+ reducing 

(ADH/ALDH) and more expression of NADPH-oxidizing (AKR) enzymes, further 

supporting the model proposed in Figure 3.25. 

 

Figure 3.27A shows that 109 enzymes were downregulated in all three classes of 

normal samples (Normal, Cluster 1 and Cluster 2). These genes mostly act as 

oxidoreductases, such as aldehyde/alcohol dehydrogenases, CYP450s (Class 1-4), 

Acyl-CoA and Retinol Dehydrogenases among others, fatty acid metabolism such as 

enzymes of beta oxidation and ketone body synthesis. Additionally, genes for amino 

acid metabolism, especially enzymes that catalyze the breakdown of branched-chain 

amino acids were also seen in this list. The second Venn diagram (Figure 3.27B) 

shows 97 common enzymes upregulated in all tumor groups. These genes are mostly 

involved in DNA replication and repair, cell cycle checkpoint control and 

glycosylation. As in Figure 3.27A, cluster 1 showed more commonalities with all 50 

samples and less with cluster 2. Of note, most of the AKR family enzymes together 

with PPP enzymes were found in cluster 1. 

 

To conclude, DGE analysis showed that the expression of genes in liver tumors and 

matched normal adjacent samples could be separated into two clusters which have

commonalities and differences with each other. The genes of interest encoding 

AKR1B10 and PPP enzymes were expressed at significantly higher levels in cluster 

1 as compared to the overall tumor-normal and cluster 2-normal cases (Figure 3.28). 

A link between AKR1B10 and PPP has not been reported in the literature yet; 

however, it in light of the results above as well as the biochemistry of AKR1B10 

which requires reducing electrons from NADPH for its enzymatic functions, and 

PPP which generates NADPH, the idea that they cross-talk is quite plausible and it 

is highly likely that a major branch of glycolysis such as PPP drives the expression 

of AKR1B10 and/or other AKR family enzymes in LIHC. 
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3.3.5 Genomic Analysis for 50 Samples 

Since mutations and genomic instability are one of the hallmarks of cancer (7), tumor 

samples were also evaluated for single nucleotide changes, insertion/deletion (indel) 

mutations, as well as major genomic rearrangements, also called copy number 

variations (CNV) such as amplifications and deletions. The analysis for this section 

were carried out on the cBioportal webserver through a number of steps (155,156). 

Patient IDs representing the tumors matched to normal samples were uploaded on 

the server, analyzed for mutation enrichment, the results were downloaded and the 

most frequently mutated genes were selected by mutation frequency and re-uploaded 

to the webserver to create oncoprints which show mutation type and distribution 

among samples. The oncoprint in Figure 3.29 shows the top 15 genes that had 

mutation frequency above 10% among the 50 tumor samples. 

 

 

Figure 3.29 Oncoprint of the Most Frequently Mutated Genes in 50 Tumor Samples. 

The figure shows various types of mutations, the most common being single nucleotide 

changes missense mutations (dark and light green), gene amplification (red) and truncating 

mutations (black). 
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Mutation analysis show that Titin (TTN), mainly a muscle protein which has recently 

been found to be involved in chromosomal structure (157), TP53, one of the most 

frequently mutated genes across all tumors (158), and Beta Catenin (CTNNB1), an 

important co-activator downstream of the oncogenic wingless signaling pathway 

(159) were the most frequently mutated genes. The high number of mutations in TTN 

may be completely due to chance since the protein is composed of over 30000 amino 

acids, increasing its chance of mutations substantially (157).  Most of the mutations 

are of single nucleotide missense type, but no significant changes in survival or gene 

expression was observed when samples were compared based on mutations of these 

genes except for higher mutation burden on samples with mutated TP53 (n = 17) 

compared to the wild-type (n = 33) (Kruskal-Wallis, p = 0.016). This is expected as 

the p53 protein functions as a tumor suppressor. 

Another important set of genes whose mutation profiles were specifically evaluated 

included the CYP450s, ADHs, ALDHs, AKRs and PPP enzymes because we 

observed that their expression was significantly changed between normal and tumor 

samples. It is well-known that such enzymes, especially CYP450s (160) and 

ADH/ALDHs (161) are prone to mutations, especially SNPs which drastically 

change their enzymatic rates and alter their substrate specificity. These changes have 

also been associated with various diseases such as cancer. We examined these genes 

for mutations in cBioportal by uploading the enzymes on the server, but no mutation 

of any nature above 4% (2 samples) frequency was detected (data not shown). We 

have therefore discarded the mutation factor from our analysis. 

We next evaluated the enrichment of CNVs in the 50 tumor samples. Following the 

same procedure as above, tumor samples were screened for genomic alterations in 

cBioportal server, and the most frequently altered genes were re-uploaded in the 

server to create oncoprints. The data show that amplification was the most common 

form of genomic alteration (Figure 3.30). 
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Figure 3.30 Genomic Alterations Oncoprint. 

The top 24 genes showing more than 15% genomic alterations are shown. Red boxes 

represent amplifications, blue deletions, and grey no alteration. 

 

Most of the genes shown in Figure 3.30 were amplified and very few of them had 

deletions. In addition, the majority of these genes are involved in DNA replication 

and repair. There was no significant upregulation of these genes between CNV 

positive and negative samples except RAD21 (FDR < 0.05, LFC < 1) which is a 

well-known DNA repair enzyme and it is associated with earlier tumor recurrence in 

breast cancer. Therefore, amplification of this gene makes it an obvious candidate in 

tumorigenesis (162). On the other hand, EXT1 is a glycosyl transferase enzyme 

involved in heparan sulfate biosynthesis, however studies have shown that the 

protein can act as a tumor suppressor in leukaemia (163). EIF3E is a well-known 

translation initiation factor and studies have associated it with poor prognosis in 

some tumors, particularly esophageal squamous cell carcinoma (164). The 

expression of the amplified genes in CNV positive patients was also compared to 

their matched normal counterparts, and surprisingly some of them had significantly 
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lower expression in tumor (FCGR2B, IL10, PBX1, PTPRC, MYC and NTRK1), 

while majority showed no significant difference at all. 

 

Next, the expression of AKR1B10 and PPP genes in the cluster of 20 patients 

showing enrichment of multiple gene amplifications (CNV positive) was compared 

to other 30 tumor samples with no or very sporadic amplifications (CNV negative). 

All of the genes evaluated, except AKR1B10, had significantly higher expression in 

the CNV positive samples (Figure 3.31). 

 

 

Figure 3.31 AKR1B10 and PPP Gene Expression in Samples with Amplification or 

No Genomic Changes. 

All the genes except AKR1B10 showed significant differences between the two conditions 

(Wald’s Test, p < 0.05). Amp represents CNV positive and WT represents CNV negative 

samples. 

 

Given the function of PPP as a source of nucleotides as well as NADPH and the fact 

that more cell replication leads to further genome instability in tumors, the idea of 

an association between PPP and genome instability is very plausible. However, this

needs to be verified in controlled settings or large genomic studies which are beyond 
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the scope of this thesis. Interestingly, when overall survival differences between 

CNV positive and CNV negative patients was compared, we saw a significant 

difference of 30 months (median survival 21 and 51 months, respectively) with 

longer survival in CNV negative patients as shown by the Kaplan-Meier (KM) plot 

(Figure 3.32). 

 

 

Figure 3.32 Kaplan-Meier Plot of CNV Positive and CNV Negative Patients. 

The blue line shows CNV negative and red line CNV positive patients. Y-axis shows the 

percentage of patients’ survival over time and x-axis overall survival in months (Log-rank 

p-value < 0.01). The plot was generated on cBioportal server (155,156). 

 

A median survival difference of 30 months is highly significant for LIHC because 

most of the current therapies do not extend patient OS by more than a year (Section 

1.5.3). In order to better understand the general molecular mechanisms, DGE 

between CNV positive and negative samples was carried out. Overall, there were 

around 500 genes showing significant change (FDR < 0.05, LFC > 1), 173 

upregulated in CNV positive and 337 in CNV negative (Figure 3.33). 
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Figure 3.33 Heatmap of Significantly Differentially Expressed Genes Between CNV 

Positive and Negative. 

Only genes with 1LFC and FDR < 0.05 were selected. Heatmap constructed with Euclidean 

Distance and Ward.D2 linkage. Red columns represent CNV negative and blue cluster CNV 

positive samples. 

 

We next classified the genes according to biological pathways or GO terms to 

understand any specific process that could be attributed to such a remarkable 

difference in patient survival. However, the CNV positive genes did not form any 

specific cluster. On the other hand, genes upregulated in CNV negative were mostly 

involved in immunological response (Figure 3.34). Based on this information, it can 

be hypothesized that CNV positive patients may have shorter survival because they 

have higher glycolysis and PPP, suggesting more biosynthesis, more cellular 

replication and thereby genomic instability. Additionally, we can also speculate that 

CNV negative patients have stronger immunological response against the tumor, 

thus extending patient survival.  
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Figure 3.34 GO Term Enrichment of Genes Upregulated in CNV Negative Patients. 

The GO terms were selected to remove the redundant ones as mentioned previously. 

3.3.6 Differential Methylation Analysis 

It is now a well-established fact that methylation is one of the most important 

mechanisms for regulating gene expression, and it is quite widespread in cancers 

(165). Traditionally, from the perspective of oncology research, hypermethylation 

leads to downregulation of tumor suppressor genes, and hypomethylation leads to 

overexpression of oncogenes, thus helping or causing tumorigenicity. In addition, 

hypomethylation on a global scale leads to genetic instability, which is one of the 

hallmarks of cancer (6,7). We therefore examined the methylation status of 

AKR1B10 and PPP genes. For that purpose, we carried out differential methylation 

expression analysis (DMA) between tumor and their matched normal samples using 

the data available in the TCGA repository. DMA showed remarkable alterations in 

global methylation between tumor and normal samples with more than 50% of the 

probes having significant changes (FDR < 0.05). These changes were identified in 

both coding and non-coding regions, such as 5’- and 3’-untranslated sites (UTRs), 

gene body, exons and transcription start sites (TSSs), some with significant changes. 
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However, since the real function and impact of each of these sites on gene expression 

is not well-established and subject to debate (166), we concentrated only on the 

TSS1500. The expression of beta values for AKR1B10 and PPP genes is shown 

graphically in Figure 3.35. 

 

 

Figure 3.35 Methylation of AKR1B10 and PPP Genes in Normal and Tumor Tissues. 

(A) Pearson correlation of AKR1B10 expression and beta-values for the chosen probes 

tumor samples. Correlation coefficient is shown inside the plot. (B) Probes used in this graph 

are: AKR1B10: cg11693019; G6PD:  cg26799772; PGD:  cg12796186; TKT:  cg00223877 

and TALDO1 cg08037817. Significance levels:* p< 0.05, ** p< 0.01, *** p< 0.001, ns not 

significant by t-test. 

 

The figure shows a highly significant hypomethylation of AKR1B10 on TSS1500 

site in tumors, a state that is negatively correlated with the gene expression. On the 

other hand, the expression of AKR1B10 had no correlation with methylation in 

normal tissue. G6PD, PGD and TALDO1 showed no change in methylation status 

while TKT was hypomethylated in tumor. In addition, there was no correlation 

between the expression of any of the PPP genes with methylation of TSS1500 site 

both in normal and tumor samples (data not shown). 
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To summarize, using tumor and normal matched samples from TCGA-LIHC dataset, 

we have conformed and refined the results obtained from GSE6764 microarray. We 

have shown that AKR1B10 and PPP, especially the rate-limiting enzyme G6PD were 

generally upregulated in LIHC. More particularly, AKR1B10 and G6PD were 

overexpressed in approximately 80% and 85% of tumors, respectively. We also 

showed that the expression of these genes was not dependent on tumor grade (except 

G6PD in stage III). 

 

Overall, if the data from pan-cancer and LIHC are combined, we observed that liver 

tumors have elevated levels of glycolysis and PPP, which can fuel biosynthetic 

reactions such as nucleotide and fatty acid biosynthesis, as well as coping with 

oxidative stress and most likely drug detoxification. On the other hand, there was an 

overall decrease in catabolism such as decreased fatty acid (beta oxidation) and 

amino acid oxidation, in particular one of the most essential functions of liver, the 

urea cycle. Tumor samples were transcriptionally separated in two clusters, the first 

one showing more drastic changes in the above-mentioned processes than the 

second. 

 

Single nucleotide mutation analysis showed the enrichment of a number of critical 

genes being mutated in approximately 30% of the samples. A similar pattern was 

observed in genomic rearrangements, and we showed that the expression of PPP but 

not AKR1B10 was increased in the samples with more genomic instability, a state 

associated with significantly poor overall survival in patients. 

 

Finally, methylation analysis showed dramatic changes in the overall methylome of 

LIHC compared to normal. We also showed that the expression of AKR1B10 is 

highly likely to be regulated by methylation, while that of PPP genes was less likely 

based on methylation status of TSS1500 site. 
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3.4 AKRB10 High and Low-Expressing LIHC 

The status of AKR1B10 as a bona fide liver tumor biomarker has been under dispute 

for various reasons which were summarized in section 1.6. In this section, we have 

examined the association of AKR1B10 expression with LIHC and aimed to unravel 

the underlying molecular mechanisms. For this purpose, 364 patients with overall 

survival data were chosen from the TCGA-LIHC cohort. Their general 

characteristics are shown in Table 3.3. 

Clinical characteristics of age, gender, grade, TNM stage, Neoplastic Grade and 

patient overall survival were downloaded from TCGA, while mutation status for 26 

most frequently mutated genes were retrieved from published literature (39) and 

combined together. Afterwards, the association of each characteristic with patient 

survival was calculated using univariate cox-proportional hazard (log-rank p < 0.05). 

Only the statistics for the three most significantly mutated genes are shown in the 

table since there was no significance for the others. The presence or absence of HBV 

and HCV is not shown because their status in the clinical data was not clear despite 

efforts to use them as clinical variable in patient survival. 

3.4.1 Association of AKR1B10 with Patient Survival 

After normalization of the RNA-seq read count, LIHC patients with follow-up data 

were stratified according to AKR1B10 expression first into two groups according to 

median, and then into 4 groups from which the highest and lowest 25% (first and 

fourth quartile) were used for analysis. The Kaplan-Meier (KM) Plots for both 

stratifications are shown in Figure 3.36. 
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Table 3.3 TCGA-LIHC Patient Characteristics. 

