
A NEW LIGHTWEIGHT STATISTICAL RANDOMNESS TEST SUITE AND ITS
EVALUATION BY COMPARISON WITH OTHER TEST SUITES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ZİYA AKCENGİZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

AUGUST 2021





Approval of the thesis:

A NEW LIGHTWEIGHT STATISTICAL RANDOMNESS TEST SUITE AND
ITS EVALUATION BY COMPARISON WITH OTHER TEST SUITES

submitted by ZİYA AKCENGİZ in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Cryptography Department, Middle East Technical
University by,

Prof. Dr. Ayşe Sevtap Kestel
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Department of Mathematics, METU

Assoc. Prof. Dr. Fatih Sulak
Co-supervisor, Department of Mathematics, Atilim University

Examining Committee Members:

Prof. Dr. Ali Aydın Selçuk
Department of Computer Engineering, TOBB ETU

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Assoc. Prof. Dr. Murat Cenk
Institute of Applied Mathematics, METU

Assoc. Prof. Dr. Zülfükar Saygı
Department of Mathematics, TOBB ETU

Assoc. Prof. Dr. Oğuz Yayla
Institute of Applied Mathematics, METU

Date:



iv



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ZİYA AKCENGİZ

Signature :

v



vi



ABSTRACT

A NEW LIGHTWEIGHT STATISTICAL RANDOMNESS TEST SUITE AND ITS
EVALUATION BY COMPARISON WITH OTHER TEST SUITES

AKCENGİZ, ZİYA
Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Assoc. Prof. Dr. Fatih Sulak

August 2021, 64 pages

Playing rolling dice or toss a coin is fair or not depends on whether the material
played is fair or not. Generating a random number is equivalent to both dice and coin
game. Random numbers have a wide usage area. Hence generating a random number
is very important, and it should be fair. In other words, the generator should not have
any bias. Using statistical randomness tests, we can determine whether a generator
generates random numbers or not, that is, whether the generated numbers follow a
pattern or not. In the literature, there are many statistical randomness tests. Some of
these tests were selected, and they form a test suite. While defining a randomness test
suit, the suites in the literature, the features of the sequences are not considered. In
this thesis, a test suite is proposed to test a long sequence. Some tests in the literature
are already in a suitable format to be applied to long sequences. In addition, some
approximations have been used to apply those tests designed for relatively shorter
sequences to long sequences, or the sequences have been manipulated using to make
them suitable for those tests while ignoring whether manipulations damage the struc-
ture of sequence or not. It has been evaluated that the test suites in the literature using
such manipulations to long sequences may give incomplete results. In this thesis, the
appropriate tests in the literature are modified into long sequence tests using three
different methods, and new long sequence tests are proposed. Sequences generated
from true and pseudo-random number generators are tested with the proposed test

vii



suite. By collecting proposed tests together according to their time performance, su-
per lightweight and lightweight test suites are proposed. The mutual correlation of
the tests with each other is evaluated. Sensitivities to bias sequences are tested and
compared with tests in the literature.

Keywords: Randomness, Random Number, Long Sequences, Stream Cipher, Cryp-
tography, Randomness Tests, Test Suites

viii



ÖZ

UZUN DİZİLER İÇİN YENİ BİR HAFİF SIKLET İSTATİSTİKSEL
RASTGELELİK TEST PAKETİ VE DİĞER TEST PAKETLERİYLE

DEĞERLENDİRMELİ OLARAK KARŞILAŞTIRILMASI

AKCENGİZ, ZİYA
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Doç. Dr. Fatih Sulak

Ağustos 2021, 64 sayfa

Bir zar atmanın veya yazı tura oynanın adil olup olmadığı zara veya paraya bağlı-
dır. Rastgele bir sayı üretmek zar atma ve yazı tura oyununa mantık olarak eşittir.
Rastgele sayılar kullanım alanı oldukça geniştir, bundan dolayı rastgele sayı üretimi
önelidir ve üretimin adil olması gereklidir, yani üretilen sayıların bir yönelimi olma-
malıdır. İstatistiksel rastgelelik testleri kullanılarak üretecin ürettiği sayıların rastgele
olup olmadığını yani üretilen sayıların belli bir döngü izleyip izlemediğini belirleye-
biliriz. Literatürde, bir çok istatistiksel rastgelelik testi vardır. Bu testlerden bazıları
seçilerek bir test paketi haline getirilmiştir. Literatürde ki test paketleri oluşturulur-
ken, test edecekleri dizilerin özellikleri dikkate alınmamıştır. Bu tez de uzun dizileri
test edecek bir test paketi önerildi. Literatürde ki bazı testler uzun dizileri test etmek
için uygun değildir. Ek olarak, diğer testleri de uzun diziler uygulamak için bazı yak-
laşımlar kullanılmıştır veya dizi üzerinde bazı metodlarla oynanarak test edilebilecek
duruma getirilmiştir. Literatürde kullanılan metodlarda dizinin yapısında bir kayıp
olup olmadığı gözardı edilmiştir. Literatürdeki test paketlerinin bundan dolayı yeterli
sonuç veremeyeceği değerlendirilmiştir. Bu tezde, seçilen uygun testler üç farklı me-
tod kullanılarak uzun dizi testlerine dönüştürüldü ve bazı metodlar için yeni uzun
dizi testleri önerildi. Önerilen test paketi ile gerçek ve sözde rastgele sayı üreticiyle
üretilmiş uzun diziler test edildi. Önerilen testler zaman performanslarına göre bir

ix



araya getirilerek süper hafif ve hafif test takımları önerilmiştir. Testlerin ikili ilişkileri
değerlendirildi. Testlerin eğilimli dizilere karşı duyarlılıkları belirlendi ve literatürde
yer alan diğer testlerle karşılaştırıldı.

Anahtar Kelimeler: Rastgelelik, Rastgele Sayılar, Uzun Diziler, Akan şifreler, Krip-
tografi, Rastgelelik Testleri, Test Paketleri

x



To my family

xi



xii



ACKNOWLEDGMENTS

First of all, I would like to gratefully thank my supervisor, Assoc. Prof. Ali DOĞA-
NAKSOY not only for his support, guidance and motivation that make my thesis start
and finish but also for being the main factor that makes me choose Cryptography.

I would like to express my deep thanks to my co-supervisor, Assoc. Prof. Dr. Fatih
SULAK and Dr. Muhiddin UĞUZ, although his name does not express as a supervi-
sor, for their support and contributions to my thesis with their great experiences and
knowledge.

I am very grateful to Batuhan AVLAYAN for his unrequited help, support and, most
importantly being a good friend.

I would like to thank my examining committee members, for their evaluations, ad-
vices and contributions.

I would like to thank Onur KOÇAK, Okan ŞEKER, Murat Burhan İLTER and Erkan
USLU, who provided motivation and support for a long time with their friendships,
even though we could not work together for Ph.D.

I thank my friends from TUBITAK-UEKAE and friends from FAME-CRYPT for
their support and friendships.

I greatly thank my father and my mother for their support to take the best education
during my life and for their love and encouragement.

I greatly appreciate my wife, Ezgi ORBAY AKCENGİZ, for her endless support and
help while writing my thesis, but most importantly, for her love for me. I would like
to thank my son Timuçin AKCENGİZ, who has been the source of endless energy
and joy in my house throughout this stressful process. At last, I thank my second son,
Teoman AKCENGİZ, who will be with us soon and will be miss my endless student
career, maybe the give the last big motivation to end this thesis.

xiii



xiv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Preliminary Statistics . . . . . . . . . . . . . . . . 5

1.1.1.1 Mean and Variance . . . . . . . . . . 6

1.1.1.2 Normal Distribution . . . . . . . . . . 6

1.1.1.3 Chi Square Goodness of Fit Test . . . 7

1.1.1.4 Complementary Error Function and In-
complete Gamma Function . . . . . . 7

xv



1.1.1.5 Hypothesis Testing, Error Types and
Significance Level . . . . . . . . . . . 8

2 RANDOMNESS TESTS AND PARTITIONING METHODS . . . . 9

2.1 Partition Methods . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Entire Sequence Testing Method . . . . . . . . . . 12

2.1.2 Fixed Length Partition Method . . . . . . . . . . . 13

2.1.3 Dynamic Partition Method . . . . . . . . . . . . . 14

2.2 Randomness Tests . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Weight Test . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.1 Entire Sequence Weight Test . . . . . 16

2.2.1.2 Fixed Length Partition Weight Test . . 17

2.2.1.3 Dynamic Partition Weight Test . . . . 19

2.2.2 Run Tests . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2.1 Entire Sequence Total Number of Runs
Test . . . . . . . . . . . . . . . . . . 21

2.2.2.2 Fixed Length Partition Total Number
of Run Test . . . . . . . . . . . . . . 22

2.2.2.3 Dynamic Partition Total Number of
Runs Test . . . . . . . . . . . . . . . 23

2.2.2.4 Entire Sequence R2 Run Test . . . . . 24

2.2.3 Auto-correlation Test . . . . . . . . . . . . . . . . 27

2.2.3.1 Entire Sequence Auto-correlation Test 27

2.2.4 Linear Complexity . . . . . . . . . . . . . . . . . 28

xvi



2.2.4.1 Fixed Length Partition Linear Com-
plexity Test . . . . . . . . . . . . . . 28

2.2.4.2 Dynamic Partition Linear Complex-
ity Test . . . . . . . . . . . . . . . . . 30

2.2.5 Integer (Non-overlapping Template) Tests . . . . . 33

2.2.5.1 Fixed Length Partition Coverage Test . 34

2.2.5.2 Dynamic Partition Collision Tests . . . 35

2.2.5.3 Dynamic Partition Saturation Point Test 37

2.2.6 Dynamic Partition Index Coincidence Test . . . . . 39

3 APPLICATIONS AND CORRELATIONS . . . . . . . . . . . . . . . 43

3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Test Performance and Proposed Test Suites . . . . 43

3.1.2 Test Results of Random Sources . . . . . . . . . . 44

3.2 Correlations of Test . . . . . . . . . . . . . . . . . . . . . . 45

4 SENSITIVITIES OF TESTS AND COMPARISON OF TEST SUITES 49

4.1 Test Results of Bias Sources . . . . . . . . . . . . . . . . . . 49

4.2 Comparison of Tests . . . . . . . . . . . . . . . . . . . . . . 52

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvii



xviii



LIST OF TABLES

Table 1.1 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Table 2.1 Statistical Tests for Long Sequences . . . . . . . . . . . . . . . . . 9

Table 2.2 Methods according to length of sequence . . . . . . . . . . . . . . . 11

Table 2.3 Statistical Randomness Tests and Appropriate Methods . . . . . . . 12

Table 2.4 Bin values of Fixed Length Partition Weight Test for b = 256 . . . . 18

Table 2.5 Bin values of Dynamic Partition Weight Test . . . . . . . . . . . . . 20

Table 2.6 Bin values of Fixed Length Partition Total Number of Run Test for
b = 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 2.7 Bin values of Dynamic Partition Method Total Run Test . . . . . . . 24

Table 2.8 Bin values of Entire Sequence R2 Run Test . . . . . . . . . . . . . 27

Table 2.9 Bin values of Fixed Length Partition Linear Complexity Test for
b = 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 2.10 Bin values of Dynamic Partition Linear Complexity Test . . . . . . 33

Table 2.11 Bin values of Fixed Length Partition Integer Coverage Test for b = 8 35

Table 2.12 Example of Collision . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 2.13 Bin values of Dynamic Partition Collision Test about integers . . . . 37

Table 2.14 Bin values of Dynamic Partition Collision Test about indexes . . . . 37

Table 2.15 Bin values of Dynamic Partition Saturation Point Test for b = 8 . . . 39

Table 2.16 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 2.17 Bin values of Dynamic Partition Index Coincidence Test . . . . . . 41

Table 3.1 Time Spent for Each Test in Seconds . . . . . . . . . . . . . . . . . 44

xix



Table 3.2 Proposed Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 3.3 Time Spent Comparisons of Test Suites . . . . . . . . . . . . . . . 45

Table 3.4 Test results of random sources . . . . . . . . . . . . . . . . . . . . 45

Table 3.5 Pearson correlation results of tests . . . . . . . . . . . . . . . . . . 46

Table 3.6 Pearson correlation results of Weight Tests . . . . . . . . . . . . . . 46

Table 3.7 Pearson correlation results of Run Tests . . . . . . . . . . . . . . . 47

Table 3.8 Pearson correlation results of Fixed Length . . . . . . . . . . . . . . 47

Table 3.9 Pearson correlation results of Dynamic Partition . . . . . . . . . . . 47

Table 4.1 Test results of biased sources . . . . . . . . . . . . . . . . . . . . . 50

Table 4.2 Test results of biased template sequences . . . . . . . . . . . . . . . 51

Table 4.3 Test results of repeating sequences . . . . . . . . . . . . . . . . . . 52

Table 4.4 Test results of repeating complement sequences . . . . . . . . . . . 52

Table 4.5 NIST test suite results . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 4.6 NIST test suite results of biased template sequences . . . . . . . . . 55

xx



LIST OF ALGORITHMS

Algorithm 1 Applying Entire Sequence Testing Method . . . . . . . . . . . 13

Algorithm 2 Applying Fixed Length Partition Method . . . . . . . . . . . . 14

Algorithm 3 Applying Dynamic Partition Method . . . . . . . . . . . . . . 15

xxi



LIST OF ABBREVIATIONS

S n bit binary sequence

S ′ derivative sequence of S

S̃ integer sequence of S

Ck Auto Correlation

NIST National Institute of Standards and Technology

E(X) = µ Expected Value

V (X) = σ2 Variance

LC Linear Complexity

ICP Index Coincidence Point

AES Advance Encryption Standard

ECB Electronic Codebook

CBC Cipher Block Chaining

F.L Fixed Length Partitioning

Dyn Dynamic Partitioning

xxii



CHAPTER 1

INTRODUCTION

Random sequences can be described as a set of symbols without any order or pattern.

They are used in many areas of science such as biology, statistics, finance, informa-

tion science, and mathematics. Moreover, random sequences are used commonly in

cryptographic algorithms such as encryption keys, nonces, salts.

When we talk about a ‘random number’ or a ‘number sequence,’ we mean a ‘number’

or the ‘sequence’ generated by a random process. Random processes which generate

a sequence with terms from the set T = {0, 1, 2, . . . , n} possess certain statistical

properties such as

• Terms of sequence should be generated independently, that is, any information

about the first k term should not provide any information to predict the (k+1)st

term,

• Terms should be generated identically,

• In most cases uniform distribution of elements of T is also required. In par-

ticular, if the elements are taken from the set T = {0, 1} sequence is called a

binary sequence. Then, it is expected that each element of σ ∈ T occurs with

probability 1
2
, called balancedness.

Random sequences are generated by Truly Random Number Generators (TRNG),

which extract randomness from physical phenomena such as atmospheric noise, move-

ment of an electron, heat measurements, Etc. [39]. Random number generators de-

pending on quantum events are called Quantum Random Number Generator [17].

1



These types of generators are sub-case of TRNGs. However, TRNGs are not useful

for cryptographic purposes in most cases because it is necessary to provide the same

environment to reproduce a generated sequence. Moreover, transmission and stor-

age of the data produced by TRNGs have a cost. Another type of random number

generator is Pseudo-Random Number Generators (PRNG). The structure of PRNGs

depends on some deterministic mathematical algorithms. Since they rely on deter-

ministic algorithms, sequences generated are generally periodic and depend on the

seed, so by definition, PRNGs are not random processes. However, if the PRNG is

cryptographically safe, in other words, without knowing the seed that is nearly im-

possible to guess the sequence, they are used for cryptographic algorithms. It is vital

to test the sequences generated by PRNGs for being indistinguishable from true ran-

dom number sequences. If PRNGs do not satisfy randomness criteria, they reduce the

strength and security of the cryptosystem in which they are used so that system can be

cryptanalyzed. Some of the attacks on PRNGs are given in [20]. Therefore, PRNGs

and cryptographic algorithms should be designed well so that outputs should be in-

distinguishable from an output of a TRNG. Although it is impossible to say numbers

are theoretically random, in general, the testing process is done statistically and based

on some combinatorial aspects.