No column represents the number of patients for each variable. HR represents hazard ratio 

with 1 being the reference. 0.25% and 97.5% represent the lower and upper confidence 

interval for HR. Significance threshold log-rank p-value < 0.05. 

 

Characteristic Variable No HR 0.25% CI 97.5% CI p-value 

Gender 
Male 237 1    

Female 113 0.82 0.57 1.17 0.3 

Age 
<= 60 167 1    

>60 183 0.80 0.56 1.15 0.2 

Stage 

I 166 1    

II 82 1.49 0.92 2.42 0.11 

III 77 2.55 1.65 3.93 <0.001 

IV 5 4.94 1.76 13.86 0.002 

Neoplasm Grade 

G1 50 1    

G2 168 1.26 0.72 2.19 0.417 

G3 115 1.28 0.72 2.29 0.402 

G4 12 1.75 0.64 4.79 0.279 

TNM Stage 

T1 175 1    

T2 86 1.49 0.94 2.36 0.09 

T3 40 2.30 1.41 3.76 <0.001 

T3A 26 2.78 1.38 5.57 0.004 

T4 12 5.34 2.67 10.69 <0.001 

TP53 
WT 236 1    

MUT 114 1.53 1.056 2.22 0.0246 

CTNNB1 
WT 253 1    

MUT 97 1.06 0.7084 1.59 0.776 

ALB 
WT 302 1    

MUT 48 1.27 0.458 1.35 0.386 
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Figure 3.36 KM Plots of Patient Survival According to Median and First and Fourth 

Quartile of AKR1B10 Expression. 

Patients’ groups are color-coded and the horizontal dashed line shows median survival. Both 

show significant survival differences (log-rank p = 0.015 and 0.018, respectively). 

 

Univariate Cox proportional hazard model showed that in both cases patients with 

higher expression of AKR1B10 (AKR1B10High) had significantly lower survival 

compared to patients with lower expression of AKR1B10 (AKR1B10Low). In the case 

where patients were stratified by the median expression of AKR1B10, hazard ratio 

(HR) for AKR1B10High was 1.55 (lower confidence interval (LCI) 1.1, upper 

confidence interval (UCI) 2.2, p-value 0.015). This can be interpreted as a patient 

with higher than median expression of AKR1B10 is approximately 1.55 times more 

likely to die than a patient with lower AKR1B10 expression. On the other hand, 

when the model was fit only on the first and fourth quartile, HR was 1.9 (LCI = 1.11, 

UCI = 3.18, p-value = 0.018). Thus, a patient whose expression of AKR1B10 is in 

the fourth quartile is almost twice as likely to die than a patient in the lowest quartile. 
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Median survival of patients for both models was also similar: in both cases, the 

median survival of AKR1B10Low patients was more than 2 years longer than 

AKR1B10High category. The idea for this entire study was conceived from the 

survival differences shown in this section. 

Next, we evaluated the independence of AKR1B10 expression from other clinical 

and mutation factors (Table 3.4). This time the expression of AKR1B10 was 

converted into a binary value and the dependence on each clinical factor was 

determined using Chi-Square test. As the table shows, with few exceptions the 

dependencies for median or quartile stratification were similar.  

After patient stratification according to AKR1B10 expression, exploratory data 

analysis indicated that using all 364 tumor patients and determining their gene 

expression differences was not very feasible since liver cancer is very heterogenic. 

For more relevant results and more transcriptionally homogenous sample grouping, 

we selected to further analyze the differences in gene expression and methylation 

between the first and fourth quartiles of AKR1B10 expression, and from now on, the 

terms AKR1B10High and AKR1B10Low are exclusively referring to them. The 

following sections will show the results of different bioinformatics approaches 

which show the potential link between AKR1B10 and PPP in the AKR1B10High 

group and its implications for liver patient stratification as well as new approaches 

in managing or treating liver tumors. 
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Table 3.4 Clinical Dependencies of Patients Stratified by AKR1B10 Expression. 

Variables Median Quartile 

Characteristic Variables High Low p-value High Low p-value 

Gender 
Male 102 135 

< 0.001 
72 46 

<0.001 
Female 41 72 15 41 

Age 
<= 60 78 89 

0.24 
36 39 

0.76 
>60 98 85 51 48 

Grade 

I 84 82 

0.14 

45 40 

0.15 
II 45 37 22 19 

III 31 46 13 23 

IV 4 1 2 0 

Neoplasm Grade 

G1 18 32 

0.14 

6 19 

0.023 
G2 91 77 46 38 

G3 59 56 33 25 

G4 5 7 1 3 

TNM Stage 

T1 90 85 

0.048 

46 41 

0.022 

T2 49 37 24 18 

T3 17 23 7 13 

T3A 7 19 1 8 

T4 8 4 6 2 

TP53 
WT 105 131 

0.003 
49 66 

0.01 
MUT 71 43 38 21 

CTNNB1 
WT 124 129 

0.52 
59 66 

0.31 
MUT 52 45 28 21 

ALB 
WT 147 155 

0.18 
70 80 

0.048 
MUT 29 19 17 7 

AZIN1 
WT 132 159 

< 0.001 
63 82 

<0.001 
MUT 44 15 24 5 

KEAP1 
WT 160 172 

0.002 
77 86 

0.013 
MUT 16 2 10 1 

NFE2L2 
WT 156 170 

0.002 
76 85 

0.021 
MUT 20 4 11 2 
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3.4.2 Gene Set Enrichment Analysis Between AKR1B10Low and 

AKR1B10High Expressing Samples 

First, we used gene set enrichment analysis (GSEA) to evaluate enriched biological 

processes and pathways in AKR1B10High and AKR1B10Low to better understand the 

differences seen in patient survival. For this purpose, RNA-Seq read counts 

normalized and VST-transformed by DESeq2 package. Expression and phenotype 

files were prepared according to instructions of the software and the analysis was run 

on GSEA’s desktop application with default parameters. The reason for choosing 

GSEA is its robustness in capturing whole pathways because of its unique approach 

which differs a lot from DGE followed by GO term enrichment. It searches for pre-

defined and curated gene sets, and based on their correlation, it uses permutations to 

further refine the results. This enables the identification of connections and 

enrichment of pathways including genes with modest changes between conditions. 

This would not be possible by conventional GO term enrichment approaches as they 

are based often times on arbitrary LFC and FDR cut-off values (167). In order to 

obtain more comprehensive results, 4 different enrichment methods in GSEA were 

used: gene ontology, hallmarks, KEGG pathways and Reactome. The results for each 

of these approaches are shown in detail in the following subsections. 

3.4.2.1 GSEA with Gene Ontology 

To classify enriched genes according to gene ontology, GSEA was run on C5 

molecular signature database (MSigDB) with a minimum set of 15 genes per GO 

term. Overall, 52 GO terms were enriched (FDR < 0.25) (Appendix A). Figure 3.37 

shows the enrichment plots for some of the GO terms. Most terms shown are 

involved in NADPH production by Pentose Phosphate Pathway, Isocitrate 

Dehydrogenase 1 (IDH1) and malate dehydrogenase, which is more commonly 

known as Malic Enzyme 1 (ME1), as well as NADPH consuming pathways such as 

glutathione and AKR enzymes. 
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Figure 3.37 GSEA Enrichment Plots Representing NADPH and AKR-Related GO 

Terms. 

These enrichment plots were selected from the statistically significant GO Terms generated 

by GSEA. The leading edge points downward because of the manner the conditions were 

fed into GSEA. 
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IDH1 and ME1 can become important contributors in the NADPH pool of the cell 

(33) while IDH1 enzyme when mutated, reduces Isocitrate to 2-Hydroxyglutarate 

(D-2HG) instead of αKG. D-2HG is an oncometabolite commonly detected in 

gliomas and myeloid leukaemia (96). D-2HG is known to inhibit the enzymatic 

actions of many αKG-dependent dioxygenases, such as histone demethylases, thus 

causing major epigenetic changes in cells harboring such mutations. We carried out 

mutational analysis of IDH1 in our samples and found it to be mutated only in 4 

samples out of 180 (3 in AKR1B10 high and 1 in AKR1B10-expressing patients). 

At the same time, in the original article analyzing the TCGA-LIHC patients, no 

significant enrichment of IDH1 mutation was found despite the efforts of the 

research team to create an IDH1 signature (39).  

Other important genes enriched by GSEA include multiple members of AKR family, 

in particular AKR1B1, AKR1C1-4, ALDH3A1 and DHRS3. Brief information 

about the function of these proteins is provided in chapter 2, while DHRS3 reduces 

retinols and steroids in the presence of NADPH. Another important group of 

enzymes enriched in AKR1B10High are those involved in oxidative stress response 

such as thioredoxin reductases (TXNRD), superoxide dismutates (SOD), quinone 

(NQO1), glutathione reductases (GSR), glutathione peroxidase (GPX) etc. While 

high levels of Reactive oxygen species (ROS) are considered to be detrimental for 

cell survival, low doses of ROS are necessary for normal physiological functions of 

the cell (168). ROS levels are generally high in cancer because of hypoxia and high 

metabolic rate to sustain cell division, causing massive damage to DNA, lipids and 

other biomolecules, and if they are not neutralized, they can cause cell death (169).  

One of the main pathways in neutralizing ROS is the glutathione system which 

utilizes NADPH to reduce ROS, while peroxidized lipids are neutralized by AKRs. 

The expression of all of these genes in AKR1B10High patients is a strong indicator 

that besides the role of NADPH in biosynthesis, co-expression of AKR, PPP and 

Glutathione system proteins makes it possible for the tumors to control oxidative 

stress and metabolize chemotherapeutic drugs more efficiently. Other important GO 

terms enriched in AKR1B10High samples were related to amino acid metabolism, in 
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particular the polyamine pathway and an overexpression of multiple proteasome 

subunits. This may suggest an enrichment of targeted protein degradation for amino 

acid utilization in AKR1B10High tumors.  

Another important group of enzymes enriched in AKR1B10High tumors are the UDP-

glucuronosyltransferase enzymes (UGTs), a family of 22 genes that are involved in 

the detoxification of drugs and other toxic molecules by attaching a sugar moiety 

from UDP-sugar donors (170). This conjugation, besides deactivating the molecules, 

it also makes them more soluble and easier to be excreted through urine. Higher 

expression of these enzymes has been associated with drug resistance and shorter 

OS/DFS in multiple tumors, mostly because of their involvement in 

chemotherapeutic drug detoxification and elimination (171). However, recent 

studies have also shown that UGTs may be involved in other, yet unknown functions 

such as oncogenic signaling through their role in metabolizing endogenous bioactive 

molecules such as bioactive lipid species and steroid hormones (172). 

Only 2 GO terms were enriched in AKR1B10Low patients, both of them representing 

genes involved in DNA methylation such as DNA methyltransferases (DNMTs) and 

MECP2 (Figure 3.38). 

 

 

Figure 3.38 GSEA GO Term Enrichment Plots for AKR1B10Low Patients. 
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Interestingly, these GO terms also included insulin-like growth factor 2 (IGF2) and 

glycogen synthase kinase 3 beta (GSK3B). When we show more detailed differential 

gene expression between AKR1B10High and AKR1B10Low it will become clearer 

why GSEA did not show multiple GO term enrichment for AKR1B10Low. 

3.4.2.2 GSEA Hallmarks Enrichment 

Another very useful tool of GSEA is the hallmark gene signature which includes 50 

sets of approximately 4000 genes involved in a number of important and well-

defined biological processes, thus they offer a much clearer picture of the differences 

between the cases being compared (173). The parameters for running GSEA on 

hallmark MSigDB (h.all.v6.2) were the same as those for GO Term enrichment. Only 

two hallmarks were significantly enriched in AKR1B10High patients, reactive oxygen 

species (ROS) and MTORC1 signaling pathway (Figure 3.39) while there was no 

enrichment for AKR1B10Low.  

 

 

Figure 3.39 GSEA Hallmarks enriched in AKR1B10High Samples. 

The leading edge points down because of the order of the conditions fed into GSEA. 
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The first hallmark is composed of genes involved in NADPH metabolism and ROS 

response, as the name suggests, while the second hallmark is well-known to be 

involved in many aspects of tumor, especially metabolism and proliferation (174). 

Careful inspection of the enriched genes constituting the second hallmark shows that 

they are involved in amino acid metabolism, autophagy, proteasome activation, 

oxidative stress response and translation regulation. This is also in agreement with 

GO term enrichment shown above and in more detail in appendix A. 

3.4.2.3 GSEA KEGG Pathways 

The KEGG pathways MSigDB contains 186 curated gene sets representing the most 

important biological pathways according to their classification in the KEGG 

database. This is another compact way to represent results showing enriched 

biological pathways between two groups. There were 14 significantly enriched 

KEGG pathways in AKR1B10High samples and none in AKR1B10Low (FDR < 0.25). 

Figure 3.40 shows only 6 of these pathways while the whole list is shown in

Appendix B. In addition to glutathione metabolism, one new pathway that shows 

significant enrichment is the pentose and glucuronate interconversion (PGI) which 

together with ascorbate and aldorate metabolism pathway (also enriched in 

AKR1B10High) are important components of carbohydrate metabolism linking 

glycolysis and galactose metabolism with amino sugar and nucleotide sugars and 

producing esters and salts of glucuronic acid. The same pathway is also highly 

interconnected with hexosamine biosynthetic pathway and ascorbate and aldorate 

are essential components of antioxidation response in cells (128). This may also be 

connected to amino sugar and nucleotide sugar KEGG pathway which also showed 

significant enrichment (Figure 3.34). While this pathway has been shown to be 

dysregulated in a number of tumors, its real biological significance still remains 

obscure (102,175–177).  
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Figure 3.40 Six of GSEA KEGG Pathways Enriched in AKR1B10High Samples. 

The leading edge points down because of the order of the conditions fed into GSEA. 
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Figure 3.40 also shows enrichment of xenobiotic metabolism, which is mostly 

composed of AKR gene family members as well as UGTs. In addition, the Lysosome 

and amino acyl-tRNA pathways are involved in amino acid metabolism and protein 

translation. They are in agreement with mTORC1 hallmark enrichment shown in the 

previous section. 

3.4.2.4 GSEA Reactome Pathways 

The last MSigDB used in GSEA analysis was reactome which contains 1604 curated 

gene sets based on the canonical pathways defined in reactome database. This is 

especially important for our study because of its emphasis on biological reactions 

and it serves as a complementary approach to KEGG pathways and GO terms. There 

was only one significantly enriched reactome pathway in AKR1B10Low (Figure 3.41) 

and 45 in AKR1B10High, 6 of them shown in Figure 3.42 and the rest in Appendix C. 

 

 

Figure 3.41 Reactome Pathway Enriched by GSEA in AKR1B10Low Samples. 

This is in agreement with GSEA GO term enrichment shown in Figure 3.37. 
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Figure 3.42 Six of 45 Reactome Pathways Enriched by GSEA in AKR1B10High 

Samples. 
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The generic transcription pathway enriched in AKR1B10Low samples includes 

hundreds of transcription factors, predominantly members of zinc-finger domain 

(ZNF) family, as well as some nuclear receptors. ZNFs constitute one of the largest 

families of transcription factors that are involved in many cellular processes such as 

DNA repair, cell migration and signal transduction, and especially transcriptional 

regulation. They also have been found to act as tumor suppressors or oncogenes 

depending on context (178). 

 

The most significantly enriched reactome pathway in AKR1B10High samples is 

involved in glutathione metabolism and oxidative stress response. The others are 

involved in amino acid metabolism, transcriptional and translation regulation by 

increased mRNAs stability and loading of amnio-acyl-tRNAs. In addition, cellular 

glucuronidation was found to be enriched in addition to phase II conjugation 

enzymes which, besides UGTs, include many members of amino acid lipid and 

glutathione conjugating enzymes. Other pathways shown in Appendix C are overall 

involved in ROS response, lipid and nucleotide biosynthesis and xenobiotic 

detoxification.  

 

Observing so many processes related to drug detoxification, ROS response and 

amino acid metabolism, we took advantage of RPPA data available in TCGA. The 

RNA-Seq samples that were classified into AKR1B10High and AKR1B10Low were 

matched with RPPA and differential expression between the two conditions was 

performed using limma. Out of 184 RPPA samples, 91 were matched with our 

samples of interest, 39 for AKR1B10High and 52 for AKR1B10Low.  Overall, out of 

219 proteins with and without secondary modifications, 12 had significant difference 

(p < 0.05, LFC > 0.2) and their expression is shown graphically in figure 3.43. 
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Figure 3.43 Significantly Differentially Expressed Proteins from RPPA Dataset. 

After differential expression with limma, the expression values of these proteins were 

normalized and plotted. Significance levels: * p< 0.05, ** p< 0.01, *** p< 0.001 according 

to t-test. 

 

RPPA confirms many GO, hallmarks, KEGG and Reactome pathways enriched by 

GSEA in AKR1B10High samples (Figures 3.37, 3.39, 3.40, 3.42 and appendices A, B 

and C). In particular, mTORC1, ROS mitigation and amino acid metabolism related 

pathways such as proteasome degradation and lysosome were observed to be 

significantly altered. A significant increase in the expression of SQSTM1 (p62-LCK-

ligand) was observed, which is known to play an important role in cytoprotection 

during oxidative stress by activating the antioxidative response through many 

pathways. In addition, it also acts as a mediator for autophagy which offers major 

survival advantage to tumor cells, especially in advanced stages (179). 

Phosphorylation of p62 was also found to channel glutamine towards the synthesis 

of glutathione and glucose to glucuronate pathway, giving liver cancer cells the 

ability to detoxify chemotherapeutic drugs and proliferate (180). 
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SETD2 is known to be involved in histone methylation and most of the studies have 

been concentrated on the association of its mutation with various tumors. 

Additionally, loss of expression has been associated with drug resistance but there is 

no study exploring its function when its expression levels are high (181). The 

mutation status of SETD2 was checked and it was found to be mutated in 4 samples 

of AKR1B10High and 6 samples of AKR1B10Low. Rab25 is a well-known oncogene 

which promotes cellular proliferation and survival. In addition, G6PD is the rate-

limiting enzyme of the PPP reducing NADP into NDAPH while PRDX1 reduces 

various species of peroxides to water and alcohol. The other proteins such as c-MET, 

DIRAS3, Serpine1 (PAI-I) and fibronectin are also well-known to be implicated in 

various tumors. 

The picture emerging when all the results are integrated together is that 

AKR1B10High patients show increased expression of genes involved in NADPH 

synthesis, ROS response, xenobiotic detoxification, protein biosynthesis and 

autophagy. These are all important processes for cell survival and proliferation, and 

whether high expression of AKR1B10 has a central or marginal role is difficult to 

determine at this point. However, being able to utilize the expression of AKR1B10 

as a biomarker helps in better understanding the presence of these processes which 

can then be studied in more detail to improve the clinical outcome of LIHC patients. 

3.4.3 DGE Between AKR1B10High and AKR1B10Low Samples 

In order to confirm some of the results of GSEA and potentially find others in 

addition to specifically evaluating the expression of metabolic enzymes introduced 

in Section 2.10, we carried out DGE analysis between AKR1B10High and 

AKR1B10Low samples using DESeq2 package. Briefly, the same 180 samples used 

in GSEA were used for DGE by again dividing them into 2 categories, AKR1B10High 

and AKR1B10Low with 90 samples per group. A GLM with single variable for 

AKR1B10 status was used for the analysis. Overall, 2387 transcripts showed 

significant change between the two conditions (1LFC and FDR<0.05). However, 
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exploratory analysis on the nature of those transcripts showed that more than 40% 

were non-coding elements such as pseudogenes, lncRNAs, anti-sense transcripts etc. 

Moreover, the same elements constituted more than 50% of all the significant 

transcripts in AKR1B10High samples. A summary of the most common elements is 

shown in Figure 3.44. 

 

 

Figure 3.44 Transcript Class Distribution of the Significantly DEGs in AKR1B10High 

and AKR1B10Low Samples. 

These four categories constitute 87% of the total significantly differentially expressed 

transcripts. The rest were removed for clarity. 

 

As our focus was on coding genes, the non-coding elements were filtered out and the 

VST expression values of the remaining 1595 protein coding genes (377 

overexpressed in AKR1B10High and 1218 overexpressed in AKR1B10Low) were used 

to construct a heatmap (Figure 3.45). The expression values were scaled by rows and 

the color was cut-off at 1 1LFC. AKR1B10High samples formed an almost perfect 
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cluster, although not all the genes were uniformly upregulated, while AKR1B10Low 

formed two separate clusters with no uniform expression (Figure 3.45). 

 

 

Figure 3.45 Heatmap of Significantly Differentially Expressed Genes. 

Color Bar on top shows the two groups of patients: Cyan Represents AKR1B10High and pink 

AKR1B10Low. Clustering was done with Euclidean distance and Ward.D2 linkage and 

heatmap was generated with pheatmap package. Different gradients of blue and red color 

show genes with low and high expression, respectively. All AKR1B10High genes form one 

cluster highlighted by the yellow box. 

 

Figure 3.44 shows that AKR1B10Low tumors were transcriptionally more 

heterogeneous, which explains the lack of GSEA enrichment observed in Section 

3.4.2. We next carried out GO term enrichment with clusterProfiler package and 

obtained nearly 60 GO terms in AKR1B10High samples. In order to remove 

redundancy between them, the GO terms were trimmed and reduced to 23 (Figure 

3.46). In agreement with GSEA results, we obtained multiple GO terms related to 
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cellular glucuronidation, NADPH metabolism and cytokine/chemokine related 

pathways. However, as expected, they are not as comprehensive as GSEA. We also 

carried out GO term enrichment for AKR1B10Low samples and obtained over 300 

GO terms, however since their expression was not uniform throughout all the 

samples, they were not pursued any further. 

 

 

Figure 3.46 GO Term Enrichment in AKR1B10High Samples. 

These biological processes-related GO terms were obtained after filtering out redundant GO 

terms using simplify function. 

 

Next, the 377 genes that were significantly upregulated AKR1B10High samples in the 

highlighted cluster in Figure 3.45 were evaluated for the formation of gene 

interaction network in STRING server (https://string-db.org/). After gene symbols 

were uploaded and their interactions calculated in STRING, the network interaction 

scores were downloaded and analyzed in more detail in Cytoscape software version 

8.2 and visualized (182). The genes formed a loose and complicated interaction 

network that was further analyzed with overlapping neighborhood expansion 

(ClusterONE) application. This software analyzes big networks and finds densely-

connected subnetworks with stronger interactions. Using this approach, we obtained 
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two major densely-connected subnetworks. The network that was comprised almost 

exclusively of AKR, UGTs and NADPH-metabolizing enzymes is shown in Figure 

3.47. Another major cluster was made of cytokines, interleukins and chemokines and 

it was connected with the cluster shown in Figure 3.47 via G6PD and epidermal 

growth factor (EGF). However, these genes were not consistently overexpressed in 

AKR1B10High samples when the heatmap in Figure 3.45 was analyzed in detail and 

therefore not evaluated any further. 

 

 

Figure 3.47 Gene Interaction Network in AKR1B10High Samples. 

Yellow boxes show genes that have direct interaction with AKR1B10. The network was 

created in the desktop application of Cytoscape. 

 

For easier interpretation of the data, we evaluated the expression of the enzymes 

mentioned before mentioned in section 2.10 and found 184 of them to be 

significantly differentially expressed, 54 upregulated in AKR1B10High and 130 

upregulated in AKR1B10Low samples (FDR < 0.05, 1LFC). Their expression through 

all samples is shown on heatmap in Figure 3.48. All the enzymes shown in the 

network in Figure 3.46 were clustered together on the upper half of the cluster 

highlighted by yellow box on the heatmap in Figure 3.48. These data highlight a 

coordinated upregulation of an entire gene network revolving around NADPH. Some 

of the enzymes such as G6PD, PDG and ME1 reduce NADP+ into NADPH, while 

others such as AKRs and glutathione metabolism enzymes utilize it for their 

functions. 
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Figure 3.48 Heatmap of Significantly Differentially Expressed Enzymes. 

Color Bar on top shows the two groups of patients: Cyan Represents AKR1B10High and pink 

AKR1B10Low. All AKR1B10High genes form one cluster highlighted by the yellow box. 

Clustering was done with Euclidean distance and Ward.D2 linkage with pheatmap package. 

 

In addition, another important enzyme enriched in the network is NEIL3, a 

glycosylase that functions in DNA excision repair by excising DNA bases damaged 

by oxidative stress. UGTs are phase II conjugating enzymes (170) that detoxify 

drugs. These enzymes may also function concordantly with AKRs, which are phase 

I conjugating enzymes, to detoxify xenobiotics or reactive molecules formed in the 

overstressed tumor environment. This may provide the AKR1B10High class of tumors 

with a survival and proliferative advantage, leading to earlier patient death. The 

expression of these genes is shown in Figure 3.49. 
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Figure 3.49 Expression of Network Genes in AKR1B10High and AKR1B10Low. 

All of them showed statistically significant differential expression between conditions 

(Wald’s test, p < 0.05) 

3.4.4 Single Nucleotide and CNV Enrichment in AKR1B10High and 

AKR1B10Low  

Comparative analysis for simple nucleotide mutations showed that TP53 was the 

most frequently mutated gene in 59 samples out of 180 (~33%). In general, most of 

simple nucleotide mutations were present in AKR1B10High tumors, and the 

significantly enriched mutations (p < 0.05) are shown in the bar chart in Figure 3.50. 

Besides TP53 which is a well-known gene involved in genome quality control, some 

details about the functions and significance of mutations on the other genes will be 

given briefly. We also checked whether these mutations had a tendency to co-occur 

in the same patient, and for that again cBioportal server was used to analyze the 

mutations in AKR1B10High and AKR1B10Low patients separately. Figure 3.51 shows 

the oncoprints for both groups. 
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Figure 3.50 Genes Mutated in AKR1B10High and AKR1B10Low Samples. 

Mutated genes are ordered according to their statistical significance. AKR1B10high is 

represented by blue bar and AKR1B10low by red bar. The figure was generated in cBioportal. 

 

 

Figure 3.51 Onciprint Showing Significantly Mutated Genes. 

(A) Genes mutated in AKR1B10High and (B) genes mutated in AKR1B10Low. Light blue, 

green and black show single-nucleotide missense and truncating mutations. Red and dark 

blue show amplifications and deletions, respectively. 
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Co-occurrence analysis showed that only OBSCN and DNAH14 had a tendency to 

co-occur within the same samples, but whether this is due to interactions between 

the two genes or was simply a confounding effect cannot be determined. 

 

Serum albumin (ALB) is moderately mutated in liver tumors and studies have 

suggested a possible link to oxidative stress (183) which would fit with our model of 

AKR1B10 and PPP. BRCA1-associated protein-1 (BAP1) acts as a tumor suppressor 

via a deubiquitinase domain that regulates genes involved in DNA damage repair, 

transcription regulation and cell cycle. It forms complexes with BRCA1 and BARD1 

proteins which enhance its ubiquitin ligase activity to control DNA damage and has 

been associated with higher risk of uveal melanoma (184). 

 

Obscurins (OBSCN) are normally cytoskeletal proteins present in skeletal muscle 

with structural regulatory roles. However, this gene was recently found to be one of 

the most frequently mutated genes in colorectal and breast cancers, along with tumor 

suppressive functions in breast cancer (185). Tumor cells become resistant to 

apoptosis by either downregulating OBSCN expression, or by mutations which 

prevent them from carrying out their normal function (186). Kelch-like ECH-

associated protein 1 (KEAP1) and the nuclear factor erythroid-2-related factor 2 

(NRF2) signaling pathway were shown to have very important roles in xenobiotic 

and electrophile detoxification, as well as cellular response to oxidative stress. 

Mutation of KEAP in non-small cell lung cancer was shown to lead to a constitutive 

activation of NRF2, increasing resistance to chemotherapeutic drugs (187). These 

findings were confirmed by another study where mutations in KEAP1 were shown 

to lead to functional loss of the protein, and therefore increased activity of NRF2 in 

pulmonary papillary adenocarcinoma. As a result, tumors had increased drug 

resistance by increasing their antioxidation capacity (188). Recently, the SQSTM1-

KEAP1-NRF2 axis has become a hot topic because of its involvement in cancer-

promoting autophagy (179,180). Figure 3.43 shows that SQSTM1 was significantly 

upregulated at the protein level in AKR1B10High tumors. 
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The other genes, despite statistical significance were enriched in only 10% of the 

samples. Briefly GLI3 is a member of Sonic-Hedgehoge (SHH) family and acts as a 

transcription factor, generally involved in developmental processes, while not much 

is known about LRRIQ1 except its high expression in the testis. Dynein Axonemal 

Heavy Chain 14 (DNAH14) is a member of motor protein families involved in 

motility and computational studies have shown that the mutations in this gene may 

act as tumor drivers in endometrial cancer (189). On the other hand, Nuclear Factor 

Erythroid 2 Like 2 (NFE2L2) is a transcription factor involved in antioxidant 

response by binding to genes with antioxidant response elements (ARE) and its 

mutation is associated with KEAP1 mutations (190). Finally, Splicing Factor 3b 

Subunit 1 (SF3B1) is subunit 1 of splicing factor 3b protein complex, which together 

with splicing factor 3a and 12S RNA form U2 small nuclear ribonucleoproteins 

complex involved in RNA splicing. Mutations in this gene were recently shown to 

be associated with poor prognosis in breast cancer and has been suggested as a breast 

tumor marker (191). Overall, proteins involved in oxidative stress response, in 

particular the KEAP1-NRF2, were found to have significantly more mutations in 

AKR1B10High tumor samples. 