Deciding the pseudo-randomness of an infinite sequence is a difficult task. Golomb’s

Postulates are one of the good examples for this purpose [11]. These postulates are

among the most significant attempts to create some necessary properties for a finite

(or periodic) sequence to be pseudo-random. Sequences satisfying the following three

properties are called pseudo-random sequences.

Let σ = (σ1, σ2, . . . , σn)∞ be an infinite binary sequence periodic with some integer

n. A run is defined as an uninterrupted maximal subsequence of identical bits. Runs

of 0’s are called gaps, and runs of 1’s are called blocks. The following R1, R2, and

R3 are Golomb’s randomness postulates:

(R1) In a period of σ, the number of 1’s should differ from the number of 0’s by at

most 1. In other words, the sequence should be balanced.

(R2) In a period of σ, at least half of the total number of runs of 0’s or 1’s should have

length one, at least one-fourth should have length 2, at least one-eighth should have

2



length 3, and so on. Moreover, for each of these lengths, there should be (almost)

equal gaps and blocks.

(R3) The auto-correlation functionCk should be two-valued. That is, for some integer

K and for all k = 0, 1, 2, . . . , n− 1,

Ck =
n−1∑
j=0

(−1)sj+sj+k =

n if k = 0

K where k 6= 0
. (1.1)

Although these postulates are essential for the philosophy of randomness, they are too

strict and valid only for periodic infinite sequences. A non-periodic finite partition of

an infinite random sequence may not provide these postulates. In the literature, rather

than Golomb’s postulates, statistical approaches are studied to measure whether the

finite sequence is random with a certain probability. Statistical randomness tests use

different random variables, mainly inspired by these postulates [2, 7, 10, 13, 14, 16,

18, 30, 35, 41, 42, 43, 48].

Statistical tests can be published individually or as a suite. Kendall and Smith suggest

one of the oldest test suites [21], which involves four basic tests, named frequency,

serial, poker and gap test. In years many test suites were proposed, but Donald

Knuth in [22] suggested the idea of most of these statistical suites. He suggested

ten statistical tests named birthday spacings, collision, coupon collector’s, frequency,

gap, maximum of t, permutation, poker, run and serial. Later, Koçak suggested some

modifications to these tests in [24].

P. L’Ecuyer investigated some statistical tests and applied them in [26]. Then, P.

L’Ecuyer and Simard defined a test suite which is the suite of test batteries [25].

Marsaglia defined some basic tests in [28]. Then, Marsaglia introduced test suite

DIEHARD in [27]. In this test suite, there are twelve statistical randomness tests.

Later, Brown introduced the DIEHARDER test suite, including all tests in DIEHARD

and ten more tests [4].

Rukhin defined a test suite including eleven statistical tests in [33]. Then, NIST

proposed a test suite using these tests and some additional tests [34]. NIST test suite

involves fifteen tests. For testing the randomness of AES candidates, Soto [37] uses

3



this suite. In years, corrections in some tests proposed in this test suite were done

[6, 12]. Since it is a well-known test suite, some algorithm improvements were made

to apply this suite faster [45].

Walker proposed the test suite ENT, including five tests [49] and Srinivasanet pro-

posed a test suite to test problems in parallel implementations of PRNGs [38]. Al-

though generated sequences can be long or short, none of these tests suites the length

of the sequences was disregarded.

In the literature, test suites are designed for testing without considering the length

of the sequences. For testing short sequences, especially for testing the outputs of

block ciphers or hash functions, Sulak proposed a new approach for randomness tests

[40]. Sulak proposed a test suite for the short sequences, which give better results

and do not need concatenating short outputs. On the other hand, Koçak proposed a

test suite that includes tests from the literature with a mathematical background and is

essential for determining randomness [23]. Koçak gave the distribution functions and

necessary recursions to compute actual probability calculations. Both test suites are

designed to test short sequences, and the given actual probability calculations work

only for short sequences.

In the literature, for testing short sequences, probabilities are computed either by

doing exact calculations or use recursions. For testing long sequences, either good

approaches can be made, for example, normal distribution for weight test, these ap-

proaches will be used directly without changing the structure of the sequence, or the

sequence is partitioned into short subsequences to which we can evaluate test statis-

tics. For the testing bundle of subsequences, for each of them, random-variable of

tests, named t-values are computed. Then using statistical approximations, usually,

χ2 goodness of fit test sequences are tested. For using these methods, the probability

distribution function or necessary recursions should be computed. However, this type

of partitioning may cause distortion. In the literature, one of the standard methods for

testing long sequences is fixed length partition.

According to Soto [36], independence and coverage are important issues. Turan et al.

observed that some tests for short sequences on the NIST test suite are correlated [46].

Doğanaksoy et al. and Sulak et al. observed those correlations and dependencies in

4



NIST test suite [1, 8, 44]. In addition to these, there are many studies in the literature

about correlations, independence, and coverage of statistical randomness tests [9, 15,

19].

In this thesis, we adopt the method of dynamic partition depending on the random

variable. In this method, while testing a long sequence, no bit of the sequence is

wasted, and partitioning depends on random variables. This approach is constructed

by inspiring the collision estimate method, which is one of the entropy estimation

methods recommended in the NIST [47]. By classifying the tests suitable for the three

proposed methods, each test result for the appropriate method is obtained. In addition,

if the test is appropriate, results are obtained in other methods, and comparisons are

made. Finally, a lightweight and a super lightweight test suite that can be applied

to long sequences are proposed. In addition, we evaluate the mutual correlations

of the tests in the proposed test suite by using Pearson correlation [32]. Moreover,

the sensitivity of the tests to bias sequences is examined. Based on the data obtained,

evaluations are made on how the test suite should be created. In addition, comparisons

are made if the test has a version in the NIST test suite.

The content of this thesis is briefly processed according to the chapters as follows.

In the first chapter, a brief introduction is made, and preliminaries that should be

known are given. In the second chapter, methods and definitions of randomness tests

that are used are presented. In the third chapter, applications and mutual correlations

of defined tests are given. In the fourth chapter, sensitivities and results of the tests

comparisons with NIST test suite are given. Finally, the conclusion is made, and

future works are mentioned.

1.1 Preliminaries

1.1.1 Preliminary Statistics

In this thesis, three methods are proposed to apply randomness tests to long se-

quences. It is essential to know some statistical terms, inequalities, and distributions

to apply these methods to statistical randomness tests. In this section, the explanations

5



of mean, variance, normal distribution, and chi-square goodness fit test are given.

1.1.1.1 Mean and Variance

Mean, or expected value, is the average value that the probability distribution of the

random variable should be taken, denoted by µ or E(X), where X is a random vari-

able.

For a discrete random variable X ,

E(X) = µ =
∑

xp(x) (1.2)

where p(x) = probability of x occurrence.

For a continuous random variable X ,

E(X) = µ =

∫
xf(x) dx. (1.3)

where f(x) = probability distribution function of X .

Variance is the expected squared deviation of a random variable from its mean, de-

noted by σ2 or V (X).

V (X) = σ2 = E(X2)− E(X)2. (1.4)

1.1.1.2 Normal Distribution

Many phenomena’ probability distributions depend on the normal distribution. The

normal distribution is a symmetric distribution depending on mean and variance. If

the mean is 0 and variance is 1, then the distribution is called the standard normal

distribution.

Probability density function of normal distribution is:

Nµ,σ2(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (1.5)

6



1.1.1.3 Chi Square Goodness of Fit Test

The Chi-square goodness of fit test is one of the most effective statistical techniques

used to examine how much a sample taken from a set reflects the entire set. When

using this test, the exact distribution of the random variable is calculated and divided

into bins. The values in the sample taken from the set are put in the appropriate bin,

and the number of elements contained in each bin is found. Finally, the result of the

test is obtained by performing the following procedure:

χ2(X) =
n∑
i=1

(Obs(Xi)− Exp(Xi)
2

Exp(Xi)
(1.6)

1.1.1.4 Complementary Error Function and Incomplete Gamma Function

In this thesis, the probability distribution functions of proposed tests approach two

different distributions. One of them is the normal distribution. To compute tail prob-

ability of normal distribution complementary error function, erfc(z), is used, which

gives p-value of test.

erfc(z) = 1− 2

π

∫ ∞
z

e−t
2

dt (1.7)

The second type approximation is χ2 goodness of fit test. To use this approximation,

one should use χ2 distribution. The get test results which are used chi2 distribution

incomplete gamma function, igamc(χ2, dof) (dof=degree of freedom), is used which

result give the p-value of test. To compute igamc we need to compute gamma func-

tion, Γ(z).

Γ(z) =

∫ ∞
0

tz−1e−t dt (1.8)

igamc(χ2, dof) =
1

Γ(χ2)

∫ ∞
dof

e−tta−1 dt (1.9)

7



1.1.1.5 Hypothesis Testing, Error Types and Significance Level

While performing statistical tests, the hypothesis that the number generator is random

is tested. The null hypothesis, H0, is number generator is random. The alternative

hypothesis Ha is number generator is not random. For each case, there exists an error

type given in Table 1.1 [34].

Table 1.1: Hypothesis Testing
Random sources Accept H0 Accept Ha

Generator random Correct Type-I error
Generator non-random Type-II error Correct

A predetermined value α called significance level is used for test Type-II error used

for randomness testing. Each statistical test is checked whether the test result called p-

value is greater than α or not. If the result is correct, then H0 is accepted. Otherwise,

the random number generator is non-random, so that H0 is rejected.

8



CHAPTER 2

RANDOMNESS TESTS AND PARTITIONING METHODS

In this chapter, methods and randomness tests used in this thesis are defined, and their

applications are explained. In the literature, there are lots of statistical randomness

test to determine a sequence or a bundle of sequences are random or not. Some

of these tests are given in Table 2.1. In the literature, tests statistics that test can

be applied long sequences not explained well. This type of test either uses some

simulation results or some approximation without giving any detailed explanation. In

this thesis, we evaluate long sequences’ randomness with detailed calculations and

propose a new lightweight test suite for testing long sequences.

Table 2.1: Statistical Tests for Long Sequences
TEST NAME LENGTH TEST NAME LENGTH

Test for the Longest Run of Ones in a Block[34] 750000 Non-Overlapping Template Matching[34] 106

Binary Matrix Rank Test[27] 38912 Overlapping Template Matching Test[34] 106

Maurer’s "Universal Statistical" Test[30] ≥ 387840 Lempel-Ziv Compression Test [34] 106

Linear Complexity Test[34] 106 Random Excursions Test[34] 106

Random Excursion Variant Test[34] 106 The birthday spacings test[27] 226

The overlapping 5-permutation test[27] 106 The bitstream test[27] 221 + 19

The tests OPSO, OQSO and DNA[27] 221 The craps test[27] 200000

It is not possible to decide whether a sequence is truly random or not. However, using

statistical properties can decide whether the sequence looks random with a certain

probability. A randomness test is defined in three steps. The first step is defining a

random variable X : Ω → R, where Ω is the set of sequences. Then, obtaining its

probability distribution function F (X). The second step is computing X(S) = ts

where S ∈ Ω is the sequence under consideration and ts is the count of random

variable. The last step is evaluating the sequence.

Let α be the predefined significance level of null hypothesis H0 then statistical ran-

9



domness test is the result of probability of X(§) = tp is defined as follows,

Prob(X(σ) = ts)

≤ α σ is not random

> α σ pass the test.
(2.1)

When the sequence is reasonably short, computing X(S) and Prob(X(S = ts) can

be easy, when the length of sequence gets longer, computing Prob(X(S) = ts) =

F (t) is generally difficult unless it is impossible. In the literature, to overcome

this problem, statistical properties are used. For computing F (t), some good ap-

proaches should be found. For example, for the weight test, computing exact value

of Prob((w(S) = k) = 1
2k

(
n
k

)
directly is easy until length of the sequence n is about

1000. However, when n gets larger, this computation will not work. Since, in most

cases, direct computation is infeasible for large values, explicit expression of F is not

enough. A feasible way of computing F (t) is using recursions which is an advan-

tageous method for reasonably short sequences [23]. However, for the length of the

sequence to get larger, recursion cannot be computed. For this reason, an accurate

approximation of statistics of the random variables should be found to compute test

results. For the weight test, when n is large enough, F approaches the normal distri-

bution. Although some tests using approximations give results, like weight and run

[34], there is no accurate approximation for many tests used for cryptographic pur-

poses. The third method is testing a collection of short subsequences of the sequence

since all computations are much easier for short sequences. In Table 2.2, the methods

to be used for testing sequences of different lengths are given. If the length of the

sequence is short, then exact computation can be done. Since exact computations can

be done, we do not need recursions and approximation, and partitioning methods are

not feasible. If the length of the sequence is reasonably long, then exact computa-

tion can not be done quickly. Because of this reason, recursions can be used. Since

recursion gives the exact results for this type of sequence, it is unnecessary to use

approximations and partitioning methods. However, if the sequence is long enough,

there are only two options: approximation or partitioning methods.

Let S1, S2, . . . SN be N overlapping or non-overlapping parts of S with an order.

Then, X(S1), X(S2), . . . , X(SN) are t-value of statistical randomness test depending

10



Table 2.2: Methods according to length of sequence
exact recursion approximation partition

short X no need X X
reasonably long not feasible X no need no need
long X X X X

on random variable of X . Then, distribution values of X over ΩN and distribution

values of X over {S1, S2, . . . , SN} should be similar by means of χ2 distribution.

Definition 2.0.1. Let S = s1, s2, . . . , sn and S1 = s1, s2, . . . , st1 , S2 = st1+1, st1+2

. . . , St1+t2 , . . . SN = stN−1+1, stN−1+2, . . . , sn be a partition of S. If ti = tj for all

i, j = 1, 2, . . . N − 1, then length of all subsequences are equal and it is called fixed

length partition otherwise variable length partition.

If the given partition is the fixed length, then the χ2 distribution can be used directly.

Otherwise, the given partition depends on a random variable. Let ξ ∈ X(S) and

l0 ∈ Z+ be fixed. We define a new random variable Xξ : Ω 7→ Z+ as

Xξ(σt) 7→

l0 if X(sb(t), . . . , sb(t)+j 6= ξ for j = 0, . . . , l0 − 1

1 +minj{j|X(sb(t), . . . sb(t)+j . . . sb(t)+j) = ξ} otherwise
(2.2)

where b(t) is defined by setting b(1) = 1 and b(t+ 1) = b(t) +Xξ(St) for t > 1. We

call the subsequence St = sb(t), . . . , sb(t)+1 the tth part of S.

In this thesis, tests are classified and defined in three methods: applied to the entire

sequence, fixed-length, and dynamically partitioned subsequences. In Table 2.3, we

give the statistical randomness tests used in this thesis and relative methods that can

be applied. Not all methods are suitable for all tests. There are different reasons for

this. For the entire sequence testing method, test statistic does not approach a suitable

distribution, or random variable does not work well and does not test every term of a

long sequence. For the fixed-length partitioning method, random variables may not

test the last term of subsequences. A random variable may not occur for the dynamic

partitioning method, and the partitioning method will not work well. Because of these

reasons, we do not recommend each test for each method.