 

Finally, we evaluated differences in genomic rearrangements in the form of CNV 

between AKR1B10High and AKR1B10Low patients. We found that amplification was 

the main form of CNV that was significantly enriched in AKR1B10High tumors (FDR 

< 0.05). The procedure was similar to that explained in section 3.3.5. The total 

number of transcripts with CNV was 313, a significant portion of which were 

miRNAs and pseudogenes. More than 90% of these transcripts were enriched in 

AKR1B10High tumors (data not shown). Thus, both, mutation and CNV data suggest 

that AKR1B0High tumors have higher mutation rate and more genomic instability, 

and this may be as a result of more cellular proliferation and more oxidative stress, 

among other mechanisms that remain unexplored. These mutation data are also in 

agreement with the mutation data for 50 tumor samples matched with normal 

adjacent tissue described in Section 3.3. 
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3.4.5 Differential Methylation Analysis Between AKR1B10High and 

AKR1B10Low 

We next carried out overall DMA analysis between AKR1B10High and AKR1B10Low 

groups and in contrast to the case when tumors were compared to normal samples, 

only approximately 9% of the total probes showed significant change (FDR < 0.05) 

and their numbers was almost equal. However, as the volcano plot is Figure 3.52 

shows, there was stronger hypermethylation in the AKR1B10Low samples, a state that 

can potentially explain the presence of more genomic instability in AKR1B10High 

samples as well as the presence of GO terms related to methylation enzymes as 

shown in GSEA analysis (Figures 3.38 and 3.41). 

 

 

Figure 3.52 Volcano Plot showing DMA Analysis for AKR1B10High and 

AKR1B10Low Samples. 

Probes hypermethylated in AKR1B10High are represented on the right arm and those 

hypomethylated on the left arm. Y-axis shows the values of FRD in -log10 base. Vertical 

lines show the 0.5 LFC and horizontal line the FDR = 0.05. All probes passing these filters 

are colored in blue. 
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Next, we determined the methylation status of AKR1B10 and PPP genes on their 

TSS1500 in the same manner as we did with tumor and normal samples. We again 

found that AKR1B10 was hypomethylated in AKR1B10High samples as compared to 

AKR1B1Low, as expected, and correlation analysis between beta values and 

AKR1B10 expression in AKR1B10High (but not AKR1B1Low) showed significant 

correlation (r = -0.34, p < 0.001). We also found significant methylation differences 

for G6PD, TKT and TLDO1, but not for PGD, and these results, with the exception 

of TKT are in contradiction with the same analysis carried out on tumor versus 

normal section. However, as the boxplots in Figure 3.53 show, the distribution of 

beta values is very irregular, and we did not find correlation between the expression 

of any of the PPP genes and methylation values in any of the patient groups (data not 

shown). 

 

 

Figure 3.53 Methylation of AKR1B10 and PPP Genes in AKR1B10High and 

AKR1B10Low Samples. 

(A) Pearson correlation of AKR1B10 expression and beta-values in AKR1B10High tumors. 

Correlation coefficient is shown inside the plot (B) Probes used in this graph are: AKR1B10: 

cg11693019; G6PD:  cg26799772; PGD:  cg12796186; TKT:  cg00223877 and TALDO1 

cg08037817. Significance levels: * p< 0.05, ** p< 0.01, *** p< 0.001, ns not significant by 

t-test. 
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3.4.6 AKR1B10 and PPP in CCLE 

In order to better understand molecular events and their regulation, tumors need to 

be modeled in cell culture, and the better the model mimics the real cases, the more 

realistic it becomes. For this purpose, publicly available transcriptional and 

metabolomics data of LIHC cell lines were analyzed. First, raw read counts for 25 

liver tumor cell lines were downloaded from Broad Institute’s CCLE database and 

normalized with the DESeq2 package. The VST-normalized expression for 

AKR1B10, G6PD, TKT, TALDO1 and PGD were extracted and are shown in the 

bar plot in Figure 3.54. 

 

 

Figure 3.54 AKR1B10 and PPP Gene Expression in Liver Cancer Cell Lines. 

Each cell is represented by 4 bars color-coded according to the legend on top. Cell lines are 

arranged according to AKR1B10 expression from the lowest to the highest. 

 

CCLE expression data showed a wide range of AKR1B10 expression; however, the 

expression of the PPP enzymes did not change as dramatically, showing a profile 

similar to patient data. When the cells were classified according to AKR1B10 

expression into high and low-expressing cells, two groups of 12 cell lines were 

formed with HUH6 falling in the middle. In order to mimic our model better, the 

highest- and lowest AKR1B10-expressing cells were chosen so to reflect significant 
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difference between PPP genes (p < 0.05, t-test). In this way, we created two groups 

separated into AKR1B10 and PPP low-expressing cells represented by SNU398, 

HLF, SNU182 and JHH7 and AKR1B10 and PPP high-expressing cells represented 

by SNU475, JHH5, SNU878 and HUH1. 

Next, CCLE metabolomic data from CCLE database were utilized to find whether 

certain metabolites showed any difference between the two groups of cells 

mentioned above. Briefly, pre-normalized metabolite levels were downloaded from 

CCLE database. There were 225 metabolites that could be divided roughly into lipid 

and non-lipid, based on their chemical nature. First, we carried out a cluster analysis 

of all metabolites but were not able to identify any pattern matching the expression 

of AKR1B10 or PPP genes. Then metabolites were separated into lipid and non-lipid 

but again no clear cluster was observed (data not shown). Finally, in order to evaluate 

any the metabolite level differences between AKR1B10 high and low cell line 

groups, we carried out differential expression analysis between them using limma 

package. There was no significant change in metabolites between the groups for FDR 

< 0.05, except for 3 that showed significant p-value (Table 3.5). Since the 

metabolome data did not differentiate between oxidized and reduced forms of NADP 

which is at the center of this study, we did not pursue this line of experiments any 

further. 

Table 3.5 Top 3 differentially expressed metabolites. 

LFC stands for log-fold change, its positive values represent higher levels of metabolites 

on AKR1B10 high cells and vice-versa. 

 

Metabolite LFC p value FDR 

Alpha Glycerophosphate 0.752146 0.0234 0.99 

Butyrylcarnitine Isobutyrylcarnitine -0.70525 0.0277 0.99 

GABA -0.78166 0.0305 0.99 
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3.4.7 CCLE Drug Sensitivity Analysis 

In one of the landmark studies in the field of cancer therapeutics, nearly a thousand 

cancer cell lines were used to test the effects of multiple drugs, majority of them used 

in cancer chemotherapy. All the drugs were tested in various concentrations to 

determine the sensitivity and/or resistance of cancer cells (192–194). The data were 

stored in Cancer Therapeutic Response Portal (CTRP) and for this analysis the latest 

version of the server was used, as explained in section 2.6. If the correlation is 

positive, that means that higher expression of a gene is associated with greater 

resistance to a certain drug, while if the correlation is negative, higher gene 

expression is associated with more sensitivity towards the drug.  

In total, 22 liver cancer cell lines were available in the CTRP database, and a search 

according to the method explained above yielded eight candidate drugs with high 

correlation coefficients and statistical significance. The drugs, their target and a short 

explanation are shown on Table 3.6. Drugs with the highest correlation with 

AKR1B10 expression are involved in NAD metabolism and ROS modulation.  

Table 3.6 Drugs Correlated to AKR1B10 expression. 

 

Compound Target Explanation Cor. Coef 

CAY10618 NAMPT Inhibitor of nicotinamide 
phosphoribosyltransferase 

0.74*** 

GMX-1778 NAMPT Inhibitor of nicotinamide 
phosphoribosyltransferase 

0.72*** 

Curcumin Natural 
product 

modulator of ROS and modulator of NF-
kappa-B signaling 

0.72*** 

BRD-
M37545453 

Natural 
product 

modulator of ROS and modulator of NF-
kappa-B signaling 

0.70*** 

tigecycline Unknown Analog of tetracycline 0.942* 

MST-312 TERT Inhibitor of telomerase reverse transcriptase 0.66** 

Ifosfamide Unknown DNA alkylator 0.86** 

PI-103 MTOR, 
PIK3Cs 

Inhibitor of DNA-PK, PI3K p110 delta, 
mTORC1, and catalytic subunits of PI3K 

0.60** 
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Correlation plots for CAY10618, GMX-1778, Curcumin and PI-103 are shown in 

Figure 3.55. The plots show both the expression range of AKR1B10 in 20-22 cell 

lines and the AUC range of each drug. Since we could not find the AUC data for 

BRD-M37545453, the correlation shown on the table was taken from CTRP Server. 

 

 

Figure 3.55 Correlation Plots Between AKR1B10 Expression and Selected Drugs. 

Y-axis shows the VST-expression values of AKR1B10 normalized by DESeq2 and x-axis 

the AUC values of each drug. Pearson correlation coefficients and their statistical 

significance are shown on the plots. The name of each cell line is shown on the plot. 

 

The chemical structures of these 8 compounds were retrieved from CTRP database 

(http://portals.broadinstitute.org/ctrp/) and 7 of them are shown in Figure 3.56.  The 

chemical structure of BRD-M37545453 completely overlapped with the structure of 

Curcumin. Judging the compounds by their structure, most of them are possible 

AKR1B10 substrates.  CAY10618 and GMX1778 act by blocking NAMPT enzyme 

which is the rate-limiting enzyme in NAD+ salvage pathway (195). The structural 

similarity of the rings of these compounds led us to speculate that these drugs may 

act as an NADP analogues. GMX1778 has an additional chloride moiety making it 

an extremely reactive group. The other compounds have many possible active groups 

which can be enzymatically reduced by AKR1B10, such as hydroxyl groups and 

chloromethyl radicals. However, to our knowledge none of these compounds has 
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been biochemically shown to be a substrate of AKR1B10 or any other AKR family 

member and further studies will need to be conducted on their possible interaction 

with AKR1B10. 

 

 

Figure 3.56 Structures of Drugs Correlated with AKR1B10 Expression. 

(A) CAY10618, (B) GMX1778, (C) Curcumin, (D) MST312, (E) Tigecycline, (F) 

Ifosfamide, (G) PI103. All the structures shown here were downloaded from 

(http://portals.broadinstitute.org/ctrp/). 

 

Among all the drugs, PI-103 is the only kinase inhibitor that blocks PI3K and mTOR. 

Studies have shown that it inhibits growth and proliferation of glioma cell lines as 

well as primary blast cells obtained from patients with leukemia (196,197). In 

addition, in the later study it was also shown that this compound induced significant 

apoptosis in leukemia stem cell population (198). Whether this is related to an 
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enriched mTOR pathway observed in AKR1B10High patients needs to be further 

tested, but a positive correlation with AKR1B10 in an interesting observation. 

3.4.8 Section Summary 

In summary, in this section we showed that higher expression of AKR1B10 was 

associated with a median of more than 2 years shorter OS in LIHC patients. We then 

used two different approaches to understand the possible molecular mechanisms that 

can explain this difference: GSEA and DGE analysis. First, we used GSEA and 

found the patients in AKR1B10High group showed enrichment of GO terms and 

biological pathways related to NADPH metabolism, both its synthesis by PPP, IDH1 

and ME1, and its utilization by AKR enzymes and glutathione pathways. 

In addition, we found the enrichment of another group of type-II conjugating 

enzymes, the glucuronyltransferases (UGTs) which we think may work in 

conjunction with AKRs which are type-I conjugating enzymes to detoxify both 

endogenous bioactive molecules as well as chemotherapeutic drugs. This group of 

enzymes together with a ROS response could be key to the survival and proliferation 

of AKR1B10High expressing tumors in a highly hypoxic tumor environment. In 

addition, they may also be involved in drug detoxification and resistance during 

chemotherapy. This was also confirmed with DGE followed by gene network 

analysis. We found a complex network that could be broken down into two highly-

connected subnetworks, the most enriched of which was composed of 38 highly 

connected genes almost all related to the enzymes involved in pathways involving 

NADPH and ROS (Figure 3.47). The second subnetwork was composed of 

cytokines, chemokines and growth factors which can also enhance tumor survival 

and proliferation. 

Yet another important pathway we found to be enriched in AKR1B10High samples is 

mTORC1 and amino acid metabolism, an observation that was also supported by 

RPPA data which indicate the activation of tumor-promoting autophagy. RPPA also 
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confirmed upregulation of G6PD and PRDX1 at the protein level, the first rate-

limiting enzyme of PPP and the second essential for ROS response. AKR1B10Low 

tumors on the other hand showed gene enrichment only for epigenetic-related 

pathways, which was supported by the DME analysis. Next, we evaluated the 

mutation status of AKR1B10High and AKR1B10Low groups and found enrichment of 

mutations in genes involved in oxidative stress affecting more than 50% of the 

AKR1B10High samples. It should be emphasized that besides TP53 which is a major 

tumor suppressor gene, mutation data showed an enrichment of KEAP1-NRF2 axis 

which together with an increase in SQSTM1 have been shown to play an important 

role in response to oxidative stress and tumor-promoting autophagy.  

We also evaluated the methylation status of AKR1B10 and PPP genes on the 

TSS1500 probe. AKR1B10 and TKT, but none of the other genes appeared to be 

regulated by methylation. This is also in agreement with the methylation results we 

obtained by comparing tumors to normal samples in Section 3.3. In order to 

determine whether the metabolome was affected by AKR expression and to

determine sensitivity to drugs, we utilized the CCLE and CTRP databases to 

determine the expression of AKR1B10 and PPP genes in LIHC cell lines as well as 

the accompanying metabolomics and drug sensitivity data. Currently there is no 

metabolome data for LIHC that is publicly available. Although the metabolomics 

analysis did not yield any useful results, we were able to utilize drug sensitivity data 

from large-scale experiments with drug compounds used in cancer chemotherapy. 