11



Table 2.3: Statistical Randomness Tests and Appropriate Methods
TEST NAME ENTIRE SEQUENCE FIXED LENGTH DYNAMICAL

Weight X X X
Total Run X X X
R2 Run X X X

Linear Complexity X X X
Integer Coverage X X X

Integer Collision Index X X X
Integer Collision Distance X X X

Integer Saturation X X X
Index Coincidence Point X X X

2.1 Partition Methods

In this section, partitioning methods and their applications are explained. This thesis

proposes a lightweight test suite to test long sequences without destroying their struc-

ture to avoid losing distortions. From the properties given in Chapter 1, defined tests

should be simple and examine the entire sequence. Three different methods are used

in this thesis: the entire sequence testing method, fixed-length partition method, and

dynamic partition method.

2.1.1 Entire Sequence Testing Method

In this method, the entire sequences will be tested without any partitioning. As

mentioned before, some statistical tests can be applied to long sequences using this

method in the literature. The primary purpose of this method is to test the sequence

roughly. For this method, four tests are chosen: weight, run, R2 run, and autocor-

relation from the literature. Tests are selected by considering Golomb’s postulates.

Approximate distributions are used according to the random variable of the test. In

this thesis, test statistics of weight, run, and correlation from the proposed test for the

entire sequence testing method approaches normal distribution for long sequences. In

addition, we use the χ2 goodness of fit test in the R2 run test.

12



For using this method, Algorithm 1 should be followed;

Algorithm 1: Applying Entire Sequence Testing Method
Result: If p-value≥ 0.01 sequence pass

Generate sequence S length n ≥ 106;

Define test and random variable X and compute test statistic;

If necessary convert sequence to generate integer or ±1 sequence;

while t ≤ n do

Count the random variable ;

end

Compute p-value with using test statistic;

2.1.2 Fixed Length Partition Method

The fixed-length partition method is widely used in the literature. As mentioned be-

fore, this method is used frequently to test long sequences. In this method, a fixed

number b is chosen, and the generated long sequence is partitioned into short subse-

quences of length b. Then, tests that can be applied to short sequences as a bundle

are applied. The main advantage of this method is that statistical computation can

be used automatically. In other words, the statistical calculations that cannot be per-

formed in long sequences become applicable with this method. On the other hand,

there are some disadvantages of using this method. While testing for randomness,

every information that sequences will carry is critical. However, artificially partition-

ing the sequence will cause some information to deteriorate. Therefore, this method

should be used very carefully, and this method should not be applied to every test. In

this thesis, the proposed tests have been chosen that will not deteriorate the structure

of the sequence. Weight test and total run test are chosen as default tests. In addition

to these two tests, we propose linear complexity and integer coverage tests resistant

to structural disorders. The tests in this method can be quickly diversified. For using

13



this method, the given Algorithm 2 should be followed;

Algorithm 2: Applying Fixed Length Partition Method
Result: If p-value≥ 0.01 sequence pass

Generate sequence S length n ≥ 106;

Define test and random variable X and fixed number b;

Compute test statistic according to b and compute the exact bin values;

If necessary convert sequence to generate integer or ±1 sequence ;

while b ∗ i ≤ n do

Partitioning sequence to non-overlapping subsequence Si of length b ;

For Si count the random variable and get ti;

Separate ti to relative bin;

end

Count the observed values for each bin;

Compute p-value by using χ2 goodness of fit test and incomplete gamma

function;

2.1.3 Dynamic Partition Method

The method in which the random variable determined in the tests partitioned the se-

quence is called the dynamic partition method. We adapt the method used in collision

estimate to statistical tests for randomness of long binary sequences [47] and integrate

with seven randomness tests. We recommend this method since tests are given in the

literature either can not be applied to long sequences or do not respect the structure of

the sequences. Although the implementation of random variables is simple, time com-

plexity issues and computational difficulties arise when dealing with long sequences.

Some test suites have overcome this problem by using asymptotic approximation or

partitioning the sequence into short and equal length parts and then evaluating the

collection obtained for randomness. In the suggested method, a sequence will be

partitioned into meaningful parts. The random variables themselves determine the

termination of the parts without deteriorating the structure of the sequences.

In this thesis, we chose seven practical and informative tests for this method. Weight

tests and total run tests are chosen as default tests. We propose three different tests:

14



Linear complexity and integer tests named: collision type 1 and type 2 tests and

saturation point tests, and a new test named index coincidence point. For using this

method, Algorithm 3 should be followed.

Algorithm 3: Applying Dynamic Partition Method
Result: If p-value≥ 0.01 sequence pass

Generate sequence S length n ≥ 106;

Define test and random variable X and fixed number b according to X;

Compute the exact bin values;

If necessary convert sequence to generate integer or ±1 sequence ;

while t ≤ n do

if Xoccur then

Partition the sequence and count variable and separate to bin.;

end

end

Count the observed values for each bin;

Compute p-value with using test statistic;

2.2 Randomness Tests

In this section, the definitions, computations, and evaluations of the randomness tests

in all methods used in this thesis are given. From the literature, weight test, run tests,

auto-correlation test, linear complexity test, integer tests were used in this method for

this thesis. Finally, a a new test called as index coincidence test is proposed.

2.2.1 Weight Test

Definition 2.2.1. Weight is the number of 1’s in a binary sequence.

Example 2.2.2. Let S = 0010110000110001011011010010001111110001 then the

weight w(S) = 19.

In a random binary sequence with length n, from the property of balancedness, it is

expected that weight should be equal to n/2. This test aims to determine the number

15



of 1′s and 0′s are equally distributed through the sequence. In a binary sequence with

length n, the weight of a binary sequence can be at least 0 (00 . . . 0) and at most n

(11 . . . 1).

In the NIST test suite, [34], there are two weight tests named Frequency and Fre-

quency within a Block. In the Frequency test, the number of 1′s in a sequence is tested

with two different methods. One of these methods is using normal distribution di-

rectly. The other method is partitioning the sequence into equal length subsequences,

then computing p-value using the normal distribution, and separating p-value in ten

uniformly divided bins. This approximation will be misleading given in [40]. On the

other hand, in the Frequency within in a Block test, the sequence is partitioned into

fixed-length non-overlapping subsequences. For each subsequence, weight is com-

puted, and χ2 distribution is used. However, while test statistic was evaluated for

each subsequence expected value of weight was given as t
2
. The result of this test

will be misleading since some parts of randomly generated sequences should look

non-random.

In this thesis, the weight test has been included for all methods since it is one of

the basic tests is suitable for each method. Application of methods, statistical and

theoretical computations are given in the related sections.

2.2.1.1 Entire Sequence Weight Test

For a random binary sequence, since bits are independent and identically distributed,

it is expected the probability of generated bit 1 or 0 is equal, that is P (Si = 1) =

P (Si = 0) = 1
2
.

Let the number of different sequence with weight w and length n be Sw. Then

Sw =

(
n

w

)
. (2.3)

16



The probability of generated sequence of length n is:

P (w(S) = w) =

(
n

w

)(
1

2

)w(
1

2

)n−w
=

(
n
w

)
2n

. (2.4)

The probability distribution function of this function is the binomial distribution.

From the Central Limit Theorem for big n, the binomial distribution approaches the

normal distribution. To make computations easy, we use random variable X that is

equal to the difference between weight and mean, X = µ − Sw. Then mean of X is

equal to 0 and standard deviation σ =
√
n/
√

2. Since X has normal distribution it

becomes standard normal distribution by using transformation X−µ
σ

= X
√
2√
n

= Z

From Section 1.1.1.2 we get,

P

(
Sw√
n
< z

)
= 2φ(z)− 1 =

1√
2π

∫ z

−∞
e

−u2
2 du. (2.5)

To test a generated sequence the following steps should be done [34]:

1. Count the weight Sw of the generated sequence S.

2. Use standard normal distribution, compute X = |µ−Sw| and divide X by
√
n.

3. Compute p-value, which is 2(1− φ(X)) = erfc( X√
2
)

Remark 2.2.3. This test is completely equal to the Frequency test in NIST test suite

[34]. In our opinion, this test should be done for every sequence. If the sequence

fails, then the sequence can be declared as non-random without applying the other

tests. However, if the sequence passes the test, this does not imply that sequence is

random. For example, S = 11001100.... will pass from the weight test.

2.2.1.2 Fixed Length Partition Weight Test

The disadvantages of weight tests in the NIST test suite were stated. In this thesis,

we overcome this problem by using weight test statistics proposed by Koçak [23].

Bin Bounds and Probabilities

17



Fact 2.2.4. Let P (w ≤ t) denote the probability of weight less than t. From P (w =

k) = 2−n
(
n
k

)

P (w ≤ t) = 2−n
t∑
i=0

(
n

i

)
(2.6)

By using this fact, the following recursion can be found:

Pn(w ≤ t) =
1

2
[Pn−1(w ≤ t) + Pn−1(w ≤ t− 1)] (2.7)

where Pn(w ≤ t) is equal to probability of weight less than or equal to t where the

sequence length is equal to n. The following steps should be done to apply weight

test in this method;

1. Set b and compute the relative bin values by using Equation 2.7. In this thesis

we set b = 256. The bin bounds and the probabilities according to b = 256 are

given in Table 2.4.

2. Partition the generated sequence according to b.

3. Compute the weight of each subsequence and separate them into relative bins.

4. Multiply each bin probability with the number of subsequences to get the ex-

pected number of sequences.

5. Compute χ2 goodness of fit test and compute p-value by using igamc(χ, dof).

(degree of freedom of this test is number of bins-1).

For computing bin probabilities, the Equation 2.7 can be used. For example, for the

first bin P256(w ≤ 0) + P256(w ≤ 1) + +P256(w ≤ 118) should be computed.

Table 2.4: Bin values of Fixed Length Partition Weight Test for b = 256
bins 1 2 3 4 5 6 7 8
weight [0− 119) [119− 123) [123− 126) [126− 129) [129− 131) [131− 134) [134− 138) [138− 256]

expected probability 0.11749 0.12844 0.13144 0.14754 0.09773 0.13144 0.12844 0.11748

Remark 2.2.5. The fourth and the fifth bin values are not equal since the probability

of P (w = 128) for b = 256 has the greatest probability. If we change bin bounds

18



or use nine bins with a bin that includes only probability P (w = 128), we can get

symmetric bin values. However, while we compute bin bounds, we separate them in

probabilities as close to each other as possible.

2.2.1.3 Dynamic Partition Weight Test

In this section, the computation of the weight test in the dynamic partition method

will be given. In this method length of subsequences depend on the weight of parts.

Let S be n bit binary sequence, and w is the predestined weight. Record the first

index k at which weight achieves w and delete this subsequence. The same process

is repeated throughout the sequence. Suppose the weight does not reach weight w

before the fixed index t, record the index t, and continue the process. t is chosen so

that the probability of not reaching the weight w till index t is negligible.

Example 2.2.6. Let S = 00101010001010001011011010010100111011001 and take

w = 2, t = 7. (Notice that the probability of not reaching the weight w = 2 until 7th

term is 1
27

)

S1 = 00101, S2 = 010001, S3 = 010001, S4 = 011, S5 = 011, S6 = 01001,

S7 = 01001, S8 = 11, S9 = 011 the rest is deleted. Hence, w2 = 1, w3 = 3, w4 = 0,

w5 = 3, w6 = 2, w≥7 = 0

Fact 2.2.7. Let Pw(k) denote the probability that weight achieves w at bit k for the

first time. Then,

Pw(k) =
1

2k

(
k − 1

w − 1

)
. (2.8)

Remark 2.2.8. Weight cannot be equal to w before the term w ; that is k ≥ w.

Bin Bounds and Probabilities

Bin values should be determined to use the χ2 distribution. In order to make test

statistics more understandable, the bin probabilities are chosen as close to each other

as possible.

19



The suggested parameter values for w and t are 128 and 280, respectively. The range

with respect to w = 128 is {128, 129, · · · }. Bounds and corresponding probabilities

of bins can be seen in the following Table 2.5. For computing bin probabilities, the

Equation 2.8 can be used. For example, to get the first bin probability P128 + P129 +

. . .+ P238 should be computed.

Table 2.5: Bin values of Dynamic Partition Weight Test
i 1 2 3 4 5 6 7 8

partition length 128-238 239-245 246-250 251-255 256-260 261-266 267-274 275 ≤
probabilities 0.13522 0.12626 0.11445 0.12404 0.12171 0.12823 0.12455 0.12549

2.2.2 Run Tests

Definition 2.2.9. In a binary sequence, uninterrupted sub-sequences of identical bits

are called run.

Let S = σ1, σ2 . . . , σn be a binary sequence with length n. Then S ′ is first derivative

of S with each entry of S ′ is S ′i = σi + σi+1 and without loss of generality S ′n = 1.

Until the end of the sequences, the end of each run means the beginning of the new

run. In a binary sequence with length n, number of a runs can be at least 0 (00 . . . 0

or 11 . . . 1) and at most n− 1 (1010 . . . 10 or (0101 . . . 01).

Example 2.2.10. Let S = 001011000011 then runs of S are; r1 = 00, r2 = 1, r3 =

0, r4 = 11, r5 = 0000, r6 = 11 respectively.

As weight test, run tests is one of the basic tests that almost all suites involve. In the

NIST test suite [34], there are two run test named "run test" and "test for the longest

run of ones in a block". The run test evaluates the number of total runs directly by

using the normal distribution. Test for the longest run of ones in a block evaluates

the count of those in a block by using χ2 distribution with exact probabilities. In this

thesis, we defined two different run tests named the total number of runs test and the

R2 run test.

20



2.2.2.1 Entire Sequence Total Number of Runs Test

In a random binary sequence with length n the expected total number of the run is

equal to n/2 [11]. The total number of runs test is the basic test of test suites, has been

included in the test suite for all four methods. This test aims to determine whether the

number of ones and zeros are uniformly distributed along the sequence or not.

As defined in Section 2.2.2, consecutive bits that involve only 1 or only 0 that con-

tinues unchanged are called run. This test in this method aims to determine whether

the total number of runs in the generated sequence looks like the number of runs in a

random sequence.

For finding the total number of runs in a sequence, the weight of the derivative S ′,

given in Section 2.2.2 of the sequence, should be calculated. Then, the total number

of runs, Rt(S) is, Rt(S) = S ′w.

One of the templates, "01" or "10" should be generated for a run. There are four

different 2-bit templates, "00, 01, 10, 11". As in weight test, since bits are independent

identically distributed, it is expected that the probability of generated bits is one of

the given templates are P (Si,i+1 = 00) = P (Si,i+1 = 01) = P (Si,i+1 = 10) =

P (Si,i+1 = 11) = 1
4
. In other words, a run occurs in 2 bits with a probability 1

2
.

Therefore, expected total number of run is equal to n
2
.

As weight test, Total Number of Run Test in this method is very similar to the run test

in NIST test suite [34]. Since we use this test for long sequences without partitioning,

the only difference is that we do not use weight to evaluate the expected total number

of runs. The rest of this test is very similar to the weight test in this method. For

computing p-value, the following step should be done;

1. Evaluate the derivative, S ′ of generated sequence S.

2. Compute S ′w.

3. Since we use standard normal distribution compute X = |µ − S ′w| and divide

X by
√
n.

4. Since we need to compute p-value, which is 2(1− φ(X)) = erfc( X√
2
)

21



Remark 2.2.11. As weight test, the total number of runs test should be done. Al-

though sequence fails to imply that it is non-random, sequence passes is not imply

randomness.

2.2.2.2 Fixed Length Partition Total Number of Run Test

The only run test we use in this method is the number of total run tests. To apply this

test for long sequences, statistical computations of the run test proposed by Koçak in

[23] are using.