We were able to identify 8 drugs that correlated with AKR1B10 expression. Judging 

these compounds by their chemical structure and active groups, they appear to be 

ideal substrates for AKR1B10, however further biochemical and pharmacological 

tests are required to prove this assumption.  

Overall, we have identified important biological pathways and molecular 

mechanisms involved in tumor-promotion in AKR1B10High samples. AKR1B10 as 

an individual enzyme may be strongly involved in detoxification of bioactive 

molecules produced by highly proliferating cells and may be working in concert with 

UGTs. PPP on the other hand produces NADPH, which besides its use in oxidative 
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stress and almost all biosynthetic reactions, provides the necessary reducing power 

for AKR1B10 and other AKRs to carry out their enzymatic functions in the cell. 

These as well as tumor-promoting autophagy, cytokines and chemokines may all 

work in concert to promote tumor survival and proliferation, and thus earlier death 

in AKR1B10High patients. 

3.5 Multigene Risk Prognostic Model for LIHC 

In the recent years, there has been an increasing number of studies utilizing machine 

learning (ML) approaches to stratify patients into different groups according to their 

overall or disease-free survival in various tumors such as glioblastoma (199), lung 

adenocarcinoma (200), ovarian cancer (201), bladder tumor (202) and liver 

(203,204). In addition, an earlier study took advantage of the power of deep learning 

to stratify liver patients into high and low risk groups (175). Although these models 

are very powerful in stratifying patients according to overall survival or disease 

recurrence, they suffer when it comes to clinical applications because they are based 

on the input of hundreds of genes that are then eliminated by dimensionality 

reduction techniques into a maximum of few dozen before used for cox regression 

analysis to calculate the risk level of each patient. Deep learning models on the other 

hand, despite their power because of deep neural network architectures and immense 

success in image classification (205), they are still performing not significantly better 

than simple regression models in clinical studies (206). In addition, they are “black 

box” models, i.e., we cannot really understand what is the weight, and thus the 

importance of each variable in the final classification model. 

In this study, we used the genes from the network in Figure 3.46 to create a gene 

signature for stratification of liver patients into high and low-risk groups. We believe 

that the main advantage of this approach is its modular nature since we are 

concentrating on a handful of genes that are functionally related to each-other, in this 

way narrowing down the targets to one or few biological pathways related to 

NADPH metabolism. 
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3.5.1 Gene Selection for Cox Regression Analysis 

We used the LIHC-TCGA dataset to train the multi-gene signature since it has all 

the available clinical data, and it also was the main dataset on which this study was 

based. For this purpose, we utilized the clinical data of 364 samples as mentioned at 

the beginning of section 3.4. The expression of 38 genes shown in figure 3.46 plus 2 

other important enzymes of NADPH biosynthesis (IDH1 and PGLS) not included in 

the network because of their failure to reach 1LFC cut-off despite showing 

statistically significant expression difference between AKR1B10High and 

AKR1B10Low samples, was tested individually for correlation with patient overall 

survival by means of univariate cox proportional hazard model with survival 

package. Correlation coefficient and significance level for each gene are shown in 

Table 3.7, and based on these results, 17 genes showing significant correlation were 

used in the next steps of building a gene signature while the others were discarded. 

In order to find the correct gene combination for building the risk prognostic model, 

two approaches were used, step-wise systematic removal of non-significant genes 

and the more powerful LASSO regularization. 

Table 3.7 Univariate Cox Regression Model Coefficients and Significance Values. 
 

Gene Cox Coefficient p-value 

AKR1B1 0.08253 0.206 

AKR1B10 0.06026 0.0191 

AKR1B15 0.1296 0.00104 

AKR1C1 0.02926 0.568 

AKR1C2 0.006866 0.873 

ALDH1A1 -0.09454 0.0668 

ALDH3A1 0.006783 0.794 

CDK18 0.005456 0.923 

CES1 -0.02257 0.58 

CYP2S1 0.09841 0.109 

G6PD 0.3208 2.16E-08 
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Table 3.7 (Cont’d) 
 
GCLM 0.25891 0.00657 

GPX2 0.017 0.614 

GSR 0.3423 0.00112 

IDH1 0.06197 0.593 

ME1 0.13245 0.00944 

MT1B -0.1564 0.248 

NEIL3 0.42119 3.41E-07 

NQO1 0.07616 0.00827 

PGD 0.30786 0.00164 

PGLS 0.02106 0.84 

PIR 0.05219 0.513 

PTGR1 0.04196 0.442 

SELM 0.05499 0.249 

SOD2 -0.02048 0.783 

SRXN1 0.27471 0.00124 

TALDO1 0.19474 0.0428 

TKT 0.21159 0.00252 

TMEM156 0.05036 0.34 

TXN 0.08263 0.372 

TXNRD1 0.2446 0.00145 

UGDH 0.16524 0.045 

UGT1A10 0.15192 0.00521 

UGT1A5 0.28119 0.00222 

UGT1A6 0.07745 0.0923 

UGT1A7 0.14985 0.0781 

UGT1A8 0.255 0.0024 

UGT1A9 0.008543 0.813 

UGT2B28 0.1094 0.313 

UGT2B4 -0.02923 0.496 
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3.5.2 Risk Prognostic Model based on Stepwise Gene Selection 

In order to reduce the number of genes that could be fit to create a multi-gene cox 

regression model, we took advantage of My.Stepwise package which uses a mixture 

of forward- and backward propagation to select a list of the best genes for building 

a model which can then be modified by removing those with significance level of 

our choice. The whole LIHC-TCGA dataset was separated into training (n = 274,

75%) and test (n = 90, 25%) data sets. We started with the 17 candidate genes which 

showed individual correlation with patient survival in TCGA cohort and run the 

stepwise selection on the training dataset from which we obtained a list of 7 

candidate genes, 4 of them significant (p < 0.05) which were retained, and 3 that 

were not significant were removed iteratively based on p-value. 

 

The final model we used to calculate the risk score for TCGA and the independent 

cohorts was made of 4 genes, G6PD, NEIL3, AKR1B10 and AKR1B15 with cox 

coefficients 0.29483,  0.28709, -0.16976 and 0.22989, respectively (p < 0.05), which 

were used to calculate the risk score of every patient in the training set by the 

formula:  0.29483*(expression of G6PD) +  0.28709*(expression of NEIL3) -

0.16976*(expression of AKR1B10) +  0.22989*(expression of AKR1B15). We used 

surv_cutpoint() function for optimal separation of the groups into high- and low-risk 

groups with median survival of 12.3 and 69.6 months, respectively (HR = 5.88, log-

rank p < 0.0001). The prediction accuracy for 1- 2- and 5-years was calculated by 

survivalROC() function (Figure 3.57). 

 

The same coefficients were used to calculate the risk score of the test set (n = 90) 

which were separated into high-risk (n = 25) with median survival months 45.1 

months and low-risk (n = 65) with median survival of 83.6 months (HR = 2.2, log-

rank p = 0.033). These results are shown in Figure 3.58. 
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Figure 3.57 Patient Stratification in Training Dataset. 

(Left panel) KM Plot showing patients in high-risk group (n = 39) and low-risk group (n = 

235). (Right panel) AUROC curve with y-axis showing the true-positive rate while the x-

axis showing the false-positive rate. The values of accuracy for 1-, 2- and 5-years are shown 

inside the plot. 

 

 

Figure 3.58 Patient Stratification in Testing Dataset. 

(Left panel) KM Plot showing patients in high-risk group (n = 25) and low-risk group (n = 

65). (Right panel) AUROC curve with y-axis showing the true-positive rate while the x-axis 

showing the false-positive rate. The values of accuracy for 1-, 2- and 5-years are shown 

inside the plot. 
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Finally, the same coefficients were used to calculate the risk score for the entire 

dataset and stratify all 364 patients into risk groups. Using the optimal risk cut-off, 

patients were stratified into high-risk (n = 45) with median survival of 12.3 months 

and low-risk (n = 319) with median survival of 69.6 months (HR = 5.2, log-rank p < 

0.0001). The whole dataset was then separated into 4 groups as high-risk (n = 45) 

with median survival 12.3 months, intermediate-high (n = 114) median survival 55.4, 

intermediate-low (n = 114) median survival 58.9 and low-risk (n = 91), median 

survival 83.2 months. With this subgrouping, the hazard ratio between low-risk and 

high-risk groups increased to 6.73 (log-rank p < 0.0001). The KM plots for patient 

separation in 2 and 4 groups as well as the AUC curve are shown in Figure 3.59. 

 

 

Figure 3.59 Patient Stratification in the Whole Dataset. 

(A) Kaplan-Meier Plot showing patients in high-risk group (n = 45) and low-risk group (n = 

319). (B) Re-stratification of patients into high- (n = 45), intermediate-high (int_h, n = 114), 

intermediate-low (int_l, n = 114) and low-risk groups (n = 91) (red, blue, green and magenta, 

respectively). Confidence intervals were removed for clarity (C) AUROC for the whole 

dataset, The y-axis shows the true-positive rate while the x-axis shows the false-positive 

rate. The values of accuracy for 1-, 2- and 5-years are shown inside the plot. 

 

The accuracies in Figures 3.57-3.59 indicate model overfitting using the 4-gene 

signature. We observed a decrease in AUC in the test set and a significant recovery 

once the gene signature was refitted in the whole dataset since the test set makes up 

only 25% of the total data. Thus, although this gene signature was very good at 

stratifying the patients, it was not as accurate in predicting their OS. 
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The expression of genes used for generating the model is all significant between the 

groups (Figure 3.60). 

 

 

Figure 3.60 Expression of Genes Used for Signature. 

The 4 conditions mentioned in figure 3.58 are color-coded. All the genes showed overall 

significant difference (One-Way Anova, p < 0.05). 

 

The next step was fitting the model trained above into two independent datasets. 

First, we tried to fit the 4-gene model to GSE76427, however we failed to separate 

these patients into any significant group by using the coefficients calculated above 

so we tried a different approach by calculating the coefficients from GSE76427 and 

then separate the patients into prognostic risk groups. Although this is not how an 

ML approach would work, it is common practice in studies dealing with clinical data 

because of many factors, especially domain shift problems (207). It should be noted 

that none of the genes showed any significant correlation with patient survival in 

univariate as well as multivariate model. In addition, 16 patients with negative 

expression values for either AKR1B10 and/or AKR1B15 were removed in order to 

avoid biases since we were not able to process raw data as explained in section 2.1. 

Thus, the risk score for this dataset was calculated in the same way as TCGA training 
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set and patients were separated into high-risk group (n = 45) with median 6.29 years 

and low-risk (n = 46) group in which more than 50% of the patients survived during 

the time they were followed up as shown in Figure 3.61. 

 

 

Figure 3.61 Patient Stratification in GSE76427 Dataset. 

(Left panel) KM Plot showing patients in high-risk group (n = 45) and low-risk group (n = 

46). The stratification was significant (HR = 3.6, log-rank p = 0.008(Right panel) the 

AUROC curve with y-axis showing the true-positive rate while the x-axis showing the false-

positive rate. The values of accuracy for 1-, 2- and 5-years are shown inside the plot. 

 

Finally, we tried to fit the same 4-gene model to the GSE14520 microarray, however 

there was no probe for AKR1B15 gene. As a result, only the coefficients of 

AKR1B10, G6PD and NEIL3 calculated from TCGA train dataset were multiplied 

with the expression of these 3 genes to calculate the risk score of each patient, who 

were then separated into two groups according to the optimal cut-off as high risk (n 

= 141) with median survival 54.8 months, and low-risk (n = 80) in which more than 

50% of patients survived during the follow-up period. Their survival differences 

were significant (HR = 2.2, log-rank p = 0.0017). Both KM plot and the AUC curve 

are shown in Figure 3.62. For the time being, we will not be able to know whether 

the presence of AKR1B15 would have made the model better at stratifying 

GSE14520 patients and generalize well on independent datasets. 
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Figure 3.62 Patient Stratification in GSE14520 Dataset. 

(Left panel) KM Plot showing patients in high-risk group (n = 141) and low-risk group (n = 

80). The stratification was significant (HR = 2.2, log-rank p = 0.0017). (Right Panel) the 

AUROC curve with y-axis showing the true-positive rate while the x-axis showing the false-

positive rate. The values of accuracy for 1-, 2- and 5-years are shown inside the plot. 

 

We tried to train a model using the step-wise approach mentioned at the beginning 

of this section based only on G6PD, NEIL3 and AKR1B0 expression, but it did not 

show any significance. Thus, we utilized the power of LASSO regularization to build 

a 2-gene model as shown in the next section. 

3.5.3 Risk Prognostic Model With LASSO 

In the second approach, we used glmnet package to build cox regression model with 

LASSO regularization (123,208,209). The whole LIHC-TCGA dataset was again 

separated into training (n = 274, 75%) and test (n = 90, 25%) data sets by using the 

same seed number so that samples would be the same. Training data was used to find 

the smallest lambda value with various cross-validation folds and the best results 

were obtained with 10-fold cross validation, which was then used to select the genes 

with coefficients different from zero. Out of 17 genes, only two passed the filter, 

G6PD and NEIL3 while the others’ coefficients were all reduced to zero as shown 

in Figure 3.63. 
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Figure 3.63 LASSO Regularization. 

(A) Lambda coefficients plot, showing the decay in cox coefficients of each gene (y-axis) 

with increasing values of lambda (x-axis). (B) Partial likelihood deviance plot showing cox 

model fitting with 10-fold cross validation. 

 

Using these two genes, a cox regression model was built on the training dataset. The 

coefficients of G6PD and NEIL3 were 0.24266 and 0.29085, respectively, and both 

were of high significance (p < 0.01). They were then used to calculate the risk score 

of every patient in the training set by the formula:  0.24266*(expression of G6PD) + 

0.29085*(expression of NEIL3). Afterwards patients on training set were divided 

into high- and low-risk groups according to the optimal separation by using 

surv_cutpoint() function and their prediction accuracy for 1- 2- and 5-years was 

calculated by survivalROC() function as shown in Figure 3.64. 

 

With these parameters, the separation between patients was highly significant (log-

rank p < 0.001) and the hazard ratio for high-risk group was approximately 4.7. 