Bin Bounds and Probabilities

Fact 2.2.12. Let P (r ≤ t) denote the probability of number of runs less than or equal

to t. Number of runs is equal to t−1 means total number of 01 and 10 in the sequence

is t− 1. That is, weight of derivative sequence S ′ is equal to t. Then

P (S ′w = t) = P (r = t) =
1

2n

(
n− 1

t− 1

)
(2.9)

From this equation we get,

P (r ≤ t) =
1

2n

t∑
i=0

(
n− 1

i− 1

)
(2.10)

By using this fact the following recursion can be found.

Pn(r ≤ t) =
1

2
[Pn−1(r ≤ t) + Pn−1(r ≤ t− 1)] (2.11)

where Pn(r ≤ t) is equal to probability of number of runs less than t where the

sequence length is equal to n. For applying this test to a long sequence, the following

steps should be done;

1. Set b and compute the relative bin values by using Equation 2.11. In this thesis

we set b = 256. The bin bounds and the probabilities according to b is given in

Table 2.6.

22



2. Partition the generated sequence according to b.

3. Compute run of each subsequence and separate them relative bins to get ob-

served number of sequences.

4. Multiply each bin probability with number of subsequence to get expected

number of sequences.

5. Compute χ2 goodness of fit test and compute p-value by using igamc(χ, dof).

(degree of freedom of this test is number of bins-1).

For computing bin probabilities, the Equation 2.11 can be used. For example, for the

first bin P256(r ≤ 0) + P256(r ≤ 1) + +P256(r ≤ 118) should be computed.

Table 2.6: Bin values of Fixed Length Partition Total Number of Run Test for b = 256
bins 1 2 3 4 5 6 7 8
number of run [1− 119) [119− 124) [124− 127) [127− 129) [129− 132) [132− 135) [135− 139) [139− 256]

expected probability 0.12981 0.13582 0.13551 0.09887 0.14640 0.12738 0.12106 0.10516

2.2.2.3 Dynamic Partition Total Number of Runs Test

As in the weight test in this method, we decide the test point that the number of runs

reaches the predestined values.

Let S be n bit binary sequence, and r is the predestined number of runs. Record

the first index k at which the number of runs and delete this subsequence. The same

process is repeated throughout the sequence. If the number of runs does not reach to

number r before the index t, record the index t and delete the subsequence. t is chosen

so that the probability of not reaching the number of runs r till index t is negligible.

The process is familiar with the weight test in this method.

Example 2.2.13. Let S = 0011100001010000000111 and take r = 2, t = 7. (Notice

that the probability of not reaching the number of runs r = 2 until t = 7th term is 1
28

)

Since it is easy the see the number of runs from the derivative of the sequence, com-

pute the S ′

S ′ = 010010001111000000100 then

23



S ′1 = 01001, S ′2 = 00011, S ′3 = 11, S ′4 = 0000001, the rest is deleted. Hence, r2 = 1,

r5 = 2, r≥7 = 1

Bin Bounds and Probabilities

For using χ2 distribution, bin values have to be determined. In order to make the test

statistics more understandable, the bin values should be chosen as close to each other

as possible.

Let S be a binary sequence. Then compute S ′ for compute number of runs. It is

expected that S ′ is random. Let r be the predestined number of runs that sequence

partition. In other words, r is the weight of S ′ that S ′ is partitioned. The only differ-

ence between this test and the weight test in this method is since S ′ is generated from

the original sequence S by compute σi + σi+1, when ith index of S ′ is generated in

the original sequence the i+ 1th index is generated. Other computations are the same

as the weight test. However, it can be seen from Table 2.7 bin bounds are different.

The suggested parameter values for the r and t are 128 and 281, respectively. The

range with respect to r = 128 is {128, 129, · · · }. Bounds and corresponding prob-

abilities of bins can be seen in the following Table 2.7. For computing bin proba-

bilities, the Equation 2.8 can be used. For example, to get the first bin probability

P129 + P130 + . . .+ P239 should be computed.

Table 2.7: Bin values of Dynamic Partition Method Total Run Test
i 1 2 3 4 5 6 7 8

partition length 129-239 240-246 247-251 252-256 257-261 262-267 268-275 276 ≤
probabilities 0.13522 0.12626 0.11445 0.12404 0.12171 0.12823 0.12455 0.12549

2.2.2.4 Entire Sequence R2 Run Test

There are many run tests in the literature. They are designed according to the total

number of runs or the lengths of the runs. However, neither of them fully corresponds

to the second postulate of Golomb. When testing a long sequence, this postulate was

not cited as a test. This test aims to evaluate the sequence exactly like in Golomb’s

postulate and determine whether frequencies of the length of runs are uniformly dis-

tributed or not. Since this test depends on the total number of runs, if the sequence

24



fails the entire sequence total number of tuns test 2.2.2.1, this test should not be ap-

plied.

Due to the nature of the test, it can be applied only to long sequences. Hence, this test

is used only in the entire sequence testing method.

Remark 2.2.14. As mentioned before, To occur a run, one of the templates "01" or

"10" should be generated. So that to occur, a run of length 1 one of template "010" or

"101" should be generated. Each case can occur with probability 1
2

implies that the

expected total number of runs of length 1 is half of the total number of runs. While

the expected total numbers of runs of length l compute, the same method can be used.

To see a run of length l ”01− (l− 2 ones)− 10” or ”10− (l− 2 zeros)− 01” should

be generated. For each case, the probability is 1
2l

, which implies that the expected

total number of runs of length l is one-lth of the total number of runs.

Test Description:

To perform this test, the followings should be done;

1. Total number of runs should be counted.

2. Total number of runs of length i, Ri, for i = 1, 2, 3, 4, 5, 6, 7,≥ 8 should be

counted.

3. Using bin values given Table 2.13, counts of bins should be calculated, note

that last bin can be calculated by using other values.

4. χ2 value should be calculated by using Equation 1.6 and by using values in

Table 2.8.

5. At the end compute p-value by using Equation 1.9, igamc(χ2, 7).

Bin Bounds and Probabilities

Let r be the total number of runs of σ, where length of sigma is n. Then expected

number of runs of length i, E(ri), is computed as follows.

Case r1:

25



Let S ′ = s′1, s
′
2, . . . , s

′
n−1, 1 be derivative of σ. Then a run means that si = 1. Except

from first and the s′n−1 term runs of length 1 means that s′i = s′i+1 = 1. For the

first term and and the s′n−1 term it is enough to s′1 = 1and s′n−1 = 1. Then expected

number of runs of length 1 is,

Prob(s′1 = 1) = Prob(s′n−1 = 1) =
(r − 1)

n− 1
(2.12)

Prob(s′i = s′i+1 = 1) =
(n− 2)(n− 1)(r − 2)

(n− 1)(n− 2)
(2.13)

E(r1) =
r(r − 1)

n− 1
(2.14)

Case r2:

Except from first two and last three term runs of length 2 means that s′i = s′i+2 = 1

and s′i+1 = 0. For the first term and and the s′n−2, s
′
n−1 term it is enough to s′1 = 0

and s′2 = 1 and s′n−1 = 0 and s′n−2 = 1. Then expected number of runs of length 2 is,

Prob(s′1 = 0 and s′2 = 1) = Prob(s′n−1 = 0 and s′n−2 = 1) =
(r − 1)(n− r − 1)

(n− 1)(n− 2)
(2.15)

Prob(s′i = s′i+2 = 1 and s′i+1 = 0) =
(n− 3)(r − 1)(r − 2)(n− r − 1)

(n− 1)(n− 2)(n− 3)
(2.16)

E(r2) =
r(r − 1)(n− r − 1)

(n− 1)(n− 2)
(2.17)

Case ri:

To generalize we get;

E(ri) =
r(r − 1)(n− r − 1) . . . (n− r − (i− 1))

(n− 1)(n− 2) . . . (n− t)
(2.18)

26



Table 2.8: Bin values of Entire Sequence R2 Run Test
bins 1 2 3 4 5 6 7 ≥ 8

length of run 1 2 3 4 5 6 7− 8 ≤ 9

expected count E(r1) E(r2) E(r3) E(r4) E(r5) E(r6) E(r7) E(r≥8)

2.2.3 Auto-correlation Test

Another proposed test is in this thesis from Golomb’s postulates [11] is auto-correlation.

According to Golomb’s third postulate in a random binary sequence, the auto-correlation

function should be two-valued.

Definition 2.2.15. Let S be a binary sequence with length n. k auto-correlation of S

is;

Ck =
n−k−1∑
j=0

sj + sj+k (2.19)

where sj is jth term of S.

In a random binary sequence auto-correlation function should be two valued. Obvi-

ously if k = 0, the C0 = n. The expectation when k 6= 0 is Ck = K for some integer

0 < K < n.

Koçak proposed a version of this test in [23], that can be applied only to short se-

quences.

2.2.3.1 Entire Sequence Auto-correlation Test

Remember that, let S be random binary sequence then; k auto-correlation of S is

computed from the Equation 2.19. Since each bit of random sequence is independent

and identically distributed, then shifted sequence of the random binary sequence is

expected that random. The sum of two random sequences should be random implies

that it is expected that the auto-correlation of Ck is equal to n
2

for any k.

The test statistic is equal to weight test. For applying auto-correlation test, the fol-

lowing steps should be done;

1. Define a number b such that auto-correlation function should be run. In this

thesis we choose b = 256

27



2. Identify shifted b sequences to be calculated auto-correlation. In this thesis we

choose k = 1, 2, . . . , 256

3. Calculate auto-correlation ck for each k.

4. Calculate p-value by using standard normal distribution as in weight test.

5. Count number of p-value< 0.01, say t.

6. If t > b
100

then determine as sequence non-random.

This test aims to determine the periodic structure of the sequences. So that, it is

recommended that to choose b as big as possible.

2.2.4 Linear Complexity

Definition 2.2.16. Let σ be a binary sequence, linear complexity of σ is the length of

the shortest linear feed back shift register(LFSR) that can produce σ.

Linear complexity test is also included in NIST test suite [34]. Time complexity ex-

ponentially increases with respect to the length of sequence while computing linear

complexity. NIST overcomes this problem by using the fixed-length partition method

and use the χ2 distribution. In this thesis, we use this method to apply linear complex-

ity. Moreover, we used the dynamic partition method to make the linear complexity

test more meaningful. These tests aim to determine whether or not the linear com-

plexity of a given sequence is as expected. These tests should be applied only for

short sequences. Because of this, the linear complexity test is used in fixed-length

partition and dynamic partition methods.

2.2.4.1 Fixed Length Partition Linear Complexity Test

Linear complexity test in this method is completely the same as in NIST test suite

[34]. Since our opinion is linear complexity test is significant, it is appropriate to

include it in this method in this thesis.

Bin Bounds and Probabilities

28



Berlekamp-Massey algorithm can be used to calculate linear complexity of a se-

quence. [3, 29]. Let L(S) = L1, . . . , Ln be linear complexity profile of the binary

sequence S = s1, . . . , sn of length n, that is, for each, k = 1, . . . n, Lk is the linear

complexity of the subsequence s1, . . . , sk. Denoted the linear complexity of S by Λ,

i.e, Λ = Ln. Then probability of a sequence S have linear complexity Λ = l is;

Prob(Λ = l) =


2−n if l = 0

22l−n−1 if 1 ≤ l ≤ n/2

2n−2l if n/2 < l ≤ n

(2.20)

By using the equation, relative bin values can be computed. For applying this test to

a long sequence, the following steps should be done;

1. Set b and compute the relative bin values by using Equation 2.20. In this thesis

we set b = 256. The bin bounds and the probabilities according to b is given in

Table 2.9.

2. Partition the generated sequence according to b.

3. Compute linear complexity of each subsequence and separate them relative bins

to get observed number of sequences.

4. Multiply each bin probability with number of subsequence to get expected

number of sequences.

5. Compute χ2 goodness of fit test and compute p-value by using igamc(χ, dof).

(degree of freedom of this test is number of bins-1). For b = 256, it is suitable

to use 7 bins.

For computing bin probabilities the Equation 2.20 can be used. For example, to get

the first bin probability P (Λ = 0) + P (Λ = 1) + . . . + P (Λ = 125) for n = 256

should be computed.

29



Table 2.9: Bin values of Fixed Length Partition Linear Complexity Test for b = 256
bins 1 2 3 4 5 6 7
linear complexity [0− 126) [126− 127) [127− 128) [128− 129) [129− 130) [130− 131) [131− 256)

expected probability 0.01042 0.03125 0.125 0.5 0.25 0.0625 0.0208

2.2.4.2 Dynamic Partition Linear Complexity Test

As in the weight and total run test, the linear complexity test was used in the dy-

namic partition method. We decided that the linear complexity test will take place

in this method since this test can be modified for the dynamic partition method. The

calculations of this test in the dynamic partition method can better understand.

Computation of Probabilities

Given a non-negative integer l ≤ n, recall that the Equation (2.20). For a given

positive integer λ ≤ n, there are two possibilities: either Λ < λ or Λ ≥ λ. The

probability of the first event can be computed directly from above as;

Prob(Λ < λ) =


2−n if λ = 1

1
3·2n (1 + 22λ−1) if 2 ≤ λ ≤ n/2

1− 1
3·2n (4n−λ+1 − 1) if n/2 < λ ≤ n

. (2.21)

Now, assume that Λ ≥ λ. It is clear that L(S) need not to assume the value λ but

certain that Lk ≥ λ for some index k. Define λ be the smallest value not less than

λ which is assumed by let L(S) let i(λ) is index of the term at which L(S) assumes

that value λ for the first time. Namely,

i(λ) = min{k|Lk ≥ λ}.

For any λ ≤ λ′ ≤ λ, it is obvious that λ′ = λ and also i(λ′) = i(λ). It follows from

minimality of λ that Lk < λ ≤ λ for all k = 1, . . . , i(λ)− 1 so we conclude that

δi(λ)−1 = 1 and Li(λ) = i(λ)− λ,

where δ is the next discrepancy function. Last equation implies that i(λ) − λ < λ

which leads to

λ ≤ i(λ) ≤ λ+ λ− 1.

30



Now we have

Prob
(
i(λ) = k and λ = t

)
=


2−t if k = t

1
2
Prob(Lk−1 = k − t) if t+ 1 ≤ k ≤ t+ λ− 1

0 if t+ λ < k ≤ n

.

The condition i(λ) ≤ λ+λ− 1 ≤ 2λ− 1 implies that i(λ)−λ ≤ 1
2
(i(λ)− 1) so that

Prob(Lk−1 = k − λ) = 2k−2λ,

hence

Prob
(
i(λ) = k and λ = t

)
=


2−t if k = t

2k−2t−1 if t+ 1 ≤ k ≤ t+ λ− 1

0 if t+ λ ≤ k ≤ n

.

Fix an integer λ0 with λ ≤ λ0 ≤ n. We conclude the probability of the event λ = λ0:

Case 1: λ0 + λ− 1 ≤ n

Prob(λ = λ0) =

λ0+λ−1∑
k=λ0

Prob(i(λ) = k and λ = λ0)

= 2−λ0 +

λ0+λ−1∑
k=λ0+1

2k−2λ0−1

= 2−λ0 + 2−2λ0(2λ0+λ−1 − 2λ0)

= 2−λ0+λ−1.

Case 2: n < λ0 + λ− 1

31



Prob(λ = λ0) =
n∑

k=λ0

Prob(i(λ) = k and λ = λ0)

= 2−λ0 +
n∑

k=λ0+1

2k−2λ0−1

= 2−λ0 + 2−2λ0(2n − 2λ)

= 2n−2λ0 .

We summarize these computations as

Prob(λ = λ0) =

2−λ0+λ−1 if λ0 + λ− 1 ≤ n

2n−2λ0 if n < λ0 + λ− 1
.

Now we focus on computation of Prob(i(λ = k)).

Prob(i(λ) = k) =
k∑
t=λ

Prob(i(λ) = k) and λ = t).