Median survival of high- and low-risk patients was 13.5 and 69.6 months, 

respectively. The same coefficients were also used to calculate the risk score for the 

test dataset and again patients were divided into high- and low-risk group (Figure 

3.65). 
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Figure 3.64 Patient Stratification in Training Dataset. 

(A) Kaplan-Meier Plot showing patients in high-risk group (n = 44) and low-risk group (n = 

230). (B) Area Under the Receiver Operating Characteristics (AUROC). The y-axis shows 

the true-positive rate while the x-axis shows the false-positive rate. The values of accuracy 

for 1-, 2- and 5-years are shown inside the plot. 

 

 

Figure 3.65 Patient Stratification in Test Dataset. 

(A) Kaplan-Meier Plot showing patients in high-risk group (n = 22) and low-risk group (n = 

68). (B) AUROC for the test dataset, The y-axis shows the true-positive rate while the x-

axis shows the false-positive rate. The values of accuracy for 1-, 2- and 5-years are shown 

inside the plot. 
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Again, the separation between patients was significant (log-rank p < 0.01) and the 

hazard ratio for high-risk group was approximately 3.4. Median survival of high- and 

low-risk patients was 21.7 and 83.6 months, respectively. 

 

Finally, the same coefficients were used to calculate the risk score for the patients in 

the entire dataset. Using optimal division cut-off, the median survival for high (n = 

109) and low-risk (n = 255) patients was 21.7 and 70.1 months, respectively (HR = 

2.8, log-rank p < 0.0001). In addition, the low-risk patients were grouped further into 

low risk (n = 89), intermediate low (n = 83) and intermediate high-risk (n = 83) and 

re-plotted in in KM Plot. This time the significance between high-risk group and low 

increased even further (HR = 3.2, log-rank p < 0.0001). Accordingly, median 

survival of low-risk patients was 69.6 months, that of intermediate-low was 83.6 

months, intermediate-high was 55.7 months, and finally the median survival of high-

risk patients was 21.7 months (Figure 3.66). 

 

 

Figure 3.66 Patient Stratification in the Whole Dataset. 

(A) Kaplan-Meier Plot showing patients in high-risk group (n = 109) and low-risk group (n 

= 255). (B) Re-stratification of patients into high- (n = 109), intermediate-high (int_h, n = 

83), intermediate-low (int_l, n = 83) and low-risk groups (n = 89) (red, blue, green and 

magenta, respectively). Confidence intervals were removed for clarity. (C) AUROC for the 

whole dataset, The y-axis shows the true-positive rate while the x-axis shows the false-

positive rate. The values of accuracy for 1-, 2- and 5-years are shown inside the plot. 
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As the KM plot shows in figure 3.66, the separation of patients into the KM plot is 

almost perfectly stepwise, with high-risk patients as an outlier and it gets better as 

the score gets lower. This 2-gene model also outperformed the stratification of 

patients in univariate cox analysis for each of the genes used separately. Model 

dependency analysis showed that high risk patients were associated with higher 

tumor grade, neoplasia grade and TP53 mutation (Appendix D). The expression of 

genes involved in model building was also checked and their expression patterns are 

similar to the Figure 3.59 but the differences between high and low-risk patients are 

slightly smaller, which could be the reason for the differences in HR (data not 

shown). 

 

Different from the 4-gene signature, the differences in AUC between train, test and 

whole dataset did not change very significantly in this simpler model. This indicates 

that overfitting was not carried out; therefore, this signature has greater potential for 

generalization over other datasets as will be shown below. 

 

Following the same procedure as the previous section, the correlation coefficients of 

the two genes were used to fit a similar cox regression model in two independent 

datasets. In GSE76427 it was again impossible to use obtain any significant results 

by using the coefficients generated by TCGA training data to build the model, most 

likely because of domain shift in the data (207). All the probes representing the 

G6PD and NEIL3 were checked for association with patient survival by univariate 

cox models but none of them showed significance. Then we followed the same 

procedure as section 3.5.2 by calculating the coefficients of the genes after building 

a cox regression model and then used them to calculate the risk score of each patient. 

The new score was able to stratify the patients into high- and low-risk groups with 

median survival of 4.82 and 6.29 years, respectively (HR = 3.04, log-rank p = 0.016) 

as shown in figure 3.67. 
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Figure 3.67 Patient Stratification in GSE76427 Dataset. 

(Left panel) KM Plot showing patients in high-risk group (n = 48) and low-risk group (n = 

67). The stratification was significant (HR = 3.04, log-rank p = 0.016). (Right panel) On the 

right, the AUROC curve with y-axis showing the true-positive rate while the x-axis showing 

the false-positive rate. The values of accuracy for 1-, 2- and 5-years are shown inside the 

plot. 

 

We also used GSE14520 microarray dataset to test this model in the same way as in 

section 3.5.1 by using the coefficients calculated on the training dataset of TCGA. 

221 patients were stratified into high (n = 149) and low-risk (n = 72) groups (HR = 

2.75, log-rank p = 0.0004) by using the optimal stratification as well as by using the 

median of the risk score (HR = 1.70, log-rank p = 0.016). The KM Plot and AUC 

curve are shown in Figure 3.68. 

 

Being able to fit the model into a completely independent dataset from a different 

platform and different population shows the potential of this gene signature to 

generalize as opposed to many other studies that calculate the gene signature by 

computing the correlation coefficients independently on every cohort used as 

external validation. The results obtained from validation of the model within the 

TCGA and also independent external validation especially on GSE14520 dataset 

shows the power of a very simple, 2-gene model to stratify patients at high-risk of 

dying from those who are not. More importantly, this model is based on a very 
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specific biological pathway which is related to NADPH synthesis, xenobiotic 

detoxification and oxidative stress. 

 

 

Figure 3.68 Patient Stratification in GSE14520 Dataset. 

(Left Panel) KM Plot showing patients in high-risk group (n = 149) and low-risk group (n = 

72). The stratification was significant (HR = 2.75, log-rank p = 0.0004). (Right panel) The 

AUROC curve with y-axis showing the true-positive rate while the x-axis showing the false-

positive rate. The values of accuracy for 1-, 2- and 5-years are shown inside the plot. 

3.5.4 DGE Between High and Low-Risk Patients Based on Two-Gene 

Signature 

Studying and understanding the molecular mechanisms that cause such differences 

in patient survival would require a separate study, however, in order to get some 

understanding we carried out DGE of RNA sequencing data between the high- and 

low-risk groups for both gene models, and found that high-risk group, besides DNA 

replication and cell cycle, showed increased glycolysis and amino acid transport, and 

decreased fatty acid oxidation and amino acid metabolism. Surprisingly, this profile 

is very similar to the profiles we observed between normal and tumor samples in 

liver (Figure 3.23). Since detailed mechanisms causing these differences are not part 

of this thesis, only the expression of genes involved in glycolysis, PPP and hexose 

transport in the cell are shown in Appendix E. Patient stratification by 4-gene model 
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showed higher expression of PPP genes in high-risk group as compared to the low-

risk one. Moreover, important glycolytic flux driving enzymes such as hexose 

transporter GLUT1 (SLC2A1), HK2/3, MCT-4 and PFKP/M were all 

overexpressed, generally at higher levels in 4-gene signature in which high-risk 

patients’ survival was much lower than the 2-gene signature. 

 

From these results, the importance of glycolysis in feeding PPP, among other 

pathways such as TCA is apparent. Additionally, the same set of genes involved in 

oxidative stress and xenobiotic detoxification (AKRs and UGTs) are all 

overexpressed in high-risk patients (data not shown). These results emphasize once 

again the idea that in the tumorigenic state, a complete reversal of normal metabolic 

functions of liver occur, such as increased glycolysis, decreased fatty acid and amino 

acid catabolism, and decreased urea cycle. Paying more attention to these in the 

future could lead to better management and even treatment of liver tumors maybe 

without any side effects as a result of drug toxicity which is very common in 

chemotherapy these days. 
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CHAPTER 4  

4 CONCLUSIONS AND FURTHER STUDIES 

Changes in tumor metabolism were proposed nearly 95 years ago by Otto Warburg 

who found that tumor cells, contrary to their normal counterparts, prefer to carry out 

fermentation even in the presence of oxygen, a phenomenon known as aerobic 

glycolysis or Warburg Effect. However, after the discovery of DNA and invention 

of genetic methods of cloning and sequencing, interest in metabolism fell and all the 

focus shifted in finding, tabulating and characterizing mutations associated with 

tumors. The initial hopes on the promise of massive sequencing technologies for 

detecting recurring mutations across cancers and developing drugs which would 

target the mutated forms of key regulatory proteins however are fading after many 

studies failed to extend the lives of patients despite their toxic side effects.  

 

In a recent study, data from 127 clinical trials studying the effectiveness of 92 novel 

kinase blocker chemotherapeutic drugs approved by FDA for the period 2000-2016, 

showed that patient survival was extended by a mere median of 2.4 months (210). 

Actually, it can be safely claimed that most of the success in treating tumors to date 

can be attributed to early detection (211) and this realization has pushed the scientific 

community for more investment in developing better cancer detecting technologies 

aided by computer vision and machine learning, as well as awareness global 

campaigns for people to have regular check-ups. With the aging world population 

and increasing rates of diabetes, the incidence of tumor is estimated to surge and 

reach almost 30 million cases per year by 2040 (2).  

 

Thus, the failure to find common mutations among tumors, or even within the same 

tumor on the same patient as a result of the huge cancer mutation landscape which 

gives tumors the capability to quickly develop drug resistance and recur in a more 
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aggressive form, has lead the research community to reconsider the ideas of Warburg 

and study cancer metabolism in hopes of better treatments. This was also aided by 

development in technology, which makes the study of metabolism and bioenergetics 

easier as compared to formal cumbersome biochemical techniques. Moreover, 

nowadays metabolism can be understood by using transcriptomics, while measuring 

the levels of the main metabolites in cell with modern techniques such as mass 

spectrometry has become routine. 

4.1 Pan-Cancer Metabolism 

Although bioenergetics is still an obscure field within the research community (212), 

it is believed that understanding metabolite flows within tumors could be the key in 

finding better treatments and management strategies for cancer in the future. The 

importance of metabolism and bioenergetics has started to be appreciated especially 

among evolutionary biologists who have recently challenged the widely-accepted 

model of “The RNA World”. According to these studies, life did not begin with 

RNA, but it began in deep oceanic vents where complex reactions similar to the those 

of the TCA could take place. In addition, the most important event leading to the 

evolution of eukaryotic cell and all the complexity and diversity among higher life 

forms that we see today, including ourselves, was the result of endosymbiosis and 

formation of the mitochondria, which most likely paved the way for cellular 

compartmentalization leading to complex eukaryotic cell. These findings show that 

bioenergetics is a key factor in maintaining normal functioning of the cells and its 

disturbances could lead to diseases, including cancer. Moreover, we know that cells, 

in contrast to human-designed complicated systems are complex entities, a 

characteristic that gives them the ability to adopt, survive and evolve under different 

conditions, both favorable and unfavorable (213). The implications of these findings 

go beyond scientific curiosity as they have the potential to completely alter the 

current gene-centric view and lead to the next paradigm shift in molecular biology. 
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One of the main reasons I think metabolism should be understood well and in an 

unbiased way from molecular signaling pathways is that the concentration and flow 

of metabolites makes the survival of cells possible. Mutations are a normal part of 

life and their rate changes based on the food we eat, the environment we live in or 

even our genetic make-up. Therefore, there will always be potential for 

tumorigenesis. However, if the cellular context does not favor tumorigenic cells, they 

will never be selected and grow to kill the organism. I think the way tumor is 

currently understood is similar to separating evolution of life from its environment 

and laws of Physics, an idea that is completely unacceptable. Additionally, models 

like Knudson’s “two-hit” hypothesis (3) or Vogelstein’s “sequential model” (16)

would work perfectly in a complicated system like a SpaceX rocket engine. 

However, they are logically and scientifically flawed to be portrayed as working 

models for a complex system like cells that interact with other cells, the whole 

organism and the environment in two-way dynamic fashion, and adjust themselves 

accordingly. Years of cell culture research have shown that cells have the ability to 

adopt to any treatment or modification that is not lethal. 

In order to gain insights into the state of tumor metabolism, we took advantage of 

the publicly available transcriptomic data to study the expression of metabolic genes 

essential for cellular bioenergetics and biosynthesis. In contrast to many other studies 

that have aimed to understand tumor metabolism based on transcriptomics, we 

curated a panel of more than 600 genes involved in carbohydrate transport and 

metabolism through glycolysis, PPP, hexosamine and TCA, amino acid transport 

and metabolism through various pathways, fatty acid oxidation, synthesis and 

modification, anaplerotic reactions and electron transport chain (ETC), and showed 

their differential expression between tumor and matched normal samples on 20 

tumor cohorts. 

 

We found that overall tumors show increased carbohydrate transport into the cell, 

increased glycolysis, fatty acid and amino acid biosynthesis, along with decreased 

fatty acid beta oxidation, ketone body oxidation and amino acid catabolism. Since 
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eukaryotic cells can synthesize only a few amino acids through transamination 

reactions, they are auxotrophs and have to obtain them from the diet. Thus, amino 

acids are too valuable for tumor cells be used for energy because they are necessary 

for protein synthesis, making tumors reliant on amino acid import from the 

microenvironment, blood circulation or by activating autophagy. Reliance for short 

periods on amino acids can never be ruled out, however this is an exception and not 

the rule. Carbohydrates, on the other hand, are easy to obtain through the diet, 

especially currently, when most of the food and drinks are carbohydrate-based. 

One major misconception about tumors is that all the glucose entering glycolysis is 

converted into lactic acid in order to oxidize NADH and thus ensure the continuation 

of glycolysis to produce the necessary ATP for other cellular functions. Lactic acid 

is then assumed to be excreted as waste product in the tumor microenvironment 

where its only function is to acidify the microenvironment and increase invasion. 

However, this assumption has two major flaws: first, although a certain fraction of 

glucose which, as our data shows can change from tumor to tumor, is indeed 

converted into lactate, the latter is not all excreted but can be metabolized by the 

cells. This has been recently shown in metabolite tracing experiments in mice 

(214,215). Second, downregulation of pyruvate dehydrogenase and pyruvate 

transporters in the mitochondria has been shown in many studies, including ours, but 

this does not mean that pyruvate is not utilized in TCA. This idea is flawed because 

tumors have been shown to produce more than 80% of ATP from the TCA more than 

50 years ago (9).  