Case 1. λ ≤ k ≤ 2λ− 1

Prob(i(λ) = k) =
k−1∑
t=λ

2k−2t−1 + 2−k

= 2k−1
k−1∑
t=λ

1

4t
+ 2−k

=
1

3
2k+1

((1

4

)λ − (1

4

)k)
+ 2−k

=
1

3
(2−2λ+k+1 + 2−k).

32



Case 2. 2λ ≤ k ≤ n

Prob(i(λ) = k) =
k−1∑

t=k−λ+1

2k−2t−1 + 2−k

= 2k−1
k−1∑
t=λ

1

4t
+ 2−k

=
1

3
2k+1

((1

4

)k−λ+1 −
(1

4

)k)
+ 2−k

=
1

3
(22λ−k−1 + 2−k).

Hence

Prob(i(λ) = k) =


1
3
(2−2λ+k+1 + 2−k) if λ ≤ k ≤ 2λ− 1

1
3
(22λ−k−1 + 2−k) if 2λ ≤ k ≤ n

.

Bin Bounds and Probabilities

We partition the long sequence where linear complexity achieves a value larger than

or equal to 128 for the first time. If it cannot reach until term 280, we also partition

term 280.

You may find bin bounds and probabilities in the Table 2.10. Note that the last bin

also includes the probability that the sequence achieves a linear complexity strictly

less than 128 at term 280.

Table 2.10: Bin values of Dynamic Partition Linear Complexity Test
i 1 2 3 4 5 6 7

bounds ≤ 252 253 254 255 256 257 258-280
probabilities 0,083333 0,083333 0,166667 0,333333 0,166667 0,083333 0,083333

2.2.5 Integer (Non-overlapping Template) Tests

Let S be a binary sequence, and S̃ is the integer (non-overlapping template) sequence

of it. Integer values depend on the length of the non-overlapping templates. For

different length templates, regenerated sequences will change. In literature, integer

tests are used in tests suites frequently [4, 27, 25, 34]. In this thesis, we propose three

33



different integer tests named collision, saturation point, and coverage. These tests

are proposed because which method should be used in which tests can be understood

very clearly after applying these tests.

2.2.5.1 Fixed Length Partition Coverage Test

Definition 2.2.17. Let S̃ = S̃1, . . . , S̃n be an integer sequence. The cardinality of the

set I = {S̃1, . . . , S̃n}, that is the number of distinct terms of the sequence S̃, is called

the coverage of the sequence S̃.

In the literature, it is a version of coupon collector test proposed in [22]. Later, Sulak

proposed it as a test in [40]. Then, Koçak proposed integer tests in [23]. He proposed

eight different integers tests; however, one of our aims is to differentiate the methods

so that we choose the coverage test as the most suitable one for applying this method

to long sequences.

From the definition of this test, the sequence should end at some point. Otherwise, test

statistics can become useless. Because of this reason, only the fixed-length partition

method can be used for this test. Koçak proposed integer coverage tests for the short

sequence in [23]. The statistical computation is similar for long sequences.

Bin Bounds and Probabilities

Consider a binary sequence S of length b2b to be converted to b−bit integer sequence

S̃ of length 2b. Let c be the coverage of the sequence S̃. As each b-bit integer can take

2b different values and there exist c different integers in the sequence, these integers

that appear in S̃ can be chosen from
(
2b

c

)
different integer sets. Since the length of the

sequence, S̃ is 2b, and there are exactly c different integers, the sum of all frequencies

of each integer is 2b. The number of the piece of the integers separated in the sequence

is
{
2b

c

}
, where

{}
is the Stirling numbers of the second kind. Finally, there are c!

different orders of integers. Then, the probability of the sequence S̃ having coverage

equal to c is:

P (S̃ = c) =
c!

2b2b

(
2b

c

){
2b

c

}
. (2.22)

34



To apply this test to long sequences the following steps should be done;

1. Set b and convert the sequence and compute the relative bin values by using

Equation 2.22. In this thesis we set b = 8. The bin bounds and the probabilities

according to b = 8 is given in Table 2.11.

2. Partition the generated sequence according to b. In this thesis according to

b = 8, subsequence lengths are 256.

3. Compute coverage of each subsequence and separate them relative bins to get

observed number of sequences.

4. Multiply each bin probability with number of subsequence to get expected

number of sequences.

5. Compute χ2 goodness of fit test and compute p-value by using igamc(χ, dof).

(degree of freedom of this test is number of bins-1).

For computing bin probabilities the Equation 2.22 can be used. For example, to get

the first bin probability P (c = 1)+P (c = 2)+ . . .+P (c = 156) should be computed.

Table 2.11: Bin values of Fixed Length Partition Integer Coverage Test for b = 8
bins 1 2 3 4 5 6 7 8
coverage [1− 156) [156− 159) [159− 161) [161− 163) [163− 164) [164− 166) [166− 169) [169− 256]

expected probability 0.095975 0.144646 0.140103 0.158122 0.078397 0.140815 0.145806 0.096136

2.2.5.2 Dynamic Partition Collision Tests

The random variable used in the collision estimate method described in [47] suggests

partitioning sequences dynamically in testing. Since our approach originated from

this method, we first adapt collision tests to binary sequences to test their randomness.

Definition 2.2.18. Let S̃ be an integer sequence with the first t entries are different

and (t + 1)th entry is equal to one of first t entries where t = 1, 2..., 2b − 1 then the

index (t + 1) and the (t + 1)th entry are called collision index and colliding integer,

respectively.

In this thesis, two different collision tests are proposed. Collision tests are appropriate

for the new method since each collision point is a perfect partitioning point without

35



losing any information. Collision tests aim to determine whether each integer in the

sequence is uniformly and equally generated randomly or not. In the NIST test suite

[34], there is a non-overlapping template matching test. However, the test examines

the sequence considering only one template all around it and repeating this test for

non-periodic templates. On the other hand, Koçak [23] proposed an integer repetition

test in his thesis. Although the test uses exact probabilities of the random variable,

it is valid only for the sequences with restricted length. Still, it requires partitioning

the sequence. We aim to modify this test for long sequences without losing statistical

information. Since each collision will cause partitioning, only the dynamic partition

method is used for this test. The use of other methods is not suitable for these tests.

Let S be a binary sequence of length n and S̃ be the integer sequence of it. By

the Definition 2.2.18, the total number of collisions, collision indexes, and colliding

integers will be determined. There are two different versions of collision tests, the

distribution of recorded indexes and colliding integers.

Example 2.2.19. Let S = 00101010001010001011011010010100111011001 and b =

3, then S̃ = 1 2 4 2 4 2 6 6 4 5 1 6 6 and delete residual part at the end.

Remark 2.2.20. Residual part for a long sequence will not change the result. It will

be the negligible.

Table 2.12: Example of Collision
s̃0 s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 s̃7 s̃0 s̃1 s̃0 s̃1 s̃2
1 2 4 2 4 2 6 6 4 5 1 6 6
0 1 2 3︸︷︷︸ 0 1 2 3︸︷︷︸ 0 1 2 3 4︸︷︷︸

2 and 6 appear once and twice, respectively, as a colliding integer. Collision indexes

3 and 4 are seen twice and once, respectively. Others are not seen. The total number

of collisions is 3.

Bin Bounds and Probabilities

Proposition 2.2.21. Let S̃ be integer sequence. If the total number of coincides is C

then the expected number of collisions of each integer is E(i) = C/256.

Remark 2.2.22. By the pigeonhole principle, if the first 2b − 1 entries are different,

2bth entry must be a colliding integer. The collision cannot be seen at the first entry.

36



For example, for b = 8, by the pigeonhole principle, the maximum collision index

can be 257. From this point, the bin values are determined as follows.

In this test, χ2 reference distribution is used to evaluate the sequence. We separate

collisions into eight equal bins. For each bin, the expected number of the collision is

equal as in Table 2.13. Since the last bin depends on the others, the degree of freedom

is 7.

Table 2.13: Bin values of Dynamic Partition Collision Test about integers
bins 1 2 3 4 5 6 7 8

integer range [0− 32) [32− 64) [64− 96) [96− 128) [128− 160) [160− 192) [192− 224) [224− 255]

expected count C/8 C/8 C/8 C/8 C/8 C/8 C/8 C/8

The second version is collision indexes.

Proposition 2.2.23. Let d be a sequence whose terms are from a set T of M = 28 =

256 elements , and that Ck denote the event that first collision happens at index k

Then

Prob(Ck) = M−k
(

M

k − 1

)
(k − 1)!(k − 1), fork = 2 . . . 256

To make probability calculations feasible and faster, we use the following recursion

in constructing Table 2.14

Prob(Ck) = Prob(Ck−1)
( 1

k − 2
− 1

M

)
(k − 1).

The expected values for the bins in Table 2.14 can be computed as

E =
t=bin end∑
k=bin start

256−k
(

256

k − 1

)
(k − 1)!(k − 1)C.

Table 2.14: Bin values of Dynamic Partition Collision Test about indexes
bins 1 2 3 4 5 6 7 8

index range 0-8 9-12 13-15 16-18 19-22 23-26 27-32 33-257
Expected count 0.13256·C 0.13387·C 0.11391·C 0.11545C 0.14315C 0.11964 · C 0.12566·C 0.11581·C

2.2.5.3 Dynamic Partition Saturation Point Test

Definition 2.2.24. Let I = 0, 1, . . . , t be a finite integer set, the elements of the

sequence S̃ are generated from I . The point that all elements of I are generated is

37



called the saturation point.

By the Definition of saturation point sequence is partitioning when all elements are

generated. Therefore, only the dynamic partition method is used for this test. The

entire sequence testing method should not be used because the saturation point will

be at the very beginning of the sequence. The fixed-length partition method should

not be used because most short-length subsequences cannot be achieved saturation.

Otherwise, most of the subsequences achieved saturation point at the very beginning

of the sequence. In both cases, the test result will be misleading.

Same as in the collision test, The random variable used in the collision estimate

method described in [47] suggests partitioning sequences dynamically in testing. The

original of this test depends on [40]. Koçak proposed saturation point as a test in [23].

However, this test can be applied for short sequences. Definition of saturation point

is given in Section 2.2.5.3. In this thesis, we use saturation point for partition to the

long sequence. Then tested values are the length of subsequences. From the Example

2.2.25 it will be understood well.

Example 2.2.25. Let S = 1001011111000110010110011100110001100 and b = 2

then S̃ = 211330121121303012 and delete residual part at the end, this not important

2.2.20. Then, subsequences are S̃1 = 211330, S̃2 = 12112130, S̃3 = 3012 are gener-

ated from the definition of saturation point 2.2.5.3. Length of subsequences are 6, 8,

4 respectively.

Bin Bounds and Probabilities

Proposition 2.2.26. Let S̃ be a b−bit integer sequence of length n. Let S̃k be number

of sequences that saturation point is kth index. In such a sequence it is known that

before the kth index there should be 2b − 1 different integers generated and so last

integer should be seen at the kth index. This implies that first k − 1 integers cover

2b − 1 integer. At the end the kth term should be equal to the non-generated integer,

probability of this is 1
2b

. From the Equation 2.22 we get;

PK(S̃k = k) =
1

2b
(2b − 1)!

2bk−1

(
2b

2b − 1

){
k − 1

2b − 1

}
. (2.23)

38



The saturation point test is one of the most appropriate tests for this method. However,

in a binary sequence, there will be no saturation point. For this test, this should be

considered. In this thesis, we overcome this problem by choosing a fixed-length index

t if saturation point did not happen until index t partition the sequence and started the

random variable again.

For computing bin probabilities the Equation 2.23 can be used. For example, to get

the first bin probability P (k = 256) + P (k = 257) + . . . + P (k = 1236) should be

computed.

Table 2.15: Bin values of Dynamic Partition Saturation Point Test for b = 8
bins 1 2 3 4 5 6 7 8

index range [256-1236] [1237-1337] [1338-1424] [1425-1511] [1512-1608] [1609-1732] [1733-1927] [1928]
probabilities 0.125207 0.123911 0.125964 0.125170 0.124287 0.125269 0.125292 0.124901

2.2.6 Dynamic Partition Index Coincidence Test

One of the new tests is proposed in this theses is Index-Coincidence Test (ICT).

Definition 2.2.27. The point where the entry of the sequence and the index of the

sequence coincide is called index-coincidence.

Due to the structure of the test, only the dynamic method was used. In fact, the entire

sequence testing test is also valid for this test. Even though the random variable

split the sequence, it is treated as a whole. This test aims to evaluate the correlation

between the index and the generated integer.

Collision tests perfectly fit this new approach. To vary such tests, we defined ICT.

The ICT focuses on determining if a frequency of stop points defined below matches

the expected 1′s. The test procedure can be summarized as follows:

• Step 1: This test requires an integer-valued sequence. However, if the sequence

S is binary, one can convert this sequence into S̃ as described. It is proposed

that b = 8 for long sequences.

• Step 2: Consider the 2b + 1 possible occurrences of index-value coincidences

and determine the frequencies of different index-coincidence points that appear

across the entire sequence.

39



• Step 3: Compute the p-value of test using the exact distribution of the test

statistic.

Definition 2.2.28. The sequence S̃ is formed by the elements in I = {0, 1, 2, . . . , 2b−
1}. The assignment in I to S̃ is set as follows. s̃1 ↔ 1, s̃2 ↔ 2, . . . , s̃i ↔ i in

order. The case s̃i = i is called i-index-value coincidence(i-ivc). In that case, the

assignment starts with the remaining part of the sequence whose indexes start from 0.

If there is no index-value coincidence when all elements in s have been assigned, the

assignment starts.

Example 2.2.29. Let S̃ = 37652144312320354 be a sequence of length 16 and hav-

ing b = 3. Then,

Table 2.16: Example
s̃0 s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 s̃7 s̃0 s̃1 s̃0 s̃1 s̃2 s̃0 s̃0 s̃1 s̃2
3 7 6 5 2 1 4 4 3 1 2 3 2 0 3 5 2
0 1 2 3 4 5 6 7︸︷︷︸

8−ivc

0 1︸︷︷︸
1−ivc

0 1 2︸︷︷︸
2−ivc

0︸︷︷︸
0−ivc

0 1 2

Computation of Probabilities

For computing the theoretical probability of occurrence of index-value coincide in a

random sequence, the following functions had been defined:

T (n) : the probability of occurrence of index-value coincidence or termination of

assignment of elements of S without any coincidence.

Ti(n) :the probability of occurrence of i-index-value coincidence in sequence of

length n.

T2b(n) :the probability of termination of assignment without any coincidence in a

sequence of length n.

The recurrence relation for T (n):

T (n) =T (n− 1)p0 + T (n− 2)(1− p0)p1 + . . .+ T (n− k)(1− p0)(1− p1) + . . .

+ (1− pk − 1)pk + (T (n− k)(1− p0)(1− p1) . . . (1− pk−1)(1− pk)

40



where pi = 1
2b

is the probability of s̃k = i (at index k) since there exists 2b different

integers.

Claim 2.2.30. Let ti be number of i-index-value coincidences for i ∈ SI and t2b be

number of terminations of index assignment without index-value coincidence.Then

the number of all index-value coincidence stops is tt =
∑2b

i=0 ti. For a long se-

quence(sufficiently large n), T (n) converges to

T (n) ≈ t0
t1

+
t1
t1

+ . . .+
t2b

t1
≈ 1.

We use χ2 as reference distribution. We form 2b + 1 bins so that each bin shows the

number of index-value coincidences at corresponding value. In other words ith bin

measures ti where i = 0, 1, . . . , 2b.

To apply χ2 − distribution, we need to evaluate expected numbers Ei for each bin.

You can see the bins in Table 2.17

Table 2.17: Bin values of Dynamic Partition Index Coincidence Test
0 1 2 . . . 2b

E0 E1 E1 . . . E2b

t0 t1 t2 . . . t2b

Let T = T0 + T1 + . . .+ T2b . Note date t is not necessarily 1. The probability s̃k (for

some random k) has i-index-value coincidence where i ∈ I as follows.

Prob(s̃k ∈ T0) = T (
1

2b
)

Prob(s̃k ∈ T1) = T (1− 1

2b
1

2b
)

...

Prob(s̃k ∈ T2b) = T (
2b − 1

2b
)2
b

.

Remark 2.2.31.
∑2b

j=0 Prob(s̃k ∈ Tj) = T

Since the length of the sequence is sufficiently large, T can be taken as T = tt
|S̃| . Then

expected values computed as follows:

41



µti = Ei =
tt

|S̃|
(
2b − 1

2b
)i(

1

2b
)|S̃| = tt(

2b − 1

2b
)i(

1

2b
)

where i = 0, 1, . . . , 2b − 1 and

µt
2b

= E2b = tt(
2b − 1

2b
)2
b

.

Hence, χ2 − distribution is applied with degree of freedom 256. We can decrease

the number of bins by making groups depends on the values of i.

42



CHAPTER 3

APPLICATIONS AND CORRELATIONS

In this chapter, applications and the mutual correlation of the tests are given. For

evaluating propose randomness test suite, we fix significance level α as 0.01, deter-

mination of alpha depend on the user. A random sequence should pass all propose

tests except the auto-correlation test to be accepted as look random. For the auto-

correlation test, random sequence fails at most b ∗ 0.01 test, where b is the necessary

variable for the auto-correlation test. In this chapter, while we test sequences, we use

test parameters as b = 8 for integer tests, b = 256 for fixed-length partition weight,

run, and linear complexity tests, and b = 128 for dynamic partitioning weight, run,

and linear complexity tests. For different parameters, tests results will change.

Remark 3.0.1. If it is desired to test with different parameters, bin bounds and prob-

abilities should be calculated using probability distribution functions in the required

tests.

3.1 Applications

3.1.1 Test Performance and Proposed Test Suites

In this section, we give the time spent for each test and propose two different types of

test suites.

In this test suite, we propose fifteen statistical randomness tests for long sequences.

To find time spent, we test different lengths of sequences. To get test results we use

ASUS N752VX Intel Core i7 6700HQ 2.6GHZ-24GB RAM. The test codes are not

43



Table 3.1: Time Spent for Each Test in Seconds
Length of the sequence 106 2 ∗ 106 22 ∗ 106 24 ∗ 106 25 ∗ 106

E. Weight 0.05 0.08 0.12 0.29 0.63
E. Total Run 3.80 10.75 32.01 337.56 1176.34
E. R2 run 2.31 5.51 24.34 245.37 800.08
Fixed Length Weight (b = 256) 0.05 0.08 0.12 0.30 0.65
Fixed Length Run (b = 256) 0.21 0.36 0.72 1.95 3.96
Fixed Length LC (b = 256) 0.45 0.92 1.73 5.41 10.29
Fixed Length Coverage (b = 8) 0.05 0.08 0.12 0.29 0.63
Dynamic Weight (b = 128) 0.05 0.09 0.13 0.30 0.64
Dynamic Run (b = 128) 3.210 11.40 30.08 258.24 952.60
Dynamic LC (b = 128) 26.53 53.55 118.60 796.51 2016.56
Dynamic Saturation (b = 8) 0.05 0.09 0.13 0.72 0.94
Dynamic Collision Index (b = 8) 0.06 0.10 0.13 0.72 0.94
Dynamic Collision Distance (b = 8) 0.06 0.10 0.13 0.72 0.94
Dynamic ICP (b = 8) 0.06 0.10 0.13 0.72 0.94
Entire Auto-Correlation (b = 256) 1.13 1.28 3.03 9.82 17.92

optimized. From Table 3.1 time spent in seconds can be seen.

The dynamic linear complexity test worked as slow as we expected. However, the

entire sequence total number of runs, R2 runs, and dynamic partitioning run tests will

work faster in optimizing codes.

According to Table 3.1, two different test suites should includes following test 3.2.

Time spent comparisons of Test suites are given in Table 3.3. According to our results,

the proposed super lightweight test suite will work faster without optimized codes.

On the other hand, the lightweight test suite works slower than other suites. However,

with optimized codes, it will work better.

3.1.2 Test Results of Random Sources

In this section, sequences, generated by some random number sources, are tested by

the proposed suites. When we propose a test, our first goal is not to test generators.

Because of this reason, we give the result of known sources for giving test data. In

this thesis we use two cryptographic algorithm, AES [5], SHA256 [31], and two true

random source π and
√

2. For each source, random sequences of length 221 bit are

44



Table 3.2: Proposed Test Suites
Super Lightweight Test Suite Lightweight Test Suite
Entire Sequence Weight Addition to Super Lightweight Test Suite
Fixed Length Weight Entire Sequence Total Number of Runs
Fixed Length Run Entire Sequence R2 Run
Fixed Length LC Dynamic Run
Fixed Length Coverage Dynamic Linear Complexity
Dynamic Weight
Dynamic Saturation
Dynamic Collision Index
Dynamic Collision Distance
Dynamic ICP
Entire Auto-Correlation

Table 3.3: Time Spent Comparisons of Test Suites
106 2 ∗ 106 22 ∗ 106 24 ∗ 106 25 ∗ 106

Super Lightweight 0.75 1.55 3.14 12.55 24.50
Lightweight 38.6716 82.30 200.18 1298.03 3443.02
NIST Test Suite 6.29 12.19 24.24 96.34 194.78

generated. For all tests, required parameters are defined according to the tables given

in the test in this thesis.

Table 3.4: Test results of random sources
SHA256 AES − ECB1 AES − ECB2 AES − ECB3 AES − ECB4 AES − ECB10 AES − CBC1 AES − CBC2 AES − CBC10 e π

Entire-Weight 0.865798 7.47E-39 0.075575 0.997179 0.597845 0.456096 1.07E-22 0.542644 0.702582 0.813847 0.863018
Entire Total Run 0.575942 0 0 0.96165 0.887537 0.721555 0.627623 0.885862 0.811104 0.920581 0.787616
Entire R2 run 0.478541 0 0 0.89989 0.164497 0.373823 9.49E-82 0.956374 0.465059 0.088629 0.910985
fixed-length weight 0.398372 0 8.51E-22 0.56667 0.496774 0.136412 3.58E-75 0.352512 0.525168 0.967253 0.675774
fixed-length total run 0.781195 0 0 0.047491 0.100653 0.760978 0.628531 0.848256 0.825739 0.901402 0.802514
fixed-length LC 0.476056 0.250141 0.197791 0.544145 0.894592 0.470508 0.744748 0.891335 0.270308 0.321771 0.247618
fixed-length coverage 0.674674 0 0 4.10E-67 0.523469 0.054655 2.71E-12 0.484274 0.412321 0.045151 0.284231
dynamic weight 0.243881 0 5.00E-19 0.658786 0.72713 0.082498 1.95E-73 0.108468 0.235192 0.707463 0.198469
dynamic total run 0.8295 0 0 0.437743 0.71094 0.641365 0.006236 0.794497 0.820097 0.815136 0.790355
dynamic LC 0.534411 0.580216 0.597901 0.793294 0.047608 0.021774 0.140781 0.687511 0.195195 0.597192 0.225064
dynamic saturation 0.639852 7.19E-191 7.19E-191 1.89E-35 0.650671 0.360752 0.001035 0.925122 0.488234 0.19936 0.658515
dynamic collision index 0.203426 0 0 0.390992 0.741874 0.679007 5.55E-23 0.108887 0.5611 0.410391 0.131045
dynamic collision distance 0.548477 0 0 0.000648 0.006214 0.244448 2.17E-11 0.013145 0.194122 0.088347 0.846566
dynamic ICP 0.726868 5.16E-201 0 0.278581 0.44067 0.185368 5.10E-13 0.062173 0.943476 0.873902 0.135132
E. auto-correlation(rate) 256/256 20/256 28/256 255/256 256/256 256/256 169/256 256/256 256/256 256/256 256/256

From Table 3.4, except reduced round AES outputs, all random sources pass the tests.

Different length sequences are tested in same way and we always get the same results.

3.2 Correlations of Test

In this section, Pearson correlations of proposed tests are given [32]. For discovering

correlations of proposed tests, 1000 random number sequences of length 4, 000, 000

are generated. In other words, approximately 4 billion bits are generated. For each

45



Table 3.5: Pearson correlation results of tests
E. Weight E.T. Run E. R2. Run F.L Weight F.L Run F.L LC F.L Cov. Dyn. Weight Dyn. Run Dyn. LC Dyn.Sat. Dyn.Coll.İnd Dyn.Coll.Dist. Dyn. ICP

E. Weight 1.0000 0.0204 0.0644 0.3210 0.0301 -0.0183 -0.0601 0.3308 0.0211 0.0119 -0.0361 0.0050 -0.0261 -0.0529
E.T. Run 0.0204 1.0000 -0.0098 0.0326 0.2870 -0.0209 -0.0108 -0.0260 0.2813 0.0259 0.0120 0.0312 0.0603 0.0142
E. R2 Run 0.0644 -0.0098 1.0000 0.0245 0.0094 -0.0016 0.0148 -0.0112 0.0079 -0.0028 0.0005 -0.0487 0.0219 0.0023
F.L Weight 0.3210 0.0326 0.0245 1.0000 0.0080 -0.0089 -0.0252 0.1711 0.0160 -0.0260 -0.0469 0.0313 -0.0243 -0.0046
F.L Run 0.0301 0.2870 0.0094 0.0080 1.0000 -0.0561 0.0599 0.0153 0.1883 0.0016 0.0789 -0.0043 -0.0227 0.0085
F.L LC -0.0183 -0.0209 -0.0016 -0.0089 -0.0561 1.0000 0.0020 -0.0312 -0.0060 -0.0081 -0.0014 0.0092 -0.0064 0.0027
F.L Cov. -0.0601 -0.0108 0.0148 -0.0252 0.0599 0.0020 1.0000 0.0017 0.0115 0.0136 0.0510 -0.0520 0.0206 0.0462
Dyn. Weight 0.3308 -0.0260 -0.0112 0.1711 0.0153 -0.0312 0.0017 1.0000 0.0224 -0.0046 0.0032 -0.0179 -0.0325 -0.0332
Dyn. Run 0.0211 0.2813 0.0079 0.0160 0.1883 -0.0060 0.0115 0.0224 1.0000 -0.0239 0.0196 0.0054 0.0317 0.0538
Dyn. LC 0.0119 0.0259 -0.0028 -0.0260 0.0016 -0.0081 0.0136 -0.0046 -0.0239 1.0000 -0.0216 -0.0161 0.0088 0.0279
Dyn. Sat. -0.0361 0.0120 0.0005 -0.0469 0.0789 -0.0014 0.0510 0.0032 0.0196 -0.0216 1.0000 -0.0712 0.0016 -0.0320
Dyn.Coll.İnd. 0.0050 0.0312 -0.0487 0.0313 -0.0043 0.0092 -0.0520 -0.0179 0.0054 -0.0161 -0.0712 1.0000 0.0497 -0.0015
Dyn.Coll.Dist -0.0261 0.0603 0.0219 -0.0243 -0.0227 -0.0064 0.0206 -0.0325 0.0317 0.0088 0.0016 0.0497 1.0000 -0.0193
Dyn. ICP -0.0529 0.0142 0.0023 -0.0046 0.0085 0.0027 0.0462 -0.0332 0.0538 0.0279 -0.0320 -0.0015 -0.0193 1.0000

generated sequence, p-values are evaluated from all proposed tests. While generating

sequences, the random function of c# is used. For different random sequences from

different sources, similar results will be obtained.

In Table 3.5 results of all tests are given. In Table 3.8, only constant partition method

tests are given, and in Table 3.9 only dynamic partition method tests are given. Since

the auto-correlation test generates more than one p-value, we does not apply the cor-

relation test. When we evaluate the Pearson correlation, we say; for the results be-

tween [−1.0,−0.50] negatively correlated, for the results between (−0.50,−0.10]

negatively half correlated, for the result between (−0.10, 0.10) not correlated, for

the results between [0.10, 0.50) positively half correlated and for the results between

[0.50, 1.0] correlated.

From Table 3.5 the following correlations are found;

• Weight tests are positively half correlated with each other.

• Except from R2 run test, run tests are positively half correlated with each other.

• No significant negative correlation between any tests.

• No correlation between dynamic partitioning method tests (see Table 3.9).

• No correlation between fixed length partitioning method tests (see Table 3.8)

Table 3.6: Pearson correlation results of Weight Tests
E.Weight F.L Weight Dyn. Weight

E. Weight 1.0000 0.3210 0.3308
F.L Weight 0.3210 1.0000 0.1711
Dyn. Weight 0.3308 0.1711 1.0000

46



Table 3.7: Pearson correlation results of Run Tests
E. Total Run E. R2 Run F.L Run Dyn. Run

E. Total Run 1.0000 -0.0098 0.2870 0.2813
E. R2 Run -0.0098 1.0000 0.0094 0.0079
F.L Run 0.2870 0.0094 1.0000 0.1883
Dyn. Run 0.2813 0.0079 0.1883 1.0000

Table 3.8: Pearson correlation results of Fixed Length
F.L weight F.L run F.L LC F.L coverage

F.L weight 1.0000 0.0080 -0.0089 -0.0252
F.L run 0.0080 1.0000 -0.0561 0.0599
F.L LC -0.0089 -0.0561 1.0000 0.0020
F.L coverage -0.0252 0.0599 0.0020 1.0000

The correlation results are consistent with the results we expect. In other words,

since weight tests ( or run tests) in different methods use the same random variable,

their test results are correlated. Using this result, we can conclude that the dynamic

partitioning method, in which we test every term of the sequence, is useful for other

tests.

Table 3.9: Pearson correlation results of Dynamic Partition
Dyn. Weight Dyn. Run Dyn. LC Dyn. Satur.P. Dyn. Coll. İndex Dyn. Coll.Dist. Dyn. ICP

Dyn. Weight 1.0000 0.0224 -0.0046 0.0032 -0.0179 -0.0325 -0.0332
Dyn. Run 0.0224 1.0000 -0.0239 0.0196 0.0054 0.0317 0.0538
Dyn. LC -0.0046 -0.0239 1.0000 -0.0216 -0.0161 0.0088 0.0279
Dyn. Saturation 0.0032 0.0196 -0.0216 1.0000 -0.0712 0.0016 -0.0320
Dyn. Coll. İndex -0.0179 0.0054 -0.0161 -0.0712 1.0000 0.0497 -0.0015
Dyn. Coll. Distance -0.0325 0.0317 0.0088 0.0016 0.0497 1.0000 -0.0193
Dyn. ICP -0.0332 0.0538 0.0279 -0.0320 -0.0015 -0.0193 1.0000

47



48



CHAPTER 4

SENSITIVITIES OF TESTS AND COMPARISON OF TEST

SUITES

In this chapter, sensitivities of tests to bias sources and comparison of the result pro-

pose test suite and NIST test suite is given. Since the proposed tests are designed

for testing long sequences, we use default parameters for NIST tests and get a single

p-value for each test for each sequence.

4.1 Test Results of Bias Sources

In this section, biased number sources is tested by the proposed test suite to evaluate

the sensitivities of the tests.

Case 1 : Probability of generating 1 and 0

In a random binary sequence, it is expected that ones and zeros are generated with

equal probability. In this case, to determine to evaluate sensitivities, the same random

source is manipulated by generating 1 with probability 1
2

+ p where −1
2
≤ p ≤ 1

2
.