The large quantities of pyruvate produced by elevated glycolysis more than count 

for the decreased expression of its transporters and pyruvate dehydrogenase. 

Moreover, pyruvate can enter the mitochondria through anaplerotic reactions and is 

converted into other TCA intermediates for replenishing oxaloacetate during periods 

of fatty acid biosynthesis, otherwise the TCA cycle would be shut down (216). 

Isotope-tracing experiments have shown that in tumor cells, most of the pyruvate is 

converted into citrate, which is then exported into the cytoplasm for fatty acid 

biosynthesis (217). These studies are in agreement with a model proposed in 2005 
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by Costello & Franklin (218) according to which, tumor cells have high rates of 

glycolysis to produce the necessary acetyl-CoA for fatty acid and cholesterol 

biosynthesis, a process that is still being overlooked. Here, we would add also that

high rates of glycolysis are utilized for serine and NADPH biosynthesis, the first an 

essential amino acid for cell survival, and the second, the most important cofactor 

for lipid and nucleotide biosynthesis, as well as source of electrons to counter ROS 

in cells. 

Our data suggest that in general, tumor cells have decreased levels of fatty acid 

oxidation, which is a major energy source in comparison to glucose or other 

molecules, including amino acids. Although there are studies showing that tumors 

utilize fatty acid oxidation for energy, they are almost all based on cell culture, which 

is a simplified representation of the more complex tumor tissue and its 

microenvironment. The reason why tumors have reduced fatty acid oxidation is 

connected with the anabolic state of the tumor. It would be biochemically and 

thermodynamically disadvantageous for the tumor to undergo a futile cycle of 

synthesizing and oxidizing its own fatty acids. The other reason could be the hypoxic 

environment and lack of oxygen, or mitochondrial defects. It is well known that fatty 

acid oxidation requires oxygen on which the electrons coming from carbon bond 

oxidation will be transferred for the cycle to continue. 

Overall, our pan-cancer study shows that more attention should be paid to 

metabolism and better clinical approaches should be designed to control and manage 

blood sugar levels of tumor patients. This idea is also supported by clinical trials in 

which people undergoing intermittent fasting or kept under ketogenic diet show 

better response to tumor chemotherapy (219). 

4.2 AKR1B10 and PPP 

One of the key findings from the pan cancer metabolic enzyme assay was a major 

deregulation of NADPH metabolizing enzymes in many tumor types. AKR1B10 is 
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an NADPH utilizing enzyme that was remarkably upregulated in LIHC. G6PD, the 

rate limiting enzyme of the PPP was upregulated in nearly 50% of the tumors tested. 

The status of AKR1B10 as a liver tumor biomarker is under debate because different 

studies have shown opposing results regarding the association of its expression with 

tumor survival (Section 1.6.2). Our original hypothesis was to examine whether there 

existed a link between AKR1B10 (NADPH utilizing enzyme) expression and PPP 

(NADPH generating pathway) in AKR1B10High tumor samples. Using various 

bioinformatic and computational approaches, we have shown a potential link 

between AKR1B10 and PPP in addition to other xenobiotic detoxification and 

oxidative stress mitigation pathways. Since PPP is one of the main NADPH 

synthesizing pathways in the cell, and most of these pathways utilize NADPH to 

carry out their normal function, enrichment of all them in a single group of patients 

with lower OS makes it a strong case. 

Besides PPP and AKR1B10, upregulation of cellular glucuronidation and oxidative 

stress pathways in the same group of samples suggests the co-activation of cellular 

proliferation, mitigation of ROS and detoxification of bioactive compounds and/or 

chemotherapeutic drugs. PPP is a major branch of glycolysis that was found to be 

one of the most upregulated pathways in LIHC as compared to other tumors (Section 

3.1.1). NADPH is the most important cofactor that is utilized in reducing cytotoxic 

active molecules, coping with high levels of oxidative stress and biosynthesis, 

especially fatty acid, steroids and nucleotides, the main macromolecules which in 

addition to amino acids are the basic necessities for cell proliferation. ROS, hypoxic 

environment and higher cellular proliferation rates form many bioactive molecules 

which if not neutralized, would wreak havoc and destroy the cells. In this setting, 

AKR1B10 as a phase I enzyme becomes extremely important in neutralizing many 

bioactive compounds as studies in vitro and in vivo have already shown (Section 

1.6). UGTs are phase II enzyme that conjugate compounds with sugar moieties, 

making them easier for excretion (Section 3.4.2.1). AKR1B10 and UGTs have also 

been shown to be important in chemotherapeutic drug detoxification and tumor drug 

resistance. Thus, based on the data shown in this study, a whole pathway of 
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detoxification of toxic compounds and drugs can be envisioned, starting with phase 

I and being passed to phase II enzymes to be completely neutralized and excreted.  

In addition, both GSEA and RPPA analysis also showed activation of autophagy and 

proteasome degradation pathways in AKR1B10High patients, especially upregulation 

of SQSTM1 which has been shown to have important cytoprotective functions by 

activating antioxidative response and activate autophagy which offers major survival 

advantage to tumor cells, especially in advanced stages. All these pieces add up to 

create a cohesive model that makes possible higher proliferation and potentially drug 

resistance in AKR1B10High patients. However, we cannot establish at this stage to 

what extent is the influence of high AKR1B10 expression in these patients.  

In addition to other mechanisms proposed in the literature (90), here we show that 

the expression of AKR1B10 may also be controlled by methylation of TSS1500

region while the expression of PPP enzymes was not regulated in the same manner. 

We found a number of cell lines that can be used to better mimic the expression of 

AKR1B10 and PPP genes in laboratory experiments. Moreover, a number of drugs 

whose AUC values were positively correlated with AKR1B10 expression 

(representing resistance) were also identified for wet-lab experiments that are being 

carried out in our lab. 

We also extended our findings to other datasets by training 2 Cox regression models, 

one including AKR1B10 and the other without it, and found that they can stratify 

LIHC patients better than any of these genes can do independently. We showed that 

these models have the potential to generalize over other independent cohorts. 

Although their accuracy is not as high as some gene signatures already published in 

the literature, their major advantage is on their nature as they are based on a few 

pathways with PPP at the center. However, these models should be tested in 

additional independent datasets in the future to establish their utility in stratifying 

LIHC patients into high and low-risk groups. DGE analysis between high and low-

risk patients in LIHC showed that in addition to increased expression of AKR1B10, 

UGTs and ROS pathway enzymes, there was also increased levels of glycolysis, PPP 
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and amino acid transport, and decreased fatty acid oxidation and urea cycle. These 

results show that glycolysis and PPP are two underappreciated pathways in LIHC 

and their understanding could be key in better management and treatment of the 

second deadliest tumor in the world. 

4.3 Limitations of the study and Future Directions 

Despite the exhaustive nature of this study using multiple datasets and approaches to 

understand the changes in metabolic genes and the connection between AKR1B10 

and PPP, the study has some limitations. 

First, it is all based on in silico data, so having additional and better controlled liver 

tumors would add more strength to its results. An important step would be to use 

more independent datasets with LIHC patients and fit the cox model(s) in order to 

see whether they can be generalized on other populations and gene expression 

technologies, especially PCR which is widely used for gene expression 

quantification purposes. If this works, then the model(s) can be deployed for clinical 

use because it is fairly easy to quantify the expression of 2-4 genes from liver biopsy 

samples independent of any other information. 

In case these results can be validated, the next important step would be to better study 

the molecular mechanisms and find ways to either target and block PPP which I 

believe to be the main driver of these pathways, which in turn is driven by glycolytic 

flux, or to find better clinical management protocols to reduce metabolite flux 

through these pathways. As it was mentioned briefly in Section 3.5.4 and shown in 

summarized form in Appendix E, glycolysis and PPP are at much higher levels in 

high-risk patients. Moreover, when the level differences between the high-risk 

groups defined by two models in TCG-LIHC are compared, the difference in gene 

expression between these pathways is higher in the 4-gene prognostic model where 

high-risk patients had lower survival. 
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Second, more rigorous and controlled experiments are necessary to better establish 

the role of AKR1B10 in the survival of these patients independently of other 

pathways mentioned in the previous section. Especially, understanding the role of 

AKR1B10 expression and function in the light of PPP is key in accepting, rejecting 

or modifying the results presented here. Also, it is important to establish whether 

AKR1B10, a phase I conjugating enzyme is working in concert with UGTs, phase 

II-conjugating enzymes in detoxifying bioactive compounds generated by oxidative 

stress or drugs used in chemotherapy. If there turns out to be a connection, this will 

be another important axis to study for improving chemotherapy outcome. 

Third, as AKR1B10 is a drug metabolizing enzyme, experiments with some of the 

drug candidates identified in section 3.4.7 are necessary. Starting with simple in vitro 

experiments to show whether any of those drugs candidates are directly metabolized 

by AKR1B10 could be a be a beginning, and if some turn out to be metabolized by 

AKR1B10, more rigorous studies to understand their implication at cellular level 

will be necessary.  

As a final shortcoming, we would like to highlight that this study involves the use of 

transcriptomics as a surrogate for metabolomics (Please see Section 1.8 for more 

details). This approach is not without drawbacks since we assume a strong 

correlation between the mRNA expression of enzymes and their enzymatic activities. 

However, the picture inside a cell is more complex and dynamic and the flow of 

metabolites is determined by many factors such as their concentration, enzyme 

availability, enzyme modulators and enzyme SNPs. We tried our best to eliminate 

the SNP factor because we checked the main enzymes for mutations and did not find 

any significant enrichment, however the other factors cannot be controlled. Thus, in 

the future, better controlled and isotope-tracing experiments possibly on live 

organisms such as mice coupled with mathematical modeling would provide very 

valuable data regarding metabolite flux in tumors as compared to normal tissues.
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APPENDICES 

A. GSEA GO Term Enrichment in AKR1B10High Patients

NAME SIZE p-value FDR 
GO NUCLEOBASE CONTAINING SMALL MOLECULE 
INTERCONVERSION 21 0.00 0.029 

GO NADP METABOLIC PROCESS 27 0.00 0.094 
GO OXIDOREDUCTASE ACTIVITY ACTING ON A 
SULFUR GROUP OF DONORS 43 0.00 0.082 

GO DISULFIDE OXIDOREDUCTASE ACTIVITY 27 0.00 0.104 

GO RESPONSE TO OXYGEN RADICAL 18 0.00 0.091 
GO LIPOPOLYSACCHARIDE MEDIATED SIGNALING 
PATHWAY 31 0.00 0.099 
GO ANTIGEN PROCESSING AND PRESENTATION OF 
PEPTIDE ANTIGEN VIA MHC CLASS I 90 0.00 0.102 
GO REGULATION OF CELLULAR AMINO ACID 
METABOLIC PROCESS 64 0.01 0.100 

GO CELLULAR GLUCURONIDATION 22 0.00 0.100 

GO POSITIVE REGULATION OF TISSUE REMODELING 22 0.00 0.123 

GO PROTEASOME ACCESSORY COMPLEX 23 0.00 0.114 
GO ANTIGEN PROCESSING AND PRESENTATION OF 
EXOGENOUS PEPTIDE ANTIGEN VIA MHC CLASS I 65 0.00 0.118 

GO NIK NF KAPPAB SIGNALING 81 0.01 0.113 

GO ALDO KETO REDUCTASE NADP ACTIVITY 26 0.00 0.114 

GO GLUCOSE 6 PHOSPHATE METABOLIC PROCESS 21 0.00 0.119 
GO OXIDOREDUCTASE ACTIVITY ACTING ON THE CH 
CH GROUP OF DONORS NAD OR NADP AS ACCEPTOR 24 0.00 0.118 

GO REGULATION OF VIRAL ENTRY INTO HOST CELL 25 0.00 0.111 

GO GLYCOSIDE METABOLIC PROCESS 16 0.00 0.111 

GO PROTEASOME BINDING 16 0.00 0.106 

GO PROSTANOID METABOLIC PROCESS 26 0.00 0.102 

GO GLUCURONOSYLTRANSFERASE ACTIVITY 31 0.00 0.109 
GO TUMOR NECROSIS FACTOR MEDIATED SIGNALING 
PATHWAY 115 0.01 0.124 

GO DETOXIFICATION 69 0.00 0.125 
GO REGULATION OF CELLULAR AMINE METABOLIC 
PROCESS 84 0.01 0.134 

GO TOLL LIKE RECEPTOR SIGNALING PATHWAY 84 0.00 0.129 

GO ACTIVATION OF INNATE IMMUNE RESPONSE 199 0.00 0.129 

GO REGULATION OF B CELL APOPTOTIC PROCESS 18 0.01 0.150 

GO RESPONSE TO INTERFERON BETA 20 0.00 0.159 

GO PROTEIN DISULFIDE OXIDOREDUCTASE ACTIVITY 20 0.00 0.163 

GO ORGANELLAR LARGE RIBOSOMAL SUBUNIT 29 0.00 0.180 
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Table (Cont’d) 

 

GO PROTEASOME COMPLEX 74 0.03 0.177 

GO FLAVONOID METABOLIC PROCESS 28 0.00 0.174 

GO QUINONE METABOLIC PROCESS 28 0.00 0.180 
GO OXIDOREDUCTASE ACTIVITY ACTING ON THE CH 
OH GROUP OF DONORS NAD OR NADP AS ACCEPTOR 110 0.00 0.182 
GO INNATE IMMUNE RESPONSE ACTIVATING CELL 
SURFACE RECEPTOR SIGNALING PATHWAY 104 0.02 0.199 

GO URONIC ACID METABOLIC PROCESS 27 0.00 0.198 

GO VACUOLAR ACIDIFICATION 15 0.01 0.209 

GO REGULATION OF INTERLEUKIN 1 SECRETION 31 0.01 0.204 

GO TOLL LIKE RECEPTOR 4 SIGNALING PATHWAY 18 0.01 0.211 

GO RESPONSE TO TYPE I INTERFERON 53 0.03 0.207 

GO OMEGA PEPTIDASE ACTIVITY 17 0.00 0.205 

GO REGULATION OF INTERLEUKIN 8 SECRETION 17 0.01 0.213 
GO NEGATIVE REGULATION OF VIRAL ENTRY INTO 
HOST CELL 17 0.01 0.210 
GO POSITIVE REGULATION OF INNATE IMMUNE 
RESPONSE 237 0.01 0.223 
GO GLYCERALDEHYDE 3 PHOSPHATE METABOLIC 
PROCESS 16 0.01 0.231 