In other words, we generated sequences with the expected weight of the sequence

is not equal to 1
2
. While testing this type of non-random source, we expected that

generated sequence fails from weight tests. However, it is significant that all weight

tests have similar sensitivities. For determining the sensitivities, 16000000-bit non-

random sequences are generated with the probability of generating 1 is 1
2

+ p.

From Table 4.1, among all methods, the weight test is the first test detecting the bias as

expected. All tests except the linear complexity tests detected non-random sequences

49



Table 4.1: Test results of biased sources
p 0.00001 0.0001 0.001 0.01 0.02 0.03 0.05
E. Weight 0.547673 0.80665 0.000757 0 0 0 0
E. Total Run 0.638712 0.616723 0.65271 0.192745 0.000329 0 0
E. R2 run 0.910636 0.919032 0.938921 0.087699 2.77E-16 0 0
Fixed Length Weight 0.499011 0.634375 1.61E-08 0 0 0 0
Fixed Length Run 0.331737 0.300516 0.631796 0.135081 4.28E-08 0 0
Fixed Length LC 0.420019 0.298433 0.716327 0.065398 0.168809 0.40643 0.965647
Fixed Length Coverage 0.949513 0.942091 0.980447 0.26261 0 0 0
Dynamic Weight 0.965092 0.491077 5.90E-08 0 0 0 0
Dynamic Run 0.642842 0.721832 0.975537 0.019528 1.03E-09 0 0
Dynamic LC 0.246773 0.328929 0.887367 0.116419 0.528365 0.374191 0.038154
Dynamic Saturation 0.631816 0.855693 0.895069 0.033071 0 0 0
Dynamic Collision Index 0.40568 0.373535 0.028718 0 0 0 0
Dynamic Collision Distance 0.909108 0.907454 0.799053 0.877146 0.294141 8.72E-10 0
Dynamic ICP 0.58621 0.836374 0.11587 0.059847 2.37E-07 0 0
E. Auto-Correlation(pass rate) 256/256 256/256 256/256 256/256 39/256 0/256 0/256

when the bias is 0.02. Because of the test structure, linear-complexity tests could not

detect this type of biased sequence. The fail bias of all tests in similar points shows

that the tests and methods have similar sensitivities to this type of bias.

Case 2 : Changing generating template

In this case, we give bias to generating templates. For example, for each 10th”1000”

template, we change it with an ”1100” template. In this thesis, we change different

templates for different times. For generated non-random sequences, we use the first

4000000 bit of π. For different cases, we change non-overlapping templates. It is

expected that all templates will be generating with equal probability. Because of this

reason, we generate the chosen template with greater probability, and we generate

the corresponding template with lower probability. The sensitivity of the tests varies

according to the changed template. For example, when the weight of templates is

different, non-random sequences failed from weight tests. In other cases, non-random

sequences pass the weight tests. The results are given in Table 4.2. Table 4.2, and

other experimental results show that non-random sequences of this type fail from the

R2 run test. If the probabilities of generating templates have close probabilities, then

tests do not fail. If the biased templates affect the number of runs, then other run tests,

collision index test, and index coincidence point test fail.

Remark 4.1.1. (t∗xx . . . x−yy . . . y) means, for each tth xx . . . x template generated

change it with yy . . . y template along the sequence.

50



Table 4.2: Test results of biased template sequences
π4m(3*01110000
-00111000)

π4m(5*00001000
-00000010)

π4m(10*0001-0010) π4m(20*0001-0010)

E. Weight 0.761508 0.761508847 0.761508847 0.761509
E. Total Run 0.953748 0.953748629 1.49E-19 4.97E-10
E. R2 Run 2.78E-12 2.52E-32 1.46E-68 2.95E-16
F.L Weight 0.766230653 0.794147626 0.842721336 0.856401
F.L Run 0.467805 0.978681911 9.08E-111 7.56E-16
F.L LC 0.7695767 0.709798666 0.180798564 0.55676
F.L coverage 0.3860949 0.131851751 0.394313052 0.148469
Dyn. Weight 0.351313 0.325022708 0.271946719 0.289364
Dyn. Run 0.848894 0.812718761 9.48E-111 3.96E-16
Dyn. LC 0.52973 0.857565413 0.71828367 0.665208
Dyn. Saturation 0.301674 0.80528541 0.367098526 0.154132
Dyn. Coll. Index 0.012233 0.090185203 1.52E-09 0.000613
Dyn. Coll. Distance 0.2900747 0.640132634 0.315079052 0.379265
Dyn.. ICP 0.306376207 0.868683345 1.45E-01 0.047406
Auto Correlation 255/256 255/256 254/256 254/256

Case 3 : Repeating sequence with long period

In this case, we use two different methods; one repeats the random sequence, and the

other repeats the random sequence with each term of the sequence complemented.

For example, if the sequence is equal to "100101", for the first case, the non-random

sequence is equal to "100101100101," and for the second case, the non-random se-

quence is equal to "100101011010". For this case, we use different lengths of se-

quences generated from π. It is expected that a random sequence has a significant

period. The reason for generating this non-random sequence is to detect sensitivities

of the proposed test for a short period.

From Table 4.3, for different non-random sequences of different lengths which are

generated by repeating itself, at least one of the proposed tests fails. Especially, index

point coincidence tests detect this type of non-randomness.

From Table 4.4, for different non-random sequences of different lengths which are

generating by repeating complement of the sequence, at least one of the proposed

tests fails.

By repeating different parts in sequences of different lengths, the non-random se-

quences are generating. Some tests, especially coverage, saturation point, and colli-

sion tests, detect the non-random sequences if the period is short.

51



Table 4.3: Test results of repeating sequences
π(2m+2m) π(2m+1m) π(4m+4m) π(4m+2m)

E. Weight 0.739123 0.975128 0.667767 0.701161
E. Total run 0.887474 0.87931 0.934627 0.991856
E. R2 run 0.739134 0.403088 0.525452 0.642347
F.L Weight 0.497328 0.671859 0.397206 0.738422
F.L Run 0.848001 0.665962 0.05919 0.584432
F.L LC 0.037603 0.096186 0.654556 0.315588
F.L Coverage 0.001103 0.01482 0.000686 0.000392
Dyn. Weight 0.719222 0.898615 0.232539 0.364713
Dyn. Run 0.420331 0.805917 0.957034 0.826496
Dyn. LC 0.104981 0.410588 0.060226 0.199087
Dyn. Saturation 0.006804 0.050247 0.784898 0.359986
Dyn. Coll. index 0.045062 0.35241 0.000529 0.007022
Dyn. Coll. distance 0.000904 0.034323 0.021276 0.024306
Dyn. ICP 0 4.21E-07 0 3.05E-06

Table 4.4: Test results of repeating complement sequences
π(2m+2m) π(4m+2m) π(4m+4m) e(4m+4m) e(4m+2m)

E. Weight 1 0.910934 1 1 0.746134
E. Total run 0.887869 0.991531 0.934908 0.788704 0.756356
E. R2 run 0.066397 0.641874 0.525182 0.009200 0.034696
F.L. Weight 0.841868 0.935787 0.918687 0.105233 0.191092
F.L. Run 0.848001 0.584432 0.05919 0.613499 0.659686
F.L. LC 0.128253 0.589482 0.801001 0.58827 0.594375
F.L. Coverage 0.001103 0.000456 0.000757 0.205925 0.252846
Dyn. Weight 0.803966 0.379659 0.3406745 0.05455 0.104959
Dyn. Run 0.434369 0.831704 0.95146 0.922812 0.904922
Dyn. LC 0.284296 0.173834 0.2743891 0.981879 0.975726
Dyn. Saturation 0.006917 0.374526 0.783355 0.208226 0.334155
Dyn. Coll. index 0.364399 0.088629 0.027327 0.00088 0.007712
Dyn. Coll. distance 0.000863 0.024306 0.021276 0.642837 0.719439
Dyn. ICP 0.288143 0.602396 0.730529 0.339384 0.145964

4.2 Comparison of Tests

In this section, the proposed tests and tests in the NIST test suite are compared. Test

results ofπ and e, of length 16000000, and the biased sequence results are given in

Table 4.5.

From Tables 4.5, 4.1 and 4.3, non-random sequences are failed for some tests in both

suites. In the NIST test suite, non-random sequences are failed from the approximate

entropy test and serial test as expected. For the proposed tests, sequences are failed

from some dynamic method tests. From Tables 4.5 and 4.4, non-random sequences

52



passed the NIST test suite. For proposed tests, sequences fail at least one test.

From Tables 4.6 and 4.2, non-random sequences are failed for some tests in both

suites. In the NIST test suite without non-overlapping template matching, test se-

quences pass the tests. For proposed tests, non-random sequences are failed from R2

run test.

From the comparison, the following conclusions are made:

• Weight tests and run tests in NIST test suites are very roughly calculated. The

proposed versions of weight tests and run tests become sensitive.

• Proposed integer tests are significant to find periodic sequences.

• Using the suggested tests in test suites may affect the test results.

53



Table 4.5: NIST test suite results
π

16
m

16
m

π
4m

+π
4m

π
4m

+π
+1

2m
π

4m
+π

+1
4m

e
4m

+e
+1

4m
e

4m
+e

+1
2m

bi
as

0.
00

00
1

bi
as

0.
00

01
bi

as
0.

00
1

bi
as

0.
01

A
pp

E
nt

.
0.

67
33

21
8.

84
32

67
0

0.
99

56
89

0.
96

13
03

0.
51

56
67

0.
79

87
12

0.
92

66
38

0.
91

96
33

0.
66

37
8

0
bl

oc
k

fr
eq

0.
31

74
26

0.
34

96
06

0.
06

38
89

0.
06

59
13

0.
06

38
89

0.
18

69
86

0.
24

75
47

0.
83

43
48

0.
82

93
09

0.
82

32
49

0
C

U
SU

M
1

0.
08

34
0.

96
66

48
0.

34
41

56
0.

55
69

93
0.

68
83

86
0.

73
61

92
0.

60
89

94
0.

25
02

97
0.

78
16

25
0

0
C

U
SU

M
2

0.
09

68
2

0.
96

18
7

0.
44

96
81

0.
76

23
46

0.
68

83
86

0.
73

61
92

0.
79

39
69

0.
31

29
23

0.
88

05
78

0
0

fr
eq

ue
nc

y
0.

08
48

89
0.

72
10

92
0.

39
06

56
0.

82
79

75
1

1
0.

51
73

2
0.

22
91

7
0.

62
44

88
0

0
lin

ea
rC

.
0.

08
60

92
0.

52
30

25
0.

03
89

15
0.

07
04

1
0.

18
92

68
0.

47
71

12
0.

25
76

03
0.

53
52

36
0.

51
18

01
0.

09
91

33
0.

62
14

61
lo

ng
es

tr
un

0.
90

50
01

0.
93

98
74

0.
00

76
27

0.
09

46
59

0.
04

46
35

0.
15

13
4

0.
38

16
0.

83
33

5
0.

79
91

5
0.

61
32

54
0

N
on

-O
ve

rl
ap

pi
ng

T
M

14
5/

14
7

14
7/

14
7

13
4/

14
7

14
4/

14
7

14
5/

14
7

14
7/

14
7

14
7/

14
7

14
7/

14
7

14
7/

14
7

14
7/

14
7

35
/1

47
O

ve
rl

ap
pi

ng
T

M
0.

07
74

54
0.

49
45

17
0.

26
09

01
0.

42
65

79
0.

28
92

71
0.

10
20

43
0.

17
20

27
0.

55
99

57
0.

54
89

02
0.

29
49

63
0

R
.E

xc
ur

si
on

V
(-

1)
0.

83
87

24
0.

95
56

27
0.

83
87

24
0.

83
87

24
0.

16
42

05
0.

47
32

96
0.

69
85

51
0.

30
38

03
0.

23
80

35
N

A
N

A
R

.E
xc

ur
si

on
V

(-
2)

0.
06

65
21

0.
07

19
91

5
0.

66
52

1
0.

65
21

0.
23

88
89

0.
58

03
76

0.
42

11
32

0.
35

33
53

0.
63

28
85

N
A

N
A

R
.E

xc
ur

si
on

V
(-

3)
0.

87
25

02
0.

96
18

55
0.

87
25

02
0.

87
25

02
0.

42
61

3
0.

85
05

36
0.

95
55

09
0.

97
24

04
0.

74
91

59
N

A
N

A
R

.E
xc

ur
si

on
V

(-
4)

0.
07

69
42

0.
41

47
5

0.
07

69
42

0.
07

69
42

0.
08

89
69

0.
08

11
84

0.
25

94
01

0.
94

82
8

0.
32

60
92

N
A

N
A

R
.E

xc
ur

si
on

V
(1

)
0.

48
43

0.
16

43
15

0.
48

43
0.

48
3

0.
07

71
78

0.
32

76
57

0.
73

53
38

0.
68

92
47

0.
53

63
26

N
A

N
A

R
.E

xc
ur

si
on

V
(2

)
0.

28
76

52
0.

68
04

62
0.

28
76

52
0.

28
76

52
0.

78
43

58
0.

13
86

89
0.

64
84

86
0.

82
23

29
0.

68
48

87
N

A
N

A
R

.E
xc

ur
si

on
V

(3
)

0.
15

07
19

0.
35

66
63

0.
15

07
19

0.
15

07
19

0.
31

81
33

0.
79

28
02

0.
83

90
16

0.
20

92
09

0.
86

19
68

N
A

N
A

R
.E

xc
ur

si
on

V
(4

)
0.

09
30

88
0.

22
87

98
0.

09
30

88
0.

09
30

88
0.

92
30

43
0.

27
49

1
0.

33
70

83
0.

48
74

69
0.

85
54

87
N

A
N

A
R

.E
.V

ar
ia

nt
18

/1
8

18
/1

8
18

/1
8

18
/1

8
18

/1
8

18
/1

8
18

/1
8

18
/1

8
18

/1
8

N
A

N
A

ru
n

0.
74

38
63

0.
29

64
71

0.
87

04
55

0.
98

23
95

0.
87

08
06

0.
59

24
56

0.
53

55
54

0.
34

81
73

0.
31

70
98

N
A

N
A

bi
na

ry
m

at
ri

x
ra

nk
0.

92
96

9
0.

56
63

79
0.

51
22

48
0.

28
78

17
0.

27
48

32
0.

78
27

94
0.

89
81

47
0.

83
89

37
0.

63
31

9
0.

55
05

51
0.

68
08

92
Se

ri
al

1
0.

73
40

71
0.

43
88

43
0

0.
61

54
85

0.
58

92
29

0.
19

66
16

0.
57

28
86

0.
83

61
6

0.
84

17
21

0.
76

07
33

0
Se

ri
al

2
0.

97
18

32
0.

53
96

44
0

0.
51

23
72

0.
64

89
68

0.
41

85
89

0.
39

93
48

0.
84

28
91

0.
82

74
52

0.
86

48
01

0.
63

47
61

un
iv

er
sa

l
0.

76
53

38
0.

15
65

16
0.

22
84

63
0.

22
54

79
0.

22
63

88
0.

58
84

35
0.

47
97

89
0.

96
38

84
0.

99
17

21
0.

92
86

01
0.

00
19

82

54



Table 4.6: NIST test suite results of biased template sequences

π
4m

(3
*0

11
10

00
0-

00
11

10
00

)
π

4m
(5

*0
00

01
00

0-
00

00
00

10
)

π
4m

(1
0*

00
01

-0
01

0)
π

4m
(2

0*
00

01
-0

01
0)

A
pp

E
nt

.
0

0
0

0
bl

oc
k

fr
eq

0.
15

30
92

0.
13

29
8

0.
14

99
41

0.
14

99
41

C
U

SU
M

1
0.

37
08

64
0.

37
08

64
0.

37
08

64
0.