GO ALCOHOL DEHYDROGENASE NADP ACTIVITY 16 0.01 0.236 

GO PH REDUCTION 37 0.00 0.236 

GO SUPEROXIDE METABOLIC PROCESS 29 0.00 0.234 
GO POSITIVE REGULATION OF INTERLEUKIN 1 
SECRETION 24 0.01 0.232 
GO REGULATION OF PROTEIN UBIQUITINATION 
INVOLVED IN UBIQUITIN DEPENDENT PROTEIN 
CATABOLIC PROCESS 100 0.04 0.231 

GO GLYCOLIPID BINDING 19 0.01 0.233 
GO NEGATIVE REGULATION OF VIRAL RELEASE 
FROM HOST CELL 16 0.02 0.238 
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B. GSEA KEGG Pathway Enrichment in AKR1B10High Patients 

NAME SIZE p-value FDR 
KEGG PENTOSE AND GLUCURONATE 
INTERCONVERSIONS 27 0.00 0.01 
KEGG ASCORBATE AND ALDARATE 
METABOLISM 25 0.00 0.01 
KEGG PORPHYRIN AND CHLOROPHYLL 
METABOLISM 40 0.00 0.02 

KEGG PROTEASOME 42 0.00 0.04 

KEGG GLUTATHIONE METABOLISM 47 0.00 0.05 
KEGG AMINO SUGAR AND NUCLEOTIDE 
SUGAR METABOLISM 44 0.01 0.09 

KEGG LYSOSOME 119 0.02 0.17 

KEGG OTHER GLYCAN DEGRADATION 15 0.03 0.19 
KEGG METABOLISM OF XENOBIOTICS BY 
CYTOCHROME P450 69 0.03 0.19 

KEGG DRUG METABOLISM OTHER ENZYMES 51 0.02 0.17 

KEGG STEROID HORMONE BIOSYNTHESIS 55 0.03 0.18 

KEGG CYTOSOLIC DNA SENSING PATHWAY 40 0.04 0.19 

KEGG AMINOACYL TRNA BIOSYNTHESIS 41 0.06 0.19 

KEGG PENTOSE PHOSPHATE PATHWAY 26 0.03 0.20 
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C. GSEA Reactome Enrichment in AKR1B10High Patients 

Name SIZE p-val FDR 
REACTOME SYNTHESIS AND INTERCONVERSION OF 
NUCLEOTIDE DI AND TRIPHOSPHATES 18 0.00 0.00 
REACTOME REGULATION OF ORNITHINE DECARBOXYLASE 
ODC 48 0.00 0.08 
REACTOME DESTABILIZATION OF MRNA BY AUF1 HNRNP 
D0 51 0.00 0.06 

REACTOME METABOLISM OF NUCLEOTIDES 70 0.00 0.07 

REACTOME GLUCURONIDATION 18 0.01 0.08 
REACTOME REGULATION OF MRNA STABILITY BY 
PROTEINS THAT BIND AU RICH ELEMENTS 82 0.02 0.08 
REACTOME AUTODEGRADATION OF THE E3 UBIQUITIN 
LIGASE COP1 48 0.01 0.08 

REACTOME VIF MEDIATED DEGRADATION OF APOBEC3G 48 0.01 0.08 

REACTOME ER PHAGOSOME PATHWAY 60 0.01 0.07 

REACTOME ANTIGEN PROCESSING CROSS PRESENTATION 74 0.01 0.07 
REACTOME CROSS PRESENTATION OF SOLUBLE 
EXOGENOUS ANTIGENS ENDOSOMES 47 0.01 0.06 

REACTOME CYTOSOLIC TRNA AMINOACYLATION 24 0.01 0.08 

REACTOME GOLGI ASSOCIATED VESICLE BIOGENESIS 50 0.01 0.08 

REACTOME AUTODEGRADATION OF CDH1 BY CDH1 APC C 57 0.02 0.07 

REACTOME ACTIVATION OF NF KAPPAB IN B CELLS 62 0.02 0.07 

REACTOME TRANS GOLGI NETWORK VESICLE BUDDING 57 0.01 0.07 
REACTOME P53 INDEPENDENT G1 S DNA DAMAGE 
CHECKPOINT 49 0.02 0.06 

REACTOME TRNA AMINOACYLATION 42 0.02 0.07 

REACTOME IRON UPTAKE AND TRANSPORT 35 0.01 0.07 

REACTOME PHASE II CONJUGATION 68 0.00 0.07 

REACTOME REGULATION OF APOPTOSIS 57 0.03 0.07 
REACTOME CDK MEDIATED PHOSPHORYLATION AND 
REMOVAL OF CDC6 47 0.03 0.07 
REACTOME SCF BETA TRCP MEDIATED DEGRADATION OF 
EMI1 50 0.03 0.07 

REACTOME SIGNALING BY WNT 63 0.03 0.07 
REACTOME ACTIVATED TAK1 MEDIATES P38 MAPK 
ACTIVATION 17 0.01 0.07 
REACTOME TAK1 ACTIVATES NFKB BY PHOSPHORYLATION 
AND ACTIVATION OF IKKS COMPLEX 23 0.01 0.11 
REACTOME CDT1 ASSOCIATION WITH THE CDC6 ORC 
ORIGIN COMPLEX 55 0.04 0.11 

REACTOME INTERFERON ALPHA BETA SIGNALING 50 0.03 0.11 
REACTOME CYCLIN E ASSOCIATED EVENTS DURING G1 S 
TRANSITION  63 0.04 0.11 
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Table (Cont’d) 
 

REACTOME P53 DEPENDENT G1 DNA DAMAGE RESPONSE 54 0.05 0.11 
REACTOME APC C CDC20 MEDIATED DEGRADATION OF 
MITOTIC PROTEINS 66 0.04 0.11 

REACTOME MEMBRANE TRAFFICKING 123 0.01 0.11 
REACTOME DOWNSTREAM SIGNALING EVENTS OF B CELL 
RECEPTOR BCR 93 0.03 0.12 

REACTOME SIGNALING BY THE B CELL RECEPTOR BCR 122 0.02 0.11 

REACTOME SCFSKP2 MEDIATED DEGRADATION OF P27 P21 54 0.05 0.13 
REACTOME APC C CDH1 MEDIATED DEGRADATION OF 
CDC20 AND OTHER APC C CDH1 TARGETED PROTEINS IN 
LATE MITOSIS EARLY G1 65 0.07 0.14 
REACTOME NUCLEOTIDE BINDING DOMAIN LEUCINE RICH 
REPEAT CONTAINING RECEPTOR NLR SIGNALING 
PATHWAYS 44 0.02 0.14 

REACTOME INSULIN RECEPTOR RECYCLING 21 0.03 0.15 

REACTOME ASSEMBLY OF THE PRE REPLICATIVE COMPLEX 64 0.06 0.15 
REACTOME DESTABILIZATION OF MRNA BY 
TRISTETRAPROLIN TTP 17 0.04 0.15 
REACTOME NEF MEDIATES DOWN MODULATION OF CELL 
SURFACE RECEPTORS BY RECRUITING THEM TO CLATHRIN 
ADAPTERS 21 0.04 0.20 
REACTOME ANTIGEN PRESENTATION FOLDING ASSEMBLY 
AND PEPTIDE LOADING OF CLASS I MHC 21 0.08 0.20 

REACTOME HOST INTERACTIONS OF HIV FACTORS 120 0.07 0.23 
REACTOME THE ROLE OF NEF IN HIV1 REPLICATION AND 
DISEASE PATHOGENESIS 28 0.06 0.23 
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D. LASSO Model Clinical Dependencies 

Variables Two Groups High and Low 

Characteristic Variables High Low p-value High Low p-value 

Gender 
Male 81 161 

0.085 
81 61 

0.62 
Female 28 89 28 26 

Age 
<= 60 50 120 

0.8 
50 36 

0.63 
>60 59 130 59 51 

Grade 

I 34 134 

0.0013 

34 50 

0.001 
II 33 50 33 13 

III 33 49 33 16 

IV 1 4 1 0 

Neoplasm Grade 

G1 10 44 

0.0051 

10 31 

<0.0001 
G2 45 125 45 41 

G3 48 70 48 13 

G4 6 6 6 1 

TNM Stage 

T1 35 142 

< 0.0001 

35 54 

0.0002 

T2 36 51 36 13 

T3 17 26 17 10 

T3A 11 17 11 6 

T4 6 7 6 0 

TP53 
WT 46 190 

< 0.0001 
77 31 

<0.0001 
MUT 62 52 55 29 

CTNNB1 
WT 77 176 

0.88 
59 66 

0.48 
MUT 31 66 28 21 

ALB 
WT 93 209 

1 
93 71 

0.92 
MUT 15 33 15 13 

KEAP1 
WT 99 233 

0.12 
99 81 

0.29 
MUT 9 9 9 3 

NFE2L2 
WT 99 227 

0.62 
99 80 

0.49 
MUT 9 15 9 4 
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E. Expression Differences of Glycolysis-Related Genes 

Table showing expression of genes involved in glycolysis, PPP and Hexose 

transport in the cell. Positive LFC shows upregulation in low-risk group and 

negative LFC upregulation in high-risk group. 

 

Symbol Pathway 4-Gene Model lfc 2-Gene Model lfc 

ADH1A Glycolysis 1.605 1.510 

ADH1B Glycolysis 2.512 2.023 

ADH1C Glycolysis 1.583 1.579 

ADH4 Glycolysis 2.141 2.005 

ADH5 Glycolysis 0.472 0.425 

ADH6 Glycolysis 1.208 1.236 

ADH7 Glycolysis 0.655 0.482 

ADHFE1 Glycolysis 1.380 1.054 

AKR1A1 Glycolysis 0.036 0.099 

ALDH1A3 Glycolysis 1.796 0.955 

ALDH1B1 Glycolysis 0.561 0.924 

ALDH2 Glycolysis 1.407 1.520 

ALDH3A1 Glycolysis 0.017 -0.532 

ALDH3A2 Glycolysis 0.612 0.502 

ALDH3B1 Glycolysis -0.646 -0.996 

ALDH3B2 Glycolysis -0.409 -2.048 

ALDH7A1 Glycolysis 0.899 0.896 

ALDH9A1 Glycolysis 0.627 0.748 

ALDOA Glycolysis -1.650 -1.505 

ALDOB Glycolysis 1.363 1.633 

ALDOC Glycolysis -0.071 -0.120 

BPGM Glycolysis 0.023 0.031 

DERA Glycolysis 0.322 0.354 

ENO1 Glycolysis -1.462 -1.201 

ENO2 Glycolysis -2.078 -2.245 

ENO3 Glycolysis 0.352 0.886 

FBP1 Glycolysis 1.761 1.680 

FBP2 Glycolysis -0.073 0.130 

G6PC Glycolysis 2.305 2.233 

G6PC2 Glycolysis 1.199 1.290 

GALM Glycolysis 0.334 0.243 

GAPDH Glycolysis -1.002 -0.856 

GPI Glycolysis -0.485 -0.135 

HK1 Glycolysis -0.378 0.240 

HK2 Glycolysis -0.924 -1.829 

HK3 Glycolysis -1.372 -1.184 

HK4 Glycolysis 1.261 2.029 
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Table (Cont’d) 

HKDC1 Glycolysis -0.799 -1.391 

LDHA Glycolysis -0.413 -0.177 

LDHAL6A Glycolysis -0.667 -0.459 

LDHAL6B Glycolysis 0.270 0.156 

LDHB Glycolysis 0.041 -0.618 

LDHC Glycolysis -0.047 0.313 

MCT1 Glycolysis 0.005 0.269 

MCT2 Glycolysis -0.122 -0.015 

MCT3 Glycolysis 0.278 0.433 

MTC4 Glycolysis -2.603 -2.575 

PC Glycolysis 0.903 0.907 

PCK1 Glycolysis 2.130 1.791 

PCK2 Glycolysis 1.682 1.489 

PFKL Glycolysis 0.231 0.199 

PFKM Glycolysis -0.747 -0.199 

PFKP Glycolysis -1.889 -1.707 

PGAM1 Glycolysis -0.249 -0.089 

PGAM4 Glycolysis 0.061 0.295 

PGK1 Glycolysis -0.545 -0.417 

PGK2 Glycolysis -2.212 -1.547 

PGM1 Glycolysis 0.567 0.770 

PGM2 Glycolysis 0.072 0.561 

PKLR Glycolysis 0.931 1.075 

PKM Glycolysis -2.476 -2.447 

6PGL PPP -0.229 -0.275 

G6PD PPP -3.874 -3.457 

PGD PPP -1.547 -1.154 

PRPS1 PPP 0.004 0.159 

PRPS1L1 PPP -2.834 -2.346 

PRPS2 PPP 0.118 -0.174 

RBKS PPP 0.492 0.533 

RPE PPP -0.283 -0.250 

RPEL1 PPP -0.411 -0.076 

RPIA PPP -0.512 -0.536 

SHPK PPP 0.685 0.756 

TALDO1 PPP -0.840 -0.857 

TKT PPP -1.561 -1.641 

TPI1 PPP -0.437 -0.399 

SLC2A1 Transport -2.561 -2.143 

SLC2A2 Transport 1.806 1.520 

SLC2A3 Transport -0.211 -0.048 

SLC2A4 Transport 0.636 1.231 

SLC2A5 Transport -1.844 -0.641 

SLC2A6 Transport -1.136 -1.074 

SLC2A7 Transport -0.679 -0.737 
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Table (Cont’d) 

SLC2A8 Transport 0.369 0.431 

SLC2A9 Transport 0.618 0.824 

SLC2A10 Transport 1.037 0.789 

SLC2A11 Transport 0.040 0.184 

SLC2A12 Transport 0.196 0.472 

SLC2A13 Transport -0.184 -0.171 

SLC2A14 Transport 0.627 0.693 

SLC45A1 Transport 0.880 0.731 

SLC45A2 Transport -0.261 0.324 

SLC45A3 Transport 0.623 0.319 

SLC45A4 Transport 0.645 -0.445 

SLC50A1 Transport -0.289 -0.530 

SLC5A1 Transport 1.818 -0.215 

SLC5A10 Transport -0.258 0.105 

SLC5A11 Transport -2.049 -2.508 

SLC5A2 Transport -0.228 -0.149 

SLC5A3 Transport -0.354 0.210 

SLC5A4 Transport 1.235 1.147 

SLC5A9 Transport 0.465 0.320 
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