37
08

64
C

U
SU

M
2

0.
53

35
27

0.
53

35
27

0.
53

35
27

0.
53

35
27

fr
eq

ue
nc

y
0.

54
38

51
0.

54
38

51
0.

54
38

51
0.

54
38

51
lin

ea
rC

.
0.

73
79

9
0.

44
82

7
0.

74
22

85
0.

74
13

76
lo

ng
es

tr
un

0.
18

98
29

1
0.

18
82

91
0.

20
52

34
0.

18
82

91
N

on
-O

ve
rl

ap
pi

ng
T

M
13

5/
14

7
12

1/
14

7
64

/1
47

10
7/

14
7

O
ve

rl
ap

pi
ng

T
M

0.
59

04
62

0.
59

04
62

0.
47

19
68

0.
66

70
88

R
.E

xc
ur

si
on

V
(-

1)
0.

79
00

82
0.

79
63

78
0.

82
05

86
0.

82
16

15
R

.E
xc

ur
si

on
V

(-
2)

0.
83

48
58

0.
90

43
35

0.
80

51
1

0.
76

30
3

R
.E

xc
ur

si
on

V
(-

3)
0.

74
48

84
0.

87
62

81
0.

78
55

22
0.

84
31

12
R

.E
xc

ur
si

on
V

(-
4)

0.
12

26
52

0.
06

46
36

0.
22

36
94

0.
09

86
02

R
.E

xc
ur

si
on

V
(1

)
0.

60
93

01
0.

44
76

82
0.

83
52

04
0.

64
06

52
R

.E
xc

ur
si

on
V

(2
)

0.
27

19
01

0.
32

92
91

0.
26

87
35

0.
31

93
42

R
.E

xc
ur

si
on

V
(3

)
0.

17
76

87
0.

17
59

85
0.

24
05

43
0.

27
45

54
R

.E
xc

ur
si

on
V

(4
)

0.
10

83
94

0.
09

70
79

0.
08

50
7

0.
13

42
98

R
.E

.V
ar

ia
nt

18
/1

8
18

/1
8

18
/1

8
18

/1
8

ru
n

0.
90

85
91

0.
90

85
91

0
0

bi
na

ry
m

at
ri

x
ra

nk
0.

08
47

59
0.

82
58

92
0.

53
44

22
0.

91
99

51
Se

ri
al

1
0

0.
00

07
0

0.
01

45
21

Se
ri

al
2

0.
66

86
64

0.
86

31
05

0.
58

81
7

0.
57

49
05

un
iv

er
sa

l
0.

06
75

9
0.

04
35

44
0.

74
43

55
0.

08
56

2

55



56



CHAPTER 5

CONCLUSION

Randomness and random number generation are essential concepts. Determining

whether a sequence is not distinguishable from a true random number sequence can

be challenging. For overcoming this problem, statistical randomness tests are used.

There are lots of statistical randomness tests and tests suites in the literature. How-

ever, although some of them can test long sequences after some approximation or

modification, none are customized to test long sequences. In this thesis, we propose

a lightweight test suite to evaluate long sequences. To propose this test suite, we use

three different methods. From the literature, weight, run, and auto-correlation tests

propose to test the entire sequence without partitioning. Moreover, the entire R2 run

test is defined to test the entire sequence without partitioning. For testing fixed-length

sub-sequences of a long sequence, weight, run, linear complexity, and integer cover-

age tests are used. To complete the test suite, we use a new method called the dynamic

partitioning method. Weight, run, collision, linear complexity, saturation point, and

index coincidence point tests are proposed for the dynamic partitioning method.

In this thesis, random sources are tested with the test suite. The results of the tests are

given. Moreover, non-random biased and modified sequences are tested to find the

sensitivities of each test. The Pearson correlation is employed to show the correlation

between the methods and tests in the test suite. In the end, the results of NIST and

test suite is compared. It has been observed that the tests we propose in this paper

give better results due to some modifications. Since the main motivation of this thesis

is to propose a lightweight test suite to test long sequences, we only give results with

selected parameters that tests in each method will be compatible with other methods.

57



For some other parameters, tests result can be better.

It should not be forgotten in the literature; many tests can be applied to the meth-

ods described. Appropriate tests can be selected for testing long sequences for fu-

ture work, and tests should be adapted according to the methods. In this thesis, we

have selected tests that are comprehensive and straightforward and introduced meth-

ods. Thus, we contribute literature for evaluating long sequences. We propose two

lightweight test suites, and we give the time performance of these suites depending

on our codes. For future work, optimization of codes can be done, and tests that can

be added to the super lightweight test suite will be proposed. In addition to these,

sensitivities of proposed tests to transformed sequences can be evaluated for future

work.

58



REFERENCES

[1] Z. Akcengiz, Mutual correlation of randomness test and analysis of test outputs
of transformed and biased sequences, Msc. Thesis, Ankara: METU, 2014.

[2] P. Alcover, A. Guillamón, and M. Ruiz, A new randomness test for bit se-
quences, Informatica (Netherlands), 2013.

[3] E. R. Berlekamp, Algebraic Coding Theory - Revised Edition, World Scientific
Publishing Co., Inc., USA, 2015, ISBN 9789814635899.

[4] R. G. Brown, Dieharder: A random number test suite,
https://webhome.phy.duke.edu/ rgb/General/dieharder.php, 2013.

[5] J. Daemen and V. Rijmen, The Design of Rijndael, AES - The Advanced Encryp-
tion Standard, Springer-Verlag Berlin Heidelberg, 2002.

[6] A. Doğanaksoy and F. Göloğlu, On lempel-ziv complexity of sequences, Se-
quences and Their Applications- SETA, Springer Berlin Heidelberg, pp. 180–
189, 2006.

[7] A. Doğanaksoy, F. Sulak, M. Uğuz, O. Şeker, and Z. Akcengiz, New statistical
randomness tests based on length of runs, Mathematical Problems in Engineer-
ing, Hindawi Publishing Corporation, 2015.

[8] A. Doğanaksoy, F. Sulak, M. Uğuz, O. Şeker, and Z. Akcengiz, Mutual correla-
tion of nist statistical randomness tests and comparison of their sensitivities on
transformed sequences, Turkish Journal of Electrical Engineering and Computer
Sciences, 25, pp. 655–665, 01 2017.

[9] C. Georgescu, E. Simion, A. Petrescu-Nita, and A. Toma, A view on nist
randomness tests (in)dependence, 9th International Conference on Electronics,
Computers and Artificial Intelligence, pp. 1–4, 2017.

[10] M. Gil, G. Gonnet, and W. Petersen, A repetition test for pseudorandom number
generators, Monte Carlo Methods and Applications, 12, pp. 385–393, 2006.

[11] W. Golomb, Shift Register Sequences, Aegean Park Press, 1982.

[12] K. Hamano and T. Kaneko, Correction of overlapping template matching test
included in nist randomness test suite, IEICE Transactions, 90-A, pp. 1788–
1792, 09 2007.

59



[13] K. Hamano, F. Sato, and H. Yamamoto, A new randomness test based on linear
complexity profile, IEICE Transactions, 92-A, pp. 166–172, 2009.

[14] K. Hamano and H. Yamamoto, A randomness test based on t-complexity, IEICE
Transactions, 93-A, pp. 1346–1354, 07 2010.

[15] J. Hernandez-Castro and D. F. Barrero, Evolutionary generation and degenera-
tion of randomness to assess the indepedence of the ent test battery, 2017 IEEE
Congress on Evolutionary Computation (CEC), pp. 1420–1427, 2017.

[16] J. Hernandez-Castro, J. Sierra, and A. Seznec, The sac test: A new randomness
test, with some applications to prng analysis, Computational Science and Its
Applications - ICCSA 2004, 3043, pp. 960–967.

[17] M. Herrero-Collantes and J. C. Garcia-Escartin, Quantum random number gen-
erators, Reviews of Modern Physics, 89, 2016.

[18] A. Iwasaki and K. Umeno, A new randomness test solving problems of dis-
crete fourier transform test, IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, E101.A, 2017.

[19] J. A. Karell-Albo, C. M. Legón-Pérez, E. J. Madarro-Capó, O. Rojas, and
G. Sosa-Gómez, Measuring independence between statistical randomness tests
by mutual information, Entropy, 22, 2020.

[20] J. Kelsey, B. Schneier, D. Wagner, and C. Systems, Cryptanalytic attacks on
pseudorandom number generators, Lecture Notes in Computer Science, 1372,
2000.

[21] M. G. Kendall and B. B. Smith, Randomness and random sampling numbers,
Journal of the Royal Statistical Society, 101(1), pp. 147–166, 1938.

[22] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms, Addison-Wesley Longman Publishing Co., Inc., 1997.

[23] O. Koçak, A unified evaluation of statistical randomness tests and experimental
analysis of their relations, Phd. Thesis, Ankara: METU, 2016.

[24] O. Koçak, F. Sulak, A. Doğanaksoy, and M. Uğuz, Modifications of knuth ran-
domness tests for integer and binary sequences, Communications Faculty of
Sciences University of Ankara Series A1 Mathematics and Statistics, 67, 2018.

[25] P. L’Ecuyer and R. Simard, Testu01: A c library for empirical testing of random
number generators, 33, 2007.

[26] P. L’Ecuyer, Testing random number generators, Theory of Probability and Its
Applications, 35, pp. 305–313, 1992.

60



[27] G. Marsaglia., The marsaglia random number cdrom including the diehard bat-
tery of tests of randomness, 1996.

[28] G. Marsaglia and A. Zaman, Monkey tests for random number generators, Com-
puters Mathematics with Applications, 26, pp. 1 – 10, 1993.

[29] J. Massey, Shift-register synthesis and bch decoding, IEEE Transactions on In-
formation Theory, 15(1), pp. 122–127, 1969.

[30] U. M. Maurer, A universal statistical test for random bit generators, Journal of
Cryptology, 5, pp. 89 – 105, 1992.

[31] NIST, Secure hash standard (shs), fips pub 180-2, 2002.

[32] K. Pearson, Notes on Regression and Inheritance in the Case of Two Parents,
volume 58, Proceedings of the Royal Society of London, 1895.

[33] A. Rukhin, Testing randomness: A suite of statistical procedures, Theory of
Probability Its Applications, 45, 2000.

[34] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, M. L. Stefan Leigh,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, A statistical test suite
for random and pseudo random number generators for cryptographic applica-
tions.technical report, 2001.

[35] B. Ryabko, V. Stognienko, and Y. Shokin, A new test for randomness and its
application to some cryptographic problems, Journal of Statistical Planning and
Inference, 123, pp. 365 – 376, 2004.

[36] J. Soto, Statistical testing of random number generators, 1999.

[37] J. Soto, Randomness testing of the advanced encryption standard candidate al-
gorithms, 03 2001.

[38] A. Srinivasan, M. Mascagni, and D. Ceperley, Testing parallel random number
generators, Parallel Computing, 29, pp. 69 – 94, 2003.

[39] M. Stipčević and C. K. Koç, True random number generators, Open Problems
in Mathematics and Computational Science, Springer International Publishing
Switzerland, pp. 275–315, 2014.

[40] F. Sulak, Statistical analysis of block ciphers and hash functions, Phd. Thesis,
Ankara: METU, 2012.

[41] F. Sulak, A new statistical randomness test: Saturation point test, International
Journal of Information Security Science, 2, pp. 81 – 85, 2013.

[42] F. Sulak, New statistical randomness tests: 4-bit template matching tests, Turk-
ish Journal of Mathematics, 41, pp. 80 – 95, 2017.

61



[43] F. Sulak, A. Doğanaksoy, M. Uğuz, and O. Koçak, Periodic template tests: A
family of statistical randomness tests for a collection of binary sequences, DIS-
CRETE APPLIED MATHEMATICS, pp. 191–204, 2019.

[44] F. Sulak, M. Uğuz, O. Koçak, and A. Doğanaksoy, On the independence of
statistical randomness tests included in the nist test suite, Turkish Journal of
Electrical Engineering and Computer Sciences, 25, pp. 3673–3683, 2017.

[45] M. Sýs and Z. Říha, Faster randomness testing with the nist statistical test
suite, pp. 272–284, Security, Privacy, and Applied Cryptography Engineering,
Springer International Publishing, 2014.

[46] M. Turan, A. Doğanaksoy, and S. Boztas, On independence and sensitivity of
statistical randomness tests, volume 5203, pp. 18–29, 09 2008.

[47] M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and M. Boyle,
Recommendation for the entropy sources used for random bit generation, NIST,
2018.

[48] M. Uğuz, A. Doğanaksoy, F. Sulak, and O. Koçak, R-2 composition tests: a
family of statistical randomness tests for a collection of binary sequences, Cryp-
tography and Communications, 2019.

[49] J. Walker, Ent. a pseudorandom number sequence test program, Software and
documentation, 2008, [online] Available: http://www.fourmilab.ch/random.

62



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Akcengiz, Ziya

Nationality: Turkish (TC)

Date and Place of Birth: 1989, Ankara

Marital Status: Married

EDUCATION

Degree Institution Year of Graduation

M.S. Department of Cryptography, METU 2014

B.S. Department of Mathematics, METU 2012

High School Kalaba Anatolian High School 2007

PROFESSIONAL EXPERIENCE

Year Place Enrollment

12.2017-Continue TUBITAK / UEKAE Expert

07.2015-12.2017 METU / IAM Research Assistant

11.2013-07.2015 METU Scientific Project Expert

PUBLICATIONS

A. Doğanaksoy, F. Sulak, M. Uğuz, O. Şeker, Z. Akcengiz, New Statistical Random-

ness Tests Based on Length of Runs , Mathematical Problems in Engineering, Hindawi

63



Publishing Corporation, vol. 2015.

A. Doğanaksoy, F. Sulak, M. Uğuz, O. Şeker, Z. Akcengiz, Mutual correlation of

NIST statistical randomness tests and comparison of their sensitivities on transformed

sequences, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 25,

2017.

Z. Akcengiz, M. Aslan, Ö. Karabayır, A. Doğanaksoy, M. Uğuz, F. Sulak, Statis-

tical Randomness Tests of Long Sequences by Dynamic Partitioning, 2020 Interna-

tional Conference on Information Security and Cryptology (ISCTURKEY), Ankara,

Turkey, 2020, pp. 68-74, doi: 10.1109/ISCTURKEY51113.2020.9308005.

64


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Preliminaries
	Preliminary Statistics
	Mean and Variance
	Normal Distribution
	Chi Square Goodness of Fit Test
	Complementary Error Function and Incomplete Gamma Function
	Hypothesis Testing, Error Types and Significance Level



	Randomness Tests and Partitioning Methods
	Partition Methods
	Entire Sequence Testing Method
	Fixed Length Partition Method
	Dynamic Partition Method

	Randomness Tests
	Weight Test
	Entire Sequence Weight Test
	Fixed Length Partition Weight Test
	Dynamic Partition Weight Test

	Run Tests
	Entire Sequence Total Number of Runs Test
	Fixed Length Partition Total Number of Run Test
	Dynamic Partition Total Number of Runs Test
	Entire Sequence R2 Run Test

	Auto-correlation Test
	Entire Sequence Auto-correlation Test

	Linear Complexity
	Fixed Length Partition Linear Complexity Test
	Dynamic Partition Linear Complexity Test

	Integer (Non-overlapping Template) Tests
	Fixed Length Partition Coverage Test
	Dynamic Partition Collision Tests
	Dynamic Partition Saturation Point Test

	Dynamic Partition Index Coincidence Test


	Applications and Correlations
	Applications
	Test Performance and Proposed Test Suites
	Test Results of Random Sources

	Correlations of Test

	Sensitivities of Tests and Comparison of Test Suites
	Test Results of Bias Sources
	Comparison of Tests

	Conclusion
	REFERENCES
	CURRICULUM VITAE

